
THINK IN GEEK In geek we trust

ARM assembler in Raspberry Pi – Chapter 10
February 7, 2013 rferrer, 0

In chapter 9 we were introduced to functions and we saw that they have to follow a number of

conventions in order to play nice with other functions. We also briefly mentioned the stack, as an

area of memory owned solely by the function. In this chapter we will go in depth with the stack

and why it is important for functions.

Dynamic activation

One of the benefits of functions is being able to call them more than once. But that more than

once hides a small trap. We are not restricting who will be able to call the function, so it might

happen that it is the same function who calls itself. This happens when we use recursion.

A typical example of recursion is the factorial of a number n, usually written as n!. A factorial in C

can be written as follows.

int factorial(int n)

{

 if (n == 0)

 return 1;

 else

 return n * factorial(n-1);

}

Note that there is only one function factorial, but it may be called several times. For instance:

factorial(3) → factorial(2) → factorial(1) → factorial(0), where → means a «it calls». A function,

thus, is dynamically activated each time is called. The span of a dynamic activation goes from the

point where the function is called until it returns. At a given time, more than one function is

dynamically activated. The whole dynamic activation set of functions includes the current

function and the dynamic activation set of the function that called it (the current function).

Ok. We have a function that calls itself. No big deal, right? Well, this would not be a problem if it

weren’t for the rules that a function must observe. Let’s quickly recall them.

Only r0, r1, r2 and r3 can be freely modified.

lr value at the entry of the function must be kept somewhere because we will need it to

leave the function (to return to the caller).

All other registers r4 to r11 and sp can be modified but they must be restored to their

original values upon leaving the function.

In chapter 9 we used a global variable to keep lr. But if we attempted to use a global variable in

our factorial(3) example, it would be overwritten at the next dynamic activation of factorial. We

would only be able to return from factorial(0) to factorial(1). After that we would be stuck in

factorial(1), as lr would always have the same value.

So it looks like we need some way to keep at least the value of lr per each dynamic activation.

And not only lr, if we wanted to use registers from r4 to r11 we also need to keep somehow

per each dynamic activation, a global variable would not be enough either. This is where the

stack comes into play.

The stack

In computing, a stack is a data structure (a way to organize data that provides some interesting

Calendar

February 2013

M T W T F S S

« Jan Mar »

