
published in: Proc. 2nd IEEE Workshop on Perception for Mobile Agents, Fort Colins CO, June 1999, pp 51-57 1

Abstract
We designed a family of completely autonomous

mobile robots with local intelligence. We developed our
own controllers with a variety of digital/analog I/O
facilities and our own operating system RoBIOS, which
allows maximum flexibility. Our robots have a number of
on-board sensors, including vision, and do not rely on
global sensor systems. The on-board computing power is
sufficient to analyse several color images per second.
This enables our robots to perform several different
tasks such as navigation, map generation, and intelligent
group behavior.

1 Introduction

After experience with large and heavy commercial
mobile robot systems [3], we decided to develop com-
pletely new mini-robots which should be suitable for a
variety of tasks in research and education. The robot
mechanics were designed to comply with the RoboCup [1]
robot soccer rules in order to be able to play in this compe-
tition, but should still be versatile for a number of different
perception/action tasks and not be too specialised for any
event in particular.

Each robot is equipped with two shaft encoders, five
infra-red range sensors, and a digital color camera. We use
differential steering for driving plus two further actuators
for tilting the camera and moving the front bar, e.g. for
kicking a ball. A wireless transmission allows the robots to
exchange information regarding their positions, sensor
data, as well as their intended actions and plans. Each
robot is told its starting position and uses its shaft encoders
plus infra-red sensors to keep track of its current position
and orientation. We do not use a global positioning system
or any global sensors.

We incorporated a digital color camera and a graphics
display to our basic controller system, based on a Motor-
ola 68332 controller (32 bit). All image processing is done
on-board without using remote computing power.

We believe that most essential mobile robot research
and education can be performed using small mobile robots
with vision, as opposed to large, heavy, expensive and
potentially harmful robot systems.

2 EyeBot Controller

The EyeBot controller is the central piece of hardware
we developed for a number of mobile robot projects. This
means the controller has to be flexible enough to account
for the needs of e.g. a 4-wheel-drive omni directional
vehicle and a 9-degree-of-freedom biped walking
machine.

2.1 Design Criteria

The controller was designed to perform onboard
image processing. This means it has to have an interface to
a digital camera and also the computing power to process
several images per second.

To the best of our knowledge, EyeBot is so far the
only mobile robot controller for small size mobile robots
which allows onboard vision (the controller size is 8.7cm
× 9.9cm). All other systems use either the "remote-brain"
approach, e.g. a video signal is relayed to a host worksta-
tion and driving commands are sent back - tethered or
remote-controlled, or they do not use vision at all [2].

We added a graphics LCD, in order to allow the pro-
grammer to see the camera data and adjust parameters
without the need for additional equipment or a link to a
host system. Although the camera provides color images
at medium resolution, the display can only show low reso-
lution black/white images. This is sufficient as a feedback

Autonomous Mobile Robots with On-Board Vision and Local Intelligence

Thomas Bräunl, Birgit Graf
Department of Electrical and Electronic Engineering, CIIPS

The University of Western Australia
Nedlands, Perth, WA 6907, Australia

http://www.ee.uwa.edu.au/~braunl

published in: Proc. 2nd IEEE Workshop on Perception for Mobile Agents, Fort Colins CO, June 1999, pp 51-57 2

to the programmer when running the robot, but not for
program development, which should be done on a work-
station using our interactive image processing tool Improv
[4].

A set of four buttons allows the programmer to set
program parameters and load/store programs from ROM
and RAM.

2.2 Performance Criteria

The controller has to perform a number of tasks in
time-shared parallel mode. This includes handling timer
interrupts, sensor input and actuator output (DC motors
and servos). All image processing routines run concur-
rently to these background tasks.

A low resolution image is sufficient for most mobile
robot applications. We chose a resolution of 60 × 80 pix-
els. Running at 35 MHz, the controller can handle about
16 frames per second (fps) for grayscale and about 4 fps
for color images. This number will be reduced depending
on the complexity of the application program’s image
operations. E.g. image acquisition for grayscale, Sobel
edge detection and display on the LCD can be performed
at a rate of more than 10 frames per second.

