
A Behaviour Based Framework for the

Control of Autonomous Mobile Robots

Final Year Project

Tom Walker

Supervisors: A/Prof. Thomas Bräunl

A/Prof. Gary Bundell

Centre for Intelligent Information Processing Systems

School of Electrical, Electronic and Computer Engineering

ii

Tom Walker

8 Baslow Court

Carine, WA 6020

27th October 2006

The Dean

Faculty of Engineering Computing and Mathematics

The University of Western Australia

35 Stirling Highway

Crawley, WA 6009

Dear Sir,

It is with great pleasure that I submit to you this dissertation entitled “A Behaviour

Based Framework for the Control of Autonomous Mobile Robots” in partial fulfil-

ment of the requirement of the award of Bachelor of Engineering with Honours.

Yours Sincerely

Tom Walker

iii

iv

Abstract

Traditional robot control involves following a structure of perception, planning and

then action. In the perception and planning phases a world model is built up and

subsequently used to determine action. Behaviour based robotics departs from this

organisation by removing the world model and employing a structure where the

robot is controlled through a combination of parallel behavioural modules.

This project involved the design and implementation of a software framework for the

development of behaviour based applications for use with Eyesim. Basic behaviours

and a simple controller were developed to demonstrate the framework. Adaptive ca-

pabilities were implemented to extend the system and allow the robot to successfully

react to changes in the environment.

The adaptive capabilities allow for improved navigation through environments of

varying densities. The main adaptive controller was built around the Q-Learning

algorithm. This controller was trained using carefully chosen training environments

in order to optimise its performance. Q-Learning has been demonstrated to provide

a marked improvement in performance.

v

vi

Acknowledgements

I’d like to thank Thomas Bräunl for providing me with the opportunity of doing

this project. It has been rewarding and intellectually stimulating experience.

Thanks to Gary Bundell for providing me with additional feedback and guidance

whilst Thomas was in Germany.

I’d also like to thank Bernard, Dave, Grace, Lixin and everyone else in the robotics

lab for their help and for helping me keep my sanity. Also, cheers to Ben, Jason,

Trev and everyone else who was generally around uni.

Finally I’d like to thank my family for proofreading my thesis and for putting up

with my coming home at absurd hours of the night. For the record, it was not a low

flying cloud.

vii

viii

Contents

Letter to the Dean iii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Project Aims . 3

1.2 Dissertation Outline . 4

2 Background 5

2.1 Behaviour based robotics . 5

2.2 Reinforcement learning . 6

2.2.1 Q-learning . 7

2.3 Rule-based adaptation . 9

3 Literature Review 11

3.1 Classification of Robot Behaviours 11

3.2 Architectures . 13

3.2.1 Subsumption . 13

3.2.2 Autonomous Robot Architecture 15

3.3 Adapative Control . 16

ix

CONTENTS

3.3.1 Q-Learning . 17

3.3.2 Learning Momentum . 18

3.3.3 Case-based reasoning . 19

4 Framework 21

4.1 Overview . 21

4.2 Architecture . 21

4.2.1 Design . 22

4.2.2 Implementation . 24

4.3 Subsumption Architecture . 26

4.3.1 Implementation of Subsumption 26

5 Controller 29

5.1 Q-learning . 30

5.1.1 Task specification . 31

5.1.2 QMoveToGoal . 31

5.1.3 QMoveToGoal2 . 34

5.2 Learning Momentum . 35

5.2.1 Rules . 35

6 Navigation Task 37

6.1 Overview . 37

6.2 Training . 38

6.2.1 Basis . 38

6.2.2 Regime . 39

6.2.3 Analysis . 40

6.3 Comparison Task Environment . 44

6.4 Metrics . 45

x

CONTENTS

6.5 Evaluation . 45

6.5.1 Time . 46

6.5.2 Path Length . 47

6.5.3 Rotation . 48

6.5.4 Collisions . 49

6.6 Paths . 49

6.6.1 Cluttered environments . 49

6.6.2 Dead-end environments . 52

6.7 Evolution Analysis . 54

7 Conclusion 57

7.1 Behaviour based frameworks . 57

7.2 Adaptive controllers . 58

7.3 Future Work . 58

A Primary Framework 61

A.1 Overview . 61

A.2 Creating behaviour . 61

A.2.1 Primitive types . 62

A.2.2 Operators . 63

A.2.3 Other . 64

A.3 Implemented Schemas . 64

A.3.1 General Purpose . 64

A.3.2 EyeBot Specific . 65

A.4 Controller Hierarchy . 66

A.4.1 SimpleEyebotController . 66

A.4.2 AdapativeEyebotController 67

A.4.3 QLearningEyebotController 67

xi

CONTENTS

A.4.4 LearningMomentumController 67

A.5 Sample Program: Ball-finding example 67

B Subsumption Framework 69

B.1 Appendix for the Subsumption Framework 69

B.2 Creating behaviour . 69

B.2.1 Buffers . 69

B.2.2 Supressors . 70

B.2.3 Inhibitors . 71

B.3 Behavioural Modules . 72

B.3.1 General purpose . 72

B.3.2 Eyebot Specific . 73

B.4 Implemented Control System . 73

C Image Processing 75

C.1 Colour space conversion . 75

C.2 Histogram Analysis . 76

C.3 Determining the field of view . 76

C.4 Retrieving object coordinates . 77

D DVD Listing 79

References 81

xii

List of Figures

1.1 Adaptive controller concept schematic 2

2.1 The reinforcement learning problem 6

2.2 Q-Learning architecture . 8

3.1 Deliberative organisation of functional blocks 14

3.2 A modular and reactive organisation of control 14

3.3 An augmented finite state machine purposed for subsumption 15

4.1 Architecture of the behaviour based framework 22

4.2 Relationship between the Controller and Motor Schemas 23

4.3 Simplified class diagram showing relationships between selected schemas 24

4.4 Relationships between schemas and controller in the LocateBall task . 25

4.5 Execution-time display . 26

4.6 Graphical display of perceived schema success 26

4.7 Robot view as seen by Eyecam . 26

5.1 Class hierarchy of the implemented adaptive controllers 30

5.2 Navigation task schemas coupled with an adaptive controller 30

5.3 Behavioural assemblage used in the QMoveToGoal controller 32

6.1 Training environment used for both the QMoveToGoal and QMoveToGoal2

controllers (destination is highlighted) 40

xiii

LIST OF FIGURES

6.2 Graph of policy changes as training progresses for QMoveToGoal . . . 41

6.3 Graph of experienced reward as training progresses for QMoveToGoal . 41

6.4 Graph of policy changes as training progresses for QMoveToGoal2 . . . 42

6.5 Graph of experienced reward as training progresses for QMoveToGoal2 43

6.6 Lap times for the various controllers averaged for environment sets . . 46

6.7 Lap path lengths for the various controllers averaged for environment

sets . 47

6.8 Total rotation per lap for the various controllers averaged for envi-

ronment sets . 48

6.9 Path traces for each controller in cluttered environment one 50

6.10 Path traces for each controller in cluttered environment two 51

6.11 Path traces for each controller in dead-end scenario one 52

6.12 Path traces for each controller in dead-end scenario two 53

A.1 Class hierarchy of the primitive types of the framework 62

A.2 Class hierarchy of the operator nodes provided by the framework . . . 63

A.3 Hierarchy of the general purpose motor schemas created for the frame-

work . 65

A.4 Class hierarchy of the Eyebot-specific schemas 66

A.5 Class hierarchy of the framework controllers 67

B.1 Class hierarchy of the framework SubsumptionBuffer classes as well

as the suppressor classes. 70

B.2 Class hierarchy of the inhibitive classes 71

B.3 Class hierarchy of the implemented behavioural modules 72

B.4 Class hierarchy of the Eyebot-specific behavioural modules 73

B.5 Control system using self-preservation and task-oriented layers 74

C.1 Experiment configuration for determining field of view of the camera 77

C.2 Geometry used to calculate angle of an object 77

xiv

List of Tables

5.1 Obstacle distance encoding scheme 32

6.1 Parameters for the Q-Learning algorithm used in QMoveToGoal . . . 39

xv

xvi

Chapter 1

Introduction

Robotic control can be classified by two dominant paradigms: hierarchical and reac-

tive control. Hierarchical control is a top-down methodology which has its roots in

artificial intelligence theory. Reactive control is a reflexive technique characterised

by a tight coupling of sensing and action. Both paradigms have reasons for their

use, however reactive control comes into favour when higher level reasoning is not

desired, yet functionality is.

Behaviour-based control is a well established method of reactive control — in this

technique the system is described using a set of behaviours. The simplicity associ-

ated with such specification is inherently attractive. An easy to use framework for

the creation of behaviour based applications has, therefore, been developed.

Behaviour-based robotics is a control technique that is characterised by a tight

coupling between perception and action. This paradigm eschews symbolic represen-

tation of knowledge such as using a world model. Instead the system reacts to the

current environmental stimulus. Reaction to instantaneous stimulus can fail when

the system is unable to deal with conditions in which the desired actuator outputs

are not a simple function of sensory inputs. Such scenarios demonstrate a need for

the system to be able to not only react to its environment but adapt based on the

results of its reflex action.

Alternatively as the complexity of the system grows it can be harder to find a clear

mapping between sensory input and actuator output. In such systems it is highly

desirable for the developer to be able to specify the problem in a more general sense

and have the system optimise itself. Hence providing yet another need for adaptive

capabilities in behaviour based robots.

1

To these ends a framework for on-line adaptation has been created. The controllers

utilising this framework are described in more detail in Chapter 5. Figure 1.1 de-

scribes the adaptive framework in its general form.

Adaptive Controller

Σ
Motor Schema

Motor Schema

Motor Schema

Schema weighting

Motor commandSchema parametersSensory

Processing

Sensory

inputs

Goal sequence

Figure 1.1: Adaptive controller concept schematic

2

INTRODUCTION

1.1 Project Aims

The aim of this project was the design and development of a software framework for

behaviour control of autonomous mobile robots. This framework was to facilitate

the easy development of behaviour based robotic applications. In addition to these

requirements the system was to have adaptive capabilities so it could be more robust

and respond to a changing environment. In response to these aims several software

components have been developed:

Behaviour based framework

The primary behaviour based framework to be developed for this project is in-

spired by the Autonomous Robot Architecture. This framework provides a set of

behavioural primitives to facilitate application development.

Adaptive controllers

Two adaptive control strategies for the primary framework have been implemented

and experimented with. The adaptive controllers provide a framework for adaptive

control of a mobile robot (using the primary behaviour based framework) as well as

some implementations of the adaptive controllers applied to a navigation task. The

framework used by these adaptive controllers is illustrated in Figure 1.1.

Secondary behaviour based framework

The secondary behaviour based framework was developed based on the Subsumption

architecture. The purpose of this framework is to provide an alternative to the AuRA

based framework. It is also of lower complexity than the primary framework and

hence more suited to deployment on actual robot hardware.

3

1.2. DISSERTATION OUTLINE

1.2 Dissertation Outline

Background

Chapter 2 briefly discusses the background theory behind systems and concepts

employed in this project. The theory behind behaviour based control is covered in

more detail in the literature review since some of the more important theory stems

from past work.

Literature Review

Chapter 3 is a review of the work done by others in the field of behaviour based

control of autonomous robots. A summary of the dominant behaviour based archi-

tectures is presented as well as a discussion on various adapative techniques that

have been applied to these architectures.

Framework

Details of the design and implementation of the behaviour based framework that

was developed for the control of autonomous mobile robots can be found in Chapter

4. The framework has been designed to enable the creation of behaviour based

applications for platforms running RoBIOS.

Adaptive Controllers

Several adapative controllers have been created for this project, these are described

in Chapter 5. Their design and development is detailed along with a brief discussion

of their relative generalised characteristics.

Navigation Task

Chapter 6 details the experiments using the aforementioned adaptive controllers.

Analysis of the data is performed and the relative merits of the adaptive controllers

are discussed.

4

Chapter 2

Background

2.1 Behaviour based robotics

Whilst the current behavioural robotics research was established in the 1980s the

concept is not a new one. In the 1930s Tolman [1] proposed a simple robot called the

sowbug. Tolman’s schematic sowbug performed similar behaviour to Braitenberg’s

vehicles [2]. Recent work by Endo and Arkin [3] has reimplemented Tolman’s design

over half a century later.

Since its early inception behaviour based robotics has become quite a broad field.

Brooks’ subsumption [4] and Arkin’s [5] AuRA provided a catalyst for a large body

of research with the result that behaviour based robotics is now a generic term.

Arkin [6] describes a number of characteristics common to behaviour based robots:

• Tight coupling of sensing to action. Behaviour based robots are composed of

reactive units that respond to stimuli without reference to a plan.

• Avoiding symbolic representation of knowledge. Behaviour based robotics es-

chews the need for a symbolic world model. The robot’s actions can be deter-

mined directly from the current sensor readings without using a representation

of the overall world.

• Decomposition into contextually meaningful units. Behaviours couple situa-

tion to action, they respond to certain situations with definite actions.

Behaviour based systems are typically composed of a number of concurrently exe-

cuting behavioural units. It is the combination of these behaviours that produces

5

2.2. REINFORCEMENT LEARNING

the overall system output. In some cases the system can be arranged such that

unexpected behaviour occurs, this is referred to as emergence. Emergence implies

a capability of the system to perform in a way that is greater than the sum of its

parts. Arkin [6] claims that whilst the individual components may be well described

the interactions between them, the environment, and the system as a whole, are

inherently complex and so there is always a margin of uncertainty in a behaviour

based system.

2.2 Reinforcement learning

Reinforcement learning is an adaptive technique whereby an agent learns through

its interaction with the environment (see Figure 2.1). A number of such learning

techniques exist, many of which are based on Sutton’s [7] work on temporal differ-

ences. Such techniques allow for agent learning with little or no a priori knowledge.

