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Abstract 
 

This thesis compares and analyses the practical aspects of path-planning and navigation 

algorithms for autonomous robots.  The algorithms bug1, bug2, alg1, alg2, distbug, 

tangentbug and D* were implemented and simulated on the EyeSim simulator.  For each 

algorithm, data was gathered about its relative complexity, memory requirements, path 

length, rotation, computation time and robustness against error. 

 

Subsequent analysis shows that tangentbug and D* produce the shortest path length and 

lowest rotation.  Surprisingly, tangentbug and D* also had very low average total 

computation times and D* was the most inexpensive algorithm on enclosed and open maps.  

D* was also the most robust algorithm due to its segmentation.  Conversely, Bug1 and 

Bug2 were the simplest, required the least amount of memory and were very competitive 

on total computation time.   
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Overall, if a cheap, computationally inexpensive, low memory and simple solution is 

required, bug1 is recommended on enclosed maps otherwise bug2 should be chosen.  If fast 

convergence, robustness and low computation time are desired attributes, D* should be 

chosen unless the map involves a local minimum.  In that case, tangentbug should be 

chosen.  If a compromise is sought, alg2 should be chosen on enclosed maps, otherwise 

pick distbug. 
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1. Introduction 
 

Imagine driving to work, walking to a colleague’s office or simply taking a walk along the 

beach.  This appears easy because humans navigate subconsciously, taking for granted their 

navigation abilities.   However, writing a formal navigation procedure to replicate this is 

not easy. 

 

It is envisaged that robots will someday replace human labour in menial tasks such as 

cleaning and driving [1].  Robocup has an ambitious goal that by 2050 a team of robot 

soccer players will defeat the human FIFA world champions [2].  These ambitious tasks all 

rely on successful navigation to move around in the real world.  Therefore, successful 

navigation is a fundamental requirement for autonomous, independent robots. 

 

This thesis examines several navigation algorithms using the EyeSim simulator.  Whilst 

acknowledging the theory, the emphasis is on the practical aspects.  In particular, 

implementation issues will be discussed and observable results used to draw key 

conclusions about the algorithm’s practical usability. 

 

Firstly, the objective is presented and the algorithms are introduced.  Secondly, the 

implementation of each algorithm is discussed along with implementation problems 

encountered.  Thirdly, results and analysis are presented for experiments conducted. 
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2. Objective 
 

A 2-dimensional environment is set with a start and a goal.  A finite number of arbitrarily 

shaped obstacles, each of finite area, are then placed in the environment.  These obstacles 

cannot overlap the start or goal.  The robot starts at the start and its objective is to find an 

obstacle-free, continuous path from start to the goal.  Figure 2-1 shows sample 

environments with the green tile marking the start and the red tile marking the goal. 

 

       
Figure 2-1 Sample navigation environments 

 

Initially, the robot is only given the direction and distance of the goal.  No knowledge about 

the map is given prior to starting.  The robot is equipped with Position Sensitive Devices 

(PSDs) which return the distance to the nearest obstacle in its pointed direction.  The robot 

is modeled as a point object with no size and is able to travel through gaps of any size. 

 

A successful algorithm needs to be convergent as a prerequisite.  That is, it needs to find a 

path to the goal if such a path exists.  If no such path exists, it must stop and inform the user 

that the target is unreachable.  If an algorithm is convergent, it is then assessed on the 

following attributes: 
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• Path Length.  The distance of the path from start to finish.  This should be as short 

as possible. 

• Computation time.  The algorithm’s total execution time excluding time spent 

driving.  This should be as short as possible and is driven by the following sub-

attributes: 
o Number of calls to the math-library.  A factor which affects computation 

time is the number of calls to the math library.   
o Computation time per metre traveled.  Algorithms which have a short path 

length carry this advantage into computation time calculations.  Calculating 

computation time per metre traveled removes this advantage. 

• Rotation.  The amount of turning which is performed along the path from start to 

finish.  This should be as low as possible.   

• Inherent rotation.  Some rotation is hardware dependant and this is filtered out in 

this measurement.   

• Robustness.  The algorithm’s ability to tolerate PSD error, linear driving error and 

rotational driving error.  This should be as high as possible. 

• Memory requirements.  The amount of global memory reserved by the algorithm.  

This should be as low as possible. 

• Simplicity.  This is measured by the lines of code required for implementation.  

This should be as low as possible. 
 

Attribute measurements are taken from the simulator or the source code.  However, the 

algorithm implementation will undoubtedly influence the measurements.  Therefore, it is 

imperative that the implementation be understood before the measurements can be used to 

draw general conclusions.  
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3. Convergent Algorithms 
 

This section introduces algorithms which were implemented and simulated.  All algorithms 

are proven convergent in their respective papers.  Firstly, it is convenient to introduce 

notation common to all bug algorithms.  These are: 

• Hi  – the ith hit point.  This is the first point of contact between the robot and the ith 

obstacle. 

• Li – the ith leave point.  This is the point at which the robot leaves the ith obstacle. 

• S – the starting position. 

• T – the goal position.  Also called the target or finish. 

• x – the robot’s current position. 

• d(a, b) – the Euclidean distance between arbitrary points a and b. 

• dpath(a, b) – the robot’s path length between arbitrary points a and b. 

• r – the maximum range of the PSD sensors. 

• )(θr  – the free-space in a given direction θ .  This is the distance between the robot 

and the first visible obstacle in the directionθ . 

• F – the free-space in the target’s direction.  It should be noted that F = )(θr  where 

θ  is the target’s direction. 
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3.1 The Bug1 Algorithm 
 

The bug1 algorithm was the first bug algorithm created by Lumelsky and Stepanov in 1986 

[3].  Bug1’s statechart diagram is depicted in Figure 3-1 and it works as follows: 

 

0) Initialize variable i to 0 

1) Increment i and move toward the target until one of the following occurs: 

• The target is reached.  Stop 

• An obstacle is encountered.  Label this point Hi and proceed to step 2. 

2)  Keeping the obstacle on the right, follow the obstacle boundary.  Whilst doing so, 

record the point where d(x,T) is minimal.  Label this point Li.  Do this until one of the 

following occurs: 

• Point Hi is reached.  Go to Step 3. 

• The target is reached.  Stop 

3) Test whether the target is reachable.  To do this, check if Hi = Li.  If so, the target is 

unreachable.  Stop.  Otherwise, choose the wall-following direction which minimises 

dpath(Hi, Li) and maneuver to Li.  At Li , proceed to step 1. 

 
Figure 3-1 Bug1’s statechart diagram 

 

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

entry/ Record hit point
do/ Check if robot at hit point
do/ Update closest point to target, label as leave point
do/ Check for target reached

Target Reached

Call from main / Initialize timers, driving

Target Unreachable

Target Unreachable[ hit point same as leave point ] / End timers, display stats

Target Reached / End timers, display stats

Leave the wall[ hit point not same as leave point ] / drive from hit point to leave point

Target Reached / End timers, display stats

Wall reached
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3.2 The Bug2 Algorithm 

 

The bug2 algorithm was also created by Lumelsky and Stepanov in 1986 [3].  It is less 

conservative than bug1 because it introduces a new concept called the M line.  Bug2’s 

statechart diagram is depicted in Figure 3-2 and it works as follows: 

 

0) Initially, plot an imaginary line, M, directly from start to target and initialise i to 0. 

1) Increment i and follow the M line towards the target until either: 

• The target is reached.  Stop 

• An obstacle is hit.  Label this point Hi.  Go to step 2 

2)  Keeping the obstacle on the right, follow the obstacle boundary.  Do this until either: 

• A point along M is found such that d(x, T) < d(Hi, T).  Label this point Li.  Go to step 

1. 

• The target is reached.  Stop. 

• The robot returns to Hi.  The target is unreachable.  Stop. 

 
Figure 3-2 Bug2’s statechart diagram 

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

do/ Check if current hit point reached
do/ Check if M line reached
do/ Check for target reached
do/ Check if at previous hit or leave point

Target Reached Target Unreachable

Call from main / Initialize timers, driving

Wall reached / Record hit point

Robot on M line[ closest ] / Record leave point

Target Reached / End timers, display stats

Target Reached / End timers, display stats

Robot at current hit point
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3.3 The Alg1 algorithm 
 

The Alg1 algorithm is an extension of the Bug2 algorithm invented by Sankaranarayanan 

and Vidyasagar in 1990 [4].  Bug2’s vulnerability is that it can trace the same path twice.  

To avoid this, Alg1 remembers previous hit and leave points and uses them to generate 

shorter paths.  Alg1’s statechart diagram is depicted in Figure 3-3 and it works as follows: 

 

0) Initially, plot an imaginary line M directly from start to target and initialize i to 0. 

1) Increment i and follow the M line toward the target until either: 

• The target is reached.  Stop 

• An obstacle is hit.  Define this point Hi.  Go to step 2 

2) Keeping the obstacle on the right, follow the obstacle boundary.  Do this until one of the 

following occurs: 

• The target is reached.  Stop. 

• A point y is found such that 

o  it is on M 

o d(y, T) < d(x, T) for all x ever visited by the robot along M and  

o The robot can move towards the target at y.   

Define this point Li and go to step 1. 

• A previously defined point Hj or Lj is encountered such that j<i.  Turn around and 

return to Hi.  When Hi is reached, follow the obstacle boundary keeping the wall on 

the left.  This rule cannot be applied again until Li is defined. 

• The robot returns to Hi.  The target is unreachable.  Stop 
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Figure 3-3 Alg1’s statechart diagram 

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

do/ Check if current hit point reached
do/ Check if M line reached
do/ Check for target reached
do/ Check if at previous hit or leave point

Target Reached Target Unreachable

Call from main / Initialize timers, driving

Follow the Wall - opposite 
direction

do/ Check if target reached
do/ Check if M line reached
do/ Check if at current hit point

Wall reached / Record hit point

Target Reached / End timers, display stats Robot at current hit point

Robot on M line[ freespace, closest ] / Record leave point

Robot on M line[ freespace, closest ] / Record leave point

Target Reached / End timers, display stats

Robot at current hit point

Robot at previous hit or leave point / Turn and return to current hit point
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3.4 The Alg2 algorithm 

 

The Alg2 algorithm is an improvement from the Alg1 algorithm invented by 

Sankaranarayanan and Vidyasagar in 1990 [5].  The robot abandons the M-line concept and 

a new leaving condition is introduced.  Alg2’s statechart diagram is depicted in Figure 3-4 

and it works as follows: 

 

0)  Initialise Q = d(S, T) and i to 0. 

1)  Increment i and proceed in the direction of the target whilst continuously updating Q to 

d(x, T) if Q < d(x, T).  Q should now represent the closest the robot has ever been to the 

target.  Do this until one of the following occurs: 

• The target is reached.  Stop 

• An obstacle is encountered.  Label this point Hi and proceed to step 2. 

2)  Keeping the obstacle on the right, follow the obstacle boundary whilst continuously 

updating Q to d(x, T) if Q < d(x, T) until one of the following occurs: 

• The target is reached.  Stop 

• A point y is found such  

o that y < Q 

o The robot can move towards the target at y.  

Define this point Li and proceed to step 1. 

• A previously defined point Hj or Lj is encountered such that j<i.  Return to Hi.  

When Hi is reached, follow the obstacle boundary keeping the wall on the left.  This 

rule cannot be applied again until Li is defined. 

• The robot returns to Hi.  The target is unreachable.  Stop.  
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Figure 3-4 Alg2’s statechart diagram 

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

do/ Check if current hit point reached
do/ Check if closest to target than ever previously visited
do/ Check for target reached
do/ Check if at previous hit or leave point

Target Reached Target Unreachable

Follow the Wall - opposite direction

do/ Check if target reached
do/ Check if closest to target than ever previously visited
do/ Check if at current hit point

Call from main / Initialize timers, driving

Wall reached / Record hit point

Robot is closest to target[ freespace ] / Record leave point

Target Reached / End timers, display stats

Target Reached / End timers, display stats

Robot at current hit point
Robot at current hit point

Robot at previous hit or leave point / Turn and return to current hit point

Robot is closest to target[ freespace ] / Record leave point
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3.5 The Distbug algorithm 

The distbug algorithm was invented by Kamon and Rivlin in 1997 [6].  It is very similar to 

the Alg2 algorithm because it has a near identical leaving condition, with just a small, 

subtle difference.  See section 7.2 for more details.  The only real difference is that distbug 

does not maintain a list of previous points whereas Alg2 does.  Distbug’s statechart 

diagram is depicted in Figure 3-5 and it works as follows: 

 
0)  Initialise i=0 and Step to the wall thickness. 

1)  Increment i and move toward the target until one of the following occurs: 

• The target is reached.  Stop. 

• An obstacle is reached.  Denote this point Hi.  Go to step 2. 

2)  Turn left and follow the obstacle boundary whilst continuously updating the minimum 

value of d(x, T) and denote this value )(min Td . 

Keep doing this until one of the following occurs: 

• The target is visible: 0),( ≤− FTxd .  Denote this point Li.  Go to step 1. 

• The range based leaving condition holds: StepTdFTxd −≤− )(),( min .  Denote this 

point Li.  Go to step 1. 

• The robot completed a loop and reached Hi.  The target is unreachable.  Stop. 

