
THINK IN GEEK In geek we trust

ARM assembler in Raspberry Pi – Chapter 8
January 27, 2013 rferrer, 0

In the previous chapter we saw that the second operand of most arithmetic instructions can use a

shift operator which allows us to shift and rotate bits. In this chapter we will continue learning the

available indexing modes of ARM instructions. This time we will focus on load and store

instructions.

Arrays and structures

So far we have been able to move 32 bits from memory to registers (load) and back to memory

(store). But working on single items of 32 bits (usually called scalars) is a bit limiting. Soon we

would find ourselves working on arrays and structures, even if we did not know.

An array is a sequence of items of the same kind in memory. Arrays are a foundational data

structure in almost every low level language. Every array has a base address, usually denoted by

the name of the array, and contains N items. Each of these items has associated a growing index,

ranging from 0 to N-1 or 1 to N. Using the base address and the index we can access an item of the

array. We mentioned in chapter 3 that memory could be viewed as an array of bytes. An array in

memory is the same, but an item may take more than one single byte.

A structure (or record or tuple) is a sequence of items of possibly diferent kind. Each item of a

structure is usually called a field. Fields do not have an associated index but an offset respect to

the beginning of the structure. Structures are laid out in memory to ensure that the proper

alignment is used in every field. The base address of a structure is the address of its first field. If

the base address is aligned, the structure should be laid out in a way that all the field are properly

aligned as well.

What do arrays and structure have to do with indexing modes of load and store? Well, these

indexing modes are designed to make easier accessing arrays and structs.

Defining arrays and structs

To illustrate how to work with arrays and references we will use the following C declarations and

implement them in assembler.

int a[100];
struct my_struct
{
 char f0;
 int f1;
} b;

Let’s first define in our assembler the array ‘a’. It is just 100 integers. An integer in ARM is 32-bit

wide so in our assembler code we have to make room for 400 bytes (4 * 100).

1
2
3
4
5

/* -- array01.s */
.data

.balign 4
a: .skip 400

In line 5 we define the symbol a and then we make room for 400 bytes. The directive .skip tells the

assembler to advance a given number of bytes before emitting the next datum. Here we are

skipping 400 bytes because our array of integers takes 400 bytes (4 bytes per each of the 100

Calendar

January 2013

M T W T F S S

« Dec Feb »

