
A Practical Comparison of Robot Path Planning

Algorithms given only Local Information

James Ng

Supervisor: Associate Professor Thomas Bräunl

Centre for Intelligent Information Processing Systems

School of Electrical and Electronic Engineering

The University of Western Australia

 2

Acknowledgements

First and foremost, I would like to thank Thomas Bräunl for his support, guidance and

direction both before and during this project. Given my honours result and the first

programming test, I was definitely not the most ideal postgraduate student. However,

Thomas has given me a second chance and I am most grateful for that. During the project,

Thomas has always provided frank assessments, constructive feedback and criticisms of the

more controversial results, all of which are greatly appreciated.

I would also like to thank Gary Bundell for extending the PhD scholarship by 6 months

which allowed this project to be covered. I am also grateful for the second chance he has

given me.

I would also like to my family for their support and advice this year, especially during

times of crisis.

Abstract

This thesis compares and analyses the practical aspects of path-planning and navigation

algorithms for autonomous robots. The algorithms bug1, bug2, alg1, alg2, distbug,

tangentbug and D* were implemented and simulated on the EyeSim simulator. For each

algorithm, data was gathered about its relative complexity, memory requirements, path

length, rotation, computation time and robustness against error.

Subsequent analysis shows that tangentbug and D* produce the shortest path length and

lowest rotation. Surprisingly, tangentbug and D* also had very low average total

computation times and D* was the most inexpensive algorithm on enclosed and open maps.

D* was also the most robust algorithm due to its segmentation. Conversely, Bug1 and

Bug2 were the simplest, required the least amount of memory and were very competitive

on total computation time.

 3

Overall, if a cheap, computationally inexpensive, low memory and simple solution is

required, bug1 is recommended on enclosed maps otherwise bug2 should be chosen. If fast

convergence, robustness and low computation time are desired attributes, D* should be

chosen unless the map involves a local minimum. In that case, tangentbug should be

chosen. If a compromise is sought, alg2 should be chosen on enclosed maps, otherwise

pick distbug.

 4

 Table of Contents

1. Introduction……………………………………………………………………………… 6

2. Objective………………………………………………………………………………… 7

3. Convergent Algorithms………………………………………………………………….. 9

 3.1 The Bug1 Algorithm…………………………………………………………...10

 3.2 The Bug2 Algorithm…………………………………………………………...11

 3.3 The Alg1 Algorithm……………………………………………………………12

 3.4 The Alg2 Algorithm……………………………………………………………14

 3.5 The Distbug Algorithm………………………………………………………...16

 3.6 The Tangentbug Algorithm…………………………………………………….17

 3.7 The D* Algorithm ……………………………………………………………...21

4. Algorithm Implementation………………………………………………………………27

 4.1 Common Modules……………………………………………………………...27

 4.2 Bug1 Implementation…………………………………………………………..32

 4.3 Bug2 Implementation…………………………………………………………..34

 4.4 Alg1 Implementation…………………………………………………………..35

 4.5 Alg2 Implementation…………………………………………………………..38

 4.6 Distbug Implementation………………………………………………………..38

 4.7 Tangentbug Implementation…………………………………………………...38

 4.8 D* Implementation…………………………………………………………….45

 4.9 Implementation Issues…………………………………………………………50

5. Simulations……………………………………………………………………………...56

 5.1 Measuring Attributes…………………………………………………………..56

 5.2 Simulation Maps……………………………………………………………….57

 5.3 Floor Generator………………………………………………………………...60

6. Results and Discussion…………………………………………………………………..61

 6.1 Convergence Verification……………………………………………………...61

 6.2 Path Length…………………………………………………………………….69

 6.3 Rotation………………………………………………………………………...72

 6.4 Average Computation Time……………………………………………………75

 5

 6.5 Robustness……………………………………………………………………...80

 6.6 Complexity……………………………………………………………………..83

 6.7 Memory Requirements…………………………………………………………84

7. Conclusion……………………………………………………………………………….85

8. Future Improvements……………………………………………………………………88

 8.1 Segmentation of the bug algorithms…………………………………………...88

 8.2 Localisation…………………………………………………………………….88

 8.3 D* improvements………………………………………………………………88

 8.4 Robot Learning…………………………………………………………………89

 8.5 Fault Tolerance…………………………………………………………………89

 8.6 Tangentbug improvement……………………………………………………...89

 8.7 Map Classification……………………………………………………………..90

9. Appendix………………………………………………………………………………...91

 9.1 Bug1 Results…………………………………………………………………...91

 9.2 Bug2 Results…………………………………………………………………...92

 9.3 Alg1 Results……………………………………………………………………93

 9.4 Alg2 Results……………………………………………………………………94

 9.5 Distbug Results………………………………………………………………...95

 9.6 Tangentbug Results…………………………………………………………….96

 9.7 D* Results……………………………………………………………………...97

10. References……………………………………………………………………………..99

 6

1. Introduction

Imagine driving to work, walking to a colleague’s office or simply taking a walk along the

beach. This appears easy because humans navigate subconsciously, taking for granted their

navigation abilities. However, writing a formal navigation procedure to replicate this is

not easy.

It is envisaged that robots will someday replace human labour in menial tasks such as

cleaning and driving [1]. Robocup has an ambitious goal that by 2050 a team of robot

soccer players will defeat the human FIFA world champions [2]. These ambitious tasks all

rely on successful navigation to move around in the real world. Therefore, successful

navigation is a fundamental requirement for autonomous, independent robots.

This thesis examines several navigation algorithms using the EyeSim simulator. Whilst

acknowledging the theory, the emphasis is on the practical aspects. In particular,

implementation issues will be discussed and observable results used to draw key

conclusions about the algorithm’s practical usability.

Firstly, the objective is presented and the algorithms are introduced. Secondly, the

implementation of each algorithm is discussed along with implementation problems

encountered. Thirdly, results and analysis are presented for experiments conducted.

 7

2. Objective

A 2-dimensional environment is set with a start and a goal. A finite number of arbitrarily

shaped obstacles, each of finite area, are then placed in the environment. These obstacles

cannot overlap the start or goal. The robot starts at the start and its objective is to find an

obstacle-free, continuous path from start to the goal. Figure 2-1 shows sample

environments with the green tile marking the start and the red tile marking the goal.

Figure 2-1 Sample navigation environments

Initially, the robot is only given the direction and distance of the goal. No knowledge about

the map is given prior to starting. The robot is equipped with Position Sensitive Devices

(PSDs) which return the distance to the nearest obstacle in its pointed direction. The robot

is modeled as a point object with no size and is able to travel through gaps of any size.

A successful algorithm needs to be convergent as a prerequisite. That is, it needs to find a

path to the goal if such a path exists. If no such path exists, it must stop and inform the user

that the target is unreachable. If an algorithm is convergent, it is then assessed on the

following attributes:

 8

• Path Length. The distance of the path from start to finish. This should be as short

as possible.

• Computation time. The algorithm’s total execution time excluding time spent

driving. This should be as short as possible and is driven by the following sub-

attributes:
o Number of calls to the math-library. A factor which affects computation

time is the number of calls to the math library.
o Computation time per metre traveled. Algorithms which have a short path

length carry this advantage into computation time calculations. Calculating

computation time per metre traveled removes this advantage.

• Rotation. The amount of turning which is performed along the path from start to

finish. This should be as low as possible.

• Inherent rotation. Some rotation is hardware dependant and this is filtered out in

this measurement.

• Robustness. The algorithm’s ability to tolerate PSD error, linear driving error and

rotational driving error. This should be as high as possible.

• Memory requirements. The amount of global memory reserved by the algorithm.

This should be as low as possible.

• Simplicity. This is measured by the lines of code required for implementation.

This should be as low as possible.

Attribute measurements are taken from the simulator or the source code. However, the

algorithm implementation will undoubtedly influence the measurements. Therefore, it is

imperative that the implementation be understood before the measurements can be used to

draw general conclusions.

 9

3. Convergent Algorithms

This section introduces algorithms which were implemented and simulated. All algorithms

are proven convergent in their respective papers. Firstly, it is convenient to introduce

notation common to all bug algorithms. These are:

• Hi – the ith hit point. This is the first point of contact between the robot and the ith

obstacle.

• Li – the ith leave point. This is the point at which the robot leaves the ith obstacle.

• S – the starting position.

• T – the goal position. Also called the target or finish.

• x – the robot’s current position.

• d(a, b) – the Euclidean distance between arbitrary points a and b.

• dpath(a, b) – the robot’s path length between arbitrary points a and b.

• r – the maximum range of the PSD sensors.

•)(θr – the free-space in a given direction θ . This is the distance between the robot

and the first visible obstacle in the directionθ .

• F – the free-space in the target’s direction. It should be noted that F =)(θr where

θ is the target’s direction.

 10

3.1 The Bug1 Algorithm

The bug1 algorithm was the first bug algorithm created by Lumelsky and Stepanov in 1986

[3]. Bug1’s statechart diagram is depicted in Figure 3-1 and it works as follows:

0) Initialize variable i to 0

1) Increment i and move toward the target until one of the following occurs:

• The target is reached. Stop

• An obstacle is encountered. Label this point Hi and proceed to step 2.

2) Keeping the obstacle on the right, follow the obstacle boundary. Whilst doing so,

record the point where d(x,T) is minimal. Label this point Li. Do this until one of the

following occurs:

• Point Hi is reached. Go to Step 3.

• The target is reached. Stop

3) Test whether the target is reachable. To do this, check if Hi = Li. If so, the target is

unreachable. Stop. Otherwise, choose the wall-following direction which minimises

dpath(Hi, Li) and maneuver to Li. At Li , proceed to step 1.

Figure 3-1 Bug1’s statechart diagram

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

entry/ Record hit point
do/ Check if robot at hit point
do/ Update closest point to target, label as leave point
do/ Check for target reached

Target Reached

Call from main / Initialize timers, driving

Target Unreachable

Target Unreachable[hit point same as leave point] / End timers, display stats

Target Reached / End timers, display stats

Leave the wall[hit point not same as leave point] / drive from hit point to leave point

Target Reached / End timers, display stats

Wall reached

 11

3.2 The Bug2 Algorithm

The bug2 algorithm was also created by Lumelsky and Stepanov in 1986 [3]. It is less

conservative than bug1 because it introduces a new concept called the M line. Bug2’s

statechart diagram is depicted in Figure 3-2 and it works as follows:

0) Initially, plot an imaginary line, M, directly from start to target and initialise i to 0.

1) Increment i and follow the M line towards the target until either:

• The target is reached. Stop

• An obstacle is hit. Label this point Hi. Go to step 2

2) Keeping the obstacle on the right, follow the obstacle boundary. Do this until either:

• A point along M is found such that d(x, T) < d(Hi, T). Label this point Li. Go to step

1.

• The target is reached. Stop.

• The robot returns to Hi. The target is unreachable. Stop.

Figure 3-2 Bug2’s statechart diagram

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

do/ Check if current hit point reached
do/ Check if M line reached
do/ Check for target reached
do/ Check if at previous hit or leave point

Target Reached Target Unreachable

Call from main / Initialize timers, driving

Wall reached / Record hit point

Robot on M line[closest] / Record leave point

Target Reached / End timers, display stats

Target Reached / End timers, display stats

Robot at current hit point

 12

3.3 The Alg1 algorithm

The Alg1 algorithm is an extension of the Bug2 algorithm invented by Sankaranarayanan

and Vidyasagar in 1990 [4]. Bug2’s vulnerability is that it can trace the same path twice.

To avoid this, Alg1 remembers previous hit and leave points and uses them to generate

shorter paths. Alg1’s statechart diagram is depicted in Figure 3-3 and it works as follows:

0) Initially, plot an imaginary line M directly from start to target and initialize i to 0.

1) Increment i and follow the M line toward the target until either:

• The target is reached. Stop

• An obstacle is hit. Define this point Hi. Go to step 2

2) Keeping the obstacle on the right, follow the obstacle boundary. Do this until one of the

following occurs:

• The target is reached. Stop.

• A point y is found such that

o it is on M

o d(y, T) < d(x, T) for all x ever visited by the robot along M and

o The robot can move towards the target at y.

Define this point Li and go to step 1.

• A previously defined point Hj or Lj is encountered such that j<i. Turn around and

return to Hi. When Hi is reached, follow the obstacle boundary keeping the wall on

the left. This rule cannot be applied again until Li is defined.

• The robot returns to Hi. The target is unreachable. Stop

 13

Figure 3-3 Alg1’s statechart diagram

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

do/ Check if current hit point reached
do/ Check if M line reached
do/ Check for target reached
do/ Check if at previous hit or leave point

Target Reached Target Unreachable

Call from main / Initialize timers, driving

Follow the Wall - opposite
direction

do/ Check if target reached
do/ Check if M line reached
do/ Check if at current hit point

Wall reached / Record hit point

Target Reached / End timers, display stats Robot at current hit point

Robot on M line[freespace, closest] / Record leave point

Robot on M line[freespace, closest] / Record leave point

Target Reached / End timers, display stats

Robot at current hit point

Robot at previous hit or leave point / Turn and return to current hit point

 14

3.4 The Alg2 algorithm

The Alg2 algorithm is an improvement from the Alg1 algorithm invented by

Sankaranarayanan and Vidyasagar in 1990 [5]. The robot abandons the M-line concept and

a new leaving condition is introduced. Alg2’s statechart diagram is depicted in Figure 3-4

and it works as follows:

0) Initialise Q = d(S, T) and i to 0.

1) Increment i and proceed in the direction of the target whilst continuously updating Q to

d(x, T) if Q < d(x, T). Q should now represent the closest the robot has ever been to the

target. Do this until one of the following occurs:

• The target is reached. Stop

• An obstacle is encountered. Label this point Hi and proceed to step 2.

