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Diplom J. Du Abstract

Abstract

In this thesis a collective clustering algorithm is presented.The used robots are

behavior-basedand fully autonomous.The developedmulti-robot systemclusters

randomlydistributedcubesin a walled area. A frameworkfor behavior-basedcontrol

was developed.Four behaviorswere implemented:exploration,avoidance,pushing,

andcommunication.Inter-robotcommunicationis usedto speedup theemergenceof a

commoncluster point. On-board image processingis used for the detectionof the

cubes.Theclusteringalgorithmwasimplementedboth for real robotsanda simulator.

Usingthedevelopedsoftwarethe robot colonysuccessfullycompletedthetask.Andthe

colony proved to be scalable and robust.

Kurzfassung (German)

In dieser Diplomarbeit wird ein Clustering-Algorithmus für ein Multi-Roboter-System

präsentiert. Die einzelnen Roboter arbeiten völlig autonom und verhaltensbasiert. Das

entwickelte System trägt in einem von Wänden umschlossenen Gebiet zufällig verteilte

Würfel an einem Punkt zusammen. Hierzu wurde ein Framework für eine

verhaltensbasierte Robotersteuerung entwickelt. Vier Verhalten wurden implementiert:

Erkundung, Ausweichen, Transport, und Kommunikation. Kommunikation zwischen den

Robotern wird verwendet, um das Finden eines gemeinsamen Clusters zu

beschleunigen. Lokale, also robotereigene Bildverarbeitung wird für die Erkennung der

Würfel genutzt. Der Algorithmus wurde sowohl für reale Roboter als auch für ein

Simulationssystem implementiert. Die mit der entwickelten Software arbeitende

Roboter-Kolonie erfüllt ihre Aufgabe erfolgreich, und erweist sich als skalierbar und

robust.
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1.  Introduction

The use of simple and reactive behavior-based robots has become increasingly popular

among researchers in robotics in recent years. Behavior-based robots are characterized

by a tight coupling of sensing and action, and the absence of world models. This results

in simple, robust and reactive individuals, as opposed to model-based robot control

systems, which are complex, little robust, and hard to maintain [13].

Rapid advances in computer technology and robot hardware components have

also had a major impact on robotics research. Firstly, the development and usage of

large scale multi-robot systems has become feasible with the decrease in component

costs. Multi-robot systems are expected to have significant advantages over single-robot

systems including an increased performance, the ability to solve more complex tasks,

and an increased robustness due to redundancy and simpler individual robots. Secondly,

the enormous increase in processing power on the one hand, and the miniaturization of

hardware components on the other hand, have made the development of small, fully

autonomous robots with on-board image processing possible.

The term swarm intelligence describes the approach to use behavior-based robots

to create an autonomous, robust, flexible, and scalable multi-robot system. It is inspired

by biological systems that consist of many agents, for example ant colonies. Typical

tasks for such swarms include exploration and transportation.

The objective of this project is to develop a swarm clustering algorithm. The

robot colony, consisting of fully autonomous and behavior-based agents, is to cluster

randomly distributed cubes in a walled area. The swarm should be robust and scalable.

Some form of robot communication is to be incorporated to ensure that a single cluster

point remains in the end. And on-board image processing should be used for object

detection. The goal is to demonstrate the feasibility, scalability and robustness of a

swarm clustering system with on-board image processing and communication.

The thesis is a joint project of the Institute of Industrial Automation and Software

Engineering (IAS), University of Stuttgart, Germany, and the Center of Intelligent

Information Processing Systems (CIIPS), School of Electric, Electronic and Computer

Engineering, University of Western Australia, Perth. The work is carried out at the

Mobile Robot Lab at CIIPS.
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The project duration is 6 months. See the project plan for a detailed project

structure plan, milestones and bar charts.

Chapter 1 is this introduction. In chapter 2, I give an overview of the necessary basics.

In chapter 3, the requirements to the software to be develop are stated. The system

model is presented in chapter 4, and the system architecture in chapter 5. In chapter 6, I

will go into the implementation details. Chapter 7 quickly summarizes the performed

system tests. In Chapter 8, I give an evaluation of the developed system and suggestion

for future work. In chapter 9, I conclude the thesis.

2
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2. Methods and Materials

2.1 The EyeBot

The EyeBot is a fully autonomous mobile robot. It does not rely on sensor data from

external devices or remote processing resources and power supplies.

Each EyeBot is equipped with a 32 -bit controller at 33MHz, and up to 2048 KB

RAM. The processing capacity of the controller is sufficient for most image processing

tasks. To give an idea, in this project the computing power was sufficient to handle one

to two frames per second, in addition to other computations for motion control and user

interface.

The robot has a differential steering system, with 2 DC motors with shaft

encoders for the left and right front wheel. The rear part is simply dragged along. The

differential steering system allows the robot to drive forward and backward, to turn on

the spot, and to drive curves, depending on the level of activation of the left and right

motor. Dead reckoning is used for position estimation by counting the encoder ticks.

However, position estimation using dead reckoning is inherently inaccurate - the error

accumulates over time. A magnetic compass allows the correction of the orientation.

The main sensor input is provided by a digital color camera. It takes 24 -bit RGB

images at a resolution of 60*80 pixels. Furthermore, the robot has three position

sensitive detectors (at the front, at the front to the left, and at the front to the right). They

determine the distance to an obstacle by measuring the time till the reflection of a

previously sent out infra-red signal is registered. The estimated distances are excellent

for distances between 10 cm and 20 cm. However, for very small obstacle distances the

sensor readings tend to be too large. The signal bounces more than once until it is

registered by the receiver [1].

Each robot has a wireless communication module that can be used to

communicate with other robots. A network is automatically established, it operates as a

virtual token ring and has fault tolerant aspects. A net Master is negotiated

autonomously, new EyeBots are automatically integrated into the net, and dropped out

EyeBots are eliminated from the network.

Finally, for a direct communication with the user, each robot has a graphics LCD

and four input buttons.

3
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The EyeBots can be programmed in C/C++ or assembler. The so-called RoBIOS

operating system provides C functions to control the robot and to access the connected

devices. In addition, a framework for multi-threading and basic image processing

algorithms are provided. Programs for the EyeBot are compiled on a PC with a

modified version of the GNU C/C++ compiler. Then the program can be downloaded to

the robot using a serial connection. A list of the used RoBIOS functions can be found in

the system architecture.

2.2 EyeSim Simulator

EyeSim is a simulator for EyeBots. It is capable of simulating multiple robots. Most

standard hardware components including camera, PSDs, radio, LCD and input buttons,

and most functions of the RoBIOS library are supported. The simulator can run

programs written for EyeBots without modification, they just need to be re-compiled for

the simulator. However, one major constraint is that no global or static variables must

4
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be used when simulating multiple robots, as all robots would share the same variables.

Beside robots the simulator only supports balls as movable objects.

The simulator can be customized using several configuration files. Possible

modifications include the size of the robot, the dynamic model (e.g. collision

parameters), the graphical model (how robots are graphically represented), the error

model (e.g. to simulate sensor errors), and finally the world model (shape and size of

the operational area).

The most useful features for this project were the support for multiple balls and

multiple robots, and the time laps function which sped up the testing. I adapted the

parameters to reproduce the real robots that I used as accurately as possible. The

changed settings include the robot size, and the positions and orientations of the PSD

sensors and the camera. To simulate cubes I also increased the ball friction to prevent

the balls from rolling away. However, there are some major differences to the used real

robots. The currently used graphical model of the simulated robots differs considerably

from the shape of the real robot. Therefore, the inclination of the camera had to be

different, otherwise it would have been partly blocked by the chassis of the simulated

robot. Moreover, the front PSD could not be inclined, as this arrangement is not

5
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supported by the simulator. Finally, the simulator uses a single circle for the geometrical

representation of a robot, which differs significantly from the rectangular shape of the

real robots.

It should be mentioned that the simulator is a new development and still in a

buggy state.

2.6 Behavior-Based Robots

Early robot control systems used a model-based approach. The sensor input passed

through a multitude of layers until it had any effect on the actuator output, as

exemplified in Figure 3. The involved steps included complex, model-based planning

and reasoning. The developed system were slow, difficult to program, little robust, and

highly dependent on the correctness and accuracy of their world models, which are hard

to obtain and hard to maintain.