 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Recent Posts

Capybara, pop up windows and the new PayPal

sandbox

ARM assembler in Raspberry Pi – Chapter 12

ARM assembler in Raspberry Pi – Chapter 11

ARM assembler in Raspberry Pi – Chapter 10

ARM assembler in Raspberry Pi – Chapter 9

Recent Comments

rferrer on ARM assembler in Raspberry Pi –

Chapter 11

Einstieg in Pi-Assembler | ultramachine on ARM

assembler in Raspberry Pi – Chapter 1

Fernando on ARM assembler in Raspberry Pi –

Chapter 7

Loren Blaney on ARM assembler in Raspberry Pi –

Chapter 11

ห.ร.ม. ด้วยภาษา Assembly บน Raspberry Pi |

Raspberry Pi Thailand on ARM assembler in

Raspberry Pi – Chapter 9

Tags

.net activerecord ajax apple archlinux

arm assembler bind

branches c# dhcp firebug firefox function

function call functions gadgets html

indexing modes ipod Java

javascript jquery linux mac os

mac os x MVC networking parallels pi
programming tips rails

raspberry ruby ruby

on rails security software sports sql

server subversion tips and tricks tools

ubuntu visual studio xmonad

http://thinkingeek.com/
http://thinkingeek.com/2013/01/27/arm-assembler-raspberry-pi-chapter-8/#respond
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/09/
http://thinkingeek.com/2013/01/10/
http://thinkingeek.com/2013/01/11/
http://thinkingeek.com/2013/01/12/
http://thinkingeek.com/2013/01/19/
http://thinkingeek.com/2013/01/20/
http://thinkingeek.com/2013/01/26/
http://thinkingeek.com/2013/01/27/
http://thinkingeek.com/2013/04/27/capybara-pop-windows-paypal-sandbox/
http://thinkingeek.com/2013/03/28/arm-assembler-raspberry-pi-chapter-12/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1171
http://ultramachine.wordpress.com/2013/04/11/einstieg-in-pi-assembler/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1170
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1146
http://xpl0.org/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1145
http://www.raspberrypithai.com/2013/04/07/%e0%b8%ab%e0%b8%a3%e0%b8%a1-%e0%b8%94%e0%b9%89%e0%b8%a7%e0%b8%a2%e0%b8%a0%e0%b8%b2%e0%b8%a9%e0%b8%b2-assembly-%e0%b8%9a%e0%b8%99-raspberry-pi/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comment-1142
http://thinkingeek.com/tag/net/
http://thinkingeek.com/tag/activerecord/
http://thinkingeek.com/tag/ajax/
http://thinkingeek.com/tag/apple/
http://thinkingeek.com/tag/archlinux/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/bind/
http://thinkingeek.com/tag/branches/
http://thinkingeek.com/tag/c/
http://thinkingeek.com/tag/dhcp/
http://thinkingeek.com/tag/firebug/
http://thinkingeek.com/tag/firefox/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/gadgets/
http://thinkingeek.com/tag/html/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/ipod/
http://thinkingeek.com/tag/java/
http://thinkingeek.com/tag/javascript/
http://thinkingeek.com/tag/jquery/
http://thinkingeek.com/tag/linux/
http://thinkingeek.com/tag/mac-os/
http://thinkingeek.com/tag/mac-os-x/
http://thinkingeek.com/tag/mvc/
http://thinkingeek.com/tag/networking/
http://thinkingeek.com/tag/parallels/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/programming-tips/
http://thinkingeek.com/tag/rails/
http://thinkingeek.com/tag/raspberry/
http://thinkingeek.com/tag/ruby/
http://thinkingeek.com/tag/ruby-on-rails/
http://thinkingeek.com/tag/security/
http://thinkingeek.com/tag/software/
http://thinkingeek.com/tag/sports/
http://thinkingeek.com/tag/sql-server/
http://thinkingeek.com/tag/subversion/
http://thinkingeek.com/tag/tips-and-tricks/
http://thinkingeek.com/tag/tools/
http://thinkingeek.com/tag/ubuntu/
http://thinkingeek.com/tag/visual-studio/
http://thinkingeek.com/tag/xmonad/

integers). Declaring a structure is not much different.

7
8

.balign 4
b: .skip 8

Right now you should wonder why we skipped 8 bytes when the structure itself takes just 5 bytes.

Well, it does need 5 bytes to store useful information. The first field f0 is a char. A char takes 1

byte of storage. The next field f1 is an integer. An integer takes 4 bytes and it must be aligned at 4

bytes as well, so we have to leave 3 unused bytes between the field f0 and the field f1. This

unused storage put just to fulfill alignment is called padding. Padding should never be used by

your program.

Naive approach without indexing modes

Ok, let’s write some code to initialize every item of the array a[i]. We will do something

equivalent to the following C code.

for (i = 0; i < 100; i++)
 a[i] = i;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

.text

.global main
main:
 ldr r1, addr_of_a /* r1 ← &a */
 mov r2, #0 /* r2 ← 0 */
loop:
 cmp r2, #100 /* Have we reached 100 yet? */
 beq end /* If so, leave the loop, otherwise continue */
 add r3, r1, r2, LSL #2 /* r3 ← r1 + (r2*4) */
 str r2, [r3] /* *r3 ← r2 */
 add r2, r2, #1 /* r2 ← r2 + 1 */
 b loop /* Go to the beginning of the loop */
end:
 bx lr
addr_of_a: .word a

Whew! We are using lots of things we have learnt from earlier chapters. In line 14 we load the

base address of the array into r1. The address of the array will not change so we load it once. In

register r2 we will keep the index that will range from 0 to 99. In line 17 we compare it to 100 to

see if we have reached the end of the loop.

Line 19 is an important one. Here we compute the address of the item. We have in r1 the base

address and we know each item is 4 bytes wide. We know also that r2 keeps the index of the loop

which we will use to access the array element. Given an item with index i its address must be &a

+ 4*i, since there are 4 bytes between every element of this array. So r3 has the address of the

current element in this step of the loop. In line 20 we store r2, this is i, into the memory pointed

by r3, the i-th array item, this is a[i].

Then we proceed to increase r2 and jump back for the next step of the loop.

As you can see, accessing an array involves calculating the address of the accessed item. Does the

ARM instruction set provide a more compact way to do this? The answer is yes. In fact it provides

several indexing modes.

Indexing modes

In the previous chapter the concept indexing mode was a bit off because we were not indexing

anything. Now it makes much more sense since we are indexing an array item. ARM provides nine

of these indexing modes. I will distinguish two kinds of indexing modes: non updating and

updating depending on whether they feature a side-effect that we will discuss later, when dealing