 1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

Recent Posts

Capybara, pop up windows and the new PayPal

sandbox

ARM assembler in Raspberry Pi – Chapter 12

ARM assembler in Raspberry Pi – Chapter 11

ARM assembler in Raspberry Pi – Chapter 10

ARM assembler in Raspberry Pi – Chapter 9

Recent Comments

rferrer on ARM assembler in Raspberry Pi –

Chapter 11

Einstieg in Pi-Assembler | ultramachine on ARM

assembler in Raspberry Pi – Chapter 1

Fernando on ARM assembler in Raspberry Pi –

Chapter 7

Loren Blaney on ARM assembler in Raspberry Pi –

Chapter 11

ห.ร.ม. ด้วยภาษา Assembly บน Raspberry Pi |

Raspberry Pi Thailand on ARM assembler in

Raspberry Pi – Chapter 9

Tags

.net activerecord ajax apple archlinux

arm assembler bind

branches c# dhcp firebug firefox function

function call functions gadgets html

indexing modes ipod Java

javascript jquery linux mac os

mac os x MVC networking parallels pi
programming tips rails

raspberry ruby ruby

on rails security software sports sql

server subversion tips and tricks tools

ubuntu visual studio xmonad

http://thinkingeek.com/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/#respond
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/02/
http://thinkingeek.com/2013/02/07/
http://thinkingeek.com/2013/04/27/capybara-pop-windows-paypal-sandbox/
http://thinkingeek.com/2013/03/28/arm-assembler-raspberry-pi-chapter-12/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1171
http://ultramachine.wordpress.com/2013/04/11/einstieg-in-pi-assembler/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1170
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1146
http://xpl0.org/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1145
http://www.raspberrypithai.com/2013/04/07/%e0%b8%ab%e0%b8%a3%e0%b8%a1-%e0%b8%94%e0%b9%89%e0%b8%a7%e0%b8%a2%e0%b8%a0%e0%b8%b2%e0%b8%a9%e0%b8%b2-assembly-%e0%b8%9a%e0%b8%99-raspberry-pi/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comment-1142
http://thinkingeek.com/tag/net/
http://thinkingeek.com/tag/activerecord/
http://thinkingeek.com/tag/ajax/
http://thinkingeek.com/tag/apple/
http://thinkingeek.com/tag/archlinux/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/bind/
http://thinkingeek.com/tag/branches/
http://thinkingeek.com/tag/c/
http://thinkingeek.com/tag/dhcp/
http://thinkingeek.com/tag/firebug/
http://thinkingeek.com/tag/firefox/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/gadgets/
http://thinkingeek.com/tag/html/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/ipod/
http://thinkingeek.com/tag/java/
http://thinkingeek.com/tag/javascript/
http://thinkingeek.com/tag/jquery/
http://thinkingeek.com/tag/linux/
http://thinkingeek.com/tag/mac-os/
http://thinkingeek.com/tag/mac-os-x/
http://thinkingeek.com/tag/mvc/
http://thinkingeek.com/tag/networking/
http://thinkingeek.com/tag/parallels/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/programming-tips/
http://thinkingeek.com/tag/rails/
http://thinkingeek.com/tag/raspberry/
http://thinkingeek.com/tag/ruby/
http://thinkingeek.com/tag/ruby-on-rails/
http://thinkingeek.com/tag/security/
http://thinkingeek.com/tag/software/
http://thinkingeek.com/tag/sports/
http://thinkingeek.com/tag/sql-server/
http://thinkingeek.com/tag/subversion/
http://thinkingeek.com/tag/tips-and-tricks/
http://thinkingeek.com/tag/tools/
http://thinkingeek.com/tag/ubuntu/
http://thinkingeek.com/tag/visual-studio/
http://thinkingeek.com/tag/xmonad/

properties). A stack typically has three operations: access the top of the stack, push onto the top,

pop from the top. Dependening on the context you can only access the top of the stack, in our

case we will be able to access more elements than just the top.

But, what is the stack? I already said in chaper 9 that the stack is a region of memory owned solely

by the function. We can now reword this a bit better: the stack is a region of memory owned solely

by the current dynamic activation. And how we control the stack? Well, in chapter 9 we said that

the register sp stands for stack pointer. This register will contain the top of the stack. The region

of memory owned by the dynamic activation is the extent of bytes contained between the current

value of sp and the initial value that sp had at the beginning of the function. We will call that

region the local memory of a function (more precisely, of a dynamic activation of it). We will put

there whatever has to be saved at the beginning of a function and restored before leaving. We will

also keep there the local variables of a function (dynamic activation).

Our function also has to adhere to some rules when handling the stack.

The stack pointer (sp) is always 4 byte aligned. This is absolutely mandatory. However, due

to the Procedure Call Standard for the ARM architecture (AAPCS), the stack pointer will

have to be 8 byte aligned, otherwise funny things may happen when we call what the AAPCS

calls as public interfaces (this is, code written by other people).

The value of sp when leaving the function should be the same value it had upon entering

the function.

The first rule is consistent with the alignment constraints of ARM, where most of times addresses

must be 4 byte aligned. Due to AAPCS we will stick to the extra 8 byte alignment constraint. The

second rule states that, no matter how large is our local memory, it will always disappear at the

end of the function. This is important, because local variables of a dynamic activation need not

have any storage after that dynamic activation ends.

It is a convention how the stack, and thus the local memory, has its size defined. The stack can

grow upwards or downwards. If it grows upwards it means that we have to increase the value of

the sp register in order to enlarge the local memory. If it grows downwards we have to do the

opposite, the value of the sp register must be substracted as many bytes as the size of the local

storage. In Linux ARM, the stack grows downwards, towards zero (although it never should reach

zero). Addresses of local variables have very large values in the 32 bit range. They are usually

close to 232.

Another convention when using the stack concerns whether the sp register contains the address

of the top of the stack or some bytes above. In Linux ARM the sp register directly points to the top

of the stack: in the memory addressed by sp there is useful information.

Ok, we know the stack grows downwards and the top of the stack must always be in sp. So to

enlarge the local memory it should be enough by decreasing sp. The local memory is then

defined by the range of memory from the current sp value to the original value that sp had at the

beginning of the function. One register we almost always have to keep is lr. Let’s see how can we

keep in the stack.

sub sp, sp, #8 /* sp ← sp - 4. This enlarges the stack by 8 bytes */

str lr, [sp] /* *sp ← lr */

... // Code of the function

ldr lr, [sp] /* lr ← *sp */

add sp, sp, #8 /* sp ← sp + 8. /* This reduces the stack by 8 bytes

 effectively restoring the stack

 pointer to its original value */

bx lr

A well behaved function may modify sp but must ensure that at the end it has the same value it

had when we entered the function. This is what we do here. We first substract 4 bytes to sp and at

the end we add back 4 bytes.

