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Abstract
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Keywords
data parallel, virtual architecture, virtual processors, parallel debugger, data visualizer, traffic
simulation.

1. Introduction
Parallaxis [Bräunl 89, 91, 93] is based on Modula-2 [Wirth 83], extended by data parallel con-
cepts. The language is fully machine-independent across data parallel architectures; therefore
programs written in Parallaxis run on different parallel computer systems. For a large number
of (single-processor) workstations and personal computers there is a Parallaxis simulation sys-
tem with source level debugging and tools for visualization and timing. Parallel programs with
small data sets can be developed, tested and debugged with this simulation system. Then, Par-
allaxis compilers can be used to generate parallel code for data parallel systems. The simula-
tion environment allows both the study of data parallel fundamentals on simple computer sys-
tems and the development of parallel programs, which can later be executed on expensive par-
allel computer systems. The programming environment for Parallaxis is available as public
domain software [Bräunl 96].

Our major goals in developing this new parallel programming language was to simplify
data parallel programming and to build on an existing good programming language. We chose
Modula-2 over C, since it has a much clearer structure and exhibits numerous advantages when
used for teaching programming concepts. We made Parallaxis a superset of Modula-2, so
sequential algorithms can easily be expressed as a standard Module-2 program. Since some
concepts are easier to formulate in a parallel fashion than in an iterative way, some algorithms
actually become simpler in the parallel version. Since we are interested in data parallel pro-
cessing in general, we avoided any machine-specific references in the language. Parallaxis is
therefore a completely machine independent data parallel programming language.

The central point of Parallaxis is programming on a level of abstraction with virtual PEs and
virtual connections. In addition to the algorithmic description, every program includes a con-
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nection declaration in functional form. This means that the desired connection topology is
specified in advance for each program (or for each procedure) and can be addressed in the
algorithmic section with symbolic names instead of complicated arithmetic index or pointer
expressions. However, full-dynamic data exchange operations are possible as well.

2. Data Parallel Language Constructs
The hardware structure of data parallel systems has to be mapped into programming language
constructs. As a result, the parallel features of all data parallel programming languages turn out
to be quite similar and share the same groups of language constructs listed below:

a. Declaration of virtual processors and connections
b. Declaration of vector data
c. Parallel execution
d. Parallel data exchange
e. Vector reduction
f. Vector - scalar exchange

For discussing the individual groups of language constructs, we would like to point out that
data parallel entities are rather similar to elements in a data array, which are being worked on
in parallel. This turns out to be a good analogy when discussing language features and in fact is
the model chosen for some data parallel languages such as Fortran-90 [Metcalf, Reid 90].

In the following, the term "vector" will be used to describe a data parallel data structure,
while the term "scalar" describes data structures used within the sequential sequencer part of a
data parallel system. E.g. a loop counter is usually a scalar variable in a data parallel program,
while a whole image could be a single vector, distributed over all available processing ele-
ments (PEs). On the hardware side of a data parallel system, scalar and vector data usually
reside in separate memory units and are accessed by different processors.
(a) Declaration of virtual processors and connections

Before any data parallel calculation can start, the number of data parallel entities, or the
"vector length" of the parallel data structures involved has to be specified.
[In our analogy this corresponds to the array length in an array declaration.]
Several languages like C* [Rose, Steele 87] and Parallaxis support this language construct,
e.g.:

CONFIGURATION p[0..99]; (* declare PE structure "p" with 100 PEs *)

Others, however, like MPL [MasPar 91], do not provide language constructs to address this
issue. This results in a machine dependence, since the same program will behave differently
(it will in fact produce different results or not run at all) on a machine with less PEs than
intended. As a consequence, the application programmer has to deal with the machine size
in all user programs. On the other hand, freely specifying the "vector data length" (or num-
ber of PEs in a system) creates an additional level of abstraction, often called "virtual pro-
cessors". This enables machine-independent (or more precisely machine-size-independent)
programming with only minimal run-time overhead.
While a number of languages support the specification of virtual processors, only a few al-
low them to be structured in dimensions (like two- or more-dimensional data arrays), and
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only Parallaxis implements the specification of virtual connections. Keeping the array anal-
ogy, most languages allow data exchange using indices (see point d, below). However, we
are going one step further by defining these index mappings up front, so symbolic names
can be used instead of indices in the algorithm part. E.g.:

CONNECTION
list: p[k] -> p[k+1]; (* connect PEs as list *)
ring: p[k] -> p[(k+1) MOD 100]; (* connect PEs as ring *)

(b) Declaration of vector data
The same way that scalar data must be declared before it can be used, vector data has to be
declared appropriately and has to be distinguished from scalar data. The simplest form for
doing this can be by using different keywords, e.g. (from Parallaxis-2):

SCALAR i: INTEGER; (* this variable exists only once *)
VECTOR a: INTEGER; (* each PE defined previously has its local a *)

This form of declaration, however, would allow only one vector type in a program’s block
structure (i.e. a procedure), since there is no language construct to associate a configuration
with a variable. Parallaxis-III treats the "vector-ness" and vector structure as part of the data
type. This allows declaration of variables with different vector structures and different base
types next to each other. E.g. (in Parallaxis-III):

VAR i: INTEGER; (* sequential as in standard Modula-2 *)
a: p of INTEGER; (* vector of configuration "p" as def. above *)

(c) Parallel execution
Some languages provide special language constructs to indicate data parallel execution, e.g.
in some task-level parallel languages:

"FORALL i in [1..100] DO ... (* in parallel *) END"

However, this is not necessary for languages like Parallaxis, which have proper vector data
declaration. The execution style (data parallel or sequential) is implicitly defined, by as-
suming that all operations on vector data is to be performed data parallel, while all opera-
tions on scalar data is to be performed sequentially. E.g. using the previous example
declarations:

FOR i := 1 TO 100 DO (* sequential loop iter., since i is scalar *)
a := a + 1; (* parallel operation, since a is vector *)

END;