Drive to Target

do/ Check for target reached
do/ Check for walls

Follow the Wall

do/ update closest distance to target - dmin(T)
do/ update freespace in target direction - F
do/ update current distance to target - d(x,T)

Target Reached Target Unreachable

Call from main / Initialize timers, driving and STEP

Wall reached

Target Visible or Range-based leaving condition holds

Target Reached / End timers, display stats

Target Reached / End timers, display stats

Robot at current hit point

 
Figure 3-5 Distbug’s statechart diagram 
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3.6 The tangentbug algorithm 

 

The tangentbug algorithm was invented by Kamon, Rivlin and Rimon in 1995 [7].  Since 

then, tangentbug has been recognised as an algorithm which produces very short paths 

given purely local information [8]. 

 

3.6.1 The Global Tangent Graph 

To understand how tangentbug works, consider the environment depicted in figure 3-6(a).  

Next, consider the convex vertices of all the obstacles which are circled orange in figure  

3-6(b).  Then, join each pair of non-obstructed vertices and include the start and target.  The 

result is the global tangent graph and this is depicted in figure 3-6(c).  It has been shown 

that the global tangent graph always contains the optimal path from start to finish [9].  As 

expected, figure 3-6(d) shows the optimal path for this particular map. 

 

3.6.2 The Local Tangent Graph 

However, the robot does not have global knowledge and tangentbug compensates by 

generating the local tangent graph (LTG).  A sample LTG graph is shown in figure 3-7.  

The LTG is generated by firstly gathering data for the function )(θr  and F.  )(θr  returns 

the distance to the first visible obstacle in a given direction θ .  Then, )(θr  is processed 

according to the following rules: 

• If 0),( ≤− FTXd , the target is visible.  Create a node, called T-node, on the target. 

• If rF ≥ , there are no visible obstacles in the target’s direction.  Create a T-node in 

the target’s direction.  This is illustrated by the T-node in figure 3-7. 

• Check the function )(θr  for discontinuities.  If a discontinuity is detected, create a 

node inθ ’s direction.  This is illustrated by nodes 1, 2, 3 and 4 in figure 3-7. 

• If )(θr = r (the maximum PSD range) and )(θr  subsequently decreases create a 

node inθ ’s direction.  This is illustrated by node 5 in figure 3-7.  Similarly, if 

rr ≠)(θ , and )(θr subsequently increases such that )(θr = r, create a node in θ ’s 

direction. 
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Figure 3-6 (a) Top Left.  The environment.  (b) Top Right.  All convex vertices are 

circled.  (c) Bottom Left.  The global tangent graph.  (d) Bottom Right.  The optimal 

path. 

 

After identifying the nodes, the optimal direction and distance is determined using the 

following procedure: 

• For each node, evaluate the distance d(Ni, T), where Ni is the ith node.   

• The node with the lowest d(Ni, T) is labeled the optimal node, N*.   

The robot should proceed to N* whilst continuously updating the local tangent graph and 

proceeding to the most recent N*.  In figure 3-7, N* is the T-node since the T-node is 

closest to the target. 
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Figure 3-7 The local tangent graph 

 

3.6.3 Local Minimums 

Figure 3-8 shows that sometimes the robot must travel away from the target in order to 

reach it.  This is defined as a local minimum.  When this happens, tangentbug goes into 

wall-following mode.  This involves choosing a wall following direction and following the 

wall using the LTG.  Whilst following the wall, tangentbug continuously updates two 

variables:  

• dfollowed(T) - This variable records the minimum distance to the target along the 

minimum-causing obstacle. 

• dreach(T) – Each step, tangentbug scans the visibile environment and for a point P, at 

which d(P,T) is minimal.  dreach(T) is then assigned to d(P,T) . 

 

The wall-following mode persists until one of the following occurs: 

• dreach(T) < dfollowed(T). 
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• The robot has encircled the minimum-causing obstacle. The target is unreachable.  

Stop. 

 
Figure 3-8 The robot in a local minimum 

 

The tangentbug algorithm can be summarised in figure 3-9. 

Drive to Target

do/ generate LTG
do/ Travel to optimal node

Follow the Wall

entry/ Initialize dfollowed
do/ Update dfollowed

Target Reached Target Unreachable

Call from main / Initialize timers and driving

Robot observes a point closer to the target than dfollowed

Robot has encircled followed obstacle

In minimum

Target Reached / End timers, display stats

 
Figure 3-9 Tangentbug’s statechart diagram 
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3.7 The D* algorithm 

 

The D* algorithm was invented by Stentz in 1994 [10].  Since its invention it has been 

successfully implemented on real world projects with very satisfactory results [8].  Along 

with tangentbug, D* is acknowledged as producing very short paths given purely local 

information [8]. 

 

The D* algorithm is very different from the bug algorithms.  It is a brute force algorithm 

which has some unique and interesting properties.  It segments the map into discrete areas 

called cells.  Each cell has a backpointer, representing the optimal traveling direction in the 

cell’s area, and costs for traveling to neighbouring cells.   

 

The formal low-level algorithm can be found in the source code and those details can be 

found in Stentz’s paper [10].  A more abstract, higher-level example is presented in 3.7.1 

and 3.7.2 

 

3.7.1 Generating an optimal path 

D* is best explained by example.  Let the goal be cell (5,3) and the robot’s initial position 

at (1,3) as depicted in figure 3-10(a).  Let the traveling cost be 1 when traveling 

horizontally or vertically and 2 when traveling diagonally. 

 

Then, D* generates table 3-1 for cells surrounding G: 

Position 

(1) 

Nearest cell with 

backpointer or Goal (2) 

Cost from (1) 

to (2) 

Cost from (2) to G Total cost 

(5,4) G 1 0 1 

(5,2) G 1 0 1 

(4,3) G 1 0 1 

(4,2) G 1.414 0 1.414 

(4,4) G 1.414 0 1.414 

Table 3-1.  The first table generated in the D* algorithm. 
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Table 3-1 shows that cells (5,4), (5,2)  and (4,3) have the lowest total cost.  Those cells set 

their backpointers towards the goal as depicted in figure 3-10(b).  Then, the neighbours of 

G, (5,4), (5,2) and (4,3) are considered for the total minimum cost to goal in table 3-2: 

 

Position  

(1) 

Nearest cell with 

backpointer or Goal (2) 

Cost from (1) to (2) Cost from (2) to G Total 

Cost 

(4,4) G 1.414 0 1.414 

(4,2) G 1.414 0 1.414 

(3,3) (4,3) 1 1 2 

(5,1) (5,2) 1 1 2 

(5,5) (5,4) 1 1 2 

(3,2) (4,3) 1.414 1 2.414 

(4,5) (5,4) 1.414 1 2.414 

(4,1) (5,2) 1.414 1 2.414 

(3,4) (4,3) 1.414 1 2.414 

Table 3-2.  The second table generated by D* 

 

Table 3-2 shows that cells (4,4) and (4,2) have the lowest total cost.  Those cells set their 

backpointers towards the goal position and the grid is depicted in figure 3-10(c).   

 

This process keeps repeats itself until the robot’s position contains a backpointer or the 

whole grid is filled.  If a cell contains a backpointer, it represents the least cost traveling 

direction to goal.  Figure 3-10(d) shows the 5x5 grid with G and backpointers leading to G.  

As can be verified, following any given backpointer trail will produce a path of least cost.  

This process is how D* generates optimal paths. 
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Figure 3-10.  (a) Top left.  The initial grid.  (b) Top right.  The grid after data from 

table 3-1 is entered.  (c)  Bottom left.  The grid after data from table 3-2 is entered.  (d)  

Bottom right.  The final grid. 

 

3.7.2 Accounting for Obstacles 

D* represents obstacles by largely increasing cost to travel to, but not from, obstacle cells.  

That is, if an obstacle exists on a cell O, the travel cost from O’s neighbour cells to O 

becomes some large predefined value.  Figure 3-11(a) shows that an obstacle at (3,3) has 

been detected.  The arcs shown lead to the obstacle cell and their associated cost becomes 

very large. 

 

Once travel costs are modified, D* recomputes the cell backpointers to ensure they are still 

optimal.  D* does this by firstly considering cells which have a backpointer to cell (3,3).  It 

generates table 3-3: 
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Position  

(1) 

Nearest cell with 

backpointer or Goal (2) 

Cost from (1) to (2) Cost from (2) to G Total 

Cost 

(2,2) (3,2) 1 2.414 3.414 

(2,4) (3,4) 1 2.414 3.414 

(2,3) (3,4) 1.414 2.414 3.828 

Table 3-3.  The first table drawn after an obstacle was detected at (3,3). 

 

Table 3-3 shows that cells (2,2) and (2,4) have a new minimum cost and change their 

backpointers to the cell specified in column 2.  The updated grid is shown in figure  

3-11(b). D* repeats this process again and generates table 3-4. 

 

Position  

(1) 

Nearest cell with 

backpointer or Goal (2) 

Cost from (1) to (2) Cost from (2) to G Total 

Cost 

(2,3) (3,4) 1.414 2.414 3.828 

(2,1) (3,2) 1.414 2.414 3.828 

(2,5) (3,4) 1.414 2.414 3.828 

(1,4) (2,4) 1 3.414 4.414 

(1,2) (2,2) 1 3.414 4.414 

(1,3) (S) (2,2) 1.414 3.414 4.828 

(1,5) (2,4) 1.414 3.414 4.828 

(1,1) (2,2) 1.414 3.414 4.828 

Table 3-4.  The second table drawn after an obstacle was detected at (3,3) 

 

Table 3-4 shows that cells (2,3), (2,1) and (2,5) change their backpointers so that their costs 

to goal are minimised.  Hence, the updated grid is shown in figure 3-11(c). 

 

D* repeats this process until the minimum total cost in the generated table is greater or 

equal to the robot’s cost to goal following its current backpointer trail.  Once this occurs, it 

signals that further computation will not yield less costly paths than the current path.  

Following the example, table 3-5 is computed: 
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Position  

(1) 

Nearest cell with 

backpointer or Goal (2) 

Cost from (1) to (2) Cost from (2) to G Total 

Cost 

(1,2) (2,2) 1 3.414 4.414 

(1,4) (2,4) 1 3.414 4.414 

(1,3) (S) (2,3) 1 3.828 4.828 

(1,5) (2,4) 1.414 3.414 4.828 

(1,1) (2,2) 1.414 3.414 4.828 

Table 3-5.  The third table drawn after an obstacle was detected at (3,3) 

 

The terminating condition holds in table 3-6, and figure 3-11(d) shows the final grid. 

Position  

(1) 

Nearest cell with 

backpointer or Goal (2) 

Cost from (1) to (2) Cost from (2) to G Total 

Cost 

(1,3) (S) (2,3) 1 3.828 4.828 

(1,5) (2,4) 1.414 3.414 4.828 

(1,1) (2,2) 1.414 3.414 4.828 

Table 3-6.  The forth table drawn after an obstacle was detected at (3,3) 

 

Note that cell (2,3) does not point backwards towards the start, unlike the force-field 

heuristic technique!  D* maintains optimality and avoids getting stuck in local minimums 

which have troubled similar techniques [9].  However, as will be shown later, this comes at 

the cost of computation time. 

 

In D*, cost modification can be done at any time.  This allows the algorithm to dynamically 

adapt to unseen obstacles and generate new optimal paths.  D*’s costing mechanism also 

allows for terrain which is undesirable, but not necessarily an obstacle.  This is far better 

than the bug algorithms where the terrain is either traversable or an obstacle. 

 

3.7.3 Determining reachability 

Unreachability is determined by comparing the backpointer trail’s cost to the large 

threshold value of obstacles.  If the backpointer trail’s cost is greater than the threshold 

value, it implies that the optimal path crosses an obstacle and therefore the target is 
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unreachable.  Of course, the large threshold value should be chosen such that the cost of 

any sequence of backpointers which do not cross an obstacle will never exceed the large 

threshold value. 

 

 

 

   

   
Figure 3-11.  (a) Top left.  An obstacle cell is identified in position (3,3).  (b) Top right.  

The grid after data from table 3-3 is entered.  (c) Bottom left.  The grid after data 

from table 3-4 is entered.  (d) Bottom right.  The grid after data from table 3-6 is 

entered.  Once again, backpointers now represent optimal traveling directions.
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4. Algorithm Implementation 

 

4.1 Common Modules 
Typically, an algorithm is implemented in the navigation class and calls the common 

modules.  Common modules are used for consistency between simulations and modularity.  

For instance, all navigation algorithms require completion time to be measured and the 

timer module provides methods specifically for that purpose.  Figure 4-1 shows the 

common modules and the navigation module which can be altered for implementing a 

specific algorithm. 

Smart Moving

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
face_target()
face_original()
orientate_to_wall(PositionType* coords)
drive_to_point(float distance, float direction)

User Interface
targ_dire : Integer
targ_dist : Double
g_r : Integer
g_c : Integer

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer
deg_to_rad() : Double
generate_targ_coords()

Helper
pos : PositionType
targ : PositionType
targ_dire : float
targ_dist : float

get_dist(PositionType* a, PositionType* b) : float
deg_to_rad(int degrees) : float
rad_range(float x) : float
pol_to_rect(float r, int theta, PositionType* ans) : PositionType
get_targ_dist() : float
get_targ_dire() : float
get_rel_targ_dire() : float
get_rel_dire(PositionType* p) : float

Driving
total_dist : float
total_turn : float

initialize_driving()
get_total_dist() : float
get_total_turn() : float
turn(float rads, bool record)
drive(float distance)
curve(float rads, float distance)

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

Navigation

main()

 
Figure 4-1 The class diagram of the common modules. 