Learning occurs each time the agent performs an action and for each action the

agent receives a reward from the environment. This reward is used by the agent

to determine the validity of the particular action given its state upon making that

decision.

Learning Agent

World

ActionRewardSensory Input

(state)

Policy

World

ActionState

Return Predictor

Σ

z
-1 γ

for best

action

Reward

TD

Error

+

+

-

Figure 2.1: The reinforcement learning problem as described by Sutton [8]

Sutton [8] identifies the two most important characteristics of reinforcement learning

as being the trial-and-error search and delayed rewards. Reinforcement learning

methods learn through trying actions and then receiving a delayed reward for these

actions. As reinforcement learning occurs through trial and error the problem must

be defined such that the agent can experience the whole sample-space. Careful

choice of reward function is also required otherwise the agent may learn undesirable

behaviour.

6

BACKGROUND

2.2.1 Q-learning

Q-learning is a reinforcement learning architecture proposed by Watkins [9]. Agents

using Q-learning learn based on the state of the environment and the reward received

for their actions. As in other reinforcement learning techniques agents are not told

what the desired outcomes are. Agents learn by performing actions and receiving

feedback about that action from the environment. The learning process is performed

through careful choice of states, actions and reward function to correctly specify the

problem. It is important to note that Q-learning applies a trial and error approach,

it does not perform any cognitive function such as utilising an internal world model.

The general form of the Q-learning algorithm is given as follows:

Initialise all Q(s, a) to 0

While(1) {
Determine Current State

Most of the time choose action a that maximises Q(s, a)
Else Pick random a

Execute a
Determine reward r
Update Q(s, a)

}

The common form of the Q-learning algorithm has three parameters: the learning

rate (α), the discount factor (γ) and exploration probability (ε). All three param-

eters take values between 0.0 and 1.0. The learning rate determines how quickly

learning occurs. The speed of learning is determined by how quickly the Q-values

can change with action performed. If the α parameter is set too high the system

may not converge near the optimum point, however if α is too small learning may

not occur at all. The discount factor determines the value placed on future reward.

High values of γ mean that future rewards are favoured over immediate rewards.

For low values of γ the system is optimised for immediate reward. The exploration

probability is used to determine whether or not to choose the optimal action for

the given state. If ε is zero the state space may not be sufficiently explored and

optimisation may not occur.

When the agent performs an action it first checks to see if the action is exploratory.

Exploratory actions involve performing a random action from the set instead of

policy (the optimal action). If the agent is not exploring the Q-learning algorithm

chooses the optimal action for a given state from the table of Q-values. Q-values

represent the perceived benefit of an action, higher values correspond to greater

7

2.2. REINFORCEMENT LEARNING

benefit. The table of Q-values has an entry for every state/action pair. The optimal

action for a given state is the action with the highest Q-value in that state. Figure

2.2 describes the relationship between the world, policy and reward predictor.

Learning Agent

World

ActionRewardSensory Input

(state)

Policy

World

ActionState

Return Predictor

Σ

z
-1 γ

for best

action

Reward

TD

Error

+

+

-

Figure 2.2: Q-Learning architecture (as described by Sutton [8]).

The basis of the Q-learning algorithm is an iterative formula (Equation 2.1). This

formula is re-evaluated each time an action is selected and the Q-value corresponding

to the previous state/action pair (s,a) is updated. The action generates a reward

(r) and puts the system into the new state (s′). maxa′Q(s′, a′) is a function that

chooses the Q-value corresponding to the optimal action a′ for the new state s′.

This form of Q-learning has been proven by Watkins and Dayan [10] to converge for

deterministic Markov decision processes.

Q(s, a)← Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)] (2.1)

A non-deterministic approach to Q-learning (formula 2.2) is presented by Mitchell

in [11] based on work by Watkins and Dayan [10]. This version is guaranteed to

converge in systems where the reward and state transitions are given in a non-

deterministic fashion, so long as the transitions are based on a reasonable probability

8

BACKGROUND

distribution.

Qn(s, a)← (1− αn)Qn−1(s, a) + αn[r + maxa′ Qn−1(s
′, a′)] (2.2)

where

αn =
1

1 + visitsn(s, a)
(2.3)

visitsn(s, a) is the number of times state s has selected action a at the current time

(n). Q values update more slowly than in the deterministic form of the algorithm

and the magnitude of the updates will decrease as n increases.

A third form of this equation was used by Martinson [12] for the task of behavioural

selection for a mobile robot. This equation is similar to the non-deterministic form of

Q-Learning since it applies a decay factor to both the learning rate and exploration

probability. The decay factor is determined by (1−d)n, where d is the rate of decay

and n is the number of iterations to date. Probability of exploration is initially

high, however as time progresses the system will focus less on exploration and more

on optimisation for the given environment. The decay factor that is introduced

perturbs the Q-Learning equation so that it resembles Equation 2.4.

Q(s, a)← Q(s, a) + (1− d)nα[r + γ maxa′ Q(s′, a′)−Q(s, a)] (2.4)

This approach to Q-Learning is perhaps more suited to deployment on an au-

tonomous agent. With such a configuration it can be set to initially explore the

environment and then optimise once exploration is complete.

2.3 Rule-based adaptation

Rule-based adaption can sometimes be employed as a simple learning technique. Un-

like reinforcement learning, which uses action/reward pairs, the system uses simpler

rule-based metrics to determine its next action. One example, discussed in section

3.3.2, updates system parameters according to a set of simple rules. Rule-based

adaptive methods occur in a large variety of implementations, most commonly set-

ting parameters or adjusting parameters based on the detected state of the system.

These methods have the advantage of being lightweight, since they do not learn and

9

2.3. RULE-BASED ADAPTATION

hence require less overhead, and robust given careful choice of rules. Such proper-

ties are beneficial for deployment on an autonomous robot since it allows for more

processing time to be spent on the robot’s behaviours rather than the controller

itself.

10

Chapter 3

Literature Review

3.1 Classification of Robot Behaviours

Behavioural robots are controlled by the combination of primitive behaviours. Be-

haviour primitives can be classified into a number of distinct types which in turn

can be combined to form the desired complex control systems. Arkin [6] describes

a number of distinct primitives from which complex behaviours can be composed.

Exploration/directional Exploration/directional behaviours involve the robot mov-

ing in a chosen direction. These may be behaviours such as ’move-forward’ or

’wander’. Wandering generally involves adding a random element (noise) to

the system and is a simple, if inelegant, method of preventing the robot from

getting stuck.

Goal-oriented appetitive Such behaviours involve the robot moving towards an at-

tractor. The attractor may be a region or an object, in either case the robot

will head towards it.

• e.g. returning to the recharging station as in the case of the Roomba ®

Aversive/protective Protective behaviours attempt to prevent collisions between the

robot and obstacles, either moving or stationary.

• e.g. avoiding edges of a doorway or obstacles in a corridor

Path following Path following behaviours include following a path of some kind.

Methods of determining the path and following it may vary. Paths can be

defined visually or by other methods such as pheromones (in the case of ants).

11

3.1. CLASSIFICATION OF ROBOT BEHAVIOURS

• e.g. following an underwater pipeline to examine it for damage

• e.g. following another robot

Postural Postural behaviours are those that facilitate balancing and stability of a

robot. These behaviours provide mappings between postural type sensors and

the actuators that control the robot pose in order to maintain stability even

in the face of environmental disturbance.

• e.g. robots such as Sir Arthur [13] would require some sort of postural

behaviour to enable standing balance (although the aim of that project

was evolution of the walking gait)

• e.g. Brooks’ Genghis [14] employed a postural behaviour to maintain

stability

Social/cooperative Social behaviours describe the interaction between mobile robots.

Often the behaviours used are those such as found in colony or pack creatures.

• e.g. flocking - moving in a formation that maintains some level of cohesion

but adapts in shape as the flock moves

• e.g. foraging - searching in a cooperative manner for some type of food

and returning it to the nest (useful in soccer type games)

• e.g. hunting - searching for and surrounding prey

Teleautonomous Teleautonomous behaviours allow a human operator to exert some

measure of influence over the autonomous robot. Teleautonomous control can

exert influence by using a single behaviour that receives external commands

or through a number of other methods such as using a planner which adjusts

behavioural weights based on human input. Arkin [15] demonstrated possible

use of teleautonomous behaviour by including the user input as an additional

motor schema.

Perceptual Perceptual behaviours control how the robot acquires and interprets

visual data.

• e.g. ocular reflexes - reaction to visual stimuli

Walking A walking behaviour controls the limbs of a legged robot and enables it to

move.

• e.g. Brooks’ first six-legged robot [14], Ghengis, had leg lifting behaviour

for gait control

12

LITERATURE REVIEW

• e.g. Kirchner’s Sir Arthur [13] had evolved leg behaviours and an overall

behaviour evolved for combined movement of the body segments

Manipulator-specific, gripper/dextrous hand These behaviours coordinate the move-

ment of a manipulator and the subsequent use of its end-effector to interact

with an object.

3.2 Architectures

There are currently two dominant behaviour based architectures that are widely

used: Subsumption [4] and the Autonomous Robot Architecture [5]. These two ar-

chitectures are discussed below. There are other architectures in existence, however

these make use of some of the properties presented by one of the two dominant

architectures.

3.2.1 Subsumption

The first widely published behaviour based architecture was Brooks’ [4] Subsumption

architecture in 1986. This architecture was motivated by a desire for simplicity.

Robots should be cheap and hence require little computational power to perform

their tasks. Subsumption proposed an alternative to the deliberative reasoning

paradigm of sense-plan-act, instead utilising a number of independent behaviours

executing concurrently.

Traditional Control

Prior to the introduction of subsumption most robot architectures used a deliberative

control method. Tasks were decomposed into functional blocks and each block would

be executed in turn. Generally the tasks would be perception, modeling, planning,

task execution and motor control. These can be a significant delay between the

robot sensing and the execution of its plan. Figure 3.1 illustrates the steps involved

from the sensing to actuation for a deliberative control strategy.

Layered Control

Subsumption proposes the division of control into multiple concurrent behavioural

modules. Each behaviour acts concurrently and independently and their outputs are

13

3.2. ARCHITECTURES

S
e
n
s
e

M
o
d
e
l

P
la
n

A
c
t

ActuatorsSensors

controller::EyebotController controller::QLearningController

controller::AdaptiveEyebotController

controller::SimpleLocateBall
controller::VirtualController

Figure 3.1: Deliberative organisation of functional blocks

arbitrated over in some fashion. A concurrent layered control structure is illustrated

in Figure 3.2.

Plan changes to the world

Identify objects

Build maps

Discover new areas

Wander

Avoid collisions

Sensors Actuators

Figure 3.2: A modular and reactive organisation of control

Brooks [4] identified four key requirements of a control system for an intelligent

autonomous robot:

• Multiple goals - the robot must be able to satisfy multiple goals, some will be

more important than others depending on the situation.

• Multiple sensors - the robot will possess multiple sensors, it must be able to

handle conflicting results between the sensors

• Robustness - the robot must be able to adapt to changes in the environment

and sensor error

• Extensibility - the robot needs to be able to increase in processing power as

more sensors and capabilities are added

Subsumption departs from the deliberative control methods and proposes concur-

rent execution of tasks. Brooks’ solution to concurrent task execution is to have

behavioural modules that take some input and produce some output. Modules are

14

LITERATURE REVIEW

independent of each other and have no shared bus, clock or memory. Since one

behaviour should be dominant at a given time a higher-level behaviour may sub-

sume one of a lower level. This is done by sending either inhibiting or suppressing

signals to the lower level behaviour. In Brooks’ original paper [4] behaviours were

implemented as augmented finite state machines (AFSM) as in figure 3.3.

BEHAVIOURAL MODULE

I

S

R

Reset

Inhibitor

Supressor

Output linesInput lines

Figure 3.3: An augmented finite state machine purposed for subsumption

When constructing a robot control system the design may be extended layer by

layer. Initially, simple behaviours may be constructed and proven through testing

before more complex behaviour is introduced. Designed in this way, the introduction

of a new layer should not interfere with correct operation of the robot.

3.2.2 Autonomous Robot Architecture

The Autonomous Robot Architecture (AuRA) combines both reactive and deliber-

ative components. As stated by Arkin and Balch [16], the deliberative component

is broken down into a mission planner, spatial reasoner and plan sequencer. The

reactive component consists of the schema controller and the schemas. Perceptual

schemas interpret the sensory input and the motor schemas give outputs to control

the motors. The schema controller sums the outputs of the schemas in a way that

will best suit the given plan. A brief overview of schemas is given in Section 3.2.2.

Deliberative Planning

AuRA’s deliberative planner takes mission input from the operator and produces,

by combination of the spatial reasoner and plan sequencer, a plan compatible with

15

3.3. ADAPATIVE CONTROL

the behaviours of the robot. The plan sequencer then passes control of the robot

to the schema controller. If the controller completes the plan sequence or detects

a failure, control returns to the deliberative planner. In the event of failure the

planner attempts to solve the problem in a bottom up fashion. The plan sequencer

will first attempt to reroute the robot according to known data. If that fails the

spatial reasoner will decide on a new path that avoids the problematic area. Finally,

if a new path fails then the mission planner informs the operator of failure and may

request a new mission.

AuRA is a modular architecture and has been known to use various mission planners

depending on the implementation. This design has allowed experimental planners

and controllers which were designed for research in areas such as adaptive behaviour.

See Section 3.3 for more information on this topic.

Motor and Perceptual Schemas

AuRA’s reactive component uses schemas to control the robot. Schemas are pro-

posed by Arkin [5] as a basic unit of behaviour specification. Prior to [5] schemas

had been proposed by various authors using similar definitions. Each schema is in-

tended to perform a single behaviour for the robot. Perceptual schemas map sensor

readings to sensory inputs for the motor schemas. Motor schemas asynchronously

receive input from perceptual schemas and produce a vector output. AuRA’s schema

controller creates a normalised weighted sum of the vector outputs to generate the

resulting output.