In the late 1980s the researchers tried to overcome these problems by developing

biologically inspired behavior-based systems. Behavior-based systems are characterized

by a tight coupling of sensing and action, and the absence of world models. Behavior-

based robots are also called reactive, or reflexive, as each action gets an immediate

feedback.

The advantages of behavior-based systems are [9], [13]:
� Real-time performance
� Robustness in dynamic environments, as they are not dependent on world models
� Easy implementation. Each behavior is a full control program, and can thus be

6
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designed and debugged independently. Each behavior is a specialized modules and

can be kept simple.
� The system can be easily extended by adding/removing behaviors

However, the model-based approach can have an advantage over behavior-based

systems in fixed environments, and generally in cases where the benefits of using a

world model outweigh the disadvantages. And behavior-based system cannot be used if

local sensing is not sufficient to solve the task. Remote sensor data would breach the

principle of direct feedback.

But researchers quickly realized that entirely behavior-based robots make it hard to plan

things, and perform complex tasks. The behaviors need to be intelligently coordinated

and combined to achieve complex goals. Therefore, hybrid architectures were devised

with low-level reflexive behaviors and high-level planning.

2.7 Multi-Agent Robotic Systems

The fast-paced progress in computer technology and robotics, accompanied by

decreasing component costs, have made the development of autonomous multi-agent

systems feasible. The major advantages of multi-robot systems include [12]:

7
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� An increase in performance. The higher the parallelizability of a task, the higher the

possible increase in performance by distributing it to a number of individual robots.
� The ability to solve more complex tasks. A multi-robot system may be able to

perform a task that cannot be completed by an individual robot.
� Fault tolerance. A group of robots, especially of homogeneous robots, increase the

redundancy of the system and thereby make it more robust to failures of individual

robots. Furthermore, as the robots work as a team, it may be possible to reduce the

complexity of the individual robot, and thus reduce the risk of failure.
� Distributed sensing. If the robots communicate they can share information beyond

the sensor range of an individual robot.

On the other hand, the disadvantages of multi-robot systems include [12]:
� Interference. With each additional robot the communication overhead and the

probability of robot collisions increase. Instead of cooperating robots may start to

compete with each other.
� Failures of the communication system. By adding communication into a system it

becomes less robust and the probability of system failure increases.

8
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For the problemto be solved,the developmentof a clusteringalgorithm,the benefits

outweighthe disadvantages.The taskis highly parallelizable, andhomogeneousrobots

can be used. This has the potential to drastically increasethe performanceand

robustnessof thesystem.Attentionmustbepaidthatnot 'too many'robotsareactivein

theoperationalarea.And the communicationshouldbe designedin way that its failure

would not cause the overall system to fail. 

2.8 Swarm Systems

Swarm intelligence is an approachto use of behavior-basedrobots to create an

autonomouscollective robotic system[7]. It is inspired by biological systemsthat

consist of many agents, for example ant colonies. Though colonies consist of

stereotypical, unreliable and simple agents, as a whole they are capable of

accomplishingcomplex tasks in dynamic and varied environments.The behavioral

9
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repertoire of the agents is limited, they follow simple rules and use simple local

communication. A global structure emerges from the actions of many, without central

control or coordination. Swarm Intelligence relies on distributedness and

decentralization, simple and specialized agents, direct or indirect basic interactions

among those agents and robustness to failure of individuals. In this project the

principles of Swarm Intelligence were to be applied to the problem of cube clustering

using multiple autonomous robots.

2.5 Collaborative Clustering

The basic principle of collective clustering algorithms is very simple. Beckers, Holland

and Deneubourg showed that

1. if robots have the means of moving some discrete items,

2. are able to make clusters,

3. and have some way to estimate local density,

then, with the influence of noise and stochastic robot-robot and robot-environment

interactions, in the end a single cluster will remain [7].

Basically the reasoning is as follows: If the probability of leaving a cube on a cluster

increases with the cluster size, and the probability of taking a cube from a cluster

decreases with the cluster size, then the rate of growth will increase with the size of the

cluster. As the rate of growth over all clusters is zero (the number of cubes is constant),

the result must be positive growth for the largest clusters and negative growth for the

smallest ones. Thus, N clusters will become (N-1) clusters, and so on.

2.9 Other Clustering Experiments

First clustering experiments were conducted by Beckers, Holland, and Deneubourg in

1994 [14]. The used robots were entirely behavior-based, and IR sensors were the only

source of input. They demonstrated that clustering could be done with minimalist

robots. In 1998 Holland and Melhuish used more sophisticated robots with IR sensors,

grippers, and optical sensors for color detection [7]. Holland and Melhuish tried to

10
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mimic thebehaviorof Leptothoraxantsandtheir concentricannularsorting.Theyalso

performedmore complexexperimentsincluding the usageof probabilisticalgorithms.

In 2000,BurkhardIske and Ulrich Rückert incorporatedlocal communicationin their

clusteringalgorithm [8]. The infra-red sensorsof their Kheperarobots were usedto

communicatetheageof clusterpoints.Theoldestoneof thememergedasglobalcluster

point.

2.3 HSV Color System

HSV stands for hue, saturation and value.

The hue describeswhere a color lies along the spectrum.Hue values are

organizedin acolor circle,with redat 0 degrees,yellow at60 degrees,thengreen,cyan,

blue, and finally magenta at 300 degrees.

Thesaturationdescribeshow purea color is. Thesaturationvaluegoesfrom 0%

(gray) to 100%(maximumpurity). A low valueresultsin a neutral,dull color, whereas

a high value means a strong, pure color. 

Value,or brightness.A valueof 0% meanscompletelyblack,while 100%is the

brightestvaluethata color canhave.A maximumvaluedoesnot meanwhite,unlessthe

saturationis zero.A maximumvalueis simply thebrightestvaluea color canhaveat a

particular saturation.

11
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Thevolumespannedupby thethreeparametersof theHSV color systemcanbeviewed

asan invertedcone.Eachpoint in that conerepresentsa color in theHSV system.The

hueis the anglein a planeorthogonallyto the cone'ssymmetryaxis. The saturationis

the radius,the distanceof the point from the symmetryaxis. Finally, the value is the

coordinate along the symmetry axis of the cone, it describes the height of the point.

2.4 RGB Color System

RGB standsfor thethreebasiccolorsusedin theRGB system:red,greenandblue.The

completecolor scaleoriginatesthroughthesuperpositionof thesethreecolors.Thus,in

theRGB model,everycolor is representedasa setof threeindependentvalues:a value

for red, a value for greenanda value for blue. In the EyeCamimageseachvaluecan

rangefrom 0 to 255. If all threevaluesare0, the resultingcolor is black; if all three

valuesare255,thecolor is white. Around16 million colors(2563 = 16,777,216)canbe

represented.

In theRGB systema color canbe imaginedaspoint in a cubespannedup by the

three basic colors.

12
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Figure 8. The RGB cube
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3. System Requirements

The objective was to develop the software for a behavior-based robotic system. The

system should make use of the main characteristics of swarm intelligence to collectively

cluster randomly placed cubes in a walled area. The software was to be implemented for

a set of autonomous mobile robots. The following requirements were derived (Note:

these are extracts from the system requirements specification, see the original document

for details).

Requirements regarding the swarm:

� The robot colony is to be scalable. It should be possible to add or remove robots at

any time without disruption of the overall swarm behavior
� That includes in particular that the robot colony should be robust regarding the

failure of individual robots
� The control of the robot colony should be decentralized. No master individuals and

no central coordination should be required
� The robot colony is to be redundant in the sense that the robots should be

homogeneous and each robot should have full decisional power
� There should be some form of implicit or explicit communication among the robots

to ensure a common cluster point

The behavior-based agents should have the following characteristics:

� Fully autonomous and behavior-based individuals
� The agents should be reactive, have a tight coupling of sensing and action
� Use local sensing and perform only local action
� Use image processing for object detection
� It is not required for the robots to be adaptive

Nonfunctional Requirements:

� The developed software should work properly both within the simulation

environment and in a real environment
� All cubes should be collected, and a single cluster point should remain at the end

14
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 Functional Requirements:

� The robots should collectively cluster randomly distributed cubes on a plane
� The robots should be able to recognize and distinguish cubes, robots and walls
� The robots should explore the plane to find cubes
� The robots should push found cubes to a cluster point
� The robots should be able to avoid obstacles (walls and possibly other robots)
� There should be some form of implicit or explicit robot-robot communication to 

determine a common cluster point

15
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4. System Model

The system model is the result of a system analysis.Based on the requirements

specificationit aimsto describethe desiredsystembehaviorin a consistent,complete,

realizable and verifiable way [11].