(d) Parallel data exchange
This operation is required to do data shuffling inside a vector, e.g. a permutation of vector
elements in case of a 1:1 exchange structure. A data parallel data exchange operation is in
fact the most interesting, but often also the most confusing operation. Unlike communica-
tion between independent parallel tasks, data parallelism requires synchronous execution
between all active PEs. This means that all PEs send/receive data using the same exchange
pattern concurrently.
While some languages merely allow the specification of an index expression, Parallaxis en-
courages the use of previously declared directions. E.g.

a := MOVE.ring(a);
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This will rotate all elements of vector a. Things get more complex, if the data exchange
structure does not follow a 1:1 mapping. This means the language has to define what hap-
pens when source or destination indices do not exist. The former could lead to undefined
data, while the latter could result in lost data. Both problem domains are demonstrated in
the following data exchange example. They will be discussed in more detail later on:

a := MOVE.list(a);

(e) Vector reduction
All data parallel languages provide either special language constructs or special low-level
system routines to deal with vector reduction. Assume we are interested in the sum of all
components of a vector. Then - if syntax were to allow it - we could find out by sequentially
adding all components. However, we would have difficulties describing the same process
in parallel, because this depends on the actual parallel hardware structure (grid, tree, etc.)
and its relative communication timings. Therefore, special routines or constructs are re-
quired in one way or another.

(f) Vector - scalar exchange
Finally, each data parallel language must provide a way to exchange values between vector
and scalar variables. Since I/O is usually sequential it would otherwise be impossible to ini-
tialize a vector with stored data or to print the result of a vector operation. The exchange
can be between vector components and simple scalar variables or between a whole vector
and a scalar data array.

3. Parallaxis
We will now take a closer look at the data parallel language constructs in Parallaxis-III by fol-
lowing the outline of language constructs from the previous section. 

3.1 Virtual Processors and Connections
One or several ‘virtual machines’ consisting of processors and a connection network may be
defined for every Parallaxis program. This is done in two simple steps. First, the keyword CON-
FIGURATION  is used to specify the number of PEs and their arrangement in analogy to an array
declaration. However, at this point, no specification has been made as to the connection struc-
ture between the PEs. This follows by specifying mapping relations, introduced by the key-
word CONNECTION (this second step may be omitted if no connections are required). Every con-
nection has a symbolic name and defines a mapping from a PE (any PE) to the corresponding
neighbor PE. The specification of this relative neighbor is accomplished by providing an arith-
metic expression for the index of the destination PE. Data exchanges can now be carried out
using these symbolic connection names in the parallel program.

In our array analogy this two step declaration process looks like:
a. Configuration: defines number of PEs required and their n-dimensional arrangement

[resembling an array type declaration]
b. Connection: defines links between PEs based on their position in a configuration

[resembling the definition of a set of array indices] 
Configurations are data types - they only come to life when used in the declaration of a vec-
tor variable. Connections are attributes - they can only be used in data exchange for a vec-
tor.
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Figure 1 shows a PE arrangement as a two-dimensional grid structure in a simple Parallaxis
example. The CONFIGURATION declaration provides 4 × 5 virtual processors, which are virtu-
ally connected to one another in the following CONNECTION declaration. The syntax for config-
urations follows roughly the (multi-dimensional) array declaration in Modula-2. Since homo-
geneous connection structures or topologies are easy to declare, four connection declarations
are sufficient to construct a mesh of any size. One connection is defined for each cardinal
direction. The connection to the north, for example, decrements the first index. Note that con-
nections for some PEs result in non-existing PE positions. This is not an error - connections at
border PEs are allowed to lead to ‘nowhere’, which means that these connections do not exist,
and will not participate in any data exchange operation. 

In case an application requires a torus instead of an open mesh, this can be easily accom-
plished by using the modulo-operator (see right-hand side of Figure 1). Here a new set of con-
nections is defined on the same grid configuration (using connections northT, etc.). All con-
nections of the torus point to valid neighbor PEs, so the previously discussed data exchange
problem does not exist here. 

There is a list of extensions to this simple process of defining virtual machine structures:
Several destination expressions may be specified after the arrow symbol, separated by com-
mas. Connections may be parameterized, as for a highly symmetric topology like the hyper-
cube. With these, it is possible to perform a data exchange in a computed direction. For the def-
inition of the binary tree network (see Figure 2), bi-directional connections (‘↔’ or ‘<->’ in
ASCII notation) can be used instead of uni-directional connections (‘→’ or ‘->’). A bi-direc-
tional connection is an abbreviation for two uni-directional connections and, therefore,
requires a second connection name on the right hand side of the connection.

So-called ‘compound connections’ may be used to have a case distinction inside a connec-
tion. The following example connects local pairs of PEs (see Figure 3).

A case distinction is made for the next connection. If the PE-number is odd, a connection to
the right neighbor is established, while if it is even, a connection to the left neighbor is estab-

CONFIGURATION grid [0..3],[0..4];
CONNECTION CONNECTION
north: grid[i,j] → grid[i-1, j]; northT: grid[i,j] → grid[(i-1) MOD 4, j];
south: grid[i,j] → grid[i+1, j]; southT: grid[i,j] → grid[(i+1) MOD 4, j];
east : grid[i,j] → grid[i, j+1]; eastT : grid[i,j] → grid[i, (j+1) MOD 5];
west : grid[i,j] → grid[i, j-1]; westT : grid[i,j] → grid[i, (j-1) MOD 5];

Figure 1: Two-dimensional grid and torus topology
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lished. Using compound connections, arbitrary connection structures, even with irregularities,
may be defined.

Connection structures do not have to be 1:1 connections. For 1:n connections, an implicit
broadcast is executed. In the following example, the first element of each row is connected to
all elements in its row.

CONFIGURATION grid [1..100],[1..100];
CONNECTION one2many: grid[i,1] →  grid[i,1..100];

If a one-to-many connection is to be established to all PEs of a dimension, the range may be
substituted by an asterisk ‘*’. So the following is an equivalent connection.

