

Simulation of Biped Walking

using Genetic Algorithms

2002 Honours Dissertation

Adrian Boeing

Supervisor: Assoc. Prof. Thomas Bräunl

 ii

Adrian Boeing

15 Kinkuna Way

City Beach WA 6015

November 4, 2002

The Dean

Faculty of Engineering, Computing and Mathematics

The University of Western Australia

Nedlands, WA 6009

Dear Sir,

Re: Submission of Honours Thesis

It is my great pleasure to present to you this thesis, entitled “Simulation of Biped

Walking using Genetic Algorithms”, in partial fulfillment for the Bachelor of

Electrical and Electronic Engineering degree with Honours at The University of

Western Australia.

Yours Sincerely,

Adrian Boeing

 iii

Abstract

Designing a control system for legged locomotion is a complex process.

Human engineers can only produce and evaluate several configurations, although

there may be numerous competing designs that should be investigated. Automating

design of the control system allows the evaluation of thousands of competing designs,

without requiring prior knowledge of the robot’s walking mechanisms.

Development of an automated approach requires the implementation of a control

system, a test platform, and an adaptive method for automated construction of the

controller. Evolutionary algorithms provide a powerful method for automated

problem solving. As with previous approaches, a genetic algorithm was successfully

applied to the construction of locomotion controllers.

Two control systems were presented and evolved. Both control systems successfully

generated locomotion controllers for bipedal robots. A detailed investigation of the

spline control system was performed, and the extensibility of the controller

investigated. The spline controller was applied to multiple robots with widely varying

morphology and successfully demonstrated dynamic control for a number of legged

robots.

 iv

Acknowledgements

First and foremost I would like to thank my supervisor, Associate Professor

Thomas Bräunl for not only providing me with such an interesting project, but also

for all the opportunities he has presented. A special thanks to Daniel, who has

provided a great deal of advice and assistance on both the code and the thesis. Thanks

to Estelle for all her kindness, help, and tolerance over the years and especially during

the writing of the thesis. Steve, for always believing in me, and all the encouragement

and ideas he comes up with. Jason for his programming help and friendship. Kesh for

her support and affection, and my family for all the things they have done for me.

Finally, I would like to thank all my other friends for their assistance and friendship

during the year.

 v

Contents

Abstract .. iii

Acknowledgements...iv

Contents ...v

List of Figures .. viii

List of Tables ..ix

1. Introduction..1

1.1 Motivation..1

1.2 Objectives ..2

1.3 Applications ...3

1.4 Thesis Outline ..4

2. Theory ..5

2.1 Walking..5

2.2 Evolution..5

2.2.1 Genetic Algorithm ..5

2.2.2 Fitness Functions ..6

2.2.3 Selection Schemes ..7

2.2.4 Operators...8

2.2.5 Encoding ...9

2.2.6 Staged Evolution...9

2.3 Control Systems ...10

2.3.1 Neural Networks ...10

2.3.2 Splines...11

2.3.3 PID Controllers ...13

2.4 Sensors ...14

2.4.1 Inclinometer ..14

2.4.2 Positioning ..14

3. Literature Review...15

3.1 Walking and Legged Robots..15

3.2 Genetic Algorithms..15

3.2.1 Evolving Controllers...16

 vi

3.2.2 Fitness Functions ..16

3.2.3 Staged Evolution...18

3.3 Control Systems ...18

3.3.1 Spline Controllers ...19

3.3.2 Neural Control ..19

4. Design ..22

4.1 Mechanical Simulator ..22

4.1.1 Available Simulators...22

4.1.2 Robot Structure ...24

4.1.3 Modeling ...26

4.1.4 Simulation Parameters ..27

4.1.5 Simulating Sensors..28

4.2 Genetic Algorithm ...29

4.2.1 Operators...29

4.2.2 Selection Schemes ..29

4.2.3 Fitness Functions ..30

4.2.4 Randomness ..31

4.2.5 Tracking ..32

4.3 Control Systems ...33

4.3.1 Hermite Spline Control ...33

4.3.2 Spline Controller Encoding...36

4.3.3 Neural Controller ..38

4.3.4 PID Control...40

4.4 Parallel Computation ...40

4.4.1 Server ..41

4.4.2 Clients ...41

4.5 System Summary ...42

5. Investigations ...44

5.1 Genetic Algorithm ...44

5.1.1 Method ..44

5.1.2 Results and Discussion ...46

5.1.3 Conclusion ..48

5.2 Evolving Gaits with Splines...49

5.2.1 Spline Controller...50

 vii

5.2.2 Spline and PID Control...50

5.2.3 Spline Control with Integrated Feedback ...51

5.2.4 Non Bipedal Robots..54

5.2.5 Conclusion ..55

5.3 Neural Controller ...55

5.3.1 Method ..56

5.3.2 Results and Discussion ...56

5.3.3 Conclusion ..58

6. Conclusions..59

6.1 Summary of Contributions...59

6.2 Future Outlook...60

References..61

Appendix 1. Evolved Gait..67

Appendix 2. Sample Robot Model...70

Appendix 3. Software Overview..74

 viii

List of Figures

Figure 1 - The crossover operator..8

Figure 2 – The mutate operator..8

Figure 3 – Sigmoid Function ...11

Figure 4 – Dynamechs Link Structure ...24

Figure 5 – Modified Denavit-Hartenberg Parameters and Link coordinate Assignment

..25

Figure 6 – Dynamechs object format construction utility ...27

Figure 7 – Simple spline controller..33

Figure 8 – Generic extended spline controller...35

Figure 9 – Output Voltage and Spike for PTNRN...38

Figure 10 – Oscillator Output ..39

Figure 11 – System Overview..42

Figure 12 – Change in required simulation time ...46

Figure 13 – Average increase in fitness per generation...47

Figure 14 – Biped Robot Models...49

Figure 15 – Early Biped Gait ...50

Figure 16 – Sustained Robot Walk ..51

Figure 17 – Jumping Robot..51

Figure 18 – Robot walking over terrain...52

Figure 19 – Extended Spline Controller ..52

Figure 20 – Fitness vs Generation for Extended spline controller...............................54

Figure 21 – Snake Gait ..54

Figure 22 – Tripod Gait ...55

Figure 23 – Gait produced from Neural Controller ...57

Figure 24 – Fitness vs Generation for Neural Controller ..57

 ix

List of Tables

Table 1 – Table of Dynamechs Physical Constants...28

Table 2 – Increasing chromosome complexity ..37

Table 3 – Evolved Neuron Parameters and Encodings..39

Table 4 – Genetic Algorithm Parameters...45

Table 5 – Relative chromosome generation success rate...48

 1

1. Introduction

1.1 Motivation

Legged robots exhibit a number of advantages for locomotion [1]. The

mobility offered by legged vehicles is far greater than that of wheeled or tracked

vehicles, as they are not limited to paved terrain. The increased mobility offered

allows for a far larger range of applications to legged vehicles. Another incentive for

exploring the use of legs for locomotion is that it provides an insight to the systems

responsible for human and animal locomotion. Humans are capable of complex

movements whilst maintaining orientation, balance and speed. Robots that could

mimic human movements could seamlessly integrate with the human world, enlarging

the number of possible applications for legged vehicles. This makes the study of

bipedal locomotion particularly attractive.

Although there are a multitude of existing locomotion control techniques and well

described design processes, the automated generation of these controllers for robots

provides significant advantages. Often the design process is quite complex, time

consuming to perform, and requires the control system to be completely redesigned

for small alterations to the robot [2]. Furthermore, humans often have difficulty in

understanding which sensors to incorporate to provide the best possible feedback to

the robot. Designers are often biased towards feedback sensors that are present in

humans, such as vision and touch. These senses are not necessarily the best sensors

for the desired application.

Automated evolution of the locomotion controller frees the robot designer from the

controller design process, removing possible human bias. The resulting control

systems are more flexible, and the evolution enables the controller to utilize sensory

inputs that would normally be disregarded by human designers. The resulting

controllers are more adaptive to the robot’s environment. They are also more robust,

flexible, and usually provide superior performance to human designed controllers [2].

 2

1.2 Objectives

There were three major objectives to this project. Firstly, to create a software

system which could simulate robot locomotion. Secondly, to evolve the locomotion

control system and investigate various aspects of the evolutionary and control

strategies. Finally, to optimize the performance of the system with respect to the

evolution time required to generate the desired gait.

The construction of the software simulation system involved:

• The construction of a control system to generate the control signals required to

drive the actuators of a robot.

• A mechanical simulator for simulating the walking patterns generated from the

control system.

• Implementing a set of sensors in the mechanical simulator for providing feedback

to the control system.

• Creation of a set of tools to simplify robot modeling, and to provide a front end to

the software to improve ease of use.

The construction of the evolutionary software involved:

• Implementing a genetic algorithm for evolving the control parameters

• Creating a system to extract information from the genetic algorithm, allowing the

investigation of the performance and effects of different genetic operators and

selection schemes.

• Encoding the control parameters into a format evolvable by the genetic algorithm

Additional objectives were:

• To incorporate feedback into the controllers to increase the robustness of the gait,

allowing the robot to maintain its desired path despite perturbations.

• Extending the control system to allow the robot to maneuver over irregular terrain.

• Investigating various aspects of the genetic algorithm that impacted on its

performance.

• Abstracting the system from robot morphology, enabling control of non-legged

robots.

 3

1.3 Applications

There are many practical application areas for legged robots. Progress to date

has been limited to entertainment robots [2], exploration robots [3], and research

robots [4,5,6,7]. It has been generally accepted that successful robot designs will need

to be suitable to human environments [8]. Bipedal robots would have the distinctive

ability to integrate with society and maneuver within the domestic environment. This

would allow for bipedal robots to have uses in almost all areas, from household tasks

to office and factory work.

Evolutionary locomotion systems for legged vehicles have already been employed in

the development of existing entertainment robots [2] and in the special effects

industry. Realistic modeling of human and animal locomotion puts a large strain on

animators using traditional animation techniques. Evolving dynamically simulated

gaits with genetic algorithms generates realistic and visually pleasing results [9]. Sony

[2] utilized evolutionary strategies to optimize the performance of their gaits for the

AIBO robot, and utilized similar systems to overcome manufacturing imperfections.

Further extensions to such systems would allow the entire control system to be

evolved based on the robot’s designs. This would significantly reduce the

development time to construct robots, and simplify the design process.

 4

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter Two introduces

the theory behind genetic algorithms, various control systems, and provides a basic

introduction to walking and sensors. Chapter Three reviews background literature and

presents some of the results of relevant previous research in control, robotics,

computer graphics, neuroscience and evolutionary algorithms. Chapter Four provides

an overview of the architecture and discusses the implementation details of the

system. Investigations of the system and its results are presented in Chapter Five. An

overall summary, as well as a future outlook is given in Chapter Six. The Appendix

describes the software system developed for conducting the investigations, as well as

example robot configuration files, and a fully illustrated gait sequence.

 5

2. Theory

2.1 Walking

 Human and animal gaits have been extensively studied for a lengthy period of

time, starting in the late 18th century with researchers such as Eadweard Muybridge

[10]. As early walking robots were constructed, a system for balancing the robots was

required. Statically balanced robots maintain balance by ensuring the center of mass is

within the supporting leg base area. As a result, statically balanced robots feature a

small footstep, and slow speed. With further research into walking robots, dynamic

walking was realized [5]. During dynamic walking, the center of gravity may lie

outside the supporting leg base area during some periods of the walk cycle. The

removal of the balance constraint allows faster walking speeds to be achieved [5].

