University of Stuttgart
Institute of Industrial Automation and Software Engineering
Prof. Dr.-Ing. Dr. h. c. P. Géhner
University of Western Australia
School of Electrical, Electronic and Computer Engineering
Prof. Dr. rer. nat. habil. T. Braunl

Diplomarbeit No. 1882

Swarm Clustering System
with Local Image Processing
and Communication

Jia L. Du

Engineering Cybernetics
Student # 1850152

Aug 2002 — Jan 2003

Diplom J. Du Abstract

Abstract

In this thesis a collective clustering algorithm is presented.The used robots are
behavior-basedand fully autonomous.The developedmulti-robot system clusters
randomlydistributedcubesin a walled area. A frameworkfor behavior-basedaontrol
was developed Four behaviorswere implemented:exploration, avoidance,pushing,
andcommunicationinter-robot communications usedto speedup theemergencef a
commoncluster point. On-board image processingis usedfor the detectionof the
cubes.Theclusteringalgorithm wasimplementedoth for real robotsand a simulator.
Usingthe developedsoftwarethe robot colonysuccessfullgompletedhetask. Andthe
colony proved to be scalable and robust.

Kurzfassung (German)

In dieser Diplomarbeit wird ein Clustering-Algorithmus &in Multi-Roboter-System
prasentiert. Die einzelnen Roboter arbeitditlig autonom undrerhaltensbasiertDas
entwickelte Systemégt in einem von Wanden umschlossenen Gebiet zufallig verteilte
Wiirfel an einem Punkt zusammen. Hierzu wuid&eamework @ir eine
verhaltensbasiert®obotersteuerung entwickelt. Vier Verhalten wurden implementiert:
Erkundung, Ausweichen, Transport, und Kommunikation. Kommunikation zwischen den
Robotern wird verwendet, um das Finden eines gemeinsamen Clusters zu
beschleunigen. Lokale, alsobotereigeneBildverarbeitung wirddr die Erkennung der
Wirfel genutzt. Der Algorithmus wurde sowoin feale Roboter als aucliif ein
Simulationssystemmplementiert. Die mit der entwickelten Software arbeitende
Roboter-Kolonie eidlt inre Aufgabe erfolgreich, und erweist sich als skalierbar und
robust.

Diplom J. Du Acknowledgements

Acknowledgements

First, | would like to thank my supervisor Prof. Thomaé&usit. Without his support and
advice,andthe invitation to the University of WesternAustralia, this thesiswould not

have come into existence.

| alsowould like to say manythanksto Prof. PeterGohnerfor supervisingthe project
from my home university. Only his support made the this project possible.

Furthermore| would like to thankJensKonnertzfor his supportandsupervisiorof the
software engineering part of this project.

Burkhardiske madea major contributionto this thesisby providing the sourcecodefor
his Kheperacube clusteringsoftware.Although the finally developedsoftwarediffers
considerablyfrom his program the studyingof his codegavemethe knowledgeandthe
confidence to design and implement my own clustering algorithm.

Partsof the imageprocessingalgorithmsof this projectare basedon the experiences
that Birgit Graf made with her soccer program for EyeBots. Thanks!

Many thanks to AxelWaggershausédor his support with the EyeSim simulator.

| would also like to thank the UWA staff, especially Sandraand Brenda, for their
assistance during my stay at UWA.

Last, but not least! would like to thank Antonio, Christoph,Jochen,and Sid for their
supportduring the creationof this thesis,and for all the fun we have had working
together.

Diplom J. Du Table of Contents

Table of Contents

L INTRODUCTION. . ..ottt ettt sae s e as s e sae s e ssee s e ssee s e ssees e snennsanns 1
2. METHODSAND MATERIALS.... .ottt 3
2.1 TNEEYEBOL.......citieie ettt ettt et se st ettt be et e e e e sae e eseesesnensesee e 3
2.2 EYESIM SIMUIGLON.......ceeiiee ettt sttt e st st et e sn e et nnas 4
2.6 Behavior-Based RODOLS............cori ettt s e 6
2.7 MUlti-Agent RODOLIC SYSIEMS.......c.coiriiieie et nneas 7
2.8 SWAINMN SYSLEIMS......cueiiuiitieeee et see st e e ese e st e saeeee e e eaeesseesee s e e essessesss et enseseessaesneenens 9
2.5 Collaborative CIUSIENING........cooireieereieeneire ettt st s 10
2.9 Other Clustering EXPErTMENTS.......coo it s e 10
2.3 HSV COlOr SYSEEM.....ueiviiiiiiieeeee ettt s et st e e s e 11
24 RGB COlOr SYSIBM.....cuiiiieieie ettt s e e er e e s e sn e es 12

3. SYSTEM REQUIREMENTS.....oo ettt sttt 14
4. SYSTEM MODEL ..ottt et ne s sn e na 16
4.1 OVEIVIEW DIBGIAIM......coiieie ettt et ss e ss e ettt saese et e se e sae s e 18
4.2 User INterface DIAQIaIM.......ccuiirieieieeeisce et et sr e st e 19
4.3 EXPIOrNG DIBGIaM......cieieeeeieeirie sttt e es et sre s s e e et nne e e e 20
v U g aTo [D IF="0 = o ISR 21
VAR aNY o Ko ([gTo l B I¥="o = o o ISR 22
4.6 CommMUNICALING DIAQIaM.......ccceieiriirisie et e 23
4.7 Broadcasting DIiagram..........ccocuerruirie e st sres e se e sr e sse s 24
4.8 Sensors and Image Recognition Diagram...........ccecrererienenieneneseie s seesee e 26
5.SYSTEM ARCHITECTURE ...ttt sttt st e 27
5.1 Fundamental DeSIgN DECISIONS..........ccuiiirienieieeneriiresiesie s s s es 27
5.2 Diagram of the Software System ArchiteCture............ccoeeeeerereriesenenee e 29
5.3 SySteM COMPONENTS.......cc.eiieiiee et ee et e s se e e s e e e e sse s seeseesneenes 31
5.4 ClasS DIAQIaMS.......coce ettt s st st et se e e e s e s ensees 34
5.4.2 Implicit COMMUNICELION........cceriiree e seeie et s s e 35

5.4.2 Communication by BroadCasting............cceereerernerierienierieneesie e e seees 36

5.4.3 Local COMMUNICALTON......ccueeeireeieeirieseeieseei e e s s sse st se s nsenes 37

6. IMPLEMENTATION. ..ottt ettt sr s e s sanesnaesnaeenanane s 38
6.1 General Implementation DECISIONS.........ccueierrnrineriine e s s es 38

Diplom J. Du Table of Contents

6.1.1 COOrdiNate SYSIEIMS.....ccveiiieieieeiirertie ettt et st sa e sr e 38

B.1.2 RGB tO HSV ...ttt st 40

6.2 Behaviors and Image RECOGNITION........cccoce i e e 40
6.2.1 DeteCtion Of CUDES.........cccoooi i 40

6.2.2 DeNSitY ESHMELTION.......cccciii ettt st e e 42

6.2.3 Approaching and PUSNING.........cccconeiirinie e 43

6.2.4 COMMUNICAIION.eeivenierieiieeeeee et eteete e e sees e s e se s e e ssesse et s e sre e see s 45

B.2.5 EXPIOrELION. ...ttt sttt et sr e se e s a7

6.3 Programming ISSUES.........ccccecereierieie ettt s e ss e sn e es 438
6.3.1 SINGIELON CIASSES........cueieiiiieie ettt sttt e et en e s 438

6.3.2 The Thread Class........cocciririieer e st e e 49

6.3.3 RACE CONUITIONS.......c vttt e st e e s 54

6.3.4 CyCliC DEPENUENCIES.......ceviiieerieieie ettt ss e e es e esenes 54

6.4 From Real RODOSt0 the SIMUIELOT.........cc.cviiieieee s 56
6.4.1 Multiple RODOS ON EYESIM.......cccciiirieie et 56

6.4.2 Stalled Drive INfOrMELION.........cccceriririe e e 57

T TESTING. ..ttt et et e st e s ettt st et st e se s s e st en e e eneas 58
8. EVALUATION AND FUTURE WORK ociiiiiiiiie et s 59
O. CONCLUSION.. ..ottt ettt et se s et es e sben e see e e e sse st se e e naeanen 61
REFERENGCES...... oottt sttt st st st sttt et st e 64
FIGURE SOURCES.......oooi ittt st e st s e ss ettt se e e 66
APPENDIX A — USED SOFTWARE ...ttt e e e 67
DECLARATION ..ttt ettt ettt et st et se et e s e ne e e 68

Diplom J. Du Figure Index

Figure Index

FIQUrE 1. TRE EYEBOL......c.eciceeee ettt st et e s et steseenee seen 4
Figure 2. Screenshot of the EyeSim simulation environment............coccooeveevereneeneceenns 5
Figure 3. Schematic illustration of a model-based robot control system...................... 6
Figure 4. Schematic illustration of a behavior-based robot............cccocviinicininineee 7
Figure 5. Multi-robot SyStems in reSEarch..........coooo i neeeere e 8
Figure 6. Types of COlleCtiVE rODOLICS.........coviriiieeieeriir et e e 9
FIQUIE 7. TREHSV CONE......ceeeiee ettt e et sn e e s 12
Figure 8. The RGB CUDE.........ceieieee e e 13
Figure 9. Local and global coordinate SyStem..........coeeeeirneinneeie e 39
Figure 10. Height in cameraimage corresponds to distance...........ccoceeverereneenernennes 41
Figure 11. Approaching and pushing @CUDE..........ccceirerireereirese e 44
Figure 12. Dissolving the cycliC dependency.........cuoereeverereeie e 55
Figure 13. Clustering With EYEBOLS.........cccoviiiiiiee e e s 62
Figure 14. Clustering on the EyeSim SIMUIALOT...........ccooriieiens e 63

Diplom J. Du Index of Code Examples

Index of Code Examples

Code 1. Example Of SINGIELON ClaSS.......cc.cuiiriiie et s e e ees 49
Code 2. How to create threads (asinitialy intended).........ccocooeerereiinnnienenceeee s 50
Code 3. How to create threads in the program............ccvnenese s 53
Code 4. Arraysfor al global/static variablesin EyeSim.........cccovineienece e 57

VI

Diplom J. Du

Abbreviations

Abbreviations

IAS
CIIPS
UWA
PSD
SIR
RoBIOS

Institute of Industrial Automation and Software Engineering
Centre for Intelligent Information Processing Systems
University of Western Australia

Position Sensitive Detector

Sensors and |mage Recognition

Robot Basic Input Output System

VIl

Diplom J. Du 1. Introduction

1. Introduction

The use of simple and reactive behavior-based robots has become increasingly popular
among researchers in robotics in recent years. Behavior-based robots are characterized
by atight coupling of sensing and action, and the absence of world models. This results
in simple, robust and reactive individuals, as opposed to model-based robot control
systems, which are complex, little robust, and hard to maintain [13].

