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Diplom J. Du Abstract

Abstract

In this thesis a collective clustering algorithm is presented.The used robots are

behavior-basedand fully autonomous.The developedmulti-robot systemclusters

randomlydistributedcubesin a walled area. A frameworkfor behavior-basedcontrol

was developed.Four behaviorswere implemented:exploration,avoidance,pushing,

andcommunication.Inter-robotcommunicationis usedto speedup theemergenceof a

commoncluster point. On-board image processingis used for the detectionof the

cubes.Theclusteringalgorithmwasimplementedboth for real robotsanda simulator.

Usingthedevelopedsoftwarethe robot colonysuccessfullycompletedthetask.Andthe

colony proved to be scalable and robust.

Kurzfassung (German)

In dieser Diplomarbeit wird ein Clustering-Algorithmus für ein Multi-Roboter-System

präsentiert. Die einzelnen Roboter arbeiten völlig autonom und verhaltensbasiert. Das

entwickelte System trägt in einem von Wänden umschlossenen Gebiet zufällig verteilte

Würfel an einem Punkt zusammen. Hierzu wurde ein Framework für eine

verhaltensbasierte Robotersteuerung entwickelt. Vier Verhalten wurden implementiert:

Erkundung, Ausweichen, Transport, und Kommunikation. Kommunikation zwischen den

Robotern wird verwendet, um das Finden eines gemeinsamen Clusters zu

beschleunigen. Lokale, also robotereigene Bildverarbeitung wird für die Erkennung der

Würfel genutzt. Der Algorithmus wurde sowohl für reale Roboter als auch für ein

Simulationssystem implementiert. Die mit der entwickelten Software arbeitende

Roboter-Kolonie erfüllt ihre Aufgabe erfolgreich, und erweist sich als skalierbar und

robust.
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1.  Introduction

Theuseof simpleandreactivebehavior-basedrobotshasbecomeincreasinglypopular

amongresearchersin roboticsin recentyears.Behavior-basedrobotsarecharacterized

by a tight couplingof sensingandaction,andtheabsenceof world models.This results

in simple, robust and reactive individuals, as opposedto model-basedrobot control

systems, which are complex, little robust, and hard to maintain [13].

Rapid advancesin computertechnologyand robot hardwarecomponentshave

also had a major impact on robotics research.Firstly, the developmentand usageof

large scalemulti-robot systemshasbecomefeasiblewith the decreasein component

costs.Multi-robot systemsareexpectedto havesignificantadvantagesoversingle-robot

systemsincluding an increasedperformance,the ability to solve more complextasks,

andanincreasedrobustnessdueto redundancyandsimplerindividual robots.Secondly,

theenormousincreasein processingpoweron theonehand,andthe miniaturizationof

hardwarecomponentson the other hand,havemadethe developmentof small, fully

autonomous robots with on-board image processing possible.

Thetermswarmintelligencedescribestheapproachto usebehavior-basedrobots

to createanautonomous,robust,flexible, andscalablemulti-robotsystem.It is inspired

by biological systemsthat consistof many agents,for exampleant colonies.Typical

tasks for such swarms include exploration and transportation.

The objective of this project is to developa swarmclusteringalgorithm. The

robot colony, consistingof fully autonomousand behavior-basedagents,is to cluster

randomlydistributedcubesin a walledarea.Theswarmshouldbe robustandscalable.

Someform of robotcommunicationis to beincorporatedto ensurethata singlecluster

point remainsin the end. And on-boardimageprocessingshouldbe usedfor object

detection.The goal is to demonstratethe feasibility, scalability and robustnessof a

swarm clustering system with on-board image processing and communication.

The thesis is a joint project of the Institute of Industrial Automation and Software

Engineering(IAS), University of Stuttgart, Germany,and the Centerof Intelligent

InformationProcessingSystems(CIIPS), Schoolof Electric, ElectronicandComputer

Engineering,University of WesternAustralia, Perth. The work is carried out at the

Mobile Robot Lab at CIIPS.
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Diplom J. Du 1.  Introduction

The project duration is 6 months.Seethe project plan for a detailedproject

structure plan, milestones and bar charts.

Chapter1 is this introduction.In chapter2, I give an overviewof thenecessarybasics.

In chapter3, the requirementsto the softwareto be developare stated.The system

modelis presentedin chapter4, andthesystemarchitecturein chapter5. In chapter6, I

will go into the implementationdetails.Chapter7 quickly summarizesthe performed

systemtests.In Chapter8, I give anevaluationof thedevelopedsystemandsuggestion

for future work. In chapter 9, I conclude the thesis.

2
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2. Methods and Materials

2.1 The EyeBot

The EyeBot is a fully autonomousmobile robot. It doesnot rely on sensordatafrom

external devices or remote processing resources and power supplies.

EachEyeBotis equippedwith a 32 -bit controllerat 33MHz, andup to 2048KB

RAM. Theprocessingcapacityof thecontrolleris sufficient for mostimageprocessing

tasks.To give anidea,in this projectthecomputingpowerwassufficient to handleone

to two framespersecond,in additionto othercomputationsfor motioncontrolanduser

interface.

The robot has a differential steering system,with 2 DC motors with shaft

encodersfor the left andright front wheel.The rearpart is simply draggedalong.The

differential steeringsystemallows the robot to drive forwardandbackward,to turn on

the spot,andto drive curves,dependingon the level of activationof the left andright

motor. Deadreckoningis usedfor position estimationby countingthe encoderticks.

However,positionestimationusingdeadreckoningis inherentlyinaccurate- the error

accumulates over time. A magnetic compass allows the correction of the orientation.

Themainsensorinput is providedby a digital color camera.It takes24 -bit RGB

imagesat a resolution of 60*80 pixels. Furthermore,the robot has three position

sensitive detectors (at the front, at the front to the left, and at the front to the right). They

determinethe distanceto an obstacleby measuringthe time till the reflection of a

previouslysentout infra-redsignal is registered.The estimateddistancesareexcellent

for distancesbetween10 cm and20 cm.However,for very smallobstacledistancesthe

sensorreadingstend to be too large. The signal bouncesmore than once until it is

registered by the receiver [1].

Each robot has a wireless communication module that can be used to

communicatewith otherrobots.A networkis automaticallyestablished,it operatesasa

virtual token ring and has fault tolerant aspects.A net Master is negotiated

autonomously,new EyeBotsareautomaticallyintegratedinto the net,anddroppedout

EyeBots are eliminated from the network.

Finally, for a directcommunicationwith theuser,eachrobothasa graphicsLCD

and four input buttons.

3
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The EyeBots can be programmedin C/C++ or assembler.The so-calledRoBIOS

operatingsystemprovidesC functionsto control the robot andto accessthe connected

devices.In addition, a framework for multi-threadingand basic image processing

algorithms are provided. Programsfor the EyeBot are compiled on a PC with a

modifiedversionof theGNU C/C++compiler.Thentheprogramcanbedownloadedto

therobotusinga serialconnection.A list of theusedRoBIOSfunctionscanbefoundin

the system architecture.

2.2 EyeSim Simulator

EyeSimis a simulator for EyeBots.It is capableof simulatingmultiple robots.Most

standardhardwarecomponentsincludingcamera,PSDs,radio,LCD andinput buttons,

and most functions of the RoBIOS library are supported.The simulator can run

programswritten for EyeBotswithoutmodification,theyjust needto bere-compiledfor

the simulator.However,onemajor constraintis that no global or staticvariablesmust

4
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beusedwhensimulatingmultiple robots,asall robotswould sharethesamevariables.

Beside robots the simulator only supports balls as movable objects.

The simulator can be customizedusing several configuration files. Possible

modifications include the size of the robot, the dynamic model (e.g. collision

parameters),the graphicalmodel (how robots are graphically represented),the error

model (e.g. to simulatesensorerrors),and finally the world model (shapeandsizeof

the operational area).

The mostusefulfeaturesfor this projectwerethe supportfor multiple balls and

multiple robots,and the time laps function which spedup the testing.I adaptedthe

parametersto reproducethe real robots that I used as accuratelyas possible.The

changedsettingsinclude the robot size,and the positionsand orientationsof the PSD

sensorsandthe camera.To simulatecubesI alsoincreasedthe ball friction to prevent

theballs from rolling away.However,therearesomemajor differencesto theusedreal

robots.Thecurrentlyusedgraphicalmodelof the simulatedrobotsdiffers considerably

from the shapeof the real robot. Therefore,the inclination of the camerahad to be

different,otherwiseit would havebeenpartly blockedby the chassisof the simulated

robot. Moreover, the front PSD could not be inclined, as this arrangementis not

5
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supported by the simulator. Finally, the simulator uses a single circle for the geometrical

representationof a robot, which differs significantly from the rectangularshapeof the

real robots.

It shouldbe mentionedthat the simulator is a new developmentand still in a

buggy state.

