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Synopsis 
 

The uniqueness of the inverted pendulum system has drawn interest from many 

researches due to the unstable nature of the system. The idea of a mobile inverted 

pendulum robot has surfaced in recent years and has attracted interest from control 

system researchers worldwide.  

 

In collaboration with the Centre of Intelligent Information Processing System (CIIPS), a 

two-wheeled differential drive mobile robot based on the inverted pendulum model is 

built as a platform to investigate the use of a Kalman filter for sensor fusion. As the 

robot is mechanically unstable, it becomes necessary to explore the possibilities of 

implementing a control system to keep the system in equilibrium. 

 

This thesis examines the suitability and evaluates the performance of a Linear Quadratic 

Regulator (LQR) and a Pole-placement controller in balancing the system. The LQR 

controller uses several weighting matrix to obtain the appropriate control force to be 

applied to the system while the Pole placement requires the poles of the system to be 

placed to guarantee stability. As the robot will be moving about on a surface, a PID 

controller is implemented to control the trajectory of the robot.  
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Executive Summary 
 
This thesis discusses the processes developed and considerations involved in balancing 

a two-wheeled autonomous robot based on the inverted pendulum model. The work was 

conducted in collaboration with the Centre for Intelligent Information Processing 

Systems (CIIPS) and the School of Mechanical Engineering.  

 

The balancing robot platform proved to be an excellent test bed for sensor fusion using 

the Kalman filter as the methodology is unprecedented in the CIIPS mobile robot lab. 

An indirect Kalman filter configuration combining a piezo rate gyroscope sensor and an 

inclinometer is implemented to obtain an accurate estimate of the tilt angle and its 

derivative.  

 

The instability of inverted pendulum systems has always been an excellent test bed for 

control theory experimentation. Therefore it is also the aim of this thesis to investigate 

the suitability and examine the performance of linear control systems like the Linear 

Quadratic Regulator and Pole-placement controller in stabilising the system.  

 

This thesis follows the structure of the author’s approach in achieving the final goal of a 

two-wheeled autonomous balancing robot. The first and second chapter provides an 

introduction to the existing technology available in balancing such system. Chapter 

three of this thesis gives the reader an overview on the construction of the robot. The 

theory and design of a Kalman filter is presented in the fourth chapter followed by the 

dynamic model of the system given in chapter 5. Control systems designed for the 

balancing robot is designed and simulated before applying the gains result in the real 

robot for real time simulation, this is presented in chapter 6 and 7. Chapter 8 

summarises the whole project and provides and outlook on the future of the project.  
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Nomenclature 
 

The following are the list of variables used in this thesis: 

 

x - process state vector. 

u - piecewise continuous deterministic 

control input functions 

F - system dynamics matrix. 

B - deterministic input matrix. 

G - noise input matrix. 

z - discrete time measurement process. 

H - measurement matrix. 

v - discrete time white Gaussian noise. 

 noise Process- w
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mτ   - Motor torque (Nm). 

eτ   - Applied torque (Nm). 

R – Nominal terminal resistance (Ohms). 

L – Rotor inductance (H). 

kf – Frictional constant (Nms/rad). 

km – Torque constant (Nm/A). 

Ke – Back emf constant(Vs/rad). 

θ - Angular position of shaft (rad). 

ω  - Angular velocity of shaft (rad/s). 

α  - Angular acceleration of shaft 

(rad/s2). 

Va – Applied terminal voltage (V). 

Ve – Back emf voltage (V). 

i – Current through armature (A). 

IR – Rotor inertia (kgm2). 

mτ   - Motor torque (Nm). 

Mw – mass of the wheel connected to 

both sides of the robot. 

Mp – mass of the robot’s chassis. 

Iw – moment of inertia of the wheels. 

Ip – moment of inertia of the robot’s 

chassis. 

HL, HR, PL, PR – reaction forces between 

the wheel and chassis. 

l – distance between the centres of the 

wheel and the robot’s centre of gravity. 

CL, CR – applied torque from the motors 

to the wheels. 

HfL, HfR – friction forces between the 

ground and the wheels. 

wθ  - rotation angle of the wheels. 

Pθ  - rotation angle of the chassis. 

(rad/s)  wheelofvelocity  Angular

(V) voltage terminal AppliedV
)( resistance terminal Nominal- R

s/rad)(V constant emf Backk
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R(t) – Output. 

Kp – Proportional gain. 

Ki – Integral gain. 

Kd – Derivative gain. 

e(t) – Error function 
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1 Introduction 
 

The research on balancing robot has gained momentum over the last decade in a number 

of robotics laboratories around the world. This is due to the inherent unstable dynamics 

of the system. Such robots are characterised by the ability to balance on its two wheels 

and spin on the spot. This additional manoeuvrability allows easy navigation on various 

terrains, turn sharp corners and traverse small steps or curbs. These capabilities have the 

potential to solve a number of challenges in industry and society. For example, a 

motorised wheelchair utilising this technology would give the operator greater 

manoeuvrability and thus access to places most able-bodied people take for granted. 

Small carts built utilising this technology allows humans to travel short distances in a 

small area or factories as opposed to using cars or buggies which is more polluting.  

 

In collaboration with the Centre of Intelligent Information Processing System (CIIPS), a 

balancing robot is built as a platform to investigate the use of a Kalman filter for sensor 

fusion. The Kalman filter approach to sensor fusion is unprecedented in the CIIPS 

mobile robot laboratory. This would be a new avenue to explore the filter for future 

potential applications of the Kalman filter. 

 

Apart from the above, this thesis will delve into the suitability and performance of linear 

state space controllers namely the Linear Quadratic Regulator (LQR) and a Pole-

placement controller in balancing the system. The robot utilises a Proportional-Integral-

Derivative (PID) controlled differential steering method for trajectory control. A 

gyroscope and inclinometer is used to measure the tilt of the robot and the encoders on 

the motors to measure the wheel’s rotation.  
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2 Literature Review 
 
Conducting literature review prior to undertaking research projects is critical as this will 

provide the researcher with much needed information on the technology available and 

methodologies used by other research counterparts around the world on the topic. This 

chapter provides a condensed summary of literature reviews on key topics related to 

balancing a two-wheeled autonomous robot. 

 

2.1 Balancing Robots 
 
The inverted pendulum problem is not uncommon in the field of control engineering. 

The uniqueness and wide application of technology derived from this unstable system 

has drawn interest from many researches and robotics enthusiasts around the world. In 

recent years, researchers have applied the idea of a mobile inverted pendulum model to 

various problems like designing walking gaits for humanoid robots, robotic wheelchairs 

and personal transport systems. 

 

Researchers at the Industrial Electronics Laboratory at the Swiss Federal Institute of 

Technology have built a scaled down prototype of a Digital Signal Processor controlled 

two–wheeled vehicle based on the inverted pendulum with weights attached to the 

system to simulate a human driver. A linear state space controller utilising sensory 

information from a gyroscope and motor encoders is used to stabilise this system 

(Grasser et al. 2002).  

 

Figure 2.1: JOE (http://leiwww.efpl.ch/joe) 
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A similar and commercially available system, ‘SEGWAY 

HT’ has been invented by Dean Kamen, who holds more 

than 150 U.S. and foreign patents related to medical devices, 

climate control systems, and helicopter design. .  The 

‘SEGWAY HT’ is able to balance a human standing on its 

platform while the user traverses the terrain with it. This 

innovation uses five gyroscopes and a collection of other tilt 

sensors to keep itself upright. Only three gyroscopes are 

needed for the whole system, the additional sensors are 

included as a safety precaution.  

 

The uniqueness of these systems has drawn interest from robot enthusiasts. For 

example, Nbot (figure 2.4), a two-wheeled balancing robot similar to JOE built by 

David .P Anderson, this robot uses a commercially available inertial sensor and position 

information from motor encoder to balance the system. Steven Hassenplug has 

successfully constructed a balancing robot called Legway (figure 2.4) using the LEGO 

Mindstorms robotics kit. Two Electro-Optical Proximity Detector (EOPD) sensors is 

used to provide the tilt angle of the robot to the controller which is programmed in 

BrickOS, a C/C++ like programming language specifically for LEGO Mindstorms.  

 

  

Figure 2.3 & 2.4 : Nbot [left] Legway [right] 

(http://www.geology.smu.edu/~dpa-www/robo/nbot/) 

(http://perso.freelug.org/legway/LegWay.html) 

 

 

Figure 2.2: SEGWAY. 

(www.segway.com) 
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The paper ‘Cooperative Behaviour of a Wheeled Inverted Pendulum for Object 

Transportation’ presented by Shiroma et al. in 1996 shows the interaction of forces 

between objects and the robot by taking into account the stability effects due to these 

forces. This research highlights the possibility of cooperative transportation between 

two similar robots and between a robot and a human.  

 

The rapid increase of the aged population in countries like Japan has prompted 

researchers to develop robotic wheelchairs to assist the infirm to move around, 

(Takahashi et al. 2000). The control system for an inverted pendulum is applied when 

the wheelchair manoeuvres a small step or road curbs.    

 

On a higher level, Sugihara et al. (2002) modelled the walking motion of a human as an 

inverted pendulum in designing a real time motion generation method of a humanoid 

robot that controls the centre of gravity by indirect manipulation of the Zero Moment 

Point (ZMP). The real time response of the method provides humanoid robots with high 

mobility. 

