
THINK IN GEEK In geek we trust

ARM assembler in Raspberry Pi – Chapter 6
January 20, 2013 rferrer, 5

Control structures

In the previous chapter we learnt branch instructions. They are really powerful tools because

they allow us to express control structures. Structured programming is an important milestone in

better computing engineering (a foundational one, but nonetheless an important one). So being

able to map usual structured programming constructs in assembler, in our processor, is a Good

Thing™.

If, then, else

Well, this one is a basic one, and in fact we already used this structure in the previous chapter.

Consider the following structure, where E is an expression and S1 and S2 are statements (they

may be compound statements like { SA; SB; SC; })

if (E) then
 S1
else
 S2

A possible way to express this in ARM assembler could be the following

if_eval:
 /* Assembler that evaluates E and updates the cpsr accordingly */
bXX else /* Here XX is the appropiate condition */
then_part:
 /* assembler for S1, the "then" part */
 b end_of_if
else:
 /* assembler for S2, the "else" part */
end_of_if:

If there is no else part, we can replace bXX else with bXX end_of_if.

Loops

This is another usual one in structured programming. While there are several types of loops,

actually all reduce to the following structure.

while (E)
 S

Supposedly S makes something so E eventually becomes false and the loop is left. Otherwise we

would stay in the loop forever (sometimes this is what you want but not in our examples). A way

to implement these loops is as follows.

while_condition : /* assembler to evaluate E and update cpsr */
 bXX end_of_loop /* If E is false, then leave the loop right now */
 /* assembler of S */
 b while_condition /* Unconditional branch to the beginning */
end_of_loop:

A common loop involves iterating from a single range of integers, like in

for (i = L; i < N; i += K)

Calendar

January 2013

M T W T F S S

« Dec Feb »

 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Recent Posts

Capybara, pop up windows and the new PayPal

sandbox

ARM assembler in Raspberry Pi – Chapter 12

ARM assembler in Raspberry Pi – Chapter 11

ARM assembler in Raspberry Pi – Chapter 10

ARM assembler in Raspberry Pi – Chapter 9

Recent Comments

rferrer on ARM assembler in Raspberry Pi –

Chapter 11

Einstieg in Pi-Assembler | ultramachine on ARM

assembler in Raspberry Pi – Chapter 1

Fernando on ARM assembler in Raspberry Pi –

Chapter 7

Loren Blaney on ARM assembler in Raspberry Pi –

Chapter 11

ห.ร.ม. ด้วยภาษา Assembly บน Raspberry Pi |

Raspberry Pi Thailand on ARM assembler in

Raspberry Pi – Chapter 9

Tags

.net activerecord ajax apple archlinux

arm assembler bind

branches c# dhcp firebug firefox function

function call functions gadgets html

indexing modes ipod Java

javascript jquery linux mac os

mac os x MVC networking parallels pi
programming tips rails

raspberry ruby ruby

on rails security software sports sql

server subversion tips and tricks tools

ubuntu visual studio xmonad

http://thinkingeek.com/
http://thinkingeek.com/2013/01/20/arm-assembler-raspberry-pi-chapter-6/#comments
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/09/
http://thinkingeek.com/2013/01/10/
http://thinkingeek.com/2013/01/11/
http://thinkingeek.com/2013/01/12/
http://thinkingeek.com/2013/01/19/
http://thinkingeek.com/2013/01/20/
http://thinkingeek.com/2013/01/26/
http://thinkingeek.com/2013/01/27/
http://thinkingeek.com/2013/04/27/capybara-pop-windows-paypal-sandbox/
http://thinkingeek.com/2013/03/28/arm-assembler-raspberry-pi-chapter-12/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1171
http://ultramachine.wordpress.com/2013/04/11/einstieg-in-pi-assembler/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1170
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1146
http://xpl0.org/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1145
http://www.raspberrypithai.com/2013/04/07/%e0%b8%ab%e0%b8%a3%e0%b8%a1-%e0%b8%94%e0%b9%89%e0%b8%a7%e0%b8%a2%e0%b8%a0%e0%b8%b2%e0%b8%a9%e0%b8%b2-assembly-%e0%b8%9a%e0%b8%99-raspberry-pi/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comment-1142
http://thinkingeek.com/tag/net/
http://thinkingeek.com/tag/activerecord/
http://thinkingeek.com/tag/ajax/
http://thinkingeek.com/tag/apple/
http://thinkingeek.com/tag/archlinux/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/bind/
http://thinkingeek.com/tag/branches/
http://thinkingeek.com/tag/c/
http://thinkingeek.com/tag/dhcp/
http://thinkingeek.com/tag/firebug/
http://thinkingeek.com/tag/firefox/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/gadgets/
http://thinkingeek.com/tag/html/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/ipod/
http://thinkingeek.com/tag/java/
http://thinkingeek.com/tag/javascript/
http://thinkingeek.com/tag/jquery/
http://thinkingeek.com/tag/linux/
http://thinkingeek.com/tag/mac-os/
http://thinkingeek.com/tag/mac-os-x/
http://thinkingeek.com/tag/mvc/
http://thinkingeek.com/tag/networking/
http://thinkingeek.com/tag/parallels/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/programming-tips/
http://thinkingeek.com/tag/rails/
http://thinkingeek.com/tag/raspberry/
http://thinkingeek.com/tag/ruby/
http://thinkingeek.com/tag/ruby-on-rails/
http://thinkingeek.com/tag/security/
http://thinkingeek.com/tag/software/
http://thinkingeek.com/tag/sports/
http://thinkingeek.com/tag/sql-server/
http://thinkingeek.com/tag/subversion/
http://thinkingeek.com/tag/tips-and-tricks/
http://thinkingeek.com/tag/tools/
http://thinkingeek.com/tag/ubuntu/
http://thinkingeek.com/tag/visual-studio/
http://thinkingeek.com/tag/xmonad/