CONNECTION one2many: grid[i,1] →  grid[i,*];

However, for n:1 (many-to-one) connections (and the general many-to-many m:n connec-
tions) one must ensure that only a single value arrives at any PE's entry port. Therefore, each
data exchange operation may include a vector reduction, as will be discussed later. In the fol-
lowing example, all elements of a row are connected to the first element in their column.

Tree definition:
CONFIGURATION tree [1..15];
CONNECTION lchild: tree[i] → tree[2*i];

rchild: tree[i] → tree[2*i+1];
parent: tree[i] → tree[i DIV 2];

Identical tree connection with bidirectional operator:
CONNECTION lchild: tree[i] ↔ tree[2*i] :parent;

rchild: tree[i] ↔ tree[2*i+1]:parent;

Identical tree connection with parameter:
CONNECTION child[1]: tree[i] ↔ tree[2*i] :parent;

child[2]: tree[i] ↔ tree[2*i+1]:parent;

Figure 2: Alternative binary tree definitions

CONFIGURATION list [1..8];
CONNECTION next: list[i] → {ODD (i)} list[i+1],

{EVEN(i)} list[i-1];

Figure 3: Compound connections

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8



published in: IEEE Transactions on Software Engineering, vol. 26, no. 3, March 2000, pp. 227–243 (17) 7

CONNECTION many2one: grid[i,j] →  grid[i,1];

3.2 Multiple Configurations and Iterative Connections
In addition to the constructs shown so far, the definition of multiple topologies in a program is
possible. These may be defined independently of each other on separate groups of PEs – in
which case the topologies may have different vector data structures. Or the topologies can be
defined as ‘different views’ of the same set of PEs with identical data structure. Furthermore,
local topologies may be defined in procedures, thus allowing semi-dynamic connection struc-
tures.

Different configuration definitions denote different sets of PEs. For example, the following
declaration defines two distinct sets of PEs:

CONFIGURATION grid [1..200],[1..50];
              tree [1..10000];

On the other hand, configurations may be defined as a different view of the same set of PEs.
In this case, the numbers of PEs have to be identical.

CONFIGURATION grid [1..200],[1..50];
              tree [1..10000] = grid;

Connections may be specified between multiple configurations:

CONFIGURATION grid [0..199],[0..49];
              tree [1..10000];
CONNECTION mix: grid[i,j] -> tree[i*50 + j];

The final extension is the use of iterative connection functions, as in the following defini-
tion for a hypercube network of arbitrary size (‘**’ denotes exponentiation, n is a constant):

CONFIGURATION hyper [0..(2**n-1)];
CONNECTION FOR k := 0 TO n-1 DO
             dir[k]: hyper[i] ↔ {EVEN(i DIV 2**k)}
                                 hyper[i + 2**k] :dir[k];
           END;

If n equals 10, there are 1,024 PEs defined together with ten bi-directional connections.
Expression EVEN(i DIV 2**k) tests, whether the k-th bit of i equals 0.

A large program may be split into several modules, which are compiled separately. So, e.g.
for a module containing library functions, it may be desirable not to specify the size of a con-
figuration. When writing routines for image processing, the size of the grid structure should be
left unspecified and will be defined later by the module importing these routines. An open con-
figuration is indicated by using an asterisk ‘*’ instead of a value range. The configuration size
may be determined dynamically at run time, e.g. by passing a parameter that is subsequently
used as an upper bound in the configuration declaration.
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DEFINITION MODULE Open;
CONFIGURATION grid[*],[*];
CONNECTION left: grid[i,j] <-> grid[i  ,j-1] :right;
           up  : grid[i,j] <-> grid[i+1,j  ] :down;
PROCEDURE sum_3x3(input: grid OF INTEGER): grid OF INTEGER;
END Open.

MODULE Main;
FROM Open IMPORT grid, sum_3x3;
CONFIGURATION my_grid = grid[1..10],[1..10];
VAR a,b: my_grid OF INTEGER;
BEGIN
  a := 1;
  b := sum_3x3(a);
  WriteInt(b,5);
END Main.

Open configurations are needed when a procedure is to work on a vector of unspecified
size, but has to make use of connections for data exchange or position data. If connections and
position data are not required in a procedure which is to be used for different configurations
(different size or arbitrary configuration), then the simpler concept of generic vector parame-
ters may be used (see data declaration below).

3.3 Data Declaration
Parallaxis differentiates between scalar and vector variables in data declarations as well as in
procedure parameters and results. Scalar data is placed on the control processor, while vectors
are distributed component-wise among the virtual PEs (see Figure 4). The configuration name
is used as part of the data type of a vector variable.

Unfortunately, strict typing has an annoying effect on procedure arguments. Imagine, e.g.
writing a function factorial, for computing the factorial value for an argument of type INTE-
GER. Now, a factorial function would have to be declared for scalar arguments, and for every
configuration defined in a program (e.g. for scalar, grid and tree in Figure 4). Since there is no
way of knowing them in advance, it would be impossible to write general library routines. To
remedy this situation, parameters and variable declarations inside such a procedure may use
the keyword VECTOR instead of a particular configuration name. This indicates that a parameter
will be used in a parallel computation, without specifying a particular configuration (this

VAR a: INTEGER;      (* scalar *)
b: grid OF REAL; (* vector *)
c: tree OF CHAR; (* vector *)

Figure 4: Declaration of scalar and vector data
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results in a generic procedure). All parameters declared as generic vectors or variables in such
a procedure have to belong to the same configuration. Since no particular configuration has
been specified, no data exchange may be performed in such a procedure.

