
1 Introduction
We have developed a number of mobile robot simula-
tion systems in the past, all with the goal to create an
artificial robot environment - as close to reality as
possible - as a testbed for mobile robot algorithms [1],
[3]. What all previous simulators had in common with
the "EyeSim" simulator presented here, is the duplica-
tion of a real robot’s API (application programmer
interface), the simulation of all its sensors and actua-
tors, adjustable error models, and the generation of a
virtual camera image that can be fed back into the
application program.
This simulation system uses the API from the
RoBIOS (Robot BIOS) operating system of the Eye-
Bot project [2]. It has been successfully used in a
number of projects involving time consuming experi-
ments with Neural Networks, Genetic Algorithms,
and Genetic Programming [4], [6].

EyeSim implements both levels of robot locomotion
available in the RoBIOS operating system:

(a) A high-level driving controller for driving straight
and curve segments, as well as turning on the spot for
differential-drive vehicles
(b) A low-level driving interface with direct simula-
tion of motor actuators and shaft encoder feedback for
vehicles with different drive mechanisms: differential
drive, Ackermann steering, and omni-directional
drive with Mecanum wheels (Figure 1).
The technique we used for implementing this simula-
tion differs from most existing robot simulation sys-
tems [1],[12], which run the simulation as a separate
program or process that communicates with the appli-
cation by some message passing scheme. Instead, our
simulation system dynamically links the application
program at run-time and provides all API system
functions for reading data from sensors and driving
actuators. The simulation system is thread-based and
uses the OpenGL, fltk and common-c++ libraries.
A number of parameter files determine the robot’s
physical dimensions, its performance and its mod-
elled appearance. "Robi" files are used to describe
each robot type. Environment files describe the
shared driving scenery and can be specified either in
"world" format or the simpler "maze" format. A "sim"
file brings all these parts together for a simulation
project. The sim file specifies the driving environ-
ment through the corresponding file name and lists
each participating robot with its corresponding
description file, starting pose, dynamic link library
(the application program) and an optional graphics
representation.

2 Drive Kinematics
The high-level driving interface implements driving
functions for a v-ω (velocity - angular velocity) inter-
face. These functions include VWDriveStraight,
VWDriveCurve, VWDriveTurn, and VWDriveReady.

Figure 1: Real and simulated Omni robot

Mobile Robot Simulation with Realistic Error Models
Andreas Koestler, Thomas Bräunl

Mobile Robot Lab
The University of Western Australia, Perth

http://robotics.ee.uwa.edu.au {koestler, tb}@ee.uwa.edu.au

Abstract
EyeSim is a multi-robot, multi-tasking simulation system that allows realistic simulation of mobile robots with ei-
ther differential drive, Ackermann steering, or omni-directional Mechanum wheel drive. The software develop-
ment kit (SDK) for EyeSim is identical to the RoBIOS operating system for the real EyeBot robots, including a
virtual camera system. A realistic error model for sensors and actuators allows the development, testing, and de-
buging of robust robot programs that can cope with real environments.

Keywords: mobile robot simulation, synthetic camera, error model, EyeBot, EyeSim

Published at:
International Conference on Autonomous Robots and Agents, ICARA 2004, Dec. 2004, Palmerston North,
New Zealand, pp. 46-51 (6)

They include an implicit PID controller for velocity
and position control.
The low-level interface allows direct manipulation of
vehicle motors and reading of simulated quadrature
encoder values. The robot description file determines
the drive mode (differential drive, Ackermann drive,
or omni drive), wheel base distance, wheel diameter,
maximum wheel velocity and encoder ticks per wheel
revolution. The description file also associates sym-
bolic names for motors, servos (for Ackermann steer-
ing) and encoders, in a similar way as the HDT (hard-
ware description file) does on the real EyeBot robot
hardware.
The low-level forward kinematics for differential
drive vehicles is defined is as follows:

c is the factor relating ticks/s to m/s in wheel
speed

d is the distance between the two wheels
No formula is required for Ackermann steering, as
both speed and driving angle are directly controlled
by robot (or simulation) commands.
The low-level forward kinematics for omni-direc-
tional drive vehicles with four Mecanum wheels is
defined is as follows:

c is the factor relating ticks/s to m/s in wheel
speed

d is the (l-r) distance between the two wheel
pairs

3 Simulation Interface
The EyeSim user interface mainly consists of two
parts: The 3D visualization of the world containing
the robots, objects and environment, and the control
interface, through which the user can change simula-
tion parameters and thereby interact with the simula-
tion. For the 3D rendering, a simple yet effective 3D
engine based on OpenGL has been developed. It is
capable to load and visualize models created with