 

4.1.1 The timer module 

This module’s function is to measure the algorithm’s time performance.  In particular, it 

measures computation and driving time and returns these times upon request.  Although 

driving time is not measured in this study, it may be needed in future.   
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The timer module fulfills its role by providing an abstract interface to the c function 

clock().  The clock() function returns the time (in milliseconds) spent in the processor of the 

calling process since execution began.  Note that the clock() does not include the time 

which the thread is sleeping. 

 

4.1.2 The helper module 

The helper module provides low-level support to other modules.  In particular, the robot 

can get the target’s distance and direction by calling methods found in the helper module.  

Currently, the helper module relies on dead-reckoning to generate answers.  In a future 

version, if landmark recognition or sensor networks are used, these functions can be 

changed and the rest of the system need not know. 

 

4.1.3 The user interface module 

The user interface module’s role is to interface between the program and the user.  When 

the program starts, it allows the user to edit the desired direction and distance of the goal.  

Figure 4-2(a) shows the screen which allows the user to edit the distance to goal and figure 

4-2(b) shows the screen which allows the user to edit the direction to goal.  

   
Figure 4-2 (a) Left.  The user can edit the distance to goal.  (b) Right.  The user can 

edit the direction to goal. 

 

The user interface module also displays the navigation results to the user.  Figure 4-3 shows 

the screens which appear when convergence is achieved.  Figure 4-3(a) shows computation 

and driving time, in milliseconds.  Figure 4-3(b) shows distance traveled in metres and the 

rotation in radians. Figure 4-3(c) shows the number of calls to the math library or process-

state() if D* is run. 
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Figure 4-3 (a) Left.  Computation and driving times.  (b) Centre.  Total distance 

traveled and total rotation performed.  (c) Right.  Calls to the maths library or 

process-state() in D*. 

 

4.1.4 The driving module 

The driving module’s purpose is to record the total distance traveled and the total rotation 

performed.  Essentially, it provides a simpler interface to the VW driving interface and 

extends functionality by tracking total distance and rotation. 

 

It allows the caller to specify whether it wishes to record a turning request in total_turn.  As 

will be seen later, some turning is not inherently generated by the algorithm.  Instead, it is 

hardware dependant and it may be interesting to remove this component from rotation 

results. 

 

The driving module calls the timer module so that driving time is properly separated from 

computation time.  Figure 4-4 shows the drive function in the driving module.  It calls 

end_think_start_drive() to denote that driving has started and then end_drive_start_think() 

to denote that driving has ended.  Note that during driving, VWDriveWait() is not called 

and a busy loop has replaced it.  This is because VWDriveWait() puts the navigation 

process to sleep and this distorts driving time results. 
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void drive(float distance){ 
 total_dist = total_dist + distance; 
 end_think_start_drive(); 
 VWDriveStraight(vw, distance, LINEAR_VELOCITY); 
 while(VWDriveDone(vw) == 0){ 
  KEYRead(); 
 } 
 end_drive_start_think(); 
 VWGetPosition(vw, &pos); 
} 

Figure 4-4 The drive method 

 

4.1.5 The smart moving module 

The smart driving module’s role is to provide abstract driving functions as required by the 

main navigation algorithm.  Most of its public methods are self-explanatory, but its most 

complicated method, follow_the_wall(), is depicted in figure 4-5. 

 
void follow_the_wall(bool is_on_right){ 
 if(is_on_right){ 
  if(has_wall_been_reached()){ 
   turn_not_move(FALSE); 
  } 
  else if(PSDGet(psd_right) > WALL_DISTANCE+THRESHOLD){ 
   turn_and_move(TRUE); 
  } 
  else{ 
   follow_wall_straight(TRUE);    
  } 
 } 
 else{ 
  if(has_wall_been_reached()){ 
   turn_not_move(TRUE); 
  } 
  else if(PSDGet(psd_left) > WALL_DISTANCE+THRESHOLD){ 
   turn_and_move(FALSE); 
  } 
  else{ 
   follow_wall_straight(FALSE); 
  } 
 } 
} 

Figure 4-5.  The follow_the_wall method 

 

Initially, the method checks if a wall is in front of the robot.  If so, the robot calls 

turn_not_move() and the robot turns on the spot as shown in figure 4-6(a).  Otherwise, the 

robot checks if a wall is to the right of the robot.  If so, the robot calls 

follow_wall_straight() and the robot follows the wall as shown in figure 4-6(c).  If not, the 
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robot calls turn_and_move the robot turns and moves as shown in figure 4-6(b).  After 

calling the above methods robot aligns to the wall by calling the orientate_to_wall() method 

as depicted in figure 4-6(d). 

 

Presently, this uses a proportional-derivative controller to ensure that the wall is followed 

closely.  However, more advanced PID or fuzzy logic controllers can easily be 

implemented by updating only the smart moving module. 

   
 

   
Figure 4-6.  (a) Top left.  Turn_not_move().  (b) Top right.  Turn_and_move() (c) 

Bottom left.  Follow_wall_straight() (d) Bottom right.  Orientate_to_wall()
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4.2 Bug1 Implementation 

The bug1 algorithm is implemented by calling methods from the common modules as 

shown in figure 4-7.  It shows that Bug1 implements the “drive to target” and “follow the 

wall” states prescribed in figure 3-1 using the methods drive_to_target() and 

follow_wall_Bug1() respectively.  Another method, Bug1(), is used to coordinate the state 

transitions prescribed in figure 3-1. 

 
/*function orientates the eyebot to the target and drives towards it until either 
the target is reached or a wall is hit.*/ 
int drive_to_target(){ 
 face_target(); 
 while(TRUE){ 
  if(has_goal_been_reached()){ 
   face_original(); 
   return TARGET_REACHED; 
  } 
  else if(has_wall_been_reached()){ 
   return WALL_HIT; 
  } 
  drive(STEP); 
 } 
} 
 
/*function follows the wall according to the Bug1 algorithm*/ 
int follow_wall_Bug1(){ 
  
 PositionType leave;  //closest position to the target 
 PositionType hit;  //the current hit point 
 float min_dist;  //the closest displacement to the target 
 float dist_to_min=0;   //the number of steps to leave 
 float begin_dist = get_total_dist(); 
 
 initialize_PD(); 
 VWGetPosition(vw, &leave); 
 min_dist = get_targ_dist(); 
 VWGetPosition(vw, &hit); 
 
 orientate_to_wall(FALSE); 
 while(TRUE){ 
  if(get_dist(&hit, &pos)<=TARG_ERROR &&  

(get_total_dist()-begin_dist)>TARG_ERROR){ 
   break; 
  } 
  follow_the_wall(TRUE); 
  if(get_targ_dist()<min_dist){ 
   min_dist = get_targ_dist(); 
   VWGetPosition(vw, &leave); 
   dist_to_min = get_total_dist()-begin_dist; 
  } 
 } 
 
 /*Check the unreachability condition - if true then terminate*/ 
 if(get_dist(&leave, &hit)<=TARG_ERROR){ 
  face_original(); 
  return TARGET_UNREACHABLE; 
 } 
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 /*Determine the shortest route to the min point and turn left 
 or right accordingly.  Then follow the wall to the min point*/ 
 if(dist_to_min < (get_total_dist()-begin_dist)/2){ 
  while(get_dist(&leave, &pos)>=TARG_ERROR){ 
   follow_the_wall(TRUE); 
  } 
 } 
 else{ 
  turn(M_PI); 
  while(get_dist(&leave, &pos)>=TARG_ERROR){ 
   follow_the_wall(FALSE); 
  } 
 } 
 return MIN_REACHED; 
} 
 
/*function drives towards the target, using Bug1 algorithm*/ 
void Bug1(){ 
 
     int state = STEP1; 
     int response; 
 
     initialize_driving(); 
     initialize_timers(); 
     init_helper(); 
 
     while(TRUE){ 
   if(state==STEP1){ 
  response = drive_to_target(); 
  if(response==TARGET_REACHED){ 
   end_timers(); 

print_stats(TRUE, get_time_thinking(), get_time_driving(),  
get_total_dist(), get_total_turn(), num_sqrt, num_pow, 
num_geom); 

   break; 
  } 
  else if(response==WALL_HIT){ 
   LCDPrintf("Wall Hit\n"); 
   state = STEP2; 
   continue; 
  } 
   } 
   else if(state==STEP2){ 
  response = follow_wall_Bug1(); 
  if(response==MIN_REACHED){ 
   LCDPrintf("Minimum Point\n"); 
   state=STEP1; 
   continue; 
  } 
  else if(response==TARGET_UNREACHABLE){ 
   end_timers(); 

print_stats(FALSE, get_time_thinking(), get_time_driving(), 
get_total_dist(), get_total_turn(), num_sqrt, num_pow, 
num_geom); 

   break; 
   } 
    } 
     } 
} 

Figure 4-7.  Bug1 Navigation Module 



 34

4.3 Bug2 Implementation 

The bug2 navigation class calls the common modules in a similar fashion to bug1 described 

in section 4.2.1.  However, Bug2 requires an extension to the smart moving module to 

include a method which determines if it is on the M line.  A new method has been created 

in the smart moving module called is_on_M_line for this purpose.  The updated class 

diagram is displayed in figure 4-8. 

Smart Moving
old_error : Double

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
orientate_to_wall(bool isClock)
turn_not_move(bool isClock)
turn_and_move(bool isClock)
face_target()
face_original()
initialize_PD()
follow_wall_straight(bool isClock)
follow_the_wall(bool isClock)
is_on_M_line() : Boolean

 
Figure 4-8 The extended Smart Moving module for bug2 

To implement the is_on_M_line() function, consider the diagram in figure 4-9.  Let T be a 

vector to the target, P a vector to the robot’s current position and a some scalar such that 

the vectors P-aT and T are perpendicular. 

 
Figure 4-9 The vectors P-aT and T are perpendicular 

It follows from the dot product that: 
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Hence, aT can be calculated and its distance to P can be determined.  If this distance is less 

than a threshold value, the robot is on the M line.  Figure 4-10 shows the implementation of 

is_on_M_line() 
 
/*function determines whether the given point is on the M line*/ 
bool is_on_M_line(){ 
  
 PositionType closest; 
 float t = (targ.y*pos.y + targ.x*pos.x)/(pow(targ.x,2.0)+pow(targ.y,2.0)); 
 num_pow = num_pow+2; 
 if(t<0 || t>1){ 
  return false; 
 } 
 else{ 
  closest.x = t*targ.x; 
  closest.y = t*targ.y; 
  closest.phi = 0; 
  return (get_dist(&closest, &pos) <= TARG_ERROR); 
 } 
} 

Figure 4-10 The is_on_M_line() method 

 

4.4 Alg1 Implementation 

Alg1 requires two extensions to the smart moving module.  It needs to know if the robot is 

on the M line and the freespace, F.  The is_on_M_line() method, described in section 4.3, is 

reused.  However, a new method, freespace(), needs to be created to determine F.  Figure 4-

11 shows the updated Smart Moving module which includes the two new methods. 

Smart Moving
old_error : Double

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
orientate_to_wall(bool isClock)
turn_not_move(bool isClock)
turn_and_move(bool isClock)
face_target()
face_original()
initialize_PD()
follow_wall_straight(bool isClock)
follow_the_wall(bool isClock)
is_on_M_line() : Boolean
freespace() : Integer

 
Figure 4-11 The extended Smart Moving algorithm for Alg1 
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The freespace method returns F.  When the method is invoked, the target’s direction 

relative to the robot is firstly determined.  Then, the PSD rotationally closest to that 

direction is identified.  Subsequently, the robot rotates such that the PSD is facing the target 

and measures F using that PSD.  After that, the robot returns to its original orientation.  

This method is implemented in figure 4-12. 

 
/*function returns the freespace in the direction of the target 
function assumes that the PSDs are evenly spaced*/ 
int freespace(){ 
 float direction = get_rel_targ_dire(); 
 int index=0; 
 int answer; 
 
 /*determine the PSD closest to the relative direction*/ 
 while(direction < -M_PI/NUM_PSD){ 
  direction = direction + 2*M_PI/NUM_PSD; 
  index--; 
 } 
 while(direction > M_PI/NUM_PSD){ 
  direction = direction - 2*M_PI/NUM_PSD; 
  index++; 
 } 
 index = (index + NUM_PSD/2)%NUM_PSD; 
 
 /*turn towards the target and get the freespace*/ 
 turn(direction, FALSE); 
 answer = PSDGet(psd[index]); 
 turn(-direction, FALSE); 
 
 return answer; 
} 

Figure 4-12 The freespace method 

 

In this particular robot, there are 8 PSD sensors.  Figure 4-13 shows that each PSD covers a 

45 degree sector.  Hence, the maximum the robot needs to rotate to find F is 22.5 degrees.  

As expected, increasing the number of PSDs lowers the maximum rotation to find F and 

this must be factored into cost against performance decisions. 
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Figure 4-13 Each PSD covers a 45 degree sector.   Maximum rotation is 22.5 degrees. 

