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Abstract 
 

Designing a control system for legged locomotion is a complex process.  

Human engineers can only produce and evaluate several configurations, although 

there may be numerous competing designs that should be investigated.  Automating 

design of the control system allows the evaluation of thousands of competing designs, 

without requiring prior knowledge of the robot’s walking mechanisms.  

 

Development of an automated approach requires the implementation of a control 

system, a test platform, and an adaptive method for automated construction of the 

controller. Evolutionary algorithms provide a powerful method for automated 

problem solving. As with previous approaches, a genetic algorithm was successfully 

applied to the construction of locomotion controllers.   

 

Two control systems were presented and evolved.  Both control systems successfully 

generated locomotion controllers for bipedal robots. A detailed investigation of the 

spline control system was performed, and the extensibility of the controller 

investigated. The spline controller was applied to multiple robots with widely varying 

morphology and successfully demonstrated dynamic control for a number of legged 

robots. 
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1. Introduction 
 

1.1 Motivation 
 

Legged robots exhibit a number of advantages for locomotion [1]. The 

mobility offered by legged vehicles is far greater than that of wheeled or tracked 

vehicles, as they are not limited to paved terrain. The increased mobility offered 

allows for a far larger range of applications to legged vehicles. Another incentive for 

exploring the use of legs for locomotion is that it provides an insight to the systems 

responsible for human and animal locomotion. Humans are capable of complex 

movements whilst maintaining orientation, balance and speed. Robots that could 

mimic human movements could seamlessly integrate with the human world, enlarging 

the number of possible applications for legged vehicles. This makes the study of 

bipedal locomotion particularly attractive. 

 

Although there are a multitude of existing locomotion control techniques and well 

described design processes, the automated generation of these controllers for robots 

provides significant advantages. Often the design process is quite complex, time 

consuming to perform, and requires the control system to be completely redesigned 

for small alterations to the robot [2]. Furthermore, humans often have difficulty in 

understanding which sensors to incorporate to provide the best possible feedback to 

the robot. Designers are often biased towards feedback sensors that are present in 

humans, such as vision and touch. These senses are not necessarily the best sensors 

for the desired application. 

 

Automated evolution of the locomotion controller frees the robot designer from the 

controller design process, removing possible human bias. The resulting control 

systems are more flexible, and the evolution enables the controller to utilize sensory 

inputs that would normally be disregarded by human designers. The resulting 

controllers are more adaptive to the robot’s environment. They are also more robust, 

flexible, and usually provide superior performance to human designed controllers [2]. 
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1.2 Objectives 
 

There were three major objectives to this project. Firstly, to create a software 

system which could simulate robot locomotion. Secondly, to evolve the locomotion 

control system and investigate various aspects of the evolutionary and control 

strategies. Finally, to optimize the performance of the system with respect to the 

evolution time required to generate the desired gait. 

 

The construction of the software simulation system involved: 

• The construction of a control system to generate the control signals required to 

drive the actuators of a robot. 

• A mechanical simulator for simulating the walking patterns generated from the 

control system. 

• Implementing a set of sensors in the mechanical simulator for providing feedback 

to the control system. 

• Creation of a set of tools to simplify robot modeling, and to provide a front end to 

the software to improve ease of use. 

 

The construction of the evolutionary software involved: 

• Implementing a genetic algorithm for evolving the control parameters 

• Creating a system to extract information from the genetic algorithm, allowing the 

investigation of the performance and effects of different genetic operators and 

selection schemes. 

• Encoding the control parameters into a format evolvable by the genetic algorithm 

 

Additional objectives were: 

• To incorporate feedback into the controllers to increase the robustness of the gait, 

allowing the robot to maintain its desired path despite perturbations.  

• Extending the control system to allow the robot to maneuver over irregular terrain. 

• Investigating various aspects of the genetic algorithm that impacted on its 

performance. 

• Abstracting the system from robot morphology, enabling control of non-legged 

robots.  
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1.3 Applications 
 

There are many practical application areas for legged robots. Progress to date 

has been limited to entertainment robots [2], exploration robots [3], and research 

robots [4,5,6,7]. It has been generally accepted that successful robot designs will need 

to be suitable to human environments [8]. Bipedal robots would have the distinctive 

ability to integrate with society and maneuver within the domestic environment. This 

would allow for bipedal robots to have uses in almost all areas, from household tasks 

to office and factory work. 

 

Evolutionary locomotion systems for legged vehicles have already been employed in 

the development of existing entertainment robots [2] and in the special effects 

industry. Realistic modeling of human and animal locomotion puts a large strain on 

animators using traditional animation techniques. Evolving dynamically simulated 

gaits with genetic algorithms generates realistic and visually pleasing results [9]. Sony 

[2] utilized evolutionary strategies to optimize the performance of their gaits for the 

AIBO robot, and utilized similar systems to overcome manufacturing imperfections. 

 

Further extensions to such systems would allow the entire control system to be 

evolved based on the robot’s designs. This would significantly reduce the 

development time to construct robots, and simplify the design process. 
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1.4 Thesis Outline 
 

The remainder of this thesis is organized as follows. Chapter Two introduces 

the theory behind genetic algorithms, various control systems, and provides a basic 

introduction to walking and sensors. Chapter Three reviews background literature and 

presents some of the results of relevant previous research in control, robotics, 

computer graphics, neuroscience and evolutionary algorithms. Chapter Four provides 

an overview of the architecture and discusses the implementation details of the 

system. Investigations of the system and its results are presented in Chapter Five. An 

overall summary, as well as a future outlook is given in Chapter Six. The Appendix 

describes the software system developed for conducting the investigations, as well as 

example robot configuration files, and a fully illustrated gait sequence. 
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2. Theory 
 

2.1 Walking 
 

 Human and animal gaits have been extensively studied for a lengthy period of 

time, starting in the late 18th century with researchers such as Eadweard Muybridge 

[10]. As early walking robots were constructed, a system for balancing the robots was 

required. Statically balanced robots maintain balance by ensuring the center of mass is 

within the supporting leg base area. As a result, statically balanced robots feature a 

small footstep, and slow speed. With further research into walking robots, dynamic 

walking was realized [5]. During dynamic walking, the center of gravity may lie 

outside the supporting leg base area during some periods of the walk cycle. The 

removal of the balance constraint allows faster walking speeds to be achieved [5]. 

 

2.2 Evolution 
 

Evolutionary algorithms are a set of search and optimization algorithms, 

which make use of some of the principles of biological evolution [9]. These types of 

algorithms typically specify what is to be done, rather than how the task should be 

accomplished [11]. Although evolutionary algorithms are only a basic approximation 

to the biological evolutionary process in reality, they have been proven to provide a 

powerful means of problem solving [12,13,14,15,4,16]. 

 

2.2.1 Genetic Algorithm  
 

A common implementation of an evolutionary algorithm is the Genetic 

Algorithm (GA) [11]. As with most evolutionary algorithms, the Genetic Algorithm is 

based on Darwin’s theory of natural selection, ensuring the survival of the fittest. The 

genetic algorithm operates on a set of encoded variables representing the parameters 

for the potential solution to a problem.  The parameters (or genes) are combined 

together to form a string of values, referred to as a chromosome [17].  Each of these 

possible solutions are then assigned a fitness value according to how well it solves the 

problem. The better solutions are then selected to “reproduce” with other solutions, 
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generating a new set of chromosomes which have inherited features from the 

chromosomes they were created from. The least fit (worst solutions) are less likely to 

be selected for reproduction, and thus eventually are removed from the set of 

chromosomes on which the algorithm operates. 

 

The basic methodology for the genetic algorithm is presented below: 

1. Randomly initialize a population of chromosomes 

2. While the terminating criteria has not been satisfied 

a) Evaluate the fitness of each chromosome 

b) Remove the lower fitness individuals 

c) Generate new individuals, determined by a certain selection scheme, 

utilizing selected operations. 

 

Each iteration of these steps creates a new population of chromosomes. The total set 

of chromosomes at one iteration of the algorithm is known as a generation. As the 

algorithm progresses, it searches through the solution space, refining the solutions to 

find one which will fulfill (or come as close as possible to fulfilling) the desired 

criteria, as described by the fitness function. 

 

2.2.2 Fitness Functions 
 

Each problem to be solved requires a unique fitness function describing the 

problem. Given a particular chromosome a fitness function must return a numerical 

value indicating the appropriateness of a solution with respect to the overall goal [18]. 

For some applications, such as function optimization problems, the fitness function 

will simply return the value of the function itself. However, for many applications 

there is no straightforward performance measurement of the goal. Thus, the fitness 

function must be expressed as a combination of the desired factors. 
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2.2.3 Selection Schemes 
 

In the natural world the organisms that reproduce the most before dying will 

have the greatest influence on the next generation. In order to simulate this effect in 

the genetic algorithm a selection scheme is employed. The selection scheme 

determines which individuals of a given population will contribute to form the new 

individuals for the next generation.  Tournament selection, Random selection and 

Roulette Wheel selection are three commonly used selection schemes.   

 

Tournament selection operates by selecting two chromosomes from the available 

pool, and comparing their fitness values when they are evaluated against each other. 

The better of the two is then permitted to reproduce. Thus, the fitness function chosen 

for this scheme only needs to discriminate between the two entities. In roulette wheel 

selection (sometimes referred to as fitness proportionate selection [19]) the chance for 

a chromosome to reproduce is proportional to the fitness of the entity. Thus, if the 

fitness value returned for one chromosome is twice as high as the fitness value for 

another, then it is twice as likely to reproduce. However its reproduction is not 

guaranteed as in tournament selection.  

 

Random selection randomly selects the parents of a new chromosome from the 

existing pool. Any returned fitness value below a set operating point is instantly 

removed from the population. Although it would appear that this selection mechanism 

would not produce beneficial results, this selection mechanism can be employed to 

introduce randomness into a population that has begun to converge early than desired.  