 S

But this is nothing but

 i = L;
 while (i < N)
 {
 S;
 i += K;
 }

So we do not have to learn a new way to implement the loop itself.

1 + 2 + 3 + 4 + … + 22

As a first example lets sum all the numbers from 1 to 22 (I’ll tell you later why I chose 22). The

result of the sum is 253 (check it with a calculator). I know it makes little sense to compute

something the result of which we know already, but this is just an example.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/* -- loop01.s */
.text

.global main
main:
 mov r1, #0 /* r1 ← 0 */
 mov r2, #1 /* r2 ← 1 */
loop:
 cmp r2, #22 /* compare r2 and 22 */
 bgt end /* branch if r2 > 22 to end */
 add r1, r1, r2 /* r1 ← r1 + r1 */
 add r2, r2, #1 /* r2 ← r2 + 1 */
 b loop
end:
 mov r0, r1 /* r0 ← r1 */
 bx lr

Here we are counting from 1 to 22. We will use the register r2 as the counter. As you can see in

line 6 we initialize it to 1. The sum will be accumulated in the register r1, at the end of the

program we move the contents of r1 into r0 to return the result of the sum as the error code of

the program (we could have used r0 in all the code and avoid this final mov but I think it is

clearer this way).

In line 8 we compare r2 (remember, the counter that will go from 1 to 22) to 22. This will update

the cpsr thus in line 9 we can check if the comparison was such that r2 was greater than 22. If

this is the case, we end the loop by branching to end. Otherwise we add the current value of r2

to the current value of r1 (remember, in r1 we accumulate the sum from 1 to 22).

Line 11 is an important one. We increase the value of r2, because we are counting from 1 to 22

and we already added the current counter value in r2 to the result of the sum in r1. Then at line

12 we branch back at the beginning of the loop. Note that if line 11 was not there we would hang

as the comparison in line 8 would always be false and we would never leave the loop in line 9!

$./loop01; echo $?
253

Well, now you could change the line 8 and try with let’s say, #100. The result should be 5050.

$./loop01; echo $?
186

What happened? Well, it happens that in Linux the error code of a program is a number from 0 to

255 (8 bits). If the result is 5050, only the lower 8 bits of the number are used. 5050 in binary is

1001110111010, its lower 8 bits are 10111010 which is exactly 186. How can we check the

computed r1 is 5050 before ending the program? Let’s use GDB.

$ gdb loop
...

Archives

April 2013

March 2013

February 2013

January 2013

December 2012

November 2012

August 2012

July 2012

June 2012

February 2012

January 2012

December 2011

November 2011

October 2011

July 2011

June 2011

May 2011

April 2011

March 2011

February 2011

December 2010

November 2010

October 2009

July 2009

June 2009

March 2009

November 2008

July 2008

September 2007

July 2007

June 2007

https://www.google.es/#q=1%2B2%2B3%2B4%2B5%2B6%2B7%2B8%2B9%2B10%2B11%2B12%2B13%2B14%2B15%2B16%2B17%2B18%2B19%2B20%2B21%2B22
http://thinkingeek.com/2013/04/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2012/11/
http://thinkingeek.com/2012/08/
http://thinkingeek.com/2012/07/
http://thinkingeek.com/2012/06/
http://thinkingeek.com/2012/02/
http://thinkingeek.com/2012/01/
http://thinkingeek.com/2011/12/
http://thinkingeek.com/2011/11/
http://thinkingeek.com/2011/10/
http://thinkingeek.com/2011/07/
http://thinkingeek.com/2011/06/
http://thinkingeek.com/2011/05/
http://thinkingeek.com/2011/04/
http://thinkingeek.com/2011/03/
http://thinkingeek.com/2011/02/
http://thinkingeek.com/2010/12/
http://thinkingeek.com/2010/11/
http://thinkingeek.com/2009/10/
http://thinkingeek.com/2009/07/
http://thinkingeek.com/2009/06/
http://thinkingeek.com/2009/03/
http://thinkingeek.com/2008/11/
http://thinkingeek.com/2008/07/
http://thinkingeek.com/2007/09/
http://thinkingeek.com/2007/07/
http://thinkingeek.com/2007/06/