This sequence of instructions would do indeed. But maybe you remember chapter 8 and the

Archives

April 2013

March 2013

February 2013

January 2013

December 2012

November 2012

August 2012

July 2012

June 2012

February 2012

January 2012

December 2011

November 2011

October 2011

July 2011

June 2011

May 2011

April 2011

March 2011

February 2011

December 2010

November 2010

October 2009

July 2009

June 2009

March 2009

November 2008

July 2008

September 2007

July 2007

June 2007

http://thinkingeek.com/2013/04/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2012/11/
http://thinkingeek.com/2012/08/
http://thinkingeek.com/2012/07/
http://thinkingeek.com/2012/06/
http://thinkingeek.com/2012/02/
http://thinkingeek.com/2012/01/
http://thinkingeek.com/2011/12/
http://thinkingeek.com/2011/11/
http://thinkingeek.com/2011/10/
http://thinkingeek.com/2011/07/
http://thinkingeek.com/2011/06/
http://thinkingeek.com/2011/05/
http://thinkingeek.com/2011/04/
http://thinkingeek.com/2011/03/
http://thinkingeek.com/2011/02/
http://thinkingeek.com/2010/12/
http://thinkingeek.com/2010/11/
http://thinkingeek.com/2009/10/
http://thinkingeek.com/2009/07/
http://thinkingeek.com/2009/06/
http://thinkingeek.com/2009/03/
http://thinkingeek.com/2008/11/
http://thinkingeek.com/2008/07/
http://thinkingeek.com/2007/09/
http://thinkingeek.com/2007/07/
http://thinkingeek.com/2007/06/

indexing modes that you could use in load and store. Note that the first two instructions behave

exactly like a preindexing. We first update sp and then we use sp as the address where we store

lr. This is exactly a preindex! Likewise for the last two instructions. We first load lr using the

current address of sp and then we decrease sp. This is exactly a postindex!

str lr, [sp, #-8]! /* preindex: sp ← sp - 8; *sp ← lr */
... // Code of the function

ldr lr, [sp], #+8 /* postindex; lr ← *sp; sp ← sp + 8 */
bx lr

Yes, these addressing modes were invented to support this sort of things. Using a single

instruction is better in terms of code size. This may not seem relevant, but it is when we realize

that the stack bookkeeping is required in almost every function we write!

First approach

Let’s implement the factorial function above.

First we have to learn a new instruction to multiply two numbers: mul Rdest, Rsource1,

Rsource2. Note that multiplying two 32 bit values may require up to 64 bits for the result. This

instruction only computes the lower 32 bits. Because we are not going to use 64 bit values in this

example, the maximum factorial we will be able to compute is 12! (13! is bigger than 232). We will

not check that the entered number is lower than 13 to keep the example simple (I encourage you

to add this check to the example, though). In versions of the ARM architecture prior to ARMv6 this

instruction could not have Rdest the same as Rsource1. GNU assembler may print a warning

if you don’t pass -march=armv6.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

/* -- factorial01.s */

.data

message1: .asciz "Type a number: "

format: .asciz "%d"

message2: .asciz "The factorial of %d is %d\n"

.text

factorial:

 str lr, [sp,#-4]! /* Push lr onto the top of the stack */

 str r0, [sp,#-4]! /* Push r0 onto the top of the stack */

 /* Note that after that, sp is 8 byte aligned */

 cmp r0, #0 /* compare r0 and 0 */

 bne is_nonzero /* if r0 != 0 then branch */

 mov r0, #1 /* r0 ← 1. This is the return */

 b end

is_nonzero:

 /* Prepare the call to factorial(n-1) */

 sub r0, r0, #1 /* r0 ← r0 - 1 */

 bl factorial

 /* After the call r0 contains factorial(n-1) */

 /* Load r0 (that we kept in th stack) into r1 */

 ldr r1, [sp] /* r1 ← *sp */

 mul r0, r0, r1 /* r0 ← r0 * r1 */

end:

 add sp, sp, #+4 /* Discard the r0 we kept in the stack */

 ldr lr, [sp], #+4 /* Pop the top of the stack and put it in lr */

 bx lr /* Leave factorial */

.globl main

main:

 str lr, [sp,#-4]! /* Push lr onto the top of the stack */

 sub sp, sp, #4 /* Make room for one 4 byte integer in the stack */

 /* In these 4 bytes we will keep the number */

 /* entered by the user */

 /* Note that after that the stack is 8-byte aligned */

 ldr r0, address_of_message1 /* Set &message1 as the first parameter of printf */

 bl printf /* Call printf */

 ldr r0, address_of_format /* Set &format as the first parameter of scanf */

 mov r1, sp /* Set the top of the stack as the second parameter */

 /* of scanf */

 bl scanf /* Call scanf */

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 ldr r0, [sp] /* Load the integer read by scanf into r0 */