2.6 Behavior-Based Robots

Early robot control systemsuseda model-basedapproach.The sensorinput passed

through a multitude of layers until it had any effect on the actuator output, as

exemplifiedin Figure 3. The involved stepsincludedcomplex,model-basedplanning

andreasoning.Thedevelopedsystemwereslow, difficult to program,little robust,and

highly dependenton thecorrectnessandaccuracyof their world models,which arehard

to obtain and hard to maintain.

In the late 1980s the researcherstried to overcometheseproblemsby developing

biologically inspiredbehavior-basedsystems.Behavior-basedsystemsarecharacterized

by a tight couplingof sensingandaction,andthe absenceof world models.Behavior-

basedrobots are also called reactive,or reflexive, as eachaction gets an immediate

feedback.

The advantages of behavior-based systems are [9], [13]:
� Real-time performance
� Robustness in dynamic environments, as they are not dependent on world models
� Easy implementation.Each behavior is a full control program,and can thus be

6
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designedanddebuggedindependently.Eachbehavioris a specializedmodulesand

can be kept simple.
� The system can be easily extended by adding/removing behaviors

However, the model-basedapproachcan have an advantageover behavior-based

systemsin fixed environments,and generallyin caseswhere the benefitsof using a

world modeloutweighthedisadvantages.And behavior-basedsystemcannotbeusedif

local sensingis not sufficient to solve the task.Remotesensordatawould breachthe

principle of direct feedback.

But researchersquickly realizedthatentirelybehavior-basedrobotsmakeit hardto plan

things,andperformcomplextasks.The behaviorsneedto be intelligently coordinated

andcombinedto achievecomplexgoals.Therefore,hybrid architecturesweredevised

with low-level reflexive behaviors and high-level planning.

2.7 Multi-Agent Robotic Systems

The fast-pacedprogress in computer technology and robotics, accompaniedby

decreasingcomponentcosts,havemadethe developmentof autonomousmulti-agent

systems feasible. The major advantages of multi-robot systems include [12]:

7
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� An increasein performance.The highertheparallelizabilityof a task,the higherthe

possible increase in performance by distributing it to a number of individual robots.
� The ability to solve more complex tasks.A multi-robot systemmay be able to

perform a task that cannot be completed by an individual robot.
� Fault tolerance.A group of robots,especiallyof homogeneousrobots,increasethe

redundancyof the systemandtherebymakeit morerobustto failuresof individual

robots.Furthermore,as the robotswork asa team,it may be possibleto reducethe

complexity of the individual robot, and thus reduce the risk of failure.
� Distributedsensing.If the robotscommunicatethey can shareinformation beyond

the sensor range of an individual robot.

On the other hand, the disadvantages of multi-robot systems include [12]:
� Interference.With each additional robot the communicationoverheadand the

probability of robot collisions increase.Insteadof cooperatingrobotsmay start to

compete with each other.
� Failuresof the communicationsystem.By addingcommunicationinto a systemit

becomes less robust and the probability of system failure increases.

8

Figure 5. Multi-robot systems in research

Research

Industry

Task  Complexity

Autonomy

Human-guided
individual robotics

Human-guided
collective robotics

Autonomous
collective robotics

Autonomous
individual robotics



Diplom J. Du 2. Methods and Materials

For the problemto be solved,the developmentof a clusteringalgorithm,the benefits

outweighthe disadvantages.The taskis highly parallelizable, andhomogeneousrobots

can be used. This has the potential to drastically increasethe performanceand

robustnessof thesystem.Attentionmustbepaidthatnot 'too many'robotsareactivein

theoperationalarea.And the communicationshouldbe designedin way that its failure

would not cause the overall system to fail. 

2.8 Swarm Systems

Swarm intelligence is an approachto use of behavior-basedrobots to create an

autonomouscollective robotic system[7]. It is inspired by biological systemsthat

consist of many agents, for example ant colonies. Though colonies consist of

stereotypical, unreliable and simple agents, as a whole they are capable of

accomplishingcomplex tasks in dynamic and varied environments.The behavioral

9
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repertoireof the agentsis limited, they follow simple rules and use simple local

communication.A global structureemergesfrom the actionsof many,without central

control or coordination. Swarm Intelligence relies on distributedness and

decentralization,simple and specializedagents,direct or indirect basic interactions

among those agentsand robustnessto failure of individuals. In this project the

principlesof SwarmIntelligencewere to be appliedto the problemof cubeclustering

using multiple autonomous robots.

2.5 Collaborative Clustering

Thebasicprincipleof collectiveclusteringalgorithmsis very simple.Beckers,Holland

and Deneubourg showed that

1. if robots have the means of moving some discrete items,

2. are able to make clusters,

3. and have some way to estimate local density,

then, with the influence of noise and stochasticrobot-robot and robot-environment

interactions, in the end a single cluster will remain [7].

Basically the reasoningis as follows: If the probability of leavinga cubeon a cluster

increaseswith the cluster size, and the probability of taking a cube from a cluster

decreaseswith theclustersize,thentherateof growthwill increasewith thesizeof the

cluster.As therateof growthoverall clustersis zero(thenumberof cubesis constant),

the resultmustbe positive growth for the largestclustersandnegativegrowth for the

smallest ones. Thus, N clusters will become (N-1) clusters, and so on.

2.9 Other Clustering Experiments

First clusteringexperimentswereconductedby Beckers,Holland, andDeneubourgin

1994[14]. Theusedrobotswereentirelybehavior-based,andIR sensorswerethe only

sourceof input. They demonstratedthat clustering could be done with minimalist

robots.In 1998Holland andMelhuishusedmoresophisticatedrobotswith IR sensors,

grippers,and optical sensorsfor color detection[7]. Holland and Melhuish tried to

10
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mimic thebehaviorof Leptothoraxantsandtheir concentricannularsorting.Theyalso

performedmore complexexperimentsincluding the usageof probabilisticalgorithms.

In 2000,BurkhardIske and Ulrich Rückert incorporatedlocal communicationin their

clusteringalgorithm [8]. The infra-red sensorsof their Kheperarobots were usedto

communicatetheageof clusterpoints.Theoldestoneof thememergedasglobalcluster

point.

2.3 HSV Color System

HSV stands for hue, saturation and value.

The hue describeswhere a color lies along the spectrum.Hue values are

organizedin acolor circle,with redat 0 degrees,yellow at60 degrees,thengreen,cyan,

blue, and finally magenta at 300 degrees.

Thesaturationdescribeshow purea color is. Thesaturationvaluegoesfrom 0%

(gray) to 100%(maximumpurity). A low valueresultsin a neutral,dull color, whereas

a high value means a strong, pure color. 

Value,or brightness.A valueof 0% meanscompletelyblack,while 100%is the

brightestvaluethata color canhave.A maximumvaluedoesnot meanwhite,unlessthe

saturationis zero.A maximumvalueis simply thebrightestvaluea color canhaveat a

particular saturation.

11
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Thevolumespannedupby thethreeparametersof theHSV color systemcanbeviewed

asan invertedcone.Eachpoint in that conerepresentsa color in theHSV system.The

hueis the anglein a planeorthogonallyto the cone'ssymmetryaxis. The saturationis

the radius,the distanceof the point from the symmetryaxis. Finally, the value is the

coordinate along the symmetry axis of the cone, it describes the height of the point.

2.4 RGB Color System

RGB standsfor thethreebasiccolorsusedin theRGB system:red,greenandblue.The

completecolor scaleoriginatesthroughthesuperpositionof thesethreecolors.Thus,in

theRGB model,everycolor is representedasa setof threeindependentvalues:a value

for red, a value for greenanda value for blue. In the EyeCamimageseachvaluecan

rangefrom 0 to 255. If all threevaluesare0, the resultingcolor is black; if all three

valuesare255,thecolor is white. Around16 million colors(2563 = 16,777,216)canbe

represented.

In theRGB systema color canbe imaginedaspoint in a cubespannedup by the

three basic colors.

12
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Figure 8. The RGB cube
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3. System Requirements

The objectivewas to developthe softwarefor a behavior-basedrobotic system.The

systemshouldmakeuseof themaincharacteristicsof swarmintelligenceto collectively

clusterrandomlyplacedcubesin a walledarea.Thesoftwarewasto beimplementedfor

a set of autonomousmobile robots.The following requirementswere derived(Note:

theseareextractsfrom thesystemrequirementsspecification,seetheoriginal document

for details).