2.3 Programming Environment

A version of the gnu C-compiler and library [5] has
been adapted for EyeBot, so program development can be
made in a high level language, using assembly routines for
time-critical passages. In addition, a multi-threading
scheduler has been developed, which is essential for robot-
ics applications. The microcontroller’s timing processor
unit (TPU) is being used for servo control with pulse
width modulation (PWM), for sound synthesis and sound

playback, as well as the control of infra-red distance sen-
sors.

On top of the operating system, we developed the
integrated tool Rock&Roll (robot construction kit and
robot locomotion link) [6]. This system allows a "click-
and-connect" construction of robot control structures. In
its data flow model, sensors are sources and actuators are
sinks, both representing system-defined module boxes.
User-defined control boxes can be added, together with
interconnection links between all modules, representing
data flow.

The operating system RoBIOS (robot basic input
output system) has been written in C plus m68k assembly
language, using the gnu C compiler and assembler tools.
RoBIOS comprises a small real time system with multi-
threading, libraries for various I/O functions, and a num-
ber of demonstration applications.

The C low level text input and output routines have
been adapted for EyeBot. This enables us to use the stan-
dard C I/O library clib together with the EyeBot system for
user application programs. E.g., a user can call get-
char(), in order to read a key input and use
printf(..), in order to write text on the screen.

2.4 Mobile Robot Applications

EyeBot has been successfully used in the construction
of two-wheel-driven vehicles, 4-wheel-driven omni-direc-
tional vehicles, 6-legged walking machines, and biped
walkers. It is currently being considered for the project of
a flying robot.

In order to accommodate this variation in robot
mechanics and sensor/motor configurations, special care
has been taken to keep the RoBIOS operating system flex-
ible. A hardware description table (HDT) has been
included in the system design, which is used by the operat-
ing system to detect which hardware components are cur-
rently connected to the system and to provide device driv-
ers. These hardware components can be sensors or actua-
tors (motors or servos), whose control routines are already
available in the general RoBIOS system. HDT allows easy
detection, initialization, and use of these components.

3 Sensing

All wheel-driven robots of the EyeBot family use the
following sensors:

• shaft encoders
• infra-red distance measurement sensors
• compass module
• digital camera

Plus communication between the robots.

Fig 1. EyeBot robot with local intelligence

published in: Proc. 2nd IEEE Workshop on Perception for Mobile Agents, Fort Colins CO, June 1999, pp 51-57 3

The legged robots of the EyeBot family use additional
sensors:

• infra-red proximity switches in the feet
• acceleration sensors in torso

3.1 Shaft Encoders

The most basic feedback is generated by the motors’
encapsulated shaft encoders. This data is used for three
purposes:

• PI controller for individual wheel to maintain
constant wheel speed

• PI controller to maintain desired path curvature
(i.e. straight line)

• Dead reckoning to update vehicle position and
orientation

The controller’s dedicated timing processor unit
(TPU) is used to deal with the shaft encoder feedback as a
background process.

3.2 Infra-red Distance Measurement

Each robot is equipped with three infra-red sensors to
measure the distance to the front, to the left and to the
right. This data can be used to:

• avoid collision with an obstacle
• navigate and map an unknown environment
• update internal position in a known environment

Since we are using low cost devices, the sensors have
to be calibrated for each robot and, due to a number of rea-
sons, also generate false readings from time to time.
Application programs have to take care of this, so a level
of software fault tolerance is required.

3.3 Compass Module

The biggest problem in using dead reckoning for
position and orientation estimation in a mobile robot is
that it deteriorates over time, unless the data can be
updated at certain reference points. A wall in combination
with a distance sensor can be a reference point for the
robot position, but updating robot orientation is very diffi-
cult without additional sensors.

A similar problem exists in legged robots, since they
do not have direct feedback sensors like shaft encoders
and their turning speed may vary greatly with the surface
structure (e.g. concrete or carpet).