Milkshape3D [11], a shareware polygon modelling
tool, and it allows the user to explore the created
world by freely rotating and translating the scene
camera. Another advantage of having a 3D represen-
tation of the simulated world is, that it greatly simpli-
fies debugging as the user has visual perception of the
world and the robots interacting with each other. The
control interface, created with the fltk library [7],
gives access to simulation parameters, such as the
simulation speed, the error model or the visualization
parameters of the sensors and it also allows the user to
manually change the behavior of the simulation by
changing the position and rotation values of the
robots in the environment. Another important feature
is the simulation of the full functionality of the Eye-
Bots liquid crystal display (LCD) including its con-
trol buttons and thereby allowing to control the simu-
lation application as it would be possible on the real
robot.

4 Sensor Modeling
As the perception of a robot’s environment, simulated
or real, is performed by its sensors, it was not very
surprising that some effort was put into appropriately
modelling these sensors. The EyeBot can be equipped
with a camera, representing the vision sensor, and an
arbitrary number of position sensitive devices (PSD).

4.1 Sensor Data Calculation
Probably one of the most outstanding features of Eye-
Sim is that it simulates the robot’s camera, hence ful-
filling the requirement for writing programs that use
real-time image processing. The image is obtained by

v
ϕ·

c
2
--- c

2

c
d
--- c

d

θ· L

θ· R

=

vx

vy

ϕ·

c
4
--- c

4
--- c

4
--- c

4

c
4
--- c

4
--- c

4
--- c

4

c
4 d⋅
---------- c

4 d⋅
---------- c

4 d⋅
---------- c

4 d⋅

θ· FL

θ· FR

θ· BL

θ· BR

=

Figure 2: Low-level driving models:
Differential, Ackermann, Omni-directional

rendering the scene in the robot’s camera field of
view to an offline buffer. It is accessible by the
RoBIOS application programming interface using the
CAMGetColFrame and CAMGetFrame functions for
obtaining color and grayscale images, respectively.
The PSD sensors are implemented by casting a ray of
the length representing the maximum range of the
PSD in the sensor’s direction, which is specified in
the robot’s description file. If the ray collides with an
obstacle, such as another robot, a wall or an object
placed in the environment, the distance to the object
under consideration is calculated and stored as the
sensor’s distance measurement. Either continuous or
single measurements can be initiated via the PSDStart
command and the distance in mm can be obtained
using the PSDGet function.

4.2 Sensor Data Visualization
EyeSim was developed to assist the user with debug-
ging his or her applications. Therefore, it offers a
built-in debugging mode offering a verbose output of
its initialization and execution process. Thus errors in
the simulator configuration can easily be determined.
In addition, EyeSim offers a range of tools for simpli-
fying debugging programs running on the robot by
visualizing the sensor reading values, either graphi-
cally or numerically. The PSD sensors are visualized
by drawing a line representing the infrared beam of
the physical sensor device and the measured distance
values are stored for further examination. It is also
possible to visualize the camera’s field of view by
drawing the outlines of its view frustum. Sending and

receiving radio messages is also graphically illus-
trated in the simulation system.

5 Error Models
The signals produced by the modeled sensors gener-
ally do not reflect the real world as they are calculated
and synthetically created. Real world signals usually
contain variances from the ideal signal, which we will
refer to as noise. Noise may be caused by a wide
range of sources, e.g. variations of detector sensitiv-
ity, environmental variations, transmission errors or
quantization errors. The overall performance of a sen-
sor is ultimately limited by the noise that is added to
the signal. Therefore, introducing noise to the simula-
tion system is crucial to test, evaluate and improve the
robustness of the developed algorithms and proce-
dures and to increase their performance. This is espe-
cially useful for the development of vision based

Figure 3: User Interface

Figure 4: Sensor visalization

applications. One major issue is that noise typically is
of a random nature or dependent on device character-
istics and its distribution is therefore unknown or hard
to calculate. However, statistical models exist which
are easy to implement and yet reflect the nature of
noise.

