Tutorial in Data Parallel Image Processing

Thomas Bräunl
Dept. of Electrical and Electronic Engineering
Centre of Intelligent Information Processing Systems
The University of Western Australia, Nedlands, Perth WA6907
email: braunl@ee.uwa.edu.au

Abstract

An overview over data parallel image processing routines is given. The focus of this tutorial is on real time, low level image processing for parallel active vision systems. Image operator classes discussed are point operators, local operators, dithering, smoothing, edge detection, morphological operators, and image segmentation.

1. Introduction

Image processing is gaining larger importance in a variety of application areas. Active vision, e.g. for autonomous vehicles, requires substantial computational power, in order to be able to operate in real time. Here, vision allows the development of more flexible and intelligent systems than any other sensor system. In addition, there is also the need to speed up non-critical image processing routines, e.g. in evaluating medical or satellite image data.

Basic image processing routines are very well suited for synchronous parallel processing. While the era of large-scale SIMD systems like Connection Machine [11] or MasPar [9] may have passed, the concept may well be used for small embedded systems. The ideal concept of having one processor (ALU) per image pixel allows a very simple and natural definition of image operations. In this article, we would like to give an extensive overview of typical basic image processing operations, demonstrating how they can be programmed in data parallel mode.

The notation we use for synchronous parallel programming is the author’s Parallaxis-III programming language [3]. While the language’s syntax and semantics is defined elsewhere [4] and shall not be repeated here, a small number of basic features present in virtually all SIMD programming languages shall be discussed shortly.

Active Set. All languages provide control structures to select the set of active PEs for an operation. This is required, since in SIMD mode only one operation can be executed by all PEs at a time – unless they are inactive. Especially, PEs being exempted from an operation cannot be used for performing another operation at the same time. In Parallaxis, selecting the active set is implicit for each selection- or loop-statement involving vector data in its boolean condition. These conditions may also include positional data, so PEs can easily be selected, e.g. by their row and column number.

Processor Groups. Parallaxis, unlike some other SIMD languages, allows the declaration of PE configurations (groups of processors), together with their arrangement in an n-dimensional cube. Static connections for data exchange between PEs may also be specified at compile time, while dynamic connections may be added data-dependent at run time. In the context of image processing, it is sufficient to know that there are connections defined as up, down, left, and right, to facilitate data exchange between PEs.

Data Exchange. Parallaxis provides three operations for data exchange between PEs. In its simplest version, an expression is created by moving data into the specified direction of a previously defined connection. Parallaxis prevents the appearance of undefined data at border PEs, so for image processing, no special border treatment is required.

Vector Reduction. Besides sequential data transfer between host and vector PEs, Parallaxis provides a reduction function, in order to reduce a vector value to scalar value in logarithmic time – depending on the system architecture. Operators used in reduction are either predefined or implemented by the application programmer.

When we started working on parallel image processing, we first took a look at conventional sequential low level image processing routines, as defined in several textbooks [6],[7],[10]. There is quite a large number of basic routines, which can be used as building blocks for larger applications.

- Point Operators
- Global Operators
- Edge Detection
- Corner Detection
- Hough Transform
- Stereo Vision
- Textures with Cooccurrence
- Local Operators
- Histograms
- Edge Thinning
- Regions
- Fast Fourier Transform
- Motion Detection

It turned out that each of these applications is very well suited for an efficient synchronous parallel implementation. This led to the development of two textbooks [2],[4].

2. Parallel Image Representation

We assume a two-dimensional array of PEs, large enough to provides one PE per image pixel. In case of fewer PEs, we can still have one “virtual PE” per pixel, with the operating system or the compiler taking care of the iteration required.

This architecture is reflected in our definition in Program 1. The actual PE field (and image) size is left open to be specified by the application programmer. The symbolic names right, left, up, down, and the four diagonals may conveniently be used in subsequent data exchange
statements. As shown in Figure 1, the y coordinate grows from top to bottom, in order to comply with standard image file formats and screen graphics routines like X windows.

We will now define the parallel image data types. Like in sequential image processing, we distinguish between color images, grayscale images, and binary images. Constants for black and white have to be specified for each type. Details can be seen in Program 2.