Archives

April 2013

March 2013

February 2013

January 2013

December 2012

November 2012

August 2012

July 2012

June 2012

February 2012

January 2012

December 2011

November 2011

October 2011

July 2011

June 2011

May 2011

April 2011

March 2011

February 2011

December 2010

November 2010

October 2009

July 2009

June 2009

March 2009

November 2008

July 2008

September 2007

July 2007

June 2007

http://thinkingeek.com/2013/04/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2012/11/
http://thinkingeek.com/2012/08/
http://thinkingeek.com/2012/07/
http://thinkingeek.com/2012/06/
http://thinkingeek.com/2012/02/
http://thinkingeek.com/2012/01/
http://thinkingeek.com/2011/12/
http://thinkingeek.com/2011/11/
http://thinkingeek.com/2011/10/
http://thinkingeek.com/2011/07/
http://thinkingeek.com/2011/06/
http://thinkingeek.com/2011/05/
http://thinkingeek.com/2011/04/
http://thinkingeek.com/2011/03/
http://thinkingeek.com/2011/02/
http://thinkingeek.com/2010/12/
http://thinkingeek.com/2010/11/
http://thinkingeek.com/2009/10/
http://thinkingeek.com/2009/07/
http://thinkingeek.com/2009/06/
http://thinkingeek.com/2009/03/
http://thinkingeek.com/2008/11/
http://thinkingeek.com/2008/07/
http://thinkingeek.com/2007/09/
http://thinkingeek.com/2007/07/
http://thinkingeek.com/2007/06/

with updating indexing modes.

Non updating indexing modes
1. [Rsource1, +#immediate] or [Rsource1, -#immediate]

It justs adds (or substracts) the immediate value to form the address. This is very useful to

array items the index of which is a constant in the code or fields of a structure, since their

offset is always constant. In Rsource1 we put the base address and in immediate the

offset we want in bytes. The immediate cannot be larger than 12 bits (0..4096). When the

immediate is #0 it is like the usual we have been using [Rsource1].

For example, we can set a[4] to 3 this way(we assume that r1 already contans the base

address of a). Note that the offset is in bytes thus we need an offset of 12 (4 bytes * 3 items

skipped).

mov r2, #3 /* r2 ← 3 */
str r2, [r1, +#12] /* *(r1 + 12) ← r2 */

2. [Rsource1, +Rsource2] or [Rsource1, -Rsource2]

This is like the previous one, but the added (or substracted) offset is the value in a register.

This is useful when the offset is too big for the immediate. Note that for the +Rsource2

case, the two registers can be swapped (as this would not affect the address computed).

Example. The same as above but using a register this time.

mov r2, #3 /* r2 ← 3 */
mov r3, #12 /* r3 ← 12 */
str r2, [r1,+r3] /* *(r1 + r3) ← r2 */

3. [Rsource1, +Rsource2, shift_operation #immediate] or

[Rsource1, -Rsource2, shift_operation #immediate].

This one is similar to the usual shift operation we can do with other instructions. A shift

operation (remember: LSL, LSR, ASR or ROR) is applied to Rsource2, Rsource1 is

then added (or substracted) to the result of the shift operation applied to Rsource2. This

is useful when we need to multiply the address by some fixed amount. When accessing the

items of the intege array a we had to multiply the result by 4 to get a meaningful address.

For this example, let’s first recall how we computed above the address of a single item in

the array.

19
20

add r3, r1, r2, LSL #2 /* r3 ← r1 + r2*4 */
str r2, [r3] /* *r3 ← r2 */

We can express this in a much more compact way (without the need of the register r3).

str r2, [r1, +r2, LSL #2] /* *(r1 + r2*4) ← r2 */

Updating indexing modes

In these indexing modes the Rsource1 register is updated with the address synthesized by the

load or store instruction. You may be wondering why one would want to do this. A bit of detour

first. Recheck the code of the array load. Why do we have to keep around the base address of the

array if we are always effectively moving 4 bytes away from it? Would not it make much more

sense to keep the address of the current entity? So instead of

19
20

add r3, r1, r2, LSL #2 /* r3 ← r1 + r2*4 */
str r2, [r3] /* *r3 ← r2 */

we might want to do something like

str r2, [r1] /* *r1 ← r2 */
add r1, r1, #4 /* r1 ← r1 + 4 */

because there is no need to compute everytime from the beginning the address of the next item

(as we are accessing them sequentially). Even if this looks slightly better, it still can be improved a

bit more. What if our instruction were able to upate r1 for us? Something like this (obviously the

exact syntax is not as shown)

/* Wrong syntax */
str r2, [r1] "and then" add r1, r1, #4

Such indexing modes exist. There are two kinds of updating indexing modes depending on at

which time Rsource1 is updated. If Rsource1 is updated after the load or store itself

(meaning that as the address to load or store is the initial Rsource1 value) this is a post-

indexing accessing mode. If Rsource1 is updated before the actual load or store (meaning that

the address to load or store is the final value of Rsource1) this is a pre-indexing accessing

mode. In all cases, at the end of the instruction Rsource1 will have the value of the

computation of the indexing mode. Now this sounds a bit convoluted, just look in the example

above: we first load using r1 and then we do r1 ← r1 + 4. This is post-indexing: we first use

the value of r1 as the address where we store the value of r2. Then r1 is updated with r1 + 4.

