
THINK IN GEEK In geek we trust

ARM assembler in Raspberry Pi – Chapter 5
January 19, 2013 rferrer, 3

Branching

Until now our small assembler programs execute one instruction after the other. If our ARM

processor were only able to run this way it would be of limited use. It could not react to existing

conditions which may require different sequences of instructions. This is the purpose of the

branch instructions.

A special register

In chapter 2 we learnt that our Raspberry Pi ARM processor has 16 integer general purpose

registers and we also said that some of them play special roles in our program. I deliberately

ignored which registers were special as it was not relevant at that time.

But now it is relevant, at least for register r15. This register is very special, so special it has also

another name: pc. It is unlikely that you see it used as r15 since it is confusing (although correct

from the point of view of the ARM architecture). From now we will only use pc to name it.

What does pc stand for? pc means program counter. This name, the origins of which are in the

dawn of computing, means little to nothing nowadays. In general the pc register (also called ip,

instruction pointer, in other architectures like 386 or x86_64) contains the address of the next

instruction going to be executed.

When the ARM processor executes an instruction, two things may happen at the end of its

execution. If the instruction does not modify pc (and most instructions do not), pc is just

incremented by 4 (like if we did add pc, pc, #4). Why 4? Because in ARM, instructions are 32

bit wide, so there are 4 bytes between every instruction. If the instruction modifies pc then the

new value for pc is used.

Once the processor has fully executed an instruction then it uses the value in the pc as the

address for the next instruction to execute. This way, an instruction that does not modify the pc

will be followed by the next contiguous instruction in memory (since it has been automatically

increased by 4). This is called implicit sequencing of instructions: after one has run, usually the

next one in memory runs. But if an instruction does modify the pc, for instance to a value other

than pc + 4, then we can be running another instruction of the program. This process of

changing the value of pc is called branching. In ARM this done using branch instructions.

Unconditional branches

You can tell the processor to branch unconditionally by using the instruction b (for branch) and a

label. Consider the following program.

1

2

3

4

5

6

7

8

9

/* -- branch01.s */

.text

.global main

main:

 mov r0, #2 /* r0 ← 2 */

 b end /* branch to 'end' */

 mov r0, #3 /* r0 ← 3 */

end:

 bx lr

Calendar

January 2013

M T W T F S S

« Dec Feb »