(gdb) start
Temporary breakpoint 1 at 0x8390
Starting program: /home/roger/asm/chapter06/loop01

Temporary breakpoint 1, 0x00008390 in main ()
(gdb) disas main,+(9*4)
Dump of assembler code from 0x8390 to 0x83b4:
 0x00008390 <main+0>: mov r1, #0
 0x00008394 <main+4>: mov r2, #1
 0x00008398 <loop+0>: cmp r2, #100 ; 0x64
 0x0000839c <loop+4>: bgt 0x83ac <end>
 0x000083a0 <loop+8>: add r1, r1, r2
 0x000083a4 <loop+12>: add r2, r2, #1
 0x000083a8 <loop+16>: b 0x8398 <loop>
 0x000083ac <end+0>: mov r0, r1
 0x000083b0 <end+4>: bx lr
End of assembler dump.

Let’s tell gdb to stop at 0x000083ac, right before executing mov r0, r1.

(gdb) break *0x000083ac
(gdb) cont
Continuing.

Breakpoint 2, 0x000083ac in end ()
(gdb) disas
Dump of assembler code for function end:
=> 0x000083ac <+0>: mov r0, r1
 0x000083b0 <+4>: bx lr
End of assembler dump.
(gdb) info register r1
r1 0x13ba 5050

Great, this is what we expected but we could not see due to limits in the error code.

Maybe you have noticed that something odd happens with our labels being identified as

functions. We will address this issue in a future chapter, this is mostly harmless though.

3n + 1

Let’s make another example a bit more complicated. This is the famous 3n + 1 problem also

known as the Collatz conjecture. Given a number n we will divide it by 2 if it is even and multiply it

by 3 and add one if it is odd.

if (n % 2 == 0)
 n = n / 2;
else
 n = 3*n + 1;

Before continuing, our ARM processor is able to multiply two numbers but we should learn a new

instruction mul which would detour us a bit. Instead we will use the following identity 3 * n =

2*n + n. We do not really know how to multiply or divide by two yet, we will study this in a

future chapter, so for now just assume it works as shown in the assembler below.

Collatz conjecture states that, for any number n, repeatedly applying this procedure will

eventually give us the number 1. Theoretically it could happen that this is not the case. So far, no

such number has been found, but it has not been proved otherwise. If we want to repeatedly

apply the previous procedure, our program is doing something like this.

n = ...;
while (n != 1)
{
 if (n % 2 == 0)
 n = n / 2;
 else
 n = 3*n + 1;
}

If the Collatz conjecture were false, there would exist some n for which the code above would

hang, never reaching 1. But as I said, no such number has been found.

http://en.wikipedia.org/wiki/Collatz_conjecture

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/* -- collatz.s */
.text

.global main
main:
 mov r1, #123 /* r1 ← 123 */
 mov r2, #0 /* r2 ← 0 */
loop:
 cmp r1, #1 /* compare r1 and 1 */
 beq end /* branch to end if r1 == 1 */

 and r3, r1, #1 /* r3 ← r1 & 1 */
 cmp r3, #0 /* compare r3 and 0 */
 bne odd /* branch to odd if r3 != 0 */
even:
 mov r1, r1, ASR #1 /* r1 ← (r1 >> 1) */
 b end_loop
odd:
 add r1, r1, r1, LSL #1 /* r1 ← r1 + (r1 << 1) */
 add r1, r1, #1 /* r1 ← r1 + 1 */

end_loop:
 add r2, r2, #1 /* r2 ← r2 + 1 */
 b loop /* branch to loop */

end:
 mov r0, r2
 bx lr

In r1 we will keep the number n. In this case we will use the number 123. 123 reaches 1 in 46

steps: [123, 370, 185, 556, 278, 139, 418, 209, 628, 314, 157, 472, 236, 118, 59, 178, 89, 268, 134, 67,

202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]. We

will count the number of steps in register r2. So we initialize r1 with 123 and r2 with 0 (no step

has been performed yet).

At the beginning of the loop, in lines 8 and 9, we check if r1 is 1. So we compare it with 1 and if it

is equal we leave the loop branching to end.