Statechartdiagramswereusedto representthesystemmodel.Thesystemmodel

containsthree different versions.This is to reflect three different approachesto the

robot communication.

Case 0: Implicit communication

A common cluster point emerges through stochastic robot-robot and robot-

environment interactions (see 2.5)

Case 1: Explicit communication by broadcasting

A common cluster point is determined and communicated by broadcasting 

to nearby robots

Case 2:   Explicit one-on-one communication

A common cluster point is determined and communicated by one-on-one 

data exchanges between robots that cross each other's paths

For clarity and comprehensibility the system model was separated into eight

diagrams. A short description of the diagrams follows:

1. Overview

This diagram gives an overview of the system behavior. The seven states in this

diagram are super-states; they are specified in the following seven remaining sub-

diagrams.

2. User Interface

This diagram describes the reactions of the system to user input.

3. Exploring,

16
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4. Pushing,

5. Avoiding,

6. and Communicating (only in case 2)

These four diagrams describe the exploring, pushing, avoiding or communicating

behavior of the robot, respectively. There are transitions between these four

diagrams. Pseudo-states named 'Entry to ...' or 'Exit to ...' (e.g. 'Entry to Pushing' or

'Exit to Avoiding') are used to indicate a transition from one diagram to another. This

was necessary to make the transitions easier to trace.

7. Broadcasting (only in case 1)

This diagram describes the broadcasting process of the robots.

8. Sensors and Image Recognition

Finally, this diagram describes the sensing and image recognition processes in the

robots.

17
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4.1 Overview Diagram

This diagram gives an overview of the system behavior. The seven states in this

diagram are super-states, they are specified in the following seven remaining sub-

diagrams.

User 
Interface

First the clustering is done only through estimation of the cluster 
sizes (So we use implicit communication, the robots tend to 
push towards larger clusters). Then the clustering is done with 
communication through broadcasting. Finally with one-on-one 
communication.

case 0: Implicit communication
case 1: Broadcasting (requires same starting point)
case 2: One-on-one communication

In case 1 and 2 the position with the highest known cluster point 
density is communicated.

Program started

At every state that involves movement 
we have to check for cubes, robots, 
walls, proximity to cluster point and 
stalled motors.

Running

Sensors and Image 
Recognition

Broadcasting (only in case 1, does 
not exist in case 0 and case 2)

Communicating (only in case 2, in case 
0 and case 1 we go to Avoiding directly)

AvoidingExploring 
(Start)

Pushing

Sensors and Image 
Recognition

Broadcasting (only in case 1, does 
not exist in case 0 and case 2)

'End' pressed

'Go' pressed

while running
while running

Communicating (only in case 2, in case 
0 and case 1 we go to Avoiding directly)

AvoidingExploring 
(Start)

Pushing

Communicating (only in case 2, in case 
0 and case 1 we go to Avoiding directly)

Avoiding

data exchanged OR aborted

Exploring 
(Start)

avoided

Pushing

while running

'End' pressed

arrived OR drive stalled

cube lost

robot detected

cube detected

drive stalled
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4.2 User Interface Diagram

This diagram describes the reactions of the system to user input.

Initial izing
Ready

ini tialized

Running

Program started

Menu displays:
Go X X End

Menu displays:
X X X End

'Exploring' is started, 
'Sensors and Image 
Recognition' is started, 
'Broadcasting' is started 
(only in case 1)

'Go' pressed

'End' pressed

'End' pressed
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4.3 Exploring Diagram

This diagram describes the exploring behavior of the robot.

Entry to 
Exploring

Driving

Choose new 
direction

Exit to Communicating (case 2)    
Exit to Avoiding (case 0, case 1)

Exit to 
Pushing

chosen

Compare cube density here with density at my cluster point. If cube density here is higher use this 
location as cluster point

robot detected

cube detected

wall detected OR close to cluster point

cube density here lower

cube density here higher

Exit to 
Avoiding

drive stalled
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4.4 Pushing Diagram

This diagram describes the pushing behavior of the robot.

Pushing towards 
cluster point

Entry to 
Pushing

Exit to Exploring

Met wall:
not possible, unless cluster point is next to 
wall. Then we just choose radius big enough 
(there may be no position errors due to 
communication, though)

Met cube: ignore

Backing up

Waiting

Trying to 
ret rieve cube

Does not 
work if two 
robots are 
facing each 
other

Backing up (if not done yet), 
Turning slightly left/right

cube lost

Exit  to 
Avoiding

Approaching 
cube

met obstacle, first time

done

far enough OR drive stalled

cube re-discovered

random time passed

cube re-discovered

drive stalled
cube lost

met obstacle, more then once

arrived OR met obstacle, more then once

met obstacle, first time

cube lost
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4.5 Avoiding Diagram

This diagram describes the avoiding behavior of the robot.

Exit to Exploring

Turning 
away

Always to the right or 
always to the left. Then, if 
two robots try to avoid 
each other they will go 
into opposite directions

after a certain amount of time

Entry to 
Avoiding

Backing up

Driving 
forward

far enough

motor stalled enough space to turn

Not *absolutely* reliable algorithm 
but sufficient for most situations
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4.6 Communicating Diagram

This diagram describes the communicating behavior of the robot.

Sending 
messages

Waiting for 
responses

Entry to 
Communicating

sent

Count 
responses

X seconds passed

Exchanging 
data

Make robots 
face each other 
at close 
distance

Send requests to all 
active robots in the 
vicinity

Turning

Driving 
forward

close enough OR drive stalled

met robot

Exit to 
Avoiding

1 response, other robot identified

not exactly 1 response

0 responses:  wall
2 or more responses: 
several encouters at the 
same time

This long winded 
procedure is 
needed due to the 
propert ies of the 
'EyeNet' 
communication 
system (virtual 
token ring with 
explicit 
communication via 
unique robot id)

Messages contain robot id (required by 'EyeNet'), and 
cluster point density and position.

Compare cluster point densities 
and take over denser location

exchanged

done

facing other robot

other robot is driving away
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4.7 Broadcasting Diagram

This diagram describes the broadcasting process.

Searching first 
cube (Start)

Broadcasting 
location to all

This process runs continuously.

All robots have to start from the same 
posit ion (so that  they have the same 
coordinate system).

The algorithm is similar to the 'Bully 
Election' algorithm. It determines the 
broadcaster and ensures broadcast ing in 
case of failure. Upon recovery no election 
is ini tiated (as opposed to the original 
algorithm) because we don't need to find 
out who the current coordinator is, he will 
contact us.

Compare cluster point densities and 
take over denser locat ion, compare ids

Watchdog

got message

found

got message

Robots are searching for a very first cube.

Messages contain robot id (required by 'EyeNet'), and 
cluster point density and position.

'my sender' means: the 
sender from who I got 
my current location

I have lower id

I have higher id

got message OR found cluster point with even higher density than my sender

my sender has become inactive

Note:

Communication by broadcasting is just an evolutionary step towards case 2 (local

communication). As all robots have to start from the same point, they could just push all

cubes to their common starting position. There would be no need for any
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communication.However, the implementationof this casehelps to becomefamiliar

with the features of the radio communication system, and experience for the

implementation of case 2 is gained.

The broadcastingprocessand the electionalgorithmthat it usesmight be regardedas

breachof therequirementsN210('no centralcoordination'), N310W('no initialization')

and N112 ('local action'). I want to address these concerns here.

N120: The election algorithm is only needed to ensure that no superfluous 

communicationtraffic occurs.Thecommunicationprocesscouldbeeasily

modifiedsuchthatno electionwould benecessaryandeveryrobotwould

keep broadcasting to other robots in its vicinity.

N112: As therangeof broadcastingis limited to theclosevicinity of a robot,this

can still be regarded as local action.

