
1 Introduction
Evolving control systems for robot locomotion is
becoming a standard approach for the generation of
improved or newer control systems for robots [1, 2, 3, 4,
5]. There have been a number of successful demonstra-
tions of legged robot control being transferred from a
simulated environment to a physical environment. Satis-
factory results for quadruped, hexapod and octopod
robots have been obtained [1, 2, 6], however results for
bipedal robots have not been generally satisfactory [3],
often resulting in shuffling movements rather than walk-
ing motions. This article presents a simple control sys-
tem and describes a method to overcome some of the dif-
ficulties encountered when making the transition from a
simulated world into the real world.
If a physically accurate simulation model can be con-
structed for a robot, then a number of advantages for
robot development present themselves. Physical simula-
tion of the robot allows a robot designer to prototype and
visualize a robots design without requiring physical con-
struction. The simulation also simplifies the task of
evolving a control system for the robot. Thus, the work-
load on the designer is reduced, and robot walking
motions can be tested and optimized at an early design
stage allowing the designer to modify the design, if nec-
essary.

2 Target Hardware
The target hardware for the controller is a small
humanoid robot called Andy (see Figure 1) [7]. Cost
and weight were important design considerations in
Andy’s development. As a result, Andy stands
approximately 350mm tall, and weighs around 1400g.
Andy has 10 degrees of freedom in his legs, and each
joint is powered by a Hi-Tec 945 MG servo [8]. The
Hi-Tec servo specifications are listed in Table 1.

Links are made from 3mm thick aluminum flat plate
and are used to connect the plastic shafts of the servos
directly to the next link. These connections result in a
substantial amount of inherent flexibility.
Andy can be equipped with a number of sensors,
including a color camera, PSDs, inclinometers, gyro-
scopes and pressure sensors. The pressure sensors are
permanently mounted as Andy’s feet, which are con-
structed from three metal “toes”. Each toe has two
strain gauges that are used to produce a voltage in
proportion to the applied force.

The biped’s processing requirements are provided by
an EyeBot MK3 controller, an inexpensive but pow-
erful platform [7]. The controller is based on a 25
MHz 32 bit Motorola 68332 chip, has an LCD dis-
play, four buttons, parallel and serial ports, as well as
8 digital inputs and outputs and 8 additional analog
inputs.

Figure 1: Andy Droid Robot

Evolving Autonomous Biped Control
from Simulation to Reality

Adrian Boeing, Stephen Hanham, Thomas Bräunl
Mobile Robot Lab - CIIPS

The University of Western Australia, Perth
http://robotics.ee.uwa.edu.au {boeing-aj, tb}@ee.uwa.edu.au

Abstract
Transferring an evolved control system from a simulated environment to the physical world poses a number of
challenges. The difficulty in accomplishing such a task increases the complexity of the system that is being simu-
lated and controlled increases. One of the most challenging control tasks is to generate a stable walking gait for a
bipedal robot. This article describes a method in which a simulated control system for a small humanoid robot is
evolved and transferred to robot hardware.

Keywords: evolve, dynamic, simulation, biped, spline, servo, reality gap

braunl
Published at:International Conference on Autonomous Robots and Agents, ICARA 2004, Dec. 2004, Palmerston North, New Zealand, pp. 440-445 (6)

3 Simulation
3.1 Mechanical Simulation
There are a number of advantages in using a simu-
lated environment to evolve robot controllers. Simu-
lations eliminate the risk of damaging robot hardware
and other hardware related concerns, such as battery
power and temperature effects. Simulation also pro-
vides the added convenience and freedom to manipu-
late any force or environment variable to suit the situ-
ation. This aids greatly in general experimentation,
and in resetting the robot to an identical initial posi-
tion for each evolution trial. Simulations typically
execute faster than control programs executed on
robot hardware, and information from the motions is
easier to extract. These factors make simulations an
attractive option.
The simulation tool used to simulate the robot was the
freely available Dynamechs library [9]. Dynamechs is
an efficient rigid-body dynamic simulation library
that is based on the Articulated Body Algorithm
(ABA) developed by Featherstone [10]. The robot’s
structure is defined using multiple chains, starting
with a mobile base with each link described in terms
of the previous link using modified Denavit-Harten-
berg parameters [11].
The ABA is based on the observation that the acceler-
ations of bodies in a rigid-body system are always lin-
ear functions of the applied forces [10]. Initially the
velocities of each joint are calculated by working
from the base link to the terminal links. The Articu-
lated Body Inertia (ABI) matrix can then be calcu-
lated by traversing back from the terminal links to the
base link. Finally the accelerations of the bodies are
calculated using Equation 1.