 

The alg1 algorithm also needs to record all hit and leave points encountered.  It does this by 

implementing a data-structure module which is described in figure 4-14. 

Data Structure
position : Integer
points : PositionType array

initialize_data()
list_enqueue(PositionType* p)
is_at_previous_point() : Boolean

 
Figure 4-14 The Data Structure Module 

 

The data structure is implemented as an array of PositionTypes.  The number of elements is 

predetermined and a fixed block of memory is allocated when the program is started.  

Figure 4-15(a) shows the data structure immediately after initialize_data() is called.  When 

list_enqueue() is called, a PositionType is stored in the element referenced by position.  

Figure 4-15(b) shows the data structure after one such call.  When is_at_previous_point() is 

called, the data structure checks if the robot’s current position is near any stored points.   
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Figure 4-15 (a) Left.  The data structure after initialization.  (b) Right.  The data 

structure after list_enqueue() is called. 

 

4.5 Alg2 Implementation 

The Alg2 algorithm is implemented by using the common modules and the extensions 

implemented previously.  In particular, Alg2 reuses the freespace() and data structure 

modules discussed in section 4.2.3.  It also uses the common modules to implement 

navigation states similar to the Bug1 implementation in section 4.2.1 

 

4.6 Distbug Implementation 

The distbug algorithm is simpler than the Alg2 algorithm in that it does not require the data 

structure module.  Apart from that, it is very similar to Alg2 and therefore its 

implementation is also very similar. 

 

4.7 Tangentbug Implementation 

The tangentbug algorithm has been modified from the original article.  In the original 

tangentbug generates the LTG continuously when moving.  In this implementation, 

tangentbug only generates the LTG when it has reached node positions.  This change is 

necessary to avoid excessive rotation and does not decrease performance on the three maps.   

 

The tangentbug algorithm is significantly more complicated than any of the previous bug 

algorithms.  It has modified the common modules extensively.  A redrawn class diagram is 

shown in figure 4-16.  
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Helper
pos : PositionType
targ : PositionType
targ_dire : float
targ_dist : float

get_dist(PositionType* a, PositionType* b) : float
deg_to_rad(int degrees) : float
rad_range(float x) : float
pol_to_rect(float r, int theta, PositionType* ans) : PositionType
get_targ_dist() : float
get_targ_dire() : float
get_rel_targ_dire() : float
get_rel_dire(PositionType* p) : float

User Interface

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer

Minimum
dfollowed

is_in_minimum()
dist_to_targ()
initialize_dfollowed()
check_all_points_on_line()
leaving_condition_holds()

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

Smart Moving

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
face_target()
face_original()
orientate_to_wall(PositionType* coords)
drive_to_point(float distance, float direction)

Node
nodes : node
num_nodes : Integer
optimal_node : Integer
wall_node : Integer

get_node_coordinates(int node_index) : PositionType
create_Tnode(float freespace)
process_nodes()
process_optimal()
wall_was_foreground() : Boolean
identify_nodes()

Navigation

main()

Driving
total_dist : float
total_turn : float

initialize_driving()
get_total_dist() : float
get_total_turn() : float
turn(float rads)
drive(float distance)

Data
r_of_theta : Integer Array

generate_r()
freespace_point(PositionType* p) : float
freespace() : float

 
4-16 The tangentbug class diagram 

 

4.7.1 The data module 

The tangentbug algorithm requires extensive collection of data for )(θr  and freespace 

toward a particular point.  The data module collects PSD data and stores it for use by the 

rest of the system. 

 

To achieve this in an optimal and efficient manner, the data module equally divides the 

scanning task between the eight PSDs.  Therefore, each PSD is responsible for collecting 

data about a 45 degree sector.  Each colour in figure 4-17 shows the division of sectors. 
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Figure 4-17 Each PSD collects data in its sector 

 

Then, this 45 degree sector is sampled according to a user-defined value 

DEG_BET_SAMPLES.  The default is 3 degrees, but this can be altered for greater 

accuracy.  Hence, each PSD will sample its sector 15 times, turning 3 degrees between each 

sample.  Figure 4-18 shows the source code which implements data gathering and figures 

4-19(a) and 4-19(b) shows the robot actually gathering data. 

 
void generate_r(){ 
 int reading_index; 
 int psd_index; 
 int readings_per_psd = 360/(NUM_PSD*DEG_BET_SAMPLES); 
 
 for(reading_index=0; reading_index<readings_per_psd; reading_index++){ 
  for(psd_index=0; psd_index<NUM_PSD; psd_index++){ 

r_of_theta[readings_per_psd*psd_index+reading_index] = 
PSDGet(psd[psd_index]); 

  } 
  turn(deg_to_rad(DEG_BET_SAMPLES), FALSE); 
 } 
 turn(-deg_to_rad(360/NUM_PSD), FALSE); 
} 

Figure 4-18 The generate_r method 

 

The sampled data is stored publicly in an array.  The number of elements in the array 

depends on DEG_BET_SAMPLES, which is assigned a default value of 3.  If this default is 

used, there are 120 elements in the array.  The 0th element contains the distance straight 

ahead of the robot and the ith element contains the distance on a DEG_BET_SAMPLES*i 

angle measured counterclockwise from straight ahead. 



 41

  
Figure 4-19 (a) Left.  The robot gathers data from all 8 PSD sensors (b) Right.  After a 

3 degree rotation, the robot gathers data from 8 PSD sensors again. 

 

4.7.2 The node module 

After the data has been collected, it is processed for nodes.  The node module identifies and 

processes nodes which are subsequently stored in a public array.  In addition, the optimal 

node, N*, and the wall node are identified.  Due to )(θr ’s discrete nature, discontinuity 

detection must be conducted by comparing values of )(θr .  A node is identified if: 

• the difference between two successive values of )(θr  is greater than a predefined 

threshold, or 

• One, and only one, of two successive values of )(θr  is equal to r, or 

• F > d(x, T), which means the target is visible, or 

• F = r, which means there are no visible obstacles in the target’s path. 

 

Once all nodes are identified, each node is processed by calculating d(Ni,T).  Then, the 

optimal node is identified by finding the node with the lowest value of  d(Ni,T).  

Subsequently, the wall node is identified by finding the node with the lowestθ  in )(θr .  

This is because )(θr  records measurements anti-clockwise where 0=θ  is straight ahead.  

Given that nodes are processed by increasingθ , the wall node is always the first identified 

node.  This process is summarised in the flow diagram in figure 4-20. 
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Figure 4-20 The node processing algorithm 

 

4.7.3 The minimum module 

If the tangentbug algorithm detects that the robot is in a local minimum, it calls the 

minimum module.  This minimum module’s role is to return whether or not the robot has 

met the leaving condition, dreach(T) < dfollowed(T).  This evaluation must be done using the 

least amount of computing resources possible.   

 

With this in mind, a strategy was created to evaluate dreach(T)  and dfollowed(T) and its source 

code is shown in figure 4-21.   Firstly, the minimum module queries the node module to 

find the wall node’s index in )(θr .  Denote this index w.  The indices from 0 to w represent 

the minimum causing obstacle and is used to evaluate dfollowed(T).  The remaining indices 

represent the sector which must be scanned to evaluate dreach(T). 
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To evaluate dfollowed(T), for each index from 0 to w determine the distance to target at end-

points.  In figure 4-22, these indices are indicated by the red lines and the points used for 

distance to target calculations are indicated by the black squares.  The shortest of these 

distances, since wall-following mode began, is recorded in dfollowed(T). 

 

To evaluate dreach(T), for the indices w+1 and 360/num_psd, determine the distance to target 

at regular intervals.  For the remaining indices, determine the distance to target only at end-

points.  In figure 4-22, these indices are indicated by the green lines and the points used for 

distance to target calculations are indicated by the orange squares.  The shortest of these 

distances, since the robot last refreshed )(θr , is recorded in dreach(T). 

 

This strategy may appear flawed because the target could be visible but dreach(T) would not 

record 0.  This can easily be remedied by including the freespace() method.  If F > d(x, T) 

this implies the target is visible and the robot would drive straight towards it. 
 
bool leaving_condition_holds(){ 
 int num_samples = 360/DEG_BET_SAMPLES; 
 int wall_index = nodes[wall_node].small_index; 
 int i; 
 float test, dreach; 
 
 /*update (global) dfollowed, if necessary*/ 
 for(i=0; i<=wall_index; i++){ 
  test = dist_to_targ(i); 
  if(test<dfollowed){ 
   dfollowed = test; 
  } 
 } 
 
 /*evaluate dreach*/ 
 dreach = check_all_points_on_line(i); 
 i++; 
 for(; i<num_samples-1; i++){ 
  test = dist_to_targ(i); 
  if(test<dreach){ 
   dreach = test; 
  } 
 } 
 test = check_all_points_on_line(i); 
 if(test<dreach){ 
  dreach=test; 
 } 
 
 /*evaluate leaving condition*/ 
 return dreach < dfollowed; 
} 

Figure 4-21 The leaving_condition_holds() method 
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Figure 4-22.  (a) Top left.  The scanning performed at its initial position.  (b) Top 

right.  The scanning performed after traveling one node.  (c) Bottom Left.  The 

scanning performed after traveling two nodes.  (d)  Bottom Right.  Freespace 

identifies a visible target.
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4.8 D* Algorithm Implementation 

 

The D* algorithm only reuses the timer module because it is fundamentally different than 

the other algorithms.  The implementation is heavily object-oriented due to the greatly 

increased complexity.  Figure 4-23 shows the D* class diagram. 

ArcEnd
cost : float
is_backpointer : Boolean

init_arc_end(float c, bool is_bp)
set_arc_cost(float c)
get_arc_cost() : float
set_arc_backpointer(bool is_bp)
get_arc_backpointer() : Boolean

OpenList
open : Cell
num_cells : Integer

init_list()
put_on_open_list(cell c)
Delete(cell c)
min_state() : Cell
get_kmin() : Double

DiscreteDriving
vw : VWHandle
current_row : Integer
current_column : Integer
current_direction : Integer
total_dist : Double
total_turn : Double

turn_range(int turn) : Integer
get_total_dist() : Double
get_total_turn() : Double
init_driving()
drive(int direction)
face_north()
get_current_row() : Integer
get_current_column() : Integer
get_current_direction() : Integer

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

User Interface
targ_dire : Integer
targ_dist : Double
g_r : Integer
g_c : Integer

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer
deg_to_rad() : Double
generate_targ_coords()

Cell
k : float
h : float
tag : Byte
row : Integer
column : Integer
arc_ends : ArcEnd
is_blocked : Boolean

init_cell(int row, int col)
get_row() : Integer
get_column() : Integer
get_k() : float
get_cell_cost(int direction) : float
set_cell_cost(int direction, float new_cost)
set_cell_backpointer(int direction)
is_cell_backpointer(int direction) : Boolean
h() : float
set_h(float h_new)
set_t(int new_tag)
t() : Integer
insert(float h_new)
get_backpointer_direction() : Integer
get_is_blocked() : Boolean
set_is_blocked(bool set)
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process-state() : Double
modify-cost() : Double
main()

Discrepancy
blocked_row : Integer
blocked_column : Integer

psd_range(int psd_index) : Integer
get_psd_index(int direction) : Integer
get_blocked_coords(int direction, int r)
process_surroundings()

Grid
the_grid : Cell
the_neighbour : Neighbour

get_dest_direction(cell destination, cell origin) : Integer
is_within_bounds(int row, int column) : Boolean
get_default_cost(int direction) : Double
c(cell destination, cell origin) : Double
set_cost(cell destination, cell origin, float new_cost)
b(cell destnation, cell origin)
is_backpointer(cell destination, cell origin) : Boolean
get_neighbours(cell c) : Neighbour
initialize_grid(int goal_row, int goal_column)
get_direction(int row, int column) : Integer
get_tag(int row, int column) : character
get_cell(int row, int column) : Cell

65616561

Neighbour
num_neighbours : Integer
cells : Cell

init_neighbours()
get_num_neighbours() : Integer
enqueue_cell(cell c)
get_enqueued_cell(index) : Cell

 
Figure 4-23 The D* class diagram 
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4.8.1 The cell class 

A cell represents an area which is treated as a discrete location.  Although this area can be 

of arbitrary shape, it has been implemented as a square of length 100mm. 

 

Each cell records: 

• its position on the grid.  This is purely for identification, cells do not need to know 

their position and behave in the same manner regardless of position. 

• its h value, as specified by the original article.  This represents the cost of reaching 

the goal following the cell’s current backpointer trail. 

• its k value, as specified by the original article.  This represents the lowest cost of 

reaching the goal ever recorded by the cell. 

• its arc-ends.  Each cell possesses 8 arc-end objects to record transition costs and 

backpointers. 

• if an obstacle exists on its position.  If so, blocked will be true. 

• its tag, as specified by the original article.  This can be one of three possible values: 

closed, open and new.   

o Closed means that process-state() has been run on that cell.  This implies 

that the cell has a backpointer and a minimum cost to goal established.   

o Open means that the cell is a neighbour of the goal cell or a cell which is 

closed.  Open cells are continually evaluated for minimum cost to goal in the 

table fashion described in section 3.7.  Once an open cell has the minimum 

cost on the table, process-state() is called and it becomes a closed cell. 

o New is the initial cell state and refers to cells which have not been processed 

and are not neighbours of closed cells. 