Now consider another hypothetic syntax.

/* Wrong syntax */
str r2, [add r1, r1, #4]

This is pre-indexing: we first compute r1 + 4 and use it as the address where we store the

value of r2. At the end of the instruction r1 has effectively been updated too, but the updated

value has already been used as the address of the load or store.

Post-indexing modes
4. [Rsource1], #+immediate or [Rsource1], #-immediate

The value of Rsource1 is used as the address for the load or store. Then Rsource1 is

updated with the value of immediate after adding (or substracting) it to Rsource1.

Using this indexing mode we can rewrite the loop of our first example as follows:

16
17
18
19
20
21
22

loop:
 cmp r2, #100 /* Have we reached 100 yet? */
 beq end /* If so, leave the loop, otherwise continue */
 str r2, [r1], +4 /* *r1 ← r2 then r1 ← r1 + 4 */
 add r2, r2, #1 /* r2 ← r2 + 1 */
 b loop /* Go to the beginning of the loop */
end:

5. [Rsource1], +Rsource2 or [Rsource1], -Rsource2

Like the previous one but instead of an immediate, the value of Rsource2 is used. As

usual this can be used as a workaround when the offset is too big for the immediate value.

6. [Rsource1], +Rsource2, shift_operation #immediate or

[Rsource1], -Rsource2, shift_operation #immediate

The value of Rsource1 is used as the address for the load or store. Then Rsource2 is

applied a shift operation (LSL, LSR, ASR or ROL). The resulting value of that shift is added

(or substracted) to Rsource1. Rsource1 is finally updated with this last value.

Pre-indexing modes

Pre-indexing modes may look a bit weird at first but they are useful when the computed address

is going to be reused soon. Instead of recomputing it we can reuse the updated Rsource1.

Mind the ! symbol in these indexing modes which distinguishes them from the non updating

indexing modes.

ARM assembler in Raspberry Pi – Chapter 7 ARM assembler in Raspberry Pi – Chapter 9

Name *

Email *

addresses, arm, assembler, indexing modes, pi, postindex, preindex,

raspberry

7. [Rsource1, #+immediate]! or [Rsource1, #-immediate]!

It behaves like the similar non-updating indexing mode but Rsource1 gets updated with

the computed address. Imagine we want to compute a[4] = a[4] + a[4]. We could

do this (we assume that r1 already has the base address of the array).

ldr r2, [r1, #+12]! /* r1 ← r1 + 12 then r2 ← *r1 */
add r2, r2, r2 /* r2 ← r2 + r2 */
str r2, [r1] /* *r1 ← r2 */

8. [Rsource1, +Rsource2]! or [Rsource1, +Rsource2]!

Similar to the previous one but using a register Rsource2 instead of an immediate.

9. [Rsource1, +Rsource2, shift_operation #immediate]! or

[Rsource1, -Rsource2, shift_operation #immediate]!

Like to the non-indexing equivalent but Rsource1 will be updated with the address used for

the load or store instruction.

Back to structures

All the examples in this chapter have used an array. Structures are a bit simpler: the offset to the

fields is always constant: once we have the base address of the structure (the address of the first

field) accessing a field is just an indexing mode with an offset (usually an immediate). Our current

structure features, on purpose, a char as its first field f0. Currently we cannot work on scalars

in memory of different size than 4 bytes. So we will postpone working on that first field for a

future chapter.

For instance imagine we wanted to increment the field f1 like this.

b.f1 = b.f1 + 7;

If r1 contains the base address of our structure, accessing the field f1 is pretty easy now that we

know all the available indexing modes.

1
2
3

ldr r2, [r1, #+4]! /* r1 ← r1 + 4 then r2 ← *r1 */
add r2, r2, #7 /* r2 ← r2 + 7 */
str r2, [r1] /* *r1 ← r2 */

Note that we use a pre-indexing mode to keep in r1 the address of the field f1. This way the

second store does not need to compute that address again.

That’s all for today.

Leave a Reply

Your email address will not be published. Required fields are marked *

http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/tag/addresses/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/postindex/
http://thinkingeek.com/tag/preindex/
http://thinkingeek.com/tag/raspberry/
http://www.addtoany.com/share_save#url=http%3A%2F%2Fthinkingeek.com%2F2013%2F01%2F27%2Farm-assembler-raspberry-pi-chapter-8%2F&title=ARM%20assembler%20in%20Raspberry%20Pi%20%E2%80%93%20Chapter%208&description=