Extensions to the simulation package were made to
include the fitness evaluation functions required to
operate the genetic algorithm, as well as the simulated
servo and sensor models. The simulated control sys-
tem was also added to the package.

3.2 Robot Model
A schematic of the robots legs are illustrated in Figure
2. The robot model required by Dynamechs was con-
structed using the RobotBuilder [12] package. For
each link, Dynamechs requires information including
its relative position and orientation, mass, center of
gravity and inertia matrix.

RobotModeler (part of the RobotBuilder package)
allows the use of primitive shapes such as cubes and
spheres to approximate the physical shape of each
link and subsequently allows calculation of the inertia
matrix of each link. The center of gravity was esti-
mated using a similar method.
To model the inherent flexibility in Andy’s toes, an
extra joint was added to each toe. The flexibility in
Andy’s toes is a result of the steel springs that are
used for pressure sensing. The flexibility was repli-
cated using a rotational joint with very small joint
limits and a large friction value. Once the joint moves
outside its limits, a spring restoring force is applied,
mimicking the memory effect of the steel spring.

3.3 Servo Model
An accurate model of the torque produced by the ser-
vomotors is critical if the walking gaits produced by
the mechanical simulator are to provide a reasonable
approximation to the gaits produced in the real world.
A servomotor comprises essentially two components,
a control system, and a DC motor. The DC motor
torque can be mathematically modeled using the stan-
dard armature controlled DC motor model [13], repre-
sented by (2). The control system for a servo is gener-
ally a Proportional-Integral-Derivative (PID) control-
ler. The controller can be mathematically simplified
by ignoring the integral and derivative terms, since
the proportional term dominates its behavior. Incorpo-
rating the DC motor model into the servo P-controller
and using θε = θoutput − θinput for the error signal gives
(3).
Considering the case where the armature is stationary
(ωn = 0) and the maximum supply voltage is applied
to the armature (Va = 4.8V), allows us to determine:

Parameter Specification
Operating Voltage 4.8 V
Stall Torque 11 kg*cm
Deadband Width 4 µs
Operating Speed 0.16 s / 60° (no load)
Operating Angle 45° / 400 µs

Table 1: Servo Specifications

Figure 2: Leg Schematics and Simulator Model

When the motor is at top speed the applied armature
voltage equals the back EMF, i.e. Va(t) = Ke*wn,max(t).
From the servo specifications we know the maximum
angular velocity, allowing us to solve the motor back
EMF constant:

The proportional component of the controller was
modelled with (7). The model assumes that the maxi-
mum supply voltage is applied to the motor until it
gets within a tolerance of the desired angle. The volt-
age applied to the motor is then linearly decreased
until the servo reaches its final destination.

This model performed adequately for large move-
ments, however, it was found that for small angle
movements, where the maximum armature voltage
was not achieved, the servo model was not accurate
since the full stall torque is not applied. To overcome
this, it is assumed that the maximum supply voltage is
always applied to the armature. This is a reasonable
assumption since the slowing down of the servo has
only a minor effect on its time response.
The deadband specification of the servo was used to
decide when the servo model had reached its target
angle. Once the servo is decreed to have reached its
destination, a torque is no longer applied to the joint.
This is shown in (8).