Requirements regarding the swarm:

� The robot colony is to be scalable.It shouldbe possibleto addor removerobotsat

any time without disruption of the overall swarm behavior
� That includes in particular that the robot colony should be robust regardingthe

failure of individual robots
� The control of the robot colony shouldbe decentralized.No masterindividualsand

no central coordination should be required
� The robot colony is to be redundant in the sensethat the robots should be

homogeneous and each robot should have full decisional power
� Thereshouldbe someform of implicit or explicit communicationamongthe robots

to ensure a common cluster point

The behavior-based agents should have the following characteristics:

� Fully autonomous and behavior-based individuals
� The agents should be reactive, have a tight coupling of sensing and action
� Use local sensing and perform only local action
� Use image processing for object detection
� It is not required for the robots to be adaptive

Nonfunctional Requirements:

� The developed software should work properly both within the simulation

environment and in a real environment
� All cubes should be collected, and a single cluster point should remain at the end

14
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 Functional Requirements:

� The robots should collectively cluster randomly distributed cubes on a plane
� The robots should be able to recognize and distinguish cubes, robots and walls
� The robots should explore the plane to find cubes
� The robots should push found cubes to a cluster point
� The robots should be able to avoid obstacles (walls and possibly other robots)
� There should be some form of implicit or explicit robot-robot communication to 

determine a common cluster point

15
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4. System Model

The system model is the result of a system analysis.Based on the requirements

specificationit aimsto describethe desiredsystembehaviorin a consistent,complete,

realizable and verifiable way [11].

Statechartdiagramswereusedto representthesystemmodel.Thesystemmodel

containsthree different versions.This is to reflect three different approachesto the

robot communication.

Case 0: Implicit communication

A common cluster point emerges through stochastic robot-robot and robot-

environment interactions (see 2.5)

Case 1: Explicit communication by broadcasting

A common cluster point is determined and communicated by broadcasting 

to nearby robots

Case 2:   Explicit one-on-one communication

A common cluster point is determined and communicated by one-on-one 

data exchanges between robots that cross each other's paths

For clarity and comprehensibility the system model was separated into eight

diagrams. A short description of the diagrams follows:

1. Overview

This diagram gives an overview of the system behavior. The seven states in this

diagram are super-states; they are specified in the following seven remaining sub-

diagrams.

2. User Interface

This diagram describes the reactions of the system to user input.

3. Exploring,

16
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4. Pushing,

5. Avoiding,

6. and Communicating (only in case 2)

These four diagrams describe the exploring, pushing, avoiding or communicating

behavior of the robot, respectively. There are transitions between these four

diagrams. Pseudo-states named 'Entry to ...' or 'Exit to ...' (e.g. 'Entry to Pushing' or

'Exit to Avoiding') are used to indicate a transition from one diagram to another. This

was necessary to make the transitions easier to trace.

7. Broadcasting (only in case 1)

This diagram describes the broadcasting process of the robots.

8. Sensors and Image Recognition

Finally, this diagram describes the sensing and image recognition processes in the

robots.

17
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4.1 Overview Diagram

This diagram gives an overview of the system behavior. The seven states in this

diagram are super-states, they are specified in the following seven remaining sub-

diagrams.

User 
Interface

First the clustering is done only through estimation of the cluster 
sizes (So we use implicit communication, the robots tend to 
push towards larger clusters). Then the clustering is done with 
communication through broadcasting. Finally with one-on-one 
communication.

case 0: Implicit communication
case 1: Broadcasting (requires same starting point)
case 2: One-on-one communication

In case 1 and 2 the position with the highest known cluster point 
density is communicated.

Program started

At every state that involves movement 
we have to check for cubes, robots, 
walls, proximity to cluster point and 
stalled motors.

Running

Sensors and Image 
Recognition

Broadcasting (only in case 1, does 
not exist in case 0 and case 2)

Communicating (only in case 2, in case 
0 and case 1 we go to Avoiding directly)

AvoidingExploring 
(Start)

Pushing

Sensors and Image 
Recognition

Broadcasting (only in case 1, does 
not exist in case 0 and case 2)

'End' pressed

'Go' pressed

while running
while running

Communicating (only in case 2, in case 
0 and case 1 we go to Avoiding directly)

AvoidingExploring 
(Start)

Pushing

Communicating (only in case 2, in case 
0 and case 1 we go to Avoiding directly)

Avoiding

data exchanged OR aborted

Exploring 
(Start)

avoided

Pushing

while running

'End' pressed

arrived OR drive stalled

cube lost

robot detected

cube detected

drive stalled
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4.2 User Interface Diagram

This diagram describes the reactions of the system to user input.

Initial izing
Ready

ini tialized

Running

Program started

Menu displays:
Go X X End

Menu displays:
X X X End

'Exploring' is started, 
'Sensors and Image 
Recognition' is started, 
'Broadcasting' is started 
(only in case 1)

'Go' pressed

'End' pressed

'End' pressed
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4.3 Exploring Diagram

This diagram describes the exploring behavior of the robot.

Entry to 
Exploring

Driving

Choose new 
direction

Exit to Communicating (case 2)    
Exit to Avoiding (case 0, case 1)

Exit to 
Pushing

chosen

Compare cube density here with density at my cluster point. If cube density here is higher use this 
location as cluster point

robot detected

cube detected

wall detected OR close to cluster point

cube density here lower

cube density here higher

Exit to 
Avoiding

drive stalled
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4.4 Pushing Diagram

This diagram describes the pushing behavior of the robot.

Pushing towards 
cluster point

Entry to 
Pushing

Exit to Exploring

Met wall:
not possible, unless cluster point is next to 
wall. Then we just choose radius big enough 
(there may be no position errors due to 
communication, though)

Met cube: ignore

Backing up

Waiting

Trying to 
ret rieve cube

Does not 
work if two 
robots are 
facing each 
other

Backing up (if not done yet), 
Turning slightly left/right

cube lost

Exit  to 
Avoiding

Approaching 
cube

met obstacle, first time

done

far enough OR drive stalled

cube re-discovered

random time passed

cube re-discovered

drive stalled
cube lost

met obstacle, more then once

arrived OR met obstacle, more then once

met obstacle, first time

cube lost
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4.5 Avoiding Diagram

This diagram describes the avoiding behavior of the robot.

Exit to Exploring

Turning 
away

Always to the right or 
always to the left. Then, if 
two robots try to avoid 
each other they will go 
into opposite directions

after a certain amount of time

Entry to 
Avoiding

Backing up

Driving 
forward

far enough

motor stalled enough space to turn

Not *absolutely* reliable algorithm 
but sufficient for most situations

22



Diplom J. Du 4. System Model

4.6 Communicating Diagram

This diagram describes the communicating behavior of the robot.

Sending 
messages

Waiting for 
responses

Entry to 
Communicating

sent

Count 
responses

X seconds passed

Exchanging 
data

Make robots 
face each other 
at close 
distance

Send requests to all 
active robots in the 
vicinity

Turning

Driving 
forward

close enough OR drive stalled

met robot

Exit to 
Avoiding

1 response, other robot identified

not exactly 1 response

0 responses:  wall
2 or more responses: 
several encouters at the 
same time

This long winded 
procedure is 
needed due to the 
propert ies of the 
'EyeNet' 
communication 
system (virtual 
token ring with 
explicit 
communication via 
unique robot id)

Messages contain robot id (required by 'EyeNet'), and 
cluster point density and position.

Compare cluster point densities 
and take over denser location

exchanged

done

facing other robot

other robot is driving away
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4.7 Broadcasting Diagram

This diagram describes the broadcasting process.

Searching first 
cube (Start)

Broadcasting 
location to all

This process runs continuously.

All robots have to start from the same 
posit ion (so that  they have the same 
coordinate system).

The algorithm is similar to the 'Bully 
Election' algorithm. It determines the 
broadcaster and ensures broadcast ing in 
case of failure. Upon recovery no election 
is ini tiated (as opposed to the original 
algorithm) because we don't need to find 
out who the current coordinator is, he will 
contact us.

Compare cluster point densities and 
take over denser locat ion, compare ids

Watchdog

got message

found

got message

Robots are searching for a very first cube.

Messages contain robot id (required by 'EyeNet'), and 
cluster point density and position.

'my sender' means: the 
sender from who I got 
my current location

I have lower id

I have higher id

got message OR found cluster point with even higher density than my sender

my sender has become inactive

Note:

Communicationby broadcastingis just an evolutionary step towards case2 (local

communication).As all robotshaveto startfrom thesamepoint, theycouldjust pushall

cubes to their common starting position. There would be no need for any
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communication.However, the implementationof this casehelps to becomefamiliar

with the features of the radio communication system, and experience for the

implementation of case 2 is gained.

The broadcastingprocessand the electionalgorithmthat it usesmight be regardedas

breachof therequirementsN210('no centralcoordination'), N310W('no initialization')

and N112 ('local action'). I want to address these concerns here.

N120: The election algorithm is only needed to ensure that no superfluous 

communicationtraffic occurs.Thecommunicationprocesscouldbeeasily

modifiedsuchthatno electionwould benecessaryandeveryrobotwould

keep broadcasting to other robots in its vicinity.

N112: As therangeof broadcastingis limited to theclosevicinity of a robot,this

can still be regarded as local action.