 

The cell class implements three functions required by the original article.  The h() and t() 

methods return the cell’s h value and tag respectively.  The insert() method updates the 

tags, k and h values. 
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4.8.2 The arc-end class 

Each cell possesses 8 arc-end objects, one for each direction: north, north-east, east, south-

east, south, south-west, west and north-west.  Each arc-end object stores the cost of moving 

from that particular cell in a specified direction.  In addition, arc-end stores whether the 

specified direction is the backpointer for the owning cell. 

 

4.8.3 The open-list class 

The open-list class maintains a table of open cells sorted by ascending k value similar to the 

tables in section 3.7.  It is implemented as a large array of cell pointers with the number of 

elements equal to the number of cells on the grid.  When a new cell is to be enqueued, it is 

sorted according to its k value. 

 

The open-list class implements the min-state() and get_kmin() calls prescribed by the 

original article.  min_state() returns the state with the minimum k value and is implemented 

by returning a pointer to the cell on top of the list.  get_kmin() returns the minimum k value 

and is implemented by querying and returning the k value of the cell on top of the list. 

 

The delete(cell x) function is also implemented by this class.  Although this function is 

supposed to remove any given cell from the open-list, the implementation disregards the 

parameter and simply deletes the cell with the minimum k-value, which always the cell at 

the top of the list.  This is because only process-state() calls this function and the only time 

when process-state() calls delete() is when it is deleting the cell with the minimum k-value. 

 

4.8.4 The grid class 

The grid class is composed of all cells in a grid-like formation analogous to the grid 

diagrams in section 3.7.  Since each cell is unaware of any other cell, the grid class serves 

as an interface when a caller requires operations conducted between two or more cells.  

This is particularly important when interfacing with functions prescribed by the original 

article.   
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A function prescribed by the original article is c(cell destination, cell origin) which returns 

the travel cost from the target cell to the destination cell.  Figure 4-24 shows how the grid 

class handles the call. 

 

AlgorithmsAlgorithms GridGrid CellCell ArcEndArcEnd

1: c(destination, origin)

2: get_dest_direction(destination, origin)

3: get_cell_cost(direction)

4: get_arc_cost()

5: return cost

6: return cost

7: return cost

 
Figure 4-24 The sequence diagram for the c call. 

 

Another function prescribed by the original article is b(destination, origin) which sets the 

origin’s backpointer in the destination’s direction.  Figure 4-25 shows how the grid class 

handles the call. 

AlgorithmsAlgorithms GridGrid CellCell ArcEndArcEnd

1: b(destination, origin)

2: get_dest_direction(destination, origin)

3: set_cell_backpointer(direction)

4: set_arc_backpointer(FALSE)

Reset all backpointers to 
false for all arcends

5: set_arc_backpointer(TRUE)

Set the backpointer 
specified by direction

 
Figure 4-25 The sequence diagram for the b call. 
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4.8.5 The neighbour class 

The neighbour class is a small data-structure designed to facilitate the transfer of valid 

neighbours surrounding a target cell. 

 

4.8.6 The discrepancy class 

The discrepancy class’s role is to use the PSD sensors to detect any differences between the 

robot’s map and the actual surroundings.  If it detects a discrepancy, it calculates the cell’s 

position based on the PSD reading.  Then, it sets the cell’s blocked attribute to TRUE and 

calls modify-cost() to generate the new optimal backpointer trail according to the procedure 

outlined in section 3.7.2. 

 

4.8.7 The algorithm class 

The algorithm class implements process-state() and modify-cost() functions exactly as 

specified in Stentz’s article.  process-state() and modify-cost() call functions implemented 

in the modules discussed previously.  The main() method is also included in the algorithm 

class and it coordinates navigation as a whole.  Figure 4-26 shows the main() method. 
 
num_calls=0; 
generate_target_coords(); 
initialize_timers(); 
init_driving(); 
initialize_grid(g_r,g_c); 
do{ 
 kmin = process_state(); 
} 
while(get_tag(get_current_row(), get_current_column()) != CLOSED && kmin!=NONE); 
while(!(get_current_row()==g_r && get_current_column()==g_c)){ 
 process_surroundings(); 
 drive(get_direction(get_current_row(), get_current_column())); 
} 
face_north(); 
end_timers(); 
print_stats(TRUE, get_time_thinking(), get_time_driving(),get_total_dist(), 
get_total_turn(), num_calls); 

Figure 4-26 the main method 
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4.9 Implementation issues 
 

4.9.1 Evaluation of Navigation conditions 

Evaluation of navigation conditions involves checking conditions specified by the 

navigation algorithm.  For example, updating F by calling freespace() or checking if the 

robot has reached the M line.  In theory, checking should occur continuously.  That is, as 

soon as a leaving condition holds, the robot should instantaneously realise it and take 

appropriate action.  Obviously, this cannot occur in practice. 

 

In practice, navigation conditions are regularly polled because it is impossible to generate 

an interrupt which doesn’t rely on polling at some fundamental level since this is 

measurement of the external environment.  The issue which needs to be resolved is how 

often (in terms of distance or time) the robot evaluates navigation conditions. 

 

In figure 4-27(a) the robot is polling too seldom and does not utilise the shortcut to goal.  In 

figure 4-27(b) the robot polls when it is over the gap allowing it to utilise the shortcut.  

However, polling too often is computationally expensive.  Therefore, the correct balance 

must be found between the two extremes. 

 

 
Figure 4-27 The green circles represent polling locations.  (a) Left.  The robot does not 

take advantage of a shortcut because it polls too infrequently.  (b) Right.  The robot 

takes advantage of a shortcut but it polls too frequently. 
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In this particular implementation, the robot takes a step of 40mm between each evaluation.  

It was found through numerous functionality iterations that this value achieved a good 

balance; however it is by no means perfect.  It can be altered using the STEP macro.   

 

In light of this implementation issue, algorithms which are proactive rather than reactive 

should be favoured.  That is, algorithms which decide on fixed traveling destinations, travel 

to them, collect data and then decide on the next destination should be favoured over those 

which react to the external environment spontaneously. 

 

The bug1, bug2, alg1, alg2 and distbug algorithms are all reactive since they all take 

measurements of the external environment according to the step size.  The modified 

tangentbug algorithm is proactive because it navigates to nodes and then evaluates 

navigation conditions.  D* evaluates conditions at each cell and sleeps during moving.  

Hence, tangentbug and D* are most desirable due to their proactive nature. 

 

4.9.2 Recognition of previous points 

The bug1, bug2, alg1, alg2 and distbug algorithms all require recognition of previously 

visited points.  This concept is fine in theory, but it poses implementation problems in 

practice.   

 

In practice, when the robot first encounters a point of interest, it records its current 

coordinates.  The problem is that the robot is very unlikely to ever visit those exact 

coordinates again for two reasons.  Firstly, the trail is very unlikely to be the same for any 

two boundary traversals because of the PD controller.  Secondly, the robot drives a small 

distance forward, its “step”, before evaluating navigation conditions as described in section 

4.9.1.  This means that even if the trail is the same, the robot also has to poll when it is 

exactly over the previously recorded point. 

 

Due to this problem, all recorded points are given a radius as shown in figure 4-28.  If the 

robot realises that it is within the radius of a previous point, it deems that it is at the 

previous point. 
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Obviously, the radius must be chosen such that false positives are minimised and all 

genuine previous points are maximised.  If the radius is too large, false positives can be 

generated.  For instance, in figure 4-28 the robot’s radius extends beyond the wall.  If the 

robot travels on the opposite side, it could mistakenly believe that it is at a previous hit or 

leave point.  Conversely, if the radius is too small, genuine previous points can be missed. 

 

 
Figure 4-28 The radius is too large and extends beyond the wall. 

 

In this particular implementation, the radius is set to 80mm inside the macro TARG_ERROR.  

This value was established through numerous functionality iterations.  However, it is by no 

means a perfect solution. 

 

Given this implementation issue, algorithms which rely very little on previous points 

should be favoured over algorithms which rely on previous points heavily.  The Alg1 and 

Alg2 algorithms store all the previous points making them particularly undesirable.  The 

Bug1, Bug2 and Distbug algorithms rely on previous points to a lesser extent.   

 

In contrast, D* tracks the robot’s position within the grid and does not require previous 

point recognition making it highly desirable.  Tangentbug relies very little on previous 

point recognition, only using it to determine if the robot has completely encircled the 

obstacle.  However, unlike the other bug algorithms, Tangentbug uses PSD measurements 

to determine if it can see a previous point.  This is desirable because the radius size can be 

much smaller and it does not rely on polling.   
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4.9.3 Hardware requirements 

From a practical perspective, hardware costs should be minimised.  The bug1 and bug2 

algorithms can operate at peak performance using just tactile sensors. PSDs do not improve 

performance.  Clearly, this is the cheapest option. 

 

The alg1 and alg2 algorithms have a minimum requirement of tactile sensors.  When 

following the wall, they need to know if the robot can travel in the target’s direction.  This 

is possible with tactile sensors; however it may enhance performance if several PSDs are 

used to measure F as depicted in figure 4-13.  Even better is a PSD mounted on a servo 

which always points in the target’s direction. 

 

The distbug algorithm has fairly similar requirements to alg1 and alg2 except that it must 

have at least one PSD to operate.  A PSD mounted on a servo would be ideal, but if not, 

multiple PSDs should be employed to measure F. 

 

Tangentbug and D* algorithms require at least one PSD to operate, with more PSDs 

improving performance.  The PSD range is also an important factor in these algorithms 

because they do not use it simply to it to determine F.  In tangentbug, a longer PSD range 

results in a larger LTG graph, and this may result in shorter paths.  In D*, a longer PSD 

range allows the robot to detect obstacles further away allowing the map to be built more 

efficiently. 

 

4.9.4 Tangentbug’s data gathering 

Ideally, )(θr  would be a continuous function.  However, PSD readings can only measure 

distance in a fixed direction and therefore )(θr  must be discretely sampled.  Unfortunately, 

this leads to error.   

 

To reduce error, degrees between samples can be decreased at the expense of increased data 

collection time, increased memory requirements and decreased robustness because it is 

error-prone to rotate in small angles. 

 



 54

This problem is manifested when the robot is placed near a wall.  Figure 4-29 demonstrates 

that the tangentbug mistakenly identifies nodes.  To reduce this error, the robot checks if it 

is near a wall before collecting data.  If so, it drives backwards slightly, making it less 

likely there will be an incorrect identification.  This behaviour is demonstrated in figure 4-

30. 

 
Figure 4-29 The robot mistakenly identifies nodes. 

 
Figure 4-30 The robot moves away from the wall when it is too close. 
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The data gathering technique can be improved.  For example, a variable threshold can be 

implemented which increases when the differences become larger.  Another possible 

technique is to vary the angle between PSD readings depending on the relative difference.  

The merits of these techniques are left for future study. 

 

4.3.5 Limited map size in D* 

Due to its reliance on cells, D* has a unique problem with map out-of-bound areas.  

Consider the environment depicted in figure 4-31.  The target is reachable, however D* 

concludes that the target is unreachable because no cells cover the areas around the wall.  

Clearly, strategies must be developed to handle these situations. 

 

 
Figure 4-31 using a 5x5 grid, the robot is unable to reach the target. 

 

A possible approach to solving this problem is to provide a cell for each possible position 

as suggested in Stentz’s original paper [10].  However, several issues arise when this 

happens.  Firstly, it implies that the map size is known prior to starting.  Clearly, this is not 

permitted in the problem statement defined in section 2.  Secondly, it also implies that the 

map size is finite, though this may not necessarily be the case.  Thirdly, under this scheme, 

D*’s memory use would be far greater than it is already.  A better approach may be to 

dynamically allocate cells as the robot is moving.  Exactly how this scheme is implemented 

is left for future research. 
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5. Simulations 
 

5.1 Measuring Attributes 
Simulations were conducted on the Eyesim simulator to meet the objectives stated in 

section 2.  Convergence is verified and then the attributes are measured.  The path length, 

rotation, PSD limit, linear VW limit and rotational VW limit are constant throughout the 10 

simulations.  However, the computation and driving time varies between simulations.  

Therefore, each algorithm is simulated 10 times and the average is taken for computation 

time. 
 

It is also important to note that clock() measures the time spent in the processor by the 

calling thread.  It does not take into account the simulation-to-time ratio.  Hence, if the 

simulation-to-time ratio is increased for some simulations and not others, the results will be 

inaccurate.  To account for this, all simulations are run on the maximum simulation-to-time 

ratio setting. 

 

Each algorithm is simulated on three different maps which are designed to illustrate their 

individual strengths and weaknesses.
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5.2 Simulation Maps 

 

5.2.1 Map1 

Map1 is shown in figure 5-1 where the coordinates are in millimetres from the bottom left.  

It is designed to test algorithms in an enclosed setting.  In enclosed settings, algorithms 

require the ability to choose good leaving points and correct bad wall-following decisions.  

It has been used in previous studies [3, 4]. 

 
Figure 5-1 Map1 tests an algorithm in an enclosed setting 

 

For interest and comparison purposes, the ideal path length and rotation have been 

calculated: 
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5.2.2 Map2 

Map 2 is shown in figure 5-2.  It is regarded as an open setting.  In an open setting, an 

algorithm’s ability to seek out and follow greedy, locally optimal paths is tested.  This map 

was used by Lumelsky in demonstrating the original bug1 and bug2 algorithms [5]. 

