
THINK IN GEEK In geek we trust

ARM assembler in Raspberry Pi – Chapter 9
February 2, 2013 rferrer, 1

In previous chapters we learnt the foundations of ARM assembler: registers, some arithmetic

operations, loads and stores and branches. Now it is time to put everything together and add

another level of abstraction to our assembler skills: functions.

Why functions?

Functions are a way to reuse code. If we have some code that will be needed more than once,

being able to reuse it is a Good Thing™. This way, we only have to ensure that the code being

reused is correct. If we repeated the code whe should verify it is correct at every point. This clearly

does not scale. Functions can also get parameters. This way not only we reuse code but we can

use it in several ways, by passing different parameters. All this magic, though, comes at some

price. A function must be a a well-behaved citizen.

Do’s and don’ts of a function

Assembler gives us a lot of power. But with a lot of power also comes a lot of responsibility. We

can break lots of things in assembler, because we are at a very low level. An error and nasty things

may happen. In order to make all functions behave in the same way, there are conventions in

every environment that dictate how a function must behave. Since we are in a Raspberry Pi

running Linux we will use the AAPCS (chances are that other ARM operating systems like RISCOS

or Windows RT follow it). You may find this document in the ARM documentation website but I

will try to summarize it in this chapter.

New special named registers

When discussing branches we learnt that r15 was also called pc but we never called it r15

anymore. Well, let’s rename from now r14 as lr and r13 as sp. lr stands for link register and it

is the address of the instruction following the instruction that called us (we will see later what is

this). sp stands for stack pointer. The stack is an area of memory owned only by the current

function, the sp register stores the top address of that stack. For now, let’s put the stack aside.

We will get it back in the next chapter.

Passing parameters

Functions can receive parameters. The first 4 parameters must be stored, sequentially, in the

registers r0, r1, r2 and r3. You may be wondering how to pass more than 4 parameters. We

can, of course, but we need to use the stack, but we will discuss it in the next chapter. Until then,

we will only pass up to 4 parameters.

"Well behaved" functions

A function must adhere, at least, to the following rules if we want it to be AAPCS compliant.

A function should not make any assumption on the contents of the cspr. So, at the entry

of a function condition codes N, Z, C and V are unknown.

A function can freely modify registers r0, r1, r2 and r3.

A function cannot assume anything on the contents of r0, r1, r2 and r3 unless they are

Calendar

February 2013

M T W T F S S

« Jan Mar »