2.2 Evolution

Evolutionary algorithms are a set of search and optimization algorithms,

which make use of some of the principles of biological evolution [9]. These types of

algorithms typically specify what is to be done, rather than how the task should be

accomplished [11]. Although evolutionary algorithms are only a basic approximation

to the biological evolutionary process in reality, they have been proven to provide a

powerful means of problem solving [12,13,14,15,4,16].

2.2.1 Genetic Algorithm

A common implementation of an evolutionary algorithm is the Genetic

Algorithm (GA) [11]. As with most evolutionary algorithms, the Genetic Algorithm is

based on Darwin’s theory of natural selection, ensuring the survival of the fittest. The

genetic algorithm operates on a set of encoded variables representing the parameters

for the potential solution to a problem. The parameters (or genes) are combined

together to form a string of values, referred to as a chromosome [17]. Each of these

possible solutions are then assigned a fitness value according to how well it solves the

problem. The better solutions are then selected to “reproduce” with other solutions,

 6

generating a new set of chromosomes which have inherited features from the

chromosomes they were created from. The least fit (worst solutions) are less likely to

be selected for reproduction, and thus eventually are removed from the set of

chromosomes on which the algorithm operates.

The basic methodology for the genetic algorithm is presented below:

1. Randomly initialize a population of chromosomes

2. While the terminating criteria has not been satisfied

a) Evaluate the fitness of each chromosome

b) Remove the lower fitness individuals

c) Generate new individuals, determined by a certain selection scheme,

utilizing selected operations.

Each iteration of these steps creates a new population of chromosomes. The total set

of chromosomes at one iteration of the algorithm is known as a generation. As the

algorithm progresses, it searches through the solution space, refining the solutions to

find one which will fulfill (or come as close as possible to fulfilling) the desired

criteria, as described by the fitness function.

2.2.2 Fitness Functions

Each problem to be solved requires a unique fitness function describing the

problem. Given a particular chromosome a fitness function must return a numerical

value indicating the appropriateness of a solution with respect to the overall goal [18].

For some applications, such as function optimization problems, the fitness function

will simply return the value of the function itself. However, for many applications

there is no straightforward performance measurement of the goal. Thus, the fitness

function must be expressed as a combination of the desired factors.

 7

2.2.3 Selection Schemes

In the natural world the organisms that reproduce the most before dying will

have the greatest influence on the next generation. In order to simulate this effect in

the genetic algorithm a selection scheme is employed. The selection scheme

determines which individuals of a given population will contribute to form the new

individuals for the next generation. Tournament selection, Random selection and

Roulette Wheel selection are three commonly used selection schemes.

Tournament selection operates by selecting two chromosomes from the available

pool, and comparing their fitness values when they are evaluated against each other.

The better of the two is then permitted to reproduce. Thus, the fitness function chosen

for this scheme only needs to discriminate between the two entities. In roulette wheel

selection (sometimes referred to as fitness proportionate selection [19]) the chance for

a chromosome to reproduce is proportional to the fitness of the entity. Thus, if the

fitness value returned for one chromosome is twice as high as the fitness value for

another, then it is twice as likely to reproduce. However its reproduction is not

guaranteed as in tournament selection.

Random selection randomly selects the parents of a new chromosome from the

existing pool. Any returned fitness value below a set operating point is instantly

removed from the population. Although it would appear that this selection mechanism

would not produce beneficial results, this selection mechanism can be employed to

introduce randomness into a population that has begun to converge early than desired.

Although genetic algorithms will converge to a solution if all chromosomes

reproduce, it has been shown that by duplicating unchanged copies of the

chromosomes future generations will generally produce a significant increase in the

convergence rate towards the optimal solution.

 8

2.2.4 Operators

The operators comprise the method by which one or more chromosomes are

combined to produce a new chromosome. Traditional schemes utilize only two

operators: Mutate, and Crossover [17]. Crossover takes two individuals and divides

the string into two portions at a randomly selected point inside the encoded bit string.

This produces two “head” segments and two “tail” segments. The two tail segments

for the chromosomes are then interchanged, resulting in two new chromosomes,

where the bit string preceding the selected bit position belongs to one parent, and the

remaining portion belongs to the other parent. This process is illustrated in Figure 1.

The mutate operator (Figure 2) randomly selects one bit in the chromosome string,

and inverts the value of the bit. Historically, the crossover operator has been viewed

as the more important of the two techniques for exploring the solution space, however

without the mutate operator portions of the solution space may not be searched, as the

initial chromosomes may not contain all possible bit values [17].

Figure 1 - The crossover operator

Figure 2 – The mutate operator

 9

There are a number of available extensions to the set of traditional operators. The two

point crossover operates similarly to the single point crossover described previously,

except that the chromosomes are now split in two positions rather than just one [12].

The mutate operator can also be enhanced to operate on portions of the chromosome

larger than just one bit, increasing the randomness that can be added to a search in one

operation. Further extensions rely on modifying the bit string under the assumption

that portions of the bit string represent non-binary values (such as 8 bit integer values,

or 32 bit floating point values). Two commonly used operators that rely on this

interpretation of the chromosome are the Non-Binary Average, and the Non-Binary

Creep operators [12]. Non-Binary Average interprets the chromosome as a string of

higher cardinality symbols and calculates the arithmetic average of the two

chromosomes to produce the new individual. Similarly Non-Binary Creep treats the

chromosomes as strings of higher cardinality symbols and increments or decrements

the values of these strings by a small randomly generated amount [12].

2.2.5 Encoding

The encoding method chosen to transform the controller parameters to a

chromosome can have a large effect on the performance of the genetic algorithm. A

compact encoding allows the genetic algorithm to perform efficiently. There are two

common encoding techniques applied to the generation of a chromosome [20]. Direct

encoding explicitly specifies every parameter within the chromosome, whereas

indirect encoding uses a set of rules to reconstruct the complete parameter space.

Direct encoding has the advantage that it is a simple and powerful representation,

however the resulting chromosome can be quite large. Indirect encoding is far more

compact, but it often represents a highly restrictive set of the original structures.

2.2.6 Staged Evolution

 A number of possibilities exist to enhance the performance of a genetic

algorithm. Staged evolution is based on the concept of behavioral memory, and

increases the convergence rate by introducing a staged set of manageable challenges

[21]. Initially limiting the search to a subset of the full solution space enables an

approximate solution to be determined. Incrementally increasing the complexity of

 10

the problem will increase the solution space, providing the possibility of increased

performance as further refinements of the solution are possible. Applying this strategy

to a particular problem task requires that the problem is capable of being divided into

smaller sub-tasks that can be sequentially solved.

2.3 Control Systems

There are a number of control systems that are applicable to robot locomotion.

Possible control systems range from simple oscillators [15] to neural networks [2] to

simple assembly programs [22]. The simplest oscillators consist of a set of sinusoidal

function generators whose outputs are combined to generate the control signal for an

actuator. These systems can represent a range of outputs by altering the phase and

amplitude of the sinusoids [15]. Such systems are generally incapable of expressing

the complexity required for sustained locomotion [9]. Thus, more sophisticated forms

of control are desirable.

2.3.1 Neural Networks

Neural Networks are a popular form of controller for robot locomotion

[13,14,23,24,4,21]. These controllers complement the biological systems believed to

be responsible for walking movement in humans and other animals. This form of

control allows the application of the knowledge gained by neuroscientists studying

rhythmical controllers in animals [23].

Neural Networks consist of a set of interconnected processing element nodes, whose

functionality is based on the animal neuron [25]. Neurons process information by

summing the signals that appear at the node’s inputs. Each of the input signals is

multiplied by a weight to simulate differing input strengths. The weighted sum is

passed through an activation function, which will produce an output if the

transformed sum passes a calculated threshold level [25]. Traditionally, artificial

neurons have been idealized for the sake of mathematical tractability [14]. One of the

simplest, and most commonly implemented neuron models, is the sigmoidal neuron

[13]. This neuron is a simple extension of the binary neuron model to express a

 11

continuous softened step-function. The equations governing the output of the

sigmoidal neuron are given below.

jSn
j jiwiy ∑ == 1

iyi e
S −+

=
1

1

where: jiw is the weight connecting neuron j to neuron i, and

 iy is the internal state of neuron i

(2.1)

(2.2)

Equation 1- Sigmoid Neural Model

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3 – Sigmoid Function

There are many extensions possible to this simple model, and many have been applied

to the area of robotic locomotion.

2.3.2 Splines

 Splines are piecewise polynomial functions expressed by a set of control

points [26]. There are many different forms of splines, each with their own attributes.

There are two desirable properties for the splines to posses.

• Continuity, so that the generated control signal translates to smooth velocity

and acceleration changes.

• Locality of the control points, to reduce the influence of alterations of one

control point to the overall shape of the spline.

 12

Two of the most commonly used splines in computer graphics [26] have also been

applied to robotic control [27]. The B-spline is defined by Equation 2. The B-spline

features two important properties, locality and continuity. Each segment of the B-

spline curve is dependent on only a limited number of the neighbouring control

points. Thus a change in the position of a distant control point will not alter the shape

of the entire spline [26,27]. The continuity of the spline is determined by the order of

the polynomial functions utilized. A B-spline of order K is also generally CK-2

continuous.

A B-spline function with four control points s0,…,s3 parameterized by t=0,…,1, is

expressed in Equation 2.

)()()()()(33221100 tbstbstbstbstf +++=

where

6
)(

6
1

226
)(

3
2

2
)(

6
1

226
)(

3

3

23

2

2
3

1

23

0

ttb

ttttb

tttb

ttttb

−=

+++−=

+−=

+−+−=

(2.3)

(2.4)

Equation 2 – The B-Spline

The Hermite spline is expressed by Equation 3. Unlike the B-spline, the curve

generated from the spline passes through the control points that define the spline.

Thus, a set of predetermined points can be smoothly interpolated by simply setting the

predetermined points as the control points for the Hermite spline. Like the B-spline,

the curve generated from the Hermite spline is dependent only on the neighboring

control points. The Hermite spline can also be constrained such as to achieve CK-2

continuity. However, the disadvantage of the Hermite spline is that the control point

tangent values must be explicitly specified.

 13

The function used to interpolate the control points, given starting point p1, ending

point p2, tangent values t1 and t2, and interpolation parameter s, is shown below:

24132211)(ththphphsf +++=

where

h1=2s3-3s2+1

h2=-2s3+3s2

h3=s3-2s2+s

h4=s3-s2

 10 ≤≤ s

(2.5)

(2.6)

Equation 3 – Hermite Spline

2.3.3 PID Controllers

Proportional-Integral-Differential (PID) controllers provide robust

performance under a wide range of operating conditions [28]. Only three parameters

need to be determined to construct a PID controller, the proportional gain, integral

gain and derivative gain [29]. A proportional controller reduces the time required for a

response, however the response value will never completely settle. Integral control

will eliminate these oscillations at the expense of increased response time. Derivative

control increases the systems stability, thus reducing the overshoot, and may improve

the transient response. The transfer function for a PID controller is given in Equation

4.

sK
s

KKsg ⋅++= 321)(
(2.7)

Equation 4 – PID Controller Transfer Function

 14

2.4 Sensors

To enable feedback within a control system, some form of sensory input is

required to provide the desired information. There are a number of sensors that

provide various types of information about the current state of a system.

2.4.1 Inclinometer

Inclinometers return an object’s angle of inclination about a specified axis.

These sensors are used to monitor a robot’s movement to obtain information about the

slope of the terrain, or to provide corrective feedback. Inclinometers contain a

conductive liquid that changes the resistance between two electrodes when tilted. The

resistance value returned from the inclinometer is proportional to the orientation

angle.

2.4.2 Positioning

Distance sensors determine the distance between an object and the sensor.