3.3 Adapative Control

In order to make an autonomous robot truly useful it must be able to deal with a

changing environment. Some simple robots can simply react and require no knowl-

edge of the environment. When implementing a behaviour based system that is

linked to a deliberative mission planner the robot is required to have knowledge of

its surroundings or at least to be able to adapt as the mission changes. For these rea-

sons, and others, there has been a large amount of research done in the areas related

to machine learning. It is important to note that knowledge does not necessarily

mean a world model as in deliberative robotics. Knowledge can be identification of

a situation thus provoking the robot to react in a (possibly) predefined way to solve

a problem.

16

LITERATURE REVIEW

The most common method of employment of knowledge gained through machine

learning is through adjusting how the outputs of behaviour primitives are combined.

These approaches vary but many focus on the use of neural networks or stored

parameters (sometimes called ’cases’). Alternative methods utilise on-line adapation

using various reinforcement learning techniques.

There are a number of possible approaches to machine learning in behaviour based

robots. The techniques outlined below are all on-line adaptive methods.

3.3.1 Q-Learning

Q-learning is a form of reinforcement learning that is somewhat popular in the

field of behavioural robotics. Most commonly it has been used for the training of

individual behaviours, such as the work done by Kirchner [13]. Sutton and Barto [17]

introduce the two key concepts of reinforcement learning as trial and error search

and delayed reward. A successful search may yield knowledge of an action that will

negate the need for some future searches and hence the reward is improved over

that of an easier result that may work but be limiting in future. The hardest part

of reinforcement learning can often be acknowledging that the search function was

a success.

The Q-learning algorithm [10] was designed to solve the problem of an agent si-

multaneously learning a world model and defining a suitable policy. With sufficient

trials Q-learning will converge on an optimal solution to a given problem. Martin-

son, Stoytchev and Arkin [12] used Q-learning to teach a mobile anti-tank robot

to intercept a target. In their attempt they simplified the problem by using well-

tested behavioural assemblages thus allowing Q-learning some abstraction from the

primitives and a greater ease of use.

Kirchner [13] applied Q-learning to teaching a 6-legged, segmented robot to walk by

evolving behaviours. The robot, Sir Arthur, was composed of three segments, each

with two legs. Each leg had two servos as in a standard six-legged walker. However,

the segments were connected together with two degree of freedom joints. These

joints allowed the segments to raise and pivot with respect to each other. In this

case the elementary leg-lifting behaviour was learnt first to satisfaction. Following

that the robot was required to learn the complex behaviour.

Q-learning can be applied to various elements of the behavioural architecture and,

provided the reward function, states and actions are sufficiently well defined, an

optimal solution will emerge.

17

3.3. ADAPATIVE CONTROL

3.3.2 Learning Momentum

Learning momentum is a rule based method of adaptation. This type of adaptation

could be described as a crude form of reinforcement learning

In essence learning momentum is a control scheme in which if the robot is succeeding

it is encouraged to keep doing what it’s doing and if it is failing it is discouraged

from its current action. This method of control was first introduced in a paper by

Clark, Arkin, and Ram [18] in 1992. The main benefit of learning momentum is

that it gives on-line performance enhancement without spending large amounts of

time in training sessions.

Learning momentum could be thought of as a crude form of reinforcement learning.

Like Q-learning the robot detects its environmental state, however with learning

momentum the current state determines which rule is executed. The rule execution

causes adjustment of the current schema weights and parameters. Every time the

robot is initialised it must re-adjust from zero to find appropriate parameters to suit

the immediate environment. The time taken to adjust to the surroundings is offset

by the lack of costly training procedures.

The original implementation of learning momentum [18] involved modifying schema

gains and parameters directly in order to facilitate the learning process. For example,

in a highly cluttered environment a drive-straight behaviour would have to be set

on low gain and avoid-obstacles would have to be on high. When leaving that

cluttered environment the robot could increase the gain of drive-straight and pick up

speed. Recognising that the robot’s environment has changed presents somewhat of

a problem without having a world model. To solve this an additional component, the

adjuster, was added to the architecture. The adjuster dynamically assigns weights

to the schema outputs and sets schema parameters to cope with environmental

difficulties.

Since the initial learning momentum design was relatively simple (it was an obstacle

avoiding robot that moved toward its goal) there were only four distinct cases for the

adjuster to deal with. These cases were that the robot could be: stopped; moving

to its goal; not making progress due to obstacles and not making progress with no

obstacles present. This simple strategy was successful in its aims and could even

navigate a box-canyon, something that is practically impossible for a non-adaptive

reactive system.

Lee and Arkin [19] performed an implementation of the same concept in 2001 with

18

LITERATURE REVIEW

similar results. Learning momentum appears to provide good on-line performance

given it requires minimal computational expense and no training sessions.

3.3.3 Case-based reasoning

Case-based reasoning is a method of on-line adaptive control. It is somewhat similar

to learning momentum but there is one key difference, the case library. Case-based

reasoning provides a library of cases from which to suggest action based on environ-

mental and robot state data. The behaviour parameters and gains will be adjusted

to suit the particular case in a similar fashion to learning momentum. For a case-

based reasoning system to be successful it must be able to choose the correct case

for the current situation and, if necessary, adapt that case to changing conditions.

One implementation of case based reasoning was the ACBARR [20] (A Case-BAsed

Reactive Robotic) system by Ram, Arkin, Moorman and Clark. This system allowed

for on-line adaptive control of the robot using selected cases where appropriate and,

more importantly, adapting cases as necessary. Ignoring the case-based elements of

ACBARR, the system is quite reminiscent of the learning momentum architecture

proposed in [18]. It does, in fact, seem to be the next logical step in that vein of

control.

The ACBARR system favours the use of multi-purpose behavioural assemblages.

Instead of behaviours that are highly optimised to perform a task they opted to

make assemblages that were more useful in a variety of situations and that could be

tuned to perform as needed. Since the behaviours may be used in more situations less

behaviours will be needed overall. This approach appears to consistently improve

over purely reactive and non-case-based-adaptive designs. The main drawback of

this approach is the possible memory requirements as the library of cases grows.

In 2001 Likhachev and Arkin [21] implemented a case-based reasoning system on

a real robot. The architecture incorporated the use of a high-level planner that

was linked with both the case-based reasoning module and the behavioural control

unit. The reactive system designed for their experiment was somewhat simpler than

ACBARR but it still proved to be successful.

19

20

Chapter 4

Framework

4.1 Overview

The aim of the behaviour based framework is to facilitate development of behaviour

based robotic applications for the EyeSim and RoBIOS environments. Software

components have been developed using the C++ language in order to realise this

goal.

For the purposes of this framework the convention of referring to behaviours as

schemas is adopted. Other elements of the system that perform processing for a

behaviour are also referred to as schemas, albeit of a different type. Other elements

of the system will be referred to as nodes.

Schemas are defined at an abstract level in order to facilitate modularity of compo-

nents and allow their usage with little to no knowledge of implementation specific

details. The schemas and nodes are combined recursively in tree-like structures al-

lowing complex behaviours to be developed. The head of the tree is evaluated by the

arbitration mechanism in order to produce the output of that particular behaviour.

Behaviour outputs are combined by the arbitrator in some fashion, commonly a

weighted sum, and produce the final movement command for the robot.

4.2 Architecture

The architecture of this framework was patterned on Arkin’s [5] autonomous robot

architecture (section 3.2.2). Implementation of the framework takes inspiration

21

4.2. ARCHITECTURE

from the MissionLab environment and to a lesser extent the TeamBots environment

implementation.

4.2.1 Design

The system can be divided into two distinct components, the deliberative planner

and the reactive subsystem. The focus of this project has been the reactive subsys-

tem and so the deliberative planner is only specified via its interface to the controller.

Figure 4.1 describes the basic design of the architecture.

Deliberative Planner

Controller

Schemas

Robot

Sensors

Figure 4.1: Architecture of the behaviour based framework

The reactive subsystem can be described as being monolithic, the controller encapsu-

lates all schema elements of the system. These schema networks are then arbitrated

over by said controller. The methods used for arbitration can vary between im-

plementations of the controller. Schemas provide varying degrees of functionality

ranging from simple numerical operations to image processing tasks. The controller

performs the evaluation and combination of the schema networks and directs this

output to the robot.

Schemas

The base components of the framework are the schemas. Schemas are categorised as

motor (generating actuator commands) and perceptual (processing sensory input).

Each schema is defined such that it produces a distinct output type. The types

22

FRAMEWORK

available in this implementation range from primitives such as booleans, integers

and double precision floating points to the more complex two-dimensional vector

and image types.

Schemas are intended to be combined recursively. The combination of schemas will

form a tree, the root node of the whole tree usually being a motor schema which

provides some movement command. Individually schemas have no knowledge of the

size of the tree and so simply evaluate their inputs assuming that they provide their

information directly. Complex behaviours can be generated from the combination

of other schemas.

Control

A robot control program will be developed by combining a number of motor schemas

together. The controller is a monolithic component that combines the outputs of

these schemas together and then passes the result on to the robot (as shown in

Figure 4.2). Controllers will often perform very basic functions, however they can

be extended to perform complex environmental analysis to determine optimum pa-

rameters for the behavioural networks they control.

Controller

Motor Schema Motor Schema Motor Schema

Robot

Figure 4.2: Relationship between the Controller and Motor Schemas

Each processing cycle the controller will evaluate the behavioural network, process

its outputs and command the robot to act. On the next cycle sensors in the network

should notice some change and so the network may produce a different output. The

controller, schemas and robot form a closed-loop feedback system.

23

4.2. ARCHITECTURE

4.2.2 Implementation

This framework has been implemented based around the building blocks which form

behavioural assemblages. The simplest building block in this system is the Node

class. The node class is extended by a number of classes to provide the function-

ality to return various data types such as integers, double precision floating points,

booleans, two dimensional vectors, images and lists. A number of operative nodes

have been created to perform mathematical operations on their inputs.

Nodes define a value(timestamp) function which returns their current value. The

timestamp is used so that nodes may buffer their output so that nodes referenced

multiple times need only calculate their value once per network evaluation. The

value of a node is evaluated recursively, each node evaluating any nodes that they

reference before returning their value. The timestamp is an arbitrary clock signal

that is expected to increase with time.

behaviour::Node

behaviour::NodeBoolean behaviour::NodeInt behaviour::NodeVector2 behaviour::NodeImage

behaviour::MotorSchema
behaviour::PerceptualSchema

behaviour::AvoidObstacles behaviour::LinearAttraction eyebot_sensors::EyebotDetectObstacles

Figure 4.3: Simplified class diagram showing relationships between selected schemas

The key elements in this framework are the MotorSchema and PerceptualSchema

nodes. MotorSchema defines the interface with which the implemented controllers

expect to receive motor commands. PerceptualSchemas are designed such that they

can return a list of two-dimensional vectors suitable for use with a MotorSchema.

MotorSchemas also provide a measure of success or failure of the schema. These

success and failure values are used in the controller to determine the current program

state.

The controllers are a wrapper which provides the arbitration functionality to the

behavioural network. Several controllers of varying layers of functionality have been

24

FRAMEWORK

developed. The basic functionality of all controllers involves encapsulating the be-

havioural assemblages used in the current application, evaluating their outputs and

subsequently communicating the motor commands to the robot. Communication

with the robot is performed through a class that acts as an abstraction layer between

the framework and the robot. Figure 4.4 depicts an overview of the dependencies of

the LocateBall controller. This controller performs a two-state search and approach

behaviour, wandering around aimlessly until it sights the target.

controller::SimpleLocateBall

behaviour::ApproachClosestTargetbehaviour::AvoidObstacles

behaviour::DetectColouredBall

behaviour::ConvertRGBToHSV

behaviour::Noise

eyebot_sensors::EyebotDetectObstacles

eyebot_sensors::EyecamRGB

Figure 4.4: Relationships between schemas and controller in the LocateBall task

For RoBIOS applications the SimpleEyebotController has been developed. This

is used in conjunction with the Eyebot class RoBIOS wrapper and a number of

Eyebot-specific sensory schemas. SimpleEyebotController combines behaviour out-

puts together in a weighted sum according to a set of fixed weights. Weights are

chosen based on the current state of the system, determined by an internal state

machine. In addition this controller provides a basic user interface for the Eyebot

LCD screen, exposing various data such as the current state, weights and perceived

success of the behaviours. Figures 4.5-4.7 show the user interface in various modes.

The graph shown in figure 4.6 is a graph of the perceived success of the behaviours.

In this particular example the red is the success of move-to-goal and the blue is

the success of avoid-obstacles.

25

4.3. SUBSUMPTION ARCHITECTURE

Figure 4.5: Execution-
time display

Figure 4.6: Graphical
display of perceived
schema success

Figure 4.7: Robot view
as seen by Eyecam

4.3 Subsumption Architecture

Additional support was added to allow for an alternate architecture based on Brooks’

subsumption [4]. This alternate design was included so that both dominant archi-

tectures in the field would have representation. It allows experimentation with some

basic behavioural modules. This framework has not been developed as extensively

so only a limited selection of behavioural modules have been implemented.

The design of the alternate architecture was based on the work done by Brooks

as mentioned in 3.2.1. The main concept of the subsumption design is that the

system is built by connecting behavioural modules. Movement is performed by

connecting behavioural modules to actuator modules. Functionality can be added

in layers by the addition of inhibition/suppression modules to splice in higher level

functions. Only one layer will be controlling the robot at a time. Depending on

the local environmental state and design of layers this may be a higher level (task

performing) or lower level (self preservation) behaviour.

4.3.1 Implementation of Subsumption

This architecture utilises the concept of the behavioural module and the supres-

sion/inhibition line. Instead of using wires, as in hardware implementations of

subsumption, the behavioural modules in this system output data structures. For

single line modules the output is a primitive data structure such as an integer or a

boolean, however complex behavioural modules can output vectors and lists. Be-

havioural modules are implemented as classes derived from SubsumptionBuffer.