N310W:   For broadcastingall robotsneedto havethesamestartingpoint. Fromthe

usereffort point of view this posesno real argumentfor not startingall

robotsfrom thesameposition.It is correct,though,that for variousreasons

it might be desirable to start a robot from any point on the plane.
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4.8 Sensors and Image Recognition Diagram

Finally, this diagram describes the sensing and image recognition processes in the

robots.
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Taking image 
(Start)

Processing 
image

taken

Set camera 
flags

processed

This process runs continuously.
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5. System Architecture

The system architecture is based on the system model. It constitutes the transition from

system analysis to design. The system architecture contains the decomposition of the

overall system into sub-systems and components, and describes the interfaces among

them [11].

5.1 Fundamental Design Decisions

I decided to divide the system into five layers:

    5 User Interface

    4 Control Layer             new

                     SW

    3 Robot Model (Wrapper Layer)

    2 RoBIOS
                              provided

    1 EyeBot Controller & Robot Platform                            HW

Layer 1: Hardware layer

This layer represents the EyeBot controller and the robot hardware platform.

Layer 2: RoBIOS layer

This layer contains the RoBIOS library functions.

Layer 3: Wrapper layer

Layer 3 contains wrapper classes. These classes fulfill four functions: Firstly,
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they encapsulate the needed C functions from the RoBIOS library in C++ classes.

Secondly, they constitute a layer of separation between the program and the

provided libraries, making it easier to adapt the program to changes in the

underlying libraries. Thirdly, the classes can combine low-level library functions

to provide high-level functionality to and hide complexity from the layers

above. Finally, the classes provide the opportunity to use consistent naming

conventions throughout the newly developed software.

Layer 4: Control layer

Layer 4 contains the main functionality. That includes all classes that are needed

to control the clustering from a high-level perspective. The classes in layer 4 use

the wrapper classes in layer 3 to control and communicate with the robot. A point

of entry for the user interface of layer 5 is provided.

Layer 5: User interface layer

Layer 5 contains the user interface. It separates the user interface from the

functional part of the program.
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5.2 Diagram of the Software System Architecture

The following diagram gives a basic overview of the system architecture.

Layer 5:
UI   User Interface

Layer 4:
Control                 Starter

Commander &                Sensors
Explorer/                    &         Broadcaster
Pusher/Avoider/                 Image
Communicator/             Recognition

     

Layer 3: Robot Model
                    

          Sensors        Radio    LCD
    Drive               &          &      &

            Image       Timer           Keyboard
                   Processing

Layer 2
    RoBIOS Library Functions

Layer 1
         EyeBot Controller & Robot Platform
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Legend:

(specified) association

indicates unspecified associations between layers

Note: The Broadcaster only exists when using global communication. The

Communicator only exists when using local communication. See system model for

details.

The program consists of up to four threads. One thread for the User Interface, one

thread for the Sensors and Image Recognition (SIR), one thread for the behaviors

(Commander & Explorer/Pusher/Avoider/Communicator) and finally, if using global

communication, one additional thread for the broadcasting process. This partitioning

ensures responsiveness to user input and reactivity of the behaviors. The number of

threads is kept to a minimum to avoid overhead due to context-switches. But it is still

ensured that the time-consuming image recognition and broadcasting processes do not

block the UI and behaviors, that have short lead times but need to be called regularly.

Currently four behaviors are realized, exploration, pushing, avoidance and

communication. The communication behavior is only activated when using local

communication. As we use a behavior-based approach, the control over the robot can be

handed over to a single class that represents one behavior.

The Commander switches between the behaviors choosing the most appropriate

one based on the result code returned by the last activated behavior. Activated behaviors

are not pre-empted, they return when they have served their purpose or when they

recognize that they cannot cope with the situation. With this framework, behaviors can

be easily added or removed, and the sequence of behaviors can be easily changed.

The Starter is just used to provide an easy access point for the user interface by

hiding complexity. It enables and disables the threads that form the clustering algorithm

making the user interface independent from functional details.

The SIR provides high-level environment information to the behaviors. It runs in

a own thread to prevent it from blocking other processes.
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The Broadcaster realizes the global communication process when using

communication by broadcasting.

5.3 System Components

The program consists of two packages. A robot package containing all classes of the

wrapper layer and a clustering package that contains all classes of both the control layer

and the user interface layer.

This section gives a brief overview of the system components. A fully

commented and browsable documentation is available (see components specification).

The robot package has the following classes:

robot

LCD
Drive

ImageFilter

Camera
Radio Timer Thread

Keyboard

PSD

LCD: This class provides methods to access the robot LCD.

Keyboard: This class provides methods to read from the robot keyboard.

Drive: This class provides methods to control the robot drive.

Camera: This class provides methods to access the robot camera.

ImageFilter: This class provides image filters.

PSDs: This class provides methods to access the infra-red sensors.

Radio: This class provides methods to use the radio communication.

Timer: This class provides methods to access the robot timer.

Thread: Base class from which all multi threaded classes are derived. The derived 

classes inherit a set of methods that can be used to control the thread. Once

the thread is initialized and made ready, its run method is scheduled for 
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execution. The run method is declared as virtual and has to be overwritten 

by the inheritor.

The clustering package contains the following classes:

clustering

Starter

SIR

UI

BroadcasterPusherExplorer

Commander

Communi
cator

Avoider

Behavior

CubeClustering (not in diagram, it is not a class):

This component contains the main function of the program. It 

initializes and starts the program.

UI: This class implements the user interface. It allows the user to start and stop

the clustering using the input buttons of the EyeBot controller.

Starter: This class provides a point of entry for the user interface to control 

the clustering algorithm. This ensures that the functionality is 

separated and hidden from the user interface. The class provides a few

public methods to start and stop the clustering. Starter controls the state of

the threads (ready, suspended, ...) that form the clustering algorithm 
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Commander: Activates and switches between the behaviors of the robot (current

implementation: exploring, pushing, avoiding and communicating. 

Communicating only when using local communication).

The decision which behavior to activate is based on the 

current state of the commander and the return code it receives from 

the last activated behavior. Once a behavior has served its purpose it 

will return with a result code. The commander does not actively 

interrupt activated behaviors.

Behavior: Base class from which all behaviors are derived. This provides them with

the same base properties and makes adaptations easier, that are to affect all 

behaviors.

Explorer: Explores the plane using simple search patterns. Avoids walls and the own

cluster point when exploring. Returns when a cube or a robot has been

detected.

Pusher: This class implements the pushing behavior of the robot. The robot 

approaches the cube and tries to push it to its cluster point. If the robot

meets other robots on its way it tries to avoid them.

Avoider: Implements the avoiding behavior of the robot. The robot tries to back up

and then turns away from the obstacle.

Communicator: This class implements the local communication behavior of the 

robot. It is only needed when using local communication. First the 

robot is justified so that it faces the other robot at a close distance. 

Then it tries to identify the other robot. If successful their cluster 

points are exchanged and the denser of the two cluster points is 

chosen as common cluster point.

SIR: This class (Sensor and Image Recognition) provides high-level information

to the behaviors by pre-processing the data internally. The provided 
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information includes current obstacle distances as received by the infra-red

sensors. But in particular information about the locations of cubes and 

robots that are visible on camera are provided

Broadcaster: This class implements the broadcasting abilities of the robot. It is

only needed when using communication by broadcasting. The 

broadcasting algorithm makes sure that a cluster point is determined 

and communicated to all robots in the vicinity. It also makes sure 

that the cluster point position is retained should the broadcasting 

robot fail. See system model for details.

5.4 Class Diagrams

The following class diagrams show the relationships between the classes of the layers 3

to 5.

Legend:

A

B

B inherits from A

D

C

C uses D
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5.4.1 Implicit Communication

Thread

Thread

Thread

Keyboard

LCD

UI

Camera
ImageFilterPSD

Drive

SIR

Starter

Pusher Avoider Explorer

Behavior

Commander
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5.4.2 Communication by Broadcasting
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5.4.3 Local Communication

Thread

Keyboard

LCD

UI

Starter
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6. Implementation

6.1 General Implementation Decisions

Therearetwo mainsourcesof input, thecameraandtheinfra-redsensors.I decidedto

usethecamerafor cubedetection,andthePSDsensorsfor obstacleavoidance.Thered

cubesare well distinguishablefrom the environmenton the color camera.The PSD

sensors,on the other hand, quickly deliver accuratedistancedata of surrounding

obstacles.A final sourceof input, the informationwhetherthe drive is stalled,is used

for obstacle avoidance as well.