3. Point Operators and Local Operators

The simplest class of image operators are point operators. A new pixel is computed as a function of the original pixel; no data of neighbor pixels is used. Therefore, point operators do not have any data dependence and can be easily expressed in parallel.

In some application areas, like medical imaging or the processing of satellite data, images may stretch only over a limited band of the grayscale. Therefore, these images have low contrast and details are difficult to recognize [1]. In order to improve contrast, the image’s grayscale band can be stretched to full range (here 0..255). Figure 2 sketches the procedure.

Program 3 implements the general grayscale stretching, using parameters g_min and g_max instead of constants 0 and 255. First, the max and min grayscale values of the whole image are determined by using the REDUCE operation. Alternatively, these values could also have been supplied as parameters to the procedure. Care has been taken to avoid division by zero in case of a monochromatic image. Then, in the RETURN statement, the image is shifted in grayscale range by subtraction (img-tmin) to range 0..(tmax-tmin). The division by (tmax-tmin) shifts it to range 0..1, while the multiplication with (g_max-g_min) brings it to range 0..(g_max-g_min). The final addition of g_min stretches the image to the desired range g_min .. g_max.

3.2 Average and Median

All following operators are local operators, that is in order to compute one pixel, a number of neighbor pixels also have to be taken into account. Several neighborhood areas are possible, e.g. only left/right and up/down neighbors (involving 5 pixel), a full 3x3 neighborhood (9), 5x5 (25) or up to 11x11 (121). Of course, the larger the neighborhood considered, the more time-consuming will the execution of these operators be. Access to neighbor pix-
els is implemented by local data exchange in the data parallel model. A simple application of local operators are image smoothing and noise reduction. The average operator for averaging is adding the grayscale value of a pixel and all of its neighbors. Figure 3 shows this for a 3x3 neighborhood.

While the naive procedure requires eight steps to exchange data with all neighbors, half of this time can be saved by applying separation between x- and y-dimensions. First, the neighbor pixels within a row are added, then the partial result is moved across the lines to find the middle element of the middle elements. Sorting of three numbers is achieved simply by applying compare-and-swap three times in a row.

Figure 4 explains the differences between average, median, and fast-median. It should be noticed that average is much more sensitive to extreme-valued pixels than median. When applied to real world images, there is almost no perceivable difference between median and fast-median. Figure 5 shows the results of applying average and fast-median operator to a noisy image. The noise has been artificially added by inserting black and white pixels at random positions (“salt and pepper noise”). While the average operator merely smears the error pixels over a larger area, the fast-median operator is actually able to reduce the noise while preserving most of the image resolution.

3.3 Dithering

Dithering is used to transform a grayscale image into a binary image, while preserving some grayscale information at the cost of losing some image resolution. Each grayscale value of the original image is translated into a pattern of binary values in the output image.
The simplest approach is ordered dithering [5]. Our parallel implementation uses 2×2 patterns, thus being able to distinguish five different gray values as shown in Figure 6.

Program 5: Fast-Median

```
1 PROCEDURE median_3x3fast(
2   img: grid OF gray): grid OF gray;
3 (* approximation: median in y-dir.
4   of median in x-direction *)
5 VAR a: grid OF ARRAY[1..3] OF gray;
6 BEGIN
7   a[1] := MOVE.left (img);
8   a[2] := img;
9   a[3] := MOVE.right(img);
10  (* sort 3 elems. with 3 comp/swaps *)
12    swap(a[1],a[2]) END;
14    swap(a[2],a[3]) END;
16    swap(a[1],a[2]) END;
17  (* send median in x-dir. up/down *)
18  SEND.up  (a[2],a[1]);
19  SEND.down(a[2],a[3]);
20  (* sort 3 elems. with 3 comp/swaps *)
22    swap(a[1],a[2]) END;
24    swap(a[2],a[3]) END;
26    swap(a[1],a[2]) END;
27  RETURN a[2];
28 END median_3x3fast;
```

Program 6 implements ordered dithering in data parallel. Please note, that only one quarter of all pixels is considered for this transformation, as activated by the initial IF-selection. Therefore, it may be useful to perform an average operator before applying ordered dithering. According to the patterns in Figure 7, the procedure determines by a pixel’s gray value which of the four fields should be black (TRUE) and which should be white (FALSE). Data exchange is done with the SEND procedure, which differs from MOVE in the way that it does not require the receiver to be active.