2) Keeping the obstacle on the right, follow the obstacle boundary whilst continuously

updating Q to d(x, T) if Q < d(x, T) until one of the following occurs:

• The target is reached. Stop

• A point y is found such

o that y < Q

o The robot can move towards the target at y.

Define this point Li and proceed to step 1.

• A previously defined point Hj or Lj is encountered such that j<i. Return to Hi.

When Hi is reached, follow the obstacle boundary keeping the wall on the left. This

rule cannot be applied again until Li is defined.

• The robot returns to Hi. The target is unreachable. Stop.

 15

Figure 3-4 Alg2’s statechart diagram

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

do/ Check if current hit point reached
do/ Check if closest to target than ever previously visited
do/ Check for target reached
do/ Check if at previous hit or leave point

Target Reached Target Unreachable

Follow the Wall - opposite direction

do/ Check if target reached
do/ Check if closest to target than ever previously visited
do/ Check if at current hit point

Call from main / Initialize timers, driving

Wall reached / Record hit point

Robot is closest to target[freespace] / Record leave point

Target Reached / End timers, display stats

Target Reached / End timers, display stats

Robot at current hit point
Robot at current hit point

Robot at previous hit or leave point / Turn and return to current hit point

Robot is closest to target[freespace] / Record leave point

 16

3.5 The Distbug algorithm

The distbug algorithm was invented by Kamon and Rivlin in 1997 [6]. It is very similar to

the Alg2 algorithm because it has a near identical leaving condition, with just a small,

subtle difference. See section 7.2 for more details. The only real difference is that distbug

does not maintain a list of previous points whereas Alg2 does. Distbug’s statechart

diagram is depicted in Figure 3-5 and it works as follows:

0) Initialise i=0 and Step to the wall thickness.

1) Increment i and move toward the target until one of the following occurs:

• The target is reached. Stop.

• An obstacle is reached. Denote this point Hi. Go to step 2.

2) Turn left and follow the obstacle boundary whilst continuously updating the minimum

value of d(x, T) and denote this value)(min Td .

Keep doing this until one of the following occurs:

• The target is visible: 0),(≤− FTxd . Denote this point Li. Go to step 1.

• The range based leaving condition holds: StepTdFTxd −≤−)(),(min . Denote this

point Li. Go to step 1.

• The robot completed a loop and reached Hi. The target is unreachable. Stop.

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

do/ update closest distance to target - dmin(T)
do/ update freespace in target direction - F
do/ update current distance to target - d(x,T)

Target Reached Target Unreachable

Call from main / Initialize timers, driving and STEP

Wall reached

Target Visible or Range-based leaving condition holds

Target Reached / End timers, display stats

Target Reached / End timers, display stats

Robot at current hit point

Figure 3-5 Distbug’s statechart diagram

 17

3.6 The tangentbug algorithm

The tangentbug algorithm was invented by Kamon, Rivlin and Rimon in 1995 [7]. Since

then, tangentbug has been recognised as an algorithm which produces very short paths

given purely local information [8].

3.6.1 The Global Tangent Graph

To understand how tangentbug works, consider the environment depicted in figure 3-6(a).

Next, consider the convex vertices of all the obstacles which are circled orange in figure

3-6(b). Then, join each pair of non-obstructed vertices and include the start and target. The

result is the global tangent graph and this is depicted in figure 3-6(c). It has been shown

that the global tangent graph always contains the optimal path from start to finish [9]. As

expected, figure 3-6(d) shows the optimal path for this particular map.

3.6.2 The Local Tangent Graph

However, the robot does not have global knowledge and tangentbug compensates by

generating the local tangent graph (LTG). A sample LTG graph is shown in figure 3-7.

The LTG is generated by firstly gathering data for the function)(θr and F.)(θr returns

the distance to the first visible obstacle in a given direction θ . Then,)(θr is processed

according to the following rules:

• If 0),(≤− FTXd , the target is visible. Create a node, called T-node, on the target.

• If rF ≥ , there are no visible obstacles in the target’s direction. Create a T-node in

the target’s direction. This is illustrated by the T-node in figure 3-7.

• Check the function)(θr for discontinuities. If a discontinuity is detected, create a

node inθ ’s direction. This is illustrated by nodes 1, 2, 3 and 4 in figure 3-7.

• If)(θr = r (the maximum PSD range) and)(θr subsequently decreases create a

node inθ ’s direction. This is illustrated by node 5 in figure 3-7. Similarly, if

rr ≠)(θ , and)(θr subsequently increases such that)(θr = r, create a node in θ ’s

direction.

 18

Figure 3-6 (a) Top Left. The environment. (b) Top Right. All convex vertices are

circled. (c) Bottom Left. The global tangent graph. (d) Bottom Right. The optimal

path.

After identifying the nodes, the optimal direction and distance is determined using the

following procedure:

• For each node, evaluate the distance d(Ni, T), where Ni is the ith node.

• The node with the lowest d(Ni, T) is labeled the optimal node, N*.

The robot should proceed to N* whilst continuously updating the local tangent graph and

proceeding to the most recent N*. In figure 3-7, N* is the T-node since the T-node is

closest to the target.

 19

Figure 3-7 The local tangent graph

3.6.3 Local Minimums

Figure 3-8 shows that sometimes the robot must travel away from the target in order to

reach it. This is defined as a local minimum. When this happens, tangentbug goes into

wall-following mode. This involves choosing a wall following direction and following the

wall using the LTG. Whilst following the wall, tangentbug continuously updates two

variables:

• dfollowed(T) - This variable records the minimum distance to the target along the

minimum-causing obstacle.

• dreach(T) – Each step, tangentbug scans the visibile environment and for a point P, at

which d(P,T) is minimal. dreach(T) is then assigned to d(P,T) .

The wall-following mode persists until one of the following occurs:

• dreach(T) < dfollowed(T).

 20

• The robot has encircled the minimum-causing obstacle. The target is unreachable.

Stop.

Figure 3-8 The robot in a local minimum

The tangentbug algorithm can be summarised in figure 3-9.

Drive to Target

do/ generate LTG
do/ Travel to optimal node

Follow the Wall

entry/ Initialize dfollowed
do/ Update dfollowed

Target Reached Target Unreachable

Call from main / Initialize timers and driving

Robot observes a point closer to the target than dfollowed

Robot has encircled followed obstacle

In minimum

Target Reached / End timers, display stats

Figure 3-9 Tangentbug’s statechart diagram

 21

3.7 The D* algorithm

The D* algorithm was invented by Stentz in 1994 [10]. Since its invention it has been

successfully implemented on real world projects with very satisfactory results [8]. Along

with tangentbug, D* is acknowledged as producing very short paths given purely local

information [8].

The D* algorithm is very different from the bug algorithms. It is a brute force algorithm

which has some unique and interesting properties. It segments the map into discrete areas

called cells. Each cell has a backpointer, representing the optimal traveling direction in the

cell’s area, and costs for traveling to neighbouring cells.

The formal low-level algorithm can be found in the source code and those details can be

found in Stentz’s paper [10]. A more abstract, higher-level example is presented in 3.7.1

and 3.7.2

3.7.1 Generating an optimal path

D* is best explained by example. Let the goal be cell (5,3) and the robot’s initial position

at (1,3) as depicted in figure 3-10(a). Let the traveling cost be 1 when traveling

horizontally or vertically and 2 when traveling diagonally.

Then, D* generates table 3-1 for cells surrounding G:

Position

(1)

Nearest cell with

backpointer or Goal (2)

Cost from (1)

to (2)

Cost from (2) to G Total cost

(5,4) G 1 0 1

(5,2) G 1 0 1

(4,3) G 1 0 1

(4,2) G 1.414 0 1.414

(4,4) G 1.414 0 1.414

Table 3-1. The first table generated in the D* algorithm.

 22

Table 3-1 shows that cells (5,4), (5,2) and (4,3) have the lowest total cost. Those cells set

their backpointers towards the goal as depicted in figure 3-10(b). Then, the neighbours of

G, (5,4), (5,2) and (4,3) are considered for the total minimum cost to goal in table 3-2:

Position

(1)

Nearest cell with

backpointer or Goal (2)

Cost from (1) to (2) Cost from (2) to G Total

Cost

(4,4) G 1.414 0 1.414

(4,2) G 1.414 0 1.414

(3,3) (4,3) 1 1 2

(5,1) (5,2) 1 1 2

(5,5) (5,4) 1 1 2

(3,2) (4,3) 1.414 1 2.414

(4,5) (5,4) 1.414 1 2.414

(4,1) (5,2) 1.414 1 2.414

(3,4) (4,3) 1.414 1 2.414

Table 3-2. The second table generated by D*

Table 3-2 shows that cells (4,4) and (4,2) have the lowest total cost. Those cells set their

backpointers towards the goal position and the grid is depicted in figure 3-10(c).

This process keeps repeats itself until the robot’s position contains a backpointer or the

whole grid is filled. If a cell contains a backpointer, it represents the least cost traveling

direction to goal. Figure 3-10(d) shows the 5x5 grid with G and backpointers leading to G.

As can be verified, following any given backpointer trail will produce a path of least cost.

This process is how D* generates optimal paths.

 23

Figure 3-10. (a) Top left. The initial grid. (b) Top right. The grid after data from

table 3-1 is entered. (c) Bottom left. The grid after data from table 3-2 is entered. (d)

Bottom right. The final grid.

3.7.2 Accounting for Obstacles

D* represents obstacles by largely increasing cost to travel to, but not from, obstacle cells.

That is, if an obstacle exists on a cell O, the travel cost from O’s neighbour cells to O

becomes some large predefined value. Figure 3-11(a) shows that an obstacle at (3,3) has

been detected. The arcs shown lead to the obstacle cell and their associated cost becomes

very large.

Once travel costs are modified, D* recomputes the cell backpointers to ensure they are still

optimal. D* does this by firstly considering cells which have a backpointer to cell (3,3). It

generates table 3-3:

 24

Position

(1)

Nearest cell with

backpointer or Goal (2)

Cost from (1) to (2) Cost from (2) to G Total

Cost

(2,2) (3,2) 1 2.414 3.414

(2,4) (3,4) 1 2.414 3.414

(2,3) (3,4) 1.414 2.414 3.828

Table 3-3. The first table drawn after an obstacle was detected at (3,3).

Table 3-3 shows that cells (2,2) and (2,4) have a new minimum cost and change their

backpointers to the cell specified in column 2. The updated grid is shown in figure

3-11(b). D* repeats this process again and generates table 3-4.

Position

(1)

Nearest cell with

backpointer or Goal (2)

Cost from (1) to (2) Cost from (2) to G Total

Cost

(2,3) (3,4) 1.414 2.414 3.828

(2,1) (3,2) 1.414 2.414 3.828

(2,5) (3,4) 1.414 2.414 3.828

(1,4) (2,4) 1 3.414 4.414

(1,2) (2,2) 1 3.414 4.414

(1,3) (S) (2,2) 1.414 3.414 4.828

(1,5) (2,4) 1.414 3.414 4.828

(1,1) (2,2) 1.414 3.414 4.828

Table 3-4. The second table drawn after an obstacle was detected at (3,3)

Table 3-4 shows that cells (2,3), (2,1) and (2,5) change their backpointers so that their costs

to goal are minimised. Hence, the updated grid is shown in figure 3-11(c).

D* repeats this process until the minimum total cost in the generated table is greater or

equal to the robot’s cost to goal following its current backpointer trail. Once this occurs, it

signals that further computation will not yield less costly paths than the current path.

Following the example, table 3-5 is computed:

 25

Position

(1)

Nearest cell with

backpointer or Goal (2)

Cost from (1) to (2) Cost from (2) to G Total

Cost

(1,2) (2,2) 1 3.414 4.414

(1,4) (2,4) 1 3.414 4.414

(1,3) (S) (2,3) 1 3.828 4.828

(1,5) (2,4) 1.414 3.414 4.828

(1,1) (2,2) 1.414 3.414 4.828

Table 3-5. The third table drawn after an obstacle was detected at (3,3)

The terminating condition holds in table 3-6, and figure 3-11(d) shows the final grid.

Position

(1)

Nearest cell with

backpointer or Goal (2)

Cost from (1) to (2) Cost from (2) to G Total

Cost

(1,3) (S) (2,3) 1 3.828 4.828

(1,5) (2,4) 1.414 3.414 4.828

(1,1) (2,2) 1.414 3.414 4.828

Table 3-6. The forth table drawn after an obstacle was detected at (3,3)

Note that cell (2,3) does not point backwards towards the start, unlike the force-field

heuristic technique! D* maintains optimality and avoids getting stuck in local minimums

which have troubled similar techniques [9]. However, as will be shown later, this comes at

the cost of computation time.

In D*, cost modification can be done at any time. This allows the algorithm to dynamically

adapt to unseen obstacles and generate new optimal paths. D*’s costing mechanism also

allows for terrain which is undesirable, but not necessarily an obstacle. This is far better

than the bug algorithms where the terrain is either traversable or an obstacle.

3.7.3 Determining reachability

Unreachability is determined by comparing the backpointer trail’s cost to the large

threshold value of obstacles. If the backpointer trail’s cost is greater than the threshold

value, it implies that the optimal path crosses an obstacle and therefore the target is

 26

unreachable. Of course, the large threshold value should be chosen such that the cost of

any sequence of backpointers which do not cross an obstacle will never exceed the large

threshold value.

Figure 3-11. (a) Top left. An obstacle cell is identified in position (3,3). (b) Top right.