There are numerous forms of distance sensors, such as vision based methods, sonar,

radar, and infrared [30]. Most distance sensors operate by emitting a signal (such as

an ultrasonic or infrared pulse) and detect the time or angle of the signal reflected

from the object. Combining a set of distance sensors with compass sensors allows the

robot’s position and orientation to be accurately determined, provided the robot is

within a controlled environment.

 15

3. Literature Review

3.1 Walking and Legged Robots

 Interest in the study of walking dates back millennia, but scientific research

first began in the late 18th century. The two most significant early studies of gaits

were by Marey and Muybridge [14]. Marey [31] recorded stepping patterns from the

feet of subjects through the use of pneumatic recording devices. Muybridge [5]

investigated animal gaits through the use of high-speed photography. Previous to this,

attempts had been made to mimic human life with complicated systems of levers and

bellows [14].

The earliest walking machines used gears to produce fixed patterns of leg motion for

walking. In 1968 General Electric developed a more agile walking truck capable of

climbing over large obstacles [32]. This walking truck however still relied on a human

as the controller. The earliest self-contained computer controlled walking robot was a

hexapod developed by Sutherland and Raibert in 1986 [33]. By this time a number of

control algorithms for legged locomotion had been proposed.

3.2 Genetic Algorithms

Genetic algorithms were first implemented on a computer by John Holland

[11]. Investigations into further extensions of the basic algorithm were examined by

several researchers [12]. DeJong [34] investigated the multi-point crossover operator,

and concluded that the two-point crossover provided benefits, however any higher

order crossover provided little improvement. Bramlette [35] proposed interpreting

chromosome symbols as integer values. Davis [36] indicated that many problem

parameters are often numeric, and thus interpreting the chromosome in its original

numeric format can be advantages. This allows the definition of more meaningful

crossover and mutate like operators. As a result, the non-binary average operator

emulates the crossover operator, and the non-binary creep imitates the mutate

 16

operator. Koza [37] applied evolutionary techniques to construct lisp programs, and

outlined the fundamentals of the genetic programming approach.

3.2.1 Evolving Controllers

Genetic algorithms were applied to the evolution of neural controllers for

robot locomotion by numerous researchers [13,14,15,4,16]. Lewis et al. [4]

successfully generated locomotion patterns for a hexapod robot using a simple

traditional genetic algorithm with one point crossover and mutate. Isjpreet [16]

evolved a controller for a simulated salamander using an enhanced genetic algorithm.

The large number of experiments in this area clearly indicates that genetic algorithms

are capable of evolving neural controllers that describe legged robot locomotion [13].

The genetic programming approach was shown to successfully generate locomotion

patterns for various control strategies. Banzhaf et al. [38] demonstrated the pure

genetic programming approach to develop assembly programs for robot control. The

system was then expanded to control a hexapod robot [27] using a B-Spline based

approach. Lewis also applied genetic programming to his neural controller [21]. This

demonstrated that both the genetic programming approach and the genetic algorithm

approach should both be capable of evolving adequate control systems for legged

locomotion [21,16].

Parker et al. [6] explored the use of cyclic genetic algorithms for locomotion control

of a small hexapod robot. The system demonstrated that the cyclic nature needed to

generate the oscillatory motions necessary for legged robot locomotion could be

abstracted from the control system and transferred and encoded into the genetic

algorithms chromosomes.

3.2.2 Fitness Functions

Ijspeert and Kodajabachian developed a set of fitness functions for evolving

swimming gaits for a simulated lamprey [39]. Their function was aimed at developing

swimming gaits that resulted in high swimming speeds, and was able to smoothly

 17

alter its swimming speed and change directions at any time. The fitness function

Ijspeert et al utilized is given in Equation 5.

]0.1,)05.0[(____ 4∈⋅⋅⋅= turningfitramgespeedfiteedfit_max_spcontorsionfitfitness (3.1)

Equation 5 – Ijspeert’s Fitness Function

This fitness function rewards four factors: contorsion (around the center of the

lamprey from head to tail), the maximum speed achievable, the range of speeds

capable, and the ability to alter the lampreys direction.

Reeve [14] experimented with various legged robots and investigated a number of

fitness functions. Although Reeve reports that the Speed5 fitness function (average

speed of the walker over five seconds) performs adequately, improvement on the

performance of the algorithm can be achieved through the use of more complex

functions. Reeve proposed five different extended fitness functions:

• FND – (forward not down) The average speed the walker achieves minus the

average distance of the center of gravity below the starting height.

• DFND – (decay FND) Similar to the FND function, except it uses an

exponential decay of the fitness over the simulation period.

• DFNDF – (DFND or fall) As above, except a penalty is added for any walker

whose body touches the ground.

• DFNDFA – (DFNDF active) This function incorporates features of the actual

control system into its evaluation of the gait. The function evaluates the

individual neurons and ensures they are active, and are not stuck at an on or

off value.

• DFNDFO – (DFNDFA oscillator) As above, with the added constraints that

both the neurons and legs oscillate.

Ziegler et al [27] utilized fitness functions which compared the generated trajectory of

a gait to the desired path. The trajectory was specified to include an initial

acceleration, then a straight walk along the desired path, and a deceleration. The

square difference of the actual walk from the desired was then summed over the

duration of the gait and returned as the fitness value. In order to optimize the

performance of the evolution algorithm, Ziegler et al introduced premature

 18

termination conditions to the fitness function. The premature termination condition

ensured that the initial trajectory was within a valid range of the desired trajectory.

Thus, if the desired trajectory were forwards movements, then any gait that produced

backwards movement would be terminated.

3.2.3 Staged Evolution

De Garis first introduced the concept of behavioral memory to robotics [40].

De Garis proposed that the evolution of a controller is dependent on the starting

conditions of the search, thus preliminary controllers could be evolved using less

constrained fitness functions. Lewis et al. extended this concept and introduced staged

evolution theory. Staged evolution implies that sub-controllers can be evolved which

can then be combined to create the overall controller. Lewis et al demonstrated the

successful application of this technique to the evolution of walking patterns for a six-

legged insect like robot using a neural controller. The evolution was performed over

two phases. Initially, individual oscillators were evolved. These then combined to

create the overall neural network that controlled the robot’s walking patterns. During

the second phase of evolution, the weightings between individual oscillators within

the network were evolved to produce an optimized controller.

3.3 Control Systems

A large number of control systems have been applied to legged robot

locomotion. Simple sinusoidal oscillatory systems have been commonly used in

computer graphics applications, due to their ease of evolution [15]. However Arnold

indicates that these systems are insufficient for describing satisfactory legged motion

in realistic dynamic simulations, or on real robot hardware [9]. Arnold investigated

spectral synthesis techniques [9], and generated gaits for a range of virtual creatures.

The system provided satisfactory performance in the computer graphics domain and

generated lifelike movements. Incorporating sensory information into the spectral

system proved to be difficult, and thus other methods for robot control need to be

considered for practical application.

 19

3.3.1 Spline Controllers

Machine code control architectures for robot control were explored by

Banzhaf et al [38]. However, when this architecture was applied to robot locomotion

the evolution periods required to generate the controller were too lengthy for the

system to be of practical use. Furthermore, the control signals generated began to

approximate spline behavior. A B-Spline approach was then explored and

successfully produced a controller that described bipedal locomotion for both

simulated and real robots. Zhang et al. [41] have been investigating fuzzy control

systems for numerous control applications, and have determined that B-Spline hyper-

surfaces can adequately describe many control applications. This indicates that spline

based control systems can be seamlessly integrated with other control methods, and

may also provide significant performance gains from doing so. Banzhaf et al. [38]

indicates that this form of control is relatively unexplored for locomotion, and future

work needs to be completed in order to determine the efficiency of the spline based

control architecture.

3.3.2 Neural Control

Neural networks have traditionally been the controller of choice for automated

gait generation. The investigation of the biological mechanisms behind animal

locomotion has been the driving force behind advances in neural control in legged

robot locomotion. Although Sigmoid neurons are capable of producing oscillatory

output, the number of neurons needed to achieve this negates any of the benefits

obtained by using such a simple model [13]. MacGregor proposed a neuron model

based on a simplified version of Hodgkin and Huxley’s equations [42]. The model

was developed to provide repetitive neuron firing based from three first order

differential equations.

 20

GK

thresh

m

mem

mmm

T
SpikeampGKGK

dt
dGK

 Thif E
Thif E

Spike

T
VldampThreshoThTh

dt
dTh

T
VEKGKCurrentV

dt
dV

⋅+−
=





≥
<

=

⋅+−−
=

−⋅++−
=

 1
 0

)(

))((

0

where: E,Th,GK and Spike are the output state variables,

 Current is the input function, and

 EK, Th0, Tmem, ampGK, and ampThreshold are constants

(3.2)

(3.3)

(3.4)

(3.5)

Equation 6 – MacGregor’s Repetitive Firing Model

Beer [24] devised continues time recurrent neural networks to overcome the

difficulties in generating the oscillatory output necessary for legged locomotion. The

equations governing Beer’s neuron model is described below (refer to Equation 1 for

previous parameter definitions).

j

n

j
jii

i
i Swy

dt
dy ∑

=

+−=
1

τ

)(1
1

ii yi e
S −+

= θ

where: iθ is a bias term, and

 iτ is the adaptation rate of the neuron

(3.6)

(3.7)

Equation 7 – Beer’s Neuron Model

Although this neuron model is only a first order differential equation, it was still

shown to produce complex oscillatory controΦl signals when interconnected in a

network [14]. Beer demonstrated that the model was capable of producing control

signals required for a statically stable walking robot. Taga [43] extended this model to

two coupled first order differential equations. The extended model proved to be

capable of generating a larger variety of control signals and oscillators. Taga’s model

was used to control a dynamically stable bipedal robot. Wallen et al [23] extended this

concept further to produce a third order model given in Equation 8.

 21

iiii

ii
i

i

j
j

jii
iD

i

j
j

jii
iD

i

iiieS

S
dt

d

Sw
dt

d

Sw
dt

d

θµξ

θ
θ

τ

ξ
ξ

τ

ξ
ξ

τ

ξθ

ψ

ψ

−−−=

−=

+−=

+−=

−Γ−

∧

∈

−
−

∈

+
+

+

−

+

∑

∑

)(1,0max(

where: +
iξ and iθ are the internal state of neuron i, and

 ±ψ is the set of all excitory (or inhibitory) inputs, and

 iΓ and iµ are bias terms

(3.8)

(3.9)

(3.10)

(3.11)

Equation 8 – Wallen’s Neuron Model

This model was deduced from the analysis of the neurons found in the lamprey spinal

cord, and was successfully used to simulate the neural control of swimming lampreys.

Krueger [13] successfully utilized his neural model to generate walking gaits for

simulated quadrupeds.

Some of the problems encountered during the evolution of neural models was the

difficulty in evolving acceptable oscillators, and the methods in which to combine the

oscillators to produce the desired control signals. In some cases the neural oscillators

needed to be designed by hand [4], and only the combined network of oscillators

could be evolved. Currently, the optimal method for organizing the controlling neural

network is unknown, and thus a fully interconnected network has been used [13]. This

significantly increases the complexity of the system that needs to be evolved, and

leads to undesirably long evolution periods.

 22

4. Design

As with previous approaches [27,14,13,9], the proposed system consists of

three major sub systems:

• A genetic algorithm to evolve the parameters for the control system.

• The control system itself, to generate the signals required to produce a

walking pattern

• A mechanical simulator for executing the generated control signals and

evaluating the resulting gait.

4.1 Mechanical Simulator

The physical simulator is one of the most crucial components of the overall

system, as the practical usefulness of the generated gait is limited by the capabilities

of the simulator. Although a number of control systems can only describe a limited

subset of the required control signals for legged locomotion [15], the control system

can always be expanded [9], or altered to a form which is capable of more complex

control [13]. Thus, the limiting factor on testing the gait is the accuracy and

capabilities of the simulator itself.