Rapid advances in computer technology and robot hardware components have
also had a magor impact on robotics research. Firstly, the development and usage of
large scale multi-robot systems has become feasible with the decrease in component
costs. Multi-robot systems are expected to have significant advantages over single-robot
systems including an increased performance, the ability to solve more complex tasks,
and an increased robustness due to redundancy and simpler individual robots. Secondly,
the enormous increase in processing power on the one hand, and the miniaturization of
hardware components on the other hand, have made the development of small, fully
autonomous robots with on-board image processing possible.

The term swarm intelligence describes the approach to use behavior-based robots
to create an autonomous, robust, flexible, and scalable multi-robot system. It isinspired
by biological systems that consist of many agents, for example ant colonies. Typical
tasks for such swarms include exploration and transportation.

The objective of this project is to develop a swarm clustering algorithm. The
robot colony, consisting of fully autonomous and behavior-based agents, is to cluster
randomly distributed cubes in a walled area. The swarm should be robust and scalable.
Some form of robot communication is to be incorporated to ensure that a single cluster
point remains in the end. And on-board image processing should be used for object
detection. The goa is to demonstrate the feasibility, scalability and robustness of a
swarm clustering system with on-board image processing and communication.

The thesis is a joint project of the Institute of Industrial Automation and Software
Engineering (IAS), University of Stuttgart, Germany, and the Center of Intelligent
Information Processing Systems (CIIPS), School of Electric, Electronic and Computer
Engineering, University of Western Australia, Perth. The work is carried out at the
Mobile Robot Lab at CIIPS.

Diplom J. Du 1. Introduction

The project duration is 6 months. See the project plan for a detailed project
structure plan, milestones and bar charts.

Chapter 1 is this introduction. In chapter 2, | give an overview of the necessary basics.
In chapter 3, the requirements to the software to be develop are stated. The system
model is presented in chapter 4, and the system architecture in chapter 5. In chapter 6, |
will go into the implementation details. Chapter 7 quickly summarizes the performed
system tests. In Chapter 8, | give an evaluation of the developed system and suggestion
for future work. In chapter 9, | conclude the thesis.

Diplom J. Du 2. Methods and Materials

2. Methods and Materials

2.1 The EyeBot

The EyeBot is a fully autonomous mobile robot. It does not rely on sensor data from
external devices or remote processing resources and power supplies.

Each EyeBot is equipped with a 32 -bit controller at 33MHz, and up to 2048 KB
RAM. The processing capacity of the controller is sufficient for most image processing
tasks. To give an idea, in this project the computing power was sufficient to handle one
to two frames per second, in addition to other computations for motion control and user
interface.

The robot has a differential steering system, with 2 DC motors with shaft
encoders for the left and right front wheel. The rear part is ssmply dragged along. The
differential steering system allows the robot to drive forward and backward, to turn on
the spot, and to drive curves, depending on the level of activation of the left and right
motor. Dead reckoning is used for position estimation by counting the encoder ticks.
However, position estimation using dead reckoning is inherently inaccurate - the error
accumulates over time. A magnetic compass allows the correction of the orientation.

The main sensor input is provided by a digital color camera. It takes 24 -bit RGB
images at a resolution of 60*80 pixels. Furthermore, the robot has three position
sensitive detectors (at the front, at the front to the left, and at the front to the right). They
determine the distance to an obstacle by measuring the time till the reflection of a
previously sent out infra-red signal is registered. The estimated distances are excellent
for distances between 10 cm and 20 cm. However, for very small obstacle distances the
sensor readings tend to be too large. The signal bounces more than once until it is
registered by the receiver [1].

Each robot has a wireless communication module that can be used to
communicate with other robots. A network is automatically established, it operates as a
virtual token ring and has fault tolerant aspects. A net Master is negotiated
autonomously, new EyeBots are automatically integrated into the net, and dropped out
EyeBots are eliminated from the network.

Finally, for a direct communication with the user, each robot has a graphics LCD
and four input buttons.

DiplomJ. Du 2. Methods and Materials

The EyeBots can be programmed in C/C++ or assembler. The so-called RoBIOS
operating system provides C functions to control the robot and to access the connected
devices. In addition, a framework for multi-threading and basic image processing
algorithms are provided. Programs for the EyeBot are compiled on a PC with a
modified version of the GNU C/C++ compiler. Then the program can be downloaded to
the robot using a seria connection. A list of the used RoBIOS functions can be found in
the system architecture.

Camera

Keyboard

Infra-red
Sensors

Battery

Differential
steering
system

Figure 1. The EyeBot

2.2 EyeSim Simulator

EyeSim is a simulator for EyeBots. It is capable of simulating multiple robots. Most
standard hardware components including camera, PSDs, radio, LCD and input buttons,
and most functions of the RoBIOS library are supported. The simulator can run
programs written for EyeBots without modification, they just need to be re-compiled for
the simulator. However, one mgjor constraint is that no global or static variables must

DiplomJ. Du 2. Methods and Materials

be used when ssimulating multiple robots, as all robots would share the same variables.
Beside robots the simulator only supports balls as movable objects.

The simulator can be customized using several configuration files. Possible
modifications include the size of the robot, the dynamic model (e.g. collision
parameters), the graphical model (how robots are graphically represented), the error
model (e.g. to simulate sensor errors), and finally the world model (shape and size of
the operational area).

Simulation Control Extra |

-
StartMlew Pause Stop Mode Change Pos Settings
lDll‘\Iﬂn: |PEE“
0the one a.out
Rotx Roty lEEC il Sa A p—

Simulation Time: 171.45
Figure 2. Screenshot of the EyeSm simulation environment

The most useful features for this project were the support for multiple balls and
multiple robots, and the time laps function which sped up the testing. | adapted the
parameters to reproduce the real robots that | used as accurately as possible. The
changed settings include the robot size, and the positions and orientations of the PSD
sensors and the camera. To simulate cubes | also increased the ball friction to prevent
the balls from rolling away. However, there are some major differences to the used real
robots. The currently used graphical model of the simulated robots differs considerably
from the shape of the real robot. Therefore, the inclination of the camera had to be
different, otherwise it would have been partly blocked by the chassis of the smulated
robot. Moreover, the front PSD could not be inclined, as this arrangement is not

Diplom J. Du 2. Methods and Materials

supported by the simulator. Finally, the simulator uses a single circle for the geometrical
representation of a robot, which differs significantly from the rectangular shape of the
real robots.

It should be mentioned that the simulator is a new development and still in a
buggy state.

2.6 Behavior-Based Robots

Early robot control systems used a model-based approach. The sensor input passed
through a multitude of layers until it had any effect on the actuator output, as
exemplified in Figure 3. The involved steps included complex, model-based planning
and reasoning. The developed system were slow, difficult to program, little robust, and
highly dependent on the correctness and accuracy of their world models, which are hard
to obtain and hard to maintain.

Sensors —p- — Actuators

Motor control

Perception
Modeling
Planning

Task execution

Figure 3. Schematic illustration of a model-based robot control system

In the late 1980s the researchers tried to overcome these problems by developing
biologically inspired behavior-based systems. Behavior-based systems are characterized
by a tight coupling of sensing and action, and the absence of world models. Behavior-
based robots are also called reactive, or reflexive, as each action gets an immediate
feedback.

The advantages of behavior-based systems are[9], [13]:

+ Real-time performance

» Robustness in dynamic environments, as they are not dependent on world models

« Easy implementation. Each behavior is a full control program, and can thus be

6

Diplom J. Du 2. Methods and Materials

designed and debugged independently. Each behavior is a specialized modules and
can be kept simple.
» The system can be easily extended by adding/removing behaviors

However, the model-based approach can have an advantage over behavior-based
systems in fixed environments, and generaly in cases where the benefits of using a
world model outweigh the disadvantages. And behavior-based system cannot be used if
local sensing is not sufficient to solve the task. Remote sensor data would breach the
principle of direct feedback.

Wander

SEeNsors ——pp Explore —P Actuators

Transport

Avoid

Figure 4. Schematic illustration of a behavior-based robot. In some systems all behaviors
are active at the same time, and the resulting behavior is a superposition of the actuator
commands. In other systems an arbiter isinterposed between the behaviors and the
actuators. At all times, the arbiter decides which behavior is most useful

But researchers quickly realized that entirely behavior-based robots make it hard to plan
things, and perform complex tasks. The behaviors need to be intelligently coordinated
and combined to achieve complex goals. Therefore, hybrid architectures were devised
with low-level reflexive behaviors and high-level planning.

2.7 Multi-Agent Robotic Systems

The fast-paced progress in computer technology and robotics, accompanied by
decreasing component costs, have made the development of autonomous multi-agent
systems feasible. The major advantages of multi-robot systemsinclude [12]:

Diplom J. Du 2. Methods and Materials

« Anincrease in performance. The higher the parallelizability of atask, the higher the
possible increase in performance by distributing it to a number of individual robots.

- The ability to solve more complex tasks. A multi-robot system may be able to
perform atask that cannot be completed by an individual robot.

- Fault tolerance. A group of robots, especially of homogeneous robots, increase the
redundancy of the system and thereby make it more robust to failures of individua
robots. Furthermore, as the robots work as a team, it may be possible to reduce the
complexity of the individual robot, and thus reduce the risk of failure.

- Distributed sensing. If the robots communicate they can share information beyond
the sensor range of an individual robot.

On the other hand, the disadvantages of multi-robot systemsinclude [12]:

+ Interference. With each additional robot the communication overhead and the
probability of robot collisions increase. Instead of cooperating robots may start to
compete with each other.

- Failures of the communication system. By adding communication into a system it
becomes less robust and the probability of system failure increases.