 

Although genetic algorithms will converge to a solution if all chromosomes 

reproduce, it has been shown that by duplicating unchanged copies of the 

chromosomes future generations will generally produce a significant increase in the 

convergence rate towards the optimal solution.  
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2.2.4 Operators 
 

The operators comprise the method by which one or more chromosomes are 

combined to produce a new chromosome. Traditional schemes utilize only two 

operators: Mutate, and Crossover [17]. Crossover takes two individuals and divides 

the string into two portions at a randomly selected point inside the encoded bit string. 

This produces two “head” segments and two “tail” segments. The two tail segments 

for the chromosomes are then interchanged, resulting in two new chromosomes, 

where the bit string preceding the selected bit position belongs to one parent, and the 

remaining portion belongs to the other parent. This process is illustrated in Figure 1. 

The mutate operator (Figure 2) randomly selects one bit in the chromosome string, 

and inverts the value of the bit. Historically, the crossover operator has been viewed 

as the more important of the two techniques for exploring the solution space, however 

without the mutate operator portions of the solution space may not be searched, as the 

initial chromosomes may not contain all possible bit values [17]. 

 

Figure 1 - The crossover operator 

 

Figure 2 – The mutate operator 
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There are a number of available extensions to the set of traditional operators. The two 

point crossover operates similarly to the single point crossover described previously, 

except that the chromosomes are now split in two positions rather than just one [12]. 

The mutate operator can also be enhanced to operate on portions of the chromosome 

larger than just one bit, increasing the randomness that can be added to a search in one 

operation. Further extensions rely on modifying the bit string under the assumption 

that portions of the bit string represent non-binary values (such as 8 bit integer values, 

or 32 bit floating point values). Two commonly used operators that rely on this 

interpretation of the chromosome are the Non-Binary Average, and the Non-Binary 

Creep operators [12]. Non-Binary Average interprets the chromosome as a string of 

higher cardinality symbols and calculates the arithmetic average of the two 

chromosomes to produce the new individual. Similarly Non-Binary Creep treats the 

chromosomes as strings of higher cardinality symbols and increments or decrements 

the values of these strings by a small randomly generated amount [12]. 

 

2.2.5 Encoding 
 

The encoding method chosen to transform the controller parameters to a 

chromosome can have a large effect on the performance of the genetic algorithm. A 

compact encoding allows the genetic algorithm to perform efficiently. There are two 

common encoding techniques applied to the generation of a chromosome [20]. Direct 

encoding explicitly specifies every parameter within the chromosome, whereas 

indirect encoding uses a set of rules to reconstruct the complete parameter space. 

Direct encoding has the advantage that it is a simple and powerful representation, 

however the resulting chromosome can be quite large. Indirect encoding is far more 

compact, but it often represents a highly restrictive set of the original structures. 

 

2.2.6 Staged Evolution 
 

 A number of possibilities exist to enhance the performance of a genetic 

algorithm. Staged evolution is based on the concept of behavioral memory, and 

increases the convergence rate by introducing a staged set of manageable challenges 

[21]. Initially limiting the search to a subset of the full solution space enables an 

approximate solution to be determined. Incrementally increasing the complexity of 



 10 

the problem will increase the solution space, providing the possibility of increased 

performance as further refinements of the solution are possible. Applying this strategy 

to a particular problem task requires that the problem is capable of being divided into 

smaller sub-tasks that can be sequentially solved.  

 

2.3 Control Systems 
 

There are a number of control systems that are applicable to robot locomotion. 

Possible control systems range from simple oscillators [15] to neural networks [2] to 

simple assembly programs [22]. The simplest oscillators consist of a set of sinusoidal 

function generators whose outputs are combined to generate the control signal for an 

actuator. These systems can represent a range of outputs by altering the phase and 

amplitude of the sinusoids [15]. Such systems are generally incapable of expressing 

the complexity required for sustained locomotion [9]. Thus, more sophisticated forms 

of control are desirable. 

 

2.3.1 Neural Networks 
 

Neural Networks are a popular form of controller for robot locomotion 

[13,14,23,24,4,21]. These controllers complement the biological systems believed to 

be responsible for walking movement in humans and other animals. This form of 

control allows the application of the knowledge gained by neuroscientists studying 

rhythmical controllers in animals [23].  

 

Neural Networks consist of a set of interconnected processing element nodes, whose 

functionality is based on the animal neuron [25]. Neurons process information by 

summing the signals that appear at the node’s inputs. Each of the input signals is 

multiplied by a weight to simulate differing input strengths. The weighted sum is 

passed through an activation function, which will produce an output if the 

transformed sum passes a calculated threshold level [25]. Traditionally, artificial 

neurons have been idealized for the sake of mathematical tractability [14]. One of the 

simplest, and most commonly implemented neuron models, is the sigmoidal neuron 

[13]. This neuron is a simple extension of the binary neuron model to express a 
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continuous softened step-function. The equations governing the output of the 

sigmoidal neuron are given below.  

jSn
j jiwiy ∑ == 1  

iyi e
S −+

=
1

1  

where: jiw is the weight connecting neuron j to neuron i, and 

 iy is the internal state of neuron i 

(2.1)

 

(2.2)

Equation 1- Sigmoid Neural Model 
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Figure 3 – Sigmoid Function 

There are many extensions possible to this simple model, and many have been applied 

to the area of robotic locomotion.   

 

2.3.2 Splines 
 

 Splines are piecewise polynomial functions expressed by a set of control 

points [26]. There are many different forms of splines, each with their own attributes. 

There are two desirable properties for the splines to posses.  

• Continuity, so that the generated control signal translates to smooth velocity 

and acceleration changes.  

• Locality of the control points, to reduce the influence of alterations of one 

control point to the overall shape of the spline. 
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Two of the most commonly used splines in computer graphics [26] have also been 

applied to robotic control [27]. The B-spline is defined by Equation 2. The B-spline 

features two important properties, locality and continuity. Each segment of the B-

spline curve is dependent on only a limited number of the neighbouring control 

points. Thus a change in the position of a distant control point will not alter the shape 

of the entire spline [26,27]. The continuity of the spline is determined by the order of 

the polynomial functions utilized. A B-spline of order K is also generally CK-2 

continuous.   

 

A B-spline function with four control points s0,…,s3 parameterized by t=0,…,1, is 

expressed in Equation 2. 
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(2.4)

Equation 2 – The B-Spline 

 

The Hermite spline is expressed by Equation 3. Unlike the B-spline, the curve 

generated from the spline passes through the control points that define the spline. 

Thus, a set of predetermined points can be smoothly interpolated by simply setting the 

predetermined points as the control points for the Hermite spline. Like the B-spline, 

the curve generated from the Hermite spline is dependent only on the neighboring 

control points. The Hermite spline can also be constrained such as to achieve CK-2 

continuity. However, the disadvantage of the Hermite spline is that the control point 

tangent values must be explicitly specified.  
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The function used to interpolate the control points, given starting point p1, ending 

point p2, tangent values t1 and t2, and interpolation parameter s, is shown below: 

24132211)( ththphphsf +++=  

where 

h1=2s3-3s2+1 

h2=-2s3+3s2 

h3=s3-2s2+s 

h4=s3-s2 

                                   10 ≤≤ s  

(2.5)

 

 

(2.6)

Equation 3 – Hermite Spline 

 

2.3.3 PID Controllers 
 

Proportional-Integral-Differential (PID) controllers provide robust 

performance under a wide range of operating conditions [28]. Only three parameters 

need to be determined to construct a PID controller, the proportional gain, integral 

gain and derivative gain [29]. A proportional controller reduces the time required for a 

response, however the response value will never completely settle. Integral control 

will eliminate these oscillations at the expense of increased response time. Derivative 

control increases the systems stability, thus reducing the overshoot, and may improve 

the transient response. The transfer function for a PID controller is given in Equation 

4. 

 

sK
s

KKsg ⋅++= 321)(  
(2.7)

Equation 4 – PID Controller Transfer Function 

 

 

 



 14 

 

 

2.4 Sensors 
 

To enable feedback within a control system, some form of sensory input is 

required to provide the desired information. There are a number of sensors that 

provide various types of information about the current state of a system.   

 

2.4.1 Inclinometer 
 

Inclinometers return an object’s angle of inclination about a specified axis. 

These sensors are used to monitor a robot’s movement to obtain information about the 

slope of the terrain, or to provide corrective feedback. Inclinometers contain a 

conductive liquid that changes the resistance between two electrodes when tilted. The 

resistance value returned from the inclinometer is proportional to the orientation 

angle. 

 

2.4.2 Positioning 
 

Distance sensors determine the distance between an object and the sensor. 

There are numerous forms of distance sensors, such as vision based methods, sonar, 

radar, and infrared [30]. Most distance sensors operate by emitting a signal (such as 

an ultrasonic or infrared pulse) and detect the time or angle of the signal reflected 

from the object. Combining a set of distance sensors with compass sensors allows the 

robot’s position and orientation to be accurately determined, provided the robot is 

within a controlled environment.  
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3. Literature Review 
 

3.1 Walking and Legged Robots 
 

 Interest in the study of walking dates back millennia, but scientific research 

first began in the late 18th century. The two most significant early studies of gaits 

were by Marey and Muybridge [14]. Marey [31] recorded stepping patterns from the 

feet of subjects through the use of pneumatic recording devices. Muybridge [5] 

investigated animal gaits through the use of high-speed photography. Previous to this, 

attempts had been made to mimic human life with complicated systems of levers and 

bellows [14].  

 

The earliest walking machines used gears to produce fixed patterns of leg motion for 

walking. In 1968 General Electric developed a more agile walking truck capable of 

climbing over large obstacles [32]. This walking truck however still relied on a human 

as the controller. The earliest self-contained computer controlled walking robot was a 

hexapod developed by Sutherland and Raibert in 1986 [33].  By this time a number of 

control algorithms for legged locomotion had been proposed.  

