
THINK IN GEEK In geek we trust

ARM assembler in Raspberry Pi – Chapter 1
January 9, 2013 rferrer, 3

In my opinion, it is much more beneficial learning a high level language than a specific

architecture assembler. But I fancied learning some ARM assembler just for fun since I know

some 386 assembler. The idea is not to become a master but understand some of the details of

what happens underneath.

Introducing ARM

You will see that my explanations do not aim at being very thorough when describing the

architecture. I will try to be pragmatic.

ARM is a 32-bit architecture that has a simple goal in mind: flexibility. While this is great for

integrators (as they have a lot of freedom when designing their hardware) it is not so good for

system developers which have to cope with the differences in the ARM hardware. So in this text I

will assume that everything is done on a Raspberry Pi Model B running Raspbian (the one with

2 USB ports and 512 MB of RAM).

Some parts will be ARM-generic but others will be Raspberry Pi specific. I will not make a

distinction. The ARM website has a lot of documentation. Use it!

Writing assembler

Assembler language is just a thin syntax layer on top of the binary code.

Binary code is what a computer can run. It is composed of instructions, that are encoded in a

binary representation (such encodings are documented in the ARM manuals). You could write

binary code encoding instructions but that would be painstaking (besides some other

technicalities related to Linux itself that we can happily ignore now).

So we will write assembler, ARM assembler. Since the computer cannot run assembler we have to

get binary code from it. We use a tool called, well, assembler to assemble the assembler code into

a binary code that we can run.

The tool to do this is called as. In particular GNU Assembler, which is the assembler tool from the

GNU project, sometimes it is also known as gas for this reason. This is the tool we will use to

assemble our programs.

Just open an editor like vim, nano or emacs. Our assembler language files (called source files)

will have a suffix .s. I have no idea why it is .s but this is the usual convention.

Our first program

We have to start with something, so we will start with a ridiculously simple program which does

nothing but return an error code.

1

2

3

4

5

6

7

/* -- first.s */

/* This is a comment */

.global main /* 'main' is our entry point and must be global */

.func main /* 'main' is a function */

main: /* This is main */

 mov r0, #2 /* Put a 2 inside the register r0 */

Calendar

January 2013

M T W T F S S

« Dec Feb »