In these cases, a compass module which senses the
earth’s magnetic field is a big help. However, these sen-
sors are usually only correct to a few degrees and may
have severe disturbances in the vicinity of metal. So the
exact sensor placement has to be chosen carefully.

3.4 Digital Camera

We developed a camera module based on a CMOS
image chip. This gives a resolution of 60 × 80 pixels in
24bit color. Since all image acquisition, image processing,
and image display is done onboard the EyeBot, there is no
need to transmit image data.

3.5 Infra-red Proximity Switch

In the past, we used infra-red proximity switches also
for wheeled robots, but later left them out in favor of the
more powerful distance measurement sensors.

In the biped walking robots, we use two infra-red
proximity switches in each foot as a feedback whether the
robot touches the ground.

3.6 Acceleration Sensor

We currently use acceleration sensors only in the
biped walking robots. These sensors are mounted perpen-
dicular for two axes and return the current robot body pos-
ture. A PID controller uses this as a feedback to make the
robot balance.

Since we use rather cheap servos in the construction
of the biped walker, there is considerable jitter noise in the
standing robot, which is of course directly reflected in the
raw sensor readings. Since this noise should not effect the
robot control, we use digital filters to remove this noise
from the sensor signal before it is used for feedback.

3.7 Inter-Robot Communication

While the wireless communication network between
the robots is not exactly a sensor, it is nevertheless a
source of input data to the robot from its environment. It
may contain sensor data from other robots, parts of a
shared plan, intentions from other robots, or commands
from other robots or a human operator.

4 Behaviour Modules

In the following we discuss a number of behaviour
modules while concentrating on the perception aspects.
The sample application is playing robot soccer. The mod-
ules can be re-used for other individual or group robot
tasks. In particular the position tracking and obstacle
avoidance modules are being used for exploration and
mapping tasks of other robot application projects.

published in: Proc. 2nd IEEE Workshop on Perception for Mobile Agents, Fort Colins CO, June 1999, pp 51-57 4

4.1 Detection of Colored Objects

We analyze the visual input from the on-board digital
camera in order to detect important objects on the field.
The ball or the opponent’s goal are detected using their
color. These colors are taught to the robot before the game
is started. The robot has to be placed in front of an object,
then the mean HSV-values of the center region on the
screen are calculated and saved for the object’s future
identification.

The pixel lines of the input picture are continuously
searched for objects whose mean color value compared to
the trained color value of the ball is below a certain thresh-
old and which have the desired size (trying to distinguish
the ball and the yellow goal). In Figure 2 a simplified line
of pixels is shown, object pixels are displayed in grey, oth-
ers in white. The implemented algorithm initially searches
for ball-colored pixels at each end of a line (see region (a):
first = 0, last = 18), then the mean color value is calcu-
lated. If it is below the threshold, the ball has been found,
otherwise the region will be narrowed, attempting to find a
better match (see region (b): first=4, last=18). The algo-
rithm stops as soon as the size of the analyzed region
becomes smaller than the desired size of the object. In the
line displayed in Figure 2 a ball with a size of 15 pixels is
found after two iterations.

4.2 Distance Estimation from Camera Data

Once the object has been identified in an image, the
next step is to translate image coordinates into global
coordinates in the robot’s environment. This is done in two
steps:

• First, the position of the ball as seen from the robot is
calculated from the given pixel values, assuming a
fixed camera position and orientation. This calcula-
tion depends on the height of the object in the image.
The higher the position in the image, the further an
object’s distance from the robot.

• Second, given the robot’s current position and orien-
tation, the local coordinates are transferred into global
position and orientation on the field.

Since the camera is looking down at an angle, it is
possible to determine the object distance from the image

coordinates. In an experiment (see Figure 3), the relation
between pixel coordinates and object distance in meters
has been determined. Instead of using approximation func-
tions, we decided to use the faster and also more accurate
method of lookup tables. This allows to calculate the exact
ball position in meters from the screen coordinates in pix-
els and the current camera position/orientation.