PROCEDURE s_factorial(a: INTEGER): INTEGER;
VAR b: INTEGER;                    (* scalar *)
  ...
END s_factorial;

PROCEDURE v_factorial(a: VECTOR OF INTEGER): VECTOR OF INTEGER;
VAR b: VECTOR OF INTEGER;          (* any vector *)
  ...
END v_factorial;

A procedure may contain several different open vectors or open configurations, and may
also define local variables of the same "open type", as shown in the following example:

PROCEDURE vec(a: VECTOR OF INTEGER; b: VECTOR OF INTEGER);
VAR x: VECTOR a OF INTEGER; (* vector type corresponding to a *)
    y: VECTOR b OF INTEGER; (* vector type corresponding to b *)
  ...
END vec;

CONFIGURATION grid[*],[*];

PROCEDURE open(a: grid OF REAL; b: grid OF REAL);
VAR x: grid b OF REAL;  (* vector type corresponding to b *)
  ...
END open;

3.4 Processor Positions
There are two ways to determine a PE's current position. The first is by using the (vector-val-
ued) standard function ID, which returns the virtual processor position as a single number in
row-major ordering (or ‘highest-dimension-major’ for more than two dimensions):

This results in each component of x being assigned the number of its virtual PE, always
starting with 1, independent of configuration range and number of dimensions:

The second way of determining the position of a virtual PE, now with respect to its configu-
ration declaration, is to use the standard function DIM. This function takes the configuration
name and the number of the dimension as arguments and returns the position of a PE within
this dimension. Dimensions are numbered from right to left, that is, the highest dimension is at
the left-most position.

CONFIGURATION grid [1..4],[-2..+2];
...
VAR x: grid OF INTEGER;
...
x := ID(grid); 2nd dimension

1st dimension

ID grid( )
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

=
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The position values returned by function DIM match the ranges of the configuration defini-
tion. The following shows position data for rows and columns of the grid example:

Functions ID and DIM are complemented by functions LEN (size of a dimension), UPPER/
LOWER (upper or lower bounds of a dimension), and mapping functions DIM2ID/ID2DIM.

An individual PE may be selected by using a component expression with scalar arguments
after the identifier of a vector variable:

VAR x  : grid OF INTEGER; (* 2-dim. *)
    s,t: INTEGER; (* scalar *)
...
s := x <<12>>; (* get the value of the PE with ID 12 *)
x <<12>> := s; (* set the value of the PE with ID 12 *)

s := x <:3,t+1:>; (* get value of PE in row 3 and col. t+1,
according to CONFIGURATION ranges *)

x <:t,1:> := s; (* set value of PE in row t and column 1 *)

3.5 Parallel Execution
Parallel execution is implicit in Parallaxis-III, depending on the declaration of variables
involved in a statement or expression. PE-selection (determining which PEs will be active dur-
ing a certain statement) is also implicit. Any selection or iteration instruction (IF, FOR, WHILE,
REPEAT, CASE, LOOP) with a vector argument may be used. Figure 5 shows the data parallel
execution of a statement on a selected group of PEs. The selection criteria can involve PE posi-
tions or local data.

Figure 5: Data parallel instruction
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3 3 3 3 3
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VAR x,a,b: grid OF REAL;
...
IF DIM(grid,2) IN {2,3} THEN
  x := a+b
END;
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VAR x,a,b: grid OF REAL;
...
IF x>0 THEN
  x := a+b
END;

x:=a+b x:=a+b x:=a+b

x:=a+b x:=a+b x:=a+b x:=a+b

selection depends on PE position

selection depends on local data
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So whenever a selection is performed, e.g. by an IF statement with vector condition, only
those PEs are active during execution of the THEN branch, whose local condition evaluates to
TRUE. A THEN branch or an ELSE branch will only be executed if the condition (or its negation,
respectively) will be satisfied by at least one PE. In the general case, when the condition evalu-
ates to TRUE for some PEs, but evaluates to FALSE for some other PEs, then both THEN branch
and ELSE branch will be executed subsequently (first THEN, afterwards ELSE) with the appro-
priate group of PEs being activated. This also holds for any scalar statements that may be con-
tained in these branches. If vector IF statements are nested, then in the inner level only a subset
of the PEs of the corresponding outer level can be active.

Example:

VAR x: grid OF INTEGER;
...
IF x>5 THEN x := x - 3
       ELSE x := 2 * x
END;

Execution:

PE-ID: 1 2 3 4 5 (‘–’ denotes inactive)

initial values of x: 10 4 17 1 20

starting then-branch: 10 – 17 – 20
after then-branch: 7 – 14 – 17

starting else-branch: – 4 – 1 –
after else-branch: – 8 – 2 –
selection done
after if-selection: 7 8 14 2 17

The possible subsequent execution of THEN- and ELSE-branches may lead to unexpected
side effect, which are shown in the following program.
Example:

VAR x: grid OF INTEGER;
    s: INTEGER, (* scalar *)
...
IF x>5 THEN x := x - 3; INC(s);
       ELSE x := 2 * x; INC(s);
END;

Execution:
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PE-ID: s 1 2 3 4 5 (’*’ active, ’–’ inactive)

initial values of s: 1 * * * * *
after then-branch: 2 * – * – *
after else-branch /if: 3 – * – * –

When entering a loop with vector condition (e.g. WHILE loop), only those PEs are active
which satisfy the condition. In subsequent iterations of this loop, the number of PEs is always
decreasing. The loop iterates until no PE is left to satisfy the loop condition.
Example:

VAR x: grid OF INTEGER;
...
WHILE x>5 DO
  x:= x DIV 2;
END;

Execution:

PE-ID: 1 2 3 4 5 (‘–’ denotes inactive)

initial values of x: 10 4 17 1 20

starting 1st iteration: 10 – 17 – 20
after 1st iteration: 5 – 8 – 10

starting 2nd iteration: – – 8 – 10
after 2nd iteration: – – 4 – 5

starting 3rd iteration: – – – – –
loop terminates
after loop: 5 4 4 1 5

The parallel WHILE-loop requires an implicit reduction operation - otherwise it would not be
possible to determine when the loop terminates. This information has to be relayed from the
vector side to the scalar side, which deals with the actual loop iteration. So the same WHILE-
loop could be rewritten with an explicit reduction to make the argument a scalar and thereby
use a standard scalar WHILE-loop. In that case, however, an additional vector IF-selection has
to take care of the correct PE activation:

WHILE REDUCE.OR(x>5) DO (* OR-reduction: continue loop iteration *)
  IF(x>5) THEN x:= x DIV 2 END (* while at least one PE is left *)
END;

Other control structures, known from sequential Modula-2 may be used in vector context as
well. The CASE-selection can be treated as a nested chain of IF-THEN-ELSIF-selections, while
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FOR- and REPEAT-loops can be regarded as modifications of a WHILE-loop. An ALL-statement
allows to reactivate all elements of a configuration within a selection or loop.