The grid after data from table 3-3 is entered. (c) Bottom left. The grid after data

from table 3-4 is entered. (d) Bottom right. The grid after data from table 3-6 is

entered. Once again, backpointers now represent optimal traveling directions.

 27

4. Algorithm Implementation

4.1 Common Modules
Typically, an algorithm is implemented in the navigation class and calls the common

modules. Common modules are used for consistency between simulations and modularity.

For instance, all navigation algorithms require completion time to be measured and the

timer module provides methods specifically for that purpose. Figure 4-1 shows the

common modules and the navigation module which can be altered for implementing a

specific algorithm.

Smart Moving

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
face_target()
face_original()
orientate_to_wall(PositionType* coords)
drive_to_point(float distance, float direction)

User Interface
targ_dire : Integer
targ_dist : Double
g_r : Integer
g_c : Integer

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer
deg_to_rad() : Double
generate_targ_coords()

Helper
pos : PositionType
targ : PositionType
targ_dire : float
targ_dist : float

get_dist(PositionType* a, PositionType* b) : float
deg_to_rad(int degrees) : float
rad_range(float x) : float
pol_to_rect(float r, int theta, PositionType* ans) : PositionType
get_targ_dist() : float
get_targ_dire() : float
get_rel_targ_dire() : float
get_rel_dire(PositionType* p) : float

Driving
total_dist : float
total_turn : float

initialize_driving()
get_total_dist() : float
get_total_turn() : float
turn(float rads, bool record)
drive(float distance)
curve(float rads, float distance)

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

Navigation

main()

Figure 4-1 The class diagram of the common modules.

4.1.1 The timer module

This module’s function is to measure the algorithm’s time performance. In particular, it

measures computation and driving time and returns these times upon request. Although

driving time is not measured in this study, it may be needed in future.

 28

The timer module fulfills its role by providing an abstract interface to the c function

clock(). The clock() function returns the time (in milliseconds) spent in the processor of the

calling process since execution began. Note that the clock() does not include the time

which the thread is sleeping.

4.1.2 The helper module

The helper module provides low-level support to other modules. In particular, the robot

can get the target’s distance and direction by calling methods found in the helper module.

Currently, the helper module relies on dead-reckoning to generate answers. In a future

version, if landmark recognition or sensor networks are used, these functions can be

changed and the rest of the system need not know.

4.1.3 The user interface module

The user interface module’s role is to interface between the program and the user. When

the program starts, it allows the user to edit the desired direction and distance of the goal.

Figure 4-2(a) shows the screen which allows the user to edit the distance to goal and figure

4-2(b) shows the screen which allows the user to edit the direction to goal.

Figure 4-2 (a) Left. The user can edit the distance to goal. (b) Right. The user can

edit the direction to goal.

The user interface module also displays the navigation results to the user. Figure 4-3 shows

the screens which appear when convergence is achieved. Figure 4-3(a) shows computation

and driving time, in milliseconds. Figure 4-3(b) shows distance traveled in metres and the

rotation in radians. Figure 4-3(c) shows the number of calls to the math library or process-

state() if D* is run.

 29

Figure 4-3 (a) Left. Computation and driving times. (b) Centre. Total distance

traveled and total rotation performed. (c) Right. Calls to the maths library or

process-state() in D*.

4.1.4 The driving module

The driving module’s purpose is to record the total distance traveled and the total rotation

performed. Essentially, it provides a simpler interface to the VW driving interface and

extends functionality by tracking total distance and rotation.

It allows the caller to specify whether it wishes to record a turning request in total_turn. As

will be seen later, some turning is not inherently generated by the algorithm. Instead, it is

hardware dependant and it may be interesting to remove this component from rotation

results.

The driving module calls the timer module so that driving time is properly separated from

computation time. Figure 4-4 shows the drive function in the driving module. It calls

end_think_start_drive() to denote that driving has started and then end_drive_start_think()

to denote that driving has ended. Note that during driving, VWDriveWait() is not called

and a busy loop has replaced it. This is because VWDriveWait() puts the navigation

process to sleep and this distorts driving time results.

 30

void drive(float distance){
 total_dist = total_dist + distance;
 end_think_start_drive();
 VWDriveStraight(vw, distance, LINEAR_VELOCITY);
 while(VWDriveDone(vw) == 0){
 KEYRead();
 }
 end_drive_start_think();
 VWGetPosition(vw, &pos);
}

Figure 4-4 The drive method

4.1.5 The smart moving module

The smart driving module’s role is to provide abstract driving functions as required by the

main navigation algorithm. Most of its public methods are self-explanatory, but its most

complicated method, follow_the_wall(), is depicted in figure 4-5.

void follow_the_wall(bool is_on_right){
 if(is_on_right){
 if(has_wall_been_reached()){
 turn_not_move(FALSE);
 }
 else if(PSDGet(psd_right) > WALL_DISTANCE+THRESHOLD){
 turn_and_move(TRUE);
 }
 else{
 follow_wall_straight(TRUE);
 }
 }
 else{
 if(has_wall_been_reached()){
 turn_not_move(TRUE);
 }
 else if(PSDGet(psd_left) > WALL_DISTANCE+THRESHOLD){
 turn_and_move(FALSE);
 }
 else{
 follow_wall_straight(FALSE);
 }
 }
}

Figure 4-5. The follow_the_wall method

Initially, the method checks if a wall is in front of the robot. If so, the robot calls

turn_not_move() and the robot turns on the spot as shown in figure 4-6(a). Otherwise, the

robot checks if a wall is to the right of the robot. If so, the robot calls

follow_wall_straight() and the robot follows the wall as shown in figure 4-6(c). If not, the

 31

robot calls turn_and_move the robot turns and moves as shown in figure 4-6(b). After

calling the above methods robot aligns to the wall by calling the orientate_to_wall() method

as depicted in figure 4-6(d).

Presently, this uses a proportional-derivative controller to ensure that the wall is followed

closely. However, more advanced PID or fuzzy logic controllers can easily be

implemented by updating only the smart moving module.

Figure 4-6. (a) Top left. Turn_not_move(). (b) Top right. Turn_and_move() (c)

Bottom left. Follow_wall_straight() (d) Bottom right. Orientate_to_wall()

 32

4.2 Bug1 Implementation

The bug1 algorithm is implemented by calling methods from the common modules as

shown in figure 4-7. It shows that Bug1 implements the “drive to target” and “follow the

wall” states prescribed in figure 3-1 using the methods drive_to_target() and

follow_wall_Bug1() respectively. Another method, Bug1(), is used to coordinate the state

transitions prescribed in figure 3-1.

/*function orientates the eyebot to the target and drives towards it until either
the target is reached or a wall is hit.*/
int drive_to_target(){
 face_target();
 while(TRUE){
 if(has_goal_been_reached()){
 face_original();
 return TARGET_REACHED;
 }
 else if(has_wall_been_reached()){
 return WALL_HIT;
 }
 drive(STEP);
 }
}

/*function follows the wall according to the Bug1 algorithm*/
int follow_wall_Bug1(){

 PositionType leave; //closest position to the target
 PositionType hit; //the current hit point
 float min_dist; //the closest displacement to the target
 float dist_to_min=0; //the number of steps to leave
 float begin_dist = get_total_dist();

 initialize_PD();
 VWGetPosition(vw, &leave);
 min_dist = get_targ_dist();
 VWGetPosition(vw, &hit);

 orientate_to_wall(FALSE);
 while(TRUE){
 if(get_dist(&hit, &pos)<=TARG_ERROR &&

(get_total_dist()-begin_dist)>TARG_ERROR){
 break;
 }
 follow_the_wall(TRUE);
 if(get_targ_dist()<min_dist){
 min_dist = get_targ_dist();
 VWGetPosition(vw, &leave);
 dist_to_min = get_total_dist()-begin_dist;
 }
 }

 /*Check the unreachability condition - if true then terminate*/
 if(get_dist(&leave, &hit)<=TARG_ERROR){
 face_original();
 return TARGET_UNREACHABLE;
 }

 33

 /*Determine the shortest route to the min point and turn left
 or right accordingly. Then follow the wall to the min point*/
 if(dist_to_min < (get_total_dist()-begin_dist)/2){
 while(get_dist(&leave, &pos)>=TARG_ERROR){
 follow_the_wall(TRUE);
 }
 }
 else{
 turn(M_PI);
 while(get_dist(&leave, &pos)>=TARG_ERROR){
 follow_the_wall(FALSE);
 }
 }
 return MIN_REACHED;
}

/*function drives towards the target, using Bug1 algorithm*/
void Bug1(){

 int state = STEP1;
 int response;

 initialize_driving();
 initialize_timers();
 init_helper();

 while(TRUE){
 if(state==STEP1){
 response = drive_to_target();
 if(response==TARGET_REACHED){
 end_timers();

print_stats(TRUE, get_time_thinking(), get_time_driving(),
get_total_dist(), get_total_turn(), num_sqrt, num_pow,
num_geom);

 break;
 }
 else if(response==WALL_HIT){
 LCDPrintf("Wall Hit\n");
 state = STEP2;
 continue;
 }
 }
 else if(state==STEP2){
 response = follow_wall_Bug1();
 if(response==MIN_REACHED){
 LCDPrintf("Minimum Point\n");
 state=STEP1;
 continue;
 }
 else if(response==TARGET_UNREACHABLE){
 end_timers();

print_stats(FALSE, get_time_thinking(), get_time_driving(),
get_total_dist(), get_total_turn(), num_sqrt, num_pow,
num_geom);

 break;
 }
 }
 }
}

Figure 4-7. Bug1 Navigation Module

 34

4.3 Bug2 Implementation

The bug2 navigation class calls the common modules in a similar fashion to bug1 described

in section 4.2.1. However, Bug2 requires an extension to the smart moving module to

include a method which determines if it is on the M line. A new method has been created

in the smart moving module called is_on_M_line for this purpose. The updated class

diagram is displayed in figure 4-8.

Smart Moving
old_error : Double

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
orientate_to_wall(bool isClock)
turn_not_move(bool isClock)
turn_and_move(bool isClock)
face_target()
face_original()
initialize_PD()
follow_wall_straight(bool isClock)
follow_the_wall(bool isClock)
is_on_M_line() : Boolean

Figure 4-8 The extended Smart Moving module for bug2

To implement the is_on_M_line() function, consider the diagram in figure 4-9. Let T be a

vector to the target, P a vector to the robot’s current position and a some scalar such that

the vectors P-aT and T are perpendicular.

Figure 4-9 The vectors P-aT and T are perpendicular

It follows from the dot product that:

0))(())((=−+− yyyxxx aTPTaTPT

Rearranging for a gives:

22
yx

yyxx

TT
PTPT

a
+

+
=

 35

Hence, aT can be calculated and its distance to P can be determined. If this distance is less

than a threshold value, the robot is on the M line. Figure 4-10 shows the implementation of

is_on_M_line()

/*function determines whether the given point is on the M line*/
bool is_on_M_line(){

 PositionType closest;
 float t = (targ.y*pos.y + targ.x*pos.x)/(pow(targ.x,2.0)+pow(targ.y,2.0));
 num_pow = num_pow+2;
 if(t<0 || t>1){
 return false;
 }
 else{
 closest.x = t*targ.x;
 closest.y = t*targ.y;
 closest.phi = 0;
 return (get_dist(&closest, &pos) <= TARG_ERROR);
 }
}

Figure 4-10 The is_on_M_line() method

4.4 Alg1 Implementation

Alg1 requires two extensions to the smart moving module. It needs to know if the robot is

on the M line and the freespace, F. The is_on_M_line() method, described in section 4.3, is

reused. However, a new method, freespace(), needs to be created to determine F. Figure 4-

11 shows the updated Smart Moving module which includes the two new methods.

Smart Moving
old_error : Double

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
orientate_to_wall(bool isClock)
turn_not_move(bool isClock)
turn_and_move(bool isClock)
face_target()
face_original()
initialize_PD()
follow_wall_straight(bool isClock)
follow_the_wall(bool isClock)
is_on_M_line() : Boolean
freespace() : Integer

Figure 4-11 The extended Smart Moving algorithm for Alg1

 36

The freespace method returns F. When the method is invoked, the target’s direction

relative to the robot is firstly determined. Then, the PSD rotationally closest to that

direction is identified. Subsequently, the robot rotates such that the PSD is facing the target

and measures F using that PSD. After that, the robot returns to its original orientation.

This method is implemented in figure 4-12.

/*function returns the freespace in the direction of the target
function assumes that the PSDs are evenly spaced*/
int freespace(){
 float direction = get_rel_targ_dire();
 int index=0;
 int answer;

 /*determine the PSD closest to the relative direction*/
 while(direction < -M_PI/NUM_PSD){
 direction = direction + 2*M_PI/NUM_PSD;
 index--;
 }
 while(direction > M_PI/NUM_PSD){
 direction = direction - 2*M_PI/NUM_PSD;
 index++;
 }
 index = (index + NUM_PSD/2)%NUM_PSD;

 /*turn towards the target and get the freespace*/
 turn(direction, FALSE);
 answer = PSDGet(psd[index]);
 turn(-direction, FALSE);

 return answer;
}

Figure 4-12 The freespace method

In this particular robot, there are 8 PSD sensors. Figure 4-13 shows that each PSD covers a

45 degree sector. Hence, the maximum the robot needs to rotate to find F is 22.5 degrees.

As expected, increasing the number of PSDs lowers the maximum rotation to find F and

this must be factored into cost against performance decisions.

 37

Figure 4-13 Each PSD covers a 45 degree sector. Maximum rotation is 22.5 degrees.