4 Control System
A spline based control system is responsible for
manipulating the servo inputs [4]. The spline control-
ler comprises of a set of connected Hermite splines.
Each spline can be defined by a variable number of
control points allowing variable degrees of freedom.
The function used to interpolate the control points,
given starting point p1, ending point p2, tangent values t1
and t2, and interpolation point s, is shown below:

f(s) = h1.p1+h2.p2+h3.t1+h4.t2 (9)
Equation 9 – Hermite Spline

Where:
h1 = 2s3-3s2+1
h2 = -2s3+3s2
h3 = s3-2s2+s
h4 = s3-s2

Three connected splines are combined to form the
overall control structure for one servo. The three
splines are responsible for three different phases of
the robot’s walk. The initial phase of the walk is con-
sidered to be responsible for moving the robot from a
stationary position into the walking motion. The servo
inputs for this phase are represented by the start
spline. The repeated motions that sustain the walk
correspond to the cyclic spline. And finally, the end
spline is used to moving the robot safely back to a sta-
tionary position.

The advantages of a Hermite spline controller are:
• It can be represented by a compact chromosome

which aids the genetic algorithm convergence
speed [4]

• Relatively computationally inexpensive and
hence can execute comfortably on the EyeBot
platform

• Joint positions and velocities are always continu-
ous

The spline controller used to control Andy’s move-
ments contained 8 control points for each cycle, and

Figure 3: Spline Controller

Equation 8 – Servo Deadband Model

had a cycle time of three seconds. The end section of
the spline controller was discarded, and the start
spline contained only 2 control points. Each spline
had an associated hardcoded offset value and ampli-
tude modifier. This allowed the masking of the effects
of motor wear and enabled some compensation
between the small differences between the individual
servos mounted on Andy.

5 The Reality Gap
Brooks [15] states that one of the fundamental rea-
sons for avoiding robot simulations is that there is a
great danger that the simulations will not match the
real world. This difference between the simulated and
real world is sometimes referred to as the reality gap.
Despite this, there are a number of examples of suc-
cessful evolution of controllers using simulations.
Various approaches have been tried to enable the
seamless transition from simulated controllers to the
physical world. These approaches range from gener-
ating lookup tables from sensor data obtained in the
real world [5], to accurate factory-built simulations
supplied with the robot [16]. Jakobi [1] argues that
such approaches will always fail to transfer from sim-
ulation to reality, as the evolved controllers come to
depend on certain aspects that are only present in the
simulation, and are not reflected in the physical
world. Jakobi’s solution to this problem is to evolve
controllers with very minimalist assumptions con-
cerning the robot simulation. A similar approach is
proposed in this article, in that the genetic algorithm
is limited to producing approximate control solutions,
as opposed to being allowed to refine solutions to a
globally optimized form. This limits the controller
from evolving to a form that relies on specific
responses only available in the simulation.

6 Genetic Algorithm
6.1 Encoding
Success of evolved spline control systems has already
been demonstrated for various legged robot configu-
rations for a wide range of activities from walking to
jumping [4]. The spline controller can be directly
encoded with each joint’s control point parameters
encoded using 8 bit fixed-point values.
Typically, all of the control point’s parameters are
encoded (position in time and output value, and tan-
gent) to enable the complete description of the spline.
However, to enforce the approximate solution
required to overcome the reality gap, the control point
locations are limited. Each control point is forced to
be an equal distance from all other control points, and
the tangents are forced to be zero (see Figures 3 and
4). Thus only the servo input value at any specific
time position is evolved.

Limiting the controller’s output in this way stops the
GA from over optimizing the controller so as to take
advantage of specific features only present in the sim-
ulation. Essentially it is this aspect that enables the
robot to cross the reality gap. This approach also
requires less evolution time as the resultant controller
chromosome is more compact.

6.2 Genetic Algorithm Configuration
The genetic algorithm employed a simple fitness pro-
portionate selection scheme. The operators imple-
mented were a bitwise mutate, a bitwise crossover, a
byte-wise mutate, average, creep. The byte-wise
mutate replaced a randomly selected byte with a ran-
domly generated byte value. The byte-wise creep ran-
domly incremented or decremented a byte by 1, and
the average operator generated a new chromosome
from the byte-wise average of each byte in the two
parent chromosomes. The parameter configurations
are given in Table 2.