3.6 Structured Data Exchange
Data exchanges between processors can be accomplished with simple symbolic names, thanks
to the network declaration described earlier. Data exchange of a local vector variable between
all or just a group of PEs can be invoked by calling system function MOVE with the name of a
previously defined connection. Only active PEs participate in a data exchange operation. Fig-
ure 6 shows an example of a data exchange in the grid structure defined previously. The
expression returns vector variable x shifted one position to the east.

For the  data exchange operation shown above, sender-PE and receiver-PE of a data
exchange have to be active. For the operations SEND and RECEIVE shown below, it is sufficient
for only the sender (or only the receiver, respectively) to be active. These operations are espe-
cially needed for the data exchange between different topologies. Unlike the other data
exchange operations, SEND is a procedure (not returning a value) and therefore takes two argu-
ments, first the expression to be sent, and second the variable to receive the expression.

SEND.east(4*x, y);
y := RECEIVE.north(x);

Additional data exchange modifiers may be specified for some of the data exchange opera-
tions. Data can be moved several steps at once along a defined connection, and incoming data
can be reduced to a single value for n:1 connections. For details see [Bräunl 96].

SEND.right:2 (x,y); (* move data two steps to the east *)
w := MOVE.parent:#SUM (u); (* in tree: move data from children to 

parent; reduce data by adding *)

Configuration boundaries often cause trouble in data parallel programming, for they fre-
quently require special treatment to avoid undefined data. This is not the case for Parallaxis.
Here, it is allowed to send data outside a configuration boundary and try to receive data from
beyond the boundary. After initializing the send-expression with the vector parameter value
supplied, data sent outside a configuration is deleted, while an attempt to read from outside
leaves the particular PE's data unchanged. This approach avoids undefined values during a data
exchange operation, while deletion of boundary data is intentional for many applications.

3.7 Unstructured Data Exchange
Structured data exchange makes application programs easy to write and understand. In some
cases it also makes them faster, when better use can be made of the physical connection struc-

Figure 6: Synchronous data exchange

y := MOVE.east(x);
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ture of a particular parallel system. However, it may be desirable to perform an unstructured
data exchange. This reflects an arbitrary permutation of the components of a vector variable,
which may be difficult to write down using structured data exchanges only.

For example, each component of a two-dimensional vector (a matrix) is to be sent to a des-
tination address, which is being computed at run-time. When only structured data exchange is
possible, e.g. via a grid, one has to program a communication procedure which shifts the
matrix elements in several steps over the grid. This approach will work, however, some paral-
lel computer systems have a global connection structure, which allows an arbitrary unstruc-
tured data exchange. In this case, specifying direct destination addresses for each component
of a vector variable may result in a faster program. Despite the availability of specialized com-
mands for unstructured data exchange, execution may be quite expensive. For example, a grid
operation at the MasPar MP-1 requires about the same time as a simple arithmetic operation
(addition), but a non-grid data exchange takes about 100 times longer to execute.

In our programming language syntax, the unstructured data exchange is still a machine-
independent operation. If a certain data parallel architecture does not provide a general com-
munication structure, then this data exchange will be routed transparently over the simpler net-
work provided (e.g. a grid or a ring) taking several execution steps.

In Parallaxis, the SEND and the RECEIVE operations may take an index expression instead of
a connection name. As before, when using SEND, only active PEs send data, and when using
RECEIVE, only active PEs receive data. However, these two operations differ in their index
semantics, as is shown for an example in Figure 7. In order to avoid confusion, operation MOVE
may not be used with an index expression.

VAR x,y,index: grid OF INTEGER;
...
SEND.<<index>>(x,y); sends data from all components of x to a destina-

tion, determined by vector index

y := RECEIVE.<<index>>(x); receives data from all components of x to a desti-
nation, determined by vector index, however, on
the receiver's side

Besides using a single index, referring to the ID position of PEs, several indices referring to
DIM positions may be used as well. Also, this kind of data exchange does not have to be a one-

Figure 7: Unstructured data exchange

PE 1 2 3 4

x

index

7 4 9 5

3 1 4 2

y4 5 7 9

PE 1 2 3 4

index

y

3 1 4 2

9 7 5 4

PE 1 2 3 4

PE 1 2 3 4

x7 4 9 5

SEND.<<index>> (x,y); y := RECEIVE.<<index>> (x);
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to-one correspondence. If several indices refer to the same PE position, RECEIVE (one-to-
many) becomes a broadcast, while SEND (many-to-one) has to specify a reduction operation for
resolving collisions or an arbitrary component will be selected. For details see [Bräunl 96].

3.8 Reduction
The reduction of a vector to a scalar is another important operation. The REDUCE operation han-
dles this task in conjunction with a system-defined or user-defined (programmable) reduction
operation (see Figure 8). System-defined operators are:

SUM, PRODUCT, MAX, MIN, AND, OR, FIRST, LAST 

The operators FIRST and LAST return the value of the first or last currently active PE, respec-
tively, according to its identification number (ID). All other reduction operators' functions can
easily be deduced from their names. In the optimal case the execution of a reduction operation
requires about log2 n time steps for a vector with n active components. However, this time esti-
mation depends on the physical connection structure of the PEs.

The REDUCE operation can also be called with a user-defined function. Such a function has
to have two vector input parameters and has to return a vector value of the same type. Note that
the reduction function implemented by the user should be associative and commutative, or
unpredictable results may occur,
e.g. (1 – 2) – 3 ≠ 1 – (2 –3 ).