 

3.2 Genetic Algorithms 
 

Genetic algorithms were first implemented on a computer by John Holland 

[11]. Investigations into further extensions of the basic algorithm were examined by 

several researchers [12]. DeJong [34] investigated the multi-point crossover operator, 

and concluded that the two-point crossover provided benefits, however any higher 

order crossover provided little improvement. Bramlette [35] proposed interpreting 

chromosome symbols as integer values. Davis [36] indicated that many problem 

parameters are often numeric, and thus interpreting the chromosome in its original 

numeric format can be advantages. This allows the definition of more meaningful 

crossover and mutate like operators. As a result, the non-binary average operator 

emulates the crossover operator, and the non-binary creep imitates the mutate 
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operator. Koza [37] applied evolutionary techniques to construct lisp programs, and 

outlined the fundamentals of the genetic programming approach. 

 

3.2.1 Evolving Controllers 
 

Genetic algorithms were applied to the evolution of neural controllers for 

robot locomotion by numerous researchers [13,14,15,4,16]. Lewis et al. [4] 

successfully generated locomotion patterns for a hexapod robot using a simple 

traditional genetic algorithm with one point crossover and mutate. Isjpreet [16] 

evolved a controller for a simulated salamander using an enhanced genetic algorithm.  

The large number of experiments in this area clearly indicates that genetic algorithms 

are capable of evolving neural controllers that describe legged robot locomotion [13].  

 

The genetic programming approach was shown to successfully generate locomotion 

patterns for various control strategies. Banzhaf et al. [38] demonstrated the pure 

genetic programming approach to develop assembly programs for robot control. The 

system was then expanded to control a hexapod robot [27] using a B-Spline based 

approach. Lewis also applied genetic programming to his neural controller [21]. This 

demonstrated that both the genetic programming approach and the genetic algorithm 

approach should both be capable of evolving adequate control systems for legged 

locomotion [21,16]. 

 

Parker et al. [6] explored the use of cyclic genetic algorithms for locomotion control 

of a small hexapod robot. The system demonstrated that the cyclic nature needed to 

generate the oscillatory motions necessary for legged robot locomotion could be 

abstracted from the control system and transferred and encoded into the genetic 

algorithms chromosomes. 

 

3.2.2 Fitness Functions 
 

Ijspeert and Kodajabachian developed a set of fitness functions for evolving 

swimming gaits for a simulated lamprey [39]. Their function was aimed at developing 

swimming gaits that resulted in high swimming speeds, and was able to smoothly 
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alter its swimming speed and change directions at any time. The fitness function 

Ijspeert et al utilized is given in Equation 5. 

 

]0.1,)05.0[(____ 4∈⋅⋅⋅= turningfitramgespeedfiteedfit_max_spcontorsionfitfitness (3.1)

Equation 5 – Ijspeert’s Fitness Function 

This fitness function rewards four factors: contorsion (around the center of the 

lamprey from head to tail), the maximum speed achievable, the range of speeds 

capable, and the ability to alter the lampreys direction.  

 

Reeve [14] experimented with various legged robots and investigated a number of 

fitness functions. Although Reeve reports that the Speed5 fitness function (average 

speed of the walker over five seconds) performs adequately, improvement on the 

performance of the algorithm can be achieved through the use of more complex 

functions. Reeve proposed five different extended fitness functions: 

• FND – (forward not down) The average speed the walker achieves minus the 

average distance of the center of gravity below the starting height. 

• DFND – (decay FND) Similar to the FND function, except it uses an 

exponential decay of the fitness over  the simulation period. 

• DFNDF – (DFND or fall) As above, except a penalty is added for any walker 

whose body touches the ground. 

• DFNDFA – (DFNDF active) This function incorporates features of the actual 

control system into its evaluation of the gait. The function evaluates the 

individual neurons and ensures they are active, and are not stuck at an on or 

off value. 

• DFNDFO – (DFNDFA oscillator) As above, with the added constraints that 

both the neurons and legs oscillate. 

 

Ziegler et al [27] utilized fitness functions which compared the generated trajectory of 

a gait to the desired path. The trajectory was specified to include an initial 

acceleration, then a straight walk along the desired path, and a deceleration. The 

square difference of the actual walk from the desired was then summed over the 

duration of the gait and returned as the fitness value. In order to optimize the 

performance of the evolution algorithm, Ziegler et al introduced premature 
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termination conditions to the fitness function. The premature termination condition 

ensured that the initial trajectory was within a valid range of the desired trajectory. 

Thus, if the desired trajectory were forwards movements, then any gait that produced 

backwards movement would be terminated. 

 

3.2.3 Staged Evolution 
 

De Garis first introduced the concept of behavioral memory to robotics [40]. 

De Garis proposed that the evolution of a controller is dependent on the starting 

conditions of the search, thus preliminary controllers could be evolved using less 

constrained fitness functions. Lewis et al. extended this concept and introduced staged 

evolution theory. Staged evolution implies that sub-controllers can be evolved which 

can then be combined to create the overall controller. Lewis et al demonstrated the 

successful application of this technique to the evolution of walking patterns for a six-

legged insect like robot using a neural controller.  The evolution was performed over 

two phases. Initially, individual oscillators were evolved. These then combined to 

create the overall neural network that controlled the robot’s walking patterns. During 

the second phase of evolution, the weightings between individual oscillators within 

the network were evolved to produce an optimized controller. 

 

3.3 Control Systems 
 

A large number of control systems have been applied to legged robot 

locomotion. Simple sinusoidal oscillatory systems have been commonly used in 

computer graphics applications, due to their ease of evolution [15]. However Arnold 

indicates that these systems are insufficient for describing satisfactory legged motion 

in realistic dynamic simulations, or on real robot hardware [9]. Arnold investigated 

spectral synthesis techniques [9], and generated gaits for a range of virtual creatures. 

The system provided satisfactory performance in the computer graphics domain and 

generated lifelike movements.  Incorporating sensory information into the spectral 

system proved to be difficult, and thus other methods for robot control need to be 

considered for practical application. 
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3.3.1 Spline Controllers 
 

Machine code control architectures for robot control were explored by 

Banzhaf et al [38]. However, when this architecture was applied to robot locomotion 

the evolution periods required to generate the controller were too lengthy for the 

system to be of practical use. Furthermore, the control signals generated began to 

approximate spline behavior. A B-Spline approach was then explored and 

successfully produced a controller that described bipedal locomotion for both 

simulated and real robots. Zhang et al. [41] have been investigating fuzzy control 

systems for numerous control applications, and have determined that B-Spline hyper-

surfaces can adequately describe many control applications. This indicates that spline 

based control systems can be seamlessly integrated with other control methods, and 

may also provide significant performance gains from doing so. Banzhaf et al. [38] 

indicates that this form of control is relatively unexplored for locomotion, and future 

work needs to be completed in order to determine the efficiency of the spline based 

control architecture. 

 

3.3.2 Neural Control 
 

Neural networks have traditionally been the controller of choice for automated 

gait generation. The investigation of the biological mechanisms behind animal 

locomotion has been the driving force behind advances in neural control in legged 

robot locomotion. Although Sigmoid neurons are capable of producing oscillatory 

output, the number of neurons needed to achieve this negates any of the benefits 

obtained by using such a simple model [13]. MacGregor proposed a neuron model 

based on a simplified version of Hodgkin and Huxley’s equations [42]. The model 

was developed to provide repetitive neuron firing based from three first order 

differential equations. 
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where: E,Th,GK and Spike are the output state variables,  

 Current is the input function,  and 

 EK, Th0, Tmem, ampGK, and ampThreshold are constants 

(3.2)

 

(3.3)
 

(3.4)
 

(3.5)

Equation 6 – MacGregor’s Repetitive Firing Model 

 

Beer [24] devised continues time recurrent neural networks to overcome the 

difficulties in generating the oscillatory output necessary for legged locomotion. The 

equations governing Beer’s neuron model is described below (refer to Equation 1 for 

previous parameter definitions). 
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where: iθ is a bias term, and 

 iτ is the adaptation rate of the neuron 

(3.6)

 

(3.7)

Equation 7 – Beer’s Neuron Model 

 

Although this neuron model is only a first order differential equation, it was still 

shown to produce complex oscillatory controΦl signals when interconnected in a 

network [14]. Beer demonstrated that the model was capable of producing control 

signals required for a statically stable walking robot. Taga [43] extended this model to 

two coupled first order differential equations. The extended model proved to be 

capable of generating a larger variety of control signals and oscillators. Taga’s model 

was used to control a dynamically stable bipedal robot. Wallen et al [23] extended this 

concept further to produce a third order model given in Equation 8. 
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where: +
iξ and iθ are the internal state of neuron i, and 

 ±ψ  is the set of all excitory (or inhibitory) inputs, and 

 iΓ and iµ are bias terms 

(3.8) 

 

(3.9) 
 

(3.10)
 

(3.11)

Equation 8 – Wallen’s Neuron Model 

 

This model was deduced from the analysis of the neurons found in the lamprey spinal 

cord, and was successfully used to simulate the neural control of swimming lampreys. 

Krueger [13] successfully utilized his neural model to generate walking gaits for 

simulated quadrupeds.  

 

Some of the problems encountered during the evolution of neural models was the 

difficulty in evolving acceptable oscillators, and the methods in which to combine the 

oscillators to produce the desired control signals. In some cases the neural oscillators 

needed to be designed by hand [4], and only the combined network of oscillators 

could be evolved. Currently, the optimal method for organizing the controlling neural 

network is unknown, and thus a fully interconnected network has been used [13]. This 

significantly increases the complexity of the system that needs to be evolved, and 

leads to undesirably long evolution periods. 
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4. Design 
 

As with previous approaches [27,14,13,9], the proposed system consists of 

three major sub systems:  

• A genetic algorithm to evolve the parameters for the control system.  

• The control system itself, to generate the signals required to produce a 

walking pattern 

• A mechanical simulator for executing the generated control signals and 

evaluating the resulting gait.  