For EyeSim we implemented the following additive
error model for the PSD sensors, the vision sensor and
the v-ω driving interface.

f is the resulting signal
s is the undistorted source signal
n is the white noise, modelled by a normally distrib-
uted, zero mean (Gaussian) random process
For the vision system we additionally modeled a
source of impulse noise given by

with

where n(i) now is either randomly (maximum
grayscale value for white) or 0 (black) hence the
name "salt and pepper noise", or a random color - in
that case called "hundreds and thousands" noise.

5.1 Error Models for Wireless
Communication

There are many reasons for noise in transmission sys-
tems: E.g. random noise, intermodulation noise and
crosstalk. The sum of this sources of noise is called
channel noise which is modeled by swapping random
bits and dropping whole communication packages.
The channel model used in EyeSim is the binary sym-
metric channel model with a specified bit error rate

. Additionaly the probability of dropping a
whole communication package can be specified. This
allows the evaluation of the used communications
protocol error stability.

6 Time Model
As we described in Chapter 2, the robots’ movement
can be depicted by specifying an angular and linear
velocity. Therefore it was necessary to implement a
proper time model to keep track of the robots trajec-
tory by querying its position at a certain time. Another
reason for modelling time is to provide fairness in
cooperative or competitive applications. According to
our simulation system we can distinguish three types
of time.

6.1 Local and global timekeeping
Virtual time
The virtual time reflects the robots "life time". It is
accumulated by adding the execution time values,
measured on the Eyebot and stored in a lookup table,
to the current virtual time. Therefore it coarsely
depicts the execution time of the program on the Eye-
bot itself. As most of the commands used in an Eye-
bot program are RoBIOS application programming
interface calls, and the execution time of native C
calls is short in comparison to RoBIOS calls, native C
calls are neglected as contributors to the virtual time.
Simulation time versus global time
The simulation time advances in discrete time steps
(e.g. T=0.05s in the current simulation system). The
time step T determines the rate the state of the world
(including robot positions) gets updated. A time
slot, , can be assigned to a robots virtual
time, where I is the largest integer with

Real time
Real time is the time passing in the real world since
execution of the program on the host computer. As it
reflects the real system time, it is not computed but
obtained from the system clock. To run the simulation
as fast as possible the RoBIOS calls delay times are
ignored.

Figure 5: Original image, salt&pepper noise,
100s&1000s noise

f i() s i() n i()+=

f i() 1 e–()s i() en i()+=

e
1 with probability Pe,

0 otherwise,

=

ŝ i()

Figure 6: Binary Symmetric Channel

Pb Pp

0

1

0

1

Pb

(1-Pb)

(1-Pb)

ts virtual time()

IT virtual time≤

6.2 Synchronization
One reason for keeping all the robots synchronized is,
that the robots can interact with each other. Either by
stimulating their sensors, e.g. one robot is intersecting
another robot’s camera field of view, or by establish-
ing a communication via the radio interface. In both
cases it is absolutely crucial to keep the robots syn-
chronized, otherwise messages from the future (rela-
tive to the global time) may occur, or a robot might
records the image of another robot at a position where
it will be in the future.
To achieve this task, each robot stores a time stamp
for its last synchronization. Every time it calls a
RoBIOS function, the current virtual time is com-
puted and compared with the last synchronization
time. If the robots virtual time does not lie within the
global time slot, it sends a synchronization message to
the core, gets suspended and waits for a wake up call.
By suspending the core for a certain amount of time
each iteration, it was also possible to implement time
lapse and slow motion effects, however intermediate
time steps have to be introduced in order to provide a
fluent display update

7 Multithreading
RoBIOS is a multitasking operating system and sup-
ports both preemptive and cooperative multitasking.
After the multitasking system has been specified and
the threads have been initialized, they are added to the
thread queue, providing the function address, a name,
the priority, the stack size and a user id. The next step
is to initiate the task switching: For cooperative multi-
tasking this is done by the reschedule command, for
preemptive multitasking this is done by the permit
command. Threads can be terminated by themselves
or other threads, suspended and resumed by any
thread, or suspend themselves via a sleep command.
Semaphores are available for secure inter-thread com-
munication.