4.1.1 Available Simulators

There were four simulators under consideration for use during the course of

the project.

MathsEngine[44] produces a commercial dynamic simulator design for use in

computer games. It boasts the best performance of all publicly available simulators

[45]. The system has been previously used to generate gaits for simulated robots [46],

but has never been used in a capacity that indicates its practicality when transferred to

a real robot. The simulator only has first order accuracy making it inappropriate for

practical robotics use.

 23

Darwin2k [47] is a simulator produced by Chris Ledgers PhD research [19]. The

simulator was designed with realistic simulations in mind. The system has since been

used for some robot design, however there have been no examples of control

programs developed on the simulator which have been immediately transferable to an

identical hardware system. To date, the software is still unstable and largely

incomplete.

AREO [48] is a free simulator designed for simulations for computer graphics

applications. It is a relatively fast simulator with reasonable accuracy [45]. Banzhaf et

al [27] used the simulator as a base for the evolution of a controller for both simulated

and real legged robots. The simulator was considerably modified to enable its use in

this form [27].

Dynamechs [49] is the simulator that is the result of McMillans PhD work [50]. The

system was developed for simulating an underwater robot constructed by the US

Naval Postgraduate School [49]. The simulator provides a number of configurable

integration methods enabling highly accurate and fast dynamic simulations [45]. The

simulator however does not provide full collision simulation.

The desired characteristics for the simulator were:

• Proven, tested, realistic simulations

• Accurate and fast simulation

• Portable (between both Linux and Windows)

• Free, and Open Source

• Ability to be easily extended to simulate any sensors, actuators or joints

required.

The only proven system that was portable across both the Linux and Microsoft

Windows platforms, and was open source was Dynamechs. Hence the Dynamechs

simulation library was used in this project, despite its limited collision simulation

capabilities.

 24

4.1.2 Robot Structure

The robot structure is described within the Dynamechs v4.0 format [51]. A

Dynamechs robot is expressed in terms of its links, with separate model files to

describe the morphology of the robot. The link format is depicted in Figure 4.

Figure 4 – Dynamechs Link Structure

The base object for every robot is the “articulation”, which contains the starting

position of the robot specified in Cartesian coordinates, and the orientation specified

as a quaternion. A reference member, indicating the “body” of a robot, must then

directly follow the base articulation. The base articulation and all other link objects

contain the following information structures:

• Name, A string which describes the object

• Graphics Model, Points to the file containing morphological information

• Inertia, This is a 3x3 inertia matrix. The inertia matrix needs to be calculated

from the mass and dimensions of the object.

• Center_of_Gravity, A 3d Cartesian point indicating the center of gravity

 25

• Contact_Locations, This is a list of 3d points where the object can make

contact with the terrain. This is usually simply a list of vertex positions from

the graphics model.

In addition to these data structures, the base object holds information on the position

of the base (a Cartesian point), its orientation (as a quaternion) and its velocity (as a

Cartesian vector).

Other links that follow the base link contain additional information describing the

location of the joint in modified Denavit-Hartenberg format [50]. The Denavit-

Hartenberg notation consists of four parameters:

• ai, the distance from the preceding link to the current link with respect to the

previous links ‘x’ axis.

• αi, the angle which the link has been rotated in the ‘x’ plane

• di, the perpendicular distance from the preceding link to the current link. i.e.

the ‘z’ (up) axis

• θi, the angle which the link has been rotated in the ‘z’ plane.

Figure 5 – Modified Denavit-Hartenberg Parameters and Link coordinate

Assignment [50]

 26

4.1.3 Modeling

Dynamechs did not have a built in modeling utility, thus an external 3d design

package needed to be either created or modified to support the Dynamechs file

format. The G-MAX [52] modeling environment was initially under consideration for

extension as it was a widely used professional modeling package. However, the

development time required to create the software to integrate with the package was

expected to exceed the release date for a purpose built software package [53].

RobotBuilder was a robot modeling package which could directly export to the

Dynamechs file format. Unfortunately the package did not automate the required

calculations for modeling individual model parts.

A separate utility was created to simplify the generation of various basic shapes. The

utility allowed users to view a rotated version of the object, and would calculate the

orientation quaternion. The other major function the utility performed was the

calculation of the inertia matrix for the objects. The equations used to calculate the

moments of inertia for a rectangular prism are given in Equation 9.

)(
12

)(
12

)(
12

22

22

22

cbmIz

camIy

bamIx

+=

+=

+=

g
rhocbam ⋅⋅⋅

=

where: a,b,c are the objects width, height, and depth

 m is the mass,

 g is the acceleration of gravity,

 rho is the density, and

 I is the mass moment of inertia.

(4.1)

 27

 Equation 9 – Inertia for Rectangular Prism

Figure 6 illustrates the interface presented to the user for constructing various objects.

The user can specify the dimensions and color of the object, and the center of

reference for the object. The utility calculates the inertia matrix values for the user

and can export the data to a format directly readable by RobotBuilder and

Dynamechs.

Figure 6 – Dynamechs object format construction utility

4.1.4 Simulation Parameters

The simulation requires a number of parameters to be defined. These include the

integration step size, physical constants, and terrain information. An appropriate

integration step size was previously determined by Kruger [13]. For a percentage

error of less than 5% a step size of 30ms was required. Subsequently, this value was

also used in the simulations for this project.

The physical constants were taken from the underwater quadruped project undertaken

by the US Military Postgraduate School [49].These values were chosen as this was the

only available information from a system which successfully realistically modeled a

robot. The values are listed in Table 1.

 28

Constant Value

Gravity -9.81

Ground Planar Spring Constant 55000.0

Ground Normal Spring Constant 75000.0

Ground Planar Damper Constant 500.0

Ground Normal Damper Constant 500.0

Ground Static Friction Coefficient 2.840

Ground Kinetic Friction Coefficient 2.010

Table 1 – Table of Dynamechs Physical Constants

4.1.5 Simulating Sensors

There were a number of sensors that needed to be simulated in the mechanical

simulator. The sensors that were required during the course of this project were:

• Inclinometers

• Position Sensors

• Orientation Sensors

The inclinometers were simulated by extracting the orientation quaternion from

the Dynamechs object, and transforming it to a rotation matrix. The rotation matrix

was then converted to a Euler angle format to provide angular information on the

orientation of the object. Distance sensors were simulated by recording the starting

locations of the objects in the scene, and then extracting the Cartesian coordinates for

the location of the objects at any time in the simulator. The orientation of a robot

could be extracted using a method similar to the conversion process used to simulate

the Euler angles. None of the simulated sensors included any form of white noise or

drift, and thus were completely idealized sensors.

 29

4.2 Genetic Algorithm

The implemented genetic algorithm was required to evolve any control system

for robot locomotion, and provide the means to do so in the most efficient manner

possible. In order for the system to operate on any control system, an encoding

method for the controller needed to be found such that the genetic algorithm would

always be able to evolve the controller parameters. Consequently, the genetic

algorithm could not operate using specific knowledge of the controller’s parameter

types. To achieve efficient evolution, a number of operators and selection schemes

were implemented to allow the configuration of the genetic algorithms parameters to

achieve a reduction in the evolution period.

4.2.1 Operators

To allow for a comparison against the traditional genetic algorithm form [17],

the crossover operator was implemented as a single point crossover, and the mutate

operation was implemented as a single random bit inversion. Davis [36] indicated that

performance enhancements can be obtained by treating the chromosome as a string of

numeric values. Hence the extended operators implemented were the non-binary

average, creep, and mutate. Each of the non-binary operators treated the symbol

alphabet as 8-bit unsigned integer values. Thus, the non-binary average operator

simply arithmetically averaged corresponding 8-bit integers from two chromosomes,

and generated a new chromosome based on the resulting values. The creep operator

selected one 8-bit value randomly within the chromosome and randomly added or

subtracted a randomly generated value ranging between one and two. The non-binary

mutate operator, simply replaced an entire 8-bit value within the chromosome with a

randomly generated 8-bit value.

4.2.2 Selection Schemes

In order to provide a flexible genetic algorithm implementation, a number of

selection schemes were implemented. Compatibility with the traditional genetic

 30

algorithm [17] was provided through Roulette Wheel selection. For research purposes

two more selection schemes, Random and Elitist were implemented. Random

selection selected the parent chromosomes at random, with no respect to the fitness

value of the chromosome. However, negatively fit chromosomes (that is, robots which

fell over or otherwise terminated) were still removed from the pool. Elitist selection

performed weighted Roulette Wheel selection on the top ten percent of chromosomes.

Thus highly fit chromosomes were far more likely to contribute to future generations

than lower fitness valued chromosomes, which could not contribute at all.

4.2.3 Fitness Functions

The fitness functions implemented was based on the combined findings of

Ijspeert [39], Reeve [13], and Ziegler et al [27]. Both Ijspeert and Reeve found

increased performance when controller and morphology specific information was

added to the fitness functions. Reeve found that by evaluating individual neurons

performance the fitness function resulted in increasing the performance of the GA.

Ijspeert found that by incorporating the desired movement behaviors of the lampreys

structure the fitness of each gait could be better evaluated. Ziegler et al. determined

that premature termination largely increased the GA performance. As a result, a

number of fitness functions were implemented for differing purposes.

The basic fitness function implemented followed both the principles implemented by

Reeve and Ziegler et al. During the initial phases of evolution the fitness was

evaluated purely from the distance the robot traveled forward, minus the distance the

robots center of gravity lowered. This is somewhat of a combination of Reeve’s FND

and Zieglers premature termination conditions [13,27]. During later phases of

evolution the average speed at which the robot moved, and the distance the robot

wavered from the desired path were incorporated. Finally, the distance the robot was

at termination from its desired terminating point was taken into consideration, to

emulate the effect of Reeve’s DFND [13].

 31

A number of early termination conditions were added to the fitness evaluation. These

included:

• An automatic termination for a robot’s central body coming too close

to the ground. This termination condition was implemented rather

than the DFNDF method proposed by Reeve, as it allowed the

simulation of robots whose central body may touch the ground during

locomotion (eg: snake-like robots).

• Automatic termination for a robot who moved too far from the

ground. This removed the possibility of robots achieving high fitness

values early in the simulation by propelling themselves forwards

through the air (jumping).

• For bipedal android robots, an additional termination condition was

provided, which would degrade the fitness of a gait that resulted in the

robot’s head tilting too far forwards. This ensured the robots were

somewhat stable and robust.

The choice of the fitness functions and terminating conditions was designed to allow

any robot morphology to be evaluated. The actual fitness function parameters are

passed to the simulator at run time, allowing the user to specify their own fitness

function.

4.2.4 Randomness

The pseudo-randomness available using the standard C-library rand() function

(ANSIC LCG [54]) was insufficient for generating the long sequences of random

values that were required for larger chromosomes. Entacher [54] performed a large

number of spectral tests on the randomness available from various Linear

Congruential Generators (LCG). The results suggest that the LCG developed by Karin

and Goyal [55] provides far better pseudo-random sequences than the ANSIC LCG.

 32

The LCG implemented is given below:

mbyay nn mod1 +⋅=+ with seed 0y

where m = 1012-11

 a = 427419669087

 b = 0

 y0 = 1

(4.2)

Equation 10 – The Maple LCG

4.2.5 Tracking

To be able to determine the performance impact of differing operators,

selection schemes and fitness functions on the genetic algorithm, chromosome

tracking information was added to the implementation. The collected information

included: the fitness of the chromosomes that were combined, the fitness of the

resulting chromosome, the operator used to produce the new chromosome, and the

parent chromosomes. The resulting output allowed the construction of a family tree

for each individual chromosome. This assisted in determining which operators

contributed to the optimal solution, and the impact of each operator.