Now we know that r1 is not 1, so we proceed to check if it is even or odd. To do this we use a new

instruction and which performs a bitwise and operation. An even number will have the least

significant bit (LSB) to 0, while an odd number will have the LSB to 1. So a bitwise and using 1 will

return 0 or 1 on even or odd numbers, respectively. In line 11 we keep the result of the bitwise

and in r3 register and then, in line 12, we compare it against 0. If it is not zero then we branch to

odd, otherwise we continue on the even case.

Now some magic happens in line 15. This is a combined operation that ARM allows us to do. This

is a mov but we do not move the value of r1 directly to r1 (which would be doing nothing) but

first we do an arithmetic shift right (ASR) to the value of r1 (to the value, no the register itself).

Then this shifted value is moved to the register r1. An arithmetic shift right shifts all the bits of a

register to the right: the rightmost bit is effectively discarded and the leftmost is set to the same

value as the leftmost bit prior the shift. Shifting right one bit to a number is the same as dividing

that number by 2. So this mov r1, r1, ASR #1 is actually doing r1 ← r1 / 2.

Some similar magic happens for the even case in line 18. In this case we are doing an add. The

first and second operands must be registers (destination operand and the first source operand).

The third is combined with a logical shift left (LSL). The value of the operand is shifted left 1 bit:

the leftmost bit is discarded and the rightmost bit is set to 0. This is effectively multiplying the

value by 2. So we are adding r1 (which keeps the value of n) to 2*r1. This is 3*r1, so 3*n. We

keep this value in r1 again. In line 19 we add 1 to that value, so r1 ends having the value 3*n+1

that we wanted.

Do not worry very much now about these LSL and ASR. Just take them for granted now. In a

future chapter we will see them in more detail.

Finally, at the end of the loop, in line 22 we update r2 (remember it keeps the counter of our

steps) and then we branch back to the beginning of the loop. Before ending the program we

move the counter to r0 so we return the number of steps we did to reach 1.

ARM assembler in Raspberry Pi – Chapter 5 ARM assembler in Raspberry Pi – Chapter 7

arm, assembler, control structures, pi, raspberry

$./collatz; echo $?
46

Great.

That’s all for today.

Postscript

Kevin Millikin rightly pointed (in a comment below) that usually a loop is not implemented in the

way shown above. In fact Kevin says that a better way to do the loop of loop01.s is as follows.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/* -- loop02.s */
.text

.global main
main:
 mov r1, #0 /* r1 ← 0 */
 mov r2, #1 /* r2 ← 1 */
 b check_loop /* unconditionally jump at the end of the loop */
loop:
 add r1, r1, r2 /* r1 ← r1 + r1 */
 add r2, r2, #1 /* r2 ← r2 + 1 */
check_loop:
 cmp r2, #22 /* compare r2 and 22 */
 ble loop /* branch if r2 <= 22 to the beginning of the loop */
end:
 mov r0, r1 /* r0 ← r1 */
 bx lr

If you count the number of instruction in the two codes, there are 9 instructions in both. But if

you look carefully in Kevin’s proposal you will see that by unconditionally branching to the end of

the loop, and reversing the condition check, we can skip one branch thus reducing the number of

instructions of the loop itself from 5 to 4.

There is another advantage in this second version, though: there is only one branch in the loop

itself as we resort to implicit sequencing to reach again the two instructions performing the check.

For reasons beyond the scope of this post, the execution of a branch instruction may negatively

affect the performance of our programs. Processors have mechanisms to mitigate the

performance loss due to branches (and in fact the processor in the Raspberry Pi does have

them). But avoiding a branch instruction entirely avoids the potential performance penalization

of executing a branch instruction.

While we do not care very much now about the performance of our assembler. However, I

thought it was worth developing a bit more Kevin’s comment.

5 thoughts on “ARM assembler in Raspberry Pi – Chapter 6”

Kevin Millikin says:

January 21, 2013 at 3:38 am

Thanks for writing this. It’s been fun reading so far.

In practice one would normally test at the bottom of a while loop. In your loop01.s there

are two tests in the loop on each iteration — a forward conditional branch (not taken) and

a backward unconditional branch.

Instead compile the test at the bottom, invert the branch condition, and enter the loop with

an unconditional branch to the test. Each iteration of the loop has a backward conditional

http://thinkingeek.com/2013/01/19/arm-assembler-raspberry-pi-chapter-5/
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/control-structures/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/raspberry/
http://www.addtoany.com/share_save#url=http%3A%2F%2Fthinkingeek.com%2F2013%2F01%2F20%2Farm-assembler-raspberry-pi-chapter-6%2F&title=ARM%20assembler%20in%20Raspberry%20Pi%20%E2%80%93%20Chapter%206&description=
http://thinkingeek.com/2013/01/20/arm-assembler-raspberry-pi-chapter-6/#comment-756