 1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

Recent Posts

Capybara, pop up windows and the new PayPal

sandbox

ARM assembler in Raspberry Pi – Chapter 12

ARM assembler in Raspberry Pi – Chapter 11

ARM assembler in Raspberry Pi – Chapter 10

ARM assembler in Raspberry Pi – Chapter 9

Recent Comments

rferrer on ARM assembler in Raspberry Pi –

Chapter 11

Einstieg in Pi-Assembler | ultramachine on ARM

assembler in Raspberry Pi – Chapter 1

Fernando on ARM assembler in Raspberry Pi –

Chapter 7

Loren Blaney on ARM assembler in Raspberry Pi –

Chapter 11

ห.ร.ม. ด้วยภาษา Assembly บน Raspberry Pi |

Raspberry Pi Thailand on ARM assembler in

Raspberry Pi – Chapter 9

Tags

.net activerecord ajax apple archlinux

arm assembler bind

branches c# dhcp firebug firefox function

function call functions gadgets html

indexing modes ipod Java

javascript jquery linux mac os

mac os x MVC networking parallels pi
programming tips rails

raspberry ruby ruby

on rails security software sports sql

server subversion tips and tricks tools

ubuntu visual studio xmonad

http://thinkingeek.com/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comments
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/02/
http://thinkingeek.com/2013/02/07/
http://thinkingeek.com/2013/04/27/capybara-pop-windows-paypal-sandbox/
http://thinkingeek.com/2013/03/28/arm-assembler-raspberry-pi-chapter-12/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1171
http://ultramachine.wordpress.com/2013/04/11/einstieg-in-pi-assembler/
http://thinkingeek.com/2013/01/09/arm-assembler-raspberry-pi-chapter-1/#comment-1170
http://thinkingeek.com/2013/01/26/arm-assembler-raspberry-pi-chapter-7/#comment-1146
http://xpl0.org/
http://thinkingeek.com/2013/03/16/arm-assembler-raspberry-pi-chapter-11/#comment-1145
http://www.raspberrypithai.com/2013/04/07/%e0%b8%ab%e0%b8%a3%e0%b8%a1-%e0%b8%94%e0%b9%89%e0%b8%a7%e0%b8%a2%e0%b8%a0%e0%b8%b2%e0%b8%a9%e0%b8%b2-assembly-%e0%b8%9a%e0%b8%99-raspberry-pi/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comment-1142
http://thinkingeek.com/tag/net/
http://thinkingeek.com/tag/activerecord/
http://thinkingeek.com/tag/ajax/
http://thinkingeek.com/tag/apple/
http://thinkingeek.com/tag/archlinux/
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/bind/
http://thinkingeek.com/tag/branches/
http://thinkingeek.com/tag/c/
http://thinkingeek.com/tag/dhcp/
http://thinkingeek.com/tag/firebug/
http://thinkingeek.com/tag/firefox/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/gadgets/
http://thinkingeek.com/tag/html/
http://thinkingeek.com/tag/indexing-modes/
http://thinkingeek.com/tag/ipod/
http://thinkingeek.com/tag/java/
http://thinkingeek.com/tag/javascript/
http://thinkingeek.com/tag/jquery/
http://thinkingeek.com/tag/linux/
http://thinkingeek.com/tag/mac-os/
http://thinkingeek.com/tag/mac-os-x/
http://thinkingeek.com/tag/mvc/
http://thinkingeek.com/tag/networking/
http://thinkingeek.com/tag/parallels/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/programming-tips/
http://thinkingeek.com/tag/rails/
http://thinkingeek.com/tag/raspberry/
http://thinkingeek.com/tag/ruby/
http://thinkingeek.com/tag/ruby-on-rails/
http://thinkingeek.com/tag/security/
http://thinkingeek.com/tag/software/
http://thinkingeek.com/tag/sports/
http://thinkingeek.com/tag/sql-server/
http://thinkingeek.com/tag/subversion/
http://thinkingeek.com/tag/tips-and-tricks/
http://thinkingeek.com/tag/tools/
http://thinkingeek.com/tag/ubuntu/
http://thinkingeek.com/tag/visual-studio/
http://thinkingeek.com/tag/xmonad/

playing the role of a parameter.

A function can freely modify lr but the value upon entering the function will be needed

when leaving the function (so such value must be kept somewhere).

A function can modify all the remaining registers as long as their values are restored upon

leaving the function. This includes sp and registers r4 to r11.

This means that, after calling a function, we have to assume that (only) registers r0, r1,

r2, r3 and lr have been overwritten.

Calling a function

There are two ways to call a function. If the function is statically known (meaning we know exactly

which function must be called) we will use bl label. That label must be a label defined in the

.text section. This is called a direct (or immediate) call. We may do indirect calls by first storing

the address of the function into a register and then using blx Rsource1.

In both cases the behaviour is as follows: the address of the function (immediately encoded in

the bl or using the value of the register in blx) is stored in pc. The address of the instruction

following the bl or blx instruction is kept in lr.

Leaving a function

A well behaved function, as stated above, will have to keep the initial value of lr somewhere.

When leaving the function, we will retrieve that value and put it in some register (it can be lr

again but this is not mandatory). Then we will bx Rsource1 (we could use blx as well but the

latter would update lr which is useless here).

Returning data from functions

Functions must use r0 for data that fits in 32 bit (or less). This is, C types char, short, int,

long (and float though we have not seen floating point yet) will be returned in r0. For basic

types of 64 bit, like C types long long and double, they will be returned in r1 and r0. Any

other data is returned through the stack unless it is 32 bit or less, where it will be returned in r0.

In the examples in previous chapters we returned the error code of the program in r0. This now

makes sense. C’s main returns an int, which is used as the value of the error code of our

program.

Hello world

Usually this is the first program you write in any high level programming language. In our case we

had to learn lots of things first. Anyway, here it is. A “Hello world” in ARM assembler.