N310W:   For broadcastingall robotsneedto havethesamestartingpoint. Fromthe

usereffort point of view this posesno real argumentfor not startingall

robotsfrom thesameposition.It is correct,though,that for variousreasons

it might be desirable to start a robot from any point on the plane.
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4.8 Sensors and Image Recognition Diagram

Finally, this diagram describes the sensing and image recognition processes in the

robots.
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Taking image 
(Start)

Processing 
image

taken

Set camera 
flags

processed

This process runs continuously.
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5. System Architecture

The system architecture is based on the system model. It constitutes the transition from

system analysis to design. The system architecture contains the decomposition of the

overall system into sub-systems and components, and describes the interfaces among

them [11].

5.1 Fundamental Design Decisions

I decided to divide the system into five layers:

    5 User Interface

    4 Control Layer             new

                     SW

    3 Robot Model (Wrapper Layer)

    2 RoBIOS
                              provided

    1 EyeBot Controller & Robot Platform                           HW

Layer 1: Hardware layer

This layer represents the EyeBot controller and the robot hardware platform.

Layer 2: RoBIOS layer

This layer contains the RoBIOS library functions.

Layer 3: Wrapper layer

Layer 3 containswrapperclasses.Theseclassesfulfill four functions:Firstly,
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theyencapsulatetheneededC functionsfrom theRoBIOSlibrary in C++ classes.

Secondly,they constitutea layer of separationbetweenthe programand the

provided libraries, making it easier to adapt the programto changesin the

underlyinglibraries.Thirdly, theclassescancombinelow-level library functions

to provide high-level functionality to and hide complexity from the layers

above.Finally, the classesprovide the opportunity to use consistentnaming

conventions throughout the newly developed software.

Layer 4: Control layer

Layer4 containsthemainfunctionality.That includesall classesthatareneeded

to control theclusteringfrom a high-levelperspective.Theclassesin layer4 use

thewrapperclassesin layer3 to controlandcommunicatewith therobot.A point

of entry for the user interface of layer 5 is provided.

Layer 5: User interface layer

Layer 5 containsthe user interface. It separatesthe user interface from the

functional part of the program.
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5.2 Diagram of the Software System Architecture

The following diagram gives a basic overview of the system architecture.

Layer 5:
UI   User Interface

Layer 4:
Control                 Starter

Commander &                Sensors
Explorer/                    &         Broadcaster
Pusher/Avoider/                 Image
Communicator/             Recognition

     

Layer 3: Robot Model
                    

          Sensors        Radio    LCD
    Drive               &          &      &

            Image       Timer           Keyboard
                   Processing

Layer 2
    RoBIOS Library Functions

Layer 1
         EyeBot Controller & Robot Platform

29



Diplom J. Du 5. System Architecture

Legend:

(specified) association

indicates unspecified associations between layers

Note: The Broadcaster only exists when using global communication. The

Communicator only exists when using local communication. See system model for

details.

The programconsistsof up to four threads.One threadfor the User Interface,one

thread for the Sensorsand Image Recognition(SIR), one thread for the behaviors

(Commander& Explorer/Pusher/Avoider/Communicator)and finally, if using global

communication,one additional threadfor the broadcastingprocess.This partitioning

ensuresresponsivenessto user input and reactivity of the behaviors.The numberof

threadsis kept to a minimum to avoid overheaddueto context-switches.But it is still

ensuredthat the time-consumingimagerecognitionandbroadcastingprocessesdo not

block the UI and behaviors, that have short lead times but need to be called regularly.

Currently four behaviors are realized, exploration, pushing, avoidanceand

communication.The communicationbehavior is only activated when using local

communication.As we usea behavior-basedapproach,thecontrolover therobotcanbe

handed over to a single class that represents one behavior.

The Commanderswitchesbetweenthe behaviorschoosingthe mostappropriate

onebasedon theresultcodereturnedby thelastactivatedbehavior.Activatedbehaviors

are not pre-empted, they return when they have servedtheir purposeor when they

recognizethat theycannotcopewith thesituation.With this framework,behaviorscan

be easily added or removed, and the sequence of behaviors can be easily changed.

TheStarteris just usedto providean easyaccesspoint for the userinterfaceby

hiding complexity.It enablesanddisablesthethreadsthatform theclusteringalgorithm

making the user interface independent from functional details.

TheSIR provideshigh-levelenvironmentinformationto thebehaviors.It runsin

a own thread to prevent it from blocking other processes.
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The Broadcaster realizes the global communication process when using

communication by broadcasting.

5.3 System Components

The programconsistsof two packages.A robot packagecontainingall classesof the

wrapperlayeranda clusteringpackagethatcontainsall classesof both thecontrol layer

and the user interface layer.

This section gives a brief overview of the system components.A fully

commented and browsable documentation is available (see components specification).

The robot package has the following classes:

robot

LCD
Drive

ImageFilter

Camera
Radio Timer Thread

Keyboard

PSD

LCD: This class provides methods to access the robot LCD.

Keyboard: This class provides methods to read from the robot keyboard.

Drive: This class provides methods to control the robot drive.

Camera: This class provides methods to access the robot camera.

ImageFilter:This class provides image filters.

PSDs: This class provides methods to access the infra-red sensors.

Radio: This class provides methods to use the radio communication.

Timer: This class provides methods to access the robot timer.

Thread: Base class from which all multi threaded classes are derived. The derived 

classes inherit a set of methods that can be used to control the thread. Once

the thread is initialized and made ready, its run  method is scheduled for 
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execution. The run  method is declared as virtual and has to be overwritten 

by the inheritor.

The clustering package contains the following classes:

clustering

Starter

SIR

UI

BroadcasterPusherExplorer

Commander

Communi
cator

Avoider

Behavior

CubeClustering (not in diagram, it is not a class):

This component contains the main  function of the program. It 

initializes and starts the program.

UI: Thisclassimplementstheuserinterface.It allowstheuserto startandstop

the clustering using the input buttons of the EyeBot controller.

Starter: This class provides a point of entry for the user interface to control 

the clustering algorithm. This ensures that the functionality is 

separatedand hiddenfrom the user interface.The classprovidesa few

public methodsto startandstoptheclustering.Startercontrolsthestateof

the threads (ready, suspended, ...) that form the clustering algorithm 
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Commander: Activatesandswitchesbetweenthe behaviorsof the robot (current

implementation: exploring, pushing, avoiding and communicating. 

Communicating only when using local communication).

The decision which behavior to activate is based on the 

current state of the commander and the return code it receives from 

the last activated behavior. Once a behavior has served its purpose it 

will return with a result code. The commander does not actively 

interrupt activated behaviors.

Behavior: Baseclassfrom which all behaviorsarederived.This providesthemwith

the same base properties and makes adaptations easier, that are to affect all 

behaviors.

Explorer: Explorestheplaneusingsimplesearchpatterns.Avoids wallsandtheown

clusterpoint when exploring. Returnswhen a cubeor a robot hasbeen

detected.

Pusher: This class implements the pushing behavior of the robot. The robot 

approachesthe cubeand tries to pushit to its clusterpoint. If the robot

meets other robots on its way it tries to avoid them.

Avoider: Implementstheavoidingbehaviorof therobot.Therobot tries to backup

and then turns away from the obstacle.

Communicator: This class implements the local communication behavior of the 

robot. It is only needed when using local communication. First the 

robot is justified so that it faces the other robot at a close distance. 

Then it tries to identify the other robot. If successful their cluster 

points are exchanged and the denser of the two cluster points is 

chosen as common cluster point.

SIR: Thisclass(SensorandImageRecognition)provideshigh-levelinformation

to the behaviors by pre-processing the data internally. The provided 
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informationincludescurrentobstacledistancesasreceivedby theinfra-red

sensors. But in particular information about the locations of cubes and 

robots that are visible on camera are provided

Broadcaster: This classimplementsthe broadcastingabilities of the robot. It is

only needed when using communication by broadcasting. The 

broadcasting algorithm makes sure that a cluster point is determined 

and communicated to all robots in the vicinity. It also makes sure 

that the cluster point position is retained should the broadcasting 

robot fail. See system model for details.

5.4 Class Diagrams

Thefollowing classdiagramsshowtherelationshipsbetweentheclassesof the layers3

to 5.

Legend:

A

B

B inherits from A

D

C

C uses D
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5.4.1 Implicit Communication

Thread

Thread

Thread

Keyboard

LCD

UI

Camera
ImageFilterPSD

Drive

SIR

Starter

Pusher Avoider Explorer

Behavior

Commander
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5.4.2 Communication by Broadcasting
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5.4.3 Local Communication

Thread

Keyboard

LCD

UI

Starter
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6. Implementation

6.1 General Implementation Decisions

Therearetwo mainsourcesof input, thecameraandtheinfra-redsensors.I decidedto

usethecamerafor cubedetection,andthePSDsensorsfor obstacleavoidance.Thered

cubesare well distinguishablefrom the environmenton the color camera.The PSD

sensors,on the other hand, quickly deliver accuratedistancedata of surrounding

obstacles.A final sourceof input, the informationwhetherthe drive is stalled,is used

for obstacle avoidance as well.