The alg1 algorithm also needs to record all hit and leave points encountered. It does this by

implementing a data-structure module which is described in figure 4-14.

Data Structure
position : Integer
points : PositionType array

initialize_data()
list_enqueue(PositionType* p)
is_at_previous_point() : Boolean

Figure 4-14 The Data Structure Module

The data structure is implemented as an array of PositionTypes. The number of elements is

predetermined and a fixed block of memory is allocated when the program is started.

Figure 4-15(a) shows the data structure immediately after initialize_data() is called. When

list_enqueue() is called, a PositionType is stored in the element referenced by position.

Figure 4-15(b) shows the data structure after one such call. When is_at_previous_point() is

called, the data structure checks if the robot’s current position is near any stored points.

 38

Figure 4-15 (a) Left. The data structure after initialization. (b) Right. The data

structure after list_enqueue() is called.

4.5 Alg2 Implementation

The Alg2 algorithm is implemented by using the common modules and the extensions

implemented previously. In particular, Alg2 reuses the freespace() and data structure

modules discussed in section 4.2.3. It also uses the common modules to implement

navigation states similar to the Bug1 implementation in section 4.2.1

4.6 Distbug Implementation

The distbug algorithm is simpler than the Alg2 algorithm in that it does not require the data

structure module. Apart from that, it is very similar to Alg2 and therefore its

implementation is also very similar.

4.7 Tangentbug Implementation

The tangentbug algorithm has been modified from the original article. In the original

tangentbug generates the LTG continuously when moving. In this implementation,

tangentbug only generates the LTG when it has reached node positions. This change is

necessary to avoid excessive rotation and does not decrease performance on the three maps.

The tangentbug algorithm is significantly more complicated than any of the previous bug

algorithms. It has modified the common modules extensively. A redrawn class diagram is

shown in figure 4-16.

 39

Helper
pos : PositionType
targ : PositionType
targ_dire : float
targ_dist : float

get_dist(PositionType* a, PositionType* b) : float
deg_to_rad(int degrees) : float
rad_range(float x) : float
pol_to_rect(float r, int theta, PositionType* ans) : PositionType
get_targ_dist() : float
get_targ_dire() : float
get_rel_targ_dire() : float
get_rel_dire(PositionType* p) : float

User Interface

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer

Minimum
dfollowed

is_in_minimum()
dist_to_targ()
initialize_dfollowed()
check_all_points_on_line()
leaving_condition_holds()

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

Smart Moving

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
face_target()
face_original()
orientate_to_wall(PositionType* coords)
drive_to_point(float distance, float direction)

Node
nodes : node
num_nodes : Integer
optimal_node : Integer
wall_node : Integer

get_node_coordinates(int node_index) : PositionType
create_Tnode(float freespace)
process_nodes()
process_optimal()
wall_was_foreground() : Boolean
identify_nodes()

Navigation

main()

Driving
total_dist : float
total_turn : float

initialize_driving()
get_total_dist() : float
get_total_turn() : float
turn(float rads)
drive(float distance)

Data
r_of_theta : Integer Array

generate_r()
freespace_point(PositionType* p) : float
freespace() : float

4-16 The tangentbug class diagram

4.7.1 The data module

The tangentbug algorithm requires extensive collection of data for)(θr and freespace

toward a particular point. The data module collects PSD data and stores it for use by the

rest of the system.

To achieve this in an optimal and efficient manner, the data module equally divides the

scanning task between the eight PSDs. Therefore, each PSD is responsible for collecting

data about a 45 degree sector. Each colour in figure 4-17 shows the division of sectors.

 40

Figure 4-17 Each PSD collects data in its sector

Then, this 45 degree sector is sampled according to a user-defined value

DEG_BET_SAMPLES. The default is 3 degrees, but this can be altered for greater

accuracy. Hence, each PSD will sample its sector 15 times, turning 3 degrees between each

sample. Figure 4-18 shows the source code which implements data gathering and figures

4-19(a) and 4-19(b) shows the robot actually gathering data.

void generate_r(){
 int reading_index;
 int psd_index;
 int readings_per_psd = 360/(NUM_PSD*DEG_BET_SAMPLES);

 for(reading_index=0; reading_index<readings_per_psd; reading_index++){
 for(psd_index=0; psd_index<NUM_PSD; psd_index++){

r_of_theta[readings_per_psd*psd_index+reading_index] =
PSDGet(psd[psd_index]);

 }
 turn(deg_to_rad(DEG_BET_SAMPLES), FALSE);
 }
 turn(-deg_to_rad(360/NUM_PSD), FALSE);
}

Figure 4-18 The generate_r method

The sampled data is stored publicly in an array. The number of elements in the array

depends on DEG_BET_SAMPLES, which is assigned a default value of 3. If this default is

used, there are 120 elements in the array. The 0th element contains the distance straight

ahead of the robot and the ith element contains the distance on a DEG_BET_SAMPLES*i

angle measured counterclockwise from straight ahead.

 41

Figure 4-19 (a) Left. The robot gathers data from all 8 PSD sensors (b) Right. After a

3 degree rotation, the robot gathers data from 8 PSD sensors again.

4.7.2 The node module

After the data has been collected, it is processed for nodes. The node module identifies and

processes nodes which are subsequently stored in a public array. In addition, the optimal

node, N*, and the wall node are identified. Due to)(θr ’s discrete nature, discontinuity

detection must be conducted by comparing values of)(θr . A node is identified if:

• the difference between two successive values of)(θr is greater than a predefined

threshold, or

• One, and only one, of two successive values of)(θr is equal to r, or

• F > d(x, T), which means the target is visible, or

• F = r, which means there are no visible obstacles in the target’s path.

Once all nodes are identified, each node is processed by calculating d(Ni,T). Then, the

optimal node is identified by finding the node with the lowest value of d(Ni,T).

Subsequently, the wall node is identified by finding the node with the lowestθ in)(θr .

This is because)(θr records measurements anti-clockwise where 0=θ is straight ahead.

Given that nodes are processed by increasingθ , the wall node is always the first identified

node. This process is summarised in the flow diagram in figure 4-20.

 42

Figure 4-20 The node processing algorithm

4.7.3 The minimum module

If the tangentbug algorithm detects that the robot is in a local minimum, it calls the

minimum module. This minimum module’s role is to return whether or not the robot has

met the leaving condition, dreach(T) < dfollowed(T). This evaluation must be done using the

least amount of computing resources possible.

With this in mind, a strategy was created to evaluate dreach(T) and dfollowed(T) and its source

code is shown in figure 4-21. Firstly, the minimum module queries the node module to

find the wall node’s index in)(θr . Denote this index w. The indices from 0 to w represent

the minimum causing obstacle and is used to evaluate dfollowed(T). The remaining indices

represent the sector which must be scanned to evaluate dreach(T).

 43

To evaluate dfollowed(T), for each index from 0 to w determine the distance to target at end-

points. In figure 4-22, these indices are indicated by the red lines and the points used for

distance to target calculations are indicated by the black squares. The shortest of these

distances, since wall-following mode began, is recorded in dfollowed(T).

To evaluate dreach(T), for the indices w+1 and 360/num_psd, determine the distance to target

at regular intervals. For the remaining indices, determine the distance to target only at end-

points. In figure 4-22, these indices are indicated by the green lines and the points used for

distance to target calculations are indicated by the orange squares. The shortest of these

distances, since the robot last refreshed)(θr , is recorded in dreach(T).

This strategy may appear flawed because the target could be visible but dreach(T) would not

record 0. This can easily be remedied by including the freespace() method. If F > d(x, T)

this implies the target is visible and the robot would drive straight towards it.

bool leaving_condition_holds(){
 int num_samples = 360/DEG_BET_SAMPLES;
 int wall_index = nodes[wall_node].small_index;
 int i;
 float test, dreach;

 /*update (global) dfollowed, if necessary*/
 for(i=0; i<=wall_index; i++){
 test = dist_to_targ(i);
 if(test<dfollowed){
 dfollowed = test;
 }
 }

 /*evaluate dreach*/
 dreach = check_all_points_on_line(i);
 i++;
 for(; i<num_samples-1; i++){
 test = dist_to_targ(i);
 if(test<dreach){
 dreach = test;
 }
 }
 test = check_all_points_on_line(i);
 if(test<dreach){
 dreach=test;
 }

 /*evaluate leaving condition*/
 return dreach < dfollowed;
}

Figure 4-21 The leaving_condition_holds() method

 44

Figure 4-22. (a) Top left. The scanning performed at its initial position. (b) Top

right. The scanning performed after traveling one node. (c) Bottom Left. The

scanning performed after traveling two nodes. (d) Bottom Right. Freespace

identifies a visible target.

 45

4.8 D* Algorithm Implementation

The D* algorithm only reuses the timer module because it is fundamentally different than

the other algorithms. The implementation is heavily object-oriented due to the greatly

increased complexity. Figure 4-23 shows the D* class diagram.

ArcEnd
cost : float
is_backpointer : Boolean

init_arc_end(float c, bool is_bp)
set_arc_cost(float c)
get_arc_cost() : float
set_arc_backpointer(bool is_bp)
get_arc_backpointer() : Boolean

OpenList
open : Cell
num_cells : Integer

init_list()
put_on_open_list(cell c)
Delete(cell c)
min_state() : Cell
get_kmin() : Double

DiscreteDriving
vw : VWHandle
current_row : Integer
current_column : Integer
current_direction : Integer
total_dist : Double
total_turn : Double

turn_range(int turn) : Integer
get_total_dist() : Double
get_total_turn() : Double
init_driving()
drive(int direction)
face_north()
get_current_row() : Integer
get_current_column() : Integer
get_current_direction() : Integer

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

User Interface
targ_dire : Integer
targ_dist : Double
g_r : Integer
g_c : Integer

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer
deg_to_rad() : Double
generate_targ_coords()

Cell
k : float
h : float
tag : Byte
row : Integer
column : Integer
arc_ends : ArcEnd
is_blocked : Boolean

init_cell(int row, int col)
get_row() : Integer
get_column() : Integer
get_k() : float
get_cell_cost(int direction) : float
set_cell_cost(int direction, float new_cost)
set_cell_backpointer(int direction)
is_cell_backpointer(int direction) : Boolean
h() : float
set_h(float h_new)
set_t(int new_tag)
t() : Integer
insert(float h_new)
get_backpointer_direction() : Integer
get_is_blocked() : Boolean
set_is_blocked(bool set)

88

Algorithms

process-state() : Double
modify-cost() : Double
main()

Discrepancy
blocked_row : Integer
blocked_column : Integer

psd_range(int psd_index) : Integer
get_psd_index(int direction) : Integer
get_blocked_coords(int direction, int r)
process_surroundings()

Grid
the_grid : Cell
the_neighbour : Neighbour

get_dest_direction(cell destination, cell origin) : Integer
is_within_bounds(int row, int column) : Boolean
get_default_cost(int direction) : Double
c(cell destination, cell origin) : Double
set_cost(cell destination, cell origin, float new_cost)
b(cell destnation, cell origin)
is_backpointer(cell destination, cell origin) : Boolean
get_neighbours(cell c) : Neighbour
initialize_grid(int goal_row, int goal_column)
get_direction(int row, int column) : Integer
get_tag(int row, int column) : character
get_cell(int row, int column) : Cell

65616561

Neighbour
num_neighbours : Integer
cells : Cell

init_neighbours()
get_num_neighbours() : Integer
enqueue_cell(cell c)
get_enqueued_cell(index) : Cell

Figure 4-23 The D* class diagram

 46

4.8.1 The cell class

A cell represents an area which is treated as a discrete location. Although this area can be

of arbitrary shape, it has been implemented as a square of length 100mm.

Each cell records:

• its position on the grid. This is purely for identification, cells do not need to know

their position and behave in the same manner regardless of position.

• its h value, as specified by the original article. This represents the cost of reaching

the goal following the cell’s current backpointer trail.

• its k value, as specified by the original article. This represents the lowest cost of

reaching the goal ever recorded by the cell.

• its arc-ends. Each cell possesses 8 arc-end objects to record transition costs and

backpointers.

• if an obstacle exists on its position. If so, blocked will be true.

• its tag, as specified by the original article. This can be one of three possible values:

closed, open and new.

o Closed means that process-state() has been run on that cell. This implies

that the cell has a backpointer and a minimum cost to goal established.

o Open means that the cell is a neighbour of the goal cell or a cell which is

closed. Open cells are continually evaluated for minimum cost to goal in the

table fashion described in section 3.7. Once an open cell has the minimum

cost on the table, process-state() is called and it becomes a closed cell.

o New is the initial cell state and refers to cells which have not been processed

and are not neighbours of closed cells.

The cell class implements three functions required by the original article. The h() and t()

methods return the cell’s h value and tag respectively. The insert() method updates the

tags, k and h values.

 47

4.8.2 The arc-end class

Each cell possesses 8 arc-end objects, one for each direction: north, north-east, east, south-

east, south, south-west, west and north-west. Each arc-end object stores the cost of moving

from that particular cell in a specified direction. In addition, arc-end stores whether the

specified direction is the backpointer for the owning cell.

4.8.3 The open-list class

The open-list class maintains a table of open cells sorted by ascending k value similar to the

tables in section 3.7. It is implemented as a large array of cell pointers with the number of

elements equal to the number of cells on the grid. When a new cell is to be enqueued, it is

sorted according to its k value.

The open-list class implements the min-state() and get_kmin() calls prescribed by the

original article. min_state() returns the state with the minimum k value and is implemented

by returning a pointer to the cell on top of the list. get_kmin() returns the minimum k value

and is implemented by querying and returning the k value of the cell on top of the list.