Program 6: Ordered Dithering

```
1 PROCEDURE dither_ordered(
2   img: grid OF gray): grid OF binary;
3 (* ordered dithering, 2x2 patterns *)
4 CONST thres = g_white DIV 5;
5 VAR res: grid OF binary;
6 BEGIN
7   IF ODD(DIM(grid,2)) AND
8      ODD(DIM(grid,1)) THEN
9     res := img < thres;
10    SEND.right (img < 3*thres,res);
11    SEND.down (img < 4*thres,res);
12    SEND.down_r(img < 2*thres,res);
13  END;
14  RETURN res;
15 END dither_ordered;
```

The same approach can also be applied for larger patterns, e.g. 3×3 or 4×4. However, the complex algorithm
of Floyd-Steinberg error diffusion [5] is very hard to implement in data parallel, because of its inherent sequential nature.

Figure 7 shows the result of applying 2×2 ordered dithering to a grayscale image in comparison to simple thresholding.

3.4 Edge Detection

Edge detection is a central task in low level image processing. Edge points are characterized by a high local difference (gradient) in gray values. Edge strength and direction may be used as features for subsequent image processing. The idea behind this approach is that edges usually (but by no means always) represent the outline of objects in an image. Unfortunately, the reverse also isn’t true in general. An alternate approach to object recognition is area-based image segmentation, which will be discussed later. Well-known edge filters are Robert’s Cross, Laplace, Sobel, Kirsch, Prewitt, and Marr-Hildreth [1], [7], [10]. Here, we will discuss a data parallel version of the Sobel operator.

The Sobel operator comprises two filters: one for detecting horizontal edges and one for detecting vertical edges (Figure 8). Combining both values in the same way as transforming Cartesian coordinates to Polar coordinates results in strength and direction of edges.

Our data parallel implementation of the Sobel filters in x- and y-direction again makes use of the separability of these filters. The naive implementation of Sobel-x would be:

```
RETURN   MOVE.down_l(img) + 2 * MOVE.left(img) + MOVE.up_l(img)
- MOVE.down_r(img)
- 2 * MOVE.right(img) - MOVE.up_r(img);
```

This would require six data exchange operations in an eight-neighborhood. However, if we separate this two-dimensional filter into two single-dimensional filters, we will need only four data exchange operations in a four-neighborhood. Figure 9 demonstrates this filter separation by applying matrix multiplication. This approach can be used for any local filter, provided that the filter matrix can in fact be expressed as the product of two vectors.

\[
\begin{pmatrix}
-1 & 1 \\
-2 & 2 \\
-1 & 1
\end{pmatrix}
\quad \text{Sobel-}x
\]

\[
\begin{pmatrix}
1 & 2 & 1 \\
-1 & -2 & -1
\end{pmatrix}
\quad \text{Sobel-}y
\]

```
\[
\begin{pmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
1 \\
2 \\
1
\end{pmatrix}
\]
```

```
Program 7: Sobel operator in x- and y-dimensions

1 PROCEDURE sobel_x_3x3(img: grid OF gray): grid OF INTEGER;
2   VAR col: grid OF INTEGER;
3 BEGIN
4   col := 2*img + MOVE.up(img)
5     + MOVE.down(img);
6   RETURN   MOVE.left(col)
7                     - MOVE.right(col);
8 END sobel_x_3x3;

1 PROCEDURE sobel_y_3x3(img: grid OF gray): grid OF INTEGER;
2   VAR row: grid OF INTEGER;
3 BEGIN
4   row := 2*img + MOVE.left(img)
5     + MOVE.right(img);
6   RETURN   MOVE.down(row)
7                     - MOVE.up(row);
8 END sobel_y_3x3;
```

Program 7 shows the implementation of Sobel-x and Sobel-y. Figure 10 shows the results. It is clear to see that one filter only recognizes vertical edges, while the other one recognizes only horizontal edges.

The already mentioned transformation of x- and y-edges to Polar coordinates’ strength and direction is:

\[
b = \sqrt{dx^2 + dy^2} \quad r = \tan \frac{dy}{dx}
\]

The data parallel implementation of these formulas is identical to the sequential implementation of a single pixel, since this operation is required for every pixel in the
whole image and can be executed in parallel without restrictions. In Program 8, the Sobel-x and Sobel-y filters are called as subroutines. Despite using the specified square and square-root functions, the program has been simplified to use the sum of the absolute values as a faster approximation. Also, the edge direction has been reduced to 256 integer values.