 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Recent Posts

Capybara, pop up windows and the new PayPal

sandbox

ARM assembler in Raspberry Pi – Chapter 12

ARM assembler in Raspberry Pi – Chapter 11

ARM assembler in Raspberry Pi – Chapter 10

ARM assembler in Raspberry Pi – Chapter 9

Recent Comments

rferrer on ARM assembler in Raspberry Pi –

Chapter 11

Einstieg in Pi-Assembler | ultramachine on ARM

assembler in Raspberry Pi – Chapter 1

Fernando on ARM assembler in Raspberry Pi –

Chapter 7

Loren Blaney on ARM assembler in Raspberry Pi –

Chapter 11

ห.ร.ม. ด้วยภาษา Assembly บน Raspberry Pi |

Raspberry Pi Thailand on ARM assembler in

Raspberry Pi – Chapter 9

Tags

.net activerecord ajax apple archlinux

arm assembler bind

branches c# dhcp firebug firefox function

function call functions gadgets html

indexing modes ipod Java

javascript jquery linux mac os

mac os x MVC networking parallels pi
programming tips rails

raspberry ruby ruby

on rails security software sports sql

server subversion tips and tricks tools

ubuntu visual studio xmonad

http://thinkingeek.com/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comments
http://infocenter.arm.com/
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/09/
http://thinkingeek.com/2013/01/10/
http://thinkingeek.com/2013/01/11/
http://thinkingeek.com/2013/01/12/
http://thinkingeek.com/2013/01/19/
http://thinkingeek.com/2013/01/20/
http://thinkingeek.com/2013/01/26/
http://thinkingeek.com/2013/01/27/
http://thinkingeek.com/2013/04/27/capybara-pop-windows-paypal-sandbox/
http://thinkingeek.com/2013/03/28/arm-assembler-raspberry-pi-chapter-12/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1171
http://ultramachine.wordpress.com/2013/04/11/einstieg-in-pi-assembler/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1170
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1146
http://xpl0.org/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1145
http://www.raspberrypithai.com/2013/04/07/%e0%b8%ab%e0%b8%a3%e0%b8%a1-%e0%b8%94%e0%b9%89%e0%b8%a7%e0%b8%a2%e0%b8%a0%e0%b8%b2%e0%b8%a9%e0%b8%b2-assembly-%e0%b8%9a%e0%b8%99-raspberry-pi/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comment-1142
http://thinkingeek.com/tag/net/
http://thinkingeek.com/tag/activerecord/
http://thinkingeek.com/tag/ajax/
http://thinkingeek.com/tag/apple/
http://thinkingeek.com/tag/archlinux/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/bind/
http://thinkingeek.com/tag/branches/
http://thinkingeek.com/tag/c/
http://thinkingeek.com/tag/dhcp/
http://thinkingeek.com/tag/firebug/
http://thinkingeek.com/tag/firefox/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/gadgets/
http://thinkingeek.com/tag/html/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/ipod/
http://thinkingeek.com/tag/java/
http://thinkingeek.com/tag/javascript/
http://thinkingeek.com/tag/jquery/
http://thinkingeek.com/tag/linux/
http://thinkingeek.com/tag/mac-os/
http://thinkingeek.com/tag/mac-os-x/
http://thinkingeek.com/tag/mvc/
http://thinkingeek.com/tag/networking/
http://thinkingeek.com/tag/parallels/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/programming-tips/
http://thinkingeek.com/tag/rails/
http://thinkingeek.com/tag/raspberry/
http://thinkingeek.com/tag/ruby/
http://thinkingeek.com/tag/ruby-on-rails/
http://thinkingeek.com/tag/security/
http://thinkingeek.com/tag/software/
http://thinkingeek.com/tag/sports/
http://thinkingeek.com/tag/sql-server/
http://thinkingeek.com/tag/subversion/
http://thinkingeek.com/tag/tips-and-tricks/
http://thinkingeek.com/tag/tools/
http://thinkingeek.com/tag/ubuntu/
http://thinkingeek.com/tag/visual-studio/
http://thinkingeek.com/tag/xmonad/

8 bx lr /* Return from main */

Create a file called first.s and write the contents shown above. Save it.

To assemble the file type the following command (write what comes after $).

1 $ as -o first.o first.s

This will create a first.o. Now link this file to get an executable.

1 $ gcc -o first first.o

If everything goes as expected you will get a first file. This is your program. Run it.

1 $./first

It should do nothing. Yes, it is a bit disappointing, but it actually does something. Get its error

code this time.

1

2

$./first ; echo $?

2

Great! That error code of 2 is not by chance, it is due to that #2 in the assembler code.

Since running the assembler and the linker soon becomes boring, I’d recommend you using the

following Makefile file instead or a similar one.

1

2

3

4

5

6

7

8

9

10

11

Makefile
all: first

first: first.o

 gcc -o $@ $+

first.o : first.s

 as -o $@ $<

clean:

 rm -vf first *.o

Well, what happened?

We cheated a bit just to make things a bit easier. We wrote a C main function in assembler which

only does return 2;. This way our program is easier since the C runtime handled initialization

and termination of the program for us. I will use this approach all the time.

Let’s review every line of our minimal assembler file.

1

2

/* -- first.s */

/* This is a comment */

These are comments. Comments are enclosed in /* and */. Use them to document your

assembler as they are ignored. As usually, do not nest

/* and */ inside /* because it does not work.

3 .global main /* 'main' is our entry point and must be global */

This is a directive for GNU Assembler. A directive tells GNU Assembler to do something special.

They start with a dot (.) followed by the name of the directive and some arguments. In this case

we are saying that main is a global name. This is needed because the C runtime will call main. If

it is not global, it will not be callable by the C runtime and the linking phase will fail.