There are a few places, where substituting a scalar constant in lieu of a vector variable
makes sense, but lacks information about the configuration to be used. Consider the problem of
counting the number of active PEs for some configuration. Instead of using a vector variable,
the constant 1 can be used for each PE, however, it has to be type cast to the appropriate con-
figuration:

s := REDUCE.SUM( grid(1) ); (* return no. of currently active PEs *)

3.9 Exchange between Scalar and Vector Data
Communication between the control processor and the parallel PEs is done via system proce-
dures in Parallaxis. Transferring a scalar field into a parallel vector is invoked with procedure
LOAD, while transferring data back into a scalar field from a vector is accomplished with STORE
(see Figure 9). Only active PEs participate in this sequential data exchange. STORE with inac-
tive PEs does not result in gaps in the scalar array, but data elements are stored sequentially.
LOAD with inactive PEs assigns the next array value to the next active PE, no scalar array ele-
ments will be skipped. Surplus elements will not be used, too few elements leave the corre-
sponding array elements (or vector components, respectively) unchanged. The execution of
this operation usually requires n time steps for a data array with n elements. A scalar integer

Figure 8: Vector reduction in Parallaxis

+ +
+
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16 VAR s: INTEGER;

    x: grid OF INTEGER;

s := REDUCE.SUM(x);

Control Processor

PEs
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variable may be specified as an optional third parameter for LOAD and STORE, which limits the
number of data items transferred and also receives the number of data items actually trans-
ferred after the operation.

Figure 9 (bottom) also shows an assignment in which a (constant or variable) scalar data
value is copied into all or a group of PEs. Every component of the vector contains the same
value as the scalar. This operation is implemented by an implicit broadcast and therefore
requires only a single time step.

4. Programming Tools
The environment for Parallaxis-III comprises several compilers and a source-level debugger.
The compilers generate code for parallel and sequential systems (the latter in simulation
mode). The parallel debugger includes features for vector data visualization and for perfor-
mance analysis.

Figure 10 shows the interaction of the Parallaxis tools (shaded boxes) with standard Unix
tools (white boxes) on workstations and the MasPar massively parallel system.

4.1 Compiler P3
Here, the compiler for generating sequential C-code (simulation system) is discussed, which is
complemented by compilers generating parallel code for MasPar MP-1/MP-2 [MasPar 91] and
Connection Machine CM-2 [Thinking Machines 89]. We have also experimented with further
code generators not discussed in this paper for Intel Paragon and workstation clusters using

Figure 9: Data exchanges between PEs and control processor

STORE(v, s); (* from vector to scalar *)
STORE(v, s, t); (* here, t becomes num. active PEs *)

(* require n steps each *)

Scalar
Array

Vector Components

4 2 6 3 1

inactive
4 2 6 3 1

surplus

LOAD STORE

v := t;  (* requires 1 step *)

Scalar Value

Vector Components

7

7 7 7 7 7
inactive

CONFIGURATION list[1..n];
VAR  s: ARRAY[1..n] OF INTEGER;
     t: INTEGER;
     v: list OF INTEGER;
...
LOAD (v, s); (* from scalar to vector *)

2
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PVM [Geist et al. 94] (parallel virtual machine). The compilers generate C code, so a subse-
quent compilation step is necessary to generate object code.

The Cocktail compiler construction tools from GMD/Univ. Karlsruhe [Grosch 95] have
been used to build the Parallaxis-III compilers. The compiler option list is shown in Figure 11.

The configurations of Parallaxis, i.e. the PEs, are implemented by linear arrays. Each con-
figuration keeps track about which virtual PEs are active. This is called the "active-set" of a
configuration.

4.2 Graphics Source Level Debugger xp3gdb
A compiler by itself is neither sufficient for parallel program development nor for educational
purposes. Therefore, we developed a source level debugger for Parallaxis. Rather than starting
from scratch, we used the gnu debugger gdb and its graphics interface xxgdb as a base. This
standard C debugger had to be adapted to behave as if being a Parallaxis source level debugger.
This affects not only the source line window and the positioning of break points, but also (and
more difficult) the presentation of Parallaxis data types, especially vector data. Figure 12
shows a typical sample debugging session. 

We added a number of graphics facilities. Especially for large vectors (e.g. two-dimensional
images or simulation data), it is not very entertaining to examine large lists of data. Instead we
provided the possibility to look at vector data directly in a graphics window. One- or two-
dimensional data is displayed in a window with little boxes representing individual PEs (Fig-
ure 13). Each box is colored and contains two items of information:

• PE activity
if a PE is active it is represented by a filled square,
if it is inactive it is drawn as a hollow square

• PE data
each PE is drawn in a color representing its data value
(according to the value range bar on top, either as rainbow color or gray scale range).

Figure 10: Parallaxis Tools

Parallaxis source program

C program MPL program

seq. p3 compiler par. p3 compiler

gnu C compiler MPL compiler

sequential executable parallel executable

run xp3gdb debugger run MPPE debugger
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Position numbers may be added and the data range may be specified. The vector window
can display a static state (command print) or adapt dynamically to changing data (command
display). 

NAME
       p3 -- Parallaxis-III Compiler User Interface V0.5

DESCRIPTION
       Compile some Parallaxis-III programs and call backend compiler.

SYNOPSIS
       p3 [options] [file] ...