Of all behaviors, avoidance has the highest priority followed by pushing,

communicationandfinally exploration.This orderingpreventstherobotfrom becoming

stuck and ensuresthat even with high robot densitiesthe actual clusteringdoesnot

come to a stop due to excessive robot-to-robot communication.

I decidedto developthe softwarefor real robotsfirst, and thento port the programto

the simulator. The demands regarding robustnessare usually higher for real

environmentsystemsbecauseof errors in sensorsand actuators.A systemrunning

perfectly on the simulatormay fail in real-life. The other way round,a failure is less

likely.

I decidedto expressanglesin degreeinsteadof radian,mainly becauseit is easierfor

theprogrammerto visualizeandhandleanglesin degree.As theRoBIOSfunctionsuse

radian,the Drive classneedsto perform a few conversions.But the conversionsare

restrictedto the Drive classonly. Thehigh-levelclasses,mainly thebehaviors,canuse

degree throughout.

6.1.1 Coordinate systems

Therobotsusetwo coordinatesystemsfor navigation.A globalcoordinatesystem,and

a local one. The local coordinatesystemis 'carried along' by the robot. The origin

movesaroundwith the robot'scenter.Thex-axis alwayspointsto the currentdirection
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of the robot. The global coordinate system is set when the robot drive is initialized. The

origin is the starting point of the robot, and the positive x-axis shows the orientation of

the robot at startup.

Whenever possible I used the local coordinate system. The motion commands are

easier to understand and program, and the computations are faster when calculating

entirely with local coordinates.

The cluster point of a robot is always the origin of its global coordinate system. It

is easier for the programmer to make to robot push a cube to the origin of its coordinate

system, and the computations are faster. And, as we will see later, the usage of the

origin as cluster point makes the synchronization of coordinate systems easier. So, when

a robot adopts a new cluster point, it introduces a new global coordinate system. The

origin of the new coordinate system is at the new cluster point location. Then the robot

calculates its own position in the new system.
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6.1.2 RGB to HSV

One major advantage of the HSV color coding over the RGB system is the invariance of

the hue value with regard to illumination and camera orientation [5]. The hue of the red

cubes to be collected are distinct from the hues of all other objects in the operational

area, according to the requirements specification. Therefore we can use the hue value to

reliably identify cubes. This approach also ensures a high performance as only one

value instead of three needs to be considered. For these reasons I decided to use the

HSV color system for image recognition. The RGB images obtained from the EyeCam

are converted into HSV values. For each pixel in the image we calculate the hue from

the three RGB values. In the current implementation 253 hues can be distinguished. The

hue value ranges from 0 to 252, the value 255 is used for objects with no hue. The

saturation and brightness are not calculated as they are not needed.

6.2 Behaviors and Image Recognition

6.2.1 Detection of Cubes

I decided to use a hue-based detection method, based on the experiences of Birgit Graf

[1]. The cubes have a distinctive color, making a color-based detection method the

obvious choice. The HSV color system has the advantage that the hue value is invariant

to illumination and camera position [5]. The 24-bit RGB image provided by the

EyeCam is converted to an HSV representation on-the-fly. Only the hue values are

calculated, as they are sufficient to reliably recognize the cubes. Furthermore, to

increase performance, only the row currently under consideration is converted.

The detection of the cubes works as follows. Using a table, the minimum size of a

cube in image pixel is determined. Then, starting from the bottom row and going from

left to right in each row, the image is scanned for a continuous chunk of pixels that have

the cube color. Image pixels are considered to have the cube color if the deviation from

a stored hue value is below a certain threshold. A cube has been found if such a chunk is

equal or larger to the initially determined minimum cube size.

Now the robot has to determine the relative location of the cube from its current
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position,or morecorrectly, from its positionwhenthe imageunderconsiderationwas

taken.The cameraof the robotshavea fixed inclination. Therefore,the heightof the

detectedobjectin the imageindicatesthedistancefrom therobot.Theconversionfrom

imagerow to distancein meter is doneusing three tables,row2Meter, yFactor and

yFactorMinus. All tables have 60 different values,as the imagesprovided by the

EyeCamhavea resolutionof 60 rows* 80 columns.row2Meter[i] canbe usedto get

the distanceof the cubeif it is detectedin ith row of the image.The two other tables,

yFactor and yFactorMinus, are used to calculatehow far to the left or right the

detectedobjectis from the robot.yFactor is usedfor objectsleft from thecameraand

yFactorMinus for objectsright from thecamera.Two different tablesareusedbecause

that way much better results were obtained. However, I suspectwith the right

calibration,onetableshouldbesufficient.Thetablesarecamera-dependentandhaveto

becreatedmanuallyfor eachrobot.For eachimagerow thedistanceat which anobject

appearson that row is measured. According to [1], an automatic formula based

generation of the tables provides unsatisfying results.

Therelativelysimpledetectionalgorithmis effective.It is fast,easyto implement,and,

most importantly, reliable. The measureddeviations from the real object distance

rangedfrom 0.5 cm to 5 cm, dependingon the distancefrom the camera.The further

away an object is, the more space is covered by a single row in the image.

The disadvantage is, that obviously no other objects with a hue similar to the cube's may

be in the areaof operation.Furthermore,the manualcreation of the tables is time

consuming.
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6.2.2 Density Estimation

The robot usesits color camerato estimatethe cube density. In the implementation

without communicationthe robot mustbe ableto reliably estimatethecubedensityfor

a single cluster point to remain in the end. As shown in [7], a single cluster point

remainsif all robotspushcubesto their respectivelylargestknownclusterpoint.When

usingradiocommunicationthecubedensitycanbeusedto determinea commoncluster

point.As before,all robotspushtheir foundcubesto thelargestknown,commoncluster

point. Naturally, with radio communication,other valuescan be usedto determinea

commonclusterpoint aswell - for exampletheageof theclusterpointsasin [8]. Then

all robots would push newly found cubes to the first discoveredcube. One main

advantageof a density-basedapproachis that thevalueusedfor thedecisionis directly

relatedto theobjective.So,insteadof stringentlypushinga numberof cubesto thefirst

discovered cube, the reverse procedure is often more advantageous. The disadvantage of

the density-basedapproachis that a density estimationwith the cameracan not be

totally accurate.As a result, and already observedin my experiments,the robots

sometimes start pushing cubes back and forth between two cluster points of

approximatelyequalsize.An age-basedapproachwould havea well-definedcommon

cluster point. However, through stochastic processes,and as observed in the

experimentsso far, evenin thedensity-basedapproacha singleclusterpoint remainsin

the end.

Another advantageof the density-basedapproachis that the robots can adjust

their clusterpoint positions.This is necessaryasthecombinationof differentialsteering

systemand shaft encoder-basedlocalization is inherently inaccurate[9]. That means

after havingtraveleda long distance,a robot is not ableto find exactlybackto its old

clusterpoint position. Furthermore,the clusterpoint positioncanslowly movedueto

addition and removal of cubes by other robots.

Basedon the density estimationa center of density can be calculated.The

position of that center can then be used to adjust a robot's cluster point position

regularly.

 

The densityestimationis doneby taking three images(one at 0 degrees,one at -20

degrees,oneat +20 degrees)andcountingthenumberof pixels with thecubehue.The
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density value ranges from 0.0, no pixels with matching hue on any of the images, to 3.0,

all pixels in all images have the cube hue. Experiments have shown that the density is

highly dependent on the distance from the cubes. Therefore it is necessary to ensure that

the density estimation is always done from approximately the same distance.

The center of density is estimated by calculating a weighted mean in the image with the

highest density. The position of the center of density is then converted into local robot

coordinates as in 6.2.2.