 

4.1 Mechanical Simulator 
 

The physical simulator is one of the most crucial components of the overall 

system, as the practical usefulness of the generated gait is limited by the capabilities 

of the simulator. Although a number of control systems can only describe a limited 

subset of the required control signals for legged locomotion [15], the control system 

can always be expanded [9], or altered to a form which is capable of more complex 

control [13]. Thus, the limiting factor on testing the gait is the accuracy and 

capabilities of the simulator itself. 

 

4.1.1 Available Simulators 
 

There were four simulators under consideration for use during the course of 

the project. 

 

MathsEngine[44] produces a commercial dynamic simulator design for use in 

computer games. It boasts the best performance of all publicly available simulators 

[45]. The system has been previously used to generate gaits for simulated robots [46], 

but has never been used in a capacity that indicates its practicality when transferred to 

a real robot. The simulator only has first order accuracy making it inappropriate for 

practical robotics use. 
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Darwin2k [47] is a simulator produced by Chris Ledgers PhD research [19]. The 

simulator was designed with realistic simulations in mind. The system has since been 

used for some robot design, however there have been no examples of control 

programs developed on the simulator which have been immediately transferable to an 

identical hardware system. To date, the software is still unstable and largely 

incomplete. 

  

AREO [48] is a free simulator designed for simulations for computer graphics 

applications. It is a relatively fast simulator with reasonable accuracy [45]. Banzhaf et 

al [27] used the simulator as a base for the evolution of a controller for both simulated 

and real legged robots. The simulator was considerably modified to enable its use in 

this form [27]. 

 

Dynamechs [49] is the simulator that is the result of McMillans PhD work [50]. The 

system was developed for simulating an underwater robot constructed by the US 

Naval Postgraduate School [49]. The simulator provides a number of configurable 

integration methods enabling highly accurate and fast dynamic simulations [45]. The 

simulator however does not provide full collision simulation. 

 

The desired characteristics for the simulator were: 

• Proven, tested, realistic simulations 

• Accurate and fast simulation 

• Portable (between both Linux and Windows) 

• Free, and Open Source 

• Ability to be easily extended to simulate any sensors, actuators or joints 

required. 

 

The only proven system that was portable across both the Linux and Microsoft 

Windows platforms, and was open source was Dynamechs. Hence the Dynamechs 

simulation library was used in this project, despite its limited collision simulation 

capabilities. 
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4.1.2 Robot Structure 
 

The robot structure is described within the Dynamechs v4.0 format [51]. A 

Dynamechs robot is expressed in terms of its links, with separate model files to 

describe the morphology of the robot. The link format is depicted in Figure 4. 

 

 

Figure 4 – Dynamechs Link Structure 

 

The base object for every robot is the “articulation”, which contains the starting 

position of the robot specified in Cartesian coordinates, and the orientation specified 

as a quaternion. A reference member, indicating the “body” of a robot, must then 

directly follow the base articulation. The base articulation and all other link objects 

contain the following information structures: 

• Name, A string which describes the object 

• Graphics Model, Points to the file containing morphological information 

• Inertia, This is a 3x3 inertia matrix. The inertia matrix needs to be calculated 

from the mass and dimensions of the object. 

• Center_of_Gravity, A 3d Cartesian point indicating the center of gravity 
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• Contact_Locations, This is a list of 3d points where the object can make 

contact with the terrain. This is usually simply a list of vertex positions from 

the graphics model. 

 

In addition to these data structures, the base object holds information on the position 

of the base (a Cartesian point), its orientation (as a quaternion) and its velocity (as a 

Cartesian vector). 

 

Other links that follow the base link contain additional information describing the 

location of the joint in modified Denavit-Hartenberg format [50]. The Denavit-

Hartenberg notation consists of four parameters: 

• ai, the distance from the preceding link to the current link with respect to the 

previous links ‘x’ axis. 

• αi, the angle which the link has been rotated in the ‘x’ plane 

• di, the perpendicular distance from the preceding link to the current link. i.e. 

the ‘z’ (up) axis 

• θi, the angle which the link has been rotated in the ‘z’ plane. 

Figure 5 – Modified Denavit-Hartenberg Parameters and Link coordinate 

Assignment [50] 
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4.1.3 Modeling 
 

Dynamechs did not have a built in modeling utility, thus an external 3d design 

package needed to be either created or modified to support the Dynamechs file 

format. The G-MAX [52] modeling environment was initially under consideration for 

extension as it was a widely used professional modeling package. However, the 

development time required to create the software to integrate with the package was 

expected to exceed the release date for a purpose built software package [53]. 

RobotBuilder was a robot modeling package which could directly export to the 

Dynamechs file format. Unfortunately the package did not automate the required 

calculations for modeling individual model parts. 

 

A separate utility was created to simplify the generation of various basic shapes. The 

utility allowed users to view a rotated version of the object, and would calculate the 

orientation quaternion. The other major function the utility performed was the 

calculation of the inertia matrix for the objects. The equations used to calculate the 

moments of inertia for a rectangular prism are given in Equation 9. 
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where: a,b,c are the objects width, height, and depth 

 m is the mass, 

 g is the acceleration of gravity, 

 rho is the density, and 

 I is the mass moment of inertia. 

 

 

 

(4.1)
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 Equation 9 – Inertia for Rectangular Prism 

 

Figure 6 illustrates the interface presented to the user for constructing various objects. 

The user can specify the dimensions and color of the object, and the center of 

reference for the object. The utility calculates the inertia matrix values for the user 

and can export the data to a format directly readable by RobotBuilder and 

Dynamechs. 

 

 

Figure 6 – Dynamechs object format construction utility 

 

4.1.4 Simulation Parameters 
 

The simulation requires a number of parameters to be defined. These include the 

integration step size, physical constants, and terrain information. An appropriate 

integration step size was previously determined by Kruger [13]. For a percentage 

error of less than 5% a step size of 30ms was required.  Subsequently, this value was 

also used in the simulations for this project. 

 

The physical constants were taken from the underwater quadruped project undertaken 

by the US Military Postgraduate School [49].These values were chosen as this was the 

only available information from a system which successfully realistically modeled a 

robot.  The values are listed in Table 1. 

 



 28 

 

Constant Value 

Gravity -9.81 

Ground Planar Spring Constant 55000.0 

Ground Normal Spring Constant 75000.0 

Ground Planar Damper Constant  500.0 

Ground Normal Damper Constant 500.0 

Ground Static Friction Coefficient 2.840 

Ground Kinetic Friction Coefficient 2.010 

Table 1 – Table of Dynamechs Physical Constants 

 

4.1.5 Simulating Sensors 
 

There were a number of sensors that needed to be simulated in the mechanical 

simulator. The sensors that were required during the course of this project were: 

• Inclinometers 

• Position Sensors 

• Orientation Sensors 

 

The inclinometers were simulated by extracting the orientation quaternion from 

the Dynamechs object, and transforming it to a rotation matrix. The rotation matrix 

was then converted to a Euler angle format to provide angular information on the 

orientation of the object. Distance sensors were simulated by recording the starting 

locations of the objects in the scene, and then extracting the Cartesian coordinates for 

the location of the objects at any time in the simulator. The orientation of a robot 

could be extracted using a method similar to the conversion process used to simulate 

the Euler angles. None of the simulated sensors included any form of white noise or 

drift, and thus were completely idealized sensors. 
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4.2 Genetic Algorithm  
 

The implemented genetic algorithm was required to evolve any control system 

for robot locomotion, and provide the means to do so in the most efficient manner 

possible. In order for the system to operate on any control system, an encoding 

method for the controller needed to be found such that the genetic algorithm would 

always be able to evolve the controller parameters. Consequently, the genetic 

algorithm could not operate using specific knowledge of the controller’s parameter 

types. To achieve efficient evolution, a number of operators and selection schemes 

were implemented to allow the configuration of the genetic algorithms parameters to 

achieve a reduction in the evolution period. 

 

4.2.1 Operators 
 

To allow for a comparison against the traditional genetic algorithm form [17], 

the crossover operator was implemented as a single point crossover, and the mutate 

operation was implemented as a single random bit inversion. Davis [36] indicated that 

performance enhancements can be obtained by treating the chromosome as a string of 

numeric values. Hence the extended operators implemented were the non-binary 

average, creep, and mutate. Each of the non-binary operators treated the symbol 

alphabet as 8-bit unsigned integer values. Thus, the non-binary average operator 

simply arithmetically averaged corresponding 8-bit integers from two chromosomes, 

and generated a new chromosome based on the resulting values. The creep operator 

selected one 8-bit value randomly within the chromosome and randomly added or 

subtracted a randomly generated value ranging between one and two. The non-binary 

mutate operator, simply replaced an entire 8-bit value within the chromosome with a 

randomly generated 8-bit value. 

 

4.2.2 Selection Schemes 
 

In order to provide a flexible genetic algorithm implementation, a number of 

selection schemes were implemented.  Compatibility with the traditional genetic 
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algorithm [17] was provided through Roulette Wheel selection. For research purposes 

two more selection schemes, Random and Elitist were implemented. Random 

selection selected the parent chromosomes at random, with no respect to the fitness 

value of the chromosome. However, negatively fit chromosomes (that is, robots which 

fell over or otherwise terminated) were still removed from the pool. Elitist selection 

performed weighted Roulette Wheel selection on the top ten percent of chromosomes. 

Thus highly fit chromosomes were far more likely to contribute to future generations 

than lower fitness valued chromosomes, which could not contribute at all. 

 

4.2.3 Fitness Functions 
 

The fitness functions implemented was based on the combined findings of 

Ijspeert [39], Reeve [13], and Ziegler et al [27]. Both Ijspeert and Reeve found 

increased performance when controller and morphology specific information was 

added to the fitness functions. Reeve found that by evaluating individual neurons 

performance the fitness function resulted in increasing the performance of the GA. 

Ijspeert found that by incorporating the desired movement behaviors of the lampreys 

structure the fitness of each gait could be better evaluated. Ziegler et al. determined 

that premature termination largely increased the GA performance. As a result, a 

number of fitness functions were implemented for differing purposes. 