Of all behaviors, avoidance has the highest priority followed by pushing,

communicationandfinally exploration.This orderingpreventstherobotfrom becoming

stuck and ensuresthat even with high robot densitiesthe actual clusteringdoesnot

come to a stop due to excessive robot-to-robot communication.

I decidedto developthe softwarefor real robotsfirst, and thento port the programto

the simulator. The demands regarding robustnessare usually higher for real

environmentsystemsbecauseof errors in sensorsand actuators.A systemrunning

perfectly on the simulatormay fail in real-life. The other way round,a failure is less

likely.

I decidedto expressanglesin degreeinsteadof radian,mainly becauseit is easierfor

theprogrammerto visualizeandhandleanglesin degree.As theRoBIOSfunctionsuse

radian,the Drive classneedsto perform a few conversions.But the conversionsare

restrictedto the Drive classonly. Thehigh-levelclasses,mainly thebehaviors,canuse

degree throughout.

6.1.1 Coordinate systems

Therobotsusetwo coordinatesystemsfor navigation.A global coordinatesystem,and

a local one. The local coordinatesystemis 'carried along' by the robot. The origin

movesaroundwith the robot'scenter.Thex-axis alwayspointsto the currentdirection
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of therobot.Theglobal coordinatesystemis setwhentherobotdrive is initialized.The

origin is thestartingpoint of the robot,andthepositivex-axis showsthe orientationof

the robot at startup.

WheneverpossibleI usedthelocalcoordinatesystem.Themotioncommandsare

easierto understandand program,and the computationsare fasterwhen calculating

entirely with local coordinates.

Theclusterpointof a robotis alwaystheorigin of its globalcoordinatesystem.It

is easierfor theprogrammerto maketo robotpusha cubeto theorigin of its coordinate

system,and the computationsare faster.And, as we will seelater, the usageof the

origin asclusterpoint makesthesynchronizationof coordinatesystemseasier.So,when

a robot adoptsa new clusterpoint, it introducesa new global coordinatesystem.The

origin of thenew coordinatesystemis at thenewclusterpoint location.Thenthe robot

calculates its own position in the new system.
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6.1.2 RGB to HSV

Onemajoradvantageof theHSV colorcodingovertheRGBsystemis theinvarianceof

thehuevaluewith regardto illumination andcameraorientation[5]. Thehueof thered

cubesto be collectedare distinct from the huesof all other objectsin the operational

area,accordingto therequirementsspecification.Thereforewe canusethehuevalueto

reliably identify cubes.This approachalso ensuresa high performanceas only one

value insteadof threeneedsto be considered.For thesereasonsI decidedto usethe

HSV color systemfor imagerecognition.TheRGB imagesobtainedfrom the EyeCam

areconvertedinto HSV values.For eachpixel in the imagewe calculatethe huefrom

thethreeRGB values.In thecurrentimplementation253huescanbedistinguished.The

hue value rangesfrom 0 to 252, the value 255 is usedfor objectswith no hue. The

saturation and brightness are not calculated as they are not needed.

6.2 Behaviors and Image Recognition

6.2.1 Detection of Cubes

I decidedto usea hue-baseddetectionmethod,basedon theexperiencesof Birgit Graf

[1]. The cubeshave a distinctive color, making a color-baseddetectionmethod the

obviouschoice.TheHSV color systemhastheadvantagethat thehuevalueis invariant

to illumination and cameraposition [5]. The 24-bit RGB image provided by the

EyeCamis convertedto an HSV representationon-the-fly. Only the hue valuesare

calculated,as they are sufficient to reliably recognizethe cubes.Furthermore,to

increase performance, only the row currently under consideration is converted.

The detection of the cubes works as follows. Using a table, the minimum size of a

cubein imagepixel is determined.Then,startingfrom thebottomrow andgoing from

left to right in eachrow, theimageis scannedfor acontinuouschunkof pixelsthathave

thecubecolor. Imagepixelsareconsideredto havethecubecolor if thedeviationfrom

a stored hue value is below a certain threshold. A cube has been found if such a chunk is

equal or larger to the initially determined minimum cube size.

Now the robot hasto determinethe relativelocationof thecubefrom its current
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position,or morecorrectly, from its positionwhenthe imageunderconsiderationwas

taken.The cameraof the robotshavea fixed inclination. Therefore,the heightof the

detectedobjectin the imageindicatesthedistancefrom the robot.Theconversionfrom

imagerow to distancein meter is doneusing three tables,row2Meter , yFactor and

yFactorMinus . All tables have 60 different values,as the imagesprovided by the

EyeCamhavea resolutionof 60 rows* 80 columns.row2Meter[i] canbe usedto get

the distanceof the cubeif it is detectedin ith row of the image.The two other tables,

yFactor and yFactorMinus , are used to calculatehow far to the left or right the

detectedobjectis from the robot.yFactor is usedfor objectsleft from thecameraand

yFactorMinus for objectsright from thecamera.Two different tablesareusedbecause

that way much better results were obtained. However, I suspectwith the right

calibration,onetableshouldbesufficient.Thetablesarecamera-dependentandhaveto

becreatedmanuallyfor eachrobot.For eachimagerow thedistanceat which anobject

appearson that row is measured. According to [1], an automatic formula based

generation of the tables provides unsatisfying results.

Therelativelysimpledetectionalgorithmis effective.It is fast,easyto implement,and,

most importantly, reliable. The measureddeviations from the real object distance

rangedfrom 0.5 cm to 5 cm, dependingon the distancefrom the camera.The further

away an object is, the more space is covered by a single row in the image.

The disadvantage is, that obviously no other objects with a hue similar to the cube's may

be in the area of operation.Furthermore,the manualcreation of the tables is time

consuming.
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6.2.2 Density Estimation

The robot usesits color camerato estimatethe cube density. In the implementation

without communicationthe robot mustbe ableto reliably estimatethecubedensityfor

a single cluster point to remain in the end. As shown in [7], a single cluster point

remainsif all robotspushcubesto their respectivelylargestknownclusterpoint.When

usingradiocommunicationthecubedensitycanbeusedto determinea commoncluster

point.As before,all robotspushtheir foundcubesto thelargestknown,commoncluster

point. Naturally, with radio communication,other valuescan be usedto determinea

commonclusterpoint aswell - for exampletheageof theclusterpointsasin [8]. Then

all robots would push newly found cubes to the first discoveredcube. One main

advantageof a density-basedapproachis that thevalueusedfor thedecisionis directly

relatedto theobjective.So,insteadof stringentlypushinga numberof cubesto thefirst

discovered cube, the reverse procedure is often more advantageous. The disadvantage of

the density-basedapproachis that a density estimationwith the cameracan not be

totally accurate.As a result, and already observedin my experiments,the robots

sometimes start pushing cubes back and forth between two cluster points of

approximatelyequalsize.An age-basedapproachwould havea well-definedcommon

cluster point. However, through stochastic processes,and as observed in the

experimentsso far, evenin thedensity-basedapproacha singleclusterpoint remainsin

the end.

Another advantageof the density-basedapproachis that the robots can adjust

their clusterpoint positions.This is necessaryasthecombinationof differentialsteering

systemand shaft encoder-basedlocalization is inherently inaccurate[9]. That means

afterhavingtraveleda long distance,a robot is not ableto find exactlybackto its old

clusterpoint position. Furthermore,the clusterpoint positioncanslowly movedueto

addition and removal of cubes by other robots.

Basedon the density estimationa center of density can be calculated.The

position of that center can then be used to adjust a robot's cluster point position

regularly.

 

The densityestimationis doneby taking three images(one at 0 degrees,one at -20

degrees,oneat +20 degrees)andcountingthenumberof pixels with thecubehue.The
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densityvaluerangesfrom 0.0,no pixelswith matchinghueonanyof theimages,to 3.0,

all pixels in all imageshavethe cubehue.Experimentshaveshownthat the densityis

highly dependenton thedistancefrom thecubes.Thereforeit is necessaryto ensurethat

the density estimation is always done from approximately the same distance.

Thecenterof densityis estimatedby calculatinga weightedmeanin the imagewith the

highestdensity.The positionof the centerof densityis thenconvertedinto local robot

coordinates as in 6.2.2.

6.2.3 Approaching and Pushing

1. Upon detection of a cube the robot has an estimation of the cube distance

2. The robot moves to a fixed distance to the cube

3. At that defineddistancea cubedensityestimationis performed(Note: if the robot

decides to use this location as its new cluster point, the approach is aborted)

4. If theanglebetweenthelinesrobot-cubeandcube-clusterpoint is below60 degrees

the robot approaches the cube in a straight line and starts pushing

5. Otherwisethe robot movescloserto the cubein a straightline until it is aboutone

robot length away

6. Based on the distanceinformation from its infra-red sensorsthe robot decides

whether to drive around the cube from the left or right side

7. Therobotdrivesaroundthecubeuntil it detectsanobstaclein front of it, or until the

robot, the cube and the cluster point are aligned

8. If the robotdid detectanobstacleandendedup in a badpositionto pushthecubeto

the clusterpoint (the clusterpoint is behindthe robot), it tries to drive aroundthe

cube the other way

9. The robot tries to push the cube to its cluster point
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Onemainadvantageof this way of approachingthecubeis, that thedecisionof how to

circumnavigatethe cube is made at the last moment and basedon sensordata.