All modules in this implementation are descendents of the class SubsumptionBuffer.

26

FRAMEWORK

Inhibition/Supression modules are also descendents of the SubsumptionSupressor

class, this class provides the basic functionality to suppress an input signal. The

SubsumptionSupressor derived classes are essentially a multiplexer with the active

line selected by the status of the prioritised line. SubsumptionInhibitor derived

classes work the same way, however they produce a zero output if the controlling

line is active. Time constant functionality as used in Brooks’ subsumption [4] has

been implemented for the supressors and inhibitors.

Robot actuation is done via behavioural modules. The currently implemented ac-

tuating modules are descendents of SubsumptionBufferDouble. These modules use

the RoBIOS vω interface to move forward and to turn on the spot. This also allows

for using the vω interface to determine the robot position and orientation, other

modules have been developed to provide such information.

At this point the subsumption-based framework provides a software implementation

of layers 0 and 1 of Brooks’ original subsumption concept. More details are available

in Appendix B.

The subsumption framework is not intended to be interoperable with the main

framework implemented for this project. Architectural differences are the main

reason for the schism, even though the implementations are similar they are signifi-

cantly different such that they should not be used in the same application. In light

of this the namespaces used by both implementations are the same since applica-

tions should not be attempting to use both frameworks at once. The namespaces

are common to both frameworks for the sake of continuity, however the construct

environments reside in different locations.

27

28

Chapter 5

Controller

To further explore the possibilities of the behavioural framework two adaptive con-

trollers were created. One controller was based on the rule-based method of learning

momentum proposed by Clark [18] (see Section 3.3.2 for further explanation). The

other was designed to self-optimise using Watkins’ [9] Q-Learning algorithm (dis-

cussed in Section 2.2.1).

The possible motivations for an adaptive controller are many, however in this case

the controllers were developed so that they would be able to function correctly in

different environments. An adaptive controller should provide, on average, improved

functionality when compared to a purpose built controller. The purpose built con-

troller would most likely perform a given task more efficiently, however performance

at tasks outside the set for which it was designed would be much less impressive.

The adaptive controllers implemented so far have been developed so that they are

easy to re-use for another purpose. To this end the controllers have been de-

veloped using a base class that leaves methods able to be redefined by derived

classes. Both adaptive controllers implemented in this project inherit from the

AdaptiveController base class which extends the SimpleEyebotController to

add support for adaptive functions. QLearningController and LearningMomentum-

Controller further extend this to provide a framework for their respective adaptive

techniques. Figure 5.1 describes the class hierarchy of the current systems.

The adaptive controller is paired with the schema network using the configuration

given in Figure 5.2. Whilst this particular example is specific to a given task,

this configuration still illustrates the general concept of the interaction between

the adaptive controllers and their schema networks. Using this configuration the

29

5.1. Q-LEARNING

controller::EyebotController

controller::SimpleEyebotController

controller::AdaptiveEyebotController

controller::LearningMomentumController controller::QLearningController

1 0..*

behaviour::Nodebehaviour::FSMInt 11

controller::QMoveToGoal

Figure 5.1: Class hierarchy of the implemented adaptive controllers

adaptive controller directly manipulates schema weights and parameters in order to

achieve the desired task.

Controller

Σ
Noise

AvoidObstacles

LinearAttraction

DetectObstacles

Target

Position

Orientation

Schema weighting

Motor commandSchema parameters

Figure 5.2: Navigation task schemas coupled with an adaptive controller

5.1 Q-learning

Q-learning was chosen for the optimisation solution in an adaptive controller. This

controller was designed to optimise schema weights and parameters for a given task.

In Q-learning the task is defined through the definition of the states, possible actions

and reward function. An adaptive controller was created (QLearningController)

which provided the framework for adaptation via Q-Learning. This implementation

30

CONTROLLER

was designed with modularity in mind so that the controller could be applied to

other tasks. The methods to calculate current state, apply actions and calculate

reward were created so that they can be redefined by child classes.

Since Q-learning is an on-line method of adaptation some experimentation with

reward functions and frequency of update was required in order to gauge acceptable

values. Cline’s [22] work in the area of tuning the Q-learning algorithm was used as

a basis when choosing the learning parameters for this system.

5.1.1 Task specification

In this case two implementations have been defined in the QMoveToGoal and QMove-

ToGoal2 controllers, both child classes of QLearningController. The task assigned

to both controllers was a navigation exercise, requiring the robot to drive between

two points in the environment without colliding with obstacles or getting stuck in

dead ends. Specification of the task was done via choice of state division and action

implementation. Careful choice of both reward functions determined which action

would eventually be chosen for a given state.

5.1.2 QMoveToGoal

State

The QMoveToGoal controller calculates current state based on obstacles detected in

the environment. This state is stored as an integer value, however it is assembled as

a sequence of codewords with each codeword representing the range detected by one

of the infrared sensors, in this case a position sensitive device (PSD). A range less

than 9999 (the maximum) is perceived as an obstacle and so the value is encoded

according to a certain resolution. In order to limit the size of the Q-values table

the resolution of each codeword is kept to a small number of bits. For the current

implementation of QMoveToGoal a two bit codeword is used for each PSD, the coding

scheme is given in table 5.1.

The current environmental state is given as the sequence of obstacle distance code-

words. These codewords are organised in sequence in a clockwise fashion starting

with the leftmost PSD in the most significant position. Equation 5.1 depicts the

codeword arrangement used in the current implementation, the example shown is

for when no obstacles are detected.

31

5.1. Q-LEARNING

Obstacle Distance (mm) Codeword
> 2000 00
> 1000 01
> 500 10
< 500 11

Table 5.1: Obstacle distance encoding scheme

State = 00︸︷︷︸
(left)

00︸︷︷︸
(front left)

00︸︷︷︸
(front)

00︸︷︷︸
(front right)

00︸︷︷︸
(right)

010︸︷︷︸
(octant of goal)

(5.1)

Action

The QMoveToGoal controller defines an action as the application of a set of weights

and parameters to the behavioural network. Each time the algorithm updates a new

set of weights and parameters are selected and applied. The QMoveToGoal controller

uses a set of schemas consisting of LinearAttractor, Noise and AvoidObstacles

(shown in Figure 5.3).

Move to Goal

Avoid Obstacles

Noise

detect goal

detect obstacles
movement

vector

Figure 5.3: Behavioural assemblage used in the QMoveToGoal controller

As can be seen in Figure 5.3 QMoveToGoal only controls two variables, the Noise

schema weight and the sphere of influence of AvoidObstacles. The sphere of in-

fluence (of AvoidObstacles) determines the distance within which obstacles begin

to have a significant repulsion effect. These variables were chosen since it is not

necessary to modulate both the weight and sphere of influence of AvoidObstacles.

Significant reduction of the sphere of influence achieves the same goal as lowering

the weight, increasing the weight has little effect beyond a certain threshold as the

behaviour begins to dominate the output. The Noise weight is set to either a 0.5 or

0.0 weight in order to introduce randomness to the robot’s behaviour in the event

that it may be necessary.

32

CONTROLLER

The approach that this implementation is intended to take is known as ballooning.

The sphere of influence of avoid-obstacles is expanded, just as a balloon is in-

flated, in order to repel out of local minima. This approach was demonstrated by

Clark [18] in his work on learning momentum, however in this case the intent is to

use this approach to successful navigation of local minima by training the robot to

learn to employ it at the correct situation.

The alternative approach to ballooning is known as squeezing. In this technique the

sphere of influence of avoid-obstacles is reduced in order to squeeze through gaps

in barriers. Such a technique fails if the barrier has no gaps and so squeezing would

not be an optimal policy for all environments.

Reward

QMoveToGoal was created to complete a navigation exercise in which the robot would

move to its destination without colliding with obstacles or get stuck in local minima.

This problem definition required that positive reward be given for movement towards

the goal, but negative reward be given in the event of a collision.

In order to deter the robot from colliding with obstacles the reward function was de-

fined such that the robot receives negative reward. The robot receives an additional

reward equal to the change in collisions since last update. The reward due to colli-

sions is essentially rcollisions = (collisionsprevious−collisionscurrent)−collisionscurrent.

This reward accumulates quite rapidly in the event of a collision and so the robot

becomes averse to such action.

To satisfy the need of the robot to reach the goal the reward function adds an

additional reward based on the normalised movement in the direction of the goal.

This reward is calculated as rmovement = d̂.m
l

, where d̂ is the unit displacement to

goal, m is the displacement since last update and l is the length of the path since

last update. The divisor by the path length is used to lessen the reward in the event

that the robot does not take the shortest path between its previous and current

positions.

QMoveToGoal uses a slightly non-standard version of Q-Learning. At each iteration

of the algorithm, the learning rate and exploration probability exhibit a decay by a

certain amount. Decay is calculated as an exponential function, the base is taken

as 1 − d (where d is the decay) and the exponent increases with each iteration.

This decay was instituted in order to allow continuous simulation of the system and

33

5.1. Q-LEARNING

encourage early exploration of the state space. More information on this system is

given in Section 6.2.1.

5.1.3 QMoveToGoal2

The QMoveToGoal2 controller is a very similar implementation to that of its prede-

cessor. It does, however, take an alternative approach when it comes to state division

and action. The reward function is largely unchanged from that of QMoveToGoal.

State

Like QMoveToGoal this controller represents its state in a bit string. There are,

however, some differences. Most notable of these is that the number of states has

been greatly reduced. QMoveToGoal2 only takes into account whether or not an

obstacle is present in each of the directions, the definition of present being within

1000mm of the robot. This reduces the number of states down to 5 bits of object-

related state and 3 bits from the directional state, giving a total of 256 states for this

controller. The smaller number of states requires less training time since it requires

less time to explore the state space.

The reduction in state space size was done for two primary reasons. Firstly the

QMoveToGoal controller uses a large number of states and so requires significant ex-

ploration to cover the entire state space. Secondly, and perhaps most importantly,

not as many states are needed for this implementation. Since this controller takes a

different approach to the definition of an action it does not need any more informa-

tion about the environment than whether an obstacle is within a significant range

or not.

Action

QMoveToGoal2 takes an alternative approach to QMoveToGoal instead of choosing

an action from what is essentially a library of cases it chooses from a number of

possible actions. The actions in this case are distinct combinations of behaviours.

This implementation only performs three different actions: movement to goal, wall

following and repulsion/noise.

Wall-following is important in this implementation since it provides an alternate

approach to the ballooning strategy that QMoveToGoal is intended to employ. This

34

CONTROLLER

implementation has been designed in order to attempt to make the robot implement

navigation that resembles the Distbug [23] algorithm but does so in a behavioural

manner. The agent is intended to learn to trace the outline of obstacles when

they lie in such a wall that is beneficial to movement towards the goal. In other

circumstances the robot should act as if it was simply moving towards the goal.

5.2 Learning Momentum

One of the adaptive controllers that was implemented was based, in concept, on

the learning momentum technique presented by Clark [18]. This controller adapts

using a set of rules such that the robot encourages successful behaviours and dis-

courages unsuccessful ones. Learning momentum has been described previously in

Section 3.3.2. Learning momentum is a cheaper solution to implement as compared

to Q-Learning since it requires less overhead and no training time.

In learning momentum the controller functions according to a set of rules that eval-

uate based on environmental data and some measure of the internal state. An

implementation of a learning momentum-based framework was created, taking the

name LearningMomentumController. This controller allows derived classes to de-

fine their own set of rules to suit their particular behavioural network and desired

task.

The momentum element of this controller exists due to the nature of how rules

are applied. In Clark’s original implementation the rules caused an incremental

update of schema weights and parameters, thus the schema parameters did not

react instantaneously to a changing environment. In addition his implementation

averaged the environmental state thus providing a slowly changing average which

caused an additional inertia-like effect on schema weights. The implementation

created for this dissertation also utilises averaged environmental values, however the

LearningMomentumController only provides a framework for the implementation

of this technique. Hence it does not provide the averaging functionality since the

quantities to be averaged are determined by derived classes.

5.2.1 Rules

A controller to suit the same task as QMoveToGoal was created using a class derived

from LearningMomentumController. This controller, LMMoveToGoal, uses the same

35

5.2. LEARNING MOMENTUM

three-schema assemblage as QMoveToGoal. However in this case all the schema

parameters and weights are adjusted according to a set of simple rules. Figure 5.3

illustrates the behavioural assemblage used by LMMoveToGoal.

The rules used in this controller take inspiration from Lee’s [19] implementation of

learning momentum. Adjustment values in this case are different to those used by

Clark [18] and Lee [19] and an additional rule for a seldom occurring case has been

added. To correctly evaluate these rules LMMoveToGoal takes averages of the number

of obstacles in the environment and a measure of the movement of the robot and its

relative movement in the direction of the goal. The rules governing this controller

are summarised below.

No movement (with obstacles) The weight of LinearAttraction is significantly

decreased. AvoidObstacles weight and influence are significantly increased.

Noise is randomly adjusted.

No movement (without obstacles) Weight of LinearAttraction is increased.

AvoidObstacles weight and influence are slowly decreased. Noise is randomly

adjusted

Progress Weight of LinearAttraction is significantly increased. AvoidObstacles

weight and influence are slowly decreased. Noise is reduced.

No progress (with obstacles) Weight of LinearAttraction is reduced. Avoid-

Obstacles weight and influence are increased. Noise is slightly increased.

No progress (without obstacles) Weight of LinearAttraction is slightly in-

creased. AvoidObstacles weight and influence are slightly decreased. Noise

is decreased.

Progress is considered to have been made if the movement in the direction of the

goal was above a certain threshold. No-movement is defined as true if the total path

length since last update is below threshold. At least two obstacles are required for

the algorithm to attribute lack of movement/progress to be due to the presence of

obstacles.