Task Complexity

A
[~

Human-guided
collective robotics

\ \
Human-guided

individual robotics

/4 Autonomous
/4 collective robotics

Research

f Autonomous ?
individual robotics Industry
>

Autonomy

Figure5. Multi-robot systemsin research

Diplom J. Du 2. Methods and Materials

For the problemto be solved,the developmenbf a clusteringalgorithm,the benefits
outweighthe disadvantageslhe taskis highly parallelizable andhomogeneousobots
can be used. This has the potential to drastically increasethe performanceand
robustnes®f the system Attention mustbe paidthat not'too many'robotsareactivein

the operationalarea.And the communicatiorshouldbe designedn way thatits failure

would not cause the overall system to fail.

2.8 Swarm Systems

Collective Robotics

Autonomous
Collective
Robotics

Human-guided
Collective Robotics

Swarm
Robotics

Cooperative Robotics

Figure 6. Types of collective robotics

Swarm intelligence is an approachto use of behavior-basedobots to create an
autonomouscollective robotic system([7]. It is inspired by biological systemsthat
consist of many agents, for example ant colonies. Though colonies consist of
stereotypical, unreliable and simple agents, as a whole they are capable of
accomplishingcomplex tasks in dynamic and varied environments.The behavioral

Diplom J. Du 2. Methods and Materials

repertoire of the agents is limited, they follow simple rules and use ssmple local
communication. A global structure emerges from the actions of many, without central
control or coordination. Swarm Intelligence relies on distributedness and
decentralization, simple and specialized agents, direct or indirect basic interactions
among those agents and robustness to failure of individuals. In this project the
principles of Swarm Intelligence were to be applied to the problem of cube clustering

using multiple autonomous robots.

2.5 Collaborative Clustering

The basic principle of collective clustering algorithms is very simple. Beckers, Holland
and Deneubourg showed that

1. if robots have the means of moving some discrete items,
2. are able to make clusters,
3. and have some way to estimate local density,

then, with the influence of noise and stochastic robot-robot and robot-environment
interactions, in the end a single cluster will remain [7].

Basically the reasoning is as follows: If the probability of leaving a cube on a cluster
increases with the cluster size, and the probability of taking a cube from a cluster
decreases with the cluster size, then the rate of growth will increase with the size of the
cluster. Asthe rate of growth over all clustersis zero (the number of cubes is constant),
the result must be positive growth for the largest clusters and negative growth for the
smallest ones. Thus, N clusters will become (N-1) clusters, and so on.

2.9 Other Clustering Experiments

First clustering experiments were conducted by Beckers, Holland, and Deneubourg in
1994 [14]. The used robots were entirely behavior-based, and IR sensors were the only
source of input. They demonstrated that clustering could be done with minimalist
robots. In 1998 Holland and Melhuish used more sophisticated robots with IR sensors,
grippers, and optical sensors for color detection [7]. Holland and Melhuish tried to

10

Diplom J. Du 2. Methods and Materials

mimic the behaviorof Leptothoraxantsandtheir concentricannularsorting. They also
performedmore complexexperimentancluding the usageof probabilisticalgorithms.
In 2000, BurkhardIske and Ulrich Ruckertincorporatedocal communicationn their
clusteringalgorithm [8]. The infra-red sensorsof their Kheperarobots were usedto
communicate¢he ageof clusterpoints.The oldestoneof thememergedasglobal cluster
point.

2.3 HSV Color System

HSV stands for hue, saturation and value.

The hue describeswhere a color lies along the spectrum.Hue values are
organizedn acolor circle, with redat 0 degreesyellow at 60 degreesthengreencyan,
blue, and finally magenta at 300 degrees.

The saturationdescribeow purea color is. The saturatiorvaluegoesfrom 0%
(gray)to 100% (maximumpurity). A low valueresultsin a neutral,dull color, whereas
a high value means a strong, pure color.

Value, or brightnessA value of 0% meanscompletelyblack, while 100%is the
brightestvaluethata color canhave.A maximumvaluedoesnot meanwhite, unlessthe
saturations zero.A maximumvalueis simply the brightestvalue a color canhaveat a
particular saturation.

11

Diplom J. Du 2. Methods and Materials

Green Yellow

Figure 7. The HSV cone

Thevolumespannedip by thethreeparametersf the HSV color systemcanbe viewed
asaninvertedcone.Eachpointin thatconerepresents color in the HSV system.The
hueis the anglein a planeorthogonallyto the cone'ssymmetryaxis. The saturationis
the radius, the distanceof the point from the symmetryaxis. Finally, the valueis the
coordinate along the symmetry axis of the cone, it describes the height of the point.

2.4 RGB Color System

RGB standdor thethreebasiccolorsusedin the RGB systemired,greenandblue. The
completecolor scaleoriginatesthroughthe superpositiorof thesethreecolors.Thus,in
the RGB model,everycolor is representeasa setof threeindependenvalues:a value
for red, a value for greenand a value for blue. In the EyeCamimageseachvalue can
rangefrom O to 255. If all threevaluesare O, the resultingcolor is black;if all three
valuesare 255, the color is white. Around 16 million colors(256* = 16,777,216tanbe
represented.

In the RGB systema color canbe imaginedaspoint in a cubespannedip by the
three basic colors.

12

DiplomJ. Du 2. Methods and Materials

B
]
{0,0,1)
Blue Cyan
Magenta W hite
e
-
e
(0,1,
Black f -
Green
(LoG
/ Red Yellow
R -
Figure 8. The RGB cube

13

Diplom J. Du 3. System Requirements

3. System Requirements

The objective was to develop the software for a behavior-based robotic system. The

system should make use of the main characteristics of swarm intelligence to collectively

cluster randomly placed cubesin awalled area. The software was to be implemented for

a set of autonomous mobile robots. The following requirements were derived (Note:

these are extracts from the system requirements specification, see the original document
for details).

Requirements regarding the swarm:

The robot colony is to be scalable. It should be possible to add or remove robots at
any time without disruption of the overall swarm behavior

That includes in particular that the robot colony should be robust regarding the
failure of individual robots

The control of the robot colony should be decentralized. No master individuals and
no central coordination should be required

The robot colony is to be redundant in the sense that the robots should be
homogeneous and each robot should have full decisional power

There should be some form of implicit or explicit communication among the robots

to ensure a common cluster point

The behavior-based agents should have the following characteristics:

Fully autonomous and behavior-based individuals

The agents should be reactive, have atight coupling of sensing and action
Use local sensing and perform only local action

Use image processing for object detection

It is not required for the robots to be adaptive

Nonfunctional Requirements:

The developed software should work properly both within the simulation
environment and in areal environment

All cubes should be collected, and a single cluster point should remain at the end

14

Diplom J. Du 3. System Requirements

Functional Requirements:

The robots should collectively cluster randomly distributed cubes on a plane
The robots should be able to recognize and distinguish cubes, robots and walls
The robots should explore the plane to find cubes

The robots should push found cubes to a cluster point

The robots should be able to avoid obstacles (walls and possibly other robots)

There should be some form of implicit or explicit robot-robot communication to

determine a common cluster point

15

Diplom J. Du 4. System Model

4. System Model

The systemmodel is the result of a systemanalysis.Based on the requirements
specificationit aimsto describethe desiredsystembehaviorin a consistentcomplete,
realizable and verifiable weg{1].

Statechartdiagramswereusedto representhe systemmodel. The systemmodel
containsthree different versions.This is to reflect three different approachego the

robot communication.

Case 0: Implicit communication
A common cluster point emerges through stochastic robot-robot and robot-

environment interactions (see 2.5)

Case 1: Explicit communication by broadcasting
A common cluster point is determined and communicated by broadcasting
to nearby robots

Case 2: Explicit one-on-one communication
A common cluster point is determined and communicated by one-on-one

data exchanges between robots that cross each other's paths

For clarity and comprehensibility the system model was separated into eight
diagrams. A short description of the diagrams follows:

1. Overview
This diagram gives an overview of the system behavior. The seven states in this
diagram are super-states; they are specified in the following seven remaining sub-

diagrams.

2. User Interface
This diagram describes the reactions of the system to user input.

3. Exploring,

16

Diplom J. Du 4. System Model

4. Pushing,

5. Avoiding,

6. and Communicating (only in case 2)
These four diagrams describe the exploring, pushing, avoiding or communicating
behavior of the robot, respectively. There are transitions between these four
diagrams. Pseudo-states named 'Entry to ..." or 'Exit to ..." (e.g. 'Entry to Pushing' or
'Exit to Avoiding') are used to indicate a transition from one diagram to another. This
was necessary to make the transitions easier to trace.

7. Broadcasting (only in case 1)
This diagram describes the broadcasting process of the robots.

8. Sensors and Image Recognition

Finally, this diagram describes the sensing and image recognition processes in the
robots.

17

Diplom J. Du 4. System Model

4.1 Overview Diagram

This diagram gives an overview of the system behavior. The seven statesin this
diagram are super-states, they are specified in the following seven remaining sub-

diagrams.

. Program started / User \ ‘End pressed @

‘Go' pressed ‘End' pressed
Running
while running
\ 7
cube dete;
while unning LD RUGIHIRE

drive stalled

anged OR aborted

Exploring
(Start)

avoided

not exist in case 0and case 2)

3 detected

‘ Broadcasting (}Jnly ih case 1, does

Sensors and Image
Recognition

data exc

Communicating (only in case 2, in case
‘ 0 and case 1 we go to Awvoiding directly)

First the clustering is done only through estimation of the cluster
sizes (So we use implicit communication, the robots tend to
push towards larger clusters). Then the clustering is done with
communication through broadcasting. Finally with one-on-one
communication.

At ewery state that involves movement
we hawe to check for cubes, robots,
walls, proximity to cluster point and
stalled motors.

case 0: Implicit communication
case 1: Broadcasting (requires same starting point)
case 2: One-on-one communication

In case 1 and 2 the position with the highest known cluster point
density is communicated.

18

Diplom J. Du

4. System Model

4.2 User Interface Diagram

This diagram describes the reactions of the system to user input.

. Menu displays:
Go X XEnd

m started

Prog

Initializing

'‘Exploring' is started,
'Sensors and Image
Recognition' is started,
'‘Broadcasting' is started
(only in case 1)

initialized
Ready

N

Menu displays: Go’ pressed
XXXEnd
Running End pressed
'Bnd' pressed

19

Diplom J. Du 4. System Model

4.3 Exploring Diagram

This diagram describes the exploring behavior of the robot.