6.2.3 Approaching and Pushing

1. Upon detection of a cube the robot has an estimation of the cube distance

2. The robot moves to a fixed distance to the cube

3. At that defined distance a cube density estimation is performed (Note: if the robot

decides to use this location as its new cluster point, the approach is aborted)

4. If the angle between the lines robot-cube and cube-cluster point is below 60 degrees

the robot approaches the cube in a straight line and starts pushing

5. Otherwise the robot moves closer to the cube in a straight line until it is about one

robot length away

6. Based on the distance information from its infra-red sensors the robot decides

whether to drive around the cube from the left or right side

7. The robot drives around the cube until it detects an obstacle in front of it, or until the

robot, the cube and the cluster point are aligned

8. If the robot did detect an obstacle and ended up in a bad position to push the cube to

the cluster point (the cluster point is behind the robot), it tries to drive around the

cube the other way

9. The robot tries to push the cube to its cluster point
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One main advantage of this way of approaching the cube is, that the decision of how to

circumnavigate the cube is made at the last moment and based on sensor data.

Moreover, this method is reliable, and easy to program and understand. The

disadvantage is that this method is a bit slower than for example the approaches used in

[1]. But this is not a major limitation as speed has a lower priority here, as opposed to

the competitive environments there.
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Figure 11. Approaching and pushing a cube
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The way of approach ensures in most cases that the robot can push the cube to its cluster

point in a direct curve.Whenpushingthe cube,the robot usesits inclined front PSD

sensorto determineif it is still in possessionof the cube.If the cubeis lost, the robots

tries to re-detectthecubeby backingup andturning 20 degreesto the left andright. If

thecubeis re-detectedthe robotcontinuesits pushoperation,otherwisetherobotgives

up.

6.2.4 Communication

The robots communicatewith eachother to speedup the emergenceof a common

cluster point. Two communicatingrobots exchangetheir cluster point positionsand

densities.Theyacceptthedenserof thetwo clustersastheir commonone.It is expected

that with communication a common cluster point for all robots is found faster.

How can two robots exchange their cluster point positions? The easiest way to exchange

two positionscanbe usedif both robotshavethe samecoordinatesystem.Pleasenote

that we are always talking about the global coordinatesystemof the robot here,as

definedin 6.1.1.The local coordinatesystemof therobottravelswith therobotand,for

obviousreasons,cannotbe usedto storeits clusterpoint. They can directly exchange

their coordinates. For example:

Robot 1: 'My home is at (2,0)'

Robot 2: 'My home is at (10, 3)'

However,all robotswould haveto be startedfrom the samepoint to have the same

coordinatesystem.But then, there would be no needfor communicationat all. The

robots could just push all cubes to their common starting point.

If the robotsarenot startedfrom thesamepoint anddo not havea commoncoordinate

system,they needto (a) synchronizetheir coordinatesystemsand (b) then exchange

their clusterpoint positionsin the commoncoordinatesystem.As explainedin section

6.1.1 the robots always have their cluster points at the origin of their coordinate

systems.For this reason,stepb is not necessaryhere:oncea robotknowsthecoordinate
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system of the other robot, it also knows the cluster point of the other robot.

Oneway to synchronizetwo coordinatesystemsis the usageof landmarks.For

example:

Person 1: 'My home is 1.2 km south of the lake.'

Person 2: 'My home is 500 m west of the lake.'

If both persons know where the lake is, they can find each other's homes.

However,by using landmarkswe decreasethe flexibility and robustnessof the

system.Thesystemcouldnot bedeployedat siteswithout landmarks,anda removalof

the landmarkswould leadto a collapseof thecommunicationsystem.Furthermore,the

useof landmarksarean introductionof a world model,which contradictsthe behavior-

based approach.

Landmarksare not necessarywhen two robots crosseachother'spaths.If the

positionof anotherrobot is known exactly,the other robot cansendus his position in

his coordinate system. By adjusting the received coordinates with his relative position to

us,we cancalculateour position in his coordinatesystem.And we havesynchronized

the two robot's coordinate systems. An example:

Person 1: 'I am 5 km west from my home.'

Person 2: 'I am 3 km south and 200 m north from my home.'

If the two personscanseeeachother,or now the relativepositionof eachother, they

can find each other's home.

But that meansthe robots have to recognizeeachother. The EyeBot body has no

distinctivehue.Therefore,thecameracannotbe usedto detectotherrobots.The other

mainsourceof sensordata,thePSDscannotbeusedto detectrobotseither,astheycan

only return the distances to obstacles.

But thereis oneway to reliably detectotherrobots.Only robotscollide with eachother!

A single robot doesnot collide with walls, the signalsdeliveredby the PSD sensors

arrivein time to avoidthem.However,anotherrobotmovesaswell, andcandoublethe

relativespeedat which the robotsapproacheachother.Furthermore,the robot bodies

areuneven,andthe PSDsensorsdo not alwaysdetectthemin time. The collision and

the resulting closenessof the robots is actually helpful in determiningthe relative
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position to each other. 

To sumit up: whena robot (calledR) collideswith anobstacle,it probablyhit another

robot. R broadcastsa messagecontaining its current position in its own coordinate

systemandits clusterdensity.ThenR waits for responses.If only a singleresponseis

received, the message is probably from the other robot (called S). If no or more than one

responseis received,thecommunicationprocedureis aborted,asR doesnot know with

who it collided. This identification procedureis neededbecauseof the propertiesof

'EyeNet' radio communication system. It is a virtual token ring with explicit

communicationthrougha uniquerobot id, which meanswe haveto alwaysmakesure

that we are indeed communicating with the right robot.

If S has been successfully identified, R and S compare their cluster point densities

and choose the cluster point with the higher density as their common one. Let us assume

that S has the lower cluster density. Then S uses the received coordinates and the known

relativepositionof R to calculateits own positionin R's global coordinatesystem.As

R'sclusterpoint is at the origin of its global coordinatesystem,they havesuccessfully

synchronized their coordinate systems, and have a common cluster point now.

6.2.5 Exploration

The Explorerhasa simple yet effectivebehavioralpattern.The exploring behavioris

active until a cube is found, the robot is stalled, or another robot is detected.

When meetingan obstaclethe robot just turns away from the obstacleuntil all PSD

sensors are free (i.e. the reported distances exceed a certain threshold) again. If the robot

is startedin a corner,or if the robot is surroundedby obstacles,it canhappenthat the

robotgetstrappedandkeepsturning,becausewith no orientationall threePSDsensors

arefree. Then,the obstaclethresholdis slowly decreasedso that the robot can find a

way out. When all sensors are free again, the threshold is set back to its old value.

Therobotstry to avoidtheir own clusterpointsto preventthemfrom disarrangingtheir

cluster.However,the robotssometimesbecomestuckbetweentheir clusterpoint anda

wall if theclusterpoint is closeto thewall. Thesequenceis aboutasfollows: Therobot
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tries to avoid its cluster point by turning away. Then it detects the wall and turns away

from it, and again the robot faces the cluster point. The cycle starts all over. To prevent

this, the robot is allowed to cross its cluster point when it is caught in such a cycle, even

at the risk that the cluster is disarranged. Undesirable cycles of such kind are easily

detected by tracing sequences where two occurrences of cluster point avoidance are

separated by a single occurrence of obstacle avoidance. In the current implementation

sequences of c-o-c, c-s-o-c, c-o-s-c, or c-s-o-s-c trigger the allowance to cross the

cluster point (c denotes cluster point avoidance, o denotes obstacle avoidance, s denotes

straight driving). To simplify the implementation the robot currently does not trace

sequences of o-c-o, o-s-c-o, o-c-s-o, and o-s-c-s-o. They indicate the same undesirable

cycle, only starting with obstacle avoidance instead of cluster point avoidance. We just

accept that one additional redundant turn until the original trigger is activated.

If none of the mentioned cases apply, the robot just drives straight.

6.3 Programming Issues

6.3.1 Singleton Classes

Some classes need to initialize underlying hardware components of the robot, or they

need to be accessed by a number of different classes. The initializations of the hardware

components are done in the class constructors of Drive, PSDs, Camera, and Radio. We

have to make sure that only one instance of these classes are created, as multiple

initializations and allocations of the hardware components would result in errors. In the

case of SIR, all classes that need to access it should access the same instance. Otherwise

several SIR threads would be running in parallel, a massive consumption of processing

time.

The singleton design pattern as described in [2] can be used to solve the problem.

The intent of the singleton pattern is to "ensure a class has only one instance, and

provide a global point of access to it". This is achieved by declaring the constructor as

protected. This way, only the class can create instances of itself. Then, the class just

needs to create a single instance of itself and provide a public method to access that

instance. An example:
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6.3.2 The Thread Class

Some modifications were necessary to make the Thread class work with the RoBIOS

library. First, I will quickly show how it was actually supposed to look like. Then I will

explain why and what modifications were necessary.