 

The basic fitness function implemented followed both the principles implemented by 

Reeve and Ziegler et al. During the initial phases of evolution the fitness was 

evaluated purely from the distance the robot traveled forward, minus the distance the 

robots center of gravity lowered. This is somewhat of a combination of Reeve’s FND 

and Zieglers premature termination conditions [13,27]. During later phases of 

evolution the average speed at which the robot moved, and the distance the robot 

wavered from the desired path were incorporated. Finally, the distance the robot was 

at termination from its desired terminating point was taken into consideration, to 

emulate the effect of Reeve’s DFND [13]. 
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A number of early termination conditions were added to the fitness evaluation. These 

included: 

• An automatic termination for a robot’s central body coming too close 

to the ground. This termination condition was implemented rather 

than the DFNDF method proposed by Reeve, as it allowed the 

simulation of robots whose central body may touch the ground during 

locomotion (eg: snake-like robots). 

• Automatic termination for a robot who moved too far from the 

ground. This removed the possibility of robots achieving high fitness 

values early in the simulation by propelling themselves forwards 

through the air (jumping). 

• For bipedal android robots, an additional termination condition was 

provided, which would degrade the fitness of a gait that resulted in the 

robot’s head tilting too far forwards. This ensured the robots were 

somewhat stable and robust. 

 

The choice of the fitness functions and terminating conditions was designed to allow 

any robot morphology to be evaluated.  The actual fitness function parameters are 

passed to the simulator at run time, allowing the user to specify their own fitness 

function. 

 

 

4.2.4 Randomness 
 

The pseudo-randomness available using the standard C-library rand() function 

(ANSIC LCG [54]) was insufficient for generating the long sequences of random 

values that were required for larger chromosomes. Entacher [54] performed a large 

number of spectral tests on the randomness available from various Linear 

Congruential Generators (LCG). The results suggest that the LCG developed by Karin 

and Goyal [55] provides far better pseudo-random sequences than the ANSIC LCG.  
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The LCG implemented is given below: 

  

mbyay nn mod1 +⋅=+  with seed 0y  

where m =  1012-11 

 a = 427419669087 

 b = 0 

 y0 = 1 

(4.2)

Equation 10 – The Maple LCG 

 

4.2.5 Tracking  
 

To be able to determine the performance impact of differing operators, 

selection schemes and fitness functions on the genetic algorithm, chromosome 

tracking information was added to the implementation. The collected information 

included: the fitness of the chromosomes that were combined, the fitness of the 

resulting chromosome, the operator used to produce the new chromosome, and the 

parent chromosomes. The resulting output allowed the construction of a family tree 

for each individual chromosome. This assisted in determining which operators 

contributed to the optimal solution, and the impact of each operator.  

 

Further records of the complete genetic algorithm were also maintained. The recorded 

information included population size, average and best fitness values, the current 

generation, the number of new individuals created, and the time required to evaluate 

the generation. 
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4.3 Control Systems 
 

The only fully implemented control system for robot locomotion was the 

spline based controller. Some basic neural oscillators and simple neural network 

controllers were implemented, however the functionality provided by the neural 

controller was severely limited. A proportional controller was also implemented for 

simple actuator control, although it was not applied to generate the robot locomotion 

control signals directly. 

 

4.3.1 Hermite Spline Control 
 

The spline controller implemented consists of a set of joined Hermite splines. 

One set contains robot initialization information, to move the joints into the correct 

positions and enable a smooth transition from the robot’s standing state to a travelling 

state. The second set of splines contains the cyclic information for the robot’s gait. 

Each spline can be defined by a variable number of control points, with variable 

degrees of freedom. A pair of start and cyclic splines corresponds to the set of control 

signals required to drive one actuator within the robot. 

 

An example of a simple spline controller is illustrated in Figure 7. Each spline 

indicates the controller’s output value for one actuator. 

 

 

Figure 7 – Simple spline controller 
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The number of control points required for the simple spline controller is given by 

Equation 11. 

)( cia +⋅  

where a is the number of actuators 

 i is the number of control points in the initialization spline 

 c is the number of control points in the cyclic spline 

(4.3)

Equation 11 – Control points required for simple spline controller 

  

Cubic Hermite splines were implemented in the controller as they offer a number of 

desirable characteristics over other splines. The major advantage of the Hermite spline 

is that the curve passes through all the control points. As the position and tangent are 

explicitly specified at the ends of each segment, it is easy to create a continuous 

curve. This allows for a control representation that is far simpler for humans to 

manipulate using a keyframing-styled approach than B-Splines, whilst still possessing 

the desired properties to allow fast and flexible evolution. 

 

There is a large collection of evidence that supports the proposition that most gaits for 

both animals and robots feature synchronized movement [56]. That is, when one joint 

alters its direction or speed, this change is likely to be reflected in another limb. 

Enforcing this form of constraint is computationally simpler with Hermite splines 

than with B-Splines. In order to force synchronous movement with a Hermite spline, 

all actuator control points must lie at the same point in cycle time, since the control 

points represent the critical points of the control signal. The alteration of control 

points within a B-spline influences the location of the control signals critical points in 

a non-uniform manner, thus enforcing such a constraint with a B-spline system is far 

more computationally intensive. 

 

In order to incorporate sensor feedback information into the spline controller, another 

dimension was added to the controller. The extended control points could now specify 

their locations within both the gaits cycle time, and the feedback value. This resulted 

in a set of control surfaces for each actuators cyclic information. The initialization 

splines were not extended as it was assumed that any robot would be initialized on flat 
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terrain. However, the initialization splines can be easily extended to contain 

information dependent on the terrains gradient through a similar method to that used 

to extend the cyclic splines. The number of control points required for the extended 

controller is given by Equation 12. Extending the controller in this form significantly 

increased the number of control points required. Figure 8 illustrates a resulting control 

surface for one actuator. 

)( fcia ⋅+⋅  

where f  is the number of control points used to sample the feedback 

4.4 

Equation 12 –  Control points required for extended spline controller 

 

 

Figure 8 – Generic extended spline controller 

The actuator evaluates the desired output value from the enhanced controller as a 

function of both the cycle time and the input reading from the sensor. The most 

appropriate sensory feedback was found to be an angle reading from an inclinometer 

placed on the robots central body (torso). Thus, the resultant controller was expressed 

in terms of the percentage cycle time, the inclinometers angle reading, and the output 

control signal. 
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4.3.2 Spline Controller Encoding 
 

In order to evolve the spline controller with a genetic algorithm, the 

controller’s parameters needed to be encoded into chromosome representations. Two 

different encoding schemes were implemented. Initially, a direct encoding method 

was utilized, as the use of this method is straightforward. After some initial analysis 

of results, indirect encoding was attempted to take advantage of the symmetrical 

nature of the control signals generated. However, this requires previous knowledge of 

the structure and desired walking pattern from the robot, and hence was later 

removed. 

 

Staged Evolution 
 

Support for staged evolution can only be achieved if the controller is 

specifically designed such that the evolution can proceed in this manner. The encoded 

spline controller supports staged evolution by progressively adding dimensions and 

reducing restrictions to the controllers control points. 

 

Direct Encoding  
 

Each control point value was treated as an 8-bit fixed point value. In the initial 

phase of evolution the control points locations within the walking cycle time were 

equally distributed. This provided each control point with only one degree of freedom, 

and reduced the available solution space but also significantly reduced the complexity 

of the chromosome required to describe the controller. In the following stage of 

evolution, the equally distributed time constraint was dropped, providing the control 

points with an additional dimension of freedom. Finally, the tangent values for the 

control points in the spline were added to the chromosome, allowing final refinement 

of the solution.  
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Indirect Encoding 
 

There is a large amount of evidence that neural controllers for bipedal 

locomotion exhibit a high degree of symmetry [13,16]. Evolution periods required to 

generate the controllers have been significantly reduced by using indirect encoding 

schemes which take advantage of the symmetries found within the controller, and 

within the resulting walking motions. After initial analysis of preliminary results from 

the spline control, symmetric output could be observed in the resulting control signals. 

Thus, an indirect encoding method was applied in an attempt to reduce evolution 

periods. The control points for each actuator within the first half of the cyclic section 

were mirrored to correspond with the control points for the ending half of the actuator 

that was symmetrically opposite to the actuator. For example, the left knee’s starting 

control points would be mirrored to the right knee’s ending control points. This 

significantly decreased the complexity of the required chromosome structure. 

 

Evolution Phase Direct Encoding Complexity Indirect Encoding Complexity 

Phase 1 a(s+c) a(s+
2
c ) 

Phase 2 2a(s+c) 2as+c 

Phase 3 3a(s+c) 3a(s+
2
c ) 

Table 2 – Increasing chromosome complexity 

Direct Encoding With Symmetry 
 

Successful application of an indirect spline encoding scheme requires that the 

controller is developed with knowledge of the robot’s kinematics and structure. 

Furthermore, the robot’s physical design must also be symmetric. In order to allow 

the evolution of non-symmetric robots whilst still attempting to obtain the benefits 

available from the compact representation, the symmetric information was seeded into 

the directly encoded controller. This provides the opportunity for reduced evolution 

periods, whilst still allowing the full parameter set to be specified. As a result, any 

robot controller can be evolved regardless of its structure, and symmetric robots 
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benefit from the reduced evolution periods, as well as the ability to further refine the 

control parameters. 

 

4.3.3 Neural Controller 
 

Although there have been a number of neuron models proposed for 

locomotion control [24,43,13] the neuron model implemented was based on state-

variable point model proposed by MacGregor[42]. This model was applied as 

MacGregor provided detailed explanations to the theory and the implementation 

details behind this model.  

 

The neuron is based on a simplified version of Hodgkin and Huxley’s equations [42], 

and uses only four state variables (potassium conductance, membrane voltage, 

threshold, and a binary action potential spike). The equations used to describe the 

model were given in Equation 6. MacGregor demonstrated the use of this neural 

model for repetitive firing (the PTNRN10 model), and thus the model could be easily 

extended to produce neural networks with oscillatory output. 