Choose new
direction

wall detected OR\close to cluster point

Entry to
Exploring
Exit to Communicating (case 2) ‘

‘ Exit to Awiding (case 0O, case 1)

robot detected

drive stalled
Exit to
Awiding

Compare cube density here with density at my cluster point. If cube density here is higher use this
location as cluster point

cube detected

cube density here higher

cube density here lower

Exit to
Pushing

20

Diplom J. Du 4. System Model

4.4 Pushing Diagram

This diagram describes the pushing behavior of the robot.

Met wall:

not possible, unless cluster point is next to
wall. Then we just choose radius hig enough
(there may be no position errors due to
communication, though)

Entry to
Pushing

Met cube: ignore

Pushing towards
cluster point

Approaching
cube

ardived OR met obstacle, more then once

met obstacle, first time

Backing u
cubeye-discovered met dbstacle; mare then once
cupe lost
Exit to Exploring

cube lost

i

feir enough OR drive stalled

Exit to
Awoiding

cube re-discovered

Turning slightly left/right

Waiting
drive stalted

cube/lost

‘ Backing up (if not done yet), ‘

Does not
work if two
robots are
facing each
other

;;;;;;;; L randor time passed

Trying to

retiieve cube

21

Diplom J. Du 4. System Model

4.5 Avoiding Diagram

This diagram describes the avoiding behavior of the robot.

Entry to Exit to Exploring
Awiding

after a certain amount of time

Always to the right or
always to the left. Then, if
two robots try to avoid
~1each other they will go
into opposite directions

Backing up \

far enough

motor stalled enough space to turmn

Driving
forward

Not *absolutely* reliable algorithm
but sufficient for most situations

22

Diplom J. Du

4. System Model

4.6 Communicating Diagram

This diagram describes the communicating behavior of the robot.

Entry to
Communicating

m

Driving
forward

other robot is driving away

Make robots
face each other
at close
distance

OR drive stalled

Sending

messages |
- Send requests to all
active robats in the
sent o
This long winded vicinity

procedure is
needed due to the
properties of the =
‘EyeNet'
communication
system (virtual
token ring with -
explicit

Waiting for
responses

X secgnds passed not exactly 1 respon

Exit to
Awiding

T Count :
co_mmunlcatlgn va res ponses 0 responses: wall
unique robot id) ; 2 or more responses: done
\ seweral encouters at the
same time
1 Fesponse, other robot identified
X
E)Echar‘ging exchanged f Compare cluster point densities

data

/L and take over denser location

Messages contain robot id (required by 'EyeNet’), and
cluster point density and position.

23

Diplom J. Du 4. System Model

4.7 Broadcasting Diagram

This diagram describes the broadcasting process.

Searching first
cube (Start)

e |Robots are searching for a very first cube. j

Broadcasting
location to all

Messages contain robot id (required by 'EyeNet'), and
cluster point density and position.

goy/message

| have lower id
got message

'my sender' means: the
sender from who | got
my current location

Compare cluster point densities and
take over denser location, compare ids

an my sender

my sender has become inactive
I hay higher id
This process runs continuously.

All robots have to start from the same

position (so that they hawe the same
coordinate system).

The algorithm is similar to the '‘Bully
Election' algorithm. It determines the
broadcaster and ensures broadcasting in
case of failure. Upon recowery no election
is iniiated (as opposed to the original
algorithm) because we don't need to find
out who the curent coordinator is, he will
contact us.

Note:

Communication by broadcasting is just an evolutionary step towards case 2 (loca
communication). As all robots have to start from the same point, they could just push all
cubes to their common starting position. There would be no need for any

24

Diplom J. Du 4. System Model

communication.However, the implementationof this casehelpsto becomefamiliar
with the features of the radio communication system, and experience for the
implementation of case 2 is gained.

The broadcastingprocessand the electionalgorithmthat it usesmight be regardedas
breachof the requirementN210 ('no centralcoordination'’), N310W (‘noinitialization")
and N112 ('local action'). | want to address these concerns here.

N120: The election algorithm is only needed to ensure that no superfluous
communicatiortraffic occurs.The communicatiorprocesscouldbe easily
modified suchthatno electionwould be necessargndeveryrobotwould
keep broadcasting to other robots in its vicinity.

N112: As therangeof broadcastings limited to the closevicinity of arobot,this
can still be regarded as local action.

N310W: Forbroadcastingll robotsneedto havethe samestartingpoint. Fromthe
usereffort point of view this posesno real argumentfor not startingall
robotsfrom the sameposition.lIt is correct,though,thatfor variousreasons
it might be desirable to start a robot from any point on the plane.

25

Diplom J. Du 4. System Model

4.8 Sensors and Image Recognition Diagram

Finally, this diagram describes the sensing and image recognition processes in the
robots.

Set camera

Taking image
(Start)

e
=
o
o
D
n

D
o

. taken
Processing
image }

This process runs continuously.

26

Diplom J. Du 5. System Architecture

5. System Architecture

The system architecture is based on the system model. It constitutes the transition from
system analysis to design. The system architecture contains the decomposition of the
overall system into sub-systems and components, and describes the interfaces among
them [11].

5.1 Fundamental Design Decisions

| decided to divide the system into five layers:

5 User Interface

4 Control Layer new

3 Robot Model (Wrapper Layer)

2 RoBIOS
provided

1 EyeBot Controller & Robot Platform HW

Layer 1: Hardware layer
This layer represents the EyeBot controller and the robot hardware platform.

Layer 2: RoBIOS|ayer
Thislayer contains the RoBIOS library functions.

Layer 3. Wrapper layer
Layer 3 contains wrapper classes. These classes fulfill four functions. Firstly,

27

Diplom J. Du 5. System Architecture

they encapsulate the needed C functions from the RoBIOS library in C++ classes.
Secondly, they constitute a layer of separation between the program and the
provided libraries, making it easier to adapt the program to changes in the
underlying libraries. Thirdly, the classes can combine low-level library functions
to provide high-level functionality to and hide complexity from the layers
above. Finaly, the classes provide the opportunity to use consistent naming
conventions throughout the newly devel oped software.

Layer 4: Control layer
Layer 4 contains the main functionality. That includes all classes that are needed
to control the clustering from a high-level perspective. The classesin layer 4 use
the wrapper classesin layer 3 to control and communicate with the robot. A point
of entry for the user interface of layer 5 is provided.

Layer 5: User interface layer

Layer 5 contains the user interface. It separates the user interface from the
functional part of the program.

28

DiplomJ. Du 5. System Architecture

5.2 Diagram of the Software System Architecture

The following diagram gives abasic overview of the system architecture.

User Interface

Sensors
& Broadcaster
Image
Recognition

Sensors
&
Image
Processing

29

Diplom J. Du 5. System Architecture

L egend:

P (specified) association

ﬁ indicates unspecified associations between layers

Note: The Broadcaster only exists when using global communication. The
Communicator only exists when using local communication. See system model for
details.

The program consists of up to four threads. One thread for the User Interface, one
thread for the Sensors and Image Recognition (SIR), one thread for the behaviors
(Commander & Explorer/Pusher/Avoider/Communicator) and finally, if using global
communication, one additional thread for the broadcasting process. This partitioning
ensures responsiveness to user input and reactivity of the behaviors. The number of
threads is kept to a minimum to avoid overhead due to context-switches. But it is still
ensured that the time-consuming image recognition and broadcasting processes do not
block the Ul and behaviors, that have short lead times but need to be called regularly.

Currently four behaviors are redlized, exploration, pushing, avoidance and
communication. The communication behavior is only activated when using local
communication. As we use a behavior-based approach, the control over the robot can be
handed over to a single class that represents one behavior.

The Commander switches between the behaviors choosing the most appropriate
one based on the result code returned by the last activated behavior. Activated behaviors
are not pre-empted, they return when they have served their purpose or when they
recognize that they cannot cope with the situation. With this framework, behaviors can
be easily added or removed, and the sequence of behaviors can be easily changed.

The Starter is just used to provide an easy access point for the user interface by
hiding complexity. It enables and disables the threads that form the clustering algorithm
making the user interface independent from functional details.

The SIR provides high-level environment information to the behaviors. It runsin
aown thread to prevent it from blocking other processes.

30

Diplom J. Du

5. System Architecture

The Broadcaster realizes the global communication process when using
communication by broadcasting.

5.3 System Components

The program consists of two packages. A robot package containing all classes of the
wrapper layer and a clustering package that contains all classes of both the control layer
and the user interface layer.

This section gives a brief overview of the system components. A fully
commented and browsable documentation is available (see components specification).

The robot package has the following classes:

robot
LCD
Drive PSD Camera -
Radio Timer Thread
Keyboard ImageFilter
LCD: This class provides methods to access the robot LCD.

Keyboard: This class provides methods to read from the robot keyboard.

Drive: This class provides methods to control the robot drive.

Camera This class provides methods to access the robot camera.

ImageFilter: This class providesimage filters.

PSDs: This class provides methods to access the infra-red sensors.
Radio: This class provides methods to use the radio communication.
Timer: This class provides methods to access the robot timer.

Thread: Base class from which all multi threaded classes are derived. The derived
classes inherit a set of methods that can be used to control the thread. Once
the thread is initialized and made ready, its run method is scheduled for

31

Diplom J. Du

5. System Architecture

execution. The run method is declared as virtual and has to be overwritten

by the inheritor.

The clustering package contains the following classes:

clustering

Ul

Starter

Commander

Behavior

Avoider Explorer Pusher Communi —

cator

Broadcaster

CubeClustering (not in diagram, it isnot a class):

Ul:

Starter:

This component contains themain function of the program. It

initializes and starts the program.

This class implements the user interface. It allows the user to start and stop

the clustering using the input buttons of the EyeBot controller.

This class provides a point of entry for the user interface to control

the clustering algorithm. This ensures that the functionality is

separated and hidden from the user interface. The class provides a few

public methods to start and stop the clustering. Starter controls the state of
the threads (ready, suspended, ...) that form the clustering algorithm

32

Diplom J. Du 5. System Architecture

Commander: Activates and switches between the behaviors of the robot (current

Behavior:

Explorer:

Pusher:

Avoider:

implementation: exploring, pushing, avoiding and communicating.
Communicating only when using local communication).