 

2.2 Kalman Filter 
 
In 1960 R.E Kalman published a paper titled ‘A New Approach to Linear Filtering and 

Prediction Problems’ (Kalman, 1960). Kalman’s research intended to overcome the 

limitations of the ‘Weiner-Hopf’ filter in solving problems of statistical nature which 

seriously curtails its practical usefulness. The process described within came to be 

known as Kalman filtering. 

 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational solution of the least squared method. The filter is very powerful as it 

supports estimations of past, present and even future states, and it can do so even when 

the precise nature of the modelled system is unknown. 

 
There have been a number of texts written about Kalman filtering since Kalman’s 

original paper. One of the complications in understanding the filter methodology is that 

there seems to be a lack of standard notation for the filter equations. It is possible that 

the notations used by Kalman are too complex. Therefore, successive authors have  
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simplified notation and expressed filter equations in different ways. This result in none 

of the books used identical notation and authors of academic papers which uses the 

Kalman filter usually follows the notation used by author’s reference. 

 
As the subject of Kalman filtering was relatively new at that period of time, the lack of 

continuity in these books and the different notation used in some chapters have hindered 

the understanding of the material presented. Books by Gelb (1974) and Maybeck (1979) 

provided a comprehensive explanation on Kalman filtering in a very practical way. 

Although both books provided practical aspects of implementing the Kalman filter, 

Maybeck’s complete work which consists of three volumes are superior and more 

modern than Gelb’s as it covers a broader range of topics in more depth. Maybeck’s 

book is aimed at engineers and could serve as a reference on the topic of stochastic 

estimation. 

 

A comprehensive description of the Kalman filter can be found in Chapter 4. This 

chapter adopts the notation used by Maybeck in his book. Kalman Filtering allows a 

best estimate of a system’s future state despite inaccuracy in its measurements and 

unpredictable changes in that system. 

 

2.3 Sensor Fusion Using Kalman Filter 
 
The accuracy and reliability of information regarding its operating environment for 

mobile robots is critical as these systems are usually unmanned. These requirements call 

for highly accurate sensors which are very expensive. Sensor fusion technology, where 

signal from several sensors are combined to provide an accurate estimate is the most 

widely used solution.  

 

The Kalman filter is used in a number of multisensor systems when it is necessary to 

combine dynamic low-level redundant data in real time. The filter uses the statistical 

characteristics of a measurement model to recursively determine estimates for fused 

data that are optimal in a statistical sense. The recursive nature of the filter makes it 

appropriate for use in systems without large data storage capabilities.  

 

 



                                                                                                                Balancing a Two-Wheeled Autonomous Robot 

_______________________________________________________________________________________________                                                     
Rich Chi Ooi                                                                          6                                                               Literature Review 

 

In 1993, Barshan & Durrant-Whyte published a paper on Inertial Navigation Systems 

for Mobile Robots. This pioneering research formed the building block for many other 

research applying sensor fusion technologies for mobile robot applications. The paper 

evaluated the performance of several sensors used in Inertial Navigation Systems and 

provided an outline for developing an Extended Kalman Filter for such systems.   

 

The wide applicability of sensor fusion technology has inspired the use in numerous 

configurations. Borenstein & Feng (1996) developed ‘Gyrodometry’, which uses the 

Kalman filter for combining data from gyroscopes and odometry in mobile robots. This 

method effectively reduces odometry error which usually occurs when wheels of the 

robot slips on slippery surfaces. In a similar development, Komoriya & Oyama (1994) 

utilises the Kalman filter to combine velocity information from the Optical Fibre 

Gyroscope with the position information obtained from the motor encoders for an 

optimal trajectory control of mobile robots. 

 

2.4 Control Systems 
 
Control system development is vital to guarantee the success in balancing the robot, 

while there is abundance of control strategies that can be applied to stabilise the robot, 

the main aim is to control the system cheaply and effectively without sacrificing the 

robustness and reliability of the controller. The difference in balance control algorithm 

implemented depends mostly on how the system is modelled and how the tilt 

information is obtained. Nevertheless, a common approach separates the balancing and 

trajectory control of the mobile inverted pendulum. 

 

The control strategies for such system can be divided into two distinct sections, namely 

a linear control model or a nonlinear controller model. Linear control methods often 

linearise the dynamics about a certain operating point. This method is usually sufficient 

in balancing the system. A nonlinear controller uses the unscathed dynamics model of 

the system in designing a controller. Although these controllers would provide a more 

robust system, the complexity and implementation difficulties of these methods results 

in most researchers utilising the linear controller approach. 
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A literature review found that nonlinear controllers are mostly implemented in solving 

the balance control problem of a simple pendulum on a cart model or a rotary inverted 

pendulum. Tarek et al. (1994) developed a Fuzzy Logic controller for balancing an 

inverted pendulum on a cart. This approach is based on approximate reasoning and 

knowledge based control. Williams & Matsuoka (1991) used the inverted pendulum 

model to demonstrate the ability of Neural Networks controller in controlling nonlinear 

unstable systems.  

 

While simulation results proved that the system can be balanced with both controllers, 

there is no evidence of implementation of these ideas to verify their findings. Doskocz, 

Shtessel & Katsinis (1998) implemented a multi-input, multi-output sliding mode 

controller for a pick and place robotic arm modelled as an inverted pendulum. The 

researches mentioned above are predominantly purpose built and non-mobile. One of 

the reasons for that is nonlinear controllers usually requires high computational power.  

 

The linear controllers are more popular among researcher designing similar balancing 

robots like JOE (Grasser et al, 2002). Linear state space controllers like the Pole-

placement controller and the Linear Quadratic Regulators (LQR) are the two most 

popular control system implemented. The implementation of these controllers can be 

seen in papers published by Nakajima et al. (1997), Shiroma et al. (1996), Takahashi et 

al. (2000) and Grasser et al (2002).  

 

In the research titled ‘Comparative Study of Control Methods of Single – Rotational 

Inverted Pendulum’ conducted by Xu & Duan (1997) showed that the LQR controller 

fared better than the pole placement controller in balancing an inverted pendulum 

mounted on a rotation arm. This is because the LQR controller offers an optimal control 

over the system’s input by taking the states of the system and the control input into 

account. The arbitrary placement of control poles for Pole-placement controllers might 

cause the poles to be placed too far into the left-hand plane and cause the system 

susceptible to disturbances. 
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3 The Balancing Robot System 
 
The balancing robot system is built as part of the thesis requirement for Kalman filter 

experimentation and to test out the performance of linear state space controllers in 

balancing an unstable system. The design of the system is kept as simple as possible but 

not compromising the aim of the project. 

 

3.1 Robot Chassis 
 
The robot’s chassis design is based on a stack of 

130mm x 130mm Perspex plates with the components 

placed in between the spacings of each plate. This 

simple design enables quick installation of component 

and the height of the robot can be increased or 

lowered when desired.  

 

The drive train of the robot resembles a two wheeled 

differential drive robot, but the balancing robot 

balances the load with its wheels instead dragging the 

weight around on a pivot in a regular differential drive 

robot.  

 
The motors are fitted into the socket like motor mounts machined from aluminium. This 

provides a stronger grip on the motors apart from the three screw holes on the motor to 

avoid misalignment of the motors. The motor mounts are designed to have a maximum 

tilt angle of 30 degrees when the wheels are affixed; this is due to the limited measuring 

range of the sensors.  

 

The Perspex plates are stacked 40mm apart from each other with acrylic tubes and four 

steel shafts with threading at the ends put through these tubes. The whole structure is 

held together with nuts both ends of the shaft. Tail-wheels from remote controlled 

planes bought from a local hobby shop is used as the wheels of the robot. As the 

original hub of the wheels are made from plastic, new aluminium hubs has to be 

machined in order for the wheels to fit onto the shaft. 

Figure 3.1: The Balancing Robot 
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3.2 Controller 
 
A Mark 4 Eyebot controller running on Robios version 5.2 is 

used as the ‘brain’ of the balancing robot system. The 

controller consists of a powerful 32-Bit microcontroller 

running at 33MHz, there is 512k ROM and 2048k RAM 

onboard. This allows relatively large and computing 

intensive programs to be executed quite easily. The 

programming language used in this controller is C and 

Assembly language.          

 

3.3 Actuators 
 
The actuation to balance the robot is via two Faulhaber DC motors made by Faulhaber 

Gmbh, Germany. Each motor has a gear reduction of 54.2:1 and a torque constant of 

6.9203 x 10-4 kg-m/A. This type motor is widely used by the UWA Mobile Robot Lab. 

 

3.4 Sensors 
 

A HITEC GY-130 digital rate gyroscope and a SEIKA N3 digital inclinometer are 

installed on the balancing robot system to measure the tilt angle of the robot as well as 

the angular velocity. 

 

The gyroscope returns the instantaneous angular velocity by 

requiring a 50% control sent to it via a Timing Processing Unit 

(TPU) channel and an altered signal is read back by another TPU 

channel. The instantaneous angular velocity is obtained by 

measuring the difference between the altered signal and the 50% 

control signal. 

Figure 3.2: The Eyebot controller. 
(http://robotics.uwa.edu.au/eyebot) 

Figure 3.3: Hitec GY-130 
Gyroscope. 

(www.hitecrcd.com) 
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The inclinometer is a capacitive, liquid based sensor that 

generates a pulse with modulated output relating to the absolute 

inclination of the system. The output of the inclinometer is quite 

linear with the measured angle but unfortunately this sensor has 

an effective measuring range of only ± 30 degrees. 