Moreover, this method is reliable, and easy to program and understand.The

disadvantageis thatthis methodis a bit slowerthanfor exampletheapproachesusedin

[1]. But this is not a major limitation asspeedhasa lower priority here,asopposedto

the competitive environments there.
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Figure 11. Approaching and pushing a cube
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The way of approach ensures in most cases that the robot can push the cube to its cluster

point in a direct curve.Whenpushingthe cube,the robot usesits inclined front PSD

sensorto determineif it is still in possessionof the cube.If the cubeis lost, the robots

tries to re-detectthecubeby backingup andturning 20 degreesto the left andright. If

thecubeis re-detectedthe robotcontinuesits pushoperation,otherwisetherobotgives

up.

6.2.4 Communication

The robots communicatewith eachother to speedup the emergenceof a common

cluster point. Two communicatingrobots exchangetheir cluster point positionsand

densities.Theyacceptthedenserof thetwo clustersastheir commonone.It is expected

that with communication a common cluster point for all robots is found faster.

How can two robots exchange their cluster point positions? The easiest way to exchange

two positionscanbe usedif both robotshavethe samecoordinatesystem.Pleasenote

that we are always talking about the global coordinatesystemof the robot here,as

definedin 6.1.1.The local coordinatesystemof therobottravelswith therobotand,for

obviousreasons,cannotbe usedto storeits clusterpoint. They can directly exchange

their coordinates. For example:

Robot 1: 'My home is at (2,0)'

Robot 2: 'My home is at (10, 3)'

However,all robotswould haveto be startedfrom the samepoint to have the same

coordinatesystem.But then, there would be no needfor communicationat all. The

robots could just push all cubes to their common starting point.

If the robotsarenot startedfrom thesamepoint anddo not havea commoncoordinate

system,they needto (a) synchronizetheir coordinatesystemsand (b) then exchange

their clusterpoint positionsin the commoncoordinatesystem.As explainedin section

6.1.1 the robots always have their cluster points at the origin of their coordinate

systems.For this reason,stepb is not necessaryhere:oncea robotknowsthecoordinate
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system of the other robot, it also knows the cluster point of the other robot.

Oneway to synchronizetwo coordinatesystemsis the usageof landmarks.For

example:

Person 1: 'My home is 1.2 km south of the lake.'

Person 2: 'My home is 500 m west of the lake.'

If both persons know where the lake is, they can find each other's homes.

However,by using landmarkswe decreasethe flexibility and robustnessof the

system.Thesystemcouldnot bedeployedat siteswithout landmarks,anda removalof

the landmarkswould leadto a collapseof thecommunicationsystem.Furthermore,the

useof landmarksarean introductionof a world model,which contradictsthe behavior-

based approach.

Landmarksare not necessarywhen two robots crosseachother'spaths.If the

positionof anotherrobot is known exactly,the other robot cansendus his position in

his coordinate system. By adjusting the received coordinates with his relative position to

us,we cancalculateour position in his coordinatesystem.And we havesynchronized

the two robot's coordinate systems. An example:

Person 1: 'I am 5 km west from my home.'

Person 2: 'I am 3 km south and 200 m north from my home.'

If the two personscanseeeachother,or now the relativepositionof eachother, they

can find each other's home.

But that meansthe robots have to recognizeeachother. The EyeBot body has no

distinctivehue.Therefore,thecameracannotbe usedto detectotherrobots.The other

mainsourceof sensordata,thePSDscannotbeusedto detectrobotseither,astheycan

only return the distances to obstacles.

But thereis oneway to reliably detectotherrobots.Only robotscollide with eachother!

A single robot doesnot collide with walls, the signalsdeliveredby the PSD sensors

arrivein time to avoidthem.However,anotherrobotmovesaswell, andcandoublethe

relativespeedat which the robotsapproacheachother.Furthermore,the robot bodies

areuneven,andthe PSDsensorsdo not alwaysdetectthemin time. The collision and

the resulting closenessof the robots is actually helpful in determiningthe relative
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position to each other. 

To sumit up: whena robot (calledR) collideswith anobstacle,it probablyhit another

robot. R broadcastsa messagecontaining its current position in its own coordinate

systemandits clusterdensity.ThenR waits for responses.If only a singleresponseis

received, the message is probably from the other robot (called S). If no or more than one

responseis received,thecommunicationprocedureis aborted,asR doesnot know with

who it collided. This identification procedureis neededbecauseof the propertiesof

'EyeNet' radio communication system. It is a virtual token ring with explicit

communicationthrougha uniquerobot id, which meanswe haveto alwaysmakesure

that we are indeed communicating with the right robot.

If S has been successfully identified, R and S compare their cluster point densities

and choose the cluster point with the higher density as their common one. Let us assume

that S has the lower cluster density. Then S uses the received coordinates and the known

relativepositionof R to calculateits own positionin R's global coordinatesystem.As

R'sclusterpoint is at the origin of its global coordinatesystem,they havesuccessfully

synchronized their coordinate systems, and have a common cluster point now.

6.2.5 Exploration

The Explorerhasa simple yet effectivebehavioralpattern.The exploring behavioris

active until a cube is found, the robot is stalled, or another robot is detected.

When meetingan obstaclethe robot just turns away from the obstacleuntil all PSD

sensors are free (i.e. the reported distances exceed a certain threshold) again. If the robot

is startedin a corner,or if the robot is surroundedby obstacles,it canhappenthat the

robotgetstrappedandkeepsturning,becausewith no orientationall threePSDsensors

arefree. Then,the obstaclethresholdis slowly decreasedso that the robot can find a

way out. When all sensors are free again, the threshold is set back to its old value.

Therobotstry to avoidtheir own clusterpointsto preventthemfrom disarrangingtheir

cluster.However,the robotssometimesbecomestuckbetweentheir clusterpoint anda

wall if theclusterpoint is closeto thewall. Thesequenceis aboutasfollows: Therobot
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tries to avoid its clusterpoint by turningaway.Thenit detectsthewall andturnsaway

from it, andagaintherobotfacestheclusterpoint. Thecyclestartsall over.To prevent

this, therobotis allowedto crossits clusterpoint whenit is caughtin sucha cycle,even

at the risk that the cluster is disarranged.Undesirablecycles of suchkind are easily

detectedby tracing sequenceswhere two occurrencesof cluster point avoidanceare

separatedby a single occurrenceof obstacleavoidance.In the currentimplementation

sequencesof c-o-c, c-s-o-c, c-o-s-c, or c-s-o-s-c trigger the allowanceto cross the

clusterpoint (c denotesclusterpoint avoidance,o denotesobstacleavoidance,s denotes

straight driving). To simplify the implementationthe robot currently doesnot trace

sequencesof o-c-o,o-s-c-o,o-c-s-o,ando-s-c-s-o.They indicatethe sameundesirable

cycle,only startingwith obstacleavoidanceinsteadof clusterpoint avoidance.We just

accept that one additional redundant turn until the original trigger is activated.

If none of the mentioned cases apply, the robot just drives straight.

6.3 Programming Issues

6.3.1 Singleton Classes

Someclassesneedto initialize underlyinghardwarecomponentsof the robot, or they

needto beaccessedby a numberof differentclasses.Theinitializationsof thehardware

componentsaredonein theclassconstructorsof Drive, PSDs, Camera, andRadio. We

have to make sure that only one instanceof theseclassesare created,as multiple

initializationsandallocationsof thehardwarecomponentswould resultin errors.In the

caseof SIR, all classesthatneedto accessit shouldaccessthesameinstance.Otherwise

severalSIRthreadswould be runningin parallel,a massiveconsumptionof processing

time.

Thesingletondesignpatternasdescribedin [2] canbeusedto solvetheproblem.

The intent of the singletonpattern is to "ensurea classhas only one instance,and

providea global point of accessto it". This is achievedby declaringtheconstructoras

protected.This way, only the classcan createinstancesof itself. Then, the classjust

needsto createa single instanceof itself andprovide a public methodto accessthat

instance. An example:
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6.3.2 The Thread Class

Somemodificationswerenecessaryto makethe Threadclasswork with the RoBIOS

library. First, I will quickly showhow it wasactuallysupposedto look like. ThenI will

explain why and what modifications were necessary.

