
THINK IN GEEK In geek we trust

ARM assembler in Raspberry Pi – Chapter 7
January 26, 2013 rferrer, 3

ARM architecture has been for long targeted at embedded systems. Embedded systems usually

end being used in massively manufactured products (dishwashers, mobile phones, TV sets, etc).

In this context margins are very tight so a designer will always try to spare as much components

as possible (a cent saved in hundreds of thousands or even millions of appliances may pay off).

One relatively expensive component is memory although every day memory is less and less

expensive. Anyway, in constrained memory environments being able to save memory is good and

ARM instruction set was designed with this goal in mind. It will take us several chapters to learn all

of these techniques, today we will start with one feature usually named shifted operand.

Indexing modes

We have seen that, except for load (ldr), store (str) and branches (b and bXX), ARM

instructions take as operands either registers or immediate values. We have also seen that the

first operand is usually the destination register (being str a notable exception as there it plays

the role of source because the destination is now the memory). Instruction mov has another

operand, a register or an immediate value. Arithmetic instructions like add and and (and many

others) have two more source registers, the first of which is always a register and the second can

be a register or an immediate value.

These sets of allowed operands in instructions are collectively called indexing modes. Today this

concept will look a bit off since we will not index anything. The name indexing makes sense in

memory operands but ARM instructions, except load and store, do not have memory operands.

This is the nomenclature you will find in ARM documentation so it seems sensible to use theirs.

We can summarize the syntax of most of the ARM instructions in the following pattern

instruction Rdest, Rsource1, source2

There are some exceptions, mainly move (mov), branches, load and stores. In fact move is not so

different actually.

mov Rdest, source2

Both Rdest and Rsource must be registers. In the next section we will talk about source2.

We will discuss the indexing modes of load and store instructions in a future chapter. Branches,

on the other hand, are surprisingly simple and their single operand is just a label of our program,

so there is little to discuss on indexing modes for branches.

Shifted operand

What is this misterious source2 in the instruction patterns above? If you recall the previous

chapters we have used registers or immediate values. So at least that source2 is this: register

or immediate value. You can use an immediate or a register where a source2 is expected. Some

examples follow, but we have already used them in the examples of previous chapters.

mov r0, #1

mov r1, r0

add r2, r1, r0

add r2, r3, #4

Calendar

January 2013

M T W T F S S

« Dec Feb »