 

 

Besides the gyroscope and the inclinometer, the absolute encoders built into the motors 

are used to provide information on the robot’s movement as well as the speed at which 

it is travelling. These encoders are capable of providing 3495 counts per shaft 

revolution. 

 

Figure 3.4: Seika N3 
Inclinometer.(www.seika.de) 
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4 Sensor Fusion & Kalman Filtering 
 
This chapter provides the details on the experiments conducted on the sensors used in 

this project. Problems related to the sensors were discovered, which leads to the 

implementation of the Kalman filter. 

4.1 Sensor Processing 
 
Both the gyroscope and inclinometer are tested using the servo test platform, similar to 

the one used for the tracked robot project, (C.M. Smith, 2002). Under this set-up, a test 

program is written to rotate the sensors through a number of set points. The actual angle 

of inclination can be obtained based upon the control signal sent to the servo. From 

there, a comparison is done between the actual angle of the servo rotation and the angle 

recorded by the sensors. This test platform ensures that the sensors manipulation is as 

exact as possible. 

 

 

Figure 4.1: Servo test platform. 

 
The digital rate gyroscope installed could only provide a measure of the instantaneous 

angular change. Furthermore, the gyroscope has a rest average -value (value of the 

gyroscope when it is not moving) which has to be offset at every measurement to get an 

accurate velocity measurement. It is found that the gyroscope’s rest average value drifts 

with time. This will introduce significant errors in the velocity and angular 

measurements. 
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Figure 4.2: Gyroscope velocity value drift. 

 
The liquid based digital inclinometer installed on the robot gives a good measure of 

absolute tilt angle. The inclinometer data is processed almost the same way as the 

gyroscope. Several problems observed while testing the inclinometer are the rest value 

of the inclinometer changes every time when it initialised and the output signal tends to 

exhibits a significant amount of noise. 

 

Inclinometer reading
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Figure 4.3: Noisy inclinometer reading. 

 

4.2 The Need for Sensor Fusion 
 
Initial tests performed above on the gyroscope and the inclinometer showed that the use 

of either one of the sensors is unable to provide sufficient and more importantly reliable 

information in order to balance the robot. 

 

[r
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The gyroscope provides a measure of instantaneous angular change but it produces a 

significant drift when the gyroscope is operating. This may be due to the operating 

temperature or inherent characteristics of the gyroscope itself. On the other hand, the 

inclinometer provides an absolute measure of inclination, but the output signal is often 

corrupted with noise. 

 

To overcome these problems, a signal-level sensor fusion technique using the Kalman 

filter is proposed. Signal-level fusion refers to the combination of signals of a group of 

sensors with the objective of providing a signal that is usually of the same form as the 

original signals but of greater quality.  In this case, the inclinometer is used to eliminate 

the drift from the gyroscope signal via the Kalman filter. As a result, an accurate 

estimate of the angle and its derivative term is obtained.   

 

4.3 The Kalman Filter 
 
The Kalman filter is a set of mathematical equation for optimal recursive data 

processing algorithm that provides the solution of the least squares method. It 

incorporates all information that can be provided and processes all available 

measurements, regardless of their precision to estimate the current value of the variables 

of interest with the use of a knowledge of the system and measurement dynamics, the 

statistical description of the system noises, measurement errors, uncertainty in the 

model dynamics, and any available information about the initial condition of the 

variables of interest.  

 

Under the assumptions that the model for system of interest is linear and the noise 

values are not correlated in time, the Kalman filter is optimal effectively to any criterion 

that makes sense. 

 

The Kalman filter does not require all previous data to be kept in storage and 

reprocessed every time a new measurement is taken. With this behaviour, the Kalman 

filter is be implemented as a computer program in a small microcontroller despite the 

usual implication that a filter is a connection of electrical networks in a box. 
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4.4 The Discrete Kalman Filter Algorithm 

4.4.1 State Equation 

 
The Kalman filter can be applied to estimate the states when the system of interest is 

adequately modelled in the form of a linear stochastic differential equation. In other 

words, the Kalman filter can be utilised to estimate the states of a system when the 

system of interest can be modelled in state space form. Equation (4.1) represents the 

state process of the system in white noise notation. 

 
 )()()()()()( twtGtutBtxtFx ++=&     (4.1) 

 

4.4.2 Measurement Equation  

 
Measurements for the system is taken at discrete time points, these measurements are 

included in the measurement vector and can be modelled by the relation, 

 
 )()()()( iiii tvtxtHtz +=      (4.2) 

 
Equation (4.2) states that the measurements are dependent on the state of the system and 

are related by the measurement matrix with an addition of noise into the measurements. 

The measurements for the system are often obtained at equally spaced time, but this is 

not obligatory. 

4.4.3 System and Measurement Noise 

 
It is assumed that the noise vector w(t) and v(t) are white Gaussian noise with the 

following statistics: 
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R(ti) is a positive definite matrix, which means that all components of the measurement 

vector are corrupted with noise, and there is no linear combination of these components 

that would be noise free. Since the distributions of w(t) and v(t) are assumed Gaussian, 

this is equivalent to assuming that they are uncorrelated with each other. 

 

4.4.4 Initial Conditions 

 
The state differential equation (4.1) is propagated from the initial condition x(to) and for 

any particular operation of the real system, the initial state assumes a specific value 

x(to). However, because this value may not be known precisely in advance, it would be 

modelled as a random vector that is normally distributed. Thus, the description of x(to) 

is completely specified by the mean ox̂  and covariance Po. 

 

oo xtxE ˆ)}({ =        (4.6) 

 

o
T

oooo PxtxxtxE =−− }]ˆ)(][ˆ)({[     (4.7) 

 

Po is a symmetric and positive semi-definite matrix. This matrix provides the expected 

value of the difference between the true state and the estimated state. The diagonal 

elements of this matrix provide the variance of each state variable from its true value. 

 

4.4.5 Kalman Filter Equations 
 

The Kalman filter estimates a process by using a form of feedback control. The states of 

the process is estimated by the filter at a certain point and then obtains a feedback of 

noisy measurements. Therefore, the equations for the Kalman filter fall into two groups, 

the time update equations and measurement update equations.  

The current state and error covariance estimates propagated by the time update 

equations to obtain the a priori estimates for the next time step. On the other hand, the 

measurement update equations are responsible for incorporating a new measurement 

into the a priori estimate to obtain an improved a posteriori estimate. The time update  
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equations are modeled as the predictor equations, while the measurements update 

equations taken as the corrector equations. This concept is illustrated in figure (4.4). 

 

Figure 4.4: Kalman Filter’s “Predictor-Corrector” structure. 
 
 

Considering two measurement times, ti-1 and ti, and time propagation estimates from the 

point just after the measurement at time ti-1 has been incorporated into the estimate, to 

the point after the measurement at time ti is incorporated. This is represented by time 
+
−1it  to time +

it . The optimal state estimate is propagated from measurement time ti-1 to 

measurement time ti by the relations. 

 

 1 1ˆ ˆ( ) ( ) ( )i i ix t Fx t Bu t− + +
− −= +      (4.8) 

 

1( ) ( ) T
i iP t FP t F Q− +

−= +      (4.9) 

 

Equation (4.9) defines the conditional covariance matrix of the error is predicting the 

state x. As the state measurement zi becomes available at time ti, the estimate is updated 

by defining the Kalman filter gain k(ti) and employing it in both the mean and 

covariance relations.  
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 The error estimate, that is the errors committed by the estimator )(ˆ −
itx  for a particular 

measurement is given by, 

 

 )()()()( ii
T

ii tRtHtPtHE += − .    (4.13) 

 

Alternatively, equation (4.10) can be rewritten as  

 
 )()()()( 1 −−+= ii

T
ii tEtHtPtk      (4.14) 

 

The difference between the true measurement zi and its best prediction before it is 

actually taken is known as the measurement residual )( itr . This is defined by the 

following equation 

 

 )(ˆ)()( −−= iiii txtHztr .     (4.15)   

 

The residual is then passed through an optimal weighing matrix )( itk  to generate the 

correction term to be added to )(ˆ −
itx  to obtain )(ˆ +

itx . 

 

4.5 The Extended Kalman Filter  
 
The Extended Kalman Filter provides a method applying the Kalman Filter technique to 

a nonlinear problem by linearising the estimation around the current estimate using 

partial derivatives.  

4.5.1 State Equation 
 
For the Extended Kalman Filter, the process are governed by the non-linear stochastic 

difference equations 

 
 wxfx += )(&         (4.16) 

 
where x is a vector of the system states and f(x) is a nonlinear function of those states. 
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4.5.2 Measurement Equation 
 

The measurement equation for the Extended Kalman Filter are considered a non-linear 

function of the states according to 

 
 vxhz += )(        (4.17) 

 

4.5.3 System and Measurement Noise 
 

The system and measurement noise v and w for the Extended Kalman Filter are 

modelled as a random process with zero mean, which is similar to the system and 

measurement noise statistics modelled for a normal Kalman filter. 

  

4.5.4 Kalman Filter Equations 
 

In order to apply the continuous Ricatti equation, the non-linear system and 

measurement equations are linearised with a first order approximation using the 

Jacobian matrix. 