 

 
Figure 5-2 Map2 tests the algorithm on an open setting 

The ideal path lengths and minimum rotation have been computed: 

Distance: 2222 763.0033.06.13.2 +++ = 3.5647 m 

Rotation: 

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

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2300tan2 1  = 1.926 Radians 
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5.2.3 Map3 

Map3 is shown in figure 5-3.  It tests a very important ability for all convergent algorithms, 

to escape from a local minimum. 

 

 
Figure 5-3 Map3 tests an algorithm in a local minimum 

 

The ideal path length and rotation have been computed: 

Distance: 2222 5.055.02.11.07.045.0 +++++ = 2.875 m 
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5.3 Floor Generator 
 

The appearance of green and red squares can be observed in the background of simulation 

maps.  These represent the start and goal respectively.  This is produced by generating a 

bitmap file which Eyesim uses as background.   

 

Floor Generator was written specifically to generate the background bitmap file and its GUI 

is shown in figure 5-4. The program is object-oriented and written in C#.net.  It takes input 

from the user and from the world file.  The user specifies the desired bitmap size, the 

distance to the target and the direction to target.  Floor Generator extracts the starting 

position and the world’s size from the world file.  Then, it creates a bitmap to specification. 

 

 
Figure 5-4 The floor generator GUI 
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6. Results and discussion 
 

6.1 Convergence Verification 
The first objective is to verify algorithm convergence.  The simulation results show that all 

algorithms are convergent. 

 

6.1.1 Bug1 

  
Figure 6-1(a) Bug1 on Map1 
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Figure 6-1(b) Bug1 on Map2 

 

  
Figure 6-1(c) Bug1 on Map3 
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6.1.2 Bug2 

   
Figure 6-2(a) Bug2 on Map1 

 

   
Figure 6-2(b) Left.  Bug2 on Map2.  (c)Right.  Bug2 on Map3. 
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6.1.3 Alg1 

   
Figure 6-3(a) Alg1 on Map1 

 

  
Figure 6-3(b) Left.  Alg1 on Map2.  (c) Right.  Alg1 on Map 3. 
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6.1.4 Alg2 

  
Figure 6-4(a) Left.  Alg2 on Map1.  (b) Right.  Alg2 on Map2. 

 

 
Figure 6-4(c) Alg2 on Map3.
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6.1.5 Distbug 

     
Figure 6-5(a) Left.  Distbug on Map1.  (b) Right.  Distbug on Map2 

 

 
Figure 6-5(c) Distbug on Map3
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6.1.6 Tangentbug 

  
Figure 6-6(a) Left.  Tangentbug on Map1.  (b) Right.  Tangentbug on Map2. 

 

 
Figure 6-6(c) Tangentbug on Map3. 
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6.1.7 D* 

    
Figure 6-7(a) Left. D* on Map1. (b) Right. D* on Map2. 

 

 
Figure 6-7(c) The D* algorithm on Map3
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6.2 Path Length 
A low path length is an extremely desirable attribute because it allows the robot to reach the 

target faster.  Also, robots need to be maintained and require a fuel source.  Obviously, a 

low path length reduces both expenditures.  The path length depends on map, but figure 6-8 

shows that the general descending order is: Bug1, Bug2, Alg1, Alg2, Distbug, Tangentbug 

and D*. 

 

The results show that bug1 outperformed bug2 on Map1, but bug2 outperformed bug1 on 

Map2 and Map3.  Clearly, the bug1 and bug2 algorithms are suited to particular types of 

maps.  The bug1 algorithm is suited to enclosed maps because it gathers all data before 

deciding on the leave point.  The bug2 algorithm less conservative and will leave the 

obstacle as soon as it encounters the M-line.  This makes it suited to open maps, such as 

Map2 and Map3. 

 

Then, the results show that Alg1 outperforms bug1 and bug2 on all three maps.  This is 

because Alg1 combines the best features of bug1 and bug2.  Whilst retaining the advantage 

of the M-line for open maps, Alg1 can recall previous hit and leave points.  This feature 

allows it to generate short paths on enclosed maps, such as Map1. 

 

After that, the results show that Alg2 and Distbug performed better than alg1, bug2 and 

bug1.  This is due to their superior choice of leaving points generated by their leaving 

conditions.  Alg2 and Distbug hold back leave points on enclosed maps which gives 

advantages similar to bug1.  However, Alg2 and Distbug make early leave points on open 

maps which gives advantages similar to bug2. 

 

The results show that Alg2 and Distbug were fairly even.  Indeed, the paths on all maps 

were very similar.  This is because of the similarity in their leaving conditions.  The leaving 

condition for Distbug is StepTdFTXd −≤− )(),( min .  Compare this with the leaving 

conditions for Alg2:  1) a point y is found such that it is closer to the target than any point 

ever visited by the robot previously and 2) the robot can travel towards the target at that 

point.   
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Assume that the F=0 and the robot is at y.  In Alg2, a leave point can never be generated.  

In distbug, F=0 implies that StepTdTXd −≤ )(),( min .  Since the robot is at y, 

)(),( min TdTXd = .  Then, the STEP constant biases the comparison such that it can never 

be true.  Assume that F>STEP and that the robot is at y.  In Alg2, a leaving point would be 

defined.  In Distbug, )(),( min TdTXd = , however F>STEP, making condition true. 

 

Therefore, Distbug implicitly specifies that F must be greater than STEP.  Alg2 simply 

states that the robot must be able to move in the target’s direction at y, but figure 6-8 shows 

that its implementation requires a threshold, FS_THESHOLD.  This threshold is, in 

principle, no different than STEP in distbug. 

 
while(TRUE){ 

  fs = freespace(); 
  if(fs==OUT_OF_RANGE){ 
   fs = MAX_RANGE; 
  } 
  if(is_at_y && fs>=FS_THRESHOLD){ 
   return LEAVE_POINT; 
  } 
  ... 
 } 

Figure 6-8 Alg2 requires FS_THRESHOLD value 

 

Alg2 and Distbug’s leaving conditions are very similar but they do differ in one subtle 

aspect.  When F>STEP and the robot has not quite reached y, distbug allows a leave point 

to be defined, whereas Alg2 requires the robot to reach y.  This difference is best illustrated 

by comparing figures 6-4(a) and 6-5(a).  Observe leave point 3 in Alg2 and leave point 4 in 

distbug.  It is this subtle difference which has allowed distbug to generate slightly lower 

path lengths on all three maps. 

 

The performance of Tangentbug and D* was superior to Bug1, Bug2, Alg1, Alg2 and 

Distbug on all three maps.  In fact, they were within close proximity to the ideal path 

length.  D* faltered slightly on Map3 due to its vulnerability in local minimums but is still 

competitive. 
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Path Length on Map3
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Figure 6-8(a) Top.  Path length on Map1.  (b) Centre.  Path length on Map2.  (c) 

Bottom.  Path length on Map3.
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6.3 Rotation 
Figure 6-9 shows that, in general, rotation is related to path length.  That is, the longer an 

algorithm’s generated path, the more rotation is performed.  This result is intuitively 

satisfying. 

 

Alg2 and Distbug stand out as major outliers.  Their greatly increased rotation is probably 

due to the calls to freespace() which are performed whilst following the wall.  This call is 

performed every 40mm and total rotation per call ranges from 0 to 45 degrees.  If a servo 

was mounted which always points in the target’s direction or more PSDs are available, then 

this rotation will decrease. 

 

It may be interesting to remove the hardware-dependant rotation from rotation results.  The 

results will then show rotation which is inherently generated by the algorithm. Figure 6-10 

shows that inherent rotation is related to path length.  This finding holds for Alg2 and 

Distbug and shows that Alg2 and Distbug will benefit greatly from a servo or more PSDs. 

 

The only algorithm which does not match this trend is D*.  This is due to its segmentation 

of the map into cells.  As a result, the robot can only move in discrete 45 degree turns.  

Consider figures 6-6(a) and 6-7(a).  Tangentbug can maneuver to successive protrusions 

without rotation, but D* necessarily takes a 45 degree turn each time it travels to successive 

protrusions. 
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Figure 6-9(a) Top.  Rotation on Map1.  (b) Centre.  Rotation on Map2.  (c) Bottom.  

Rotation on Map3. 
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Rotation without hardware-dependant turning on 
Map 1

0

50

100

150

200

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Ide
al

Algorithm

Ro
ta

tio
n 

(ra
di

an
s)

 

Rotation without hardware-dependant turning on 
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Rotation without hardware-dependant turning on 
Map 3
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Figure 6-10(a) Top.  Rotation on Map1.  (b) Centre.  Rotation on Map2.  (c) Bottom.  

Rotation on Map3. 
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6.4 Average computation time 
 

Computation time is an objective measure of the navigation process’s CPU usage.  Driving 

time is not as important because it depends on the driving speed of the robot and whilst the 

robot is driving, the navigation thread can sleep. 

 

Figure 6-11 shows the results of computation time measurements.  The results show that 

increased complexity results in roughly the same or decreased computation time!  This is 

most probably due to less travel resulting from short and near ideal paths.  The only major 

outlier is D*’s performance on Map3 because of its vulnerability to local minimums.   

 

It would be interesting to investigate how much computation is required per metre traveled.  

This removes the path length advantage of the complex algorithms.  This statistic for all 3 

maps is shown in figure 6-12. 

 

The trend varies depending on the map.  On Map1 and Map2, where are there are no local 

minimums, D* requires the lowest computation time per metre, even outperforming bug1 

and bug2!  Then, Bug1 and Bug2 are next because they are relatively simple algorithms.  

Fairly surprisingly, Tangentbug comes in next followed by distbug, alg2 and then alg1. 

 

D* probably has the least computation per metre due to its map segmentation.  This allows 

D* to abandon reliance on the math library and furthermore, there are no computationally 

intensive floating point multiplication or division operations.  Instead, its reliance on the 

relatively cheap process-state() method results in low computation times. 

 

Tangentbug is surprisingly competitive.  This is most probably due to its proactive nature 

discussed in section 4.9.1.  While it may be expensive to compute the LTG, it performs 

very little computation whilst driving.  Another interesting statistic is that tangentbug calls 

the math library the least number of times.  These two factors may explain tangentbug’s 

relatively low computation time per metre. 
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Alg1 and Alg2 are the most expensive due to their checking for all previous points at every 

step.  Distbug, which is very similar to Alg2, shows the computation savings of not 

checking at each step. 

 

However, observe how the trend changes on map3 with a local minimum.  Now, bug1 and 

bug2 are the cheapest, followed by alg1, alg2, distbug, tangentbug, and by far the most 

expensive, D*.  Figure 6-12(c) shows that complexity results in greater computation time 

per metre.   

 

D*’s computation time is excessively large.  It calls process-state() 83855 times in the local 

minimum resulting in a very large computation time.  Unfortunately, this is necessary due 

to recomputation of the optimal path and is a weakness inherited from its ancestor, the force 

field technique.  Tangentbug’s computation time is also very large.  It calls the math library 

23080 times.  This is because it needs to process the visible environment to determine 

dreach(T). 

 

Tangentbug’s large amount of math library calls has not resulted in a proportionately large 

increase in computation time over other algorithms.  This is perhaps due to the fast 

hardware and parallel processing environment which the simulation was run on.  On an 

actual robot with a single slower processor, the results could be very different. 

 

The parallel processing in tangentbug is only possible due to its proactive nature.  

Tangentbug gathers all data at one point.  The subsequent node processing methods can be 

processed independently which allows parallel processing to occur.  Other algorithms 

require that robot move a small step before taking measurements.  These measurements are 

inherently sequential and are processed as such.   

 

Unfortunately, D* is unable to exploit parallelism because the optimal backpointer trail 

must be computed sequentially from the goal as explained in section 3.7.  That is, D* is an 

inherently sequential processing algorithm.  A future research topic could focus on whether 

D* can become a parallel algorithm and if so, changing it. 
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Average Computation Time on Map 3 (log scale)
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Figure 6-11(a) Top.  Computation time on Map1.  (b) Centre.  Computation time on 

Map2.  (c) Bottom.  Computation time on Map3. 
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Computation time per metre on Map1
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Figure 6-12(a) Top.  Computation time per metre on Map1.  (b) Centre.  Computation 

time per metre on Map2.  (c) Bottom.  Computation time per metre on Map3. 
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Calls to the math library or process-state()

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Bug
1

Bug
2

Alg1 Alg2

Dist
bug

Tan
gen

tbu
g D*

Algorithm

Nu
m

be
r o

f c
al

ls

Math Calls
process-state

 

Calls to the math library or process-state()
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Calls to the math library or process-state()
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Figure 6-13(a) Top.  Calls on Map1.  (b) Centre.  Calls on Map2.  (c) Bottom.  Calls on 

Map3. 
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6.5 Robustness 
Robustness is essential for any practical robot application.  No algorithm was designed with 

robustness in mind and this particular implementation also did not use robustness-

enhancing techniques.  Therefore, the results will identify algorithms which have inherent 

robustness and possible reasons for this are discussed. 

 

Figure 6-14 shows that, in general, algorithms were not robust to noise.  They performed 

better against PSD noise than driving related noise.  Most algorithms performed poorly 

against linear driving noise and no algorithm, except for D*, had any robustness against 

rotational driving noise. 