The decision which behavior to activate is based on the

current state of the commander and the return code it receives from

the last activated behavior. Once a behavior has served its purpose it

will return with aresult code. The commander does not actively

interrupt activated behaviors.

Base class from which all behaviors are derived. This provides them with
the same base properties and makes adaptations easier, that are to affect all
behaviors.

Explores the plane using simple search patterns. Avoids walls and the own
cluster point when exploring. Returns when a cube or a robot has been
detected.

This class implements the pushing behavior of the robot. The robot
approaches the cube and tries to push it to its cluster point. If the robot
meets other robots on its way it triesto avoid them.

Implements the avoiding behavior of the robot. The robot tries to back up
and then turns away from the obstacle.

Communicator: This class implements the local communication behavior of the

SIR:

robot. It is only needed when using local communication. First the
robot isjustified so that it faces the other robot at a close distance.
Then it triesto identify the other robot. If successful their cluster
points are exchanged and the denser of the two cluster pointsis
chosen as common cluster point.

This class (Sensor and |mage Recognition) provides high-level information
to the behaviors by pre-processing the datainternally. The provided

33

Diplom J. Du 5. System Architecture

information includes current obstacle distances as received by the infra-red
sensors. But in particular information about the locations of cubes and
robots that are visible on camera are provided

Broadcaster: This class implements the broadcasting abilities of the robot. It is
only needed when using communication by broadcasting. The
broadcasting algorithm makes sure that a cluster point is determined
and communicated to all robots in the vicinity. It also makes sure
that the cluster point position is retained should the broadcasting
robot fail. See system model for details.

5.4 Class Diagrams

The following class diagrams show the relationships between the classes of the layers 3
to 5.

L egend:

C uses D
B inherits from A

Diplom J. Du 5. System Architecture

5.4.1 Implicit Communication

Thread
LCD Zﬁ
ul
Keyboard |
Starter
Thread
Commander
Pusher Avoider Explorer
Behavior Thread
SIR
PSD ImageFilter
- Camera
Drive

35

DiplomJ. Du

5. System Architecture

5.4.2 Communication by Broadcasting

LCD

Thread ¥
y
/
T A
D3 /
& ©
Broadcaster
T -
LK ~
r"’ \ \
AR
/ AN

Keyboard
Starter
/
/
/
/
7
P X
Thread
T~
R
Commander
o a / \\\\\\
r/’ \
/]
"/ /
r/ \
> y r/’ (\‘\
1/ \'/
¥ /2
Explorer Pusher Awider
N
~
T
/
\ f X,
N\ | \
4 }9
N\
\ |
X |
\
\ [
\ |
\ |
\\\ “’
\ (‘
% /
\, |/
\ WV
Drive

36

\
/
{
/
/
/
/
ImageFilter ™

A
Camera

DiplomJ. Du 5. System Architecture

5.4.3 Local Communication

Thread

LCD Zﬁ

ul

Keyboard

Starter
Thread P
/ ‘;\
A\ k
,,//
/ \ \\\
\ \\1\ \
\\J :ﬁ\s
Explorer Communicator
\ \ L . / \
\ o /
\ Iy AN
L) : Rad
J 4 Timer Radio
Behavior

T . Thread
o -
™ 1
= gR
B PSD ImageFilter Camera

Drive =

37

Diplom J. Du 6. Implementation

6. Implementation

6.1 General Implementation Decisions

Therearetwo mainsourcesof input, the cameraandthe infra-redsensorsl decidedto
usethe cameraor cubedetectionandthe PSDsensordor obstacleavoidanceThered
cubesare well distinguishablefrom the environmenton the color camera.The PSD
sensors,on the other hand, quickly deliver accuratedistance data of surrounding
obstaclesA final sourceof input, the informationwhetherthe drive is stalled,is used
for obstacle avoidance as well.

Of all behaviors, avoidance has the highest priority followed by pushing,
communicatiorandfinally exploration.This orderingpreventgherobotfrom becoming
stuck and ensuresthat even with high robot densitiesthe actual clusteringdoesnot

come to a stop due to excessive robot-to-robot communication.

| decidedto developthe softwarefor real robotsfirst, andthento port the programto
the simulator. The demands regarding robustnessare usually higher for real
environmentsystemsbecauseof errorsin sensorsand actuators.A systemrunning
perfectly on the simulatormay fail in real-life. The otherway round, a failure is less
likely.

| decidedto expressanglesin degreeinsteadof radian,mainly becauset is easierfor
the programmeto visualizeandhandleanglesin degree As the RoBIOSfunctionsuse
radian,the Drive classneedsto performa few conversionsBut the conversionsare
restrictedto the Drive classonly. The high-levelclassesmainly the behaviorscanuse
degree throughout.

6.1.1 Coordinate systems

Therobotsusetwo coordinatesystemdor navigation.A global coordinatesystem,and
a local one. The local coordinatesystemis 'carried along' by the robot. The origin
movesaroundwith the robot'scenter.The x-axis alwayspointsto the currentdirection

38

Diplom J. Du 6. Implementation

of the robot. The global coordinate system is set when the robot driveisinitialized. The
origin is the starting point of the robot, and the positive x-axis shows the orientation of
the robot at startup.

Whenever possible | used the local coordinate system. The motion commands are
easier to understand and program, and the computations are faster when calculating
entirely with local coordinates.

A

Y X

Sk

Figure9. Local and global coordinate system

The cluster point of arobot is aways the origin of its global coordinate system. It
iseasier for the programmer to make to robot push a cube to the origin of its coordinate
system, and the computations are faster. And, as we will see later, the usage of the
origin as cluster point makes the synchronization of coordinate systems easier. So, when
a robot adopts a new cluster point, it introduces a new global coordinate system. The
origin of the new coordinate system is at the new cluster point location. Then the robot
calculates its own position in the new system.

39

Diplom J. Du 6. Implementation

6.1.2 RGB to HSV

One major advantage of the HSV color coding over the RGB system is the invariance of
the hue value with regard to illumination and camera orientation [5]. The hue of the red
cubes to be collected are distinct from the hues of all other objects in the operational
area, according to the requirements specification. Therefore we can use the hue value to
reliably identify cubes. This approach also ensures a high performance as only one
value instead of three needs to be considered. For these reasons | decided to use the
HSV color system for image recognition. The RGB images obtained from the EyeCam
are converted into HSV values. For each pixel in the image we calculate the hue from
the three RGB values. In the current implementation 253 hues can be distinguished. The
hue value ranges from 0 to 252, the value 255 is used for objects with no hue. The
saturation and brightness are not calculated as they are not needed.

6.2 Behaviors and Image Recognition

6.2.1 Detection of Cubes

| decided to use a hue-based detection method, based on the experiences of Birgit Graf
[1]. The cubes have a distinctive color, making a color-based detection method the
obvious choice. The HSV color system has the advantage that the hue value is invariant
to illumination and camera position [5]. The 24-bit RGB image provided by the
EyeCam is converted to an HSV representation on-the-fly. Only the hue values are
calculated, as they are sufficient to reliably recognize the cubes. Furthermore, to
increase performance, only the row currently under consideration is converted.

The detection of the cubes works as follows. Using atable, the minimum size of a
cube in image pixel is determined. Then, starting from the bottom row and going from
left to right in each row, the image is scanned for a continuous chunk of pixelsthat have
the cube color. Image pixels are considered to have the cube color if the deviation from
astored hue value is below a certain threshold. A cube has been found if such achunk is
equal or larger to the initially determined minimum cube size.

Now the robot has to determine the relative location of the cube from its current

40

Diplom J. Du 6. Implementation

position,or more correctly, from its position whenthe imageunderconsideratiorwas

taken.The cameraof the robotshavea fixed inclination. Therefore,the heightof the

detectedbjectin theimageindicatesthe distancerom the robot. The conversionfrom

imagerow to distancein meteris doneusingthreetables,row2Meter, yractor and

yFactorMinus. All tableshave 60 different values,as the imagesprovided by the

EyeCamhavea resolutionof 60 rows* 80 columns.row2Meter[i] canbe usedto get

the distanceof the cubeif it is detectedn i row of the image.The two othertables,
yFactor and yFactorMinus, are usedto calculatehow far to the left or right the

detectedbbjectis from therobot. yractor is usedfor objectsleft from the cameraand

yFactorMinus for objectsright from the cameraTwo differenttablesareusedbecause
that way much better results were obtained. However, | suspectwith the right

calibration,onetableshouldbe sufficient. The tablesarecamera-dependeandhaveto

be createdmanuallyfor eachrobot. For eachimagerow the distanceat which an object

appearson that row is measured. According to [1], an automaticformula based
generation of the tables provides unsatisfying results.

Therelatively simpledetectionalgorithmis effective.lt is fast, easyto implement,and,

most importantly, reliable. The measureddeviationsfrom the real object distance
rangedfrom 0.5 cm to 5 cm, dependingon the distancefrom the camera.The further

away an object is, the more space is covered by a single row in the image.

The disadvantage is, that obviously no other objects with a hue similar to the cube's may
be in the areaof operation.Furthermore,the manualcreation of the tablesis time

consuming.

g -

.47. - |

Figure 10. Height in camera image correspondsto distance

41

Diplom J. Du 6. Implementation

6.2.2 Density Estimation

The robot usesits color camerato estimatethe cube density. In the implementation
without communicatiorthe robot mustbe ableto reliably estimatethe cubedensityfor
a single cluster point to remainin the end. As shownin [7], a single cluster point
remainsf all robotspushcubesto their respectivelylargestknown clusterpoint. When
usingradio communicatiorthe cubedensitycanbeusedto determinea commoncluster
point. As before,all robotspushtheir found cubesto thelargestknown,commoncluster
point. Naturally, with radio communicationother valuescan be usedto determinea
commonclusterpointaswell - for examplethe ageof the clusterpointsasin [8]. Then
all robots would push newly found cubesto the first discoveredcube. One main
advantagef a density-basedpproachs thatthe value usedfor the decisionis directly
relatedto the objective.So, insteadof stringentlypushinga numberof cubesto thefirst
discovered cube, the reverse procedure is often more advantageous. The disadvantage of
the density-basedapproachis that a density estimationwith the cameracan not be
totally accurate.As a result, and already observedin my experiments,the robots
sometimes start pushing cubes back and forth between two cluster points of
approximatelyequalsize.An age-base@pproachwould havea well-definedcommon
cluster point. However, through stochastic processes,and as observedin the
experimentso far, evenin the density-basedpproacha single clusterpoint remainsin
the end.