Program 8: Sobel edge detection

```plaintext
1 PROCEDURE edges_sobel_3x3(
2           img: grid OF gray;
3           VAR  strength,direction:
4                  grid OF gray);
5 (* edge strength and direction *)
6 VAR dx,dy: grid OF INTEGER;
7 BEGIN
8   dx := sobel_x_3x3(img);
9   dy := sobel_y_3x3(img);
10   strength := limit2gray(
11                 ABS(dx) + ABS(dy) );
12   direction:= round((arctan2(
13                 FLOAT(dy),FLOAT(dx))
14                 + pi) / (2.0*pi)*255.0 )
15 END edges_sobel_3x3;
```

Figure 11 now shows the final result of the Sobel edge detection. Next to the original image is the edge strength; stronger edges are represented by darker shades of gray. In the lower left, thresholding has been applied to the edge strength, leaving a binary image, e.g. for subsequent application of morphologic operators (see below). Finally, lower right shows the edge direction with the angular

4. Morphologic Operators

Morphology is the science of form, gestalt, and organization, while the term originates from biology. In image processing, morphologic operators operate on the outer form of an object. While there are morphologic operators for grayscale images [8], we will only discuss binary morphologic operators.
4.1 Erosion and Dilation

The two basic morphological operators are erosion and dilation. Erosion subtracts pixels from the border of an object (objects are black = TRUE, background is white pixels = FALSE), while dilation adds pixels to the outline of an object. Both operators use a structure element as a parameter, in order to find particular pixel patterns in an image. Overlaying the original image with the structure element, all black entries in the structure element have to match with black pixels in the neighborhood of the pixel examined, in order to produce a match. White entries in the structure element have no meaning (don’t care), they do not require white pixels in the neighborhood.

For binary images, the structure element is a binary pattern of the filter size, e.g. a 3x3 matrix of 0s and 1s. The simplest structure element therefore has nine back pixels (1s) and no white pixel (0s) (see S1 below). Another example is S2, with black pixels along the diagonal and white pixels elsewhere. Structure element S3 can be used to represent four-neighborhoods.

Erosion: If all black elements in the structure element match the neighbors of a pixel, the original pixel becomes black, if not it becomes white.

Dilation: If at least one black element in the structure element corresponds to a neighbor pixel, the original pixel becomes black, if not it becomes white.

Using another definition, erosion and dilation can be found by shifting the whole image and using pixel-wise set intersection (AND) and set union (OR). This approach is especially suited for data parallel processing. In the following definition, A denotes the original image, S is the structure element.

\[
\begin{align*}
Erosion & : A - S = \bigcap_{v \in S} MOVE \bullet v(A) \\
Dilation & : A \oplus S = \bigcup_{v \in S} MOVE \bullet v(A)
\end{align*}
\]

For symmetric structure elements, erosion and dilation are again separable local operators.

Figure 12 shows the application of both operators with structure element S1 (3x3 TRUE). Erosion almost completely deletes the object in the foreground and only leaves object pixels (black) completely surrounded by other object pixels. Dilation enlarges the object in foreground by adding more black pixels to it.

Program 9 shows the data parallel implementation of erosion and dilation. Here, the structure element S1 has been implicitly assumed, instead of the more general approach of passing it as a parameter. Calculation starts within lines, then continues within columns.

4.2 Open and Close

Morphologic operators open and close are directly based on erosion and dilation. They are simple sequences of the two (again, A is original image, S is structure element):

Open \[A \circ S = (A \ominus S) \oplus S \]

Close \[A \bullet S = (A \oplus S) \ominus S \]

Operation open deletes “fuzzy” boundaries of an object, while close can be used to close small gaps within an object. Program 10 shows the most simple implementation of subsequent execution, while Figure 13 demonstrates the effect of applying open and close to the same input image as before.
Figure 14 demonstrates the results of morphologic operators erosion, dilation, open, and close on a larger natural input image, which is the previously computed edge strength threshold of the Sobel operator.