36

Chapter 6

Navigation Task

6.1 Overview

Reinforcement learning, whilst an on-line adaptive technique, does require some

training of the agent before it will correctly interact with the environment. Train-

ing in simulation is preferred since it allows the agent full exploration of its state

space without the physical damage that can occur due to a wrong move. It also

allows easy definition of the training environment such that more constraints can be

incrementally introduced.

The QMoveToGoal adaptive controller (described in Section 5.1) required some train-

ing in order to perform its task. Training was conducted starting with a zero-

initialised table of Q-values. The robot was required to navigate through obstacle

fields of varying density in order to reach its goal. QMoveToGoal2 was also trained

in the same circumstances.

The trained controllers were evaluated by setting them the navigation task in a

number of environments of varying obstacle density. In order to provide some com-

parative measure of performance a learning-momentum-based controller and a con-

troller with static parameters were given the same task in the same environments.

All four controllers were given similar behavioural assemblages to use for this task

(see Figure 5.3).

37

6.2. TRAINING

6.2 Training

Since the environment is static the robot was able to be trained in a number of long

training sessions. These simulations involved the robot performing a large number

of laps between the goal and start position. In order to compensate for drift in

perceived robot position these training sessions were limited to a number of laps of

the course. Initial training sessions were performed in order for the robot to explore

the state space, in these sessions the exploration probability was reasonably high.

In later training sessions, when the robot appears to have sufficiently explored the

state space, the exploration probability is gradually lowered.

6.2.1 Basis

Q-Learning is itself a trial-and-error approach to optimisation, so was parameterising

the Q-Learning controller. Research done by Cline [22] and Martison [12] in using

Q-Learning for control of an agent provided guidelines for choosing the parameters

of QMoveToGoal.

Cline [22] conducted some research into optimum parameterisation of a Q-Learning

agent using genetic algorithms. His results indicated that a high discount factor

is beneficial in almost all cases, hence the discount factor is set to 0.9. Cline’s

work in determining an optimum learning rate showed that a high learning rate is

more beneficial in dynamic environments. Some experimentation determined that a

consistently high or low learning rate did not seem to be particularly conducive to

convergence. A high learning rate was initially beneficial but became less so as time

progressed. A low learning rate was less beneficial when learning first began. Such

results indicated that a decaying learning rate was beneficial.

Martinson’s [12] application of Q-Learning utilised a decay factor that was applied

to both exploration probability and learning rate upon each Q-table update. The

effective form of the Q-Learning equation is shown in Equation 2.4. The preference

is for the system to initially learn at a high rate and to explore the Q-table as

quickly as possible. Based on this work it seems that this implementation might

also benefit from such a decay factor in order to allow a gradual slow-down in the rate

of exploration and an increasing emphasis on convergence. Some experimentation

with the decay factor was required since QMoveToGoal uses a Q-table of significantly

larger size than that used by Martinson.

38

NAVIGATION TASK

In addition to the parameters of the Q-Learning equation the update frequency of

this system had to be chosen. Some experimentation was performed with regards

to this parameter and it was determined that retrieving a reward every 20 steps

allowed for sufficient movement for the rewards to be evaluated effectively. Further

experimentation determined that allocating reward when the state changed was a

more effective technique. However, since some actions can cause the robot to halt if

performed in the wrong state, it was decided that the controller should only remain

in one state without change of action for 20 steps. This approach is also more

appealing since it requires less parameterisation of the system. Actions which cause

the robot to halt should be discouraged before exploration ceases (and training is

complete).

The results of this experimentation are the parameters given in Table 6.1. The

form of the Q-Learning algorithm to use was the non-deterministic case (given in

Equation 2.4) which utilised a decay factor. Learning rate is initially set to 1.0,

discount factor is permanently set to 0.9. The exploration probability is initially set

to 0.55 and then a decay factor is applied to both the learning rate and exploration

probability of 0.00005 per iteration.

Parameter Value
α 1.0
γ 0.9
ε 0.55
d 0.00005

Table 6.1: Parameters for the Q-Learning algorithm used in QMoveToGoal (given in
Equation 2.4)

6.2.2 Regime

The training regime of the agent was chosen in order to give a higher probability

of successfully learning the desired parameters. Training of the agent is conducted

using parameters which are intended to improve the exploration of the state-action

table. In initial runs the exploration probability begins at 0.55, this is later decreased

as the robot appears to have explored the bulk of the Q-table. Initial learning

rate is set to 1.0 and the discount factor is permanently set to 0.9. After some

experimentation (see Section 6.2.1) the decay factor of the system is set to 5×10−5.

The training procedure for the agent was performed in a partially cluttered environ-

ment. The training environment is shown in Figure 6.1. The robot was required to

39

6.2. TRAINING

perform laps between the green and blue nodes, a lap is defined as the robot moving

from one node to the other and back again.

Figure 6.1: Training environment used for both the QMoveToGoal and QMoveToGoal2

controllers (destination is highlighted)

6.2.3 Analysis

The success of the training procedure is verified after the training procedure is

considered to be complete. The Q-Learning algorithm was expected to converge on

a solution after a sufficient number of laps. At this point the policy should not alter

and so training finishes. To measure the convergence of the system the learning rate

and exploration probability are allowed to decay to zero. The system then begins to

stabilise as no random element is occurring in the action selection process. Metrics

are then applied and a determination can be made whether the system is actually

converging on a solution.

To measure the convergence of the system a metric that counts the number of policy

changes per lap was used as the primary indicator. Policy changes indicate that the

system has not settled to the perceived optimal solution. Policy for the Q-Learning

controller is defined as the action for a given state that corresponds to the maximum

Q-value in that state. When the policy changes the maximum Q-value has changed

and so a different action would be selected from that state. Similarly the average

experienced reward should stabilise as time goes on since the system should select

the action it believes will generate the optimum reward each time.

The QMoveToGoal controller was applied to this environment for a number of laps

until the system appeared to converge on a solution. The policy changes per lap are

graphed in Figure 6.2. It can be seen that the number of policy changes decreases

in an approximately exponential curve. Reward experienced per lap is graphed in

Figure 6.3 and decays sharply. The large initial spikes in the graphs are due to the

40

NAVIGATION TASK

system engaging in large-scale exploration of its vast state space. Later peaks in

the number of policy changes may be attributed to hesitant behaviour whereby the

system oscillates between similar states with no optimal policy. These peaks may

also occur since the exploration of the state space is a random process.

2500

3000

3500

E
x

p
e

ri
e

n
ce

d
 r

e
w

a
rd

Experienced reward

-500

0

500

1000

1500

2000

2500

0 50 100 150 200 250

E
x

p
e

ri
e

n
ce

d
 r

e
w

a
rd

Lap

10000

Policy changes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250

P
o

li
cy

 c
h

a
n

g
e

s

Lap

Average policy changes

Average experienced reward

Figure 6.2: Graph of policy changes as training progresses for QMoveToGoal

2500

3000

3500

E
x

p
e

ri
e

n
ce

d
 r

e
w

a
rd

Experienced reward

-500

0

500

1000

1500

2000

2500

0 50 100 150 200 250

E
x

p
e

ri
e

n
ce

d
 r

e
w

a
rd

Lap

10000

Policy changes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250

P
o

li
cy

 c
h

a
n

g
e

s

Lap

Average policy changes

Average experienced reward

Figure 6.3: Graph of experienced reward as training progresses for QMoveToGoal

Unfortunately the results of the training indicate that the previously described im-

plementation of the QMoveToGoal controller utilises far too many states to effectively

use the Q-Learning algorithm. The algorithm can be seen to converge on an opti-

mal solution for a number of the states. However a large number of states remain

unvisited and on the occasion that they are visited a policy change ensues. These

41

6.2. TRAINING

states will take an incredibly long time to reach their optimal policy for this very

reason. Such states can be considered redundant as they do not actually contribute

to the overall function of the system, however there is no easy way to remove them

from the system since their lack of visitation is a property of the robot’s interaction

with the training environment. In spite of this a policy was evolved for the states

that were visited.

Also since the behaviours used in QMoveToGoal perform approximately the same

function but with a different degree of caution (changing sphere of influence of

avoid-obstacles), the system would tend not to converge on a solution for this

environment if a sufficiently non-zero exploration probability were maintained. Ex-

amination of the table of Q-values whilst this controller is evolving reveals such

tendencies. As the exploration probability decays this tendency disappears however

it would seem that some of the resulting optimal policy is, in fact, of the same

optimality as several others.

The QMoveToGoal2 controller, unlike its predecessor, was designed with simplicity in

mind. The 256 states and 3 actions provided a much smaller state space to explore.

Figure 6.4 illustrates the number of policy changes per lap. The experienced reward

per lap is graphed in Figure 6.5. The limited size of the state-space is reflected in

the number of policy changes and the experienced reward.

40

50

60

70

80

90

P
o

li
cy

 c
h

a
n

g
e

s

Policy changes

200

250

Experienced reward

0

10

20

30

40

0 50 100 150 200 250 300 350 400

P
o

li
cy

 c
h

a
n

g
e

s

Lap

-50

0

50

100

150

200

0 50 100 150 200 250 300 350 400

E
x

p
e

ri
e

n
ce

d
 r

e
w

a
rd

Lap

Figure 6.4: Graph of policy changes as training progresses for QMoveToGoal2

In the case of the QMoveToGoal2 controller convergence does appear to have been

achieved for the entire state space. It can clearly be seen that the number of policy

changes drops to zero after a sufficient amount of training time. The QMoveToGoal2

42

NAVIGATION TASK

40

50

60

70

80

90

P
o

li
cy

 c
h

a
n

g
e

s

Policy changes

200

250

Experienced reward

0

10

20

30

40

0 50 100 150 200 250 300 350 400

P
o

li
cy

 c
h

a
n

g
e

s

Lap

-50

0

50

100

150

200

0 50 100 150 200 250 300 350 400

E
x

p
e

ri
e

n
ce

d
 r

e
w

a
rd

Lap

Figure 6.5: Graph of experienced reward as training progresses for QMoveToGoal2

controller appears to have an optimal solution for this training environment. The

occasional spike in the number of policy changes may be attributed to the prediction

mechanism failing due to misinterpretation of the current state. Successive policy

changes would ensue as the controller reverted to the optimal policy.

Even using such a limited number of states the QMoveToGoal2 controller only ex-

periences a certain number of the possible states. It is assumed that this is again

due to the construction of the environment. If the agent were to be trained in an

environment where obstacles only appeared on one side of the robot some of these

states are more likely to be explored. However in such an environment this controller

may be considered excessive.

The training process itself appears to be successful for the given QLearningController

implementations. Even so two key observations have been made as to the methods

involved, namely the reward function used and the concept of laps.

One of the elements of the problem that the reward function ignores is that no

reward is given when traversing the boundary of an obstacle that must be avoided.

If the path around that object takes the robot away from the main goal penalties can

be applied. This aspect of the reward function causes the flattening effect amongst

policies of similar optimality. Even so the reward function appears to be adequate

for the task.

Making the agent perform laps of the environment instead of restarting the simula-

tion at each lap may slightly perturb the results of the exercise. Upon reaching the

goal the robot must turn around to head to the new goal. At this point the robot is

43

6.3. COMPARISON TASK ENVIRONMENT

briefly heading in the wrong direction thus incurring penalty to the current policy.

This aberration is actually insignificant since the state at that point will be devoid

of obstacles and so the optimal policy is largely irrelevant given all available actions

perform similarly in such conditions.

6.3 Comparison Task Environment

To adequately evaluate the controllers a number of test environments were prepared.

These environments featured obstacles in varying configurations for the robot to

traverse. Three of the environments contained dead-ends from which the adaptive

controllers were tasked with escaping. The other environments simply provided

varying obstacle densities to see if a given controller would locate the quickest path

during traversal.

The robot that was used for these simulation trials was the S4X soccer robot, which

is provided with Eyesim. This robot was augmented with an additional two PSDs

placed to give readings to the front-left and front-right. These two additional PSDs

help to alleviate a possible blind-spot the typical three-PSD model can have when

navigation is based on PSD readings alone.

The behavioural assemblage used in all three controllers is given in Figure 5.3. This

assemblage is paired with the controllers as shown in Figure 5.2. This configuration

allows the controllers to modify both schema weights and parameters. The only

deviation from this assemblage occurs in the QMoveToGoal2 controller, in this case

the robot augments the assemblage with a wall-following behaviour. The wall-

following behaviour is only used in this case, the design of the other implementations

is such that they wouldn’t benefit from it.

This particular behavioural assemblage is chosen since it provides the functional-

ity required when moving between locations. Obviously the attraction behaviour

(move-to-goal) is necessary in order for the robot to consider approaching the

goal, likewise the avoid-obstacles behaviour is necessary so that the robot will

not crash. An additional component is required to introduce random perturba-

tions to provide the motivation for the robot to exit situations where deterministic

behaviour will lead to an endless loop. This schema is referred to as noise.

44

NAVIGATION TASK

6.4 Metrics

The various controllers have been evaluated using a number of metrics. The metrics

used are time taken, path length, number of collisions and total rotation. Since the

controllers are being evaluated in a software simulation all these quantities can be

measured with a good degree of accuracy.

Time taken and path length are obvious criteria by which to assess a controller.

It is preferable that in completing the task the robot performs efficiently and with

minimal cost. Time taken is measured in both simulator time and time in calculation

steps. Simulator time provides the actual time the robot took to reach the goal.

Time in calculation steps provides, when compared to actual time taken, a measure

of how calculation intensive each controller is.

Collisions per lap are measured since the robot is required to avoid collisions with

obstacles. The collisions measured are not actual collisions with the environment.

The framework tries to prevent the robot from colliding so a minimum safe distance

from obstacles is imposed. Whilst the robot remains at or within this minimum

safe distance any commands which may cause it to drive too close to obstacles are

ignored. Each cycle in which the robot remains at or within this distance is counted

as a collision.