 

•  F is the Jacobian matrix of partial derivatives of f with respect to x, that is 

 

xxx
xfF

ˆ

)(

=∂
∂

=       (4.18)  

 
• H is the Jacobian matrix of partial derivatives of h with respect to x, that is 

 

xxx
xhH

ˆ

)(

=∂
∂

=       (4.19) 

 

Now the optimal state estimate propagation from measurement time ti-1 to measurement 

time ti can be represented with the following equations 

 

  ))(()(ˆ 1
+
−

− = ii txftx      (4.20) 
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  1( ) ( ) T
i iP t FP t F Q− +

−= +     (4.21) 

 

As before, when the state measurement zi becomes available at time ti, the estimate is 

updated by the following equations 

 
1)]()()()()[()()( −−− += ii

T
iii

T
ii tRtHtPtHtHtPtk   (4.22) 

 

))](ˆ()[()(ˆ)(ˆ −−+ −+= iiiii txHztktxtx     (4.23) 

 

)()()()()( −−+ −= iiiii tPtHtktPtP     (4.24) 

 

The linearization of the process will be valid and will produce excellent results if the 

estimate of the states is good. In cases where the state estimates are not good, the filter 

will diverge quickly and produce a very poor estimate. 

 

4.6 Filter Tuning for Performance 
 

The filter’s performance could vary greatly if the parameters are not properly adjusted. 

Therefore, this section intends to provide some insight into the characteristics of the 

filters parameters. The adjustable parameters are: 

 
1. The initial covariance matrix. 

2. The state estimate vector. 

3. The Q matrix and its corresponding random noise vector w. 

4. The R matrix and its corresponding random noise vector v.  

4.6.1 Initial Error Covariance Matrix  
 

The expected variance of the error of the state estimate for the corresponding parameter 

is represented by the diagonal elements of this matrix. For the filter to work correctly, 

the values in the covariance matrix must be defined such that the difference between the 
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initial state and the initial state estimate fall in the range that is allowable according to 

the covariance matrix.  

 

The diagonal element of the initial covariance matrix needs to be large enough to meet 

the aforementioned requirement. If the initial state estimate is quite accurate, then the 

covariance matrix needs only allow for a small error. The state estimate will take a 

longer time to converge as the covariance matrix gets larger. A different Po matrix will 

yield a different magnitude transient characteristic, but its duration will be the same and 

the steady state conditions are unaffected.  

 

4.6.2 Initial State Estimator 
 
An initial estimate of the system must be available for the filter loop to be executed. 

There is no general requirement for the initial estimate to be accurate, provided that the 

initial covariance matrix values are sufficiently large for the filter to work correctly. 

4.6.3 Q Matrix 
 
The Q matrix represents the covariance of the system error vector w. It is assumed that 

the elements of w are uncorrelated; therefore the value of every element of Q which 

does not lie on the diagonal is zero. 

 

Increasing Q would indicate either stronger noises driving the dynamics or increased 

uncertainty in the adequacy of the model itself to depict the true dynamics accurately. 

This will increase both the rate of growth of the P(t) elements or eigenvalues between 

measurement times and their steady state values. As a result, the filter gains will 

generally increase and the measurements are weighted heavily, this is reasonable since 

increased Q dictates that we should put less confidence in the output of the filter’s own 

dynamics model. 

 

4.6.4 R Matrix 
 
The R matrix represents the covariance of the measurement error matrix, v. This matrix 

indicates how large the measurement errors are expected to be. Increased R would 

indicate that the measurement are subjected to a stronger corruptive noise and so should 

be weighted less by the filter.  
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The filters steady state operation is quickly reached if the eigenvalues of Q are large 

compared to the eigenvalues of R (Q/R ratio is high). This is due to the uncertainty 

involved in the state propagation is large compared to the accuracy of the measurement, 

so the new state estimate is heavily dependent upon the new measurement and not 

closely related to prior estimates. 

 

4.7 Kalman Filter Design for Single Dimensional INS 
 

In this thesis, a Kalman filter is designed to provide an estimate of tilt angle and its 

derivative for a single dimensional Inertial Navigation System (INS). This filter will 

attempt to use the data from an inclinometer to eliminate the measurement drift from the 

gyroscope signal via the Kalman filter. In the process, corruptive noises in the 

inclinometer reading will also be minimised. 

 

An indirect feedback configuration will be used for the single dimensional Inertial 

Navigation System. This configuration is illustrated in the figure below, 

 

        

Figure 4.5: Indirect feedback Kalman filter [Maybeck, 79]. 

 

The filter compares the data from the sensors and the inertial system and uses this result 

to estimate the errors in the system. By feeding back these error estimates to the INS to 

correct it, the inertial errors are not allowed to go unchecked, this way the adequacy of 

the model is enhanced.  
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4.7.1 Process Model 
 
For the single dimensional INS, a two state Kalman filter is implemented to track the tilt 

angle of the balancing robot and the gyroscope bias. The state equation is quite simple 

as we are only interested in the process where the gyroscope bias is removed from the 

readings.  The process is depicted in the figure below, 

 

Figure 4.6: Process model depicting gyroscope drift. 

 
The gyroscope measured angle will deviate from its zero set point as time increases. 

The process model written in the form of equation (4.1), 
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The derivative of the gyroscope bias is zero because it is only a scalar value. By using 

the principle of superposition, the process noise can be included into the gyroscope 

velocity measurement. Thus the new process model is now, 
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The system model developed in this section is used to implement the Kalman filter for a 

single dimensional INS. The experimental result of this implementation could be found 

in chapter 7. 
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5 System Modelling 
 
The dynamics of the robot has to be described by a mathematical model in order to 

facilitate the development of an efficient control system for the balancing robot. In this 

chapter, the equation of motion for a two-wheeled inverted pendulum and linear model 

for a DC motor is derived in detail.  

5.1 Linear model of a direct current (DC) motor 
 
The robot is powered by two Faulhaber DC motors. In this section the state space model 

of the DC motor is derived. This model is then used in the dynamic model of the 

balancing robot to provide a relationship between the input voltage to the motors and 

the control torque needed to balance the robot.    

 

 

Figure 5.1: Diagram of a DC motor 

Figure 5.1 exemplifies an effective linear model for a direct current motor. When a 

voltage is applied to the terminals of the motor, a current i, is generated in the motor 

armature. The motor produces a torque tm, which is proportional to the current. This 

relationship can be expressed as. 

 
 ikmm =τ         (5.1) 

 
A resistor-inductor pair in series with a voltage, emfV , can be used to model the electrical 

circuit of the motor. This back electromotive force voltage is produced because the coils 

of the motor are moving through a magnetic field. The voltage produced can be 

approximated as a linear function of shaft velocity, which can be written as  

 
 ωee kV =        (5.2) 
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At this point, a linear differential equation for the DC motor’s electrical circuit can be 

written by using Kirchoff’s Voltage Law, the law states that the sum of all voltages in 

the circuit must equal to zero. For the DC motor, this can be written as  

 

 0=−−
dt
diLRiVa       (5.3) 

 
In deriving the equation of motion for the motor, the friction on the shaft of the motor is 

approximated as a linear function of the shaft velocity. The approximation that the 

friction on the shaft of the motor fk , is a linear function of the shaft velocity is made. 

Newton’s Law of Motion states that the sum of all torques produced on the shaft is 

linearly related to the acceleration of the shaft by the inertial load of armature. IR. The 

preceding statement can be written as  

 

 ωτωτ Rafm IkM =−−=∑       (5.4) 

 

Substituting equation (5.1) and (5.2) into equations (5.3) and (5.4), and rearranging in 

terms of the time derivatives, leads to the following two fundamental equations which 

governs the motion of the motor. Both  
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Both equations are linear functions of current and velocity and they include the first 

order time derivatives. A simplified DC motor model is sufficient for the balancing 

robot case. For that reason, the motor inductance and motor friction is considered 

negligible and is approximated as zero. Hence, [5] and [6] can be approximated as  

 

a
e V

RR
k

i 1
+−= ω       (5.7) 

 

 



                                                                                                                Balancing a Two-Wheeled Autonomous Robot 

_______________________________________________________________________________________________                           
Rich Chi Ooi                                                                          25                                                           System Modelling 

 

R
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d τω

−=       (5.8) 

 

By substituting equation (5.7) into equation (5.8), an approximation for the DC motor 

which is only a function of the current motor speed, applied voltage and applied torque 

is obtainable. 
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Since the motor inductance is neglected, the current through the windings is not 

considered in the equation of motion of the motor. The current will then reach a 

constant state immediately as compared to the velocity of the shaft, which takes time to 

speed up from some initial speed to a final speed after a change in the input voltage. 

 

The motor’s dynamics can be represented with a state space model, it is a system of first 

order differential equations with parameters position,θ , and velocity, ω , that uniquely 

represents the its operation. The inputs to the motor is then the applied voltage and 

applied torque.  
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5.2 Dynamic model for a two wheeled inverted pendulum 
 
The two-wheeled inverted pendulum, albeit more complex in system dynamics, has 

similar behaviour with a pendulum on a cart. The pendulum and wheel dynamics are 

analysed separately at the beginning, but this will eventually lead to two equations of 

motion which completely describes the behaviour of the balancing robot. 

 

As the robot’s behaviour can be influenced by disturbances as well as the torque from 

the motor, the mathematical model will have to accommodate for such forces. Firstly 

the equations of motion associated with the left and right wheels are obtained. The 

following figure shows the free body diagram for both wheels. Since the equation for 

the left and right wheels are completely analogous, only the equation for the right wheel 

is given. 