Further records of the complete genetic algorithm were also maintained. The recorded

information included population size, average and best fitness values, the current

generation, the number of new individuals created, and the time required to evaluate

the generation.

 33

4.3 Control Systems

The only fully implemented control system for robot locomotion was the

spline based controller. Some basic neural oscillators and simple neural network

controllers were implemented, however the functionality provided by the neural

controller was severely limited. A proportional controller was also implemented for

simple actuator control, although it was not applied to generate the robot locomotion

control signals directly.

4.3.1 Hermite Spline Control

The spline controller implemented consists of a set of joined Hermite splines.

One set contains robot initialization information, to move the joints into the correct

positions and enable a smooth transition from the robot’s standing state to a travelling

state. The second set of splines contains the cyclic information for the robot’s gait.

Each spline can be defined by a variable number of control points, with variable

degrees of freedom. A pair of start and cyclic splines corresponds to the set of control

signals required to drive one actuator within the robot.

An example of a simple spline controller is illustrated in Figure 7. Each spline

indicates the controller’s output value for one actuator.

Figure 7 – Simple spline controller

 34

The number of control points required for the simple spline controller is given by

Equation 11.

)(cia +⋅

where a is the number of actuators

 i is the number of control points in the initialization spline

 c is the number of control points in the cyclic spline

(4.3)

Equation 11 – Control points required for simple spline controller

Cubic Hermite splines were implemented in the controller as they offer a number of

desirable characteristics over other splines. The major advantage of the Hermite spline

is that the curve passes through all the control points. As the position and tangent are

explicitly specified at the ends of each segment, it is easy to create a continuous

curve. This allows for a control representation that is far simpler for humans to

manipulate using a keyframing-styled approach than B-Splines, whilst still possessing

the desired properties to allow fast and flexible evolution.

There is a large collection of evidence that supports the proposition that most gaits for

both animals and robots feature synchronized movement [56]. That is, when one joint

alters its direction or speed, this change is likely to be reflected in another limb.

Enforcing this form of constraint is computationally simpler with Hermite splines

than with B-Splines. In order to force synchronous movement with a Hermite spline,

all actuator control points must lie at the same point in cycle time, since the control

points represent the critical points of the control signal. The alteration of control

points within a B-spline influences the location of the control signals critical points in

a non-uniform manner, thus enforcing such a constraint with a B-spline system is far

more computationally intensive.

In order to incorporate sensor feedback information into the spline controller, another

dimension was added to the controller. The extended control points could now specify

their locations within both the gaits cycle time, and the feedback value. This resulted

in a set of control surfaces for each actuators cyclic information. The initialization

splines were not extended as it was assumed that any robot would be initialized on flat

 35

terrain. However, the initialization splines can be easily extended to contain

information dependent on the terrains gradient through a similar method to that used

to extend the cyclic splines. The number of control points required for the extended

controller is given by Equation 12. Extending the controller in this form significantly

increased the number of control points required. Figure 8 illustrates a resulting control

surface for one actuator.

)(fcia ⋅+⋅

where f is the number of control points used to sample the feedback

4.4

Equation 12 – Control points required for extended spline controller

Figure 8 – Generic extended spline controller

The actuator evaluates the desired output value from the enhanced controller as a

function of both the cycle time and the input reading from the sensor. The most

appropriate sensory feedback was found to be an angle reading from an inclinometer

placed on the robots central body (torso). Thus, the resultant controller was expressed

in terms of the percentage cycle time, the inclinometers angle reading, and the output

control signal.

 36

4.3.2 Spline Controller Encoding

In order to evolve the spline controller with a genetic algorithm, the

controller’s parameters needed to be encoded into chromosome representations. Two

different encoding schemes were implemented. Initially, a direct encoding method

was utilized, as the use of this method is straightforward. After some initial analysis

of results, indirect encoding was attempted to take advantage of the symmetrical

nature of the control signals generated. However, this requires previous knowledge of

the structure and desired walking pattern from the robot, and hence was later

removed.

Staged Evolution

Support for staged evolution can only be achieved if the controller is

specifically designed such that the evolution can proceed in this manner. The encoded

spline controller supports staged evolution by progressively adding dimensions and

reducing restrictions to the controllers control points.

Direct Encoding

Each control point value was treated as an 8-bit fixed point value. In the initial

phase of evolution the control points locations within the walking cycle time were

equally distributed. This provided each control point with only one degree of freedom,

and reduced the available solution space but also significantly reduced the complexity

of the chromosome required to describe the controller. In the following stage of

evolution, the equally distributed time constraint was dropped, providing the control

points with an additional dimension of freedom. Finally, the tangent values for the

control points in the spline were added to the chromosome, allowing final refinement

of the solution.

 37

Indirect Encoding

There is a large amount of evidence that neural controllers for bipedal

locomotion exhibit a high degree of symmetry [13,16]. Evolution periods required to

generate the controllers have been significantly reduced by using indirect encoding

schemes which take advantage of the symmetries found within the controller, and

within the resulting walking motions. After initial analysis of preliminary results from

the spline control, symmetric output could be observed in the resulting control signals.

Thus, an indirect encoding method was applied in an attempt to reduce evolution

periods. The control points for each actuator within the first half of the cyclic section

were mirrored to correspond with the control points for the ending half of the actuator

that was symmetrically opposite to the actuator. For example, the left knee’s starting

control points would be mirrored to the right knee’s ending control points. This

significantly decreased the complexity of the required chromosome structure.

Evolution Phase Direct Encoding Complexity Indirect Encoding Complexity

Phase 1 a(s+c) a(s+
2
c)

Phase 2 2a(s+c) 2as+c

Phase 3 3a(s+c) 3a(s+
2
c)

Table 2 – Increasing chromosome complexity

Direct Encoding With Symmetry

Successful application of an indirect spline encoding scheme requires that the

controller is developed with knowledge of the robot’s kinematics and structure.

Furthermore, the robot’s physical design must also be symmetric. In order to allow

the evolution of non-symmetric robots whilst still attempting to obtain the benefits

available from the compact representation, the symmetric information was seeded into

the directly encoded controller. This provides the opportunity for reduced evolution

periods, whilst still allowing the full parameter set to be specified. As a result, any

robot controller can be evolved regardless of its structure, and symmetric robots

 38

benefit from the reduced evolution periods, as well as the ability to further refine the

control parameters.

4.3.3 Neural Controller

Although there have been a number of neuron models proposed for

locomotion control [24,43,13] the neuron model implemented was based on state-

variable point model proposed by MacGregor[42]. This model was applied as

MacGregor provided detailed explanations to the theory and the implementation

details behind this model.

The neuron is based on a simplified version of Hodgkin and Huxley’s equations [42],

and uses only four state variables (potassium conductance, membrane voltage,

threshold, and a binary action potential spike). The equations used to describe the

model were given in Equation 6. MacGregor demonstrated the use of this neural

model for repetitive firing (the PTNRN10 model), and thus the model could be easily

extended to produce neural networks with oscillatory output.

Figure 9 – Output Voltage and Spike for PTNRN

Constructing an Oscillator

Oscillators are typically constructed in neural networks using two coupled

neurons with delayed inhibition and self-activation [57]. However it is possible to

construct an oscillator from MacGregor’s neuron model by taking the spike output

 39

and directly connecting it to the neuron as a positive feedback current. This allowed

oscillatory signals to be constructed from a single neuron. These individual neurons

were then used to control an individual actuator, provided with a time input value.

Sample output from the neural oscillator is shown in Figure 10

Figure 10 – Oscillator Output

Encoding

Although a number of optimal encoding schemes for neural controllers have

been proposed [58], the neural controller was encoded using fully direct encoding

methods. As the neurons were directly coupled to the actuators, there were no neural

network parameters that needed to be encoded or evolved. The encoding for the

PTNRN neurons is shown in Table 3.

Parameter Name Range

ampGK [0..32] (5.3 fixed point value)

EK [-8..0] (3.5 fixed point value)

amp [0..128] (7.1 fixed point value)

tMemb [0..16] (4.4 fixed point value)

Multiplier [-1..1] (1.7 fixed point value)

Integration Step Size [0..4] (2.6 fixed point value)

Table 3 – Evolved Neuron Parameters and Encodings

 40

4.3.4 PID Control

PID controllers provide a simple means of adding robust feedback control

[28]. Coupling PID controllers to the neural and spline controllers enables a simple

form of incorporated feedback. The PID controller interprets the control signals

provided by the higher level controllers and transforms the higher level signals to the

signals that drive the robot’s actuators. Through the cascading of control systems a

simple form of feedback can be incorporated, and the resulting gaits remain stable

indefinitely.

The PID controllers were hand designed to provide a general form of control. The

controllers were designed such that they would allow the robot to remain in a standing

state when no other control signals were provided.

4.4 Parallel Computation

Further reductions in evolution time can be achieved by exploiting distributed

computing methods. Since the genetic algorithm is inherently parallel, individual

solutions can be evaluated on distributed workstations in parallel. The large diversity

in processing power between workstations created the need for an efficient workload

allocation procedure, which allowed faster workstations to evaluate more individuals

than slower ones.

The parallel computation design followed a client-server methodology. The server is

responsible for maintaining the GA and scheduling the simulation evaluations to the

clients. Each client is given one individual to evaluate, then returns the result to the

server. The client continues to wait for the server to allocate it another individual for

evaluation. This scheduling algorithm allowed faster workstations to evaluate more

individuals than slower workstations, and provides an effective means for load

balancing.

 41

The operating system, processing power, and processor architecture varied greatly

between clients. This required that the communications system between the variety of

client configurations and server be fully portable. As a result, the implemented

communications system was based on network file sharing technology to allow for

maximum portability across platforms.

4.4.1 Server

The server is responsible for executing the genetic algorithm and scheduling

the workload evenly between clients. The server loads the robot configuration

information from the simulator configuration files, and allows the user to adjust

various control parameters. Any clients attempting a connection are detected and

added to the available set of workstations.

The server begins distributed processing by passing the robot and simulation

configuration information to the clients. Once the clients have configured the

simulation environment, the server allocates a simulation task to each client. The

server decodes the chromosome information and sends the controller parameters to

the client for evaluation.

Upon client completion of the simulation, the results are recorded on the server and

another task is delegated to the client. If the server has received all the required results

for the current generation, the server will calculate the new individuals for the next

generation, and then repeat the process of scheduling tasks to clients. Fault tolerance

is integrated into the system by allowing any client to be connected, disconnected or

reconnected to the server at any stage. The server automatically disconnects any client

that fails to respond within a given time frame, and removes them from the available

processing pool.

4.4.2 Clients

On startup, the clients attempt to connect to the server and indicate their

availability. They then wait for the server to send the robot and simulation

configuration information. The clients then configure and spawn the simulated

 42

environment. Once the simulated environment is initialized, each client waits to

receive controller parameters. The gait described by these parameters is then

simulated and evaluated according to the fitness function provided by the server. The

resulting fitness value is returned to the server, and the client continues to wait for the

next set of control parameters to be sent.

4.5 System Summary

The software package developed consists of three major components. There

are a number of issues that needed to be addressed in managing communications

between each software module. The overall software system is illustrated in Figure

11.

........

........

XAN Model
Constructor

Robot Builder

Object Morphology
& Physical Properties

Modeling Tools

GUI

Robot and
Controller
Information

GA

GA

Parameters

Controller
Configuration

Robot Structure

and Kinematics

Server Client

Simulation Environment

Simulated
Robot

Fitness Function

........

........
Controller
Chromosome N

........

........

........

........

........

........

Controller
Chromosome 1

........

........

........

........

Simulated
Actuator

........