(Note to experts: since we will not discuss the stack until the next chapter, this code may look very

dumb to you)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/* -- hello01.s */
.data

greeting:
 .asciz "Hello world"

.balign 4
return: .word 0

.text

.global main
main:
 ldr r1, address_of_return /* r1 ← &address_of_return */
 str lr, [r1] /* *r1 ← lr */

Archives

April 2013

March 2013

February 2013

January 2013

December 2012

November 2012

August 2012

July 2012

June 2012

February 2012

January 2012

December 2011

November 2011

October 2011

July 2011

June 2011

May 2011

April 2011

March 2011

February 2011

December 2010

November 2010

October 2009

July 2009

June 2009

March 2009

November 2008

July 2008

September 2007

July 2007

June 2007

http://thinkingeek.com/2013/04/
http://thinkingeek.com/2013/03/
http://thinkingeek.com/2013/02/
http://thinkingeek.com/2013/01/
http://thinkingeek.com/2012/12/
http://thinkingeek.com/2012/11/
http://thinkingeek.com/2012/08/
http://thinkingeek.com/2012/07/
http://thinkingeek.com/2012/06/
http://thinkingeek.com/2012/02/
http://thinkingeek.com/2012/01/
http://thinkingeek.com/2011/12/
http://thinkingeek.com/2011/11/
http://thinkingeek.com/2011/10/
http://thinkingeek.com/2011/07/
http://thinkingeek.com/2011/06/
http://thinkingeek.com/2011/05/
http://thinkingeek.com/2011/04/
http://thinkingeek.com/2011/03/
http://thinkingeek.com/2011/02/
http://thinkingeek.com/2010/12/
http://thinkingeek.com/2010/11/
http://thinkingeek.com/2009/10/
http://thinkingeek.com/2009/07/
http://thinkingeek.com/2009/06/
http://thinkingeek.com/2009/03/
http://thinkingeek.com/2008/11/
http://thinkingeek.com/2008/07/
http://thinkingeek.com/2007/09/
http://thinkingeek.com/2007/07/
http://thinkingeek.com/2007/06/

17
18
19
20
21
22
23
24
25
26
27
28
29
30

 ldr r0, address_of_greeting /* r0 ← &address_of_greeting */
 /* First parameter of puts */

 bl puts /* Call to puts */
 /* lr ← address of next instruction */

 ldr r1, address_of_return /* r1 ← &address_of_return */
 ldr lr, [r1] /* lr ← *r1 */
 bx lr /* return from main */
address_of_greeting: .word greeting
address_of_return: .word return

/* External */
.global puts

We are going to call puts function. This function is defined in the C library and has the following

prototype int puts(const char*). It receives, as a first parameter, the address of a C-

string (this is, a sequence of bytes where no byte but the last is zero). When executed it outputs

that string to stdout (so it should appear by default to our terminal). Finally it returns the

number of bytes written.

We start by defining in the .data the label greeting in lines 4 and 5. This label will contain the

address of our greeting message. GNU as provides a convenient .asciz directive for that

purpose. This directive emits as bytes as needed to represent the string plus the final zero byte.

We could have used another directive .ascii as long as we explicitly added the final zero byte.

After the bytes of the greeting message, we make sure the next label will be 4 bytes aligned and

we define a return label in line 8. In that label we will keep the value of lr that we have in

main. As stated above, this is a requirement for a well behaved function: be able to get the

original value of lr upon entering. So we make some room for it.

The first two instructions, lines 14 an 15, of our main function keep the value of lr in that

return variable defined above. Then in line 17 we prepare the arguments for the call to puts.

We load the address of the greeting message into r0 register. This register will hold the first (the

only one actually) parameter of puts. Then in line 20 we call the function. Recall that bl will set

in lr the address of the instruction following it (this is the instruction in line 23). This is the

reason why we copied the value of lr in a variable in the beginning of the main function,

because it was going to be overwritten by bl.

Ok, puts runs and the message is printed on the stdout. Time to get the initial value of lr so

we can return successfully from main. Then we return.

Is our main function well behaved? Yes, it keeps and gets back lr to leave. It only modifies r0

and r1. We can assume that puts is well behaved as well, so everything should work fine. Plus

the bonus of seeing how many bytes have been written to the output.