 /* So we set it as the first parameter of factorial */

 bl factorial /* Call factorial */

 mov r2, r0 /* Get the result of factorial and move it to r2 */

 /* So we set it as the third parameter of printf */

 ldr r1, [sp] /* Load the integer read by scanf into r1 */

 /* So we set it as the second parameter of printf */

 ldr r0, address_of_message2 /* Set &message2 as the first parameter of printf */

 bl printf /* Call printf */

 add sp, sp, #+4 /* Discard the integer read by scanf */

 ldr lr, [sp], #+4 /* Pop the top of the stack and put it in lr */

 bx lr /* Leave main */

address_of_message1: .word message1

address_of_message2: .word message2

address_of_format: .word format

Most of the code is pretty straightforward. In both functions, main and factorial, we allocate

4 extra bytes on the top of the stack. In factorial, to keep the value of r0, because it will be

overwritten during the recursive call (twice, as a first parameter and as the result of the recursive

function call). In main, to keep the value entered by the user (if you recall chapter 9 we used a

global variable here).

It is important to bear in mind that the stack, like a real stack, the last element stacked (pushed

onto the top) will be the first one to be taken out the stack (popped from the top). We store lr

and make room for a 4 bytes integer. Since this is a stack, the opposite order must be used to

return the stack to its original state. We first discard the integer and then we restore the lr. Note

that this happens as well when we reserve the stack storage for the integer using a sub and then

we discard such storage doing the opposite operation add.

Can we do it better?

Note that the number of instructions that we need to push and pop data to and from the stack

grows linearly with respect to the number of data items. Since ARM was designed for embedded

systems, ARM designers devised a way to reduce the number of instructions we need for the

«bookkeeping» of the stack. These instructions are load multiple, ldm, and store multiple, stm.

These two instructions are rather powerful and allow in a single instruction perform a lot of

things. Their syntax is shown as follows. Elements enclosed in curly braces { and } may be

omitted from the syntax (the effect of the instruction will vary, though).

ldm addressing-mode Rbase{!}, register-set

stm addressing-mode Rbase{!}, register-set

We will consider addressing-mode later. Rbase is the base address used to load to or store

from the register-set. All 16 ARM registers may be specified in register-set (except pc

in stm). A set of addresses is generated when executing these instructions. One address per

register in the register-set. Then, each register, in ascending order, is paired with each of these

addresses, also in ascending order. This way the lowest-numbered register gets the lowest

memory address, and the highest-numbered register gets the highest memory address. Each pair

register-address is then used to perform the memory operation: load or store. Specifying !

means that Rbase will be updated. The updated value depends on addressing-mode.

Note that, if the registers are paired with addresses depending on their register number, it seems

that they will always be loaded and stored in the same way. For instance a register-set

containing r4, r5 and r6 will always store r4 in the lowest address generated by the instruction

and r6 in the highest one. We can, though, specify what is considered the lowest address or the

highest address. So, is Rbase actually the highest address or the lowest address of the multiple

load/store? This is one of the two aspects that is controlled by addressing-mode. The

second aspect relates to when the address of the memory operation changes between each

memory operation.

If the value in Rbase is to be considered the the highest address it means that we should first

decrease Rbase as many bytes as required by the number of registers in the register-set

(this is 4 times the number of registers) to form the lowest address. Then we can load or store

each register consecutively starting from that lowest address, always in ascending order of the

register number. This addressing mode is called decreasing and is specified using a "d".

Conversely, if Rbase is to be considered the lowest address, then this is a bit easier as we can

use its value as the lowest address already. We proceed as usual, loading or storing each register

in ascending order of their register number. This addressing mode is called increasing and is

specified using an "i".

At each load or store, the address generated for the memory operation may be updated after or

before the memory operation itself. We can specify this using "a" or "b", respectively.

If we specify !, after the instruction, Rbase will have the highest address generated in the

increasing mode and the lowest address generated in the decreasing mode. The final value of

Rbase will include the final addition or subtraction if we use a mode that updates after (an "a"

mode).

So we have four addressing modes, namely: ia, ib, da and db. These addressing modes are

specified as suffixes of the stm and ldm instructions. So the full set of names is stmia, stmib,

stmda, stmdb, ldmia, ldmib, ldmda, ldmdb. Now you may think that this is overly

complicated, but we need not use all the eight modes. Only two of them are of interest to us now.