........

........

........

Simulated
Controller

Control Signal
Controller
Parameters

Fitness
Value

Simulation & Robot
Configuration

Analysis Tools

Spline
Viewer

& Editor
Neuron
Viewer

GA
Analyser

Controller
Converter

Gait
Viewer

Excel
and

Matlab

Figure 11 – System Overview

The system has been divided into four software sub-sections:

• Modeling Tools – This includes the software required to design the

overall robot structure, and the software to construct an objects

morphology and generate its physical characteristics.

 43

• Server – Contains the main interface to the user, allowing them to

configure the robots controller, the simulator environment, and genetic

algorithm. The server executes the actual genetic algorithm and

performs individual fitness evaluations in parallel on the clients.

• Client – Contains the simulation environment and evaluates individual

controllers and returns the fitness value to the server.

• Analysis Tools – This is a set of software utilities created in order to

analyze and visualize various aspects of the control systems, genetic

algorithm, and generated gait.

The steps required to generate a gait for a specified robot design are given below:

1. Construct individual robot objects based on the objects shape,

dimensions and mass.

2. Combine the individual objects in order to realize the overall robot

design.

3. Load the robot’s structural information into the main GA server and

configure the robots control system parameters.

4. Configure the genetic algorithm parameters and fitness function.

5. Evolve the robot controller

6. Investigate the generated results using the provided set of analysis

tools to confirm the desired gait has been achieved.

 44

5. Investigations

5.1 Genetic Algorithm

A number of factors influence the performance of the genetic algorithm. These

include chromosome complexity, the operators used, selection weightings for the

operators, the selection scheme, the fitness function utilized and the problem type.

The investigations undertaken reveal interesting results about the performance

enhancement gained from the operators, selection schemes, and fitness functions

employed.

5.1.1 Method

Four differing configurations of the genetic algorithm were examined. The

first was a traditional GA using roulette wheel selection with two operators: a one-

point crossover, and a mutate operator. This configuration was employed as this is a

commonly implemented version of the genetic algorithm [17], and hence provides an

adequate benchmark figure.

The second configuration used roulette wheel selection with more advanced

operators: inversion, non-binary average combination, and random replacement. The

third GA was based on the second configuration, except that half of the chromosomes

were generated using random selection. The fourth configuration extended the third

and contained a non-binary creep operator, as well as supporting higher values of

elitism.

The parameters used for each GA configuration are shown in Table 4. The

percentages indicate the percentage chance each item has of being used in the creation

of a new chromosome.

 45

Genetic Algorithm Selection Schemes Operators

1. Traditional Roulette Wheel Crossover (70%)

Mutate (30%)

2. Enhanced Roulette Wheel Crossover (30%),

Mutate (10%),

Random Replacement (25%),

Average (30%),

Inversion (5%)

3. Enhanced with

random selection

Roulette Wheel (50%)

and Random Selection

(50%)

Crossover (30%),

Mutate (10%),

Random Replacement (25%),

Average (30%),

Inversion (5%)

4. Enhanced with high

elitism, random

selection, and non-

binary creep

Roulette Wheel (50%),

Random Selection (25%)

and Elitist (top ten

percent) Selection (25%)

Crossover (35%),

Mutate (10%),

Random Replacement (10%) ,

Average (30%),

Inversion (5%),

Creep(10%)

Table 4 – Genetic Algorithm Parameters

Each version of the genetic algorithm ran through three different trials involving

different fitness function terminating conditions:

• Non-terminating fitness function. This fitness function did not include

any premature termination conditions, and simply continued evaluation

of the robot until the specified simulation time was reached. The

evolution was completed without an intermediary stage.

• Premature-terminating fitness function. Two termination conditions

were added to the fitness function. The system would terminate if the

robot fell over, or if both feet were off the ground for too long

(jumping etc.)

 46

• Premature-terminating fitness function with one stage of evolution.

The GA ran as above, except that the system progressed through one

phase of evolution.

5.1.2 Results and Discussion

 The graph shown in Figure 12 shows the performance alteration when using

early terminating and staged evolution techniques, relative to non-terminating

conditions. From the results obtained, early termination appears to produce reduced

evolution periods averaging at 39.8% of the original evolution times. Inclusion of

staged evolution reduces the times are by a further 14.5%. Thus, by using both staged

evolution and early termination, the evolution period is on average reduced to 34% of

the original evolution time.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Early Termination Staged Evolution and Early
Termination

P
er

ce
nt

ag
e

of
 O

rig
in

al
 S

im
ul

at
io

n
Ti

m

GA 1
GA 2
GA 3
GA 4

Figure 12 – Change in required simulation time

The average increase in fitness of the population per generation is shown in Figure 13.

Early termination causes the conventional genetic algorithm to decrease its average

increase in fitness. However, other forms of genetic algorithms appear to gain in

fitness. A possible explanation for the abnormal result from the conventional

algorithm is that it relies on the randomness present in other chromosomes in order to

generate new chromosomes with increased fitness. Each of the other genetic

 47

algorithms contain either an operator which can introduce randomness (random

replacement), or a selection scheme which increases randomness (random selection).

0

0.05

0.1

0.15

0.2

0.25

Full Simulation Early Termination Staged Evolution and
Early Termination

C
ha

ng
e

in
 fi

tn
es

s

GA 1

GA 2

GA 3

GA 4

Figure 13 – Average increase in fitness per generation

For staged evolution with early termination, the fitness per generation greatly

increases for the first two forms of the genetic algorithm (conventional & enhanced).

However, this increase in performance is not realized in the GAs which involve

random replacement and random selection. The GA configurations using random

selection take longer to converge towards a solution. Thus, when the staged evolution

takes place in the tenth generation, the population is not close enough to a solution to

be able to benefit from moving to the next stage. The other two forms of GA have

somewhat converged by this time, and hence are able to take advantage from the next

stage.

The performance of each operator, in terms of the percentage of positive fitness

chromosomes generated relative to other operators, is depicted in Table 5 below.

 48

Operator Name Early Phase Late Phase

Crossover 16.61% 28.46%

Average 26.25% 25.18%

Random Replace 19.81% 16.89%

Mutate 15.52% 5.81%

Creep 17.90% 22.90%

Table 5 – Relative chromosome generation success rate

The results indicate that the performance of the non-random operators remains

unchanged or improves during later phases of evolution, whereas random based

operators decrease their performance. This result confirms that increased randomness

in the initial phase of evolution is beneficial as it broadens the search space of the

algorithm. Thus, as would be predicted, the random operators do not provide as much

benefit in later stages of evolution. An interesting outlier from this generalization is

the non-binary creep operator. Although the random replacement, and mutate

operators decrease their percentage success rate, the creep operator increases its

success rate in later phases of evolution. This result can be explained from the basis of

the non-binary nature of the creep operator.

During later phases of evolution, small alterations to the chromosome are more likely

to produce improved fitness ratings. As the population converges towards the optimal

solution, any large alterations to the chromosome will result in a solution further from

the optimal value. Since the creep operator performs only small modifications to the

chromosome, it is far more likely to produce fit chromosomes within the converging

solution space.

5.1.3 Conclusion

From the results obtained it would indicate that early simulation termination

can provide significant reductions in evolution times, and genetic algorithms which

produce enough randomness will not be adversely affected by having the worse

chromosomes terminated. The ability to take advantage of the staged evolution

 49

process appears to depend on the current status of the population of the GA. If the

population has begun to converge, then the staged evolution opens up a new prospect

for higher rating fitness chromosomes. Random operators and selection schemes

appear to be beneficial during early phases of evolution, whereas the crossover-based

operators perform consistently during the entire evolution period.

5.2 Evolving Gaits with Splines

The two robots models utilized for the investigation of the spline control

system consist of two regular, geometrically identical legs, with three controlled

joints. The first robot (Figure 14 - Left) had large feet, and lacked a complete torso.

The second robot provided a more realistic representation of a robot and has

dimensions comparable to a human being (Figure 14 - Right). Both robots have 3

controlled joints per limb, and thus a total of 6 joint controllers for each gait were

evolved.

Figure 14 – Biped Robot Models

 50

5.2.1 Spline Controller

The standard spline controller successfully described a full walking gait for a

simple bipedal robot. An early successful gait is depicted in Figure 15. The spline

controller consisted of four cyclic control points and four initialization control points.

An indirectly encoded chromosome representation for this controller could be evolved

to produce adequate walking patterns within 12 hours on a 500MHz Athlon PC.

Although there were only four control points, these were sufficient to describe the

complete walking cycle for the simple robot.

Figure 15 – Early Biped Gait

The resulting controllers did not produce gaits that could maintain locomotion for an

extended period of time. As is clearly indicated in the above sequence of images, the

torso of the robot slowly lowers towards the ground as the gait progresses. To

overcome this, sensory feedback can be integrated into the control system. This

feedback information can be used to correct deviations from the desired signals.

5.2.2 Spline and PID Control

Incorporation of PID controllers with the spline control system enabled a

simple form of feedback that allowed the robot’s walking cycle to be maintained

indefinitely. The PID controller ensured that the robot’s joints reached the joint

position specified by the spline control system. Figure 16 illustrates the spline control

system coupled with a PID controller providing continued locomotion.

 51

Figure 16 – Sustained Robot Walk

The extended control system was capable of expressing complex control signals

responsible for dynamic gaits with a robot that was far more complicated to balance.

This allowed the control of the less stable android robot, and enabled the control of

complicated movements, such as the jumping gait illustrated in Figure 17. The

resultant control system depicted was evolved within 60 generations and began

convergence towards a unified solution within 30 generations.

Figure 17 – Jumping Robot

5.2.3 Spline Control with Integrated Feedback

Extending the spline controller to incorporate sensory information provided a

far more adaptable and robust control system. The inclinometer reading was

successfully interpreted by the control system to provide an added level of feedback

 52

capable of sustaining the generated gait over non-uniform terrain. An example of the

resultant gait is illustrated below. The controller required over 4 days of computation

time on a 800MHz Pentium 3 system, and was the result of 512 generations of

evaluation.

Figure 18 – Robot walking over terrain

Figure 19 – Extended Spline Controller

 53

An example control surface for one of the actuators generated by the spline controller

is depicted in Figure 19. The change in the output signal generated when the

inclinometer is providing different readings can be clearly seen. The fitness values

during the evolution are illustrated in

0

20

40

60

80

100

120

1 47 93 13
9

18
5

23
1

27
7

32
3

36
9

41
5

46
1

50
7

55
3

59
9

64
5

Generation

Fi
tn

es
s

Top Fitness

Average Fitness

Figure 20. A rapid increase in fitness values can clearly be observed at around 490

generations. This corresponds to the convergence point where the optimal solution is

located.

 54

0

20

40

60

80

100

120

1 47 93 13
9

18
5

23
1

27
7

32
3

36
9

41
5

46
1

50
7

55
3

59
9

64
5

Generation

Fi
tn

es
s

Top Fitness

Average Fitness

Figure 20 – Fitness vs Generation for Extended spline controller

5.2.4 Non Bipedal Robots

The spline control system also successfully demonstrated control of non-legged

robots. The snake robot model shown in Figure 21 consists of five joints, each with

only one degree of freedom (sideward motion). Figure 21 clearly illustrates the

snake’s sinusoidal movement, as evident in real snakes.

Figure 21 – Snake Gait

 55

Gaits for non-bipedal legged robots were also successfully evolved utilizing the spline

control system. The most successful gait evolved for the tripod robot is illustrated in

Figure 22. The robot achieves forwards motion by thrusting its rear leg towards the

ground, and lifting its forelimbs. The robot then gallops with is fore limbs to produce

a dynamic gait.