 

 

Figure 5.2: Free body diagram of the wheels 

 

Using Newton’s law of motion, the sum of forces on the horizontal x direction is 
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Sum of forces around the centre of the wheel gives 

 

∑ = αIM o  

rHCI fRRww −=θ&&       (5.13) 

 

From DC motor dynamics, the motor torque can be expressed as,  

 

aRm dt
dI τωτ +=       (5.14) 

 

 

By rearranging the equation and substituting the parameters from the DC motor 

derivation section, the output torque to the wheels is attained 
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Therefore, equation (5.13) becomes 
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Equation (5.15) is substituted into (5.12) to get the equation for the left and right wheels  

 

For the left wheel 
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For the right wheel 
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Because the linear motion is acting on the centre of the wheel, the angular rotation can 

be transformed into linear motion by simple transformation, 
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By the linear transformation, equation (5.18) and (5.19) becomes: 

 

For the left wheel, 
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For the right wheel, 
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Adding equation (5.20) and (5.21) together yields, 
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The robot’s chassis can be modelled as an inverted pendulum, figure 5.3 shows the free 

body diagram of the chassis. 

 

 

Figure 5.3: Free body diagram of the chassis 

 

Again, by using Newton’s law of motion, the sum of forces in the horizontal direction, 

 

∑ = xMF px &&  

( ) xMlMlMHH pppppppRL &&&&& =+−+ θθθθ sincos 2     (5.23) 

 

thus, 

 

 ( ) pppppppRL lMlMxMHH θθθθ sincos 2&&&&& −+=+     (5.24) 

 

The sum of forces perpendicular to the pendulum, 
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Sum of moments around the centre of mass of pendulum, 

 
∑ = αIM o  

( ) ( ) ( ) ppRLpRLpRL ICClPPlHH θθθ &&=+−+−+− sincos     (5.26) 

 

The torque applied on the pendulum from the motor as defined in equation (5.15) and 

after linear transformation, 
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Substituting this into equation (5.26) gives, 
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thus, 
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Multiply equation (5.25) by –l, 
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Substitute equation (5.27) in equation (5.28), 
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To eliminate ( )RL HH +  from the motor dynamics, equation (5.24) is substituted into 

equation (5.22), 
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Rearranging equations (5.29) and (5.30) gives the non-linear equations of motion of the 

system, 
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mem

ppp xlMglMV
R
kx

Rr
kklMI θθθ cossin222 &&&&& −=++−+    (5.31) 

 

pppppp
em

p
w

wa
m lMlMx

Rr
kk

xM
r
I

MV
Rr
k

θθθθ sincos
22

2
2 2

22
&&&&&& −++






 ++=  (5.32) 

 

The above two equations can be linearised by assuming φπθ +=p , where φ  represents 

a small angle from the vertical upward direction. This simplification was used to enable 

a linear model to be obtained so linear state space controllers could be implemented. 

  

Therefore, 
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The linearised equation of motion is, 
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In order to get the state space representation of the system, equations (5.33) and (5.34) 

are rearranged, 
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By substituting equation (5.35) into equation (5.34), substituting equation (5.36) into 

equation (5.33) and after a series of algebraic manipulation the state space equation for 

the system is obtained. 
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where,  
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In the model above, it is assumed that the wheels of the vehicle will always stay in 

contact with the ground and that there is no slip at the wheels. Cornering forces are also 

considered negligible. 
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6 Control System Design 
 
The balancing robot system described in chapter 3 is an excellent test bed for control 

theory because it exhibits non-linear and unstable system dynamics. Control objectives 

for these systems are always challenging as the full state of the system is not often fully 

measured. 

 

Therefore, in this chapter, it is the author’s aim to show how the system can be 

controlled using linear state space controllers. The controllers are designed utilising the 

dynamics model developed for the balancing robot in the previous chapter.  

 

6.1 Control Problem 
 
Because the system is inherently unstable, an impulse input applied to the open loop 

system will cause the tilt angle and position of the robot to rise unboundedly. This 

results in the robot falling over as the tilting range of the robot is limited to 0.52 radians 

on each side. Figure 6.1 shows the simulation when an impulse input is applied to the 

uncontrolled system. 

 

 
Figure 6.1: Open loop impulse response of the system 

 



                                                                                                                Balancing a Two-Wheeled Autonomous Robot 

_______________________________________________________________________________________________                                                     
Rich Chi Ooi                                                                          34                                       Control System Development 

 

 

Plotting the Pole-Zero Map of the system verifies that the system is unstable as there is 

a pole on the right-hand plane of the plot. Ideally, all poles should be on the left-hand 

plane of the plot for the system to be stable. 

 

 
Figure 6.2: Pole-Zero map of the open loop system 

 
The poles of the system are located at 0, -0.0078, 13.1183, -13.1202. 
 

6.2 Linear Quadratic Regulator (LQR) 
 
The Linear Quadratic Regulator (LQR) control is a modern state-space technique for 

designing optimal dynamic regulators. It refers to a linear system and a quadratic 

performance index according to 

 

)()()( tButAxtx +=&       (6.1) 

 

0)0( xx =        (6.2) 

 

The performance of a LQR system can be represented by an integral performance index 

(equation 6.3). It enables a trade off between regulation performance and control effort 

via the performance index when the initial state 0x  is given.  
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The control law for the LQR is specified as  

  

xPBRu ′−= −1        (6.4) 

 

where 0≥′= PP  solves the following algebraic Ricatti equation 

  

 QPBPBRPAPA +−+= − ''0 1     (6.5) 

 

The gain vector PBRK '1−=  determines the amount of control fed back into the 

system. The matrix R and Q, will balance the relative importance of the control input 

and state in the cost function (J) being optimized with a condition that the elements in 

both Q and R matrices are positive values. The size of Q matrix depends on the size of 

the system’s state matrix and R matrix is dependent on the number of control input to 

the system. The block diagram for the LQR controller is shown below, 

 

 
From Chapter 5, the state space model for the balancing robot is given as 
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Figure 6.3: LQR control block diagram. 
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For a linear control system to be implemented, the system has to be controllable. This 

requires that the rank of the n x n controllability matrix [ ]BAABBC n 1... −=  is n or 

0≠C . 

  

Using MATLAB, the algebraic Ricatti equation is solved and the control gain K is 

evaluated for different values of Q and R weighting matrices. The response of the 

system is simulated as well. 

 

The Q matrix assumes the form of 

 



















=

d
c

b
a

Q

000
000
000
000

   

 

where the values of a, b, c, d are the weightings for the respective states   xx φφ && ,,, while 

the weighting matrix R is a scalar value as there is only one control input to the system. 

The values in the Q matrix are adjusted according to the required response of the 

system, a higher value of the weightings indicates the importance of the states compared 

to others.  

 

The main aim of the control system is to make all the states of the system converge to 

zero at the shortest time possible. It will be impossible to achieve that goal as an infinite 

control force is non-existent; therefore some compromise on system response has to be 

made. A high weighting for R indicates less motor control is used to balance the system, 

this results in a low gain value for linear position, x , and linear velocity, x&  which 

causes the robot to continue moving in order to balance the system. This is illustrated in 

Figure 6.4. 

 



                                                                                                                Balancing a Two-Wheeled Autonomous Robot 

_______________________________________________________________________________________________                           
Rich Chi Ooi                                                                          37                                       Control System Development 

 

 

Figure 6.4: Response of the system with a high R weighting 

  

Figure 6.4 shows that the increase of weighting for state x results in a high gain which 

reduces the settling time of the robot’s position. Unfortunately, the motors will not be 

able to match the desired response because the required torque exceeds the maximum 

torque of the motor. 

 

 

Figure 6.5: Response of the system with a high position weighting 

 
Figure 6.5 show that the increase of weighting for tilt angle results in a high gain for the 

states, this will compromise the settling time and response of other states. 
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Figure 6.6: Response of the system with a high tilt angle gain 

 

Because the elements of matrix Q and R are determined arbitrarily, several simulation 

and implementation trial are conducted to obtain the desired response for the balancing 

robot system. The most acceptable response for the system is shown in Figure 6.7.The 

weightings for the angular velocity and linear velocity is left unchanged as the response 

of the states are dependent on the other two states. Poles of the system are now placed at 

-13.1410 + 0.7342i, -13.1410 + 0.7342i,  -1.0818 + 1.0768i,  -1.0818 - 1.0768i. 

 

 
Figure 6.7: Response of the system with appropriate weighting 



                                                                                                                Balancing a Two-Wheeled Autonomous Robot 

_______________________________________________________________________________________________                           
Rich Chi Ooi                                                                          39                                       Control System Development 

 

6.3 Pole Placement Control 
 
The position of poles defines the stability of a system. According to linear control 

theory (Dorf & Bishop, 2001), the poles of the system can be arbitrarily placed in the 

complex plane if the Controllability matrix is of full rank. This matrix is defined by, 

 
][ 32 BABAABBC =       (6.7) 

 
 The control law for the Pole-placement controller is given as 

 
Kxu −=         (6.8) 

 
where u is the control voltage, x is the state parameters and K is the state feedback gain 

matrix. Figure 6.8 shows the block diagram for the Pole-placement controller. 

 

 
Pole-placement control gives designers the option of relocating all the closed loop poles 

of the system. This is in contrast with the classical design using Bode plots and 

frequency response methods, whereby the designer can only hope to achieve a pair of 

complex conjugate poles that are dominant. The theory of Pole-placement control might 

look trivial, but because all other poles and zeroes may fall anywhere, meeting the 

design specification becomes a matter of trial and error. With the freedom of choice 

rendered by state feedback comes the responsibility of selecting the poles judiciously.  

 

The poles of the system have to be placed carefully as there are obvious costs that are 

associated with shifting pole locations. As a result, several simulation trials using 

MATLAB have to be performed to attain the best pole location that gives the desired 

response while not straining the control input.  