Another advantageof the density-basedpproachis that the robots can adjust
their clusterpoint positions.This is necessarasthe combinationof differential steering
systemand shaft encoder-basetbcalizationis inherentlyinaccurate[9]. That means
after havingtraveleda long distancea robotis not ableto find exactlybackto its old
clusterpoint position. Furthermorethe clusterpoint positioncanslowly move dueto
addition and removal of cubes by other robots.

Basedon the density estimationa center of density can be calculated.The
position of that center can then be usedto adjust a robot's cluster point position
regularly.

The density estimationis done by taking threeimages(one at 0 degreespne at -20
degreespneat +20 degreespandcountingthe numberof pixels with the cubehue.The

42

Diplom J. Du 6. Implementation

density value ranges from 0.0, no pixels with matching hue on any of the images, to 3.0,
al pixelsin all images have the cube hue. Experiments have shown that the density is
highly dependent on the distance from the cubes. Therefore it is necessary to ensure that
the density estimation is always done from approximately the same distance.

The center of density is estimated by calculating a weighted mean in the image with the
highest density. The position of the center of density is then converted into local robot
coordinatesasin 6.2.2.

6.2.3 Approaching and Pushing

1. Upon detection of a cube the robot has an estimation of the cube distance

2. Therobot moves to afixed distance to the cube

3. At that defined distance a cube density estimation is performed (Note: if the robot
decides to use thislocation asits new cluster point, the approach is aborted)

4. If the angle between the lines robot-cube and cube-cluster point is below 60 degrees
the robot approaches the cube in a straight line and starts pushing

5. Otherwise the robot moves closer to the cube in a straight line until it is about one
robot length away

6. Based on the distance information from its infra-red sensors the robot decides
whether to drive around the cube from the left or right side

7. The robot drives around the cube until it detects an obstacle in front of it, or until the
robot, the cube and the cluster point are aligned

8. If the robot did detect an obstacle and ended up in a bad position to push the cube to
the cluster point (the cluster point is behind the robot), it tries to drive around the
cube the other way

9. Therobot tries to push the cube to its cluster point

43

Diplom J. Du 6. Implementation

Figure11. Approaching and pushing a cube
One main advantage of this way of approaching the cube is, that the decision of how to
circumnavigate the cube is made at the last moment and based on sensor data
Moreover, this method is reliable, and easy to program and understand. The
disadvantage is that this method is a bit slower than for example the approaches used in
[1]. But thisis not a major limitation as speed has a lower priority here, as opposed to
the competitive environments there.

Diplom J. Du 6. Implementation

The way of approach ensures in most cases that the robot can push the cube to its cluster
pointin a direct curve. When pushingthe cube,the robot usesits inclined front PSD
sensorto determineif it is still in possessionf the cube.If the cubeis lost, the robots
triesto re-detecthe cubeby backingup andturning 20 degreego the left andright. If
the cubeis re-detectedhe robot continuedts pushoperation,otherwisetherobotgives

up.

6.2.4 Communication

The robots communicatewith each otherto speedup the emergenceof a common
cluster point. Two communicatingrobots exchangetheir cluster point positionsand
densitiesTheyaccepthe densernf thetwo clustersastheir commonone.lt is expected
that with communication a common cluster point for all robots is found faster.

How can two robots exchange their cluster point positions? The easiest way to exchange
two positionscanbe usedif both robotshavethe samecoordinatesystem.Pleasenote

that we are always talking about the global coordinatesystemof the robot here, as
definedin 6.1.1.Thelocal coordinatesystemof therobottravelswith therobotand,for
obviousreasonscannotbe usedto storeits clusterpoint. They candirectly exchange

their coordinates. For example:

Robot 1: 'My home is at (2,0)'
Robot 2: 'My home is at (10, 3)'

However,all robotswould haveto be startedfrom the samepoint to have the same
coordinatesystem.But then, there would be no needfor communicationat all. The
robots could just push all cubes to their common starting point.

If the robotsare not startedfrom the samepoint anddo not havea commoncoordinate
system,they needto (a) synchronizetheir coordinatesystemsand (b) then exchange
their clusterpoint positionsin the commoncoordinatesystem.As explainedin section
6.1.1 the robots always have their cluster points at the origin of their coordinate
systemsFor this reasonstepb is not necessaryere:oncearobotknowsthe coordinate

45

Diplom J. Du 6. Implementation

system of the other robot, it also knows the cluster point of the other robot.
Oneway to synchronizetwo coordinatesystemss the usageof landmarks.For
example:

Person 1: 'My home is 1.2 km south of the lake.'
Person 2: 'My home is 500 m west of the lake.'

If both persons know where the lake is, they can find each other's homes.

However,by using landmarkswe decreasehe flexibility androbustnesof the
system.The systemcould not be deployedat siteswithout landmarksanda removalof
thelandmarkswould leadto a collapseof the communicatiorsystem Furthermorethe
useof landmarksarean introductionof a world model,which contradictghe behavior-
based approach.

Landmarksare not necessarywhen two robots crosseachother'spaths.If the
positionof anotherrobotis known exactly, the otherrobot can sendus his positionin
his coordinate system. By adjusting the received coordinates with his relative position to
us, we cancalculateour positionin his coordinatesystem.And we havesynchronized

the two robot's coordinate systems. An example:

Person 1: 'l am 5 km west from my home.'

Person 2: 'l am 3 km south and 200 m north from my home.’

If the two personscanseeeachother,or now the relative positionof eachother,they
can find each other's home.

But that meansthe robots have to recognizeeach other. The EyeBot body has no

distinctive hue. Therefore the cameracannotbe usedto detectotherrobots.The other

mainsourceof sensomata,the PSDscannotbe usedto detectrobotseither,asthey can

only return the distances to obstacles.

But thereis oneway to reliably detectotherrobots.Only robotscollide with eachother!

A single robot doesnot collide with walls, the signalsdeliveredby the PSD sensors
arrivein time to avoidthem.However,anotherobotmovesaswell, andcandoublethe

relative speedat which the robotsapproacheachother. Furthermore the robot bodies
areuneven,andthe PSD sensorslo not alwaysdetectthemin time. The collision and

the resulting closenessf the robots is actually helpful in determiningthe relative

46

Diplom J. Du 6. Implementation

position to each other.

To sumit up: whena robot (calledR) collideswith anobstaclejt probablyhit another

robot. R broadcastsa messagecontainingits current position in its own coordinate
systemandits clusterdensity.ThenR waits for responsedf only a singleresponsas
received, the message is probably from the other robot (called S). If no or more than one
responses receivedthe communicatiorprocedurds abortedasR doesnot know with

who it collided. This identification procedureis neededbecauseof the propertiesof
'EyeNet' radio communication system. It is a virtual token ring with explicit
communicatiorthrougha uniquerobot id, which meanswe haveto alwaysmakesure

that we are indeed communicating with the right robot.

If S has been successfully identified, R and S compare their cluster point densities
and choose the cluster point with the higher density as their common one. Let us assume
that S has the lower cluster density. Then S uses the received coordinates and the known
relative positionof R to calculateits own positionin R's global coordinatesystem.As
R's clusterpoint is at the origin of its global coordinatesystem they havesuccessfully

synchronized their coordinate systems, and have a common cluster point now.

6.2.5 Exploration

The Explorerhasa simple yet effective behavioralpattern. The exploring behavioris
active until a cube is found, the robot is stalled, or another robot is detected.

When meetingan obstaclethe robot just turns away from the obstacleuntil all PSD
sensors are free€. the reported distances exceed a certain threshold) again. If the robot
is startedin a corner,or if the robotis surroundediy obstaclesit canhappenthat the

robot getstrappedandkeepsturning, becausavith no orientationall threePSD sensors
arefree. Then,the obstaclethresholdis slowly decreasedo that the robot canfind a

way out. When all sensors are free again, the threshold is set back to its old value.

Therobotstry to avoidtheir own clusterpointsto preventthemfrom disarrangingheir
cluster.However,the robotssometimesdecomestuckbetweertheir clusterpointanda
wall if the clusterpointis closeto thewall. The sequencés aboutasfollows: Therobot

a7

Diplom J. Du 6. Implementation

triesto avoid its cluster point by turning away. Then it detects the wall and turns away
from it, and again the robot faces the cluster point. The cycle starts all over. To prevent
this, the robot is allowed to cross its cluster point when it is caught in such acycle, even
at the risk that the cluster is disarranged. Undesirable cycles of such kind are easily
detected by tracing sequences where two occurrences of cluster point avoidance are
separated by a single occurrence of obstacle avoidance. In the current implementation
sequences of c-0-c, C-S-0-C, C-0-S-C, Or C-S-0-S-C trigger the allowance to cross the
cluster point (c denotes cluster point avoidance, o denotes obstacle avoidance, s denotes
straight driving). To simplify the implementation the robot currently does not trace
sequences of 0-c-0, 0-S-C-0, 0-C-S-0, and 0-s-c-s-0. They indicate the same undesirable
cycle, only starting with obstacle avoidance instead of cluster point avoidance. We just
accept that one additional redundant turn until the original trigger is activated.

If none of the mentioned cases apply, the robot just drives straight.

6.3 Programming Issues

6.3.1 Singleton Classes

Some classes need to initialize underlying hardware components of the robot, or they
need to be accessed by a number of different classes. The initializations of the hardware
components are done in the class constructors of Drive, PSDs, Camera, and Radio. We
have to make sure that only one instance of these classes are created, as multiple
initializations and allocations of the hardware components would result in errors. In the
case of SR, all classes that need to access it should access the same instance. Otherwise
several SR threads would be running in paralel, a massive consumption of processing
time.