$./hello01
Hello world
$ echo $?
12

Note that “Hello world” is just 11 bytes (the final zero is not counted as it just plays the role of a

finishing byte) but the program returns 12. This is because puts always adds a newline byte,

which accounts for that extra byte.

Real interaction!

Now we have the power of calling functions we can glue them together. Let’s call printf and scanf

to read a number and then print it back to the standard output.

1
2
3
4

/* -- printf01.s */
.data

/* First message */

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

.balign 4
message1: .asciz "Hey, type a number: "

/* Second message */
.balign 4
message2: .asciz "I read the number %d\n"

/* Format pattern for scanf */
.balign 4
scan_pattern : .asciz "%d"

/* Where scanf will store the number read */
.balign 4
number_read: .word 0

.balign 4
return: .word 0

.text

.global main
main:
 ldr r1, address_of_return /* r1 ← &address_of_return */
 str lr, [r1] /* *r1 ← lr */

 ldr r0, address_of_message1 /* r0 ← &message1 */
 bl printf /* call to printf */

 ldr r0, address_of_scan_pattern /* r0 ← &scan_pattern */
 ldr r1, address_of_number_read /* r1 ← &number_read */
 bl scanf /* call to scanf */

 ldr r0, address_of_message2 /* r0 ← &message2 */
 ldr r1, address_of_number_read /* r1 ← &number_read */
 ldr r1, [r1] /* r1 ← *r1 */
 bl printf /* call to printf */

 ldr r0, address_of_number_read /* r0 ← &number_read */
 ldr r0, [r0] /* r0 ← *r0 */

 ldr lr, address_of_return /* lr ← &address_of_return */
 ldr lr, [lr] /* lr ← *lr */
 bx lr /* return from main using lr */
address_of_message1 : .word message1
address_of_message2 : .word message2
address_of_scan_pattern : .word scan_pattern
address_of_number_read : .word number_read
address_of_return : .word return

/* External */
.global printf
.global scanf

In this example we will ask the user to type a number and then we will print it back. We also return

the number in the error code, so we can check twice if everything goes as expected. For the error

code check, make sure your number is lower than 255 (otherwise the error code will show only its

lower 8 bits).

$./printf01
Hey, type a number: 123↴
I read the number 123
$./printf01 ; echo $?
Hey, type a number: 124↴
I read the number 124
124

Our first function

Let’s define our first function. Lets extend the previous example but multiply the number by 5.

23
24
25
26
27
28

.balign 4
return2: .word 0

.text

/*

29
30
31
32
33
34
35
36
37
38
39
40

mult_by_5 function
*/
mult_by_5:
 ldr r1, address_of_return2 /* r1 ← &address_of_return */
 str lr, [r1] /* *r1 ← lr */

 add r0, r0, r0, LSL #2 /* r0 ← r0 + 4*r0 */

 ldr lr, address_of_return2 /* lr ← &address_of_return */
 ldr lr, [lr] /* lr ← *lr */
 bx lr /* return from main using lr */
address_of_return2 : .word return2

This function will need another “return” variable like the one main uses. But this is for the

sake of the example. Actually this function does not call another function. When this happens it

does not need to keep lr as no bl or blx instruction is going to modify it. If the function wanted

to use lr as the the r14 general purpose register, the process of keeping the value would still be

mandatory.

As you can see, once the function has computed the value, it is enough keeping it in r0. In this

case it was pretty easy and a single instruction was enough.

The whole example follows.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

/* -- printf02.s */
.data

/* First message */
.balign 4
message1: .asciz "Hey, type a number: "

/* Second message */
.balign 4
message2: .asciz "%d times 5 is %d\n"

/* Format pattern for scanf */
.balign 4
scan_pattern : .asciz "%d"

/* Where scanf will store the number read */
.balign 4
number_read: .word 0

.balign 4
return: .word 0

.balign 4
return2: .word 0

.text

/*
mult_by_5 function
*/
mult_by_5:
 ldr r1, address_of_return2 /* r1 ← &address_of_return */
 str lr, [r1] /* *r1 ← lr */

 add r0, r0, r0, LSL #2 /* r0 ← r0 + 4*r0 */

 ldr lr, address_of_return2 /* lr ← &address_of_return */
 ldr lr, [lr] /* lr ← *lr */
 bx lr /* return from main using lr */
address_of_return2 : .word return2