Figure 6.8: Block diagram for Pole-placement controller. 
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Stability of the system can be guaranteed as long as all the poles of the system are in the 

left-hand plane of the pole-zero map, but the question is where in the Left-Hand Plane 

(LHP) should it be placed. If a fast response is desired, the poles can be placed further 

away from the imaginary axis. The further the poles are placed from the imaginary axis, 

the system will require a faster or a stronger actuator to perform the task. This is 

illustrated in Figure 6.9, the control input required for this pole configuration peaks at 

0.9 N. 

 
Figure 6.9: System response with poles placed too far into the LHP. 

 
The transient response of a system is the response of a system which decays as time 

increases. Because the purpose of control systems is to provide a desired response, the 

transient response of control systems must be adjusted until it is satisfactory. In Pole-

placement controllers, the transient response requirement of the system can be achieved 

by placing a pair of complex conjugate poles in the system. 
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               Figure 6.10: System response with Pole-placement control. 

 
Figure 6.10 shows the result of the simulation with the poles of the system placed 

at 5i10- 1i,2- ±± . The combination of complex poles gives a good transient response to 

the system and poles further away from the imaginary axis gives a fast response. 

 

6.4 Trajectory Control 
 
Differential drive robots have proven to be one of the least complicated locomotion 

systems. The differential scheme consists of two wheels on a common axis, each wheel 

driving independently. Such an arrangement gives the robot the ability to drive straight, 

turn in place and to move in an arc. The common assumption that differential drive 

robots can be driven straight all the time by applying equal amount of power to the 

motors is flawed. These robots will never drive straight without a proper control system 

because of errors like different wheel size and friction; these errors will cause the robot 

to deviate from its intended course. 

 
The balancing robot uses a PID controller to overcome this problem. PID stands for 

Proportional-Integral-Derivative, it is a basic filter mechanism used to control some 

output based upon the aggregate function of factors. The PID control algorithm is used 

for the control of almost all loops in the process industries, and is also the basis for 

many advanced control algorithms and strategies. 
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 The equation for the PID controller is given as  

 

( ) ( ) ( ) ( )
dt

tdeKdtteKteKtR d

t

ip ⋅+⋅+⋅= ∫
0

    (6.9) 

 

The proportional term, ( )teK p ⋅  is an output value based on the difference between the 

set point and actual. The integral term, ( )dtteK
t

i ∫⋅
0

 is the sum of all errors over time, this 

term allows the controller to advance the output such that all the errors are eventually 

cancelled out. The derivative term, ( )
dt

tdeKd ⋅  is based on the first derivative of the 

proportional error, it checks if the error is getting smaller as time goes by. 

 

In order for control loops to work properly, the PID loop must be properly tuned. There 

are numerous ways to tune the PID controller each tuning method depends on how the 

PID controller is designed. For the Differential drive system, the PID controller used a 

set of tuning rules which is based on the Ziegler-Nichols method. 

 

1. Select typical operating setting for desired speed, turn off integral and derivative 

part, and then increase pK to max or until oscillation occurs. 

2. If system oscillates, divide pK by 2. 

3. Increase dK  and observe behaviour when changing desired speed by about 5% 

and choose a value of dK  that gives a fast damped response. 

4. Slowly increase iK  until oscillation starts. Then divide iK  by 2 or 3. 

 

The encoder reading difference is passed through the PID loop to obtain the required 

feedback to be added to the motor controller. The implementation is successful if one 

wheel is jammed, the other will stop as well. The control block diagram for the PID 

control is illustrated in Figure 6.11. 
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Figure 6.11: PID control scheme for differential drive. (Braunl, 2003) 

Left Motor 

Right Motor

PID
+

+

+

+

+

-

-

-

-

Desired velocity 

Curve offset 



                                                                                                                Balancing a Two-Wheeled Autonomous Robot 

_______________________________________________________________________________________________                                                     
Rich Chi Ooi                                                                          44                                                Performance Evaluation 

 

7 Performance Evaluation 
 
This section discusses the performance of the system following the implementation and 

testing completed in the duration of the project. The filters and control system are 

programmed in C language, an EYEBOT controller was used as the processor for the 

balancing robot system. The functional block diagram representing the information flow 

between the working components of the robot is shown below. 

 

 

Figure 7.1: Functional block diagram of the balancing robot. 

 

7.1 Kalman filtering 
 
The servo test platform (Figure 4.1) described in chapter 4 was used for Kalman filter 

experimentation, both sensors are rotated at angles between ± 0.5 radians. There are 

several tasks that need to be completed before the Kalman filter implementation is 

achieved. Firstly, raw readings of the gyroscope have to be scaled to rad/s and be on the 

same scale with the inclinometer readings. As unit conversion will cause inaccuracy in 

measurements, the raw inclinometer readings are differentiated and compared the 

gyroscope raw velocity readings to obtain the correct scale factor. 
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Figure 7.2: Scaled gyroscope velocity. 

 
Figure 7.2 shows the first derivative of the inclinometer readings compared to the biased 

gyroscope reading with the scale factor of 0.02798. The gyroscope was unable to obtain 

the correct velocity reading when rotated in the negative direction, further investigation 

shows that this condition is due to the manufacture of the sensor and has been regarded 

as a systematic error in this experiment.  

 

The Kalman filter is calibrated through the process covariance noise matrix Q and the 

measurement covariance noise matrix R. The forms of the matrices are given as: 

 









=

gyroq
incq

Q
_0

0_
  [ ]measrR _=  

 

Values of q_inc and q_gyro are set depending on how much faith one puts on the 

particular sensor. A lower value indicates the particular sensor is trusted more compared 

to the others. The value of the R matrix indicates the amount of noise expected from the 

measurement, a high value means the measurement is highly corrupted with noise. The 

calibration of the Kalman filter is usually by some complex statistical method which 

requires a lot of computation. In this thesis, the values are set by trial and error, a good 

understanding of the process is required to quickly determine the appropriate values for 

the Q and R matrix.  
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Kalman Filter Estimated Angle Compared With True Angle
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Figure 7.3: Comparison between estimated angle and true angle. 

 
When the filter is not tuned properly, it will generate a sawtooth shaped graph as 

illustrated in Figure 7.3. A sawtooth output typically indicates that the sensors need 

calibration and the filter is only producing an estimate that is smaller than the actual 

angle. Another possibility is that the integration of the gyroscope reading is not 

propagated in real time or either the integration is propagated too fast or too slow. 

 

The appropriate values for the Q and R matrix are found after numerous trials were 

performed using the servo test platform. The filter is propagated every 20ms as 

compared to 10ms as before which causes the sawtooth waveform output. The result of 

the implementation is shown below. 
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Figure 7.4: Comparison between estimated angle and true angle. 

 

The Kalman filtered signal and raw gyroscope signal measuring the velocity of a 

motionless gyroscope is shown in Figure 7.5. The Kalman filter signal oscillates when it 

is first initialised but it immediately settles down to its steady state operation (this is  
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removed from the earlier plots for clarity), from that point onwards the filter is able to 

track instantaneous angle change with minimal error. On the other hand, the raw 

gyroscope signal drifted from the original reading, giving a ~ 0.18 rad/s signal when the 

actual reading is 0 rad/s. 
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Figure 7.5:  Comparison between filtered and unfiltered velocity measurement. 

 
The Kalman filtering algorithm is initialised as a background process running at every 

20 milliseconds to facilitate multitasking of the EYEBOT controller so that the 

processor could perform other required routines. Figure 7.6 illustrate the estimated 

angle when the sensors are placed on the balancing robot, a wide range of tilt angle 

were used to test the robustness and accuracy of the filter. The graphs have to be 

separated because the filter is working so well that there is almost no difference detected 

when the graphs are plotted together. 

 

 

Figure 7.6: Kalman filter estimated angle for instantaneous angle change. 
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7.2 Balance Control 
 
The implementation of the balance control algorithm was based on the detailed theory 

and simulation discussed in chapter 6. Controllers’ gains were obtained from simulation 

results and applied to the system. Since the dynamic model of a system can never be 

accurate, the gains found usually acts as a foundation for further fine tuning of the 

controller to achieve the desired response. Figure 7.7 to 7.9 shows the graphs obtained 

from real-time experimentation with the Linear Quadratic Regulator.  
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Figure 7.7: Real-time experimentation with LQR control [Position, Angle]. 
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Figure 7.8: Real-time experimentation with LQR control [Velocity, Angular velocity]. 
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Figure 7.9: Real-time experimentation with LQR control [Motor command]. 
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Though the system’s state response is quite similar to the simulated response (Figure 

6.7) with both graphs showing a settling time of about 4 seconds and the states converge 

to zero. It is expected that the actual system will not be as smooth as the simulation due 

to assumptions about unknown parameters made at the modelling stage.  

 

At initialisation, the Kalman filter requires a couple of seconds to settle to its steady 

state operation. During this phase, the filter is unable to provide a correct estimate of 

angle and angular velocity to the system, thus making the robot oscillate erratically. But 

soon after initialisation, the Kalman filter stabilises and was able to track the angle and 

its derivative correctly and the robot behaves normally. 

 

With the current weighting arrangement of the LQR controller (tilt angle is weighted 

higher than position), the system will balance the robot initially at the expense of the 

position, but this error should be compensated once the LQR controller is able to 

balance the robot. Figure 7.7 showed that the position of the robot, x  moved 0.5 meters 

from the zero position when trying to balance the robot. However, instead to settling 

back to its initial position, the robot settles at 0.2 meters away from the desired position.  