Path length is used as a metric since it is preferred that the robot take the shortest

path and not make wasteful movements. Likewise the total rotation of the robot

is measured. The rationale for this is simple, rotations can be a costly operation

so the less rotation needed the more efficient the controller. In this framework a

rotation is performed simultaneously with a movement so rotation is costly since it

makes the movement less direct and will incur time and distance penalties.

6.5 Evaluation

The four controllers, MoveToGoal, LMMoveToGoal, QMoveToGoal, QMoveToGoal2,

were evaluated in the previously described task environments. The performance

of each controller has been averaged for each environment set in order to simplify

their display. Averaging the results of an entire environment set for each controller is

not an entirely feasible method of analysis for fine-grained analysis. However when

simply taking the relative performance of the control algorithms (in a general sense)

the averaging is valid.

45

6.5. EVALUATION

The results from testing these controllers over the task environments shows a re-

curring trend in all metrics used. The two Q-Learning based controllers took the

least time over environments where obstacles were present. QMoveToGoal proved to

be superior in the cluttered environment set, however it did not complete a number

of environments in the dead-end set. The statically weighted controller performs

most efficiently in an empty environment. In environments with a larger number of

obstacles static controller performance begins to degrade. LMMoveToGoal appears to

be an expensive alternative to use, however it is capable of successfully traversing

all environments.

6.5.1 Time

With regards to time, and hence speed, QMoveToGoal is the most time-efficient

of the controllers. However as can be seen in Figure 6.6 this controller fails to

make successful runs through dead-end environments. This is due to the controller

having evolved a very risk-friendly (ie. not particularly obstacle-averse) policy which

performs admirably in environments without local minima.

0
10
20
30
40
50
60
70
80
90

100

Free Cluttered Dead-end

Average path length

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Free Cluttered Dead-end

Average time (steps)

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

0

200

400

600

800

1000

1200

1400

Free Cluttered Dead-end

Average rotation

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

Figure 6.6: Lap times for the various controllers averaged for environment sets

LMMoveToGoal tends to have the longest execution time of all the controllers. This

is largely due to the time taken to build momentum. It is also due to the bal-

looning strategy employed. When the robot expands the sphere of influence of the

avoid-obstacles schema it begins to take a wider, and hence more time consuming,

path through the environment. In the dead-end case MoveToGoal exceeds the exe-

46

NAVIGATION TASK

cution time of LMMoveToGoal. These scenarios were the criteria that LMMoveToGoal

was designed for, and so they offer improved performance with less reliance on noise.

The QMoveToGoal2 controller performs similarly well to QMoveToGoal, albeit using

a slightly more cautious approach that incurs a small additional time component.

However, unlike its predecessor, QMoveToGoal2 can escape from dead-end environ-

ments. Additionally, it is significantly faster than the statically weighted controller

since it relies less on noise. On average this controller would be considered to be

the most time-efficient of those evaluated.

6.5.2 Path Length

In Figure 6.7 the relative path length of the controllers for each environment set can

be seen to follow the same pattern as for time taken. There is a slight perturbation

to this in that the path lengths are more closely grouped than other measured values.

Overall QMoveToGoal2 offers a consistently close-to-minimal path length for varying

environmental conditions.

0
10
20
30
40
50
60
70
80
90

100

Free Cluttered Dead-end

Average path length

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Free Cluttered Dead-end

Average time (steps)

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

0

200

400

600

800

1000

1200

1400

Free Cluttered Dead-end

Average rotation

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

Figure 6.7: Lap path lengths for the various controllers averaged for environment sets

In unconstrained environments the path lengths of the controllers are almost iden-

tical. This is to be expected since the avoid-obstacles schema only produces an

output if obstacles are detected. The only difference in the path lengths is due to

the noise component introduced by the LMMoveToGoal and QMoveToGoal controllers.

The difference in this environment set is so small that it can be ignored.

47

6.5. EVALUATION

Cluttered environments exhibit similar relative path lengths to relative time perfor-

mance. The learning-momentum based controller is, as usual, the slowest of those

compared. This would be due to its ballooning strategy that causes the robot to

circumnavigate the obstacle field. The other controllers offer similar performance by

entering and navigating through these fields. As in the time performance cases the

QMoveToGoal controller offers the minimal path since it is the least obstacle-averse.

The remaining controllers offer similar performance that is only sightly worse than

QMoveToGoal.

In the dead-end scenarios QMoveToGoal2 achieves a minimal path length. This

path length is only slightly shorter than that of LMMoveToGoal. Such performance

would suggest that the two algorithms are comparable in such scenarios, however

the LMMoveToGoal controller requires more time in order to adjust its parameters.

QMoveToGoal2 is only limited by the distance it takes to trace the outline of an

obstacle. A statically weighted controller requires far too much noise to escape local

minima to be of any practical use and unfortunately the QMoveToGoal controller

evolved a strategy that is simply unable to traverse dead-end environments.

6.5.3 Rotation

0
10
20
30
40
50
60
70
80
90

100

Free Cluttered Dead-end

Average path length

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Free Cluttered Dead-end

Average time (steps)

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

0

200

400

600

800

1000

1200

1400

Free Cluttered Dead-end

Average rotation

Static

Learning Momentum

QMoveToGoal

QMoveToGoal2

Figure 6.8: Total rotation per lap for the various controllers averaged for environment
sets

It can be seen in Figure 6.8 that rotation follows the same trend as the other per-

formance indicators. LMMoveToGoal required a significant degree of rotation in the

process of changing its momentum. QMoveToGoal2 enters into a looping behaviour

48

NAVIGATION TASK

as it escapes dead-ends. The path trace of this behaviour will be examined in more

detail in Section 6.6. Schemas that are reliant on noise incur a significant degree of

rotation, hence the statically weighted controller performs abhorrently for dead-end

scenarios. Overall the QMoveToGoal2 controller is the most efficient when judged by

this metric. This is in accordance with other measurements.

6.5.4 Collisions

Comparison of the controllers with regards to the number of collisions per lap re-

veals that the QMoveToGoal2 controller, yet again, offers superior performance. An

unexpected result was that the statically weighted controller actually incurred col-

lisions in some scenarios. This can occur if the robot approaches an obstacle on an

angle and the obstacle is of a size such that it is not detected by other PSDs until

it is near to the robot. The only controller that collides a significant number of

times is LMMoveToGoal and this is due to the way in which momentum is built and

lost. Whilst QMoveToGoal2 performs most successfully for this metric it does not

accurately reflect the performance of all the controllers.

6.6 Paths

Examination of the paths traced by the controllers provides an alternative method

of describing their performance. The features that characterise these path traces can

be used to generate a generalised prediction for the performance of each controller. A

selection of the task environments have been chosen and the controller performance

and path features in these scenarios are discussed.

6.6.1 Cluttered environments

Two of the cluttered scenarios can be used to give a general overview of controller

performance. One of the scenarios used is similar to a dead-end scenario with a minor

yet significant difference. The other example is simply a cluttered environment in

which certain features of the paths taken by each controller are more distinct.

49

6.6. PATHS

Scenario One

For this environment the QMoveToGoal controller was the most efficient. In Fig-

ure 6.9 it can be seen that this controller is a lot less obstacle-averse than other

controllers. It maintains a smaller distance from the wall thus allowing it to squeeze

through gaps. There are no particularly novel features in the path trace for this

controller although the benefit of the squeezing strategy in this environment is ob-

vious.

-4

-3

-2

-1

0

1

2
-4 -3 -2 -1 0 1 2

LMMoveToGoal

QMoveToGoal

QMoveToGoal2

MoveToGoal

Figure 6.9: Path traces for each controller in cluttered environment one

QMoveToGoal2 performed similarly to its predecessor. The only difference, apart

from the increased safety margin, is the loop that occurs when the robot attempts

to enter the gap in the wall. This looping behaviour is an unexpected side effect of

the choice of behaviours and evolved policy. It is produced as a side effect of the

wall-following schema attaching to the wall and the policy changing slightly too

late for the robot to enter the gap. The policy then dictates that the robot disengage

from the wall and the loop is performed to enter the gap. This looping behaviour

becomes more prevalent in dead-end scenarios.

In this scenario both of the reference controllers trace out the longest paths. The

statically weighted controller consistently misinterpreted the wall and followed it

in the wrong direction initially. It is unclear why this set of behavioural parame-

ters would differ so significantly from that of QMoveToGoal2 in this particular case.

LMMoveToGoal simply misinterprets the environment as being a dead-end scenario.

Neither of the reference controllers offer consistently the same performance as those

that were evolved.

50

NAVIGATION TASK

Scenario Two

In this environment the QMoveToGoal controller was again the most efficient. The

squeezing strategy it adopts allows it to fit between gaps that other controllers would

be repelled by. Whilst this strategy is not the policy that was originally desired it

does perform admirably in environments such as this.

-5

-4

-3

-2

-1

0

-3 -2 -1 0 1 2

LMMoveToGoal

QMoveToGoal

QMoveToGoal2

MoveToGoal

Figure 6.10: Path traces for each controller in cluttered environment two

Observation of Figure 6.10 indicates that the policy evolved by QMoveToGoal2 is

identical in performance to MoveToGoal in this scenario. Given the set of actions

available to the trained controller this is in fact the desired behaviour in such cir-

cumstances. Such performance would suggest the success of the training process for

QMoveToGoal2.

LMMoveToGoal performs, as it usually does, quite badly in such circumstances. This

controller was designed purely to escape local minima. In this scenario there is no

local minima present. It does appear that this controller adopts a squeezing policy,

however what actually happened was that at the first corner the robot encountered

the obstacle and lost momentum. It then began to build up momentum again and

moved towards the goal while experiencing increasing levels of repulsion from ob-

stacles, thus exhibiting the slingshot style movement out of and around the obstacle

field.

51

6.6. PATHS

6.6.2 Dead-end environments

The controllers were evaluated in a number of dead-end environments. Two have

been chosen to describe the performance of the controllers in such situations. The

first scenario is less typical since it can be considered somewhat of a special case.

The second scenario is a good example of a difficult to navigate dead end.

Scenario One

The scenario illustrated in Figure 6.11 is something of a special case. If the angle of

the barrier is made more acute then it becomes a far more difficult obstacle. As it

stands, this scenario was traversable by all controllers.

-3.5

-2.5

-1.5

-0.5

0.5

1.5 -1 0 1 2 3 4

LMMoveToGoal

QMoveToGoal

QMoveToGoal2

MoveToGoal

Figure 6.11: Path traces for each controller in dead-end scenario one

In this scenario the QMoveToGoal2 controller performed as expected. It did not ex-

hibit any of its characteristic looping behaviour due to the simple nature of the ob-

stacle field. The policy evolved by this controller performs optimally out of the four

controllers for this particular environment. Both QMoveToGoal and MoveToGoal ex-

hibit similar behaviour albeit with some confusion when approaching the apex of the

obstacle. This confusion lead to slightly lesser performance than the QMoveToGoal2

controller.

The reference controller LMMoveToGoal performed its typical action of losing and

re-establishing momentum. In such an environment this is unnecessary and lead to

an unnecessarily long path. However if the barrier were to be made more acute then

this strategy would be quite sound.

52

NAVIGATION TASK

Scenario Two

Figure 6.12 describes a dead-end scenario that is similar to that given in Figure 6.9.

QMoveToGoal was unable to traverse this scenario since the squeezing strategy causes

it to become trapped in local minima such as this. Likewise, MoveToGoal would nor-

mally become trapped in such an environment. A modified version of the statically

weighted controller was used for this scenario. The parameterisation used in this

case used a heavy weighting for the noise schema in order to allow it to escape the

trap. Due to the exceedingly high levels of noise the path taken can vary wildly.

One of the paths this controller took is presented here to provide a reference of

performance for the adaptive controllers. It can be seen that MoveToGoal is, whilst

successful, an untenable solution given its almost entirely random nature.

-6

-5

-4

-3

-2

-1

0

1

2
-4 -3 -2 -1 0 1 2 3 4

LMMoveToGoal

QMoveToGoal2

MoveToGoal

Figure 6.12: Path traces for each controller in dead-end scenario two

In this scenario both QMoveToGoal2 and LMMoveToGoal can be considered the most

successful. LMMoveToGoal actually traverses the environment in the shortest path.

It does, however, take the longest time due to the process involved in losing and

building up momentum to escape the trap. QMoveToGoal2 on the other hand, traces

out a slightly longer path. It does so in, on average, less time and with less rotation.

QMoveToGoal2 is also preferred since it consistently produces similar results. The

reference controller is far less predictable due to the random elements involved in

applying rules.

An interesting feature of the QMoveToGoal2 controller is the looping pattern that

emerges as it begins to exit the trap. This behaviour was definitely not designed into

the system and so can be considered emergent. It can be clearly seen in Figure 6.12

that the agent tries to follow the wall but begins to veer away from it. This deviation

53

6.7. EVOLUTION ANALYSIS

would be due to the output of the move-to-goal schema attempting to turn the

robot to the goal node. The controller locks on to the wall and eventually gets pulled

away, however it loops around and reattaches. The explanation for this phenomenon

is difficult since the design of the behaviours involved would suggest that it had lost

the lock on the wall and would simply attempt to head towards the goal. It would

appear that the evolved policy causes QMoveToGoal2 to succeed where it otherwise

might no have.

6.7 Evolution Analysis

Results of the trials indicate that the QMoveToGoal controller did not evolve in

the intended manner. Instead of performing a ballooning strategy of navigation,

whereby the stuck agent escapes traps by expanding the region in which it is repelled

by obstacles, the controller appears to have learnt a squeezing strategy. In this

strategy the agent attempts to navigate the world via squeezing between obstacles,

this technique will not work for dead end scenarios although it does provide the

shortest path through some of the partially cluttered environments.