4.3 Fill and Connected

Further morphologic operators are the iterative filling of object area or background area. This can be done by using the operators fill and connected. Both operators need a starting position within the image. Connected iterative-ly uses the operation dilation intersected with the image foreground (objects = black pixels) until no more changes occur. Fill works similar, but uses intersection with the background instead of the foreground. Operation fill fills all free space within an object (according to the structure element), while operation connected returns the connected component from the given starting position.

The following iteration definition holds for fill applied to image A:

$$
\begin{align*}
\text{fill}_0 & := \text{specified starting point} \\
& \quad \text{(usually background, i.e. FALSE)} \\
\text{fill}_k & := \text{dilation}(\text{fill}_{k-1}) \cap \overline{A}
\end{align*}
$$

Transforming this definition into a data parallel program is simple (Program 11). The iteration is implemented as a REPEAT-loop, while the termination condition has to check whether no pixel at all has changed during the last iteration. This is done by using reduction with AND, comparing old and new image pixel-wise in parallel. Care has to be taken, to assure that the loop will terminate. As it is easy to see, the new image is generated by applying dilation and intersection (AND with the complement of the original image) to the old image. Therefore, when starting from the background, each iteration may add additional black pixels, but will never take existing black pixels away. This guarantees the termination of the loop after a finite number of steps.

Figure 13: Original, open und close

Program 11: Fill

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>open</code></td>
<td><code>RETURN dilation(erosion(img))</code></td>
</tr>
<tr>
<td><code>close</code></td>
<td><code>RETURN erosion(dilation(img))</code></td>
</tr>
</tbody>
</table>

Program 10: Open and Close

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>open</code></td>
<td><code>RETURN dilation(erosion(img))</code></td>
</tr>
<tr>
<td><code>close</code></td>
<td><code>RETURN erosion(dilation(img))</code></td>
</tr>
</tbody>
</table>
con0 := specified starting point (usually foreground, i.e. TRUE)
conk := dilation(conk-1) \ A
So the only difference to operator fill is the fact that here the image is intersected with the original image instead of the complement. Program 12 shows the data parallel implementation of operator connected.

Program 12: Connected

1 PROCEDURE connected(img: grid OF binary;
2 \start_x,\start_y: INTEGER):
3 \grid OF binary;
4 VAR grow, new_grow, not_img:
5 \grid OF binary;
6 BEGIN (* init grow, start is TRUE *)
7 new_grow := (DIM(grid,1) = \start_x)
8 AND (DIM(grid,2) = \start_y);
9 REPEAT
10 \grow := new_grow;
11 \new_grow:=dilation(grow) AND img;
12 UNTIL REDUCE.AND(grow = new_grow);
13 RETURN grow
14 END connected;

Figure 15 shows operators fill started at (12,5) and connected started at (3,3) at an example. Fill fills an empty space inside the top black object. Note the outside pixel, only connected in a single point. This is a consequence of the previously chosen structure element S₁ (eight-neighborhood). Using structure element S₃ instead (four-neighborhood), the operator would have stopped without this extra pixel. Operator connected returned the lower left triangle, which is clearly separated from the white background.

4.4 Boundary and Skeleton

The morphological operation boundary is a very efficient method to find the outline of an object. It is computed by forming the difference between original image and its erosion:

\[
\text{Boundary}(A) = A - (A \Theta S)
\]

Program 13 displays boundary’s direct parallel implementation.

Program 13: Boundary

1 PROCEDURE boundary(img: grid OF binary): grid OF binary;
2 BEGIN
3 RETURN img AND NOT erosion(img)
4 END boundary;

One possible definition of the skeleton operator has been proposed in [7]:

\[
\text{Skeleton}(A) = \bigcup \text{skel}(A) = \bigcup \{(A \Theta kS) - [(A \Theta kS) \circ S]\}
\]

Here, kS denotes k-times applying an operation (here: erosion) with structure element S. The Union (OR function) is computed in an iteration until the iterated erosion of A results in an empty (all white) image.