After several testing trials, odometry error is identified as the cause of the position 

difference. Reason for this is that when the robot is first initialised, the incorrect 

estimate of angle from the Kalman filter causes the motor to spin. This action directly 

affects the encoder reading which affects the position measurement. 

 
The performance of the Pole – placement controller in balancing the robot is tested in 

the same way as the LQR controller. Figures 7.10 to 7.12 shows the graphs obtained 

from real-time experimentation with Pole – Placement control. 
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Figure 7.10: Real-time experimentation with Pole-Placement control [Position, Angle]. 
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Figure 7.11: Real-time experimentation with Pole-Placement control [Velocity, Angular velocity]. 

 
 

-100
-80
-60
-40
-20

0
20
40
60
80

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Time[s]

Pe
rc

en
ta

ge
 o

f m
ot

or
 s

pe
ed

motor_command  
Figure 7.12: Real-time experimentation with Pole-Placement control [Motor command]. 

 

Performance of the system with Pole-Placement control is quite similar to the LQR 

control as most of the observations in the LQR control are also noticed here. Although 

the Pole – Placement controller is able to balance the system, the robustness is fairly 

inferior to the LQR controller. The robot keeps falling over at times since with the Pole 

–placement controller all states are treated equally causing the controller not knowing 

which states to stabilise first. The falling over of the robot is noticed when the angular 

velocity and motor command are highest. The robot jerks erratically when it is picked 

back up after falling over. At this time someone has to help the robot maintain its 

balance by holding the robot up for a while before letting it balance by itself again. 

 

The effects of the assumption that the system can be linearised about its vertical 

operating point have started to show undesired results. While it is easier to develop a 

linear control system for such system, the importance of inherent nonlinearities in the 

system should not be neglected. Linear control systems may be stabilising the system at 

an operating point, it would not be able to guarantee global stability. For example, it is 

impossible to initialise the robot at an arbitrary angle and expect it to adjust itself to its 

vertical position with the current control scheme nor it would be possible for the robot 
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 to reduce its oscillation while balancing on a specified point. Therefore, a nonlinear 

controller would be suggested as a future improvement to the current control system. 

 

7.3 Trajectory Control 
 

The amalgamation of the balance control algorithm and differential drive control 

algorithm results in a high manoeuvrability robot. With this in place, a driving program 

using a NOKIA TV infrared remote control and an IR remote controller decoder 

attached to EYEBOT is used to control the movement of the balancing robot.  The 

driving program was designed to respond to a variety of remote control key codes. The 

following diagram shows the block diagram of the control system with the IR remote 

control. 

 

Figure 7.13: Balancing control system with IR remote control. 

 
In order to make the robot move, the gain for the position is set to zero and the desired 

distance offset is added to the velocity term, this is done so that control system will 

continue to balance the robot while allowing the robot to move around. The direction 

and distance of the movement is controlled by the sign of the small offset added to the 

velocity term. The PID control is useful at this stage as it will ensure that the position 

error between the wheels are minimised so that the robot will move in a straight path. 

Turning the robot is achieved by applying an offset in the positive direction to the left 

wheel and an offset in the negative direction right wheel for turning right. To turn left, 

an offset in the negative direction is applied to the left wheel and an offset in the 

positive direction is applied to the right wheel. This will make the wheels move in the 

opposite directions while turning, thus making the robot turn on the spot. 
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Figure 7.14: The Nokia IR remote control. 

 
The figure above shows the remote control used for the balancing robot. Only 6 buttons 

are used, they are, 

 

• 2 – Move Forward. 

• 8 – Move Backward. 

• 5 – Stop. 

• 4 – Turn Left. 

• 6 – Turn Right. 

• Standby – Disable remote control. 

 

Implementation of trajectory control under remote control was verified through 

observation. The robot was able to maintain its balance while executing movements like 

drive forward, backwards and turn on a spot. However, the robot was unable to maintain 

its position when stopped due to the oscillation observed during balance control testing.  

 

The PID controller was added as an odometry error control measure for the balancing 

robot. This might be sufficient for current state of trajectory implementation. But in 

order to achieve Non-Holonomic trajectory control, a better design of the PID controller 

using analytical methods is recommended. It is possible that the dynamics of the 

trajectory control be included in the system dynamics to facilitate the design of a single 

controller which is able to stabilise the robot as well as control its trajectory. 
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8 Conclusion 
 

8.1 Project review 
 
This project was successful in achieving its aims to balance a two-wheeled autonomous 

robot based on the inverted pendulum model. Two control strategies have been 

implemented to address the problem of balance control for the system. The gain 

matrices obtained from simulation for the LQR and pole-placement controller is 

implemented in the EYEBOT for real-time controller experimentation and both 

controllers showed promising results in balancing the robot. During testing, the robot is 

able to maintain its vertical position by slightly adjusting its wheels.  

 

The Kalman filter has been successfully implemented. The gyroscope drift was 

effectively eliminated allowing for an accurate estimate of the tilt angle and its 

derivative for the robot. 

  

While the stability of the system can be accomplished through the implementation of 

Pole-placement control, the LQR controller offers an optimal control over the system’s 

input via the weighting matrix R. The arbitrary placement of control poles might cause 

the poles to be placed too far into the left-hand plane and cause the system susceptible 

to disturbances.   

 

The Zeigler-Nichols tuning rules used for the PID controller are simple and intuitive as 

they require little process knowledge and can be applied with modest effort. However, 

for an accurate and robust operation, the trajectory control dynamics would be modelled 

to enable a suitable controller be designed.     

 

More research is needed to investigate the effects of linearising the dynamics of the 

system mode to improve the stability and robustness of the robot. An attempt to control 

the system using nonlinear methods is highly recommended for future research. That 

way, oscillatory movements of the robot while balancing can be eliminated, thus 

accurate trajectory control and waypoint navigation can be implemented. 
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8.2 Recommendations for future work 
 
This thesis provides the base for future research on Kalman filter applications and 

control systems development in the CIIPS mobile robot lab. More research should be 

conducted to exploit the Kalman filter technology and its application for other projects 

that require sensor fusion technology.  

 

The linear control system developed in this thesis proved to be able to balance the robot 

under minimal disturbance. But the robustness of the system is not fully tested and is in 

question. More experiment needs to be performed to evaluate the robustness of the 

system and fine tuning of the control algorithm is required for better performance. 

Future research on implementing non-linear controllers is strongly recommended for the 

balancing robot system as it will improve the robustness of the system. 

 

The trajectory control of the robot was delayed mainly because the robot was unable to 

stay at a fixed spot. When the problem is solved, the present trajectory control system 

can be expanded to enable waypoints to be set for the robot to follow instead of the 

limited movement restricted with the remote controller. 
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Appendix I: Simulation Codes 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% open_loop_impulse_responseMD.m 
% Simulation of open loop impulse response of Balancing robot 
% This model includes the motor dynamics 
% Author: Rich Chi Ooi (0248566)  
% 12.08.2003 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variable initialization 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 g=9.81;          %Gravity(m/s^2) 
 r=0.051;         %Radius of wheel(m) 
 Mw=0.03;             %Mass of wheel(kg) 
 Mp=1.13;              %Mass of body(kg) 
 Iw=0.000039;       %Inertia of the wheel(kg*m^2) 
 Ip=0.0041;            %Inertia of the body(kg*m^2) 
 l=0.07;                  %Length to the body's centre of mass(m) 
  
 %Motor's variables 
  Km = 0.006123;    %Motor torque constant (Nm/A)  
  Ke = 0.006087;    %Back EMF constant (Vs/rad)     
  R = 3;            %Nominal Terminal Resistance (Ohm) 
  
% Va = voltage applied to motors for controlling the pendulum 
  
%%%%%%%%%%% 
% System Matrices 
%%%%%%%%%%% 
 
%pre-calculated to simplyfy the matrix 
%Denominator for the A and B matrices 
beta = (2*Mw+(2*Iw/r^2)+Mp); 
alpha = (Ip*beta + 2*Mp*l^2*(Mw + Iw/r^2)); 
 
A = [0                       1                                   0               0; 
     0      (2*Km*Ke*(Mp*l*r-Ip-Mp*l^2))/(R*r^2*alpha)     (Mp^2*g*l^2)/alpha    0; 
     0                       0                                   0               1; 
     0      (2*Km*Ke*(r*beta - Mp*l))/(R*r^2*alpha)        (Mp*g*l*beta)/alpha   0]     
  
 B = [              0; 
      (2*Km*(Ip + Mp*l^2 - Mp*l*r))/(R*r*alpha); 
                    0; 
      (2*Km*(Mp*l-r*beta)/(R*r*alpha))] 
  
 C = [1 0 0 0; 
      0 0 1 0] 
 
 D = [0; 
      0] 
 