The shortcomings of QMoveToGoal can most likely be attributed to an insufficient

reward function and, possibly, an insufficient action set. Also, given a different

reward function a training environment catering to the desired mode of operation

should have been used. Additionally QMoveToGoal uses far too may states too be

practical, and it appears that having a large number of states is not in fact beneficial.

However the QMoveToGoal has chosen a policy that is consistent with the reward

function it trained with. Analysis of the paths this controller takes indicates that it

offers significantly improved performance in scenarios that are not dead-ends.

QMoveToGoal2, on the other hand, appears to have evolved the correct policy that it

was intended to perform. This algorithm has a slight advantage since it was select-

ing distinct actions that were behavioural combinations known to perform certain

functions. However the wall-following behaviour when used alone has a tendency

to seek corners (thus getting stuck) and so the policy is necessary for successful nav-

igation to the goal. The evolved policy adds some unexpected behaviour due to the

nature of the policy that was evolved. Fortunately the looping behaviour appears

to be either benign or beneficial.

The QMoveToGoal2 controller evolved a policy that is successful for the environments

presented. Successful performance would suggest that the controller has a valid set

54

NAVIGATION TASK

of actions and an appropriate reward function. Examination of the table of Q-values

for this controller indicates that a number of states remain unvisited and so state

assignment could be further simplified. Regardless of this inefficiency QMoveToGoal2

has been demonstrated to address the shortcomings of the other adaptive controllers

in performing the desired task.

55

56

Chapter 7

Conclusion

7.1 Behaviour based frameworks

The aim of this project was the design and implementation of a software framework

for the development of behaviour based applications for autonomous mobile robots.

Two frameworks have been implemented in order to represent both of the dominant

architectures in the field, AuRA and subsumption. Both frameworks have been

supplied with a number of simple behaviours and various primitives in order to

facilitate application development.

The primary framework, with an architecture based on AuRA, provides for the

development of applications using behaviours that can be represented by vector

fields. The current implementation of this framework provides interfaces for the

development of new behaviours as well as the expansion of the system controller.

The controller currently possesses a limited interface allowing the passing of goals

into the system. Extension of this interface could allow the use of a higher level

deliberative planner to bootstrap the reactive subsystem.

The secondary framework, based on subsumption, implements behaviour based con-

trol through the combination of behaviours designed to mimic the interconnectivity

of hardware modules. This framework provides a number of behavioural modules

which implement a basic layer of self-preservation behaviour and some simple tasks.

The implementation of this framework was such that it is lightweight and has been

deployed successfully to an Eyebot mobile robot.

57

7.2. ADAPTIVE CONTROLLERS

7.2 Adaptive controllers

Interfaces for adaptive controllers to extend the primary framework have been de-

veloped. An adaptive controller allows applications created by this framework to

act in a more robust way and allows for some degree of self-optimisation without

designer intervention. In this framework two controllers have been developed that

allow on-line adaptation.

The Q-Learning algorithm was chosen as a basis for adaptive control. This algorithm

has been applied in two different methods in order to evolve an improved controller

for navigation of an obstacle field. The controllers were evolved by setting them a

navigation task which they performed repeatedly in a specially constructed training

environment. Since the agents adapt on-line the training process was automated

and continued until convergence metrics were deemed to have reached acceptable

thresholds. During training it was possible to watch the agent performance improve

in real-time.

Evolution of the controllers produced mixed results. The first controller to be

evolved adopted a policy that generally satisfied the reward function it was trained

with. However, in dead-end scenarios the evolved policy was useless since it achieved

its goals using a policy almost the opposite of that intended. In other scenarios the

policy is quite efficient. The second controller evolved adopted a policy that al-

most exactly matched the desired criteria. While some unexpected behaviour can

be observed during execution it still performs the specified task. Such differences in

outcomes of the evolution process suggest care must be taken when selecting states,

actions and reward functions in order to correctly define the problem and desired

behaviour. While the current implementation will converge on a policy, this may

not be the policy intended by the designer.

7.3 Future Work

The frameworks that have been developed in this project may be used as a basis for

further work in the area of behavioural robotics. Both frameworks have a limited set

of behaviours available and could benefit from an extension of their libraries. These

frameworks could also be extended by the creation of a graphical user interface

for the definition of controllers or combination of behavioural modules. Such an

interface would simplify the creation of behaviour based applications.

58

CONCLUSION

Controllers developed for the primary framework are currently descended from a

simple controller definition. Future work could extend this controller definition to

allow bootstrapping of the reactive controller with goals of arbitrary type rather than

only passing positional goals as it does now. Currently the controller specification

defines success and failure codes so that the reactive subsystem can interact with a

higher level deliberate planner. Such a planner has not yet been implemented. The

creation of a planner and its fusion with the reactive subsystem could create a more

robust platform. This would add the capabilities to perform complex multistage

tasks in a behaviour based mode, of analysing environmental data and generating

alternate plans in the case of failure.

Finally, the current suite of adaptive controllers is limited to two on-line adap-

tive techniques. Future work could involve extending this suite to include off-line

techniques such as a neural network controller or one that learns using a genetic

algorithm. Whilst off-line adaptive techniques do not offer performance gains in

situ using a neural network offers the capability to generalise a solution.

59

60

Appendix A

Primary Framework

A.1 Overview

In this framework robot behaviour is created by combining the outputs of motor

schemas. Motor schemas are the essential units of behaviour. Behaviours are imple-

mented by creating classes derived from class MotorSchema. Motor schemas input

in order to function; this can be from either a perceptual schema or the result of a

network of schemas. Schemas are all derived from the class Node.

A.2 Creating behaviour

All schemas are of type Node. Schemas that take input from another schema require

the capability to evaluate their input. Classes derived from the root were created in

order to provide evaluation in their base data type. The primitive elements listed

below all provide a basic data type as their output. Their hierarchical arrangement

can be seen in Figure A.1. All these classes reside in the behaviour namespace

defined in node.h.

The list below includes the MotorSchema and PerceptualSchema classes. These

classes provide some additional functionality for creating behaviours and sensory

processing nodes. The use of either of these classes is not strictly required by the

framework if alternate controllers are to be used, however the included controllers

all consider them necessary.

When building a network of schemas some operator nodes may be used to process

data. These nodes are intended for use when some combination or processing of

61

A.2. CREATING BEHAVIOUR

data might be needed prior to its use as a schema input. A listing of the operator

nodes is provided.

A.2.1 Primitive types

behaviour::Node

behaviour::NodeBoolean

behaviour::NodeDouble

behaviour::NodeHSVImage

behaviour::NodeImage

behaviour::NodeInt

behaviour::NodeRGBImage

behaviour::NodeScalar behaviour::NodeVector2

behaviour::MotorSchema

behaviour::PerceptualSchema

Figure A.1: Class hierarchy of the primitive types of the framework

Node: Root node of the class hierarchy, provides a basis from which to derive other

types.

NodeScalar: Basis of the scalar types.

NodeInt: Node type that evaluates as an integer.

NodeDouble: Node type that evaluates as a double.

NodeBool: Node type that evaluates as a boolean.

NodeVector2: Node type that evaluates as a Vector2.

MotorSchema: Base type for all motor schemas. This class provides the framework

evaluating the success or failure of a behaviour.

PerceptualSchema: Base type for all schemas that perform sensory processing.

Provides the functionality of a list so multiple targets may be returned.

NodeImage: Node type that evaluates as an Image.

62

PRIMARY FRAMEWORK

NodeRGBImage: Node type that evaluates as an RGBImage. This is a more specific

case of NodeImage.

NodeHSVImage: Node type that evalutes as a HSVImage.

A.2.2 Operators

behaviour::SumBoolean
behaviour::SumDouble

behaviour::SumInt
behaviour::SumVector2behaviour::SubtractVector2

behaviour::SubtractInt

behaviour::SubtractDouble

behaviour::Vector2Equal

behaviour::MultiplyVector2behaviour::MultiplyInt

behaviour::MultiplyDoublebehaviour::MultiplyBoolean behaviour::DivideDouble

behaviour::DivideInt

behaviour::NodeBoolean behaviour::NodeDouble

behaviour::NodeInt
behaviour::NodeVector2

Figure A.2: Class hierarchy of the operator nodes provided by the framework

SumDouble: This node evaluates as the sum of two NodeDoubles.

SumInt: This node evaluates the sum of two NodeInt elements.

SumBoolean: This node provides a logical OR of two NodeBoolean nodes.

SumVector2: This node evaluates the sum of two NodeVector2 nodes.

SubtractDouble: Evaluates as the subtraction of two NodeDoubles.

SubtractInt: Node which provides the substraction of two NodeInts.

SubtractVector2: Provides the different between two NodeVector2s.

MultiplyDouble: Evaluates as the multiple of two NodeDoubles.

MultiplyInt: Provides the sum of two NodeInts.

63

A.3. IMPLEMENTED SCHEMAS

MultiplyBoolean: Performs the logical AND of two NodeBooleans.

MultiplyVector2: Evaluates the inner product of two NodeVector2s.

DivideDouble: Takes the ratio of two NodeDoubles.

DivideInt: Performs integer division of two NodeInts.

Vector2Equal: Evaluates the difference between two NodeVector2s. Provides a

boolean indicator if the two inputs are within a specified threshold.

A.2.3 Other

ConvertRGBToHSV: Acts as a wrapper around a NodeRGBImage to produce a HSVImage.

NodeVector2Constant: Evaluates as a constant Vector2.

FSMInt: A simple finite state machine designed to change state due to MotorSchema

triggers.

A.3 Implemented Schemas

A number of schemas have been implemented using this framework. The combina-

tion of these schemas is used control the robot.

A.3.1 General Purpose

Of the implemented schemas the majority have been designed to be for general

purpose use. None of these schemas directly interact with robot sensors.

ConstantMovement: Introduces a movement command with a constant direction.

LinearAttraction: Generates a localised movement command towards a goal lo-

cation.

DetectColouredBall: Returns the location of a specifically coloured ball using the

Eyecam.

64

PRIMARY FRAMEWORK

behaviour::AvoidObstacles behaviour::ApproachClosestTarget

behaviour::ConstantMovement

behaviour::LinearAttractionbehaviour::LinearRepulsion

behaviour::Noise behaviour::IntervalNoise

behaviour::MotorSchema behaviour::DetectColouredBall

behaviour::FollowWalls

behaviour::ReachedColouredBall

Figure A.3: Hierarchy of the general purpose motor schemas created for the framework

ReachedColouredBall: A motor schema that is intended for use as a trigger to de-

termine whether a coloured object is close enough. Relies on some assumptions

about the environment.

ApproachClosestTarget: Generates a localised movement command towards the

closest target provided by a PerceptualSchema.

FollowWalls: Enables a wall following behaviour at a specified distance.

AvoidObstacles: Avoids obstacles within a specified distance.

LinearRepulsion: Generates a localised movement command away from a loca-

tion.

Noise: Movement commands randomly generated by a random process.

IntervalNoise: Movement commands periodically generated by a random process.

A.3.2 EyeBot Specific

These schemas are used to read and process sensory data from the Eyebot family of

mobile robots.

EyebotPSDLeft: Returns an integer reading from the left Eyebot PSD.

EyebotPSDRight: Returns an integer reading from the right Eyebot PSD.

EyebotPSDFront: Returns an integer reading from the front Eyebot PSD.

EyebotGlobalPosition: Returns the global Eyebot position as a vector.

65

A.4. CONTROLLER HIERARCHY

behaviour::PerceptualSchema

eyebot_sensors::EyebotDetectObstacles

eyebot_sensors::EyebotGlobalOrientation

eyebot_sensors::EyebotGlobalPosition

eyebot_sensors::EyebotPSDFront

eyebot_sensors::EyebotPSDLeft

eyebot_sensors::EyebotPSDRight

eyebot_sensors::EyecamGreyscale

eyebot_sensors::EyecamRGB

behaviour::NodeIntbehaviour::NodeImage

behaviour::NodeRGBImage

Figure A.4: Class hierarchy of the Eyebot-specific schemas

EyebotGlobalOrientation: Returns the global Eyebot orientation expressed as a

unit vector.

EyebotDetectObstacles: Provides a list of detected obstacle positions in local

coordinates.

EyecamGreyscale: Returns a greyscale Image from the Eyebot camera.

EyecamRGB: Returns an RGBImage from the Eyebot camera.

A.4 Controller Hierarchy

A hierarchy of controllers which provide layers of functionality have been developed

with the framework. The controller class hierarchy diagram is given in Figure A.5.

A.4.1 SimpleEyebotController

This controller provides the basic functionality that all others build upon. The

schemas in a SimpleEyebotController are combined in a weighted sum using a

static set of weights dependent on the current state of the controller. The controller

is built around a finite state machine which tracks the state and schema weights.

The FSM is triggered by the status of MotorSchemas. States, weights and triggers

are definable in a class which implements a constructor for this controller.

66

PRIMARY FRAMEWORK

controller::VirtualController

controller::EyebotController

controller::SimpleEyebotController

controller::AdaptiveEyebotController

controller::LearningMomentumControllercontroller::QLearningController

controller::QMoveToGoal

controller::SimpleMoveToGoalcontroller::SimpleLocateBall

behaviour::Nodebehaviour::FSMInt

virtual_robot::Eyebot

Figure A.5: Class hierarchy of the framework controllers

A.4.2 AdapativeEyebotController

The AdaptiveEyebotController is an interface intended to add in updates to the

system upon each calculation step.

A.4.3 QLearningEyebotController

This controller extends the adaptive capabilities to have on-line adaptation based

around the Q-Learning algorithm. The controller is used by specifying a constructor

and defining states and actions.

A.4.4 LearningMomentumController

This adaptive controller adds the capability to adjust the system using the learning

momentum algorithm.

A.5 Sample Program: Ball-finding example

The sample program given in Listing A.5 implements a simple ball-finding task.

This example uses the SimpleLocateBall controller, the listing for this controller

can be found on the enclosed DVD.