OPTIONS
       -C             Generate C-code for simulation (default)
       -casts         Generate type casts to make C-programs lint free
       -cc name       Name of the backend compiler to use
       -g             Generate debug code (also passed to backend compiler)
       -h, -H, -help  Print this usage
       -headers       Generate header files for imported modules
       -Ipath         Add path to import/include list (Par. and backend)
       -indent i      Set indent of generated code to i blanks
       -koption       Pass option directly to backend compiler
       -Lpath         Add path to library path (backend only)
       -m, -mem       Print statistics about used memory
       -MPL, -mpl     Generate MPL-code for MasPar
       -n, -nocompile Don't compile, just show commands (implies -v)
       -nop3inc       Don't use standard include paths
       -nop3lib       Don't use standard library paths
       -nodefaults    Same as -nop3inc -nop3lib
       -o name        Name of the generated executable
       -p             Parallaxis compile only, don't call backend compiler
       -c             Paral. and backend compile only, don't call linker
       -Ppath         Add path to import list (Parallaxis only)
       -PVM, -pvm     Generate PVM-code for Paragon
       -r, -rchecks   Don't generate runtime range checks
       -s, -small     Generate small MPL-only model (max. 128KB)
       -t, -time      Print statistics about used time (Parallaxis only)
       -tt, -total    Like -t, but also for backend compiler
       -v             Print version of p3 and the resulting compiler calls
       -vv            Like -v, passes also -v to backend compiler
       -w             Don't generate warnings
       -ww            Like -w, passes also -w to backend compiler
 
OPTIONS ONLY AVAILABLE DURING DEVELOPMENT
       -Zw            Write code tree
       -Zs            Write symbols tree
       -Zq            Query code tree
       -Zc            Check code tree
       -Z1            Run parser only, no semantic check
       -Z2            Run parser and semantic check only, no code generation
 
       Every other option is passed unchanged to the backend compiler.
 
ENVIRONMENT
       P3CC           Name of the backend compiler
       P3INC          ":"-separated list of paths where to find sources
       P3LIB          ":"-separated list of paths where to find libraries
       P3OPT          Default options always to set

Figure 11: Compiler options
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Figure 12: Debugger Control Window

Figure 13: Vector data display
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The PE usage may also be displayed graphically. Here, the program is executed in single
step mode and the number of active PEs is determined at each step. Due to the overhead of
stepwise evaluation, execution time slows down when using this feature. The PE usage values
produce a tell-tale curve of the application program’s parallel characteristics and are a valuable
help in localizing critical program regions for optimization of the execution time. Figure 14
shows the PE usage curve for the prime sieve sample program.

MODULE prime;
CONFIGURATION list [2..200];
CONNECTION  (* none *);
VAR next_prime: INTEGER;
    removed   : list OF BOOLEAN;
BEGIN

REPEAT
next_prime:= REDUCE.FIRST(DIM(list,1));
WriteInt(next_prime,10); WriteLn;
removed := DIM(list,1) MOD next_prime =0

UNTIL removed
END prime.

This tiny program represents the parallel version of the sieve of Eratosthenes. The list of
active PEs resembles the candidates for prime numbers not yet removed. In the beginning all
PEs are active, which is reflected by the initial peak in Figure 14. But in each step of the
REPEAT loop, variable removed becomes true for all multiples of the next prime found, so cor-
responding PEs will no longer be active in the next iteration of the loop. This explains the rapid
decrease in the PE usage diagram. 

The xp3gdb debugger comprises the most important concurrent debugging and visualiza-
tion features:
• Breakpoints and single stepping through data parallel program
• Color visualization of vector and matrix data
• Graphical PE activity / usage efficiency display

Figure 14: PE usage diagram
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These features are to some extent similar to those in commercial parallel debugging tools,
e.g. Prism for Connection Machine (now owned by Sun Microsystems) and MasPar’s MPPE,
which is a complete programming environment.

5. Sample Application
A typical data parallel application is discrete time simulation. Here, we present a model of very
simple behavior of cars on a single lane street as in Figure 15. A number of cars start at equi-
distant positions, while the street is closed to a circle. Each car determines its acceleration/
deceleration according to the space in front of it plus a certain random factor (positive or nega-
tive). If the car concentration exceeds a certain threshold, sudden and unmotivated traffic jams
occur. 

For this simulation in Parallaxis, two disjoint configurations have been used, one configura-
tion for cars and one for street segments. Cars may not take over each other, so they keep their
linear order. The street is modeled as a closed ring and is only needed for display purposes.

CONFIGURATION cars[0..max_cars-1];
CONNECTION
   next: cars[i] <-> cars[(i+1) MOD max_cars] :back;

CONFIGURATION street[0..width-1];

VAR pos, dist,
    speed, accel: cars OF REAL;
    collision   : cars OF BOOLEAN;
    my_car      : street OF BOOLEAN;
    time, z     : INTEGER;

At initialization all cars are started at equal distance across the street, which is expressed by:
pos := FLOAT(DIM(cars,1)) / FLOAT(max_cars);

The simulation itself is one big FOR-loop, which generates one graphics line for each itera-
tion. If there is sufficient space in front of a car, it accelerates up to a maximum speed by a con-
stant value plus a small random term. The randomness prevents all cars from maintaining iden-
tical distances from each other. Collisions are detected in parallel by measuring the distance of
all pairs of subsequent cars. They cause a sudden stop, from which the cars can again acceler-
ate in the subsequent simulation step. The integration required for determining velocity and
position from acceleration has been simplified to summation.

FOR time := 1 TO steps DO
 ... (* show "collision" at current line *)
 my_car := DIM(street,1) = TRUNC(pos<:0:> * FLOAT(width));
 ... (* show "my_car" at current line *)

Figure 15: Traffic model
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 dist := MOVE.back(pos) - pos;
 IF dist < 0.0 THEN dist := dist + 1.0 END; (* close street to loop *)

 collision := dist < 0.0;

 IF collision THEN speed := 0.0;
  ELSE (* no collision, accelerate *)
   accel := max_accel + rand_fac * (RandomReal(cars)-0.5);

   (* brake, if necessary *)
   IF dist < min_dist THEN accel := - max_accel END;

   (* update speed, apply speed limit *)
   speed := min(speed + accel, max_speed);

   (* do not back up on autobahn ! *)
   IF speed < 0.0 THEN speed := 0.0 END;

   (* update position *)
   pos := pos + speed;

   (* leaving right, coming back in left *)
   IF pos >= 1.0 THEN pos := pos - 1.0 END;
 END;
END;

A sample simulation run of the traffic program is shown in Figure 16. The street is dis-
played as a horizontal line, while time flows from top to bottom in the figure. Standing cars are
marked as bright spots. Also, the route of one individual car is shown, starting in the upper left
corner. It is easy to recognize the acceleration phase of the individual car (parabolic curve),
leading to a phase of continuous speed (straight line). Sudden breaks occur due to heavy traf-
fic, simply caused by too many cars on the street. Several spontaneous traffic jams occur in this
simulation, all slowly propagating in the direction opposite to the driving direction. Some con-
gestions are increasing, while others are decreasing.