The delete(cell x) function is also implemented by this class. Although this function is

supposed to remove any given cell from the open-list, the implementation disregards the

parameter and simply deletes the cell with the minimum k-value, which always the cell at

the top of the list. This is because only process-state() calls this function and the only time

when process-state() calls delete() is when it is deleting the cell with the minimum k-value.

4.8.4 The grid class

The grid class is composed of all cells in a grid-like formation analogous to the grid

diagrams in section 3.7. Since each cell is unaware of any other cell, the grid class serves

as an interface when a caller requires operations conducted between two or more cells.

This is particularly important when interfacing with functions prescribed by the original

article.

 48

A function prescribed by the original article is c(cell destination, cell origin) which returns

the travel cost from the target cell to the destination cell. Figure 4-24 shows how the grid

class handles the call.

AlgorithmsAlgorithms GridGrid CellCell ArcEndArcEnd

1: c(destination, origin)

2: get_dest_direction(destination, origin)

3: get_cell_cost(direction)

4: get_arc_cost()

5: return cost

6: return cost

7: return cost

Figure 4-24 The sequence diagram for the c call.

Another function prescribed by the original article is b(destination, origin) which sets the

origin’s backpointer in the destination’s direction. Figure 4-25 shows how the grid class

handles the call.

AlgorithmsAlgorithms GridGrid CellCell ArcEndArcEnd

1: b(destination, origin)

2: get_dest_direction(destination, origin)

3: set_cell_backpointer(direction)

4: set_arc_backpointer(FALSE)

Reset all backpointers to
false for all arcends

5: set_arc_backpointer(TRUE)

Set the backpointer
specified by direction

Figure 4-25 The sequence diagram for the b call.

 49

4.8.5 The neighbour class

The neighbour class is a small data-structure designed to facilitate the transfer of valid

neighbours surrounding a target cell.

4.8.6 The discrepancy class

The discrepancy class’s role is to use the PSD sensors to detect any differences between the

robot’s map and the actual surroundings. If it detects a discrepancy, it calculates the cell’s

position based on the PSD reading. Then, it sets the cell’s blocked attribute to TRUE and

calls modify-cost() to generate the new optimal backpointer trail according to the procedure

outlined in section 3.7.2.

4.8.7 The algorithm class

The algorithm class implements process-state() and modify-cost() functions exactly as

specified in Stentz’s article. process-state() and modify-cost() call functions implemented

in the modules discussed previously. The main() method is also included in the algorithm

class and it coordinates navigation as a whole. Figure 4-26 shows the main() method.

num_calls=0;
generate_target_coords();
initialize_timers();
init_driving();
initialize_grid(g_r,g_c);
do{
 kmin = process_state();
}
while(get_tag(get_current_row(), get_current_column()) != CLOSED && kmin!=NONE);
while(!(get_current_row()==g_r && get_current_column()==g_c)){
 process_surroundings();
 drive(get_direction(get_current_row(), get_current_column()));
}
face_north();
end_timers();
print_stats(TRUE, get_time_thinking(), get_time_driving(),get_total_dist(),
get_total_turn(), num_calls);

Figure 4-26 the main method

 50

4.9 Implementation issues

4.9.1 Evaluation of Navigation conditions

Evaluation of navigation conditions involves checking conditions specified by the

navigation algorithm. For example, updating F by calling freespace() or checking if the

robot has reached the M line. In theory, checking should occur continuously. That is, as

soon as a leaving condition holds, the robot should instantaneously realise it and take

appropriate action. Obviously, this cannot occur in practice.

In practice, navigation conditions are regularly polled because it is impossible to generate

an interrupt which doesn’t rely on polling at some fundamental level since this is

measurement of the external environment. The issue which needs to be resolved is how

often (in terms of distance or time) the robot evaluates navigation conditions.

In figure 4-27(a) the robot is polling too seldom and does not utilise the shortcut to goal. In

figure 4-27(b) the robot polls when it is over the gap allowing it to utilise the shortcut.

However, polling too often is computationally expensive. Therefore, the correct balance

must be found between the two extremes.

Figure 4-27 The green circles represent polling locations. (a) Left. The robot does not

take advantage of a shortcut because it polls too infrequently. (b) Right. The robot

takes advantage of a shortcut but it polls too frequently.

 51

In this particular implementation, the robot takes a step of 40mm between each evaluation.

It was found through numerous functionality iterations that this value achieved a good

balance; however it is by no means perfect. It can be altered using the STEP macro.

In light of this implementation issue, algorithms which are proactive rather than reactive

should be favoured. That is, algorithms which decide on fixed traveling destinations, travel

to them, collect data and then decide on the next destination should be favoured over those

which react to the external environment spontaneously.

The bug1, bug2, alg1, alg2 and distbug algorithms are all reactive since they all take

measurements of the external environment according to the step size. The modified

tangentbug algorithm is proactive because it navigates to nodes and then evaluates

navigation conditions. D* evaluates conditions at each cell and sleeps during moving.

Hence, tangentbug and D* are most desirable due to their proactive nature.

4.9.2 Recognition of previous points

The bug1, bug2, alg1, alg2 and distbug algorithms all require recognition of previously

visited points. This concept is fine in theory, but it poses implementation problems in

practice.

In practice, when the robot first encounters a point of interest, it records its current

coordinates. The problem is that the robot is very unlikely to ever visit those exact

coordinates again for two reasons. Firstly, the trail is very unlikely to be the same for any

two boundary traversals because of the PD controller. Secondly, the robot drives a small

distance forward, its “step”, before evaluating navigation conditions as described in section

4.9.1. This means that even if the trail is the same, the robot also has to poll when it is

exactly over the previously recorded point.

Due to this problem, all recorded points are given a radius as shown in figure 4-28. If the

robot realises that it is within the radius of a previous point, it deems that it is at the

previous point.

 52

Obviously, the radius must be chosen such that false positives are minimised and all

genuine previous points are maximised. If the radius is too large, false positives can be

generated. For instance, in figure 4-28 the robot’s radius extends beyond the wall. If the

robot travels on the opposite side, it could mistakenly believe that it is at a previous hit or

leave point. Conversely, if the radius is too small, genuine previous points can be missed.

Figure 4-28 The radius is too large and extends beyond the wall.

In this particular implementation, the radius is set to 80mm inside the macro TARG_ERROR.

This value was established through numerous functionality iterations. However, it is by no

means a perfect solution.

Given this implementation issue, algorithms which rely very little on previous points

should be favoured over algorithms which rely on previous points heavily. The Alg1 and

Alg2 algorithms store all the previous points making them particularly undesirable. The

Bug1, Bug2 and Distbug algorithms rely on previous points to a lesser extent.

In contrast, D* tracks the robot’s position within the grid and does not require previous

point recognition making it highly desirable. Tangentbug relies very little on previous

point recognition, only using it to determine if the robot has completely encircled the

obstacle. However, unlike the other bug algorithms, Tangentbug uses PSD measurements

to determine if it can see a previous point. This is desirable because the radius size can be

much smaller and it does not rely on polling.

 53

4.9.3 Hardware requirements

From a practical perspective, hardware costs should be minimised. The bug1 and bug2

algorithms can operate at peak performance using just tactile sensors. PSDs do not improve

performance. Clearly, this is the cheapest option.

The alg1 and alg2 algorithms have a minimum requirement of tactile sensors. When

following the wall, they need to know if the robot can travel in the target’s direction. This

is possible with tactile sensors; however it may enhance performance if several PSDs are

used to measure F as depicted in figure 4-13. Even better is a PSD mounted on a servo

which always points in the target’s direction.

The distbug algorithm has fairly similar requirements to alg1 and alg2 except that it must

have at least one PSD to operate. A PSD mounted on a servo would be ideal, but if not,

multiple PSDs should be employed to measure F.

Tangentbug and D* algorithms require at least one PSD to operate, with more PSDs

improving performance. The PSD range is also an important factor in these algorithms

because they do not use it simply to it to determine F. In tangentbug, a longer PSD range

results in a larger LTG graph, and this may result in shorter paths. In D*, a longer PSD

range allows the robot to detect obstacles further away allowing the map to be built more

efficiently.

4.9.4 Tangentbug’s data gathering

Ideally,)(θr would be a continuous function. However, PSD readings can only measure

distance in a fixed direction and therefore)(θr must be discretely sampled. Unfortunately,

this leads to error.

To reduce error, degrees between samples can be decreased at the expense of increased data

collection time, increased memory requirements and decreased robustness because it is

error-prone to rotate in small angles.

 54

This problem is manifested when the robot is placed near a wall. Figure 4-29 demonstrates

that the tangentbug mistakenly identifies nodes. To reduce this error, the robot checks if it

is near a wall before collecting data. If so, it drives backwards slightly, making it less

likely there will be an incorrect identification. This behaviour is demonstrated in figure 4-

30.

Figure 4-29 The robot mistakenly identifies nodes.

Figure 4-30 The robot moves away from the wall when it is too close.

 55

The data gathering technique can be improved. For example, a variable threshold can be

implemented which increases when the differences become larger. Another possible

technique is to vary the angle between PSD readings depending on the relative difference.

The merits of these techniques are left for future study.

4.3.5 Limited map size in D*

Due to its reliance on cells, D* has a unique problem with map out-of-bound areas.

Consider the environment depicted in figure 4-31. The target is reachable, however D*

concludes that the target is unreachable because no cells cover the areas around the wall.

Clearly, strategies must be developed to handle these situations.

Figure 4-31 using a 5x5 grid, the robot is unable to reach the target.

A possible approach to solving this problem is to provide a cell for each possible position

as suggested in Stentz’s original paper [10]. However, several issues arise when this

happens. Firstly, it implies that the map size is known prior to starting. Clearly, this is not

permitted in the problem statement defined in section 2. Secondly, it also implies that the

map size is finite, though this may not necessarily be the case. Thirdly, under this scheme,

D*’s memory use would be far greater than it is already. A better approach may be to

dynamically allocate cells as the robot is moving. Exactly how this scheme is implemented

is left for future research.

 56

5. Simulations

5.1 Measuring Attributes
Simulations were conducted on the Eyesim simulator to meet the objectives stated in

section 2. Convergence is verified and then the attributes are measured. The path length,

rotation, PSD limit, linear VW limit and rotational VW limit are constant throughout the 10

simulations. However, the computation and driving time varies between simulations.

Therefore, each algorithm is simulated 10 times and the average is taken for computation

time.

It is also important to note that clock() measures the time spent in the processor by the

calling thread. It does not take into account the simulation-to-time ratio. Hence, if the

simulation-to-time ratio is increased for some simulations and not others, the results will be

inaccurate. To account for this, all simulations are run on the maximum simulation-to-time

ratio setting.

Each algorithm is simulated on three different maps which are designed to illustrate their

individual strengths and weaknesses.

 57

5.2 Simulation Maps

5.2.1 Map1

Map1 is shown in figure 5-1 where the coordinates are in millimetres from the bottom left.

It is designed to test algorithms in an enclosed setting. In enclosed settings, algorithms

require the ability to choose good leaving points and correct bad wall-following decisions.

It has been used in previous studies [3, 4].

Figure 5-1 Map1 tests an algorithm in an enclosed setting

For interest and comparison purposes, the ideal path length and rotation have been

calculated:

Distance:
10
29

10
324

10
20

++ = 3.248 m

Rotation: 













+






+






 −−−

500
200tan

400
400tan4

400
200tan2 111 = 7.971 Radians

 58

5.2.2 Map2

Map 2 is shown in figure 5-2. It is regarded as an open setting. In an open setting, an

algorithm’s ability to seek out and follow greedy, locally optimal paths is tested. This map

was used by Lumelsky in demonstrating the original bug1 and bug2 algorithms [5].

Figure 5-2 Map2 tests the algorithm on an open setting

The ideal path lengths and minimum rotation have been computed:

Distance: 2222 763.0033.06.13.2 +++ = 3.5647 m

Rotation: 





−

1600
2300tan2 1 = 1.926 Radians

 59

5.2.3 Map3

Map3 is shown in figure 5-3. It tests a very important ability for all convergent algorithms,

to escape from a local minimum.

Figure 5-3 Map3 tests an algorithm in a local minimum

The ideal path length and rotation have been computed:

Distance: 2222 5.055.02.11.07.045.0 +++++ = 2.875 m

Rotation: 





+






++






+






+ −−−−

500
550tan

500
550tan

2450
700tan

450
700tan

2
1111 ππ = 6.808 Radians

 60

5.3 Floor Generator

The appearance of green and red squares can be observed in the background of simulation

maps. These represent the start and goal respectively. This is produced by generating a

bitmap file which Eyesim uses as background.

Floor Generator was written specifically to generate the background bitmap file and its GUI

is shown in figure 5-4. The program is object-oriented and written in C#.net. It takes input

from the user and from the world file. The user specifies the desired bitmap size, the

distance to the target and the direction to target. Floor Generator extracts the starting

position and the world’s size from the world file. Then, it creates a bitmap to specification.

Figure 5-4 The floor generator GUI

 61

6. Results and discussion

6.1 Convergence Verification
The first objective is to verify algorithm convergence. The simulation results show that all

algorithms are convergent.

6.1.1 Bug1

Figure 6-1(a) Bug1 on Map1

 62

Figure 6-1(b) Bug1 on Map2

Figure 6-1(c) Bug1 on Map3

 63

6.1.2 Bug2

Figure 6-2(a) Bug2 on Map1

Figure 6-2(b) Left. Bug2 on Map2. (c)Right. Bug2 on Map3.

 64

6.1.3 Alg1

Figure 6-3(a) Alg1 on Map1

Figure 6-3(b) Left. Alg1 on Map2. (c) Right. Alg1 on Map 3.