The distance values were found through a series of
measurements, for each camera position and for each
image line. In order to reduce this effort, we only used
three different camera positions (up, middle, down), which
resulted in three different lookup tables.

Depending on the robot’s current status, the appropri-
ate table is used for distance translation. The resulting rel-
ative distances are then translated into global coordinates
using polar coordinates.

An example output picture on the robot LCD can be
seen in Figure 4. The lines indicate the position of the
detected ball in the picture while its global position on the
field is displayed in centimeters on the right hand side.

Fig 2. Analysing color image line

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(a)

(b)

Fig 3. Relation between object height and distance

Fig 4. LCD output after ball detection

distance (cm)

height (pixels)
20

40

60

80

40 60 8020

Schematic Diagram

Measurement

published in: Proc. 2nd IEEE Workshop on Perception for Mobile Agents, Fort Colins CO, June 1999, pp 51-57 5

4.3 Trajectory Planning

After detecting the global position of the ball on the
field, the robot starts driving towards it. To make the deci-
sion of where the selected robot drives, we had to develop
several driving algorithms. The appropriate driving action
is chosen depending on the position of the ball and the
robot’s own position (Figure 5).

The necessary decision factors are calculated as fol-
lows:

Would robot kick ball towards its own team’s half?
With ϕ being robot orientation and β being the angle
between robot orientation and ball position the abso-
lute value of the robot orientation after driving a curve
to the ball is ϕ’ = ϕ − 2β. The absolute value of this
angle must not be more than 90 degrees.

Could robot push ball into opponent’s goal?
With ballx and bally being the coordinates of the ball
on the field, length being the length of the field and ϕ'
being the above described heading of the robot after
driving directly a curve to the ball,

 is calculated
as the distance where the robot would hit the goal line
if it drove a curve to the ball and then towards the goal
in a straight line. If the absolute value of ydist is
smaller than half the width of the goal, the robot is
able to push the ball directly into the goal.

Is robot in its own half?
If the x value of the robot position is less than half the
length of the field, the robot is still in its own team’s
half.

4.4 Driving Actions

After completing the trajectory planning, the robot
selects the appropriate driving action for execution. Here,
the robot can either drive directly towards the ball (if the
ball is roughly in line with the opponent’s goal) or drive
around the ball (in order to kick it in the opposite direc-
tion, e.g. avoiding an own goal). Figure 6 shows all differ-
ent cases.

Drive directly to the ball (Figure 6 a,b):

With localx and localy being the local coordinates of

the ball seen from the robot, the angle to reach the ball

can be set directly as . With l being

the distance between the robot and the ball, the dis-

tance to drive in a curve is given by

Drive around the ball (Figure 6 c,d,e):
If a robot is looking towards the ball but at the same
time facing its own goal, it can drive to a circle with a
fixed radius that goes through the ball. The radius of
this circle is chosen arbitrarily and was defined to be
5 cm. The circle is placed in a way that the tangent at
the position of the ball also goes through the oppo-
nents’ goal. The robot turns on the spot until it faces
this circle, drives to it in a straight line and behind the
ball on the circular path.

Driving along a spline curve:
An interesting alternative driving routine are splines,
since they generate a smooth path and avoid turning
on the spot, so they can be used to generate a faster
path.
Given the robot position and its heading as
well as the ball position and the robot’s destina-
tion heading (facing towards the opponent’s
goal from the current ball position), it is possible to
calculate a spline which for every fraction u of the

Fig 5. Ball approach strategy

Would robot kick ball towards
its own goal?

yes no

Could robot push ball into
opponent’s goal?

yes no

Is robot in its
own half?

yes no

drive behind
the ball

drive directly
to the ball

drive directly
to the ball

drive behind
the ball

ydist length ballx–() ϕ′()tan⋅ bally+=

Fig 6. Ball approach cases

(a)

(d)

(c) (b)

x

y

(e)