Figure 22 – Tripod Gait

5.2.5 Conclusion

 The spline controller was applied to a number of robots with differing

morphology. The controller expressed a number of diverse gaits for various robot

designs, and proved to be readily extendible. The expanded control system

successfully controlled a bipedal robot over rugged terrain, and demonstrated the

powerful capabilities of this simple control system.

5.3 Neural Controller

 Neural net controllers have already successfully demonstrated control of

legged robots [4,16]. The neuron model implemented demonstrated oscillatory output

when its output was directly fed back into one of the neurons input channels [42]. The

investigation undertaken examines the ability for a single neuron to provide actuator

control, the evolution periods required to evolve a gait, and the ability of the software

to support a different control mechanism.

 56

5.3.1 Method

Each individual neuron was directly coupled to an actuator or an actuators

controller. Thus the encoded chromosome consisted entirely of the string of neuron

parameters, and did not need to evolve any network weightings. The parameters

evolved for the neural controller were given in Table 3.

The neural controller was evaluated on the simple biped robot illustrated in Figure 14.

Three separate versions of controller evolution were attempted, each with differing

configurations of the PID controller. The first version contained a PID controller

configuration that was successfully employed with the spline control system. This

controller was initialized to provide the correct control signals to maintain the robot in

a standing state when no further input was provided. The second version was similar

to the first, except that the DC value for each actuator was not set. Finally, the neural

controller was directly connected to the actuator with no form of intermediary control.

Each of these versions was permitted to evolve over a period of 24 CPU hours on an

800MHz Pentium 3 system.

5.3.2 Results and Discussion

The neural controller did not provide lifelike gaits for the simple robot within

the constrained evolution time. The directly connected neural controller did not

produce any successful gaits at all. The neural controller connected with the PID

controller did produce gaits which resulted in forwards motion, however none of the

gaits generated within the 24 hours produced lifelike results. The most successful gait

generated is illustrated in Figure 23.

 57

Figure 23 – Gait produced from Neural Controller

Given the severe constraints placed on the neural network it is not surprising that the

controller could not express any adequate gaits. All previously successful neural

controllers utilized four or more neurons combined to control each actuator

[4,21,16,13]. Furthermore, the neural net was usually provided with a range of

sensory input values, and not simply constrained to time as its only input. The neuron

models used by most researches were typically more complex and usually based from

direct observations of neuron models responsible for locomotion in animals [23,24].

Figure 24 – Fitness vs Generation for Neural Controller

Figure 24 shows the change in fitness per generation during the evolution of the

neural controller. The controller required 521 generations to generate a gait that

resulted in adequate forward motion. A similar number of generations were required

to evolve the robust spline control system previously described. The graph indicates

that the neural controller’s performance stagnates, until the genetic algorithm is reset

and new random chromosomes are introduced.

0

2

4

6

8

10

12

14

16

18

1 33 65 97 12
9

16
1

19
3

22
5

25
7

28
9

32
1

35
3

38
5

41
7

44
9

48
1

51
3

54
5

Generation

Fi
tn

es
s

Top Fitness
Average Fitness

 58

5.3.3 Conclusion

The neural controller implemented did not generate the desired results in its

presented configuration within the permitted time frame. Previous evidence suggests

that MacGregor’s model could produce better results if sensory feedback information

was incorporated and the neural network was expanded [14]. Lewis et al [4] indicate

that the evolution periods for directly evolving a neural controller can be extremely

large. Thus, it is possible that the proposed neural control system could successfully

generate lifelike gaits given lengthier evolution periods. Although the neural control

system was generally unsuccessful, the system did prove that the design was capable

of evolving, simulating, and evaluating differing controller types.

 59

6. Conclusions

6.1 Summary of Contributions

This thesis presents a flexible architecture for controller evolution. A new

form of spline locomotion control was proposed and investigated. The Hermite spline

controller was shown to be capable of describing complex dynamic walking gaits for

robots with differing morphologies. The spline controller offered a number of

advantages over a neural based approach. Directly encoded fully connected neural

networks have prohibitively long evolution periods [13]. Indirectly encoded networks

significantly reduced the evolution periods but cannot be automatically evolved.

However, the spline controller is sufficiently simple that the directly encoded

controller can be evolved in an acceptable time frame.

The software developed provides a number of useful tools for robot designers. The

modeling tools and libraries simplify the robot design task, and enable a simple form

of information exchange between various utilities. The genetic algorithm is

implemented in a flexible and extendible manner.

This thesis investigated a number of aspects of genetic algorithms used for evolution

of robot controllers. It was found that randomness present in the genetic algorithm

provided advantages during the early phases of evolution, but degraded performance

in later phases. Optimizations of the fitness function and evolution strategies were

also determined to be dependent on the genetic algorithms configuration, and current

state.

Two control systems for robot locomotion were investigated and discussed. Extension

of the basic spline controller to incorporate feedback information was proven to be

viable, but required a significant increase in the evolution period. A sample neural

network controller was presented, but found to be too simple to provide adequate

control for acceptable gaits.

 60

6.2 Future Outlook

 The implementation of the neural controller was very rudimentary and did not

achieve acceptable results. In order for any comparison between control

methodologies to be adequately made an improved neural control system must be

implemented. One of the major disadvantages when evolving neural controllers is the

need for designer input [13]. Initially evolving a spline control system, and then

training the neural network with the spline controllers output could provide a method

for conversion between control systems, and also allow full automation of the neural

evolution.

Further investigations into the spline control system are necessary to establish its

extensibility and applicability. Expansion of the controller to provide for n-

dimensional input would allow the controller to receive input from any number of

sensors. However, the performance impacts of such extensions would have to be

carefully examined. The current system requires the designer to specify the number of

control points utilized to describe the control spline. This process could be automated

by having the system add control points to a spline if the system was incapable of

describing a successful gait within a given time frame.

Executing the control systems on real robot hardware would facilitate a direct

evaluation to the practical performance of the spline control system. This would also

allow investigation of how the controller copes with being passed across from

simulation onto an actual robot.

Finally, evolution of the robot morphology and the control system in unison would

enable the robot’s design to be improved, such that the robot’s structure was optimally

designed to suit its desired purpose. Further extensions of this could be to

automatically construct the designed robots using 3d printing technology, removing

the human designer completely from the robot design process [59]

 61

References

[1] M. H. Raibert. Legged Robots That Balance Cambridge, MA: The MIT Press,

1986

[2] G. S. Hornby, S. Takamura, J.Yokono, O. Hanagata, T. Yamamoto, M. Fujita,

“Evolving Robust Gaits with AIBO” in IEEE International Conference on Robotics

and Automation. pp. 3040-3045, 2000.

[3] D. Wettergreen, C. Thorpe, W.L. Whittaker. “Exploring Mount Erebus by

Walking Robot” in International Conference of Intelligent Autonomous Systems, pp.

pp72-81. 1993.

[4] M. Lewis, A. Fagg, G. Bekey. “Genetic Algorithms for Gait Synthesis in a

Hexapod Robot.” in Recent Trends in Mobile Robots (World Scientific, New Jersey),

pp. 317-331. 1994.

[5] A. Takanishi, M. Ishida, Y., Yamazaki and I. Kato. “The realization of dynamic

walking by the biped walking robot WL-10RD.” in Proceedings of the 1985 ICAR.

pp. 459-466, 1985.

[6] G.B. Parker, D.W. Braun, I. Cyliax, “Learning Gaits for the Stiquito” Proceedings

of the 8th International Conference on Advanced Robotics (ICAR'97). pp. 285-290.

1997.

[7] S. Kim, J. Oh, K. Lee, “Design of 4 Joints 3 Links Biped Robot and Its Gaits”, in

Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp 523, 2000.

[8] Adams, B., Cynthia Breazeal, Rodney A. Brooks, Brian Scassellati, "Humanoid

Robots: A New Kind of Tool", IEEE Intelligent Systems and Their Applications:

Special Issue on Humanoid Robotics, Vol. 15, No. 4, July/August, pp. 25-31, 2000.

 62

[9] D. Arnold “Evolution of Legged Locomotion”, MSc. thesis, Simon Fraser

University, School of Computing Science, 1997.

[10] E. Muybridge. Animals in Motion. 1887.

[11] J.H. Holland, Adaptation in Natural and Artificial Systems, Cambridge, MA:

MIT Press, 1975.

[12] D. Beasley, D. R. Bull, and R. R. Martin, “An Overview of Genetic

Algorithms:Part 2, Research Topics” University Computing, vol. 15, no. 4, pp. 170-

181, 1993.

[13] M. Krueger “Genetic Algorithms can Evolve Neural Network Controllers for

Robot Locomotion”, BE thesis, University of Western Australia, 2001

[14] R. Reeve “Generating walking behaviors in legged robots”, Ph.D. thesis,

University of Edinburgh, 1999.

[15] J.Ventrella,“Explorations in the Emergence of Morphology and Locomotion

Behavior in Animated Characters “ in Artifical List IV, (R.A. Brooks and P. Maes

Eds.) MIT Press, Cambridge, MA pp. 436-441, 1994.

[16] A. J. Ijspeert, “Evolution of neural controllers for salamander-like locomotion” in

Proceedings of Sensor Fusion and Decentralised Control in Robotics Systems II pp.

168-179, 1999.

[17] D. Beasley, D. R. Bull, and R. R. Martin, “An Overview of Genetic Algorithms:

Part I, Fundamentals” University Computing, vol. 15, no. 2, pp. 58-69, 1993.

[18] F. Busetti, ”Genetic algorithms overview”. [Online] Available:

http://citeseer.nj.nec.com/464346.html

 63

[19] C. Ledger. “Automated Synthesis and Optimization of Robot Configurations: An

Evolutionary Approach” Ph.D. thesis, Carnegie Mellon University, 1999.

[20] T.S. Hussain. Methods of Combining Neural Networks and Genetic Algorithms,

ITRC/TRIO Tutorial, Queens University, 1997.

[21] M. Lewis, A. Fagg, A. Solidum, “Genetic Programming approach to the

Construction of a Neural Network for Control of a Walking Robot” in IEEE

International Conference on Robotics and Automation (Nice, France) pp 2618-23,

1992.

[22] J. Busch, J. Ziegler, C. Aue, A. Ross, D. Sawitzki, W. Banzhaf, “Automatic

generation of Control Programs for Walking Robots Using Genetic Programming” in

European Conference on Genetic Programming (EURO GP), pp. 259-268, 2002.

[23] P. Wallen, O. Ekeberg, A. Lansner, L. Brodin, H. Traven, and S. Grillner. “A

computer based model for realistic simulations of neural networks. II. The segmental

network generating locomotor rhymicity in the lamprey.” Journal of

Neurophysiology, pp. 1939-1950, 1992.

[24] R. Beer. “On the dynamics of small continues-time recurrent neural networks”.

Adaptive Behaviour, vol 1, pp91-122, 1992

[25] K. Gurney, Neural Nets, UCL Press Ltd, 2002.

[26] Bartels, R. H., Beatty, J. C. and Barsky, B. A. An Introduction to Splines for use

in Computer Graphics and Geometric Models, Morgan Kaufmann, 1987.

[27] J. Ziegler, W. Banzhaf, “Evolution of Robot Leg Movements in a Physical

Simulation” in Proceedings of the Fourth International Conference on Climbing and

Walking Robots, (K. Berns and R. Dillmann, Eds.), Professional Engineering

Publishing, 2001.

 64

[28] R.C. Dorf, R.H. Bishop. Modern Control Systems. 9th Edition. Upper Saddle

River, NJ. Prentice Hall, 2001.

[29] S. Bennett, “The Development of the PID Controller” in IEEE Control Systems,

pp 58-64, 1993.