 

Dead-reckoning leading to false localisation is probably the major contributor to the poor 

robustness against linear and rotational driving noise.  This cause of failure was indicated 

when algorithms converged too far away from the target.  Using purely dead-reckoning, an 

algorithm cannot correct false localisation.  In this sense, the algorithms are not responsible 

for poor robustness because it is beyond their control.  The only way to correct false 

localisation is landmark recognition or sensor networks.   

 

Robustness is also dependant on map.  Comparison of figure 6-14(a) with figures 6-14(b) 

and 6-14(c) shows that robustness was worse on map1 than on map2 and map3.  This 

implies that algorithms are more robust on open maps than enclosed maps.  This is 

probably due to the greater accuracy needed in navigating tight enclosed spaces.  In the 

open, there is much more room for error before failure occurs. 

 

Also, the algorithms which relied on recognition of previously visited points performed 

very poorly.  Figure 6-14 shows that Bug1 performed very poorly on all 3 maps because it 

needs to know when the robot has encircled the obstacle.  Relying on previous points is 

difficult even without error because of the reasons discussed in section 4.9.1 and 4.9.2.  

Combined with driving error, finding previous hit/leave points is near impossible. 

 



 81

Tangentbug was another low achiever in robustness.  Once again, this was due to driving 

errors leading to false localisation because it converged too far away from the goal.  

Tangentbug performed better against PSD error because the threshold criterion for node 

identification tolerates small amounts of PSD noise. 

 

D* was the most robust because its segmentation of the grid requires the robot to move in 

small, discrete steps.  Over large distances, the variance of these small steps tends to cancel 

out, resulting in a more accurate distance traveled.  D* is also the most robust against 

rotational driving errors.  This is most probably because of the limited degrees of freedom 

the robot possesses.  Therefore, as long as the rotation is close to one of the eight directions, 

the algorithm can proceed.   

 

If a robust algorithm is sought, D* is the only candidate.  Fault tolerant techniques such as 

averaging multiple PSD readings or dividing long traveling distances into numerous small 

distances could be introduced in future. 
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Robustness on Map2
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Figure 6-14(a) Top.  Robustness on Map1.  (b) Centre.  Robustness on Map2.  (c) 

Bottom.  Robustness on Map3.
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6.6 Complexity 
From a software development perspective, the less complicated the algorithm the better and 

more desirable it is.  Low complexity reduces software development costs and is less likely 

to fail. 

 

Complexity is subjective and depends very much on the judgment of the implementer.  The 

most objective measure is lines of code required for the implementation which is shown in 

figure 6-15.  According to the results, the ranking of simplest to most complicated is: Bug2, 

Bug1, Distbug, Alg1, Alg2, Tangentbug and D*.  This ranking is congruent with 

implementation experience. 

 

Bug2 and Bug1 are the least complicated.  Distbug is slightly more complicated due to its 

leaving condition requiring freespace().  Alg2 is very similar to Distbug but it requires a 

data-structure module, which makes it slightly more complicated.  Alg1 is very similar to 

Alg2 and hence Alg1’s complexity is very similar to Alg2.  Tangentbug is moderately 

complicated due to the data collection and processing of the LTG.  Finally, D* is the most 

complicated due to the classes needed to implement the grid. 
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Figure 6-15.  Lines of code for each algorithm 
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6.7 Memory Requirements 
The memory requirements should be as low as possible.  Figure 6-16 shows the ranking 

from most expensive to least expensive is: D*, tangentbug, alg2, alg1, distbug, bug2 and 

bug1.  As expected, the simpler algorithms require less memory than the complicated ones. 

 

Bug1, Bug2 and distbug were most inexpensive because they only require the common 

modules.  Next, alg1 requires the data structure module.  Alg2 requires an additional 4 

bytes to track d(y,T).  Tangentbug is next expensive because it needs to store ( )θr , the 

nodes and the minimum module.  Finally, D* requires the most amount of memory because 

it needs to store a grid full of cells. 

 

It is important to note that only globally memory was measured.  Some algorithms call 

functions which require a lot of memory for a short period of time.  Therefore, global 

memory requirements should be viewed as the minimum memory requirement. 

 

Compared to the amount of memory available on most robots, the memory requirements for 

the bug algorithms are quite small.  The only algorithm which requires a substantial amount 

of memory is D*. 
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Figure 6-16.  Global Memory Requirements for each algorithm 



 85

7. Conclusion 

 

This thesis discusses the practical aspects of algorithms designed to solve the robotic 

navigation problem.  Seven algorithms were selected for study: bug1, bug2, alg1, alg2, 

distbug, tangentbug and D*.   

 

These algorithms were implemented using the Eyesim simulator.  The implementation was 

modular and several common modules were identified and implemented separately.  Once 

the modules were ready, the each navigation algorithm is implemented separately and 

simply calls the common modules to drive around.  The exception to this is D* which is 

radically different to the others. 

 

Several implementation issues arose.  Firstly, there is the issue of navigation condition 

checking.  Tangentbug and D* fare well because of their proactive nature.  Secondly, there 

is the issue of radius around previous points.  Tangentbug and D* proved the best for this 

because they have inbuilt mechanisms which avoid the problem.  Thirdly, Tangentbug has 

a unique problem identifying discontinuities when it is near walls.  Fourthly, D* has a 

problem if its cells are not able to cover the whole map.  Finally, in terms of hardware 

costs, bug1 and bug2 are cheapest because they require only tactile sensors. 

 

Three maps were created to test the implemented algorithms.  Each map tested a different 

aspect of navigation.  Map1 tested an algorithm’s ability to navigate in an enclosed space.  

Map2 tested an algorithm’s ability to navigate in an outdoor environment.  Map3 tested an 

algorithm’s ability to navigate out of a local minimum. 

 

Ten trials were run for each algorithm on each map.  Results were generated for path 

length, rotation, inherent rotation, computation time, computation time per metre, calls to 

math functions, robustness, simplicity and memory requirements.  Table 7-1 shows the 

relative performance score of each algorithm for each attribute.  The performance score was 

calculated by averaging the algorithm’s rank over 3 maps.  Therefore, a lower score means 

better performance. 
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 Bug1 Bug2 Alg1 Alg2 Distbug Tangentbug D* 

Path Length 6.67 6.33 5 3.67 2.67 1.67 2 

Rotation 6 3.67 4 6 4.67 2.33 1.33

Inherent Rotation 6.67 6.63 4 4.66 2 2 2.67

Total Computation time 4 3 5.33 5 4.33 3.33 3 

Computation per metre 2 2.33 5 5.67 5.33 4.67 3 

Calls to math functions 4.33 3.67 5.33 4.67 2 2.67 N/A 

PSD Error 6 4 4 2 4.33 4 3.67

Linear Driving Error 6 4.83 4.83 3.33 4.33 3.33 1.33

Rotational Driving Error 6 5 2.83 4 5 2.83 2.33

Simplicity 2 1 4 5 3 6 7 

Memory requirements 2 2 4 5 2 6 7 

Table 7-1 Performance scores for each algorithm on the assessed attributes. 

 

Table 7-1 clearly shows the dominant strengths various algorithms.  For path length and 

rotation, tangentbug and D* are clearly the best.  For computation time, bug1 and bug2 are 

the most inexpensive, but surprisingly, tangentbug and D* are very competitive.  For 

robustness, D* is the only algorithm which inherently possesses this.  For simplicity and 

memory requirements, bug1 and bug2 are clearly the best.   

 

Using these findings, a selection policy can be devised to select the algorithm which best 

suits a user’s needs.  Figure 7-1 shows one possible selection policy.   Note that this 

selection policy is aided by knowledge of the type of map.  Strictly speaking, the type of 

map should not be known prior to execution.  However, if this knowledge is available, it 

can assist decision making. 
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Figure 7-1 A possible selection policy based on table 7-1 
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8. Future improvements 

 

8.1 Segmentation of the bug algorithms 

Currently, the bug algorithms have unlimited degrees of freedom and no grid like structure.  

It would be interesting to investigate the bug algorithms on a grid like D*.  This should 

give greater robustness at the expense of longer paths and higher memory requirements. 

 

8.2 Localisation 

Dead-reckoning causes false localisation leading to non-robustness against driving errors.  

Although this can be masked by multiple samplings, the best way to overcome error is 

feedback.  One possible form of feedback is landmark recognition from camera images.  If 

this is used, an image processing module needs to be written.  Some techniques for this 

exist in the literature [11] and can be incorporated into future versions. 

 

Another form of feedback could be to use sensor network interaction techniques for 

localisation [12, 13].  In these models, a sensor network is embedded in the environment 

and act as signposts for the robot.  A recent improvement in radio technology has also made 

it possible to measure only the distance between beacons and the robot [14].  Line of sight 

is not required and the costs are significantly lower than conventional sensors.   

 

The drawback of sensor networks that they deprive the robot of true autonomy.  A sensor 

network must be present for navigation.  The counter argument is that humans, which are 

generally regarded as autonomous, also rely on signposts upon entering an unfamiliar 

environment for the first time.  Indeed, most public buildings display room numbers and 

signposts to the toilets, cafeteria etc…  A good improvement could involve a robot which 

uses the sensor network.  However, if there is no sensor network, it reverts to landmark 

recognition from its camera. 

 

8.3 D* improvements 

D* parameters can also be further investigated to yield better performance.  The cell size is 

a very important factor which impacts on computation resources and completion times.  
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The cell structure can be altered and its effects investigated.  Figure 8-1 shows a cell 

structure composed of triangles instead of squares.  D* also needs find a solution to the 

problem discussed in section 4.3.5 concerning small grids not finding the optimal path.  

Dynamic cell allocation could be one possible solution 

 
Figure 8-1 Instead of using squares, D* could use triangles 

 

8.4 Robot Learning 

Another area which can be improved on is robot learning.  If the robot has traversed the 

trail before, it may be possible to retain some data and improve performance on subsequent 

traversals.  For example, if the robot is using Alg1 or Alg2, it could retain the data-structure 

and improve subsequent journeys. 

 

8.5 Fault tolerance 

Another improvement could be to implement fault tolerance in navigation.  This particular 

implementation was coded without fault-tolerance in mind.  In future, fault-tolerant 

techniques could be incorporated to give a greater degree of assurance.  For example, triple 

modular redundancy with a voter can be used on PSDs to average out error.  A compass, 

gyroscope and GPS, if outdoors, can be used to reduce rotation error. 

 

8.6 Tangentbug improvement 

There could also be an improvement made to the tangentbug algorithm.  Consider the initial 

computation performed on map2.  Under the current tangentbug algorithm, the robot travels 

to node1 because node1 is closer to the target than node 2. 

 

However, figure 5-2 shows that a shorter path is in the direction of node 2.  The only hint 

that node2 produces a shorter path than node1 is the PSD reading shown in red in figure  
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9-2.  If that reading can somehow be incorporated into tangentbug to make node2 the 

optimal node, it would allow tangentbug to more closely follow the ideal path in figure 5-2. 

 
Figure 9-2 Tangentbug can be improved if it chooses node2 over node1 

Tangentbug could also be improved to take into account varying terrain costs, similar to 

D*.  This could be very difficult because the current tangentbug algorithm does not have 

any concept of cost inbuilt. 