%TRANSFER FUNCTION FORM OF THE STATE SPACE MODEL 
disp('Transfer Function of the system') 
[num,den] = ss2tf(A,B,C,D) 
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%OBTAINING THE IMPULSE RESPONSE OF THE SYSTEM 
T = 0:0.02:10; 
U = zeros(size(T)); 
U(1) = 1; %input voltage 
[Y,X] = lsim(A,B,C,D,U,T); 
plot(T,Y); 
 
title('Open loop impulse response of the system') 
ylabel('Position[m], Angle[rad]') 
xlabel('Time[s]') 
legend('Vehicle position','Tilt angle') 
axis([0 2 0 100]) 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% LQR_controlMD.m 
% Simulation of Balancing Robot with LQR control 
% This model includes the motor dynamics 
% Author: Rich Chi Ooi (0248566)  
% 12.08.2003 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%% 
% Variable initialization 
%%%%%%%%%%%%%% 
 
 g=9.81;           %Gravity(m/s^2) 
 r=0.051;            %Radius of wheel(m) 
 Mw=0.03;             %Mass of wheel(kg) 
 Mp= 1.13;             %Mass of body(kg) 
 Iw=0.000039;       %Inertia of the wheel(kg*m^2) 
 Ip=0.0041;            %Inertia of the body(kg*m^2) 
 l=0.07;                  %Length to the body's centre of mass(m) 
  
 %Motor's variables 
  Km = 0.006123;    %Motor torque constant (Nm/A)  
  Ke = 0.006087;     %Back EMF constant (Vs/rad)     
  R = 3;                    %Nominal Terminal Resistance (Ohm) 
  
% Va = voltage applied to motors for controlling the pendulum 
  
%%%%%%%%%%%%% 
% System Matrices 
%%%%%%%%%%%%% 
 
%pre-calculated to simplyfy the matrix 
%Denominator for the A and B matrices 
beta = (2*Mw+(2*Iw/r^2)+Mp); 
alpha = (Ip*beta + 2*Mp*l^2*(Mw + Iw/r^2)); 
 
A = [0                       1                                   0               0; 
        0      (2*Km*Ke*(Mp*l*r-Ip-Mp*l^2))/(R*r^2*alpha)     (Mp^2*g*l^2)/alpha    0; 
        0                       0                                   0               1; 
        0      (2*Km*Ke*(r*beta - Mp*l))/(R*r^2*alpha)        (Mp*g*l*beta)/alpha   0]     
  
 B = [              0; 
          (2*Km*(Ip + Mp*l^2 - Mp*l*r))/(R*r*alpha); 
                       0; 
          (2*Km*(Mp*l-r*beta)/(R*r*alpha))] 
  
 C = [1 0 0 0; 
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         0 0 1 0] 
 
 D = [0; 
      0] 
  
%Obtaining the eigenvalues of the system matrix 
disp('The eigenvalues of the system matrix A') 
disp('A positive value will indicate an unstable system') 
p = eig(A) 
 
%%%%%%%%%%%%%%% 
%LQR control design                 
%%%%%%%%%%%%%%% 
disp('Designing the optimal controller') 
disp('Q = C''*C is a 4 x 4 weighting matrix for the outputs') 
disp('Q could well be Identity matrix with size same with system matrix A, as long as it is positive 
definite') 
disp('R is a 1 x 1 weighting matrix for the input') 
 
%x is the weighting for the cart position 
%y is the weighting for the pendulum position 
 
x = 1000; y =5000; 
 
Q = [x 0 0 0; 
     0 1 0 0; 
     0 0 y 0; 
     0 0 0 1]; 
 
 R =1; 
  
BRinverse = B*inv(R)*B'; 
P = are(A,BRinverse,Q); 
 
%Feedback Gain 
disp('Feedback Gains for the system') 
K = inv(R)*B'*P 
 
%%%%%%%%%%%%%% 
%Simulate the system            
%%%%%%%%%%%%%% 
%Simulation time step 
T=0:0.02:5; 
 
%Impulse response input 
U=zeros(size(T)); 
U(1)= 1;  
 
%System matrices with feedback 
Ac = [(A-B*K)]; 
Bc = [B]; 
Cc = [C]; 
Dc = [D]; 
 
%Obtaining the States and the output response 
[Y,X]=lsim(Ac,Bc,Cc,Dc,U,T); 
 
%Obtaining the torque needed to control the system 
[n m] = size (X); 
for i = 1:n 
    UU(i) = -K*X(i,:)'; 
end 
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new_poles = eig(Ac) 
figure, 
%plot the states 
title(' Impulse response of the plant with LQR control') 
subplot(1,1,1), plot(T,[X(:,1) X(:,2) X(:,3) X(:,4)]), xlabel('Time [s]'), 
ylabel('Position[m],Velocity[m/s],Angle[rad],Angular velocity[rad/s]') 
legend('x','xDot','phi','phiDot') 
 
%plot the outputs 
%subplot(3,1,2), plot(T,[Y(:,1) Y(:,2)]), xlabel('Time [s]'), ylabel('Outputs') 
%legend('x','theta') 
%plot the control input 
%subplot(2,1,2), plot(T,UU), xlabel('Time [s]'), ylabel('Control u') 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% pole_placementMD.m 
% Simulation of Balancing Robot with pole placement control 
% This model includes the motor dynamics 
% Author: Rich Chi Ooi (0248566)  
% 04.09.2003 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%% 
% Variable initialization 
%%%%%%%%%%%%%% 
 
 g=9.81;          %Gravity(m/s^2) 
 r=0.051;         %Radius of wheel(m) 
 Mw=0.03;          %Mass of wheel(kg) 
 Mp= 1.13;          %Mass of body(kg) 
 Iw=0.000039;      %Inertia of the wheel(kg*m^2) 
 Ip=0.0041;        %Inertia of the body(kg*m^2) 
 l=0.07;           %Length to the body's centre of mass(m) 
  
 %Motor's variables 
  Km = 0.006123;    %Motor torque constant (Nm/A)  
  Ke = 0.0069203;    %Back EMF constant (Vs/rad)     
  R = 3;            %Nominal Terminal Resistance (Ohm) 
  
% Va = voltage applied to motors for controlling the pendulum 
  
%%%%%%%%%%% 
% System Matrices 
%%%%%%%%%%% 
 
%pre-calculated to simplyfy the matrix 
%Denominator for the A and B matrices 
beta = (2*Mw+(2*Iw/r^2)+Mp); 
alpha = (Ip*beta + 2*Mp*l^2*(Mw + Iw/r^2)); 
 
A = [0                       1                                   0               0; 
     0      (2*Km*Ke*(Mp*l*r-Ip-Mp*l^2))/(R*r^2*alpha)     (Mp^2*g*l^2)/alpha    0; 
     0                       0                                   0               1; 
     0      (2*Km*Ke*(r*beta - Mp*l))/(R*r^2*alpha)        (Mp*g*l*beta)/alpha   0]     
  
 B = [              0; 
      (2*Km*(Ip + Mp*l^2 - Mp*l*r))/(R*r*alpha); 
                    0; 
      (2*Km*(Mp*l-r*beta)/(R*r*alpha))] 
  
 C = [1 0 0 0; 
      0 0 1 0] 



                                                                                                                Balancing a Two-Wheeled Autonomous Robot 

_______________________________________________________________________________________________                           
Rich Chi Ooi                                                                          V                                                                        Appendix 

 
 D = [0; 
      0] 
  
%Obtaining the eigenvalues of the system matrix 
disp('The eigenvalues of the system matrix A') 
disp('A positive value will indicate an unstable system') 
p = eig(A) 
 
%%%%%%%%%%%%%%%%% 
%Pole Placement control design      
%%%%%%%%%%%%%%%%% 
 
disp('The system matrix have to be full rank for pole placement control') 
rank_=rank(ctrb(A,B)) 
P = [-10 -11 -20 -25] 
K = place(A,B,P) 
%%%%%%%%%%%%%% 
%Simulate the system            
%%%%%%%%%%%%%% 
 
%Simulation time step 
T=0:0.02:5; 
 
%Impulse response input 
U=zeros(size(T)); 
U(1)= 1;  
 
%System matrices with feedback 
Ac = [(A-B*K)]; 
Bc = [B]; 
Cc = [C]; 
Dc = [D]; 
 
%Obtaining the States and the output response 
[Y,X]=lsim(Ac,Bc,Cc,Dc,U,T); 
 
%Obtaining the torque needed to control the system 
[n m] = size (X); 
for i = 1:n 
    UU(i) = -K*X(i,:)'; 
end 
 
figure, 
%plot the states 
title(' Impulse response of the plant with Pole Placement control') 
plot(1), plot(T,[X(:,1) X(:,2) X(:,3) X(:,4)]), xlabel('Time [s]'), 
ylabel('Position[m],Velocity[m/s],Angle[rad],Angular velocity[rad/s]') 
legend('x','xDot','phi','phiDot') 
 
% %plot the outputs 
% subplot(3,1,2), plot(T,[Y(:,1) Y(:,2)]), xlabel('Time [s]'), ylabel('Outputs') 
% legend('x','theta') 
 %plot the control input 
 plot(2), plot(T,UU), xlabel('Time [s]'), ylabel('Control u') 



                                                                                                                Balancing a Two-Wheeled Autonomous Robot 

_______________________________________________________________________________________________                                                     
Rich Chi Ooi                                                                          VI                                                                        Appendix 

Appendix II: Contents of the CD 
 

The attached CD at the back of the Thesis contains the following: 

 

Folder: Balancing Videos 

- Contains clips of video documentation of testing and presentation. 

 

Folder: Documents 

- Contains PDF and Microsoft Word files of the thesis, presentation slides, 

seminar papers and Word document of progress reports. 

 

Folder: Robot simulation with motor dynamics 

- Contains Matlab codes for system simulation with motor dynamics. 

 

Folder: Robot simulation without motor dynamics 

- Contains Matlab codes for system simulation without motor dynamics. 

 

Folder: Source Codes 

- Contains all source codes developed in this project. 

 

 
 
 
 