 

Figure 9 – Output Voltage and Spike for PTNRN 

 

Constructing an Oscillator 
 

Oscillators are typically constructed in neural networks using two coupled 

neurons with delayed inhibition and self-activation [57]. However it is possible to 

construct an oscillator from MacGregor’s neuron model by taking the spike output 
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and directly connecting it to the neuron as a positive feedback current.  This allowed 

oscillatory signals to be constructed from a single neuron. These individual neurons 

were then used to control an individual actuator, provided with a time input value. 

Sample output from the neural oscillator is shown in Figure 10 

 

Figure 10 – Oscillator Output 

 

Encoding 
 

Although a number of optimal encoding schemes for neural controllers have 

been proposed [58], the neural controller was encoded using fully direct encoding 

methods. As the neurons were directly coupled to the actuators, there were no neural 

network parameters that needed to be encoded or evolved. The encoding for the 

PTNRN neurons is shown in Table 3. 

 

Parameter Name Range 

ampGK [0..32] (5.3 fixed point value) 

EK [-8..0] (3.5 fixed point value) 

amp [0..128] (7.1 fixed point value) 

tMemb [0..16] (4.4 fixed point value) 

Multiplier [-1..1] (1.7 fixed point value) 

Integration Step Size [0..4] (2.6 fixed point value) 

Table 3 – Evolved Neuron Parameters and Encodings 
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4.3.4 PID Control 
 

PID controllers provide a simple means of adding robust feedback control 

[28]. Coupling PID controllers to the neural and spline controllers enables a simple 

form of incorporated feedback. The PID controller interprets the control signals 

provided by the higher level controllers and transforms the higher level signals to the 

signals that drive the robot’s actuators. Through the cascading of control systems a 

simple form of feedback can be incorporated, and the resulting gaits remain stable 

indefinitely.  

 

The PID controllers were hand designed to provide a general form of control. The 

controllers were designed such that they would allow the robot to remain in a standing 

state when no other control signals were provided.  

 

 

4.4 Parallel Computation 
 

Further reductions in evolution time can be achieved by exploiting distributed 

computing methods. Since the genetic algorithm is inherently parallel, individual 

solutions can be evaluated on distributed workstations in parallel. The large diversity 

in processing power between workstations created the need for an efficient workload 

allocation procedure, which allowed faster workstations to evaluate more individuals 

than slower ones. 

 

The parallel computation design followed a client-server methodology. The server is 

responsible for maintaining the GA and scheduling the simulation evaluations to the 

clients. Each client is given one individual to evaluate, then returns the result to the 

server. The client continues to wait for the server to allocate it another individual for 

evaluation. This scheduling algorithm allowed faster workstations to evaluate more 

individuals than slower workstations, and provides an effective means for load 

balancing.  
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The operating system, processing power, and processor architecture varied greatly 

between clients. This required that the communications system between the variety of 

client configurations and server be fully portable. As a result, the implemented 

communications system was based on network file sharing technology to allow for 

maximum portability across platforms. 

 

4.4.1 Server 
 

The server is responsible for executing the genetic algorithm and scheduling 

the workload evenly between clients. The server loads the robot configuration 

information from the simulator configuration files, and allows the user to adjust 

various control parameters. Any clients attempting a connection are detected and 

added to the available set of workstations.  

 

The server begins distributed processing by passing the robot and simulation 

configuration information to the clients. Once the clients have configured the 

simulation environment, the server allocates a simulation task to each client. The 

server decodes the chromosome information and sends the controller parameters to 

the client for evaluation.  

 

Upon client completion of the simulation, the results are recorded on the server and 

another task is delegated to the client. If the server has received all the required results 

for the current generation, the server will calculate the new individuals for the next 

generation, and then repeat the process of scheduling tasks to clients. Fault tolerance 

is integrated into the system by allowing any client to be connected, disconnected or 

reconnected to the server at any stage. The server automatically disconnects any client 

that fails to respond within a given time frame, and removes them from the available 

processing pool.  

 

4.4.2 Clients 
 

On startup, the clients attempt to connect to the server and indicate their 

availability. They then wait for the server to send the robot and simulation 

configuration information. The clients then configure and spawn the simulated 
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environment. Once the simulated environment is initialized, each client waits to 

receive controller parameters. The gait described by these parameters is then 

simulated and evaluated according to the fitness function provided by the server. The 

resulting fitness value is returned to the server, and the client continues to wait for the 

next set of control parameters to be sent. 

 

 

4.5 System Summary 
 

The software package developed consists of three major components. There 

are a number of issues that needed to be addressed in managing communications 

between each software module. The overall software system is illustrated in Figure 

11.  
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Figure 11 – System Overview 

 

The system has been divided into four software sub-sections: 

• Modeling Tools – This includes the software required to design the 

overall robot structure, and the software to construct an objects 

morphology and generate its physical characteristics. 
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• Server – Contains the main interface to the user, allowing them to 

configure the robots controller, the simulator environment, and genetic 

algorithm. The server executes the actual genetic algorithm and 

performs individual fitness evaluations in parallel on the clients. 

• Client – Contains the simulation environment and evaluates individual 

controllers and returns the fitness value to the server. 

• Analysis Tools – This is a set of software utilities created in order to 

analyze and visualize various aspects of the control systems, genetic 

algorithm, and generated gait. 

 

The steps required to generate a gait for a specified robot design are given below: 

1. Construct individual robot objects based on the objects shape, 

dimensions and mass. 

2. Combine the individual objects in order to realize the overall robot 

design. 

3. Load the robot’s structural information into the main GA server and 

configure the robots control system parameters. 

4. Configure the genetic algorithm parameters and fitness function. 

5. Evolve the robot controller 

6. Investigate the generated results using the provided set of analysis 

tools to confirm the desired gait has been achieved. 
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5. Investigations 
 

5.1 Genetic Algorithm 
 

A number of factors influence the performance of the genetic algorithm. These 

include chromosome complexity, the operators used, selection weightings for the 

operators, the selection scheme, the fitness function utilized and the problem type. 

The investigations undertaken reveal interesting results about the performance 

enhancement gained from the operators, selection schemes, and fitness functions 

employed. 

 

5.1.1 Method 
 

Four differing configurations of the genetic algorithm were examined. The 

first was a traditional GA using roulette wheel selection with two operators: a one-

point crossover, and a mutate operator. This configuration was employed as this is a 

commonly implemented version of the genetic algorithm [17], and hence provides an 

adequate benchmark figure.  

 

The second configuration used roulette wheel selection with more advanced 

operators: inversion, non-binary average combination, and random replacement. The 

third GA was based on the second configuration, except that half of the chromosomes 

were generated using random selection. The fourth configuration extended the third 

and contained a non-binary creep operator, as well as supporting higher values of 

elitism.  

 

The parameters used for each GA configuration are shown in Table 4. The 

percentages indicate the percentage chance each item has of being used in the creation 

of a new chromosome. 
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Genetic Algorithm Selection Schemes Operators 

1. Traditional  Roulette Wheel Crossover (70%)  

Mutate (30%) 

2. Enhanced Roulette Wheel Crossover (30%),  

Mutate (10%), 

Random Replacement (25%),  

Average (30%),  

Inversion (5%) 

3. Enhanced with 

random selection 

Roulette Wheel  (50%) 

and Random Selection 

(50%) 

Crossover (30%),  

Mutate (10%),  

Random Replacement (25%),  

Average (30%),  

Inversion (5%) 

4. Enhanced with high 

elitism, random 

selection, and non-

binary creep 

Roulette Wheel (50%), 

Random Selection (25%) 

and Elitist (top ten 

percent) Selection (25%) 

Crossover (35%),  

Mutate (10%),  

Random Replacement (10%) , 

Average (30%),  

Inversion (5%),  

Creep(10%) 

Table 4 – Genetic Algorithm Parameters 

 

Each version of the genetic algorithm ran through three different trials involving 

different fitness function terminating conditions: 

• Non-terminating fitness function. This fitness function did not include 

any premature termination conditions, and simply continued evaluation 

of the robot until the specified simulation time was reached. The 

evolution was completed without an intermediary stage. 

• Premature-terminating fitness function. Two termination conditions 

were added to the fitness function. The system would terminate if the 

robot fell over, or if both feet were off the ground for too long 

(jumping etc.) 
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• Premature-terminating fitness function with one stage of evolution. 

The GA ran as above, except that the system progressed through one 

phase of evolution. 

 

5.1.2 Results and Discussion 
 

 The graph shown in  Figure 12 shows the performance alteration when using 

early terminating and staged evolution techniques, relative to non-terminating 

conditions. From the results obtained, early termination appears to produce reduced 

evolution periods averaging at 39.8% of the original evolution times. Inclusion of 

staged evolution reduces the times are by a further 14.5%. Thus, by using both staged 

evolution and early termination, the evolution period is on average reduced to 34% of 

the original evolution time. 
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Figure 12 – Change in required simulation time 

 

The average increase in fitness of the population per generation is shown in Figure 13. 

Early termination causes the conventional genetic algorithm to decrease its average 

increase in fitness. However, other forms of genetic algorithms appear to gain in 

fitness. A possible explanation for the abnormal result from the conventional 

algorithm is that it relies on the randomness present in other chromosomes in order to 

generate new chromosomes with increased fitness. Each of the other genetic 



 47 

algorithms contain either an operator which can introduce randomness (random 

replacement), or a selection scheme which increases randomness (random selection). 
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Figure 13 – Average increase in fitness per generation 

 

For staged evolution with early termination, the fitness per generation greatly 

increases for the first two forms of the genetic algorithm (conventional & enhanced). 

However, this increase in performance is not realized in the GAs which involve 

random replacement and random selection. The GA configurations using random 

selection take longer to converge towards a solution.  Thus, when the staged evolution 

takes place in the tenth generation, the population is not close enough to a solution to 

be able to benefit from moving to the next stage. The other two forms of GA have 

somewhat converged by this time, and hence are able to take advantage from the next 

stage. 