 65

6.1.4 Alg2

Figure 6-4(a) Left. Alg2 on Map1. (b) Right. Alg2 on Map2.

Figure 6-4(c) Alg2 on Map3.

 66

6.1.5 Distbug

Figure 6-5(a) Left. Distbug on Map1. (b) Right. Distbug on Map2

Figure 6-5(c) Distbug on Map3

 67

6.1.6 Tangentbug

Figure 6-6(a) Left. Tangentbug on Map1. (b) Right. Tangentbug on Map2.

Figure 6-6(c) Tangentbug on Map3.

 68

6.1.7 D*

Figure 6-7(a) Left. D* on Map1. (b) Right. D* on Map2.

Figure 6-7(c) The D* algorithm on Map3

 69

6.2 Path Length
A low path length is an extremely desirable attribute because it allows the robot to reach the

target faster. Also, robots need to be maintained and require a fuel source. Obviously, a

low path length reduces both expenditures. The path length depends on map, but figure 6-8

shows that the general descending order is: Bug1, Bug2, Alg1, Alg2, Distbug, Tangentbug

and D*.

The results show that bug1 outperformed bug2 on Map1, but bug2 outperformed bug1 on

Map2 and Map3. Clearly, the bug1 and bug2 algorithms are suited to particular types of

maps. The bug1 algorithm is suited to enclosed maps because it gathers all data before

deciding on the leave point. The bug2 algorithm less conservative and will leave the

obstacle as soon as it encounters the M-line. This makes it suited to open maps, such as

Map2 and Map3.

Then, the results show that Alg1 outperforms bug1 and bug2 on all three maps. This is

because Alg1 combines the best features of bug1 and bug2. Whilst retaining the advantage

of the M-line for open maps, Alg1 can recall previous hit and leave points. This feature

allows it to generate short paths on enclosed maps, such as Map1.

After that, the results show that Alg2 and Distbug performed better than alg1, bug2 and

bug1. This is due to their superior choice of leaving points generated by their leaving

conditions. Alg2 and Distbug hold back leave points on enclosed maps which gives

advantages similar to bug1. However, Alg2 and Distbug make early leave points on open

maps which gives advantages similar to bug2.

The results show that Alg2 and Distbug were fairly even. Indeed, the paths on all maps

were very similar. This is because of the similarity in their leaving conditions. The leaving

condition for Distbug is StepTdFTXd −≤−)(),(min . Compare this with the leaving

conditions for Alg2: 1) a point y is found such that it is closer to the target than any point

ever visited by the robot previously and 2) the robot can travel towards the target at that

point.

 70

Assume that the F=0 and the robot is at y. In Alg2, a leave point can never be generated.

In distbug, F=0 implies that StepTdTXd −≤)(),(min . Since the robot is at y,

)(),(min TdTXd = . Then, the STEP constant biases the comparison such that it can never

be true. Assume that F>STEP and that the robot is at y. In Alg2, a leaving point would be

defined. In Distbug,)(),(min TdTXd = , however F>STEP, making condition true.

Therefore, Distbug implicitly specifies that F must be greater than STEP. Alg2 simply

states that the robot must be able to move in the target’s direction at y, but figure 6-8 shows

that its implementation requires a threshold, FS_THESHOLD. This threshold is, in

principle, no different than STEP in distbug.

while(TRUE){

 fs = freespace();
 if(fs==OUT_OF_RANGE){
 fs = MAX_RANGE;
 }
 if(is_at_y && fs>=FS_THRESHOLD){
 return LEAVE_POINT;
 }
 ...
 }

Figure 6-8 Alg2 requires FS_THRESHOLD value

Alg2 and Distbug’s leaving conditions are very similar but they do differ in one subtle

aspect. When F>STEP and the robot has not quite reached y, distbug allows a leave point

to be defined, whereas Alg2 requires the robot to reach y. This difference is best illustrated

by comparing figures 6-4(a) and 6-5(a). Observe leave point 3 in Alg2 and leave point 4 in

distbug. It is this subtle difference which has allowed distbug to generate slightly lower

path lengths on all three maps.

The performance of Tangentbug and D* was superior to Bug1, Bug2, Alg1, Alg2 and

Distbug on all three maps. In fact, they were within close proximity to the ideal path

length. D* faltered slightly on Map3 due to its vulnerability in local minimums but is still

competitive.

 71

Path Length on Map1

0
10
20
30
40
50
60

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Pa
th

 L
en

gt
h

(m
)

Path Length on Map2

0
2
4
6
8

10
12
14
16
18

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Pa
th

 L
en

gt
h

(m
)

Path Length on Map3

0
2
4
6
8

10
12
14

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Pa
th

 L
en

gt
h

(m
)

Figure 6-8(a) Top. Path length on Map1. (b) Centre. Path length on Map2. (c)

Bottom. Path length on Map3.

 72

6.3 Rotation
Figure 6-9 shows that, in general, rotation is related to path length. That is, the longer an

algorithm’s generated path, the more rotation is performed. This result is intuitively

satisfying.

Alg2 and Distbug stand out as major outliers. Their greatly increased rotation is probably

due to the calls to freespace() which are performed whilst following the wall. This call is

performed every 40mm and total rotation per call ranges from 0 to 45 degrees. If a servo

was mounted which always points in the target’s direction or more PSDs are available, then

this rotation will decrease.

It may be interesting to remove the hardware-dependant rotation from rotation results. The

results will then show rotation which is inherently generated by the algorithm. Figure 6-10

shows that inherent rotation is related to path length. This finding holds for Alg2 and

Distbug and shows that Alg2 and Distbug will benefit greatly from a servo or more PSDs.

The only algorithm which does not match this trend is D*. This is due to its segmentation

of the map into cells. As a result, the robot can only move in discrete 45 degree turns.

Consider figures 6-6(a) and 6-7(a). Tangentbug can maneuver to successive protrusions

without rotation, but D* necessarily takes a 45 degree turn each time it travels to successive

protrusions.

 73

Rotation on Map1

0
20
40
60
80

100
120
140
160
180

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Ro
ta

tio
n

(R
ad

ia
ns

)

Rotation on Map2

0
10
20
30
40
50
60

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Ro
ta

tio
n

(R
ad

ia
ns

)

Rotation on Map3

0

10

20

30

40

50

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Ro
ta

tio
n

(R
ad

ia
ns

)

Figure 6-9(a) Top. Rotation on Map1. (b) Centre. Rotation on Map2. (c) Bottom.

Rotation on Map3.

 74

Rotation without hardware-dependant turning on
Map 1

0

50

100

150

200

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Ro
ta

tio
n

(ra
di

an
s)

Rotation without hardware-dependant turning on
Map 2

0
10
20
30
40
50
60

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Ro
ta

tio
n

(ra
di

an
s)

Rotation without hardware-dependant turning on
Map 3

0
10
20
30
40
50

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Ro
ta

tio
n

(ra
di

an
s)

Figure 6-10(a) Top. Rotation on Map1. (b) Centre. Rotation on Map2. (c) Bottom.

Rotation on Map3.

 75

6.4 Average computation time

Computation time is an objective measure of the navigation process’s CPU usage. Driving

time is not as important because it depends on the driving speed of the robot and whilst the

robot is driving, the navigation thread can sleep.

Figure 6-11 shows the results of computation time measurements. The results show that

increased complexity results in roughly the same or decreased computation time! This is

most probably due to less travel resulting from short and near ideal paths. The only major

outlier is D*’s performance on Map3 because of its vulnerability to local minimums.

It would be interesting to investigate how much computation is required per metre traveled.

This removes the path length advantage of the complex algorithms. This statistic for all 3

maps is shown in figure 6-12.

The trend varies depending on the map. On Map1 and Map2, where are there are no local

minimums, D* requires the lowest computation time per metre, even outperforming bug1

and bug2! Then, Bug1 and Bug2 are next because they are relatively simple algorithms.

Fairly surprisingly, Tangentbug comes in next followed by distbug, alg2 and then alg1.

D* probably has the least computation per metre due to its map segmentation. This allows

D* to abandon reliance on the math library and furthermore, there are no computationally

intensive floating point multiplication or division operations. Instead, its reliance on the

relatively cheap process-state() method results in low computation times.

Tangentbug is surprisingly competitive. This is most probably due to its proactive nature

discussed in section 4.9.1. While it may be expensive to compute the LTG, it performs

very little computation whilst driving. Another interesting statistic is that tangentbug calls

the math library the least number of times. These two factors may explain tangentbug’s

relatively low computation time per metre.

 76

Alg1 and Alg2 are the most expensive due to their checking for all previous points at every

step. Distbug, which is very similar to Alg2, shows the computation savings of not

checking at each step.

However, observe how the trend changes on map3 with a local minimum. Now, bug1 and

bug2 are the cheapest, followed by alg1, alg2, distbug, tangentbug, and by far the most

expensive, D*. Figure 6-12(c) shows that complexity results in greater computation time

per metre.

D*’s computation time is excessively large. It calls process-state() 83855 times in the local

minimum resulting in a very large computation time. Unfortunately, this is necessary due

to recomputation of the optimal path and is a weakness inherited from its ancestor, the force

field technique. Tangentbug’s computation time is also very large. It calls the math library

23080 times. This is because it needs to process the visible environment to determine

dreach(T).

Tangentbug’s large amount of math library calls has not resulted in a proportionately large

increase in computation time over other algorithms. This is perhaps due to the fast

hardware and parallel processing environment which the simulation was run on. On an

actual robot with a single slower processor, the results could be very different.

The parallel processing in tangentbug is only possible due to its proactive nature.

Tangentbug gathers all data at one point. The subsequent node processing methods can be

processed independently which allows parallel processing to occur. Other algorithms

require that robot move a small step before taking measurements. These measurements are

inherently sequential and are processed as such.

Unfortunately, D* is unable to exploit parallelism because the optimal backpointer trail

must be computed sequentially from the goal as explained in section 3.7. That is, D* is an

inherently sequential processing algorithm. A future research topic could focus on whether

D* can become a parallel algorithm and if so, changing it.

 77

Average Computation Time on Map 1

0
100
200
300
400
500
600
700
800
900

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Average Computation Time on Map 2

0
100
200
300
400
500
600
700
800
900

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Average Computation Time on Map 3 (log scale)

1

10

100

1000

10000

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Av
er

ag
e

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Figure 6-11(a) Top. Computation time on Map1. (b) Centre. Computation time on

Map2. (c) Bottom. Computation time on Map3.

 78

Computation time per metre on Map1

0

10

20

30

40

50

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Co
m

pu
ta

tio
n

tim
e

pe
r m

et
re

(m

s/
m

)

Computation time per metre on Map2

0
20
40
60
80

100
120

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Co
m

pu
ta

tio
n

tim
e

pe
r m

et
re

(m

s/
m

)

Computation time per metre on map3

1

10

100

1000

10000

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Co
m

pu
ta

tio
n

tim
e

pe
r m

et
re

(m

s/
m

)

Figure 6-12(a) Top. Computation time per metre on Map1. (b) Centre. Computation

time per metre on Map2. (c) Bottom. Computation time per metre on Map3.

 79

Calls to the math library or process-state()

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Nu
m

be
r o

f c
al

ls

Math Calls
process-state

Calls to the math library or process-state()

0
500

1000
1500
2000
2500
3000

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Nu
m

be
r o

f c
al

ls

Math Calls
process-state

Calls to the math library or process-state()

1

10

100

1000

10000

100000

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Nu
m

be
r o

f c
al

ls

Math Calls
process-state

Figure 6-13(a) Top. Calls on Map1. (b) Centre. Calls on Map2. (c) Bottom. Calls on

Map3.

 80

6.5 Robustness
Robustness is essential for any practical robot application. No algorithm was designed with

robustness in mind and this particular implementation also did not use robustness-

enhancing techniques. Therefore, the results will identify algorithms which have inherent

robustness and possible reasons for this are discussed.

Figure 6-14 shows that, in general, algorithms were not robust to noise. They performed

better against PSD noise than driving related noise. Most algorithms performed poorly

against linear driving noise and no algorithm, except for D*, had any robustness against

rotational driving noise.

Dead-reckoning leading to false localisation is probably the major contributor to the poor

robustness against linear and rotational driving noise. This cause of failure was indicated

when algorithms converged too far away from the target. Using purely dead-reckoning, an

algorithm cannot correct false localisation. In this sense, the algorithms are not responsible

for poor robustness because it is beyond their control. The only way to correct false

localisation is landmark recognition or sensor networks.

Robustness is also dependant on map. Comparison of figure 6-14(a) with figures 6-14(b)

and 6-14(c) shows that robustness was worse on map1 than on map2 and map3. This

implies that algorithms are more robust on open maps than enclosed maps. This is

probably due to the greater accuracy needed in navigating tight enclosed spaces. In the

open, there is much more room for error before failure occurs.

Also, the algorithms which relied on recognition of previously visited points performed

very poorly. Figure 6-14 shows that Bug1 performed very poorly on all 3 maps because it

needs to know when the robot has encircled the obstacle. Relying on previous points is

difficult even without error because of the reasons discussed in section 4.9.1 and 4.9.2.

Combined with driving error, finding previous hit/leave points is near impossible.

 81

Tangentbug was another low achiever in robustness. Once again, this was due to driving

errors leading to false localisation because it converged too far away from the goal.

Tangentbug performed better against PSD error because the threshold criterion for node

identification tolerates small amounts of PSD noise.