6.3 Fitness Function
In order to evaluate the appropriateness of each gait a
fitness function is employed, which returns informa-
tion to the genetic algorithm about the performance of
each gait. To evaluate the fitness of each robot, the
function takes into consideration the forward distance
of the walk, and the average velocity at which the
robot’s center is lowering [4].
fitness = 5* forwards_distance - 50*ave_vel_lowering (10)

Equation 10 – Fitness Function

In order to decrease the evolution time, a terminating
condition was included to the fitness function. Termi-
nation would occur if the torso (main reference point
of the robot) touched the ground, i.e. the robot fell
over.

Figure 4: Limited Spline Controller

Operator Name Selection Chance
Bitwise Mutate 10 %
Bitwise Crossover 30 %
Bytewise Mutate 25 %
Bytewise Average 30 %
Bytewise Creep 5 %

Table 2: GA Parameters

7 Results
7.1 Servo Model
The simulated servo model was verified against the
physical servo responses by attaching an inclinometer
to the servos and recording the data generated during
movement. Figure 5 and 6 show the outputs of both
the simulated servos and the actual servos.

Figure 5 shows a close approximation between the
software simulation and Andy for the ankle joint. The
ankle joint has only a small amount of mass, mainly
the feet, as a load. However, in Figure 6, a larger dis-
crepancy can be seen between the simulated model
and the physical response. This is due to the extra
load on these joints. The hip joint, in particular, has
the entire leg as load. The observed overshoot in these
cases is due to several factors. The first factor is due
to the overshoot of the PID controller in the servo
motor. The second factor is due to the flexibility of
the plastic shafts of the servos. Another factor is the
reaction torque of the servo inducing vibrations in the
robot that tend to affect the inclinometer readings.

7.2 Simulation Results
The parameters of the control system can be extracted
from the gene pool in a device independent format.
This allows the parameters to be transparently
imported into either the simulated program via a file,
or downloaded to Andy’s control program over a
standard RS232 cable. Figure 7 and 8 illustrate the
same evolved control program executing on the real
and simulated Andy robot.
Figure 7 depicts the simulated robot movements. The
robot achieves locomotion by initially pressing down-

ward with its left toes, causing the robot to tilt to its
right (Figure 7.2). The robot then drags its left foot
along the ground in front of it. The robot then presses
downwards with its right toes and lifts its right foot
off the ground and places it in front of it. This cycle
repeats itself to produce a slow forwards walk.

7.3 Real Robot Results
The figures show a close mapping between the simu-
lated robot and the physical robot. One significant
discrepancy between the simulated and physical
walks is illustrated in Figures 7.4 and 8.4. This differ-
ence between the simulator and Andy is probably due
to worn motors, whose behavior has changed over
time.
Whilst the method did result in transferable walking
patterns between the simulated robot and the physical
robot, the resulting locomotion still performed worse
than a good manually designed gait. Furthermore,
whilst almost all transferred walks allowed Andy to
sustain motion for three or more full walk cycles, few
actually resulted in satisfactory forwards motion. A
number of factors hampered the performance of
Andy’s gait, including battery power, servo jitter, the
flexibility in the plastic joints, and motor wear.

Figure 5: Ankle Joint Response

Figure 6: Hip Joint Response
Figure 7: Simulated Walk

8 Outlook and Conclusions
The problems observed in this system are believed to
arise from the incomplete servo model and the short-
comings of the robot hardware. The evolved walking
patterns could potentially improve if the restrictions
on the evolved controller were loosened. The servo
model could be improved if the internal parameters of
the servos PID controller were fully known. This
could be achieved by additional in-depth testing of
the servo motor. Alternatively, the robot hardware
could be redesigned to operate with DC motors with
separately designed PID controllers.
Further investigations into the encoding of the spline
controller could reveal an optimal configuration
enabling further optimizations of the controller, yet
still limiting its complexity such as to avoid the prob-
lems related with the reality gap. Incorporating sensor
feedback into the controller could also increase the
robustness of the gait. This should then assist the con-
troller in bridging the reality gap.
Our system has successfully managed to evolve con-
trollers in a simulated environment that then transfer
to the physical robot. However, research is still at an
early stage and has potential for significant improve-
ment.