Figure 16: Simulation of traffic congestion
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6. Comparison with other Data Parallel Languages
All current procedural data parallel languages are extensions of existing sequential lan-

guages, i.e. Pascal, Modula-2, C, or Fortran. The following list discusses some of them with
their differences and similarities to Parallaxis. All languages provide transparent mapping
between logical PEs (domains, vectors, or whatever they are called) and physical processors.
While most languages support multi-dimensional parallelism, none of them addresses the defi-
nition of the data exchange (or network) structure.
C* was originally developed by J. Rose and G. Steele [Rose, Steele 87] as a data parallel ex-

tension of C++ for programming the Connection Machine [Hillis 85]. However, in 1990 the
language was completely redefined - still keeping the name C* (suffix "Version 6"), but
containing totally new language constructs and being based on ANSI-C [Thinking Ma-
chines 90]. Several concepts are similar to Parallaxis. C*’s data declaration distinguishes
between host and vector PEs; vector-to-scalar reduction is performed by overloading stan-
dard C operators. The "shape" definition (until version 5 called "domain") allows declara-
tion of vector structures similar to Parallaxis’ configurations. A "with" statement has been
introduced to select a "shape" for data parallel operations. As has been mentioned before,
this is not necessary in Parallaxis, since it can use the corresponding data configuration de-
fined for each variable. C* has no equivalent for Parallaxis' connections. Data exchange is
handled via indices in C*: each PE has to compute its neighbor's position and may then per-
form a send or receive operation by using the syntax of an assignment operation. The net-
work structure is transparent to the C* user; data exchange may be performed between
arbitrary PEs while the Connection Machine's operating system has to route unstructured
data exchange operations through its physical hypercube structure.

Fortran 90 [Metcalf, Reid 90] was the long awaited successor of Fortran-77, which among nu-
merous other changes and additions also contained language constructs for data parallel
processing. Fortran 90 contains array constructs which simplify vector and matrix opera-
tions by using arrays. Data parallel operators are overloaded to standard arithmetic opera-
tors, so two array variables can be added or multiplied by using the same syntax as for scalar
variables. Since the language constructs are machine-independent, sequential and parallel
compilers exist. Unfortunately, data parallel features are still very limited in Fortran 90, so
compilers could not efficiently utilize the parallel hardware. This lead to the development
of High Performance Fortran HPF [Koelbel et al. 1993].

PASM Parallel-C [Kuehn, Siegel 85] is similar to C*. The PASM multicomputer is partition-
able into several independent SIMD and/or MIMD machines. Consequently, Parallel-C
contains constructs accounting for both, SIMD and MIMD operation modes. Parallel data-
declaration is similar to ordinary C's array declaration with multi-dimensional structures
being allowed. SIMD parallel execution is performed either by selecting PEs using "ad-
dress masks" or by using an if-statement with parallel test condition.

Refined C [Dietz, Klappholz 85] and Refined Fortran [Dietz, Klappholz 86] have been called
"sequential languages for parallel programming" by their authors. The languages are not,
however, oriented towards the explicit expression of data level parallelism, but to build an
optimizing compiler to extract control level parallelism by applying data flow analysis.

Vector C [Li 86] is another C superset for high level SIMD programming. Parallel execution
may be expressed by using vector variables (which are modified C arrays) in expressions
with special vector operators. The language concepts have similarities to the language APL
with its explicit vector operators.
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VCode [Blelloch, Chatterjee 90] is an approach for a common low level data parallel interme-
diate language. It tries to take advantage of the large similarities among all data parallel lan-
guages by providing a common low level basis for compilation. This would simplify
implementation and porting for a whole family of data parallel languages The languages
C*, Paralation-Lisp and Fortran 90 are targeted, implementations exist for Connection Ma-
chine and Cray Y-MP. Since all data parallel languages are similar, a compiler based on
VCode could also be constructed for Parallaxis.

Braid [West, Grimshaw 94] is an extension of the object oriented language Mentat, trying to
integrate both, task level concurrency and data parallel extensions. The language allows the
declaration of complex data parallel operations, which are handled by the compiler via it-
erations within the data set. So far the language has only been implemented on MIMD ma-
chines.

DAPPLE [Kotz 94] stands for "Data-parallel programming library for education". Unlike most
other approaches, it is not a language by itself, but rather a library which is linked to a C++
program. Libraries are quite common in task level concurrency, but are not in wide use for
data parallel applications. The library provides vectors and matrices as classes, which can
be operated on using the standard C++ operators via overloading. The advantage of this ap-
proach is its simplicity in implementation (no new compiler is necessary) and application
(no new language has to be learned). However, due to the limitations of the base language,
it lacks some expressive power, which makes it difficult to formulate basic data parallel
constructs, like parallel IF, parallel WHILE, etc.

Summary
We have presented Parallaxis-III, a machine-independent data parallel programming language.
Programs in Parallaxis can be compiled for parallel and sequential architectures, which makes
it an ideal tool for education and algorithm development. The source level debugger for Paral-
laxis allows the examination and visualization of vector data sets through the use of graphics
and color. Also provided is efficiency data in form of PE load diagrams from current and past
PE activity data. A typical data parallel application in discrete simulation has been shown.

Parallaxis has been proven to be a useful tool in education environments. Numerous univer-
sities have selected Parallaxis in courses on concurrency for teaching basic data parallel con-
cepts in a structured environment. The Parallaxis simulation system and debugger have suc-
cessfully been used in a large number of lab courses and for a wide range of applications.
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