D* was the most robust because its segmentation of the grid requires the robot to move in

small, discrete steps. Over large distances, the variance of these small steps tends to cancel

out, resulting in a more accurate distance traveled. D* is also the most robust against

rotational driving errors. This is most probably because of the limited degrees of freedom

the robot possesses. Therefore, as long as the rotation is close to one of the eight directions,

the algorithm can proceed.

If a robust algorithm is sought, D* is the only candidate. Fault tolerant techniques such as

averaging multiple PSD readings or dividing long traveling distances into numerous small

distances could be introduced in future.

 82

Robustness on Map1

1

10

100

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

PS
D,

 L
in

ea
r (

m
m

)
Ro

ta
tio

n
(d

eg
re

es
)

PSD Std. Dev.
VW Linear Std. Dev.
VW Rotation Std. Dev.

Robustness on Map2

1

10

100

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

PS
D,

 L
in

ea
r (

m
m

)
Ro

ta
tio

n
(d

eg
re

es
)

PSD Std. Dev.
VW Linear Std. Dev.
VW Rotation Std. Dev.

Figure 6-14(a) Top. Robustness on Map1. (b) Centre. Robustness on Map2. (c)

Bottom. Robustness on Map3.

 83

6.6 Complexity
From a software development perspective, the less complicated the algorithm the better and

more desirable it is. Low complexity reduces software development costs and is less likely

to fail.

Complexity is subjective and depends very much on the judgment of the implementer. The

most objective measure is lines of code required for the implementation which is shown in

figure 6-15. According to the results, the ranking of simplest to most complicated is: Bug2,

Bug1, Distbug, Alg1, Alg2, Tangentbug and D*. This ranking is congruent with

implementation experience.

Bug2 and Bug1 are the least complicated. Distbug is slightly more complicated due to its

leaving condition requiring freespace(). Alg2 is very similar to Distbug but it requires a

data-structure module, which makes it slightly more complicated. Alg1 is very similar to

Alg2 and hence Alg1’s complexity is very similar to Alg2. Tangentbug is moderately

complicated due to the data collection and processing of the LTG. Finally, D* is the most

complicated due to the classes needed to implement the grid.

Lines of code for each algorithm

0

200

400

600

800

1000

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tB
ug D*

Algorithm

Li
ne

s
of

 c
od

e

Figure 6-15. Lines of code for each algorithm

 84

6.7 Memory Requirements
The memory requirements should be as low as possible. Figure 6-16 shows the ranking

from most expensive to least expensive is: D*, tangentbug, alg2, alg1, distbug, bug2 and

bug1. As expected, the simpler algorithms require less memory than the complicated ones.

Bug1, Bug2 and distbug were most inexpensive because they only require the common

modules. Next, alg1 requires the data structure module. Alg2 requires an additional 4

bytes to track d(y,T). Tangentbug is next expensive because it needs to store ()θr , the

nodes and the minimum module. Finally, D* requires the most amount of memory because

it needs to store a grid full of cells.

It is important to note that only globally memory was measured. Some algorithms call

functions which require a lot of memory for a short period of time. Therefore, global

memory requirements should be viewed as the minimum memory requirement.

Compared to the amount of memory available on most robots, the memory requirements for

the bug algorithms are quite small. The only algorithm which requires a substantial amount

of memory is D*.

Global Memory Requirements for each algorithm

1
10

100
1000

10000
100000

1000000

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

G
lo

ba
l m

em
or

y
re

qu
ir

em
en

t
(b

yt
es

)

Figure 6-16. Global Memory Requirements for each algorithm

 85

7. Conclusion

This thesis discusses the practical aspects of algorithms designed to solve the robotic

navigation problem. Seven algorithms were selected for study: bug1, bug2, alg1, alg2,

distbug, tangentbug and D*.

These algorithms were implemented using the Eyesim simulator. The implementation was

modular and several common modules were identified and implemented separately. Once

the modules were ready, the each navigation algorithm is implemented separately and

simply calls the common modules to drive around. The exception to this is D* which is

radically different to the others.

Several implementation issues arose. Firstly, there is the issue of navigation condition

checking. Tangentbug and D* fare well because of their proactive nature. Secondly, there

is the issue of radius around previous points. Tangentbug and D* proved the best for this

because they have inbuilt mechanisms which avoid the problem. Thirdly, Tangentbug has

a unique problem identifying discontinuities when it is near walls. Fourthly, D* has a

problem if its cells are not able to cover the whole map. Finally, in terms of hardware

costs, bug1 and bug2 are cheapest because they require only tactile sensors.

Three maps were created to test the implemented algorithms. Each map tested a different

aspect of navigation. Map1 tested an algorithm’s ability to navigate in an enclosed space.

Map2 tested an algorithm’s ability to navigate in an outdoor environment. Map3 tested an

algorithm’s ability to navigate out of a local minimum.

Ten trials were run for each algorithm on each map. Results were generated for path

length, rotation, inherent rotation, computation time, computation time per metre, calls to

math functions, robustness, simplicity and memory requirements. Table 7-1 shows the

relative performance score of each algorithm for each attribute. The performance score was

calculated by averaging the algorithm’s rank over 3 maps. Therefore, a lower score means

better performance.

 86

 Bug1 Bug2 Alg1 Alg2 Distbug Tangentbug D*

Path Length 6.67 6.33 5 3.67 2.67 1.67 2

Rotation 6 3.67 4 6 4.67 2.33 1.33

Inherent Rotation 6.67 6.63 4 4.66 2 2 2.67

Total Computation time 4 3 5.33 5 4.33 3.33 3

Computation per metre 2 2.33 5 5.67 5.33 4.67 3

Calls to math functions 4.33 3.67 5.33 4.67 2 2.67 N/A

PSD Error 6 4 4 2 4.33 4 3.67

Linear Driving Error 6 4.83 4.83 3.33 4.33 3.33 1.33

Rotational Driving Error 6 5 2.83 4 5 2.83 2.33

Simplicity 2 1 4 5 3 6 7

Memory requirements 2 2 4 5 2 6 7

Table 7-1 Performance scores for each algorithm on the assessed attributes.

Table 7-1 clearly shows the dominant strengths various algorithms. For path length and

rotation, tangentbug and D* are clearly the best. For computation time, bug1 and bug2 are

the most inexpensive, but surprisingly, tangentbug and D* are very competitive. For

robustness, D* is the only algorithm which inherently possesses this. For simplicity and

memory requirements, bug1 and bug2 are clearly the best.

Using these findings, a selection policy can be devised to select the algorithm which best

suits a user’s needs. Figure 7-1 shows one possible selection policy. Note that this

selection policy is aided by knowledge of the type of map. Strictly speaking, the type of

map should not be known prior to execution. However, if this knowledge is available, it

can assist decision making.

 87

Figure 7-1 A possible selection policy based on table 7-1

 88

8. Future improvements

8.1 Segmentation of the bug algorithms

Currently, the bug algorithms have unlimited degrees of freedom and no grid like structure.

It would be interesting to investigate the bug algorithms on a grid like D*. This should

give greater robustness at the expense of longer paths and higher memory requirements.

8.2 Localisation

Dead-reckoning causes false localisation leading to non-robustness against driving errors.

Although this can be masked by multiple samplings, the best way to overcome error is

feedback. One possible form of feedback is landmark recognition from camera images. If

this is used, an image processing module needs to be written. Some techniques for this

exist in the literature [11] and can be incorporated into future versions.

Another form of feedback could be to use sensor network interaction techniques for

localisation [12, 13]. In these models, a sensor network is embedded in the environment

and act as signposts for the robot. A recent improvement in radio technology has also made

it possible to measure only the distance between beacons and the robot [14]. Line of sight

is not required and the costs are significantly lower than conventional sensors.

The drawback of sensor networks that they deprive the robot of true autonomy. A sensor

network must be present for navigation. The counter argument is that humans, which are

generally regarded as autonomous, also rely on signposts upon entering an unfamiliar

environment for the first time. Indeed, most public buildings display room numbers and

signposts to the toilets, cafeteria etc… A good improvement could involve a robot which

uses the sensor network. However, if there is no sensor network, it reverts to landmark

recognition from its camera.

8.3 D* improvements

D* parameters can also be further investigated to yield better performance. The cell size is

a very important factor which impacts on computation resources and completion times.

 89

The cell structure can be altered and its effects investigated. Figure 8-1 shows a cell

structure composed of triangles instead of squares. D* also needs find a solution to the

problem discussed in section 4.3.5 concerning small grids not finding the optimal path.

Dynamic cell allocation could be one possible solution

Figure 8-1 Instead of using squares, D* could use triangles

8.4 Robot Learning

Another area which can be improved on is robot learning. If the robot has traversed the

trail before, it may be possible to retain some data and improve performance on subsequent

traversals. For example, if the robot is using Alg1 or Alg2, it could retain the data-structure

and improve subsequent journeys.

8.5 Fault tolerance

Another improvement could be to implement fault tolerance in navigation. This particular

implementation was coded without fault-tolerance in mind. In future, fault-tolerant

techniques could be incorporated to give a greater degree of assurance. For example, triple

modular redundancy with a voter can be used on PSDs to average out error. A compass,

gyroscope and GPS, if outdoors, can be used to reduce rotation error.

8.6 Tangentbug improvement

There could also be an improvement made to the tangentbug algorithm. Consider the initial

computation performed on map2. Under the current tangentbug algorithm, the robot travels

to node1 because node1 is closer to the target than node 2.

However, figure 5-2 shows that a shorter path is in the direction of node 2. The only hint

that node2 produces a shorter path than node1 is the PSD reading shown in red in figure

 90

9-2. If that reading can somehow be incorporated into tangentbug to make node2 the

optimal node, it would allow tangentbug to more closely follow the ideal path in figure 5-2.

Figure 9-2 Tangentbug can be improved if it chooses node2 over node1

Tangentbug could also be improved to take into account varying terrain costs, similar to

D*. This could be very difficult because the current tangentbug algorithm does not have

any concept of cost inbuilt.

8.7 Map Classification

Some form of quantitative map classification scheme could also be designed. In this study,

the terms enclosed, open and local minimum were loosely used to classify map1, map2 and

map3 respectively. However, this was a subjective classification and had no objective

basis. One possible technique is the concept of path safety introduced by Kamon and

Rivlin [6] where determines its average distance from the nearest obstacle. One would

expect that enclosed maps have smaller path safety than open maps.

 91

9. Appendix

9.1 Bug1
Lines of code = 575 lines
Global Memory Requirements:
2 – PositionType = 6 float = 24 bytes
3 – float = 12 bytes
5 – integer = 20 bytes
1 – double = 4 bytes
Total = 60 bytes

9.1.1 Map1
 1 2 3 4 5 6 7 8 9 10
Computation 394 434 407 361 405 357 451 409 328 422
Drive 3763 3801 3859 3732 3909 3986 3799 3872 3828 3703
Average Computation time: 397 ms
Average driving time: 3825 ms
Total Distance: 30.56 m
Total Turning: 102.51 Radians
PSD standard deviation limit = 3mm
Standard deviation of linear VW-Control limit = 0 mm
Standard deviation of rotational VW-Control limit = 0 degrees
Square-root = 1192, Pow = 2384, Geom = 2

9.1.2 Map2
 1 2 3 4 5 6 7 8 9 10
Computation 532 533 405 436 530 497 530 440 485 423
Drive 3172 3342 3486 3455 3361 3409 3361 3435 3406 3467
Average Computation time: 481 ms
Average Driving time: 3389 ms
Total Distance = 15.72 m
Total Turning = 54.834 Radians
PSD standard deviation limit = 0mm
Standard deviation of linear VW-Control limit = 0mm
Standard deviation of rotational VW-Control limit = 0 degrees
Square-root = 645, Pow = 1290, Geom = 3

9.1.3 Map3
 1 2 3 4 5 6 7 8 9 10
Computation 142 77 47 142 48 106 109 95 63 94
Drive 1280 1126 1156 1061 1155 1082 1094 1092 1156 1125
Average Computation Time: 92 ms
Average Drive Time: 1133 ms
Total Distance: 12.5 m
Total Turning: 43.25 Radians

 92

PSD standard deviation limit = 4mm
Standard deviation of linear VW-Control limit = 0mm
Standard deviation of rotational VW-Control limit = 0 degrees
Square-root = 475, Pow = 950, Geom = 2

9.2 Bug2
Lines of code = 565 lines
Global Memory Requirements:
2 – PositionType = 6 float = 24 bytes
3 – float = 12 bytes
5 – integer = 20 bytes
1 – double = 4 bytes
Total Requirement = 60 bytes

9.2.1 Map1
 1 2 3 4 5 6 7 8 9 10
Computation 641 405 578 673 512 566 658 562 716 468
Drive 5875 6127 5969 5859 6035 5980 5889 5813 5753 6063
Average Computation time: 578 ms
Average Drive time: 5936 ms
Total Distance: 50.3 m
Total Turning: 155.41 Radians
PSD standard deviation limit = 1mm
Standard deviation of linear VW-Control limit = 0mm
Standard deviation of rotational VW-Control limit = 0 degrees
Square-root = 1939, Pow = 5908, Geom = 6

9.2.2 Map2
 1 2 3 4 5 6 7 8 9 10
Computation 282 249 341 250 380 344 346 296 217 408
Drive 1843 1891 1721 1891 1745 1781 1811 1844 1783 1701
Average Computation time= 311 ms
Average driving time= 1801 ms
Total Distance = 7.46 m
Total Turning = 26.12 Radians
PSD standard deviation limit = 26mm
Standard deviation of linear VW-Control limit = 0mm
Standard deviation of rotational VW-Control limit = 1 degree
Square-root = 318, Pow = 896, Geom = 3