Theprogramconsistsof up to four threads,asdefinedin thesoftwarearchitecture.The

Threadclasswas designedto (a) makethe useof threadseasierby encapsulatingthe

complexityin a separateclass,and(b) to avoidhavingto rewrite thesamecodefor all

threaded classes, with all disadvantages in modifiability, consistency and

comprehensibility.

The following pseudo-code illustrates how it was initially intended.
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class Drive
{
  public:

//Used to access the single instance of this class
static Drive* getDrive (void);

  protected:
//The constructor, can only be called by this class
Drive();

  private:
//the single instance of this class
static Drive aDrive ;

};
Drive Drive::aDrive;
Drive* Drive::getDrive(void)
{
  return &aDrive;
}
Drive::Drive()
{
  //initializations
  ...
}

void main(void)
{
  Drive* drive = Drive::getDrive();
  //drive is a pointer to the only instance of Drive
  //and can be used to control the robot drive now

}

Code 1. Example of singleton class
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Theexampleaboveshowsthatall thecomplexityin connectionwith multi-threadingis

encapsulatedin theThreadbaseclassalone.Any classthatneedsto bea threadcanjust

inherit from Thread and overwrite the virtual run method with its own code. The

Thread classoffers a small set of simple methods(kill , sleep , ...) to control the

thread.

Unfortunately,somepropertiesof themulti-taskingfunctionsprovidedby theRoBIOS
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class Thread
{
  public:
     // Constructor for Thread
     Thread (char* name, int stackSize , int priority, int id);

// Initializes the thread, returns true if successful
     bool spawn ();

  protected:
//must be overwritten by the inheritor with its own code
virtual void run(void);

};

//We create a threaded class called 'MyThread'. MyThread
inherits all the properties it needs to be a thread from the
'Thread' base class. We just need to overwrite the 'run' method
with our own code

class MyThread : public Thread 
{
  private:

void run(void);
} ;
void MyThread::run(void)
{

//Here we enter the code for MyThread
}

void main(void)
{

//create an instance of MyThread
MyThread myThread (“thread1”, 8192, MAX_PRI, 1);

//initialize the instance
myThread.spawn ();

//now the instance can be used

...

return 0;
}

Code 2. How to create threads (as initially intended)
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library made a few modifications necessary.

1. When initializing a thread, a pointer to a C-function containing the code to be

executed is expected.

2. All threads must be initialized (spawned) in main .

1. I will call a pointer to a standardC function pointer-to-functionand a pointer to a

C++ methodpointer-to-member-function. There is a major differencebetweenthese

two. A method doesnot make sensewithout its associatedinstance.The type of a

pointer-to-functionis different from a pointer-to-member-function.Let us considerthe

function int sum (int a, int b) andthemethodint Algebra::sum(int a, int

b) . Thetypeof thefunctionis int (*) (int, int) , whereasthetypeof themethodis

int (Algebra::*) (int, int) . Fortunately,there is an easyway out. Pointer-to-

static-member-functions are compatible with regular pointer-to-functions [4].

Thatmeansif we declarethe run methodof a threadasstaticwe canpassit to

the RoBIOS library. The problem is that static methodscan only use other static

methodsand variables.The reasonsis that a static method,which is sharedby all

instances,would not know which non-staticmethodor variable to use if there were

multiple instancesof thesameclass.Thus,thestaticpropertywould haveto beapplied

to all used(sub-)methodsand(sub-)variables,andpropagatethroughthe wholeclass

structure.That is why the threads'run methodareleft asnon-staticandstaticwrapper

methodscalled staticRun are used.A pointer to the wrappermethod is passedto

OSSpawn, it doesnothingbut to call run . Attentive readerswill haverealizedby now

that thereis a catchto this solution.If staticmethodscannotcall non-staticones,how

canstaticRun call run ? As aforementionedthe reasonwhy staticmethodcannotuse

non-staticmembersis becauseit is not clearwhich non-staticmemberto useif thereare

multiple instancesof the sameclass.That meansstaticRun needsa pointer to the

instancewhoserun methodis to be called. This pointer is storedin a static member

variable called me.

Accordingto C++ convention,methodscannotbestaticandvirtual at once.In

the initial designrun was declaredas virtual which resultsin dynamicbinding. That

meanstheprogramdeterminesat run-timewhich run methodto use,theoneof Thread

or the one of MyThread . Without the virtual keyword the compiler determinesat

compile-timewhich run methodis used,the oneof Thread . To ensurethat MyThread
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indeedusesits own run method,it is necessaryto overwrite the threadinitialization

method (spawn ) as well. Let us have a look at the final solution.

52



Diplom J. Du 6. Implementation

53

class Thread
{
  public:
     // Constructor for Thread
     Thread (char* name, int stackSize, int priority, int id);

// Initializes the thread, returns true if successful
     bool spawn ();

  protected:
//must be overwritten by the inheritor with its own code
void run(void);

};

class MyThread : public Thread 
{
  public:

//without virtual run methods every thread needs
//its own spawn

 bool spawn(void);

  private:
void run(void);

//static wrapper method for run
static void staticRun(void);

//stores a pointer to an instance of MyThread for staticRun
//initialized in the constructor
static MyThread* me;

} ;
MyThread::MyThread()
{

me = this;
}
void MyThread::run(void)
{

//Here we enter the code for MyThread
}
void MyThread::staticRun(void)
{

me->run();
}

void main(void)
{

//looks exactly the same as in the easy example

//create an instance of MyThread
MyThread myThread(“thread1”, 8192, MAX_PRI, 1);

//initialize the instance
myThread.spawn();

//now the instance can be used

...

return 0;
}

Code 3. How to create threads in the program
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As seenin the example,this final solution is as easyto use as the initial proposal,

though the external framework is a little bit trickier.

2. As all threadmustbe initialized (spawned) in main, the threadsmustbe known in

main.This is partly solvedby creatingglobal threads,asin thecaseof Commanderand

Broadcaster, by usingsingletons,asin thecaseof SIR, or, wheneverpossible,by using

local instances,asin thecaseof UI. Why threedifferentapproaches?Obviously,usinga

local instanceis the bestsolution.But that only works if just main needsaccessto the

thread,as with UI. SIR was designedas singletonin the first place,as a numberof

classesneedto accessit. Therefore,main canusethe built-in mechanismto accessthe

instance.Finally, noneof thementionedcasesapplyto CommanderandBroadcaster, so

we use global instances.

6.3.3 Race Conditions

Like in most multi-threaded programs, we have to deal with inter-thread-

communicationand synchronization.In the currentimplementation,threadinteraction

only takesplacebetweenSIR andthe respectiveactivebehavior.Througha reasoned

implementationof themethodsandvariables, getCubePosition , usedby Pusher, is the

only methodwherea raceconditioncanpossiblyoccur.Thesequence:Pusherreadsthe

x coordinateof a cubeposition.Thena context-switchtakesplace,andSIR updatesthe

cubeposition. Another contextswitch, and Pusherreadsthe y coordinateof the new

cube position. However, this race condition is not critical at all. SIR just keeps

providing betterestimationsof the cubeposition,and steadilyapproachesthe correct

valueswith increasinglysmallerchanges.Thereforethe coordinatesdo not needto be

protected.

6.3.4 Cyclic Dependencies

There is a cyclic dependencybetween the classes Behavior, Commander and

Explorer/Pusher/Avoider/Communicator, aswe canseein the systemarchitecture.This

cycle arises as

(a) the Behavior base class provides access to the commander; thus a behavior can 
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tell the commander that it wants to cede control or wants to sleep for some time;

(b) all behaviors are derived from the Behavior base class;

(c) the commander knows each behavior in order to control it.

The compiler is not able to solve such a dependencyon its own. One of the

classesneedsto becompiledfirst, but eachof themis dependenton theothertwo and,

throughthecoupling,on itself. We haveto breakthe cycle. In this caseit canbe done

using a forward declaration and a special include pattern [3].

TheBehaviorclassdoesnot actuallyneedto know thedetailsof theCommander

class,asit only storesa pointerto one.Pointersarethesame,no matterwhat theypoint

to, thereforewe do not needthedefinition of theclassin orderto storethepointer.That

meansno #include “ Commander.h ” commandis neededin Behavior.h. However,

simply taking it out will result in an error during compilation.So we needto let the

compiler know that there is a Commanderclass.This is donewith by replacingthe

includeline by a so-calledforwarddeclaration- a classdefinition without a body.This

allows us to break the dependency between Behavior.h and Commander.h.

Of course,the implementedbehaviors(Explorer, Avoider...) do needto know the
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Figure 12. Dissolving the cyclic dependency

Behav i or . h

Behav i or . cpp

Commander . h

Commander . cpp

Expl or er . h

Expl or er . cpp

Replaced by forward declaration

Added 

A

B

B includes A

    



Diplom J. Du 6. Implementation

definition of theCommanderclass.That is why Commander.hneedsto beincludedby

them.

6.4 From Real Robots to the Simulator

Generally,mostparametershadto beadapted,asthesimulatorusesdifferent from real

robots, different camera pos, angle, balls instead of cubes.