The program consists of up to four threads, as defined in the software architecture. The

Thread class was designed to (a) make the use of threads easier by encapsulating the

complexity in a separate class, and (b) to avoid having to rewrite the same code for all

threaded classes, with all disadvantages in modifiability, consistency and

comprehensibility.

The following pseudo-code illustrates how it was initially intended.
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class Drive
{
  public:

//Used to access the single instance of this class
static Drive* getDrive(void);

  protected:
//The constructor, can only be called by this class
Drive();

  private:
//the single instance of this class
static Drive aDrive;

};
Drive Drive::aDrive;
Drive* Drive::getDrive(void)
{
  return &aDrive;
}
Drive::Drive()
{
  //initializations
  ...
}

void main(void)
{
  Drive* drive = Drive::getDrive();
  //drive is a pointer to the only instance of Drive
  //and can be used to control the robot drive now

}

Code 1. Example of singleton class
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The example above shows that all the complexity in connection with multi-threading is

encapsulated in the Thread base class alone. Any class that needs to be a thread can just

inherit from Thread and overwrite the virtual run method with its own code. The

Thread class offers a small set of simple methods (kill, sleep, ...) to control the

thread.

Unfortunately, some properties of the multi-tasking functions provided by the RoBIOS
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class Thread
{
  public:
     // Constructor for Thread
     Thread (char* name, int stackSize, int priority, int id);

// Initializes the thread, returns true if successful
     bool spawn ();

  protected:
//must be overwritten by the inheritor with its own code
virtual void run(void);

};

//We create a threaded class called 'MyThread'. MyThread
inherits all the properties it needs to be a thread from the
'Thread' base class. We just need to overwrite the 'run' method
with our own code

class MyThread : public Thread 
{
  private:

void run(void);

};
void MyThread::run(void)
{

//Here we enter the code for MyThread
}

void main(void)
{

//create an instance of MyThread
MyThread myThread(“thread1”, 8192, MAX_PRI, 1);

//initialize the instance
myThread.spawn();

//now the instance can be used

...

return 0;
}

Code 2. How to create threads (as initially intended)
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library made a few modifications necessary.

1. When initializing a thread, a pointer to a C-function containing the code to be

executed is expected.

2. All threads must be initialized (spawned) in main.

1. I will call a pointer to a standardC function pointer-to-function and a pointer to a

C++ methodpointer-to-member-function. There is a major differencebetweenthese

two. A method doesnot make sensewithout its associatedinstance.The type of a

pointer-to-functionis different from a pointer-to-member-function.Let us considerthe

functionint sum (int a, int b) andthemethodint Algebra::sum(int a, int

b). Thetypeof thefunctionis int (*) (int, int), whereasthetypeof themethodis

int (Algebra::*) (int, int). Fortunately,there is an easyway out. Pointer-to-

static-member-functions are compatible with regular pointer-to-functions [4].

Thatmeansif we declaretherun methodof a threadasstaticwe canpassit to

the RoBIOS library. The problem is that static methodscan only use other static

methodsand variables.The reasonsis that a static method,which is sharedby all

instances,would not know which non-staticmethodor variable to use if there were

multiple instancesof thesameclass.Thus,thestaticpropertywould haveto beapplied

to all used(sub-)methodsand(sub-)variables,andpropagatethroughthe wholeclass

structure.That is why the threads'run methodareleft asnon-staticandstaticwrapper

methodscalled staticRun are used.A pointer to the wrappermethod is passedto

OSSpawn, it doesnothingbut to call run. Attentive readerswill haverealizedby now

that thereis a catchto this solution.If staticmethodscannotcall non-staticones,how

canstaticRun call run? As aforementionedthe reasonwhy staticmethodcannotuse

non-staticmembersis becauseit is not clearwhich non-staticmemberto useif thereare

multiple instancesof the sameclass.That meansstaticRun needsa pointer to the

instancewhoserun methodis to be called. This pointer is storedin a static member

variable called me.

Accordingto C++ convention,methodscannotbestaticandvirtual at once.In

the initial designrun was declaredas virtual which resultsin dynamicbinding. That

meanstheprogramdeterminesat run-timewhich run methodto use,theoneof Thread

or the one of MyThread. Without the virtual keyword the compiler determinesat

compile-timewhich run methodis used,the oneof Thread. To ensurethat MyThread
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indeed uses its own run method, it is necessary to overwrite the thread initialization

method (spawn) as well. Let us have a look at the final solution.
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class Thread
{
  public:
     // Constructor for Thread
     Thread (char* name, int stackSize, int priority, int id);

// Initializes the thread, returns true if successful
     bool spawn ();

  protected:
//must be overwritten by the inheritor with its own code
void run(void);

};

class MyThread : public Thread 
{
  public:

//without virtual run methods every thread needs
//its own spawn

 bool spawn(void);

  private:
void run(void);

//static wrapper method for run
static void staticRun(void);

//stores a pointer to an instance of MyThread for staticRun
//initialized in the constructor
static MyThread* me;

};
MyThread::MyThread()
{

me = this;
}
void MyThread::run(void)
{

//Here we enter the code for MyThread
}
void MyThread::staticRun(void)
{

me->run();
}

void main(void)
{

//looks exactly the same as in the easy example

//create an instance of MyThread
MyThread myThread(“thread1”, 8192, MAX_PRI, 1);

//initialize the instance
myThread.spawn();

//now the instance can be used

...

return 0;
}

Code 3. How to create threads in the program
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As seen in the example, this final solution is as easy to use as the initial proposal,

though the external framework is a little bit trickier.

2. As all thread must be initialized (spawned) in main, the threads must be known in

main. This is partly solved by creating global threads, as in the case of Commander and

Broadcaster, by using singletons, as in the case of SIR, or, whenever possible, by using

local instances, as in the case of UI. Why three different approaches? Obviously, using a

local instance is the best solution. But that only works if just main needs access to the

thread, as with UI. SIR was designed as singleton in the first place, as a number of

classes need to access it. Therefore, main can use the built-in mechanism to access the

instance. Finally, none of the mentioned cases apply to Commander and Broadcaster, so

we use global instances.

6.3.3 Race Conditions

Like in most multi-threaded programs, we have to deal with inter-thread-

communication and synchronization. In the current implementation, thread interaction

only takes place between SIR and the respective active behavior. Through a reasoned

implementation of the methods and variables, getCubePosition, used by Pusher, is the

only method where a race condition can possibly occur. The sequence: Pusher reads the

x coordinate of a cube position. Then a context-switch takes place, and SIR updates the

cube position. Another context switch, and Pusher reads the y coordinate of the new

cube position. However, this race condition is not critical at all. SIR just keeps

providing better estimations of the cube position, and steadily approaches the correct

values with increasingly smaller changes. Therefore the coordinates do not need to be

protected.

6.3.4 Cyclic Dependencies

There is a cyclic dependency between the classes Behavior, Commander and

Explorer/Pusher/Avoider/Communicator, as we can see in the system architecture. This

cycle arises as

(a) the Behavior base class provides access to the commander; thus a behavior can 
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tell the commander that it wants to cede control or wants to sleep for some time;

(b) all behaviors are derived from the Behavior base class;

(c) the commander knows each behavior in order to control it.

The compiler is not able to solve such a dependency on its own. One of the

classes needs to be compiled first, but each of them is dependent on the other two and,

through the coupling, on itself. We have to break the cycle. In this case it can be done

using a forward declaration and a special include pattern [3].

The Behavior class does not actually need to know the details of the Commander

class, as it only stores a pointer to one. Pointers are the same, no matter what they point

to, therefore we do not need the definition of the class in order to store the pointer. That

means no #include “Commander.h” command is needed in Behavior.h. However,

simply taking it out will result in an error during compilation. So we need to let the

compiler know that there is a Commander class. This is done with by replacing the

include line by a so-called forward declaration - a class definition without a body. This

allows us to break the dependency between Behavior.h and Commander.h.

Of course, the implemented behaviors (Explorer, Avoider...) do need to know the
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Figure 12. Dissolving the cyclic dependency
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definition of the Commander class. That is why Commander.h needs to be included by

them.