Program 14: Skeleton

1 PROCEDURE skeleton(img: grid OF binary): grid OF binary;
2 \VAR skel, k_times: grid OF binary;
3 \ready: BOOLEAN;
4 BEGIN
5 skel := \text{b_white};
6 k_times := img;
7 WHILE REDUCE.OR(k_times) DO
8 skel := skel OR
9 (k_times AND NOT open(k_times));
10 \k_times := erosion(k_times);
11 \END;
12 \RETURN skel
13 \END skeleton;

Program 14 shows the data parallel implementation of this version of skeleton. Starting with an empty (all white) image, the OR function computes the union operation in parallel within the WHILE loop. The loop continues while there is at least one pixel left. This condition is again computed in parallel by using reduction. One variable is used to “erose-down” the original image to an empty (all white image), while another variable is used to construct the resulting skeleton from an initially empty image. Figure 16 illustrates the operation of operators boundary and skeleton on the same input image as above.
5. Region-based Image Operators

All image operators in the previous sections worked with single points or within a limited neighborhood. Now, we want to take a look at region-based operators. An important application in this context is the segmentation of an image, that is the partitioning of an image in a number of coherent pixel areas.

The following rules must hold for segmentation:

(a) \(A = \bigcup R_i \) \quad union of all regions covers the whole image

(b) \(R_i \) is coherent

(c) \(R_i \cap R_j = \emptyset \) \quad regions do not overlap

(d) \(P(R_i) = \text{TRUE} \) \quad pixels within a region fulfil uniformity condition

(e) \(P(R_i \cup R_j) = \text{FALSE} \) \quad union of two regions does not fulfil this condition

Here, predicate \(P \) defines the required uniformity of a region. It may involve gray values or other pixel or area features. A rather simply implementation is to define uniformity by a maximum gray value difference between pixels in a region.

In the following, we will transform a sequential approach to region growing from [6] into a data parallel program. The algorithm starts with a number of seed points, which usually are placed at fixed distances in the image. E.g. in Figure 17, every eighth row and column is chosen as a seed point, so this makes 1/64th of all pixels to seed points. Initially, all pixels belong to region zero (background).

An iteration follows, which terminates when no pixel changes its region in the last loop execution. In each iteration, each pixel sends its own gray value and region number to its four nearest neighbors. If the difference to a neighbor pixel’s gray value is less than a specified threshold and the neighbor’s region number is higher than the own one, then a pixel migrates to the neighbor’s region. The latter condition is only required to guarantee loop termination. Otherwise a pixel may cyclically migrate to one or the other of two adjacent regions.

Figure 17 exemplifies the stepwise operation of region growing. The original image of a car is small enough to recognize individual pixels. Good to see are the seed points, which have been set in an 8×8 raster. From these, the regions spread over the image, while their corresponding grayscales are only used to distinguish regions – they do not correspond to the gray values of these pixels (false color representation). After a few iterations, most of the image is already covered by regions, the final iterations contribute only minor changes between neighboring regions. The data parallel version of this algorithm is described in detail in [4].

6. Conclusion and Future Work

We have demonstrated the usefulness of synchronous parallel processing for real time image processing. We have examined a number of low-level routines and their data parallel implementation. Prominent application areas are active vision, especially for mobile robot systems, and general imaging systems, which can gain considerable speedup by employing SIMD sub-systems. Ideally, the use of a data parallel system would be transparent to the user, who is simply using an image processing library. The translation of an existing sequential image processing library to a parallel environment has to be done only once. This can be performed by experts to en-
sure optimal utilization of the parallel resources. The application programmer himself does not have to deal with parallel processing at all.

All presented parallel algorithms have been implemented in Parallaxis and can be executed either on a data parallel system or with the Parallaxis simulator on sequential workstations. Future work will be the design of an SIMD vision sub-system. Several different approaches are possible:

- **Board Approach**
 consisting of 128 signal processors, designed with an external ISA bus for PC integration
- **Gate Array Approach**
 designing a general purpose SIMD system with 2-dim. grid structure on a chip
- **FPGA Approach**
 designing and analyzing the required structure of a single ALU

Further details can be found in the research book [4], from which the images, formulas and programs of this publication have been taken.

7. Acknowledgments

The author would like to thank Stefan Feyrer, Wolfgang Rapf, and Michael Reinhardt for implementing various high level image processing routines, not discussed in this article. Also acknowledged is the implementation work of Hartmut Keller, Jörg Stippa and many others on the Parallaxis programming environment.

8. References