 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Recent Posts

Capybara, pop up windows and the new PayPal

sandbox

ARM assembler in Raspberry Pi – Chapter 12

ARM assembler in Raspberry Pi – Chapter 11

ARM assembler in Raspberry Pi – Chapter 10

ARM assembler in Raspberry Pi – Chapter 9

Recent Comments

rferrer on ARM assembler in Raspberry Pi –

Chapter 11

Einstieg in Pi-Assembler | ultramachine on ARM

assembler in Raspberry Pi – Chapter 1

Fernando on ARM assembler in Raspberry Pi –

Chapter 7

Loren Blaney on ARM assembler in Raspberry Pi –

Chapter 11

ห.ร.ม. ด้วยภาษา Assembly บน Raspberry Pi |

Raspberry Pi Thailand on ARM assembler in

Raspberry Pi – Chapter 9

Tags

.net activerecord ajax apple archlinux

arm assembler bind

branches c# dhcp firebug firefox function

function call functions gadgets html

indexing modes ipod Java

javascript jquery linux mac os

mac os x MVC networking parallels pi
programming tips rails

raspberry ruby ruby

on rails security software sports sql

server subversion tips and tricks tools

ubuntu visual studio xmonad

http://thinkingeek.com/
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comments
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/09/
http://thinkingeek.com/2013/01/10/
http://thinkingeek.com/2013/01/11/
http://thinkingeek.com/2013/01/12/
http://thinkingeek.com/2013/01/19/
http://thinkingeek.com/2013/01/20/
http://thinkingeek.com/2013/01/26/
http://thinkingeek.com/2013/01/27/
http://thinkingeek.com/2013/04/27/capybara-pop-windows-paypal-sandbox/
http://thinkingeek.com/2013/03/28/arm-assembler-raspberry-pi-chapter-12/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1171
http://ultramachine.wordpress.com/2013/04/11/einstieg-in-pi-assembler/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1170
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1146
http://xpl0.org/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1145
http://www.raspberrypithai.com/2013/04/07/%e0%b8%ab%e0%b8%a3%e0%b8%a1-%e0%b8%94%e0%b9%89%e0%b8%a7%e0%b8%a2%e0%b8%a0%e0%b8%b2%e0%b8%a9%e0%b8%b2-assembly-%e0%b8%9a%e0%b8%99-raspberry-pi/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comment-1142
http://thinkingeek.com/tag/net/
http://thinkingeek.com/tag/activerecord/
http://thinkingeek.com/tag/ajax/
http://thinkingeek.com/tag/apple/
http://thinkingeek.com/tag/archlinux/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/bind/
http://thinkingeek.com/tag/branches/
http://thinkingeek.com/tag/c/
http://thinkingeek.com/tag/dhcp/
http://thinkingeek.com/tag/firebug/
http://thinkingeek.com/tag/firefox/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/gadgets/
http://thinkingeek.com/tag/html/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/ipod/
http://thinkingeek.com/tag/java/
http://thinkingeek.com/tag/javascript/
http://thinkingeek.com/tag/jquery/
http://thinkingeek.com/tag/linux/
http://thinkingeek.com/tag/mac-os/
http://thinkingeek.com/tag/mac-os-x/
http://thinkingeek.com/tag/mvc/
http://thinkingeek.com/tag/networking/
http://thinkingeek.com/tag/parallels/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/programming-tips/
http://thinkingeek.com/tag/rails/
http://thinkingeek.com/tag/raspberry/
http://thinkingeek.com/tag/ruby/
http://thinkingeek.com/tag/ruby-on-rails/
http://thinkingeek.com/tag/security/
http://thinkingeek.com/tag/software/
http://thinkingeek.com/tag/sports/
http://thinkingeek.com/tag/sql-server/
http://thinkingeek.com/tag/subversion/
http://thinkingeek.com/tag/tips-and-tricks/
http://thinkingeek.com/tag/tools/
http://thinkingeek.com/tag/ubuntu/
http://thinkingeek.com/tag/visual-studio/
http://thinkingeek.com/tag/xmonad/

But source2 can be much more than just a simple register or an immediate. In fact, when it is a

register we can combine it with a shift operation. We already saw one of these shift operations in

chapter 6. Not it is time to unveil all of them.

LSL #n

Logical Shift Left. Shifts bits n times left. The n leftmost bits are lost and the n rightmost

are set to zero.

LSL Rsource3

Like the previous one but instead of an immediate the lower byte of a register specifies the

amount of shifting.

LSR #n

Logical Shift Right. Shifts bits n times right. The n rightmost bits are lost and the n leftmost

bits are set to zero,

LSR Rsource3

Like the previous one but instead of an immediate the lower byte of a register specifies the

amount of shifting.

ASR #n

Arithmetic Shift Right. Like LSR but the leftmost bit before shifting is used instead of zero in

the n leftmost ones.

ASR Rsource3

Like the previous one but using a the lower byte of a register instead of an immediate.

ROR #n

Rotate Right. Like LSR but the n rightmost bits are not lost bot pushed onto the n leftmost

bits

ROR Rsource3

Like the previous one but using a the lower byte of a register instead of an immediate.

In the listing above, n is an immediate from 1 to 31. These extra operations may be applied to the

value in the second source register (to the value, not to the register itself) so we can perform

some more operations in a single instruction. For instance, ARM does not have any shift right or

left instruction. You just use the mov instruction.

mov r1, r2, LSL #1

You may be wondering why one would want to shift left or right the value of a register. If you

recall chapter 6 we saw that shifting left (LSL) a value gives a value that the same as multiplying it

by 2. Conversely, shifting it right (ASR if we use two’s complement, LSR otherwise) is the same as

dividing by 2. Since a shift of n is the same as doing n shifts of 1, shifts actually multiply or divide

a value by 2n.

mov r1, r2, LSL #1 /* r1 ← (r2*2) */
mov r1, r2, LSL #2 /* r1 ← (r2*4) */
mov r1, r3, ASR #3 /* r1 ← (r3/8) */
mov r3, 4
mov r1, r2, LSL r3 /* r1 ← (r2*16) */

We can combine it with add to get some useful cases.

add r1, r2, r2, LSL #1 /* r1 ← r2 + (r2*2) equivalent to r1 ← r1*3 */

add r1, r2, r2, LSL #2 /* r1 ← r2 + (r2*4) equivalent to r1 ← r1*5 */

You can do something similar with sub.

sub r1, r2, r2, LSL #3 /* r1 ← r2 - (r2*8) equivalent to r1 ← r2*(-7)

ARM comes with a handy rsb (Reverse Substract) instruction which computes Rdest ←