6.4 From Real Robots to the Simulator

Generally, most parameters had to be adapted, as the simulator uses different from real

robots, different camera pos, angle, balls instead of cubes.

When pushing a cube, the robot uses its inclined front PSD sensor to determine if it still

possesses the cube. The PSD sensors of the simulated robots cannot be inclined.

Therefore, in the simulation the robots cannot detect the loss of a cube. They keep

driving back to their cluster points even if they have lost their cubes.

In the simulator RoBIOS functions may not be called in the class constructors.

Therefore I had to introduce public initialization methods that must be called before a

class is used.

6.4.1 Multiple Robots on EyeSim

The EyeSim simulator is not able to simulate multiple robots with a program that uses

global variables. All robots would share the same global variables [6]. The same holds

for static variables. So a few modifications are required when porting the program to

EyeSim. Fortunately, because of the use of C++, no global variables are needed for the

interprocess communication. An analysis showed that the program contains two critical

global variables and nine critical static variables. The two global variables, one instance

of Commander and one instance of Broadcaster, are necessary because these two

threads must be initialized in main, but they are used in a different part of the program.

The nine static variables are the five instances of the singleton classes (Drive, Camera,

PSDs, Radio and SIR) and the four threads (Broadcaster, Commander, UI and, again,

SIR). More static variables are used in the program as messages for the interprocess

communication, but those are constant and can be shared.

The solution is quite straightforward. An array is created for each global/static

variable that cannot be shared. The array size corresponds to the number of robots to be
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used in the simulation. As each robot has a unique id, accessible by OSMachineID,

every robot has its own instances of the critical variables. The robot id corresponds to

the array index. If the array size is set to 1, the resulting program is virtually equal to the

original one for real robots.

6.4.2 Stalled Drive Information

Another difference between real robots and simulated ones is the reliability of the

information whether the wheels are stalled. Evidently, in the simulator this information

is reliable and instantaneous. When using real robots, this information is not always

reliable. When the robot accelerates it has to overcome a certain frictional force before

it starts moving. Depending on the parameters of the drive controller it can take some

time until the robot starts moving. This is often wrongly interpreted as a stalled wheel.

Therefore, when using real robots, a counter is incremented each time the robot receives

the information that one of its wheels is stalled. The robot decides that its wheels are

indeed stalled only if the counter exceeds a certain limit.

57

//Example for global variables:

//creation of a global array of commanders
Commander g_commander[NUMBER_OF_ROBOTS];

//later each robot initializes and uses its own commander
g_commander[OSMachineID()].initialize();

//Example for static variables:

//creation of a static array of drives
Drive Drive::drives[NUMBER_OF_ROBOTS];

//later each robot gets and uses only its own instance
return &drives[OSMachineID()];

Code 4. Arrays for all global/static variables in EyeSim
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7. Testing

Real-environment testing was performed at the Mobile Robot Lab using EyeBots, cubes

and a plane as specified in the system requirements specification.

The tests covered only the main functionality. Tests of the overall system, sub-system

tests on behavior level (i.e. compliance of the behaviors with the system model), and

tests of critical components (cube detection and density estimation) were performed. A

major advantage of the behavior-based approach is that the behaviors can be

implemented and tested independently from each other. Generally, classes of the robot

package were not tested as their main task is just to pass commands to the underlying

robot library functions. Errors in these classes were quickly revealed when testing

components of the clustering package. Moreover, the robots are designed for

robustness, which means small deviations (e.g. of the sensor readings) should have no

major impact on the overall behavior.

All tests were passed to our satisfaction. See the test protocol for details.
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8. Evaluation and Future Work

The implementedcube detectionalgorithm is reliable and fast. It seemsto perform

betterthantheoriginal algorithmof Birgit Graf, on which my implementationis based.

I assumeonereasonis that I specifiedthe hue to be detectedmoreaccurately.When

experimentingwith Birgit Graf'sprogramI realizedthatthehueshespecifiedwasabout

10 huesoff the optimal one.Secondly,I modified the conversionfrom RGB to HSV

such that the result 'no hue' occurs considerably less often.

Worth improving is the calculationof the distancesof detectedcubesfrom the

robot. At present,three tablesare usedfor this conversion.However,with the right

calibration, two tables should be sufficient.

In a few casesa robot hascollided with a wall becauseit thoughttherewas enough

space.As aforementionedthePSDreadingsaretoo highwhenarobot is closeto a wall.

However, this problem is not critical as the robot quickly frees itself.

In the currentimplementationthe robotshavetroubleto clustercubesthat arecloseto

walls. It might be useful to re-designthe approachingand pushingbehaviorsuchthat

cubes close to walls can also be collected.

Due to time constraintsthe communicationby broadcastingwasnot implemented.As

arguedbefore,with a global startingpoint, the robotscould just pushall cubesto that

location. There would be no need for communicationat all. Communicationby

broadcastingwas intendedas an evolutionary step towards the final solution, local

communication. However, I implemented the one-on-one communication directly.

Testswereperformedto verify the complianceof the systembehaviorwith thesystem

model. The clustering terminated successfullyin most cases,and scalability and

robustnessof the systemcould be demonstrated.However,moreadvancedtestscould

be performed,for exampleto comparethe efficiency of swarmclusteringsystemsand

single-robot systems, to determine the optimal robot density for a given area, and so on.

Currently,the robotscan only clustercubeson emptyplanes.The robotsassumethat
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they do not need to avoid walls, only other robots. Once a robot has a cube, it heads for

its cluster point in a direct curve. If the robot hit a wall, it would lose the cube, and the

robot would not be able to retrieve that cube. The program could be extended such that

the robots would able to cluster cubes in more complex operational areas. For example

the floor of an office building could be recreated. That would be an excellent example

of how multi-robot systems could be used for garbage collection.
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9. Conclusion

In this thesis I presented the swarm clustering algorithm I developed. The algorithm was

implemented for both real robots and a simulator. Software engineering principles were

observed throughout the project.

For the algorithm I designed a versatile framework for behavior-based control. I

implemented four behaviors: exploration, avoidance, pushing and communication. The

robots use only local sensors and on-board image processing. A reliable image

recognition method (for the cubes to be clustered) was implemented. Furthermore, an

inter-robot communication system was incorporated. It is used to speed up the

determination of a common cluster point by synchronizing the coordinate systems, and

thus the cluster points, of robots that meet each other.

First experiments showed the robustness and flexibility of the developed swarm

clustering algorithm. The robots could be started from any position in the operational

area. And robots could be added or removed during operation. The algorithm still

terminated successfully.

To the best of my knowledge, this is the first image processing-based collective

clustering algorithm with communication.

The results of this project will be presented at the AMiRE 2003 (Autonomous

Mini-robots in Research and Edutainment) conference in Brisbane, Australia.
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Figure 13. Clustering with EyeBots
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Figure 14. Clustering on the EyeSim simulator
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Figure Sources

Figure 1. The EyeBot

Photo of EyeBot from Christoph Braunschädel, Department of Electrical 
and Electronic Engineering, University of Western Australia, Perth, 2002

Figure 3. Schematic illustration of a model-based robot control system

Reproduced from [9]

Figure 4. Schematic illustration of a behavior-based robot

Reproduced from [9]

Figure 5. Multi-robot systems in research

Reproduced from [7]

Figure 6. Types of collective robotics

Reproduced from [7]

Figure 7. The HSV cone

Source: Computer Science Educational Lab, University of Colorado at 
Boulder, USA, Available from
http://www-ugrad.cs.colorado.edu/~csci4576/Figures/hsv.gif

Figure 8. The RGB cube

Source: CVonline: The Evolving, Distributed, Non-Proprietary, On-Line 
Compendium of Computer Vision, School of Informatics,University of 
Edinburgh, Available from
http://  www.dai.ed.ac.uk  /  CVonline  /LOCAL_COPIES/OWENS/LECT14/  rgb.gif  

Figure 10. Height in camera image corresponds to distance

Reproduced from [1]
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Appendix A – Used Software

The software was developed on a Linux-based PC system using the modified GNU

C/C++ compiler for EyeBots. The system model, the class diagrams, and the code stubs

were created with Rational Rose. Doxygen was used for code documentation. All

documents were created with OpenOffice. For details on the used software please see

the system requirements specification.
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