 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Recent Posts

Capybara, pop up windows and the new PayPal

sandbox

ARM assembler in Raspberry Pi – Chapter 12

ARM assembler in Raspberry Pi – Chapter 11

ARM assembler in Raspberry Pi – Chapter 10

ARM assembler in Raspberry Pi – Chapter 9

Recent Comments

rferrer on ARM assembler in Raspberry Pi –

Chapter 11

Einstieg in Pi-Assembler | ultramachine on ARM

assembler in Raspberry Pi – Chapter 1

Fernando on ARM assembler in Raspberry Pi –

Chapter 7

Loren Blaney on ARM assembler in Raspberry Pi –

Chapter 11

ห.ร.ม. ด้วยภาษา Assembly บน Raspberry Pi |

Raspberry Pi Thailand on ARM assembler in

Raspberry Pi – Chapter 9

Tags

.net activerecord ajax apple archlinux

arm assembler bind

branches c# dhcp firebug firefox function

function call functions gadgets html

indexing modes ipod Java

javascript jquery linux mac os

mac os x MVC networking parallels pi
programming tips rails

raspberry ruby ruby

on rails security software sports sql

server subversion tips and tricks tools

ubuntu visual studio xmonad

http://thinkingeek.com/
http://thinkingeek.com/2013/01/19/arm-assembler-raspberry-pi-chapter-5/#comments
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/09/
http://thinkingeek.com/2013/01/10/
http://thinkingeek.com/2013/01/11/
http://thinkingeek.com/2013/01/12/
http://thinkingeek.com/2013/01/19/
http://thinkingeek.com/2013/01/20/
http://thinkingeek.com/2013/01/26/
http://thinkingeek.com/2013/01/27/
http://thinkingeek.com/2013/04/27/capybara-pop-windows-paypal-sandbox/
http://thinkingeek.com/2013/03/28/arm-assembler-raspberry-pi-chapter-12/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1171
http://ultramachine.wordpress.com/2013/04/11/einstieg-in-pi-assembler/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1170
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1146
http://xpl0.org/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1145
http://www.raspberrypithai.com/2013/04/07/%e0%b8%ab%e0%b8%a3%e0%b8%a1-%e0%b8%94%e0%b9%89%e0%b8%a7%e0%b8%a2%e0%b8%a0%e0%b8%b2%e0%b8%a9%e0%b8%b2-assembly-%e0%b8%9a%e0%b8%99-raspberry-pi/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comment-1142
http://thinkingeek.com/tag/net/
http://thinkingeek.com/tag/activerecord/
http://thinkingeek.com/tag/ajax/
http://thinkingeek.com/tag/apple/
http://thinkingeek.com/tag/archlinux/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/bind/
http://thinkingeek.com/tag/branches/
http://thinkingeek.com/tag/c/
http://thinkingeek.com/tag/dhcp/
http://thinkingeek.com/tag/firebug/
http://thinkingeek.com/tag/firefox/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/gadgets/
http://thinkingeek.com/tag/html/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/ipod/
http://thinkingeek.com/tag/java/
http://thinkingeek.com/tag/javascript/
http://thinkingeek.com/tag/jquery/
http://thinkingeek.com/tag/linux/
http://thinkingeek.com/tag/mac-os/
http://thinkingeek.com/tag/mac-os-x/
http://thinkingeek.com/tag/mvc/
http://thinkingeek.com/tag/networking/
http://thinkingeek.com/tag/parallels/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/programming-tips/
http://thinkingeek.com/tag/rails/
http://thinkingeek.com/tag/raspberry/
http://thinkingeek.com/tag/ruby/
http://thinkingeek.com/tag/ruby-on-rails/
http://thinkingeek.com/tag/security/
http://thinkingeek.com/tag/software/
http://thinkingeek.com/tag/sports/
http://thinkingeek.com/tag/sql-server/
http://thinkingeek.com/tag/subversion/
http://thinkingeek.com/tag/tips-and-tricks/
http://thinkingeek.com/tag/tools/
http://thinkingeek.com/tag/ubuntu/
http://thinkingeek.com/tag/visual-studio/
http://thinkingeek.com/tag/xmonad/

If you execute this program you will see that it returns an error code of 2.

$./compare01 ; echo $?

2

What happened is that instruction b end branched (modifying the pc) to the instruction at the

label end, which is bx lr, the instruction we run at the end of our program. This way the

instruction mov r0, #3 has not actually been run at all (the processor never reached that

instruction).

At this point the unconditional branch instruction b may look a bit useless. It is not the case. In

fact this instruction is essential in some contexts, in particular when linked with conditional

branching. But before we can talk about conditional branching we need to talk about conditions.

Conditional branches

If our processor were only able to branch just because, it would not be very useful. It is much

more useful to branch when some condition is met. So a processor should be able to evaluate

some sort of conditions.

Before continuing, we need to unveil another register called cpsr (for Current Program Status

Register). This register is a bit special and directly modifying it is out of the scope of this chapter.

That said, it keeps some values that can be read and updated when executing an instruction. The

values of that register include four condition code flags called N (negative), Z (zero), C (carry) and

V (overflow). These four condition code flags are usually read by branch instructions. Arithmetic

instructions and special testing and comparison instruction can update these condition codes

too if requested.

The semantics of these four condition codes in instructions updating the cpsr are roughly the

following

N will be enabled if the result of the instruction yields a negative number. Disabled

otherwise.

Z will be enabled if the result of the instruction yields a zero value. Disabled if nonzero.

C will be enabled if the result of the instruction yields a value that requires a 33rd bit to be

fully represented. For instance an addition that overflows the 32 bit range of integers.

V will be enabled if the result of the instruction yields a value that cannot be represented in

32 bits two’s complement.

So we have all the needed pieces to perform branches conditionally. But first, let’s start

comparing two values. We use the instruction cmp for this purpose.

cmp r1, r2 /* updates cpsr doing "r1 - r2", but r1 and r2 are not modified */

This instruction substracts to the value in the first register the value in the second register.

Examples of what could happen in the snippet above?

If r2 had a value (strictly) greater than r1 then N would be enabled because r1-r2 would

yield a negative result.

If r1 and r2 had the same value, then Z would be enabled because r1-r2 would be zero.

If r1 was 0 and r2 was 1 then r1-r2 would borrow, so in this case C would be enabled.

If r1 was 2147483648 (the largest positive integer in 32 bit two’s complement) and r1 was

-1 then r1-r2 would be 2147483649 but such number cannot be represented in 32 bit

two’s complement, so V would be enabled to signal this.

How can we use these flags to represent useful conditions for our programs?