9.2.3 Map3
 1 2 3 4 5 6 7 8 9 10
Computation 78 32 31 78 16 16 78 47 108 15
Drive 391 452 454 406 468 468 391 438 376 469
Average Computation time = 50 ms
Average driving time = 431 ms

 93

Total Distance = 4.5 m
Total Turning = 15.36 Radians
PSD standard deviation limit = 75mm
Standard deviation of VW-Control limit = 3mm
Standard deviation of rotational VW-Control limit = 0 degrees
Square-root = 156, Pow = 484, Geom = 2

9.3 Alg1
Lines of code = 647 lines
Square-root =1514, Pow =3888, Geom = 13
Global Memory Requirements:
2 – PositionType (pos, targ) = 6 float = 24 bytes
3 – float = 12 bytes
6 – integer = 24 bytes
1 – double = 4 bytes
10 – PositionType (previous hit and leave points) = 30 float = 120 bytes
Total Requirement = 184 bytes

9.3.1 Map1
 1 2 3 4 5 6 7 8 9 10
Computation 813 767 814 750 690 746 656 959 752 1023
Drive 3375 3405 3342 3438 3497 3441 3531 3229 3420 3133
Average Computation time: 797 ms
Average Driving time: 3381 ms
Total Distance = 23.6 m
Total Turning = 88.66 Radians
Total turning without freespace = 85.551216 Radians
PSD standard deviation limit = 0mm
Standard deviation of linear VW-Control limit = 0mm
Standard deviation of rotational VW-Control limit = 1 degree
Square-root =1514, Pow =3888, Geom = 13

9.3.2 Map2
 1 2 3 4 5 6 7 8 9 10
Computation 864 766 624 761 721 987 863 728 672 702
Drive 1854 1921 2079 1942 1982 1716 1840 1991 2015 2001
Average Computation time: 769 ms
Average driving time: 1934 ms
Total Distance = 7.3 m
Total Turn = 28.85 Radians
Total turn without freespace = 25.478146 Radians
PSD standard deviation limit = 24mm
Standard deviation of linear VW-Control limit = 0mm
Standard deviation of rotational VW-Control limit = 1 degree
Square-root = 565, Pow = 1398, Geom = 5

 94

9.3.3 Map3
 1 2 3 4 5 6 7 8 9 10
Computation 78 63 93 47 62 123 109 78 141 107
Drive 500 515 470 500 516 455 469 484 437 471
Average Computation time = 90 ms
Average driving time = 482 ms
Total Distance = 4.44 m
Total Turning = 15.75 Radians
Total turning without freespace = 11.677344 Radians
PSD standard deviation limit = 100mm (maximum)
Standard deviation of linear VW-Control limit = 3mm
Standard deviation of rotational VW-Control limit = 1 degree
Square-root = 236, Pow = 642, Geom = 3

9.4 Alg2
Lines of code = 653 lines
Global Memory Requirements:
2 – PositionType (pos, targ) = 6 float = 24 bytes
4 – float = 16 bytes
6 – integer = 24 bytes
1 – double = 4 bytes
10 – PositionType (previous hit and leave points) = 30 float = 120 bytes
Total Requirement = 188 bytes

9.4.1 Map1
 1 2 3 4 5 6 7 8 9 10
Computation 676 815 670 887 623 792 625 705 659 699
Drive 4746 4467 4658 4410 4814 4661 4672 4780 4826 4785
Average Computation time: 715 ms
Average driving time: 4682 ms
Total distance = 15.54 m
Total turn = 157.2 Radians
Total turn with freespace not recorded = 50.947201 Radians
PSD standard deviation limit = 8mm
Standard deviation of linear VW-Control limit = 0mm
Standard deviation of rotational VW-Control limit = 1mm
Square-root = 1943, Pow = 3886, Geom = 291

9.4.2 Map2
 1 2 3 4 5 6 7 8 9 10
Computation 410 484 450 466 544 592 419 529 357 514
Drive 1668 1578 1644 1877 1550 1485 1581 1580 1737 1564
Average Computation time: 477 ms
Average driving time: 1626 ms
Total distance = 5.09 m
Total turn = 26.94 Radians

 95

Total turn without freespace = 13.644241 Radians
PSD standard deviation limit = 28mm
Standard deviation of linear VW-Control limit = 2mm
Standard deviation of rotational VW-Control limit = 1 degree
Square-root = 358, Pow = 716, Geom = 52

9.4.3 Map3
 1 2 3 4 5 6 7 8 9 10
Computation 174 62 110 157 78 124 111 48 157 126
Drive 904 985 968 936 1001 954 982 1014 890 936
Average Computation time = 115 ms
Average driving time = 957 ms
Total distance = 4.22 m
Total turn = 37.46 radians
Total turn without freespace = 13.345954 radians
PSD standard deviation limit = 95mm
Standard deviation of VW-Control limit = 4mm
Standard deviation of rotational VW-Control limit = 0 degrees
Square-root = 269, Pow = 538, Geom = 73

9.5 Distbug
Lines of code = 604 lines
Global Memory Requirements:
2 – PositionType (pos, targ) = 6 float = 24 bytes
3 – float = 12 bytes
5 – integer = 20 bytes
1 – double = 4 bytes
Total Requirement = 60 bytes

9.5.1 Map1
 1 2 3 4 5 6 7 8 9 10
Computation 545 528 593 551 566 533 686 466 519 721
Drive 4252 4253 4188 4246 4199 4249 4110 4331 4263 4075
Average Computation time: 571 ms
Average Driving time: 4212 ms
Total distance = 15.26 m
Total turn = 140.28 Radians
Total turn without freespace = 47.344215 Radians
PSD standard deviation limit = 5mm
Standard deviation of linear VW-Control limit = 0mm
Standard deviation of rotational VW-Control limit = 0 degrees
Square-root = 908, Pow = 1816, Geom = 278

9.5.2 Map2
 1 2 3 4 5 6 7 8 9 10
Computation 281 312 373 330 468 421 378 313 359 453

 96

Drive 1953 1656 1596 1639 1501 1564 1670 1656 1610 1531
Average Computation time: 369 ms
Average Driving time: 1638 ms
Total distance = 4.91 m
Total turn = 26.74 Radians
Total turn without freespace = 11.167029 Radians
PSD standard deviation limit = 14mm
Standard deviation of linear VW-Control limit = 2mm
Standard deviation of rotational VW-Control limit = 1 degree
Square-root = 278, Pow = 556, Geom = 53

9.5.3 Map3
 1 2 3 4 5 6 7 8 9 10
Computation 190 125 110 63 107 93 109 95 124 170
Drive 920 984 1015 1062 1002 1048 1001 1030 955 908
Average Computation time = 119 ms
Average driving time = 993 ms
Total Distance = 4.2 m
Total turning = 36.48 Radians
Total turn without freespace = 11.645906 Radians
PSD standard deviation limit = 11mm
Standard deviation of linear VW-Control limit = 2mm
Standard deviation of rotational VW-Control limit = 0 degrees
Square-root =231, Pow = 462, Geom = 66

9.6 Tangentbug
Lines of Code = 843 lines
Global Memory Requirements:
2 – Position Type = 6 float = 24 bytes
4 – float = 16 bytes
8 – int = 64 bytes
3 degrees between samples – 120 samples = 120 ints = 480 bytes
20 nodes – 40 ints and 60 floats = 400 bytes
Total memory requirement: 984 bytes

9.6.1 Map1
 1 2 3 4 5 6 7 8 9 10
Computation 139 94 93 109 157 125 155 156 126 171
Drive 721 750 751 750 703 734 704 688 687 689
Average Computation time: 133 ms
Average driving time: 718 ms
Total distance = 4.75 m
Total turn = 22.50 Radians
Total turn without freespace and)(θr = 11.618871 Radians
PSD standard deviation limit = 2mm
Standard deviation of linear VW-Control limit = 1mm

 97

Standard deviation of rotational VW-Control limit = 1 degree
Square-root = 46, Pow =52, Geom = 35

9.6.2 Map2
 1 2 3 4 5 6 7 8 9 10
Computation 392 345 201 296 251 231 297 233 391 391
Drive 764 811 939 844 905 925 859 908 766 766
Average Computation time: 303 ms
Average driving time: 849 ms
Total Distance = 4.63 m
Total turn = 10.37 Radians
Total turn without freespace and)(θr = 4.310099 Radians
PSD standard deviation limit = 38mm
Standard deviation of linear VW-Control limit = 2mm
Standard deviation of rotational VW-Control limit = 1 degree
Square-root = 26, Pow = 28, Geom = 21

9.6.3 Map3
 1 2 3 4 5 6 7 8 9 10
Computation 140 109 140 109 171 94 93 142 126 141
Drive 657 688 688 719 658 718 719 686 687 687
Average Computation time = 127 ms
Average driving time = 691 ms
Total Distance = 3.33 m
Total turn = 24.94 Radians
Total turn without freespace and)(θr = 12.776836 Radians
PSD standard deviation limit = 5mm
Standard deviation of linear VW-Control limit = 1mm
Standard deviation of rotational VW-Control limit = 1 degree
Square-root = 4736, Pow = 9442, Geom = 8902

9.7 D*
Lines of Code = 931 lines
ArcEnd structure = 4 + 1 = 5 bytes
Cell structure = 4x4 + 1 + 1 + 5x8 = 58 bytes
Grid class = 36 + 81x81x58 = 380,574 bytes
Open list class = 4x100000 = 400,000 bytes
Driving = 3x4 + 2x4 = 20 bytes
Discrepancy class = 8 bytes
User Interface = 16 bytes
Timer = 16 bytes
Total memory = 780692 bytes

9.7.1 Map1
 1 2 3 4 5 6 7 8 9 10
Computation 61 78 31 31 31 47 62 31 47 46

 98

Drive 564 563 594 609 609 594 547 594 593 594
Average Computation time = 47 ms
Average driving time = 586 ms
Total Distance = 4.33 m
Total Turn = 17.28 Radians
PSD standard deviation limit = 9mm
Standard deviation of linear VW-Control limit = 36mm
Standard deviation of rotational VW-Control limit = 6 degrees
Number of calls to process state: 2034

9.7.2 Map2
 1 2 3 4 5 6 7 8 9 10
Computation 79 126 92 142 79 32 141 94 79 79
Drive 843 843 924 874 921 1000 859 922 937 937
Average Computation time = 94 ms
Average driving time = 906 ms
Total Distance = 4.4 m
Total Turn = 12.57 Radians
PSD standard deviation limit = 15mm
Standard deviation of VW-Control limit = 29mm
Standard deviation of rotational VW-Control limit = 6 degrees
Number of calls to process state: 2424

9.7.3 Map3
 1 2 3 4 5 6 7 8 9 10
Computation 9673 9626 9687 9627 9671 9641 9640 9625 9643 9658
Drive 452 468 391 436 438 453 407 484 436 405
Average Computation time = 9650 ms
Average drive time = 437 ms
Total Distance = 4.24 m
Total Turn = 12.57 Radians
PSD standard deviation limit = 8mm
Standard deviation of VW-Control limit = 9mm
Standard deviation of rotational VW-Control limit = 0 degrees
Number of calls to process state: 83855

 99

10. References

[1] M. Brain, “Robotic Nation”, http://marshallbrain.com/robotic-nation.htm

[2] Robocup official site, http://www.robocup.org/

[3] V. Lumelsky and P. Stepanov. “Dynamic Path Planning for a Mobile Automaton with
Limited Information on the Environment”. IEEE Transactions on Automatic Control.
Volume 31 No.11. Pages 1058-1063. Nov 1986

[4] A. Sankaranarayanan and M. Vidyasagar, “A New Path Planning Algorithm For
Moving A Point Object Amidst Unknown Obstacles In A Plane”, IEEE Conference on
Robotics and Automation, pages 1930-1936, 1990

[5] A. Sankaranarayanan and M. Vidyasagar, “Path Planning For Moving A Point Object
Amidst Unknown Obstacles In A Plane: A New Algorithm And A General Theory For
Algorithm Development”, Proc. of the 29th Conference on Decision and Control, pages
1111-1119, 1991

[6] I. Kamon and E. Rivlin. “Sensory-Based Motion Planning with Global Proofs”. IEEE
Transactions on robotics. Volume 13(6), pages 814-821. 1997

[7] I. Kamon, E. Rivlin and E. Rimon, “A new Range-Sensor Based Globally Convergent
Navigation Algorithm for Mobile Robots”, Techion Department of Computer Science, 1995

[8] S. Laubach and J. Burdick, “An autonomous Sensor-Based Path-Planner for Planetary
Microrovers”, Proc. of the 1999 IEEE Conference on Robotics and Automation, pages 347-
354, May 1999.

[9] J. Latombe. “Robot Motion Planning”, Kluwer Academic Publishers, 1991

[10] A. Stentz, “Optimal and Efficient Path Planning for Partially-Known Environments”,
Proc. of IEEE Conference on Robotic Automation, pages 3311-3317,1994.

[11] J.B. Hayet, F. Lerasle and M. Devy, “A visual landmark framework for indoor mobile
robot navigation”, Proc. of the 2002 IEEE International Conference on Robotics and
Automation, pages 3942-3947, 2002

[12] M. Batalin, G. Sukhatme and M. Hattig, “Mobile Robot Navigation using a sensor
network”, Proc. of the 2004 IEEE Conference on Robotics and Automation, 2004

[13] R. Peterson and D. Rus, “Interacting with Sensor Networks”, Proc. of the 2004 IEEE
Conference on Robotics and Automation, 2004

[14] G. Kantor and S. Singh, “Preliminary Results in Range-only Localisation and
Mapping”, Proc. of the 2002 IEEE Conference on Robotics and Automation, 2002