The singleton design pattern as described in [2] can be used to solve the problem.
The intent of the singleton pattern is to "ensure a class has only one instance, and
provide a global point of access to it". This is achieved by declaring the constructor as
protected. This way, only the class can create instances of itself. Then, the class just
needs to create a single instance of itself and provide a public method to access that
instance. An example:

48

Diplom J. Du 6. Implementation

class Drive
{
public:
//Used to access the single instance of this class
static Drive* getDrive (void);

protected:
//The constructor, can only be called by this class
Drive () ;

private:

//the single instance of this class
static Drive aDrive;
}i
Drive Drive::aDrive;
Drive* Drive::getDrive (void)
{
return &aDrive;
}
Drive::Drive ()
{

//initializations
}

void main (void)
{
Drive* drive = Drive::getDrive();
//drive is a pointer to the only instance of Drive
//and can be used to control the robot drive now

Code 1. Example of singleton class

6.3.2 The Thread Class

Some modifications were necessary to make the Thread class work with the RoBIOS
library. First, | will quickly show how it was actually supposed to look like. Then | will
explain why and what modifications were necessary.

The program consists of up to four threads, as defined in the software architecture. The
Thread class was designed to (@) make the use of threads easier by encapsulating the
complexity in a separate class, and (b) to avoid having to rewrite the same code for all
threaded classes, with all disadvantages in modifiability, consistency and
comprehensibility.

The following pseudo-code illustrates how it was initialy intended.

49

Diplom J. Du 6. Implementation

class Thread
{
public:
// Constructor for Thread
Thread (char* name, int stackSize, int priority, int id);

// Initializes the thread, returns true if successful
bool spawn ();

protected:
//must be overwritten by the inheritor with its own code
virtual void run(void);

}i

//We create a threaded class called 'MyThread'. MyThread
inherits all the properties it needs to be a thread from the
'Thread' base class. We just need to overwrite the 'run' method
with our own code

class MyThread : public Thread
{
private:
void run(void);
H
void MyThread::run(void)
{
//Here we enter the code for MyThread
}

void main (void)
{
//create an instance of MyThread
MyThread myThread (“threadl”, 8192, MAX_PRI, 1);

//initialize the instance
myThread.spawn () ;

//now the instance can be used

return 0;

Code 2. How to create threads (as initially intended)

The example above shows that al the complexity in connection with multi-threading is
encapsulated in the Thread base class alone. Any class that needs to be athread can just
inherit from Thread and overwrite the virtua run method with its own code. The
Thread class offers a small set of simple methods (xi11, sleep, ...) to control the
thread.

Unfortunately, some properties of the multi-tasking functions provided by the RoBIOS

50

Diplom J. Du 6. Implementation

library made a few modifications necessary.

1. When initializing a thread, a pointer to a C-function containingthe code to be
executed is expected.

2. All threads must be initialized:fawned) iNmain.

1.1 will call a pointerto a standardC function pointer-to-function and a pointerto a
C++ method pointer-to-member-function. Thereis a major difference betweenthese
two. A method doesnot make sensewithout its associatednstance.The type of a
pointer-to-functionis different from a pointer-to-member-functioriet us considerthe
functionint sum (int a, int b) andthemethodint Algebra::sum(int a, int
b). Thetypeof thefunctionis int (*) (int, int), whereaghetypeof themethodis
int (Algebra::*) (int, int). Fortunatelythereis an easyway out. Pointer-to-
staticcmember-functions are compatible with regular pointer-to-func{éins

Thatmeandf we declarethe run methodof athreadasstaticwe canpasst to
the RoBIOS library. The problem is that static methodscan only use other static
methodsand variables.The reasonsis that a static method, which is sharedby all
instanceswould not know which non-staticmethodor variable to useif therewere
multiple instancef the sameclass.Thus,the staticpropertywould haveto be applied
to all used(sub-)methodsand (sub-)variables,and propagateghroughthe whole class
structure Thatis why the threads'run methodareleft asnon-staticand staticwrapper
methodscalled staticrun are used.A pointer to the wrapper methodis passedo
osspawn, it doesnothingbut to call run. Attentive readerswill haverealizedby now
thatthereis a catchto this solution.If static methodscannotcall non-staticones,how
canstaticrun call run? As aforementionedhe reasonwhy static methodcannotuse
non-statiomemberds becausét is not clearwhich non-statiomemberto useif thereare
multiple instancesof the sameclass.That meansstaticrun needsa pointer to the
instancewhoserun methodis to be called. This pointeris storedin a static member
variable callede.

Accordingto C++ conventionmethodscannotbe staticandvirtual atonce.In
the initial designrun was declaredas virtual which resultsin dynamicbinding That
meanghe programdeterminest run-timewhich run methodto use,the oneof Thread
or the one of mMyThread. Without the virtual keyword the compiler determinesat
compile-timewhich run methodis used,the oneof Thread. To ensurethat MyThread

51

Diplom J. Du 6. Implementation

indeed uses its own run method, it is necessary to overwrite the thread initiaization
method (spawn) aswell. Let us have alook at the final solution.

52

Diplom J. Du 6. Implementation

class Thread
{
public:
// Constructor for Thread
Thread (char* name, int stackSize, int priority, int id);

// Initializes the thread, returns true if successful
bool spawn ();

protected:
//must be overwritten by the inheritor with its own code
void run (void);

}i

class MyThread : public Thread
{
public:
//without virtual run methods every thread needs
//its own spawn
bool spawn (void);

private:
void run (void);

//static wrapper method for run
static void staticRun (void);

//stores a pointer to an instance of MyThread for staticRun
//initialized in the constructor
static MyThread* me;
b
MyThread: :MyThread ()
{
me = this;
}
void MyThread: :run(void)

{
//Here we enter the code for MyThread

}
void MyThread::staticRun (void)

{

me->run () ;
}
void main (void)
{

//looks exactly the same as in the easy example

//create an instance of MyThread
MyThread myThread (“threadl”, 8192, MAX_ PRI, 1);

//initialize the instance
myThread.spawn () ;

//now the instance can be used

return 0;

Code 3. How to create threads in the program

53

Diplom J. Du 6. Implementation

As seen in the example, this final solution is as easy to use as the initial proposal,
though the external framework isalittle bit trickier.

2. As dl thread must be initialized (spawned) in main, the threads must be known in
main. Thisis partly solved by creating global threads, as in the case of Commander and
Broadcaster, by using singletons, asin the case of SR, or, whenever possible, by using
local instances, asin the case of Ul. Why three different approaches? Obviously, using a
local instance is the best solution. But that only works if just main needs access to the
thread, as with Ul. SR was designed as singleton in the first place, as a number of
classes need to access it. Therefore, main can use the built-in mechanism to access the
instance. Finally, none of the mentioned cases apply to Commander and Broadcaster, so
we use global instances.

6.3.3 Race Conditions

Like in most multi-threaded programs, we have to deal with inter-thread-
communication and synchronization. In the current implementation, thread interaction
only takes place between SIR and the respective active behavior. Through a reasoned
implementation of the methods and variables, getcubePosition, used by Pusher, isthe
only method where a race condition can possibly occur. The sequence: Pusher reads the
x coordinate of a cube position. Then a context-switch takes place, and SIR updates the
cube position. Another context switch, and Pusher reads the y coordinate of the new
cube position. However, this race condition is not critical a all. SIR just keeps
providing better estimations of the cube position, and steadily approaches the correct
values with increasingly smaller changes. Therefore the coordinates do not need to be
protected.

6.3.4 Cyclic Dependencies

There is a cyclic dependency between the classes Behavior, Commander and
Explorer/Pusher/Avoider/Communicator, as we can see in the system architecture. This
cycle arises as

(8 theBehavior base class provides access to the commander; thus a behavior can

54

Diplom J. Du 6. Implementation

tell the commander that it wants to cede control or wants to sleep for some time;
(b) all behaviors are derived from the Behavior base class;
(c) the commander knows each behavior in order to control it.

The compiler is not able to solve such a dependency on its own. One of the
classes needs to be compiled first, but each of them is dependent on the other two and,
through the coupling, on itself. We have to break the cycle. In this case it can be done
using aforward declaration and a special include pattern [3].

The Behavior class does not actually need to know the details of the Commander
class, asit only stores a pointer to one. Pointers are the same, no matter what they point
to, therefore we do not need the definition of the class in order to store the pointer. That
means No #include “Commander.h” command is needed in Behavior.h. However,
simply taking it out will result in an error during compilation. So we need to let the
compiler know that there is a Commander class. This is done with by replacing the
include line by a so-called forward declaration - a class definition without a body. This
allows us to break the dependency between Behavior.h and Commander .h.

Replaced by forward declaration

Behavior.h

T

Behavior.cpp

Commander.h

T

Commander. cpp

Explorer.h

!

Explorer.cpp

A
?BincludesA
B

Figure 12. Dissolving the cyclic dependency
Of course, the implemented behaviors (Explorer, Avoider...) do need to know the

55

Diplom J. Du 6. Implementation

definition of the Commander class. That is why Commander.h needs to be included by
them.

6.4 From Real Robots to the Simulator

Generally, most parameters had to be adapted, as the simulator uses different from real
robots, different camera pos, angle, balls instead of cubes.

When pushing a cube, the robot uses itsinclined front PSD sensor to determine if it still
possesses the cube. The PSD sensors of the simulated robots cannot be inclined.
Therefore, in the ssimulation the robots cannot detect the loss of a cube. They keep
driving back to their cluster points even if they have lost their cubes.

In the simulator RoBIOS functions may not be called in the class constructors.
Therefore | had to introduce public initialization methods that must be called before a
classisused.

6.4.1 Multiple Robots on EyeSim

The EyeSim simulator is not able to simulate multiple robots with a program that uses
global variables. All robots would share the same global variables [6]. The same holds
for static variables. So a few modifications are required when porting the program to
EyeSim. Fortunately, because of the use of C++, no global variables are needed for the
interprocess communication. An analysis showed that the program contains two critical
global variables and nine critical static variables. The two global variables, one instance
of Commander and one instance of Broadcaster, are necessary because these two
threads must be initialized in main, but they are used in a different part of the program.
The nine static variables are the five instances of the singleton classes (Drive, Camera,
PSDs, Radio and SR) and the four threads (Broadcaster, Commander, Ul and, again,
SR). More static variables are used in the program as messages for the interprocess
communication, but those are constant and can be shared.

The solution is quite straightforward. An array is created for each global/static
variable that cannot be shared. The array size corresponds to the number of robots to be

56

Diplom J. Du 6. Implementation

used in the simulation. As each robot has a unique id, accessible by osMachine1D,
every robot has its own instances of the critical variables. The robot id corresponds to
the array index. If the array sizeis set to 1, the resulting program is virtually equal to the
original one for real robots.