Whenpushinga cube,therobotusesits inclinedfront PSDsensorto determineif it still

possessesthe cube. The PSD sensorsof the simulated robots cannot be inclined.

Therefore,in the simulation the robots cannotdetectthe loss of a cube.They keep

driving back to their cluster points even if they have lost their cubes.

In the simulator RoBIOS functions may not be called in the class constructors.

ThereforeI hadto introducepublic initialization methodsthat mustbe calledbeforea

class is used.

6.4.1 Multiple Robots on EyeSim

TheEyeSimsimulatoris not ableto simulatemultiple robotswith a programthat uses

global variables.All robotswould sharethe sameglobal variables[6]. Thesameholds

for static variables.So a few modificationsare requiredwhen porting the programto

EyeSim.Fortunately,becauseof theuseof C++, no global variablesareneededfor the

interprocesscommunication.An analysisshowedthat theprogramcontainstwo critical

globalvariablesandninecritical staticvariables.Thetwo globalvariables,oneinstance

of Commanderand one instanceof Broadcaster, are necessarybecausethesetwo

threadsmustbe initialized in main , but theyareusedin a different partof theprogram.

Theninestaticvariablesarethe five instancesof thesingletonclasses(Drive, Camera,

PSDs, Radioand SIR) and the four threads(Broadcaster, Commander, UI and,again,

SIR). More static variablesare usedin the programas messagesfor the interprocess

communication, but those are constant and can be shared.

The solution is quite straightforward.An array is createdfor eachglobal/static

variablethatcannotbeshared.Thearraysizecorrespondsto thenumberof robotsto be
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usedin the simulation.As eachrobot has a unique id, accessibleby OSMachineID ,

everyrobot hasits own instancesof the critical variables.The robot id correspondsto

the array index. If the array size is set to 1, the resulting program is virtually equal to the

original one for real robots.

6.4.2 Stalled Drive Information

Another differencebetweenreal robots and simulatedones is the reliability of the

informationwhetherthewheelsarestalled.Evidently, in thesimulatorthis information

is reliable and instantaneous.When using real robots, this information is not always

reliable.Whenthe robot acceleratesit hasto overcomea certainfrictional force before

it startsmoving. Dependingon the parametersof the drive controller it cantakesome

time until the robot startsmoving.This is oftenwrongly interpretedasa stalledwheel.

Therefore,whenusingrealrobots,acounteris incrementedeachtime therobotreceives

the information that oneof its wheelsis stalled.The robot decidesthat its wheelsare

indeed stalled only if the counter exceeds a certain limit.
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//Example for global variables :

//creation of a global array of commanders
Commander g_commander[NUMBER_OF_ROBOTS];

//later each robot initializes and uses its own commander
g_commander[OSMachineID()].initialize();

//Example for static variables:

//creation of a static array of drives
Drive Drive::drives[NUMBER_OF_ROBOTS];

//later each robot gets and uses only its own instance
return &drives[OSMachineID()];

Code 4. Arrays for all global/static variables in EyeSim
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7. Testing

Real-environmenttestingwasperformedat theMobile RobotLab usingEyeBots,cubes

and a plane as specified in the system requirements specification.

The testscoveredonly the main functionality. Testsof the overall system,sub-system

testson behaviorlevel (i.e. complianceof the behaviorswith the systemmodel),and

testsof critical components(cubedetectionanddensityestimation)wereperformed.A

major advantageof the behavior-basedapproach is that the behaviors can be

implementedandtestedindependentlyfrom eachother.Generally,classesof the robot

packagewerenot testedastheir main task is just to passcommandsto the underlying

robot library functions. Errors in theseclasseswere quickly revealedwhen testing

componentsof the clustering package. Moreover, the robots are designed for

robustness,which meanssmall deviations(e.g.of the sensorreadings)shouldhaveno

major impact on the overall behavior.

All tests were passed to our satisfaction. See the test protocol for details.
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8. Evaluation and Future Work

The implementedcube detectionalgorithm is reliable and fast. It seemsto perform

betterthantheoriginal algorithmof Birgit Graf, on which my implementationis based.

I assumeonereasonis that I specifiedthe hue to be detectedmoreaccurately.When

experimentingwith Birgit Graf'sprogramI realizedthatthehueshespecifiedwasabout

10 huesoff the optimal one.Secondly,I modified the conversionfrom RGB to HSV

such that the result 'no hue' occurs considerably less often.

Worth improving is the calculationof the distancesof detectedcubesfrom the

robot. At present,three tablesare usedfor this conversion.However,with the right

calibration, two tables should be sufficient.

In a few casesa robot hascollided with a wall becauseit thought therewas enough

space.As aforementionedthePSDreadingsaretoo highwhenarobot is closeto a wall.

However, this problem is not critical as the robot quickly frees itself.

In the currentimplementationthe robotshavetroubleto clustercubesthat arecloseto

walls. It might be useful to re-designthe approachingand pushingbehaviorsuchthat

cubes close to walls can also be collected.

Due to time constraintsthe communicationby broadcastingwasnot implemented.As

arguedbefore,with a global startingpoint, the robotscould just pushall cubesto that

location. There would be no need for communicationat all. Communicationby

broadcastingwas intendedas an evolutionary step towards the final solution, local

communication. However, I implemented the one-on-one communication directly.

Testswereperformedto verify the complianceof the systembehaviorwith thesystem

model. The clustering terminated successfullyin most cases,and scalability and

robustnessof the systemcould be demonstrated.However,moreadvancedtestscould

be performed,for exampleto comparethe efficiency of swarmclusteringsystemsand

single-robot systems, to determine the optimal robot density for a given area, and so on.

Currently,the robotscan only clustercubeson emptyplanes.The robotsassumethat
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theydo not needto avoidwalls, only otherrobots.Oncea robothasa cube,it headsfor

its clusterpoint in a direct curve.If therobothit a wall, it would losethe cube,andthe

robotwould not beableto retrievethatcube.Theprogramcouldbeextendedsuchthat

therobotswould ableto clustercubesin morecomplexoperationalareas.For example

the floor of an office building could be recreated.That would be an excellentexample

of how multi-robot systems could be used for garbage collection.
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9. Conclusion

In this thesisI presentedtheswarmclusteringalgorithmI developed.Thealgorithmwas

implementedfor bothreal robotsanda simulator.Softwareengineeringprincipleswere

observed throughout the project.

For the algorithmI designeda versatileframeworkfor behavior-basedcontrol. I

implementedfour behaviors:exploration,avoidance,pushingandcommunication.The

robots use only local sensorsand on-board image processing.A reliable image

recognitionmethod(for the cubesto be clustered)was implemented.Furthermore,an

inter-robot communicationsystem was incorporated. It is used to speed up the

determinationof a commonclusterpoint by synchronizingthecoordinatesystems,and

thus the cluster points, of robots that meet each other.

First experimentsshowedthe robustnessand flexibility of the developedswarm

clusteringalgorithm.The robotscould be startedfrom any position in the operational

area.And robots could be addedor removedduring operation.The algorithm still

terminated successfully.

To the best of my knowledge, this is the first image processing-basedcollective

clustering algorithm with communication.

The resultsof this project will be presentedat the AMiRE 2003 (Autonomous

Mini-robots in Research and Edutainment) conference in Brisbane, Australia.
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Figure 13. Clustering with EyeBots
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Figure 14. Clustering on the EyeSim simulator
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Figure Sources

Figure 1. The EyeBot

Photo of EyeBot from Christoph Braunschädel, Department of Electrical 
and Electronic Engineering, University of Western Australia, Perth, 2002

Figure 3. Schematic illustration of a model-based robot control system

Reproduced from [9]

Figure 4. Schematic illustration of a behavior-based robot

Reproduced from [9]

Figure 5. Multi-robot systems in research

Reproduced from [7]

Figure 6. Types of collective robotics

Reproduced from [7]

Figure 7. The HSV cone

Source: Computer Science Educational Lab, University of Colorado at 
Boulder, USA, Available from
http://www-ugrad.cs.colorado.edu/~csci4576/Figures/hsv.gif

Figure 8. The RGB cube

Source: CVonline: The Evolving, Distributed, Non-Proprietary, On-Line 
Compendium of Computer Vision, School of Informatics,University of 
Edinburgh, Available from
http://  www.dai.ed.ac.uk  /  CVonline  /LOCAL_COPIES/OWENS/LECT14/  rgb.gif  

Figure 10. Height in camera image corresponds to distance

Reproduced from [1]
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Appendix A – Used Software

The softwarewas developedon a Linux-basedPC systemusing the modified GNU

C/C++compilerfor EyeBots.Thesystemmodel,theclassdiagrams,andthecodestubs

were createdwith Rational Rose. Doxygen was used for code documentation.All

documentswerecreatedwith OpenOffice.For detailson the usedsoftwarepleasesee

the system requirements specification.
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