9 Acknowledgements
We thank J. Zimmermann at FH Koblenz for using his
images and his assistance in software development.

10 References
[1] N. Jakobi, “Minimal Simulations For Evolution-

ary Robotics” Ph.D. dissertation, Univeristy of
Sussex, Brighton , UK 1998.

[2] J. Ziegler and W. Banzhaf, “Evolution of Robot
Leg Movements in a Physical Simulation” in
Proceedings of the Fourth International Confer-
ence on Climbing and Walking Robots, CLA-
WAR , 2001

[3] J. Ziegler, J. Barnholt, J. Bush and W. Banzhaf,
“Automatic Evolution of Control Programs for a
Small Humanoid Walking Robot”, in 5th Inter-
national Conference on Climbing and Walking
Robots (CLAWAR), 2002

[4] A. Boeing and T Bräunl, “Evolving Splines: An
alternative locomotion controller for a bipedal
robot” in Proceedings of the Seventh Interna-
tional Conference on Control Automation, Ro-
botics and Vision (ICARCV 2002), 2002.

[5] O. Miglino, H. H. Lund, and S. Nolfi. “Evolving
Mobile Robots in Simulated and Real Environ-
ments.”, in Artificial Life, vol. 2, pp. 417--434,
1996.

[6] G. S. Hornby, S.Takamura, J. Yokono, O. Hana-
gata, M. Fujita and J. Pollack, “Evolution of
Controllers from a High-Level Simulator to a
High DOF Robot.” in Evolvable Systems: from
biology to hardware; proceedings of the third in-
ternational conference (ICES 2000), 2000.

[7] T. Bräunl Embedded Robotics, Berlin: Springer-
Verlag, 2003

[8] Hitec RCD, “Announced specification of HS-
945MG Standard Coreless Motor High Torque
Servo”, 6th November 2003. Available: http://
www.hitecrcd.com/Servos/hs945.pdf

[9] S. McMillan, “DynaMechs: A multibody dy-
namic simulation library.”, 6th November 2003,
Available: http://dynamechs.sourceforge.net/

[10] R. Featherstone, “The Calculation of Robot Dy-
namics using Articulated-Body Inertias”, Int. J.
Robotics Research, vol.2, no.1, pp. 13-30, 1983.

[11] S. McMillan, D. E. Orin, and R. B. McGhee,
“DynaMechs: An Object Oriented Software
Package for Efficient Dynamic simulation of
Underwater Robotic Vehicles.” in Underwater
Robotic Vehicles: Design and Control, pp. 73-
98, 1995.

[12] S. Rodenbaugh, and D. E. Orin, “RobotBuild-
er”, 6th November 2003, http://www.eleceng.
ohiostate.edu/~orin/RobotBuilder/RobotBuilder.html

[13] R.C. Dorf, and R.H. Bishop, Modern Control
Systems, Prentice-Hall, 2001

[14] R. W. Landee, D. C. Davis, and A. P. Albrecht,
Electronics Designers' Handbook McGraw-
Hill, 1977

[15] R.A. Brooks, “Artificial Life and Real Robots,”
in Toward a Practice of Autonomous Systems:
Proceedings of the First European Conference
on Artificial Life, , pp. 3-10. 1992.

[16] B. Yamauchi, R. Beer, “Spatial Learning for
Navigation in Dynamic Environments”, IEEE
Transactions on Systems, Man, and Cybernetics Part
B: Cybernetics, Special Issue on Learning Autono-
mous Robots, vol.26, no.3, pp.496-505 1996

Figure 8: Andy Droid Robot Walking