Archives

April 2013

March 2013

February 2013

January 2013

December 2012

November 2012

August 2012

July 2012

June 2012

February 2012

January 2012

December 2011

November 2011

October 2011

July 2011

June 2011

May 2011

April 2011

March 2011

February 2011

December 2010

November 2010

October 2009

July 2009

June 2009

March 2009

November 2008

July 2008

September 2007

July 2007

June 2007

http://thinkingeek.com/2013/04/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2012/11/
http://thinkingeek.com/2012/08/
http://thinkingeek.com/2012/07/
http://thinkingeek.com/2012/06/
http://thinkingeek.com/2012/02/
http://thinkingeek.com/2012/01/
http://thinkingeek.com/2011/12/
http://thinkingeek.com/2011/11/
http://thinkingeek.com/2011/10/
http://thinkingeek.com/2011/07/
http://thinkingeek.com/2011/06/
http://thinkingeek.com/2011/05/
http://thinkingeek.com/2011/04/
http://thinkingeek.com/2011/03/
http://thinkingeek.com/2011/02/
http://thinkingeek.com/2010/12/
http://thinkingeek.com/2010/11/
http://thinkingeek.com/2009/10/
http://thinkingeek.com/2009/07/
http://thinkingeek.com/2009/06/
http://thinkingeek.com/2009/03/
http://thinkingeek.com/2008/11/
http://thinkingeek.com/2008/07/
http://thinkingeek.com/2007/09/
http://thinkingeek.com/2007/07/
http://thinkingeek.com/2007/06/

ARM assembler in Raspberry Pi – Chapter 6 ARM assembler in Raspberry Pi – Chapter 8

Reply

arm, assembler, indexing modes, pi, raspberry

source2 - Rsource1 (compare it to sub which computes Rdest ← Rsource1 -

source2).

rsb r1, r2, r2, LSL #3 /* r1 ← (r2*8) - r2 equivalent to r1 ← r2*7 */

Another example, a bit more contrived.

/* Complicated way to multiply the initial value of r1 by 42 = 7*3*2 */

rsb r1, r1, r1, LSL #3 /* r1 ← (r1*8) - r1 equivalent to r1 ← 7*r1 */

add r1, r1, r1, LSL #1 /* r1 ← r1 + (2*r1) equivalent to r1 ← 3*r1 */

add r1, r1, r1 /* r1 ← r1 + r1 equivalent to r1 ← 2*r1 */

You are probably wondering why would we want to use shifts to perform multiplications. Well,

the generic multiplication instruction always work but it is usually much harder to compute by

our ARM processor so it may take more time. There are times where there is no other option but

for many small constant values a single instruction may be more efficient.

Rotations are less useful than shifts in everyday use. They are usually used in cryptography, to

reorder bits and “scramble” them. ARM does not provide a way to rotate left but we can do a n

rotate left doing a 32-n rotate right.

/* Assume r1 is 0x12345678 */

mov r1, r1, ROR #1 /* r1 ← r1 ror 1. This is r1 ← 0x91a2b3c */

mov r1, r1, ROR #31 /* r1 ← r1 ror 31. This is r1 ← 0x12345678 */

That’s all for today.

3 thoughts on “ARM assembler in Raspberry Pi – Chapter 7”

Fernando says:

March 21, 2013 at 11:41 pm

Any insight of why is multiplication slower than addition?

rferrer says:

March 27, 2013 at 9:17 pm

The general multiplication algorithm is more expensive than addition because it

involves more steps.

When you add two numbers by hand, you start by vertically aligning their digits.

Then you add vertically each column starting from the right and moving to the

left, taking care of the carry values you may need during the addition. Well, the

circuitry of a processor does something similar. But a processor is able to

advance the different carries found along the computation in a way that adding

two numbers of N bits does not take a “k*N” amount of time but “k*log(N)”.

Compare how you calculate a sum: when you add two numbers of 10 digits you

need twice more time than when you add two numbers of 5 digits. The processor

would just need one extra step to add 10 digits compared to adding 5 digits. Cool,

isn’t it?

Now consider multiplication. When you multiply two numbers, you start as well by

vertically aligning them. But now, you pick each digit of one of the rows (I use the

lower one) and then you multiply it with every number of the other row (in my

case it would be the upper one). This gives you an intermediate row. Then you

http://thinkingeek.com/2013/01/20/arm-assembler-raspberry-pi-chapter-6/
http://thinkingeek.com/2013/01/27/arm-assembler-raspberry-pi-chapter-8/
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/?replytocom=1086#respond
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/raspberry/
http://www.addtoany.com/share_save#url=http%3A%2F%2Fthinkingeek.com%2F2013%2F01%2F26%2Farm-assembler-raspberry-pi-chapter-7%2F&title=ARM%20assembler%20in%20Raspberry%20Pi%20%E2%80%93%20Chapter%207&description=
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1086
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1104