4 .func main /* 'main' is a function */

Another GNU assembler directive. Here we state that main is a function. This is important

Archives

April 2013

March 2013

February 2013

January 2013

December 2012

November 2012

August 2012

July 2012

June 2012

February 2012

January 2012

December 2011

November 2011

October 2011

July 2011

June 2011

May 2011

April 2011

March 2011

February 2011

December 2010

November 2010

October 2009

July 2009

June 2009

March 2009

November 2008

July 2008

September 2007

July 2007

June 2007

http://thinkingeek.com/2013/04/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2012/11/
http://thinkingeek.com/2012/08/
http://thinkingeek.com/2012/07/
http://thinkingeek.com/2012/06/
http://thinkingeek.com/2012/02/
http://thinkingeek.com/2012/01/
http://thinkingeek.com/2011/12/
http://thinkingeek.com/2011/11/
http://thinkingeek.com/2011/10/
http://thinkingeek.com/2011/07/
http://thinkingeek.com/2011/06/
http://thinkingeek.com/2011/05/
http://thinkingeek.com/2011/04/
http://thinkingeek.com/2011/03/
http://thinkingeek.com/2011/02/
http://thinkingeek.com/2010/12/
http://thinkingeek.com/2010/11/
http://thinkingeek.com/2009/10/
http://thinkingeek.com/2009/07/
http://thinkingeek.com/2009/06/
http://thinkingeek.com/2009/03/
http://thinkingeek.com/2008/11/
http://thinkingeek.com/2008/07/
http://thinkingeek.com/2007/09/
http://thinkingeek.com/2007/07/
http://thinkingeek.com/2007/06/

Fast and easy way to block bots from your website using Apache
ARM assembler in Raspberry Pi – Chapter 2

Reply

arm, assembler, pi, raspberry

because an assembler program usually contains instructions (i.e. code) but may also contain

data. We need to explicitly state that main actually refers to a function, because it is code.

6 main: /* This is main */

Every line in GNU Assembler that is not a directive will always be like label: instruction.

We can omit label: and instruction (empty and blank lines are ignored). A line with only

label:, applies that label to the next line (you can have more than one label referring to the

same thing this way). The instruction part is the ARM assembler language itself. In this case

we are just defining main as there is no instruction.

7 mov r0, #2 /* Put a 2 inside the register r0 */

Whitespace is ignored at the beginning of the line, but the indentation suggests visually that this

instruction belongs to the main function.

This is the mov instruction which means move. We move a value 2 to the register r0. In the next

chapter we will see more about registers, do not worry now. Yes, the syntax is awkward because

the destination is actually at left. In ARM syntax it is always at left so we are saying something like

move to register r0 the immediate value 2. We will

see what immediate value means in ARM in the next chapter, do not worry again.

In summary, this instruction puts a 2 inside the register r0 (this effectively overwrites whatever

register r0 may have at that point).

8 bx lr /* Return from main */

This instruction bx means branch and exchange. We do not really care at this point about the

exchange part. Branching means that we will change the flow of the instruction execution. An

ARM processor runs instructions sequentially, one after the other, thus after the mov above, this

bx will be run (this sequential execution is not specific to ARM, but what happens in almost all

architectures). A branch instruction is used to change this implicit sequential execution. In this

case we branch to whatever lr register says. We do not care now what lr contains. It is enough

to understand that this instruction just leaves the main function, thus effectively ending our

program.

And the error code? Well, the result of main is the error code of the program and when leaving

the function such result must be stored in the register r0, so the mov instruction performed by

our main is actually setting the error code to 2.

That's all for today.

3 thoughts on “ARM assembler in Raspberry Pi – Chapter 1”

Jonathan Hinchliffe says:

March 6, 2013 at 10:22 pm

Really excellent tutorial.

Fernando says:

March 21, 2013 at 12:15 am

http://thinkingeek.com/2012/12/26/fast-easy-block-bots-website-apache/
http://thinkingeek.com/2013/01/10/arm-assembler-raspberry-pi-chapter-2/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/?replytocom=1047#respond
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/raspberry/
http://www.addtoany.com/share_save#url=http%3A%2F%2Fthinkingeek.com%2F2013%2F01%2F09%2Farm-assembler-raspberry-pi-chapter-1%2F&title=ARM%20assembler%20in%20Raspberry%20Pi%20%E2%80%93%20Chapter%201&description=
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1047
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1082