 

The performance of each operator, in terms of the percentage of positive fitness 

chromosomes generated relative to other operators, is depicted in Table 5 below. 
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Operator Name Early Phase Late Phase 

Crossover 16.61% 28.46% 

Average 26.25% 25.18% 

Random Replace 19.81% 16.89% 

Mutate 15.52% 5.81% 

Creep 17.90% 22.90% 

Table 5 – Relative chromosome generation success rate 

 

The results indicate that the performance of the non-random operators remains 

unchanged or improves during later phases of evolution, whereas random based 

operators decrease their performance. This result confirms that increased randomness 

in the initial phase of evolution is beneficial as it broadens the search space of the 

algorithm. Thus, as would be predicted, the random operators do not provide as much 

benefit in later stages of evolution. An interesting outlier from this generalization is 

the non-binary creep operator.  Although the random replacement, and mutate 

operators decrease their percentage success rate, the creep operator increases its 

success rate in later phases of evolution. This result can be explained from the basis of 

the non-binary nature of the creep operator. 

 

During later phases of evolution, small alterations to the chromosome are more likely 

to produce improved fitness ratings. As the population converges towards the optimal 

solution, any large alterations to the chromosome will result in a solution further from 

the optimal value. Since the creep operator performs only small modifications to the 

chromosome, it is far more likely to produce fit chromosomes within the converging 

solution space. 

 

5.1.3 Conclusion 
 

From the results obtained it would indicate that early simulation termination 

can provide significant reductions in evolution times, and genetic algorithms which 

produce enough randomness will not be adversely affected by having the worse 

chromosomes terminated. The ability to take advantage of the staged evolution 
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process appears to depend on the current status of the population of the GA. If the 

population has begun to converge, then the staged evolution opens up a new prospect 

for higher rating fitness chromosomes. Random operators and selection schemes 

appear to be beneficial during early phases of evolution, whereas the crossover-based 

operators perform consistently during the entire evolution period. 

 

5.2 Evolving Gaits with Splines 
 

The two robots models utilized for the investigation of the spline control 

system consist of two regular, geometrically identical legs, with three controlled 

joints. The first robot (Figure 14 - Left) had large feet, and lacked a complete torso. 

The second robot provided a more realistic representation of a robot and has 

dimensions comparable to a human being (Figure 14 - Right). Both robots have 3 

controlled joints per limb, and thus a total of 6 joint controllers for each gait were 

evolved.  

 

 

Figure 14 – Biped Robot Models 
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5.2.1 Spline Controller 
 

The standard spline controller successfully described a full walking gait for a 

simple bipedal robot.  An early successful gait is depicted in Figure 15. The spline 

controller consisted of four cyclic control points and four initialization control points. 

An indirectly encoded chromosome representation for this controller could be evolved 

to produce adequate walking patterns within 12 hours on a 500MHz Athlon PC. 

Although there were only four control points, these were sufficient to describe the 

complete walking cycle for the simple robot. 

 

 

Figure 15 – Early Biped Gait 

 

The resulting controllers did not produce gaits that could maintain locomotion for an 

extended period of time. As is clearly indicated in the above sequence of images, the 

torso of the robot slowly lowers towards the ground as the gait progresses. To 

overcome this, sensory feedback can be integrated into the control system. This 

feedback information can be used to correct deviations from the desired signals. 

 

5.2.2 Spline and PID Control 
 

Incorporation of PID controllers with the spline control system enabled a 

simple form of feedback that allowed the robot’s walking cycle to be maintained 

indefinitely. The PID controller ensured that the robot’s joints reached the joint 

position specified by the spline control system.  Figure 16 illustrates the spline control 

system coupled with a PID controller providing continued locomotion. 
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Figure 16 – Sustained Robot Walk 

 

The extended control system was capable of expressing complex control signals 

responsible for dynamic gaits with a robot that was far more complicated to balance. 

This allowed the control of the less stable android robot, and enabled the control of 

complicated movements, such as the jumping gait illustrated in Figure 17. The 

resultant control system depicted was evolved within 60 generations and began 

convergence towards a unified solution within 30 generations. 

 

 

Figure 17 – Jumping Robot 

 

5.2.3 Spline Control with Integrated Feedback 
 

Extending the spline controller to incorporate sensory information provided a 

far more adaptable and robust control system. The inclinometer reading was 

successfully interpreted by the control system to provide an added level of feedback 
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capable of sustaining the generated gait over non-uniform terrain. An example of the 

resultant gait is illustrated below. The controller required over 4 days of computation 

time on a 800MHz Pentium 3 system, and was the result of 512 generations of 

evaluation. 

 

 

Figure 18 – Robot walking over terrain 

 

Figure 19 – Extended Spline Controller 
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An example control surface for one of the actuators generated by the spline controller 

is depicted in Figure 19. The change in the output signal generated when the 

inclinometer is providing different readings can be clearly seen. The fitness values 

during the evolution are illustrated in 
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Figure 20 – Fitness vs Generation for Extended spline controller 

 

 

5.2.4 Non Bipedal Robots 
 

The spline control system also successfully demonstrated control of non-legged 

robots. The snake robot model shown in Figure 21 consists of five joints, each with 

only one degree of freedom (sideward motion). Figure 21 clearly illustrates the 

snake’s sinusoidal movement, as evident in real snakes. 

 

 

Figure 21 – Snake Gait 
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Gaits for non-bipedal legged robots were also successfully evolved utilizing the spline 

control system. The most successful gait evolved for the tripod robot is illustrated in 

Figure 22. The robot achieves forwards motion by thrusting its rear leg towards the 

ground, and lifting its forelimbs. The robot then gallops with is fore limbs to produce 

a dynamic gait. 

 

 

Figure 22 – Tripod Gait 

 

5.2.5 Conclusion 
 

 The spline controller was applied to a number of robots with differing 

morphology. The controller expressed a number of diverse gaits for various robot 

designs, and proved to be readily extendible. The expanded control system 

successfully controlled a bipedal robot over rugged terrain, and demonstrated the 

powerful capabilities of this simple control system. 

 

 

 

 

5.3 Neural Controller 
 

 Neural net controllers have already successfully demonstrated control of 

legged robots [4,16]. The neuron model implemented demonstrated oscillatory output 

when its output was directly fed back into one of the neurons input channels [42]. The 

investigation undertaken examines the ability for a single neuron to provide actuator 

control, the evolution periods required to evolve a gait, and the ability of the software 

to support a different control mechanism. 
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5.3.1 Method 
 

Each individual neuron was directly coupled to an actuator or an actuators 

controller. Thus the encoded chromosome consisted entirely of the string of neuron 

parameters, and did not need to evolve any network weightings.  The parameters 

evolved for the neural controller were given in Table 3.  

 

The neural controller was evaluated on the simple biped robot illustrated in Figure 14. 

Three separate versions of controller evolution were attempted, each with differing 

configurations of the PID controller. The first version contained a PID controller 

configuration that was successfully employed with the spline control system. This 

controller was initialized to provide the correct control signals to maintain the robot in 

a standing state when no further input was provided. The second version was similar 

to the first, except that the DC value for each actuator was not set. Finally, the neural 

controller was directly connected to the actuator with no form of intermediary control. 

Each of these versions was permitted to evolve over a period of 24 CPU hours on an 

800MHz Pentium 3 system.  

 

5.3.2 Results and Discussion 
 

The neural controller did not provide lifelike gaits for the simple robot within 

the constrained evolution time. The directly connected neural controller did not 

produce any successful gaits at all. The neural controller connected with the PID 

controller did produce gaits which resulted in forwards motion, however none of the 

gaits generated within the 24 hours produced lifelike results. The most successful gait 

generated is illustrated in Figure 23. 
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Figure 23 – Gait produced from Neural Controller 

Given the severe constraints placed on the neural network it is not surprising that the 

controller could not express any adequate gaits. All previously successful neural 

controllers utilized four or more neurons combined to control each actuator 

[4,21,16,13]. Furthermore, the neural net was usually provided with a range of 

sensory input values, and not simply constrained to time as its only input. The neuron 

models used by most researches were typically more complex and usually based from 

direct observations of neuron models responsible for locomotion in animals [23,24].   

 

Figure 24 – Fitness vs Generation for Neural Controller 

 

Figure 24 shows the change in fitness per generation during the evolution of the 

neural controller. The controller required 521 generations to generate a gait that 

resulted in adequate forward motion. A similar number of generations were required 

to evolve the robust spline control system previously described. The graph indicates 

that the neural controller’s performance stagnates, until the genetic algorithm is reset 

and new random chromosomes are introduced.  
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5.3.3 Conclusion 
 

The neural controller implemented did not generate the desired results in its 

presented configuration within the permitted time frame. Previous evidence suggests 

that MacGregor’s model could produce better results if sensory feedback information 

was incorporated and the neural network was expanded [14]. Lewis et al [4] indicate 

that the evolution periods for directly evolving a neural controller can be extremely 

large. Thus, it is possible that the proposed neural control system could successfully 

generate lifelike gaits given lengthier evolution periods. Although the neural control 

system was generally unsuccessful, the system did prove that the design was capable 

of evolving, simulating, and evaluating differing controller types. 
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6. Conclusions 
 

6.1 Summary of Contributions 
 

This thesis presents a flexible architecture for controller evolution. A new 

form of spline locomotion control was proposed and investigated. The Hermite spline 

controller was shown to be capable of describing complex dynamic walking gaits for 

robots with differing morphologies. The spline controller offered a number of 

advantages over a neural based approach.  Directly encoded fully connected neural 

networks have prohibitively long evolution periods [13].  Indirectly encoded networks 

significantly reduced the evolution periods but cannot be automatically evolved. 

However, the spline controller is sufficiently simple that the directly encoded 

controller can be evolved in an acceptable time frame. 

 

The software developed provides a number of useful tools for robot designers. The 

modeling tools and libraries simplify the robot design task, and enable a simple form 

of information exchange between various utilities. The genetic algorithm is 

implemented in a flexible and extendible manner. 