EQ (equal) When Z is enabled (Z is 1)

Archives

April 2013

March 2013

February 2013

January 2013

December 2012

November 2012

August 2012

July 2012

June 2012

February 2012

January 2012

December 2011

November 2011

October 2011

July 2011

June 2011

May 2011

April 2011

March 2011

February 2011

December 2010

November 2010

October 2009

July 2009

June 2009

March 2009

November 2008

July 2008

September 2007

July 2007

June 2007

http://thinkingeek.com/2013/04/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2012/11/
http://thinkingeek.com/2012/08/
http://thinkingeek.com/2012/07/
http://thinkingeek.com/2012/06/
http://thinkingeek.com/2012/02/
http://thinkingeek.com/2012/01/
http://thinkingeek.com/2011/12/
http://thinkingeek.com/2011/11/
http://thinkingeek.com/2011/10/
http://thinkingeek.com/2011/07/
http://thinkingeek.com/2011/06/
http://thinkingeek.com/2011/05/
http://thinkingeek.com/2011/04/
http://thinkingeek.com/2011/03/
http://thinkingeek.com/2011/02/
http://thinkingeek.com/2010/12/
http://thinkingeek.com/2010/11/
http://thinkingeek.com/2009/10/
http://thinkingeek.com/2009/07/
http://thinkingeek.com/2009/06/
http://thinkingeek.com/2009/03/
http://thinkingeek.com/2008/11/
http://thinkingeek.com/2008/07/
http://thinkingeek.com/2007/09/
http://thinkingeek.com/2007/07/
http://thinkingeek.com/2007/06/

ARM assembler in Raspberry Pi – Chapter 4 ARM assembler in Raspberry Pi – Chapter 6

arm, assembler, branches, pi, raspberry

NEQ (not equal). When Z is disabled. (Z is 0)

GE (greater or equal than, in two’s complement). When both Z and N are enabled or

disabled (Z is N)

LT (lower than, in two’s complement). This is the opposite of GE, so when Z and N are not

both enabled or disabled (Z is not N)

GT (greather than, in two’s complement). When Z is disabled and N and V are both enabled

or disabled (Z is 0, N is V)

LE (lower or equal than, in two’s complement). When Z is enabled or if not that, N and V are

both enabled or disabled (Z is 1. If Z is not 1 then N is V)

MI (minus/negative) When N is enabled (N is 1)

PL (plus/positive or zero) When N is disabled (N is 0)

OS (overflow set) When V is enabled (V is 1)

OC (overflow clear) When V is disabled (V is 0)

HI (higher) When C is enabled and Z is disabled (C is 1 and Z is 0)

LS (lower or same) When C is disabled or Z is enabled (C is 0 or Z is 1)

CS/HS (carry set/higher or same) When C is enabled (C is 1)

CC/LO (carry clear/lower) When C is disabled (C is 0)

These conditions can be combined to our b instruction to generate new instructions. This way,

beq will branch only if Z is 1. If the condition of a conditional branch is not met, then the branch

is ignored and the next instruction will be run. It is the programmer task to make sure that the

condition codes are properly set prior a conditional branch.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

/* -- compare01.s */

.text

.global main

main:

 mov r1, #2 /* r1 ← 2 */

 mov r2, #2 /* r2 ← 2 */

 cmp r1, r2 /* update cpsr condition codes with the value of r1-r2 */

 beq case_equal /* branch to case_equal only if Z = 1 */

case_different :

 mov r0, #2 /* r0 ← 2 */

 b end /* branch to end */

case_equal:

 mov r0, #1 /* r0 ← 1 */

end:

 bx lr

If you run this program it will return an error code of 1 because both r1 and r2 have the same

value. Now change mov r1, #2 in line 5 to be mov r1, #3 and the returned error code

should be 2. Note that case_different we do not want to run the case_equal

instructions, thus we have to branch to end (otherwise the error code would always be 1).

That’s all for today.

3 thoughts on “ARM assembler in Raspberry Pi – Chapter 5”

Mikael Hartzell says:

February 7, 2013 at 11:25 pm

Hi

I though that you can manipulate the cpsr directly, isn’t the commands MSR and MRS

meant for that ? (Source: Arm v6 reference manual:

http://thinkingeek.com/2013/01/12/arm-assembler-raspberry-pi-chapter-4/
http://thinkingeek.com/2013/01/20/arm-assembler-raspberry-pi-chapter-6/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/branches/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/raspberry/
http://www.addtoany.com/share_save#url=http%3A%2F%2Fthinkingeek.com%2F2013%2F01%2F19%2Farm-assembler-raspberry-pi-chapter-5%2F&title=ARM%20assembler%20in%20Raspberry%20Pi%20%E2%80%93%20Chapter%205&description=
http://freelcs.sourceforge.net/
http://thinkingeek.com/2013/01/19/arm-assembler-raspberry-pi-chapter-5/#comment-888