α localy
localx
---------------- 

 atan–=

d lα α()sin=

Pk DPk
Pk 1+

DPk 1+

published in: Proc. 2nd IEEE Workshop on Perception for Mobile Agents, Fort Colins CO, June 1999, pp 51-57 6

way from the current robot position to the ball posi-
tion describes the desired location of the robot.
The Hermite blending functions with param-
eter u are defined as follows:

The current robot position is then defined by:

A PID controller is used to calculate the linear and ro-
tational speed of the robot at every point of its way to
the ball, trying to get it as close to the spline as possi-
ble.
The driving function DriveSpline(start,
end) has been added to the RoBIOS library. The ro-
bot’s speed is constantly updated by a background
process that is invoked 100 times per second. If the
ball cannot be detected any more (e.g. the robot had to

drive around it and lost it out of sight), the robot keeps
driving to the end of the original curve. The new driv-
ing command is being issued as soon as the (moving)
ball is recognised at a different position.
This strategy has first been designed and tested on the
EyeBot simulator EyeSim (Figure 7), before running
on the actual robot.

5 Summary and Future Research

EyeBot robot developments include not only the
wheeled robots with differential steering, but also several
different 6-legged and biped walking machines (Figure 8).

All these robots are using the same controller type
and the identical operating system, individually adapted to
each robot’s sensor/actuator configuration by the concept
of a hardware description table. A number of sensors used
for different types of mobile robots has been discussed.

We have presented EyeBot, a platform used for auton-
omous mobile robots with local intelligence, EyeSim, a
simulator for EyeBot, and perception/planning/action
strategies for playing robot soccer. EyeBots are currently
being used for a number of intelligent agent projects,
including behaviour-based approaches for implementing
complex group behaviour.

Fig 7. EyeSim screen display

H0…H3

H0 2u
3

3u
2

– 1+=

H1 2–()u
3

3u
2

+=

H2 u
3

3u
2

– u+=

H3 u
3

u
2

–=

P u() pkH0 u() pk 1+ H1 u() DpkH2 u() DPk 1+ H3 u()++ +=

Fig 8. EyeBot robot family

published in: Proc. 2nd IEEE Workshop on Perception for Mobile Agents, Fort Colins CO, June 1999, pp 51-57 7

Acknowledgments

The authors acknowledge the work of all students
who participated in this project, especially Elliot Nicholls,
Nicholas Tay, Thomas Lampart, and Klaus Schmitt.
EyeBot is an ongoing joint project between Univ. Stut-
tgart, Rochester Institute of Technology, Univ. Kaiserslau-
tern, and UWA Perth. The authors would like to express
special thanks to Richard Meager and Ivan Neubronner
from the E&E Eng. Workshops of UWA for re-designing
and building the robot mechanics and controller hardware.

References

1. M. Asada, RoboCup-98: Robot Soccer World Cup II, Proc. of
the second RoboCup Workshop, RoboCup Federation, Paris,
July 1998

2. H. Bayer, Th. Bräunl, A. Rausch, M. Sommerau, P. Levi,
Autonomous Vehicle Control by Remote Computer Systems,
Proceedings of the 4th International Conference on Intelligent
Autonomous Systems, IAS–4, Karlsruhe, March 1995, pp.
158–165 (8)

3. T. Bräunl, M. Kalbacher, P. Levi, G. Mamier, CoMRoS:
Cooperative Mobile Robots Stuttgart, Proc. 13. Nat. Conf. on
Artificial Intelligence, AAAI Press, Portland OR, August
1996

4. T. Bräunl, Improv and EyeBot – Real-Time Vision on-board
Mobile Robots, 4th Annual Conference on Mechatronics and
Machine Vision in Practice (M2VIP), Toowoomba QLD,
Australia, Sep. 1997, pp.131–135 (5)

5. The GNU Project, GNU Documentation, online, Delorie
Software,
www.delorie.com/gnu/docs/

6. P. Levi, M. Muscholl, Th. Bräunl, Cooperative Mobile Robots
Stuttgart: Architecture and Tasks, Proceedings of the 4th
International Conference on Intelligent Autonomous
Systems, IAS–4, Karlsruhe, March 1995, pp. 310–317 (8)