When we push something onto the stack we actually decrease the stack pointer (because in Linux

the stack grows downwards). More precisely, we first decrease the stack pointer as many bytes as

needed before doing the actual store on that just computed stack pointer. So the appropiate

addressing-mode when pushing onto the stack is stmdb. Conversely when popping from

the stack we will use ldmia: we increment the stack pointer after we have performed the load.

Factorial again

Before illustrating these two instructions, we will first slightly rewrite our factorial.

If you go back to the code of our factorial, there is a moment, when computing n *

factorial(n-1), where the initial value of r0 is required. The value of n was in r0 at the

beginning of the function, but r0 can be freely modified by called functions. We chose, in the

example above, to keep a copy of r0 in the stack in line 12. Later, in line 24, we loaded it from the

stack in r1, just before computing the multiplication.

In our second version of factorial, we will keep a copy of the initial value of r0 into r4. But r4 is a

register the value of which must be restored upon leaving a function. So we will keep the value of

r4 at the entry of the function in the stack. At the end we will restore it back from the stack. This

way we can use r4 without breaking the rules of well-behaved functions.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

factorial:

 str lr, [sp,#-4]! /* Push lr onto the top of the stack */

 str r4, [sp,#-4]! /* Push r4 onto the top of the stack */

 /* The stack is now 8 byte aligned */

 mov r4, r0 /* Keep a copy of the initial value of r0 in r4 */

 cmp r0, #0 /* compare r0 and 0 */

 bne is_nonzero /* if r0 != 0 then branch */

 mov r0, #1 /* r0 ← 1. This is the return */

 b end

is_nonzero:

 /* Prepare the call to factorial(n-1) */

 sub r0, r0, #1 /* r0 ← r0 - 1 */

 bl factorial

 /* After the call r0 contains factorial(n-1) */

ARM assembler in Raspberry Pi – Chapter 9ARM assembler in Raspberry Pi – Chapter 11

Website

Name *

Email *

arm, assembler, function, function call, functions, pi, raspberry, stack

26

27

28

29

30

31

32

33

 /* Load initial value of r0 (that we kept in r4) into r1 */

 mov r1, r4 /* r1 ← r4 */

 mul r0, r0, r1 /* r0 ← r0 * r1 */

end:

 ldr r4, [sp], #+4 /* Pop the top of the stack and put it in r4 */

 ldr lr, [sp], #+4 /* Pop the top of the stack and put it in lr */

 bx lr /* Leave factorial */

Note that the remainder of the program does not have to change. This is the cool thing of

functions

Ok, now pay attention to these two sequences in our new factorial version above.

11

12

 str lr, [sp,#-4]! /* Push lr onto the top of the stack */

 str r4, [sp,#-4]! /* Push r4 onto the top of the stack */

30

31

 ldr r4, [sp], #+4 /* Pop the top of the stack and put it in r4 */

 ldr lr, [sp], #+4 /* Pop the top of the stack and put it in lr */

Now, let’s replace them with stmdb and ldmia as explained a few paragraphs ago.

11 stmdb sp!, {r4, lr} /* Push r4 and lr onto the stack */

30 ldmia sp!, {r4, lr} /* Pop lr and r4 from the stack */

Note that the order of the registers in the set of registers is not relevant, but the processor will

handle them in ascending order, so we should write them in ascending order. GNU assembler will

emit a warning otherwise. Since lr is actually r14 it must go after r4. This means that our code

is 100% equivalent to the previous one since r4 will end in a lower address than lr: remember

our stack grows toward lower addresses, thus r4 which is in the top of the stack in factorial

has the lowest address.

Remembering stmdb sp! and ldmia sp! may be a bit hard. Also, given that these two

instructions will be relatively common when entering and leaving functions, GNU assembler

provides two mnemonics push and pop for stmdb sp! and ldmia sp!, respectively. Note

that these are not ARM instructions actually, just convenience names that are easier to

remember.

11 push {r4, lr}

30 pop {r4, lr}

That’s all for today.

Leave a Reply

Your email address will not be published. Required fields are marked *

http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/raspberry/
http://thinkingeek.com/tag/stack/
http://www.addtoany.com/share_save#url=http%3A%2F%2Fthinkingeek.com%2F2013%2F02%2F07%2Farm-assembler-raspberry-pi-chapter-10%2F&title=ARM%20assembler%20in%20Raspberry%20Pi%20%E2%80%93%20Chapter%2010&description=