 

8.7 Map Classification 

Some form of quantitative map classification scheme could also be designed.  In this study, 

the terms enclosed, open and local minimum were loosely used to classify map1, map2 and 

map3 respectively.  However, this was a subjective classification and had no objective 

basis.  One possible technique is the concept of path safety introduced by Kamon and 

Rivlin [6] where determines its average distance from the nearest obstacle.  One would 

expect that enclosed maps have smaller path safety than open maps.
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9. Appendix 

 
9.1 Bug1 
Lines of code = 575 lines 
Global Memory Requirements:  
2 – PositionType = 6 float = 24 bytes 
3 – float = 12 bytes 
5 – integer = 20 bytes 
1 – double  = 4 bytes         
Total = 60 bytes  
 
9.1.1 Map1 
 1 2 3 4 5 6 7 8 9 10 
Computation 394 434 407 361 405 357 451 409 328 422 
Drive 3763 3801 3859 3732 3909 3986 3799 3872 3828 3703 
Average Computation time: 397 ms 
Average driving time: 3825 ms 
Total Distance: 30.56 m 
Total Turning: 102.51 Radians 
PSD standard deviation limit = 3mm 
Standard deviation of linear VW-Control limit = 0 mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Square-root = 1192, Pow = 2384, Geom = 2 
 
9.1.2 Map2 
 1 2 3 4 5 6 7 8 9 10 
Computation 532 533 405 436 530 497 530 440 485 423 
Drive 3172 3342 3486 3455 3361 3409 3361 3435 3406 3467 
Average Computation time: 481 ms 
Average Driving time:  3389 ms 
Total Distance = 15.72 m 
Total Turning = 54.834 Radians 
PSD standard deviation limit = 0mm 
Standard deviation of linear VW-Control limit = 0mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Square-root = 645, Pow = 1290, Geom = 3 
 
9.1.3 Map3 
 1 2 3 4 5 6 7 8 9 10 
Computation 142 77 47 142 48 106 109 95 63 94 
Drive 1280 1126 1156 1061 1155 1082 1094 1092 1156 1125 
Average Computation Time:  92 ms 
Average Drive Time: 1133 ms 
Total Distance: 12.5 m 
Total Turning: 43.25 Radians 
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PSD standard deviation limit = 4mm 
Standard deviation of linear VW-Control limit = 0mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Square-root = 475, Pow = 950, Geom = 2 
 
9.2 Bug2 
Lines of code = 565 lines 
Global Memory Requirements:  
2 – PositionType = 6 float = 24 bytes 
3 – float = 12 bytes 
5 – integer = 20 bytes 
1 – double  = 4 bytes 
Total Requirement = 60 bytes  
 
9.2.1 Map1 
 1 2 3 4 5 6 7 8 9 10 
Computation 641 405 578 673 512 566 658 562 716 468 
Drive 5875 6127 5969 5859 6035 5980 5889 5813 5753 6063 
Average Computation time: 578 ms 
Average Drive time: 5936 ms 
Total Distance: 50.3 m 
Total Turning: 155.41 Radians 
PSD standard deviation limit = 1mm 
Standard deviation of linear VW-Control limit = 0mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Square-root = 1939, Pow = 5908, Geom = 6 
 
9.2.2 Map2 
 1 2 3 4 5 6 7 8 9 10 
Computation 282 249 341 250 380 344 346 296 217 408 
Drive 1843 1891 1721 1891 1745 1781 1811 1844 1783 1701 
Average Computation time= 311 ms 
Average driving time= 1801 ms 
Total Distance = 7.46 m 
Total Turning = 26.12 Radians 
PSD standard deviation limit = 26mm 
Standard deviation of linear VW-Control limit = 0mm 
Standard deviation of rotational VW-Control limit = 1 degree  
Square-root = 318, Pow = 896, Geom = 3 
 
9.2.3 Map3 
 1 2 3 4 5 6 7 8 9 10 
Computation 78 32 31 78 16 16 78 47 108 15 
Drive 391 452 454 406 468 468 391 438 376 469 
Average Computation time = 50 ms 
Average driving time = 431 ms 
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Total Distance = 4.5 m 
Total Turning = 15.36 Radians 
PSD standard deviation limit = 75mm 
Standard deviation of VW-Control limit = 3mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Square-root = 156, Pow = 484, Geom = 2 
 
9.3 Alg1 
Lines of code = 647 lines 
Square-root =1514, Pow =3888, Geom = 13 
Global Memory Requirements:  
2 – PositionType (pos, targ) = 6 float = 24 bytes 
3 – float = 12 bytes 
6 – integer = 24 bytes 
1 – double  = 4 bytes 
10 – PositionType (previous hit and leave points) = 30 float = 120 bytes 
Total Requirement = 184 bytes  
 
9.3.1 Map1 
 1 2 3 4 5 6 7 8 9 10 
Computation 813 767 814 750 690 746 656 959 752 1023 
Drive 3375 3405 3342 3438 3497 3441 3531 3229 3420 3133 
Average Computation time: 797 ms 
Average Driving time: 3381 ms 
Total Distance = 23.6 m 
Total Turning = 88.66 Radians 
Total turning without freespace = 85.551216 Radians 
PSD standard deviation limit = 0mm 
Standard deviation of linear VW-Control limit = 0mm 
Standard deviation of rotational VW-Control limit = 1 degree 
Square-root =1514, Pow =3888, Geom = 13 
 
9.3.2 Map2 
 1 2 3 4 5 6 7 8 9 10 
Computation 864 766 624 761 721 987 863 728 672 702 
Drive 1854 1921 2079 1942 1982 1716 1840 1991 2015 2001 
Average Computation time: 769 ms 
Average driving time: 1934 ms 
Total Distance = 7.3 m 
Total Turn = 28.85 Radians 
Total turn without freespace = 25.478146 Radians 
PSD standard deviation limit = 24mm 
Standard deviation of linear VW-Control limit = 0mm 
Standard deviation of rotational VW-Control limit = 1 degree 
Square-root = 565, Pow = 1398, Geom = 5 
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9.3.3 Map3 
 1 2 3 4 5 6 7 8 9 10 
Computation 78 63 93 47 62 123 109 78 141 107 
Drive 500 515 470 500 516 455 469 484 437 471 
Average Computation time = 90 ms 
Average driving time = 482 ms 
Total Distance = 4.44 m 
Total Turning = 15.75 Radians 
Total turning without freespace = 11.677344 Radians 
PSD standard deviation limit = 100mm (maximum) 
Standard deviation of linear VW-Control limit = 3mm 
Standard deviation of rotational VW-Control limit = 1 degree 
Square-root = 236, Pow = 642, Geom = 3 
 
9.4 Alg2 
Lines of code = 653 lines 
Global Memory Requirements:  
2 – PositionType (pos, targ) = 6 float = 24 bytes 
4 – float = 16 bytes 
6 – integer = 24 bytes 
1 – double = 4 bytes 
10 – PositionType (previous hit and leave points) = 30 float = 120 bytes 
Total Requirement = 188 bytes 
 
9.4.1 Map1 
 1 2 3 4 5 6 7 8 9 10 
Computation 676 815 670 887 623 792 625 705 659 699 
Drive 4746 4467 4658 4410 4814 4661 4672 4780 4826 4785 
Average Computation time: 715 ms 
Average driving time: 4682 ms 
Total distance = 15.54 m 
Total turn = 157.2 Radians 
Total turn with freespace not recorded = 50.947201 Radians 
PSD standard deviation limit = 8mm 
Standard deviation of linear VW-Control limit = 0mm 
Standard deviation of rotational VW-Control limit = 1mm 
Square-root = 1943, Pow = 3886, Geom = 291 
 
9.4.2 Map2 
 1 2 3 4 5 6 7 8 9 10 
Computation 410 484 450 466 544 592 419 529 357 514 
Drive 1668 1578 1644 1877 1550 1485 1581 1580 1737 1564 
Average Computation time: 477 ms 
Average driving time: 1626 ms 
Total distance = 5.09 m 
Total turn = 26.94 Radians 
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Total turn without freespace = 13.644241 Radians 
PSD standard deviation limit = 28mm 
Standard deviation of linear VW-Control limit = 2mm 
Standard deviation of rotational VW-Control limit = 1 degree 
Square-root = 358, Pow = 716, Geom = 52 
 
9.4.3 Map3 
 1 2 3 4 5 6 7 8 9 10 
Computation 174 62 110 157 78 124 111 48 157 126 
Drive 904 985 968 936 1001 954 982 1014 890 936 
Average Computation time = 115 ms 
Average driving time = 957 ms 
Total distance = 4.22 m 
Total turn = 37.46 radians 
Total turn without freespace = 13.345954 radians 
PSD standard deviation limit = 95mm 
Standard deviation of VW-Control limit = 4mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Square-root = 269, Pow = 538, Geom = 73 
 
9.5 Distbug 
Lines of code = 604 lines 
Global Memory Requirements:  
2 – PositionType (pos, targ) = 6 float = 24 bytes 
3 – float = 12 bytes 
5 – integer = 20 bytes 
1 – double = 4 bytes 
Total Requirement = 60 bytes  
 
9.5.1 Map1 
 1 2 3 4 5 6 7 8 9 10 
Computation 545 528 593 551 566 533 686 466 519 721 
Drive 4252 4253 4188 4246 4199 4249 4110 4331 4263 4075 
Average Computation time: 571 ms 
Average Driving time: 4212 ms 
Total distance = 15.26 m 
Total turn = 140.28 Radians 
Total turn without freespace = 47.344215 Radians 
PSD standard deviation limit = 5mm 
Standard deviation of linear VW-Control limit = 0mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Square-root = 908, Pow = 1816, Geom = 278 
 
9.5.2 Map2 
 1 2 3 4 5 6 7 8 9 10 
Computation 281 312 373 330 468 421 378 313 359 453 
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Drive 1953 1656 1596 1639 1501 1564 1670 1656 1610 1531 
Average Computation time: 369 ms 
Average Driving time: 1638 ms 
Total distance = 4.91 m 
Total turn = 26.74 Radians 
Total turn without freespace = 11.167029 Radians 
PSD standard deviation limit = 14mm 
Standard deviation of linear VW-Control limit = 2mm 
Standard deviation of rotational VW-Control limit = 1 degree 
Square-root = 278, Pow = 556, Geom = 53 
 
9.5.3 Map3 
 1 2 3 4 5 6 7 8 9 10 
Computation 190 125 110 63 107 93 109 95 124 170 
Drive 920 984 1015 1062 1002 1048 1001 1030 955 908 
Average Computation time = 119 ms 
Average driving time = 993 ms 
Total Distance = 4.2 m 
Total turning = 36.48 Radians 
Total turn without freespace = 11.645906 Radians 
PSD standard deviation limit = 11mm 
Standard deviation of linear VW-Control limit = 2mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Square-root =231, Pow = 462, Geom = 66 
 
9.6 Tangentbug 
Lines of Code = 843 lines 
Global Memory Requirements: 
2 – Position Type = 6 float = 24 bytes 
4 – float = 16 bytes 
8 – int = 64 bytes 
3 degrees between samples – 120 samples = 120 ints = 480 bytes 
20 nodes – 40 ints and 60 floats = 400 bytes 
Total memory requirement: 984 bytes 
 
9.6.1 Map1 
 1 2 3 4 5 6 7 8 9 10 
Computation 139 94 93 109 157 125 155 156 126 171 
Drive 721 750 751 750 703 734 704 688 687 689 
Average Computation time: 133 ms 
Average driving time: 718 ms 
Total distance = 4.75 m 
Total turn = 22.50 Radians 
Total turn without freespace and )(θr = 11.618871 Radians 
PSD standard deviation limit = 2mm 
Standard deviation of linear VW-Control limit = 1mm 
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Standard deviation of rotational VW-Control limit = 1 degree 
Square-root = 46, Pow =52, Geom = 35 
 
9.6.2 Map2 
 1 2 3 4 5 6 7 8 9 10 
Computation 392 345 201 296 251 231 297 233 391 391 
Drive 764 811 939 844 905 925 859 908 766 766 
Average Computation time: 303 ms 
Average driving time: 849 ms 
Total Distance = 4.63 m 
Total turn = 10.37 Radians 
Total turn without freespace and )(θr = 4.310099 Radians 
PSD standard deviation limit = 38mm 
Standard deviation of linear VW-Control limit = 2mm 
Standard deviation of rotational VW-Control limit = 1 degree 
Square-root = 26, Pow = 28, Geom = 21 
 
9.6.3 Map3 
 1 2 3 4 5 6 7 8 9 10 
Computation 140 109 140 109 171 94 93 142 126 141 
Drive 657 688 688 719 658 718 719 686 687 687 
Average Computation time = 127 ms 
Average driving time = 691 ms 
Total Distance = 3.33 m 
Total turn = 24.94 Radians 
Total turn without freespace and )(θr = 12.776836 Radians 
PSD standard deviation limit = 5mm 
Standard deviation of linear VW-Control limit = 1mm 
Standard deviation of rotational VW-Control limit = 1 degree 
Square-root = 4736, Pow = 9442, Geom = 8902 
 
9.7 D* 
Lines of Code = 931 lines  
ArcEnd structure = 4 + 1 = 5 bytes 
Cell structure = 4x4 + 1 + 1 + 5x8 = 58 bytes 
Grid class = 36 + 81x81x58 = 380,574 bytes 
Open list class = 4x100000 = 400,000 bytes 
Driving = 3x4 + 2x4 = 20 bytes 
Discrepancy class = 8 bytes 
User Interface = 16 bytes 
Timer = 16 bytes 
Total memory = 780692 bytes 
 
9.7.1 Map1 
 1 2 3 4 5 6 7 8 9 10 
Computation 61 78 31 31 31 47 62 31 47 46 
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Drive 564 563 594 609 609 594 547 594 593 594 
Average Computation time = 47 ms 
Average driving time = 586 ms 
Total Distance = 4.33 m 
Total Turn = 17.28 Radians 
PSD standard deviation limit = 9mm 
Standard deviation of linear VW-Control limit = 36mm 
Standard deviation of rotational VW-Control limit = 6 degrees 
Number of calls to process state: 2034 
 
9.7.2 Map2 
 1 2 3 4 5 6 7 8 9 10 
Computation 79 126 92 142 79 32 141 94 79 79 
Drive 843 843 924 874 921 1000 859 922 937 937 
Average Computation time = 94 ms 
Average driving time = 906 ms 
Total Distance = 4.4 m 
Total Turn = 12.57 Radians 
PSD standard deviation limit = 15mm 
Standard deviation of VW-Control limit = 29mm 
Standard deviation of rotational VW-Control limit = 6 degrees 
Number of calls to process state: 2424 
 
9.7.3 Map3 
 1 2 3 4 5 6 7 8 9 10 
Computation 9673 9626 9687 9627 9671 9641 9640 9625 9643 9658 
Drive 452 468 391 436 438 453 407 484 436 405 
Average Computation time = 9650 ms 
Average drive time = 437 ms 
Total Distance = 4.24 m 
Total Turn = 12.57 Radians 
PSD standard deviation limit = 8mm 
Standard deviation of VW-Control limit = 9mm 
Standard deviation of rotational VW-Control limit = 0 degrees 
Number of calls to process state: 83855
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