8 Related Work
To the best of our knowledge, we developed the first
mobile robot simulation system employing synthetic
vision as a feedback sensor in 1996 [1]. This system
was limited to a single robot with vision system and
required the use of special rendering hardware. Our
new system presented here has been implemented
completely in software and has no restrictions in the
number of robots with vision systems.
Most other mobile robot simulation systems, e.g.
Saphira [9] or 3D7 [12] are limited to simpler sensors
such as sonar, infrared or laser sensors, but cannot
deal with vision systems. Matsumoto et al. [10]
implemented a vision simulation system very similar
to our earlier system [1] in 1999.

Ho and Stark [8] examined the performance of a
mobile robot system using vision by simulating the
visual redundancy in the image. However, they did
not use a fully computer-generated image nor simu-
late the complete mobile robot. A simulation system
for a single vision-guided underwater vehicle has
been described by Deltheil et al. [5]. Wang et al. [13]
describe the Webots simulation environment for the
Khepera mobile robot, however with only limited 1D
or 2D vision capabilities.

9 Summary and Outlook
We have presented the EyeSim simulation system,
which accurately models the RoBIOS API with real-
istic driving operations and adjustable, realistic error
models. The EyeSim software package is available
via Internet as public domain software:
 robotics.ee.uwa.edu.au/eyebot/doc/sim/

sim.html
 robotics.ee.uwa.edu.au/eyebot/ftp/

10 References
[1] T. Bräunl, H. Stolz, "Mobile Robot Simulation

with Sonar Sensors and Cameras", Simulation,
vol. 69, no. 5, Nov. 1997, pp. 277-282 (6)

[2] T. Bräunl, "Research Relevance of Mobile Ro-
bot Competitions", IEEE Robotics and Automa-
tion Magazine, Dec. 1999, pp. (10)

[3] T. Bräunl, "Multi-Robot Simulation with 3D Im-
age Generation", IROS 2001, Maui, pp. (6)

[4] T. Bräunl, Embedded Robotics - Mobile Robot
Design and Applications with Embedded Sys-
tems, Springer 2003

[5] C. Deltheil, L. Didier E. Hospital, D. Brutzman,
"Simulating an optical guidance system for the
recovery of an unmanned underwater vehicle",
IEEE Journal of Oceanic Engineering, vol. 25,
no. 4 , Oct. 2000, pp 568 -574

[6] J. Du, T. Bräunl, "Collaborative Cube Clustering
with Local Image Processing", Proc. of the 2nd
Intl. Symposium on Autonomous Minirobots for
Research and Edutainment, AMiRE 2003, Bris-
bane, Feb. 2003, pp. 247-248 (2)

[7] Fast Light Tool Kit, online, http://www.fltk.org/
[8] Y. Ho, L. Startk, "Top-Down Imapge Processing

and Supervisory Control Limitations in Robot-
ics: A Simulation Study", ICAR’97, Monterey,
1997, pp. 993-938

[9] K. Konolige, Saphira Version 6.2 Manual, [orig-
inally: Internal Report, SRI, Stanford, 1998]
2001, http://www.ai.sri.com/~konolige/saphira/

[10] Y. Matsumoto, T. Miyazaki, M. Inaba, H. Inoue,
"View Simulation System: A Mobile Robot
Simulator using VR Technology", Proc. Intl.
Conf. on Intelligent Robots and Systems, IEEE/
RSJ 1999, pp. 936-941

[11] Milkshape 3D, online,
http://www.milkshape3d.com/

[12] R. Trieb, Simulation as a tool for design and op-
timization of autonomous mobile robots (in Ger-
man), Ph.D. thesis, Univ. Kaiserslautern, 1996

[13] L. Wang, K. Tan, V. Prahlad, "Developing
Khepera Robot Applications in a Webots Envi-
ronment", 2000 Intl. Symposium on Micro-
mechatronics and Human Science, IEEE, 2000,
pp. 71-76