[30] H.R. Everett Sensors for Mobile Robots - Theory and Application. Wellesley,

MA. 1995

[31] E.J. Marey. Animal Mechanisms: a treatise on terrestrial and aerial locomotion.

Appelton, New York, 1874.

[32] R. A. Liston, R. S. Mosher. “A versatile walking truck.” Proceedings of the

Transportation Engineering Conference. London: Institution of Civil Engineers. 1968

[33] M. H Raibert, I. E. Sutherland. (1983). Machines that walk. Scientific American

248(2): 44–53.

[34] K. DeJong. “The analysis of a Class of Genetic Adaptive Systems” PhD thesis,

University of Michigan, 1975.

[35] M.F. Bramlette. “Initialization, mutation and selection methods in genetic

algorithms for function optimisation.” in Proceedings of the Fourth International

Conference on Genetic Algorithms, (R.K. Belew and L.B. Booker Eds.), pp 100-107.

Morgan Kaufmann, 1991.

[36] L. Davis Handbook of Genetic Algorithms Van Nostrand Reinhold, 1991.

[37] J.R. Koza. Genetic Programming: On The Programming of Computers By Means

Of Natural Selection Cambridge, MA: MIT Press, 1992.

[38] P. Nordin, W. Banzhaf, “An On-Line Method to Evolve Behaviour and to

Control a Miniature Robot in Real Time with Genetic Programming” in Adaptive

Behaviour, vol 5 no 2 pp 107-140, 1997.

 65

[39] A. J. Ijspeert, J. Kodajabachian, “Evolution and Development of a Central

Pattern Generator for the Swimming of a Lamprey” in Artifical Life 1998.

[40] H. de Garis. “Genetic Programming : Building Nanobrains with Genetically

Programmed Neural Network Modules.” in Proceedings of the International Joint

Conference on Neural Networks, July 1990

[41] J. Zhang, K.V. Le, A.Knoll “Unsupervised Learning of Control Surfaces Based

on B-Spline Models” in Proceedings of IEEE Int. Conf. on Fuzzy Systems, 1997.

[42] R.J. MacGregor. Neural and Brain Modeling, San Diego, CA: Academic Press,

1987

[43] G. Taga, “A model of the neuro-musculo-skeletal system for human

locomotion.” Biological Cybernetics. vol 73. pp 97-111 1995.

[44] MathsEngine [Online] http://www.mathengine.com/

[45] Open Dynamics Engine [Online] http://www.q12.org/ode/ode.html

[46] T. Taylor, C. Massey. “Recent Developments in the Evolution of Morphologies

and Controllers for Physically Simulated Creatures”. Artificial Life vol. 7(1). pp. 77-

87. (2001)

[47] C Ledger. Darwin2K: simulation and automated synthesis for robotics [Online]

http://www.darwin2k.com/

[48] H. Keller, H. Stolz, A. Ziegler, T Bräunl, AERO: A Physically Based Simulation

and Animation System. [Online] Available: http://www.aero-simulation.de/, [13th

June 2002]

[49] DynaMechs (Dynamics of Mechanisms): A Multibody Dynamic Simulation

Library [Online] http://dynamechs.sourceforge.net/

 66

[50] S. McMillan, Computational Dynamics for Robotic Systems on Land and Under

Water, Ph.D. Thesis, The Ohio State University, Columbus, OH, Summer 1994.

[51] S. McMillan, “Dynamechs v3.0 Refernce Manual.” [Online] Available:

http://dynamechs.sourceforge.net/ref_manual.ps

[52] G-MAX [Online] Available: http://www.discreet.com/products/gmax/

[53] S. Rodenbas, RobotBuilder [Online]

http://eewww.eng.ohio-state.edu/~rodenbas/

[54] K. Entacher. Linear congruential generator: LCG [Online]

http://random.mat.sbg.ac.at/~charly/server/node3.html

[55] Z. A. Karian and R. Goyal “Random Number Generation and Testing” Maple

Technical Newsletter, vol 1, no 1, 1994

[56] J. Rose, J.G. Gamble. Human Walking Baltimore: Williams and Wilkins, 2nd

Edition, 1994.

[57] B. Ermentrout, “An Introduction to Neural Oscillators” in Neural modelling and

neural networks, pp 79 – 110. Pergamon Press. 1994.

[58] F. Gruau, Automatic definition of modular neural networks. Adaptive Behavior,

2, pp.151-183, 1995.

[59] H. Lipson, J. B. Pollack. “Evolving Physical Creatures” [Online] Available:

http://citeseer.nj.nec.com/523984.html

 67

Appendix 1. Evolved Gait

Figure A1.1: Sample biped gait. Images to be read from left to right, top to bottom.

 68

Figure A1.2: Sample biped gait. Images to be read from left to right, top to bottom.

 69

Figure A1.3: Sample biped gait. Images to be read from left to right, top to bottom.

 70

Appendix 2. Sample Robot Model

This is the configuration file for the robot shown in Figure A2.1 This robot model was

developed by Kevin Judd.

Figure A2.1: An example bipedal robot

DynaMechs V 3.0 ascii

Articulation {

 Name "cameron3"

 Graphics_Model ""

 Position 7.3 -2.5 -1.0

 Orientation_Quat 0.0 0.0 0.0 1.0

 MobileBaseLink {

 Name "refmember"

 Graphics_Model "models/obj_cube_center.xan"

 Mass 0.5

 Inertia 1.1 0.0 0.0

 0.0 1.7 0.0

 0.0 0.0 1.7

 Center_of_Gravity 0.0 0.0 0.0

 Number_of_Contact_Points 8

 Contact_Locations -1.0 1.0 1.0

 1.0 1.0 1.0

 -1.0 -1.0 1.0

 1.0 -1.0 1.0

 -1.0 1.0 -1.0

 1.0 1.0 -1.0

 -1.0 -1.0 -1.0

 1.0 -1.0 -1.0

 Position 0.0 10.0 7.3

 Orientation_Quat -1.5 0.0 0 1.5

 Velocity 0.0 0.0 0.0 0.0 0.0 0.0

 }

 Branch {

 Branch {

 ZScrewTxLink {

 Name "LScrew"

 ZScrew_Parameters 1.4 0

 }

 71

 RevoluteLink {

 Name "LThigh"

 Graphics_Model "models/obj_cylinder_x.xan"

 Mass 0.5

 Inertia 0.1 0.0 0.0

 0.0 1.7 0.0

 0.0 0.0 1.7

 Center_of_Gravity 1.5 0.0 0.0

 Number_of_Contact_Points 1

 Contact_Locations 3.0 0.0 0.0

 MDH_Parameters 0.0 0 0.0 1.57

 Initial_Joint_Velocity 0.0

 Joint_Limits -0.8 2

 Joint_Limit_Spring_Constant 5000.0

 Joint_Limit_Damper_Constant 500.0

 Actuator_Type 0

 Joint_Friction 10.0

 }

 RevoluteLink {

 Name "LCalf"

 Graphics_Model "models/obj_cylinder_x.xan"

 Mass 0.5

 Inertia 0.1 0.0 0.0

 0.0 1.7 0.0

 0.0 0.0 1.7

 Center_of_Gravity 1.5 0.0 0.0

 Number_of_Contact_Points 1

 Contact_Locations 3.0 0.0 0.0

 MDH_Parameters 3.0 0.0 0.0 0.0

 Initial_Joint_Velocity 0.0

 Joint_Limits 0.1 2

 Joint_Limit_Spring_Constant 5000.0

 Joint_Limit_Damper_Constant 500.0

 Actuator_Type 0

 Joint_Friction 10.0

 }

 RevoluteLink {

 Name "LFoot"

 Graphics_Model "models/obj_half_cylinder_x.xan"

 Mass 0.5

 Inertia 0.1 0.0 0.0

 0.0 1.7 0.0

 72

 0.0 0.0 1.7

 Center_of_Gravity 1.5 0.0 0.0

 Number_of_Contact_Points 4

 Contact_Locations 2.3 0.2 0.0

 2.3 -0.2 0.0

 0.0 0.2 0.0

 0.0 -0.2 0.0

 MDH_Parameters 3.0 3.1416 0.0 1.7

 Initial_Joint_Velocity 0.0

 Joint_Limits 0.3 2.9

 Joint_Limit_Spring_Constant 5000.0

 Joint_Limit_Damper_Constant 500.0

 Actuator_Type 0

 Joint_Friction 10.0

 }

 }

 Branch {

 ZScrewTxLink {

 Name "RScrew"

 ZScrew_Parameters -1.4 0

 }

 RevoluteLink {

 Name "RThigh"

 Graphics_Model "models/obj_cylinder_x.xan"

 Mass 0.5

 Inertia 0.1 0.0 0.0

 0.0 1.7 0.0

 0.0 0.0 1.7

 Center_of_Gravity 1.5 0.0 0.0

 Number_of_Contact_Points 1

 Contact_Locations 3.0 0.0 0.0

 MDH_Parameters 0.0 0 0.0 1.57

 Initial_Joint_Velocity 0.0

 Joint_Limits -0.9 2

 Joint_Limit_Spring_Constant 5000.0

 Joint_Limit_Damper_Constant 500.0

 Actuator_Type 0

 Joint_Friction 10.0

 }

 RevoluteLink {

 Name "RCalf"

 Graphics_Model_Index "models/obj_cylinder_x.xan"

 Mass 0.5

 73

 Inertia 0.1 0.0 0.0

 0.0 1.7 0.0

 0.0 0.0 1.7

 Center_of_Gravity 1.5 0.0 0.0

 Number_of_Contact_Points 1

 Contact_Locations 3.0 0.0 0.0

 MDH_Parameters 3.0 0.0 0.0 0.0

 Initial_Joint_Velocity 0.0

 Joint_Limits 0.1 2

 Joint_Limit_Spring_Constant 5000.0

 Joint_Limit_Damper_Constant 500.0

 Actuator_Type 0

 Joint_Friction 10.0

 }

 RevoluteLink {

 Name "RFoot"

 Graphics_Model_Index "models/obj_half_cylinder_x.xan"

 Mass 0.5

 Inertia 0.1 0.0 0.0

 0.0 1.7 0.0

 0.0 0.0 1.7

 Center_of_Gravity 1.5 0.0 0.0

 Number_of_Contact_Points 4

 Contact_Locations 2.3 0.1 0.0

 2.3 -0.1 0.0

 0.0 0.1 0.0

 0.0 -0.1 0.0

 MDH_Parameters 3.0 3.1416 0.0 1.7

 Initial_Joint_Velocity 0.0

 Joint_Limits 0.3 2.9

 Joint_Limit_Spring_Constant 5000.0

 Joint_Limit_Damper_Constant 500.0

 Actuator_Type 0

 Joint_Friction 10.0

 }

 }

 }

}

 74

Appendix 3. Software Overview

Figure A3.1 : UML Diagram of a subsection of the remotega program

The above figure provides a general description of the classes used in the construction

of an application. The Clog class acts as an optional base class, which can be used for

logging and debugging information . The controller used in the illustration above was

the spline controller. Hence the spline, Hspline and RoboSpline classses were

included. The Hspline provides the basic functionality behind a single cubic hermite

spline. The Spline class emulates a multi point spline, and the RoboSpline contains

the actual robot spline controller information. The base genetic algorithm

functionality is encapsulated in the gene, fullgene and pool classes. The gene class

contains the data structres required to manipulate a chromosome. The fullgene

extends this functionality to enable tracking information within the GA. The pool

class is a base class for a population. The RoboPool class is a specific instance of the

 75

gene pool class and contains functionality to encode the spline controller (robospline)

into a format usable in the genetic algorithm (pool). The NAFCom class provides the

network file communications functionality required for parallel evolution. This class

diagram was extracted from the remotega program, a standalone version of the

architecture described in this thesis.