 

This thesis investigated a number of aspects of genetic algorithms used for evolution 

of robot controllers. It was found that randomness present in the genetic algorithm 

provided advantages during the early phases of evolution, but degraded performance 

in later phases. Optimizations of the fitness function and evolution strategies were 

also determined to be dependent on the genetic algorithms configuration, and current 

state. 

 

Two control systems for robot locomotion were investigated and discussed. Extension 

of the basic spline controller to incorporate feedback information was proven to be 

viable, but required a significant increase in the evolution period. A sample neural 

network controller was presented, but found to be too simple to provide adequate 

control for acceptable gaits.  
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6.2 Future Outlook 
 

 The implementation of the neural controller was very rudimentary and did not 

achieve acceptable results. In order for any comparison between control 

methodologies to be adequately made an improved neural control system must be 

implemented. One of the major disadvantages when evolving neural controllers is the 

need for designer input [13]. Initially evolving a spline control system, and then 

training the neural network with the spline controllers output could provide a method 

for conversion between control systems, and also allow full automation of the neural 

evolution. 

 

Further investigations into the spline control system are necessary to establish its 

extensibility and applicability. Expansion of the controller to provide for n-

dimensional input would allow the controller to receive input from any number of 

sensors. However, the performance impacts of such extensions would have to be 

carefully examined. The current system requires the designer to specify the number of 

control points utilized to describe the control spline. This process could be automated 

by having the system add control points to a spline if the system was incapable of 

describing a successful gait within a given time frame.  

 

Executing the control systems on real robot hardware would facilitate a direct 

evaluation to the practical performance of the spline control system. This would also 

allow investigation of how the controller copes with being passed across from 

simulation onto an actual robot.  

 

Finally, evolution of the robot morphology and the control system in unison would 

enable the robot’s design to be improved, such that the robot’s structure was optimally 

designed to suit its desired purpose. Further extensions of this could be to 

automatically construct the designed robots using 3d printing technology, removing 

the human designer completely from the robot design process [59] 
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Appendix 1. Evolved Gait 

 
 

 
 

 
Figure A1.1: Sample biped gait. Images to be read from left to right, top to bottom. 
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Figure A1.2: Sample biped gait. Images to be read from left to right, top to bottom. 
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Figure A1.3: Sample biped gait. Images to be read from left to right, top to bottom. 
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Appendix 2. Sample Robot Model 
 

This is the configuration file for the robot shown in Figure A2.1 This robot model was 

developed by Kevin Judd.  

 

Figure A2.1: An example bipedal robot 

 
# DynaMechs V 3.0 ascii 

 

Articulation { 

    Name              "cameron3" 

    Graphics_Model    "" 

    Position       7.3 -2.5 -1.0 

    Orientation_Quat  0.0 0.0 0.0 1.0 

 

    MobileBaseLink { 

 Name "refmember" 

 Graphics_Model  "models/obj_cube_center.xan" 

 

 Mass    0.5 

 Inertia    1.1   0.0  0.0 

     0.0   1.7  0.0 

     0.0   0.0  1.7 

 Center_of_Gravity  0.0 0.0 0.0 

 

 Number_of_Contact_Points 8  

 Contact_Locations -1.0  1.0  1.0 

     1.0  1.0  1.0 

    -1.0 -1.0  1.0 

     1.0 -1.0  1.0 

    -1.0  1.0 -1.0 

     1.0  1.0 -1.0 

    -1.0 -1.0 -1.0 

     1.0 -1.0 -1.0 

 

 Position   0.0   10.0   7.3 

 Orientation_Quat  -1.5 0.0 0 1.5 

 Velocity   0.0 0.0 0.0 0.0 0.0 0.0 

    } 

    Branch { 

 Branch { 

     ZScrewTxLink { 

  Name "LScrew" 

  ZScrew_Parameters  1.4 0 

     } 
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     RevoluteLink { 

  Name "LThigh" 

         Graphics_Model "models/obj_cylinder_x.xan" 

 

         Mass    0.5 

         Inertia    0.1   0.0  0.0 

      0.0   1.7  0.0 

      0.0   0.0  1.7 

         Center_of_Gravity  1.5 0.0 0.0 

 

         Number_of_Contact_Points  1 

  Contact_Locations   3.0  0.0  0.0 

 

          MDH_Parameters       0.0 0 0.0 1.57 

         Initial_Joint_Velocity      0.0 

         Joint_Limits       -0.8 2  

  Joint_Limit_Spring_Constant  5000.0 

  Joint_Limit_Damper_Constant  500.0 

         Actuator_Type   0 

         Joint_Friction   10.0 

     } 

 

     RevoluteLink { 

  Name "LCalf" 

         Graphics_Model "models/obj_cylinder_x.xan" 

 

         Mass    0.5 

         Inertia    0.1   0.0  0.0 

      0.0   1.7  0.0 

      0.0   0.0  1.7 

         Center_of_Gravity  1.5 0.0 0.0 

 

         Number_of_Contact_Points  1 

  Contact_Locations   3.0  0.0  0.0 

 

         MDH_Parameters       3.0 0.0 0.0  0.0 

         Initial_Joint_Velocity      0.0 

         Joint_Limits       0.1 2 

  Joint_Limit_Spring_Constant  5000.0 

  Joint_Limit_Damper_Constant  500.0 

         Actuator_Type   0 

         Joint_Friction       10.0 

     } 

 

     RevoluteLink { 

  Name "LFoot" 

         Graphics_Model "models/obj_half_cylinder_x.xan" 

 

         Mass    0.5 

         Inertia    0.1   0.0  0.0 

      0.0   1.7  0.0 
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      0.0   0.0  1.7 

         Center_of_Gravity  1.5 0.0 0.0 

 

         Number_of_Contact_Points  4 

  Contact_Locations   2.3  0.2  0.0 

                     2.3 -0.2  0.0 

                     0.0  0.2  0.0 

                     0.0 -0.2  0.0 

 

         MDH_Parameters       3.0 3.1416 0.0 1.7 

         Initial_Joint_Velocity      0.0 

         Joint_Limits       0.3 2.9 

  Joint_Limit_Spring_Constant  5000.0 

  Joint_Limit_Damper_Constant  500.0 

 

         Actuator_Type   0 

         Joint_Friction       10.0 

     } 

 } 

 

     Branch { 

 ZScrewTxLink { 

     Name "RScrew" 

     ZScrew_Parameters  -1.4 0 

 } 

 RevoluteLink { 

     Name "RThigh" 

     Graphics_Model "models/obj_cylinder_x.xan" 

 

     Mass    0.5 

     Inertia    0.1   0.0  0.0 

      0.0   1.7  0.0 

      0.0   0.0  1.7 

     Center_of_Gravity   1.5 0.0 0.0 

 

     Number_of_Contact_Points  1 

     Contact_Locations   3.0  0.0  0.0 

 

     MDH_Parameters   0.0 0 0.0 1.57 

     Initial_Joint_Velocity  0.0 

     Joint_Limits  -0.9 2  

   Joint_Limit_Spring_Constant  5000.0 

 Joint_Limit_Damper_Constant  500.0 

 

     Actuator_Type   0 

     Joint_Friction   10.0 

 } 

 RevoluteLink { 

     Name "RCalf" 

     Graphics_Model_Index "models/obj_cylinder_x.xan" 

 

     Mass    0.5 
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     Inertia    0.1   0.0  0.0 

      0.0   1.7  0.0 

      0.0   0.0  1.7 

     Center_of_Gravity   1.5 0.0 0.0 

 

     Number_of_Contact_Points  1 

     Contact_Locations   3.0  0.0  0.0 

 

     MDH_Parameters   3.0 0.0 0.0  0.0 

     Initial_Joint_Velocity  0.0 

     Joint_Limits   0.1 2 

  Joint_Limit_Spring_Constant  5000.0 

  Joint_Limit_Damper_Constant  500.0 

 

     Actuator_Type   0 

     Joint_Friction   10.0 

 } 

 RevoluteLink { 

     Name "RFoot" 

     Graphics_Model_Index "models/obj_half_cylinder_x.xan" 

 

     Mass    0.5 

     Inertia    0.1   0.0  0.0 

      0.0   1.7  0.0 

      0.0   0.0  1.7 

     Center_of_Gravity   1.5 0.0 0.0 

 

     Number_of_Contact_Points  4 

     Contact_Locations   2.3  0.1  0.0 

                    2.3 -0.1  0.0 

                    0.0  0.1  0.0 

                    0.0 -0.1  0.0 

 

     MDH_Parameters   3.0 3.1416 0.0 1.7 

     Initial_Joint_Velocity  0.0 

     Joint_Limits   0.3  2.9 

  Joint_Limit_Spring_Constant  5000.0 

  Joint_Limit_Damper_Constant  500.0 

 

     Actuator_Type   0 

     Joint_Friction  10.0 

  } 

    } 

   } 

} 
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Appendix 3. Software Overview 
 

 
Figure A3.1 : UML Diagram of a subsection of the remotega program 

 

The above figure provides a general description of the classes used in the construction 

of an application. The Clog class acts as an optional base class, which can be used for 

logging and debugging information . The controller used in the illustration above was 

the spline controller. Hence the spline, Hspline and RoboSpline classses were 

included. The Hspline provides the basic functionality behind a single cubic hermite 

spline. The Spline class emulates a multi point spline, and the RoboSpline contains 

the actual robot spline controller information. The base genetic algorithm 

functionality is encapsulated in the gene, fullgene and pool classes. The gene class 

contains the data structres required to manipulate a chromosome. The fullgene 

extends this functionality to enable tracking information within the GA. The pool 

class is a base class for a population. The RoboPool class is a specific instance of the 
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gene pool class and contains functionality to encode the spline controller (robospline) 

into a format usable in the genetic algorithm (pool). The NAFCom class provides the 

network file communications functionality required for parallel evolution. This class 

diagram was extracted from the remotega program, a standalone version of the 

architecture described in this thesis. 