.global main
main:
 ldr r1, address_of_return /* r1 ← &address_of_return */
 str lr, [r1] /* *r1 ← lr */

 ldr r0, address_of_message1 /* r0 ← &message1 */
 bl printf /* call to printf */

 ldr r0, address_of_scan_pattern /* r0 ← &scan_pattern */
 ldr r1, address_of_number_read /* r1 ← &number_read */
 bl scanf /* call to scanf */

 ldr r0, address_of_number_read /* r0 ← &number_read */

ARM assembler in Raspberry Pi – Chapter 8ARM assembler in Raspberry Pi – Chapter 10

Reply

Website

Name *

Email *

arm, assembler, function, function call, functions, pi, raspberry

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

 ldr r0, [r0] /* r0 ← *r0 */
 bl mult_by_5

 mov r2, r0 /* r2 ← r0 */
 ldr r1, address_of_number_read /* r1 ← &number_read */
 ldr r1, [r1] /* r1 ← *r1 */
 ldr r0, address_of_message2 /* r0 ← &message2 */
 bl printf /* call to printf */

 ldr lr, address_of_return /* lr ← &address_of_return */
 ldr lr, [lr] /* lr ← *lr */
 bx lr /* return from main using lr */
address_of_message1 : .word message1
address_of_message2 : .word message2
address_of_scan_pattern : .word scan_pattern
address_of_number_read : .word number_read
address_of_return : .word return

/* External */
.global printf
.global scanf

I want you to notice lines 58 to 62. There we prepare the call to printf which receives three

parameters: the format and the two integers referenced in the format. We want the first integer

be the number entered by the user. The second one will be that same number multiplied by 5.

After the call to mult_by_5, r0 contains the number entered by the user multiplied by 5. We

want it to be the third parameter so we move it to r2. Then we load the value of the number

entered by the user into r1. Finally we load in r0 the address to the format message of printf.

Note that here the order of preparing the arguments of a call is nonrelevant as long as the values

are correct at the point of the call. We use the fact that we will have to overwrite r0, so for

convenience we first copy r0 to r2.

$./printf02
Hey, type a number: 1234↴
1234 times 5 is 6170

That’s all for today.

One thought on “ARM assembler in Raspberry Pi – Chapter 9”

ห .ร .ม . ด ้ว ย ภ าษ า Assembly บ น Raspberry Pi | Raspberry Pi Thailand says:

April 7, 2013 at 12:30 pm

[...] และอีกบทความครับ สอนละเอียดเลย http://thinkingeek.com/2013/02/02/arm-

assembler-raspberry-pi-chapter-9 [...]

Leave a Reply

Your email address will not be published. Required fields are marked *

http://thinkingeek.com/2013/01/27/arm-assembler-raspberry-pi-chapter-8/
http://thinkingeek.com/2013/02/07/arm-assembler-raspberry-pi-chapter-10/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/?replytocom=1142#respond
http://thinkingeek.com/tag/arm/
http://thinkingeek.com/tag/assembler/
http://thinkingeek.com/tag/function/
http://thinkingeek.com/tag/function-call/
http://thinkingeek.com/tag/functions/
http://thinkingeek.com/tag/pi/
http://thinkingeek.com/tag/raspberry/
http://www.addtoany.com/share_save#url=http%3A%2F%2Fthinkingeek.com%2F2013%2F02%2F02%2Farm-assembler-raspberry-pi-chapter-9%2F&title=ARM%20assembler%20in%20Raspberry%20Pi%20%E2%80%93%20Chapter%209&description=
http://www.raspberrypithai.com/2013/04/07/%e0%b8%ab%e0%b8%a3%e0%b8%a1-%e0%b8%94%e0%b9%89%e0%b8%a7%e0%b8%a2%e0%b8%a0%e0%b8%b2%e0%b8%a9%e0%b8%b2-assembly-%e0%b8%9a%e0%b8%99-raspberry-pi/
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9/#comment-1142
http://thinkingeek.com/2013/02/02/arm-assembler-raspberry-pi-chapter-9