//Example for global variables:

//creation of a global array of commanders
Commander g_commander [NUMBER_OF_ROBOTS] ;

//later each robot initializes and uses its own commander
g_commander [OSMachineID ()] .initialize();
//Example for static variables:

//creation of a static array of drives
Drive Drive::drives[NUMBER_OF_ROBOTS];

//later each robot gets and uses only its own instance
return &drives[OSMachineID ()];

Code 4. Arraysfor all global/static variablesin EyeSm

6.4.2 Stalled Drive Information

Another difference between real robots and simulated ones is the reliability of the
information whether the wheels are stalled. Evidently, in the simulator this information
is reliable and instantaneous. When using real robots, this information is not always
reliable. When the robot accelerates it has to overcome a certain frictional force before
it starts moving. Depending on the parameters of the drive controller it can take some
time until the robot starts moving. This is often wrongly interpreted as a stalled wheel.
Therefore, when using real robots, a counter is incremented each time the robot receives
the information that one of its wheels is stalled. The robot decides that its wheels are
indeed stalled only if the counter exceeds a certain limit.

57

Diplom J. Du 7. Testing

7. Testing

Real-environment testing was performed at the Mobile Robot Lab using EyeBots, cubes
and a plane as specified in the system requirements specification.

The tests covered only the main functionality. Tests of the overall system, sub-system
tests on behavior level (i.e. compliance of the behaviors with the system model), and
tests of critical components (cube detection and density estimation) were performed. A
major advantage of the behavior-based approach is that the behaviors can be
implemented and tested independently from each other. Generally, classes of the robot
package were not tested as their main task is just to pass commands to the underlying
robot library functions. Errors in these classes were quickly revealed when testing
components of the clustering package. Moreover, the robots are designed for
robustness, which means small deviations (e.g. of the sensor readings) should have no
major impact on the overall behavior.
All tests were passed to our satisfaction. See the test protocol for details.

58

Diplom J. Du 8. Evaluation and Future Work

8. Evaluation and Future Work

The implementedcube detectionalgorithm is reliable and fast. It seemsto perform
betterthanthe original algorithmof Birgit Graf, on which my implementatioris based.
| assumeonereasonis that!l specifiedthe hue to be detectedmore accurately.When
experimentingvith Birgit Graf'sprograml realizedthatthe hueshespecifiedwasabout
10 huesoff the optimal one.Secondly,| modified the conversionfrom RGB to HSV
such that the result 'no hue' occurs considerably less often.

Worth improving is the calculationof the distancesof detectedcubesfrom the
robot. At present.threetablesare usedfor this conversion.However,with the right
calibration, two tables should be sufficient.

In a few casesa robot hascollided with a wall becausat thoughttherewas enough
spaceAs aforementionethe PSDreadingsaretoo highwhenarobotis closeto awall.
However, this problem is not critical as the robot quickly frees itself.

In the currentimplementatiorthe robotshavetroubleto clustercubesthat are closeto
walls. It might be usefulto re-designthe approachingand pushingbehaviorsuchthat
cubes close to walls can also be collected.

Due to time constraintshe communicatiorby broadcastingvas not implementedAs
arguedbefore,with a global startingpoint, the robotscould just pushall cubesto that
location. There would be no need for communicationat all. Communicationby
broadcastingwas intendedas an evolutionary step towards the final solution, local

communication. However, | implemented the one-on-one communication directly.

Testswereperformedto verify the complianceof the systembehaviorwith the system
model. The clustering terminated successfullyin most cases,and scalability and
robustnes®f the systemcould be demonstrateddowever,more advancedestscould
be performed for exampleto comparethe efficiency of swarmclusteringsystemsand
single-robot systems, to determine the optimal robot density for a given area, and so on.

Currently,the robotscan only clustercubeson empty planes.The robotsassumehat

59

Diplom J. Du 8. Evaluation and Future Work

they do not need to avoid walls, only other robots. Once a robot has a cube, it heads for
its cluster point in adirect curve. If the robot hit awall, it would lose the cube, and the
robot would not be able to retrieve that cube. The program could be extended such that
the robots would able to cluster cubes in more complex operational areas. For example
the floor of an office building could be recreated. That would be an excellent example
of how multi-robot systems could be used for garbage collection.

60

Diplom J. Du 9. Conclusion

9. Conclusion

In thisthesis | presented the swarm clustering algorithm | developed. The agorithm was
implemented for both real robots and a simulator. Software engineering principles were
observed throughout the project.

For the algorithm | designed a versatile framework for behavior-based control. |
implemented four behaviors. exploration, avoidance, pushing and communication. The
robots use only local sensors and on-board image processing. A reliable image
recognition method (for the cubes to be clustered) was implemented. Furthermore, an
inter-robot communication system was incorporated. It is used to speed up the
determination of a common cluster point by synchronizing the coordinate systems, and
thus the cluster points, of robots that meet each other.

First experiments showed the robustness and flexibility of the developed swarm
clustering algorithm. The robots could be started from any position in the operational
area. And robots could be added or removed during operation. The algorithm still
terminated successfully.

To the best of my knowledge, this is the first image processing-based collective
clustering algorithm with communication.

The results of this project will be presented at the AMIRE 2003 (Autonomous
Mini-robots in Research and Edutainment) conference in Brisbane, Australia.

61

DiplomJ. Du 9. Conclusion

Figure 13. Clustering with EyeBots

62

DiplomJ. Du

Simulation Control Extra |

-
Start ey Pause Stop Mode Change Pos Settings

A lDPrura

Othe one aput

Rotx Roty IEEC vl UL p—

Simulation Time: 653.7
Figure 14. Clustering on the EyeSim simulator

63

Diplom J. Du References

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Graf, Birgit; Braunl, Thomas: Robot Soccer, Diploma Thesis No. 1700,
Faculty of Computer Science, University of Stuttgart, Germany, 1999

Gamma, Erich; Helm, Richard; Johnson, Ralph;Vlissides John: Design
Patterns, Addison-Wesley, 1995

Sizer, Ben:Organizing Code Filesin C and C++, Available from
http:/Avww.gamedev.néteference/programming/featuresifiledpage3.asp

Cline, Marshall: C++ FAQ Lite, Available from
http:/MWww.parashift.confc++-fagtlite/pointers-tomembers.html

Gerardin, Peggy:Content-based Image Retrieval, Audio Visual
Communications Laboratory, Ecdklytechniqud-édéralade Lausanne,
Switzerland, Available from
http:/Acavwww.epfl.ciiTeaching/PHOTO/Projects _2002/Proj3.html

Waggershauser, Axé¥enkitachalamDaniel; Béunl, ThomasEyeSm 5,
Available fromhttp:/fobotics.ee.uwa.edu.gyebofindex.html

Martinoli, A.; Goodman, R.; Holland, O.: SvarmIntelligence Collective
Robotics Research Group, California Institute of Technology, Pasadena,
California, USA, 2001, pailable from
http://www.coro.caltech.edu/Courses/EE141/course.html

Iske, B.; Ruckert, U.: Cooperative Cube Clusterung using Local

Communication, Autonomous Robots for Research and Edutainment - AMIRE
2001, Proceedings of th& mternational Heinz Nixdorf Symposium, Paderborn,
Germany, 22.-24. Oct., 2001, pp. 333-334.

Zelinsky, Alex: Mobile Robotics, ENG 4527, Department of Systems
Engineering, Research School of Information Sciences and Engineering,
Australian National University, Canberra, Australia, Available from
http:/Mvww.syseng.anu.edu.ataleXIntroW1A.pdf

Waggershauser, Axel:Smulating Small Mobile Robots, Department of
Electrical Engineering and Information Technology, University of Kaiserslautern,
Germany, 2002, Available frofmttp://robotics.ee.uwa.edu.au/eyebot/index.html

GoOhner, Peter: Software Engineering for Real-Time Systems, Institute of
Industrial Automation and Software Engineering, University of Stuttgart,
Germany, Available from
http:/Mvww.ias.unEstuttgart.de/orlesungefserindex.html

Storey, Daniel: Wireless Communication for Intelligent Robotic Agents,
Department of Electrical and Electronic Engineering, University of Western

64

Diplom J. Du References

[13]

[14]

Australia, Perth, 1998, Available from
http://robotics.ee.uwa.edu.au/eyesoccer/papers

Marsland, Stephen: Autonomous Mobile Robots, Department of Computer
Science, University of Manchester, UK, Available from
http://www.cs.man.ac.uk/~mard ansg/CS3451

Beckers, R.; Holland, O.; Deneubourg, J-L.: Fromlocal actions to global

tasks: stigmergy in collective robotics, Artificial Life 4, eds. R Brooks and P
Maes, MIT Press, 1994

65

Diplom J. Du Figure Sources

Figure Sources

Figure 1. The EyeBot

Photo of EyeBot from Christoph Braungdel, Department of Electrical
and Electronic Engineering, University of Westekostralia, Perth, 2002

Figure 3. Schematic illustration of a model-based robot control system
Reproduced fronB]

Figure 4. Schematic illustration of a behavior-based robot
Reproduced fronB]

Figure 5. Multi-robot systems in research
Reproduced fron]

Figure 6. Types of collective robotics
Reproduced fron]

Figure 7. The HSV cone

Source: Computer Science Educational Lab, University of Colorado at
Boulder, USA, Available from
http://www-ugrad.cs.colorado.edu/~csci4576/Figures/hsv.gif

Figure 8. The RGB cube

Source: CVonline: The Evolving, Distributed, Non-Proprietary, On-Line
Compendium of Computer Vision, School of Informatldsjversity of
Edinburgh, Available from

http:/Avww.dai.ed.ac.ulkCVonlindLOCAL _COPIES/OWENS/LECT14¢b.qif

Figure 10. Height in camera image corresponds to distance
Reproduced fromil]

66

Diplom J. Du Appendix A — Used Software

Appendix A — Used Software

The software was developed on a Linux-based PC system using the modified GNU
C/C++ compiler for EyeBots. The system model, the class diagrams, and the code stubs
were created with Rational Rose. Doxygen was used for code documentation. All
documents were created with OpenOffice. For details on the used software please see
the system requirements specification.

67

Diplom J. Du Declaration

Declaration

| hereby declare that this submission is my own work and that | only used the
referenced aids.

Perth,

JaL.Du

68