67

A.5. SAMPLE PROGRAM: BALL-FINDING EXAMPLE

This example demonstrates instantiation of a controller and looping until the con-

troller returns an abnormal status signal. Such a signal may be returned if the

controller detects the mission is complete or in the case of failure or other errors.

The SimpleLocateBall controller that is used in this example will always return

the MISSION OK signal.

When this example program is executed the robot will proceed to search for objects

on screen of the correct hue. In Listing A.5 the robot searches for a hue of zero, that

is the colour red. This example will also avoid obstacles that are within 350mm of

the robot.

#include "example_eyebot_controller.h"

int main(int argc, char **argv)

{

srand(time(NULL));

virtual_robot::Eyebot robot(0);

LCDPrintf("Press any key to begin..\n");

KEYWait(ANYKEY);

LCDClear();

/* Single controller detect ball example */

controller::SimpleLocateBall c(&robot, 0, 350);

while(c.step() == controller::MISSION_OK);

return 0;

}

Listing A.1: Example of a ball-finding program implemented in this framework

68

Appendix B

Subsumption Framework

B.1 Appendix for the Subsumption Framework

In this framework robot behaviour is created by connecting behavioural modules.

This implementation is built around the SubsumptionBuffer class. The buffers

produce an output which other buffers can use. Actuation and sensing is performed

by buffers designed for this purpose.

B.2 Creating behaviour

Behaviour is created using a network of behavioural modules. In this framework

these modules are termed ‘buffers’. Each buffer takes a number of inputs and has a

defined output and a signalling output. The signalling output is true if the module

is intending to signal an output value.

This framework provides a number of base buffers which output various data types.

These buffers are intended to be simple to combine and use. Their class hierarchy

has been illustrated in Figure B.1.

B.2.1 Buffers

Buffers of the following types are defined by the framework.

69

B.2. CREATING BEHAVIOUR

behaviour::SubsumptionBuffer

behaviour::SubsumptionBufferBool

behaviour::SubsumptionBufferDouble

behaviour::SubsumptionBufferInteger

behaviour::SubsumptionBufferVector2

behaviour::SubsumptionBufferVector2List

behaviour::SubsumptionSupressor

behaviour::SubsumptionSupressorBool

behaviour::SubsumptionSupressorDouble

behaviour::SubsumptionSupressorInteger

behaviour::SubsumptionSupressorVector2

Figure B.1: Class hierarchy of the framework SubsumptionBuffer classes as well as
the suppressor classes.

SubsumptionBuffer: Base subsumption buffer class.

SubsumptionBufferDouble: Subsumption buffer that generates an output of type

double.

SubsumptionBufferBool: Subsumption buffer with a boolean output.

SubsumptionBufferInteger: Subsumption buffer with an output of integer type.

SubsumptionBufferVector2: Subsumption buffer with a vector output.

SubsumptionBufferVector2List: Buffer which provides a list of vectors as the

output.

B.2.2 Supressors

Supressor buffers take input from two other buffers. One of the buffers is defined as

the primary signal and will override the other if it is signalling. If it is not then the

output is set to that of the alternate signal. Supressor buffers are used to include

additional layers of functionality. Lower layers will suppress higher layers.

SubsumptionSupressor: Interface which provides the suppressive functionality.

SubsumptionSupressorDouble: Suppressive buffer which works with Subsumption-

BufferDouble.

70

SUBSUMPTION FRAMEWORK

SubsumptionSupressorInteger: Subsumption buffer which uses SubsumptionSupressor-

Integer types.

SubsumptionSupressorBool: Buffer which takes two SubsumptionBufferBools.

SubsumptionSupressorVector2: Suppressive that works with SubsumptionBuffer-

Vector2s.

B.2.3 Inhibitors

Inhibitor buffers perform the mostly the same functionality as suppressive ones. The

only difference is that if the primary signal is signalling then the output of the buffer

is a zero.

behaviour::SubsumptionBufferBool

behaviour::SubsumptionBufferDouble

behaviour::SubsumptionBufferInteger

behaviour::SubsumptionBufferVector2

behaviour::SubsumptionInhibitorBool

behaviour::SubsumptionInhibitorDouble

behaviour::SubsumptionInhibitorInteger

behaviour::SubsumptionInhibitorVector2

behaviour::SubsumptionInhibitor

behaviour::SubsumptionSupressor

Figure B.2: Class hierarchy of the inhibitive classes

SubsumptionInhibitor: Interface which provides the suppressive functionality.

SubsumptionInhibitorDouble: Inhibitive buffer which works with Subsumption-

BufferDouble.

SubsumptionInhibitorInteger: Integer-valued inhibitive buffer.

SubsumptionInhibitorBool: Boolean-valued inhibitive buffer.

71

B.3. BEHAVIOURAL MODULES

B.3 Behavioural Modules

Several behavioural modules have been implemented using this framework. The

majority of these modules are designed to performed functionality mentioned in

Brooks’ [4] original design.

B.3.1 General purpose

The behavioural modules (Figure B.3) that have been implemented have been de-

signed for general purpose use. These buffers are all robot-independent. In general

these buffers are descendents of the SubsumptionBufferDouble types.

behaviour::AngleToGoal

behaviour::Collide

behaviour::Feelforce

behaviour::Noisebehaviour::RunAway

behaviour::Target

behaviour::Wander

behaviour::WallFollowing
behaviour::Closer

behaviour::SubsumptionBufferBoolbehaviour::SubsumptionBufferDouble

behaviour::SubsumptionBufferVector2

Figure B.3: Class hierarchy of the implemented behavioural modules

Collide: Collide is of boolean type and indicates whether or not a collision is

imminent.

Feelforce: Returns a vector representing a repulsive force away from obstacles.

RunAway: Signals a turn angle if a significant force is detected. In case of a collision

an about turn is executed.

Noise: Randomly generates an angle to turn.

Wander: Periodically generates a random angle to turn.

Target: Produces a constant vector.

AngleToGoal: Produces a turning angle towards a goal.

72

SUBSUMPTION FRAMEWORK

WallFollowing: Maintains an angle parallel to nearby walls.

Closer: Returns the closest vector of a pair.

B.3.2 Eyebot Specific

To retrieve data from Eyebot sensors and send signals to the actuators a number of

behavioural modules were created. See Figure B.4 for the class hierarchy.

eyebot_sensors::Turneyebot_sensors::Forward

eyebot_sensors::EyebotOrientationBuffer
eyebot_sensors::EyebotObstaclesBuffer

eyebot_sensors::EyebotPositionBuffer

eyebot_sensors::EyebotHueFinderBuffer

behaviour::SubsumptionBufferDouble
behaviour::SubsumptionBufferVector2

behaviour::SubsumptionBufferVector2List

Figure B.4: Class hierarchy of the Eyebot-specific behavioural modules

EyebotObstaclesBuffer: Provides a list of local obstacle coordinates.

EyebotPositionBuffer: Returns a vector of the Eyebot’s global position.

EyebotOrientationBuffer: Returns the orientation of the Eyebot.

EyebotHueFinderBuffer: Detects the angle of the largest blob of a certain hue in

the field of vision.

Turn: Buffer that controls robot turning.

Forward: Module that commands the motors to move forward.

B.4 Implemented Control System

A two-layer control system has been created using the framework components. This

system has a lower layer that enforces self-preservation and a higher layer to perform

a simple task. The elements that this system is are arranged in Figure B.5. The

73

B.4. IMPLEMENTED CONTROL SYSTEM

interconnections of these modules are based on the original subsumption design

presented by Brooks [4].

An additional layer has been added to include the wall following behaviour. This

addition is beneficial for guiding the robot around obstacles.

WallFollowing

FeelForce RunAway

Collide

DetectObstacles

AngleToGoal

GlobalOrientation

GlobalPosition

Forward

S

S

Turn

Layer 0

Layer 1

Layer 2

Figure B.5: Control system using self-preservation and task-oriented layers

The application described by Figure B.5 illustrates the interconnection of three

layers of functionality. Each layer is connected by a suppressive element such that

a lower layer can suppress a higher one. The three layers are:

Layer 0 Self preservation

Layer 1 Guided self preservation

Layer 2 Task oriented

74

Appendix C

Image Processing

Several behaviours developed for the framework have required visual information to

be retrieved from the environment. The behaviours implemented so far have utilised

a simple histogram analysis to locate an object of a specific hue. No shape matching

is performed in the current implementation since this is a more advanced technique

that was outside requirements of a basic behaviour. It is also unnecessary when

operating in the Eyesim environment since hues can be restricted to target objects.

C.1 Colour space conversion

In order to perform lighting independent colour matching the HSV (hue, saturation,

value) colour space is utilised. HSV defines a colour by hue, saturation and value

(a measure of brightness). The HSV representation of an RGB (red, green, blue)

colour should maintain a constant hue as the lighting conditions change.

For the purposes of this project hue is stored as a value from 0-252, with 255 being

reserved for greyscale hues. Saturation and value take values from 0-100. Since the

colour wheel is clipped to the 0-252 range instead of 0-360 the formulae for calculat-

ing HSV values from RGB changes slightly. Formula C.1 describes the translation

from RGB to hue used in this implementation. MIN and MAX are defined as the

minimum or maximum of the RGB values.

75

C.2. HISTOGRAM ANALYSIS

Hue =



255 if MAX = MIN

(42× Green−Blue
MAX−MIN

+ 252) mod 252 if MAX = Red

42× Blue−Red
MAX−MIN

+ 84 if MAX = Green

42× Red−Green
MAX−MIN

+ 168 if MAX = Blue

(C.1)

Saturation =

0 if MAX = 0

100× MAX−MIN
MAX

if MAX > 0
(C.2)

V alue = 100× MAX

255
(C.3)

C.2 Histogram Analysis

Object detection is performed by using a histogram analysis of the image. The

row and column are selected where the matching hue appears most frequently. For

objects with simple shapes this can be used as an approximation for the centre of

mass.

This implementation accepts a tolerance for the range of hues that are detected as a

positive match. A tolerance will not affect searching for greyscale values since they

are represented by 255 (undefined).

C.3 Determining the field of view

To determine the field of vision of the Eyebot camera a simple experiment was

conducted. The world was set up with calibration markers set up in a line 900mm

from the camera. The number of calibration markers in the camera image indicated

750mm distance between the edges of the image. Experimental setup can be seen

in figure C.1.

Once the width of the image has been determined calculating the field of vision of

the camera is trivial. The calculation (given in formula C.4) is a simple matter of

geometry. Using this experimental method the Eyebot camera’s field of vision was

determined to be approximately 45 degrees.

76

IMAGE PROCESSING

750mm

900mm
θ

Figure C.1: Experiment configuration for determining field of view of the camera

θfov = 2θ = tan−1(
width

2

distance
) (C.4)

C.4 Retrieving object coordinates

A simplistic method of retrieving object coordinates from the single-camera image

has been employed. To calculate the angle of the object knowledge of the field of

vision of the camera and basic geometry are required. The scenario of an object

detected by the camera can be described by figure C.2. Determining the distance of

an object has not been implemented. There are methods that use a simple scaling

factor to estimate the distance of an object of known height, providing it lies on the

same plane as the robot.

width

b

θ

θfov

dx

Figure C.2: Geometry used to calculate angle of an object

For this model b (distance to the image in pixels) can be considered a constant of the

camera. To calculate b the formula b =
width

2

tan(
θfov

2
)

is employed. Once b (the distance

to image) and dx (the horizontal distance from image centre) are known the angle

77

C.4. RETRIEVING OBJECT COORDINATES

of the object can be calculated using θ = atan2(dx, b). Note that atan2 performs

the inverse tangent but adjusts the result to lie in the correct quadrant of the unit

circle.

78

Appendix D

DVD Listing

A DVDcontaining the work relating to this thesis has been attached. The contents

of this DVD are listed below:

Source Code Framework source for both frameworks as well as
source code for examples.

Simulation results Telemetry data is provided from simulations where
available. Information from each stage of training
is also included.

Thesis A PDF version of this thesis.

79

80

References

[1] E. C. Tolman, “Prediction of vicarious trial and error by means of the schematic

sowbug,” Psychological Review, vol. 46, pp. 318–336, 1939.

[2] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Cambridge:

MIT Press, 1984.

[3] Y. Endo and R. C. Arkin, “Implementing Tolman’s schematic sowbug:

Behavior-based robotics in the 1930’s,” Proceedings of the 2001 IEEE Intl.

Conference on Robotics and Automation, pp. 477–484, May 2001.

[4] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE

Journal of Robotics and Automation, vol. 2, pp. 14–23, March 1986.

[5] R. C. Arkin, “Motor schema based navigation for a mobile robot: An approach

to programming by behavior,” Proceedings of the IEEE Intl. Conference on

Robotics and Automation, pp. 264–271, March 1987.

[6] R. C. Arkin, Behavior-Based Robotics. The MIT Press, 1998.

[7] R. S. Sutton, “Learning to predict by the methods of temporal differences,”

Machine Learning, vol. 3, pp. 9–44, 1988.

[8] R. S. Sutton, “Reinforcement learning architectures,” Proceedings of the Inter-

national Symposium on Neural Information Processing, 1992.

81

REFERENCES

[9] C. J. C. H. Watkins, Learning from Delayed Rewards. PhD thesis, University

of Cambridge, England, 1989.

[10] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,

no. 3, pp. 279–292, 1992.

[11] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[12] E. Martinson, A. Stoytchev, and R. C. Arkin, “Robot behavioral selection using

q-learning,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent

Robots and Systems, pp. 970–977, October 2002.

[13] F. Kirchner, “Q-learning of complex behaviours on a six-legged walking ma-

chine,” Proceeings of the Second EUROMICRO workshop on Advanced Mobile

Robots, pp. 51–58, October 1997.

[14] R. A. Brooks, “A robot that walks; emergent behaviors from a carefully evolved

network,” Proceeindgs of the IEEE Intl. Conference on Robotics and Automa-

tion, May 1989.

[15] R. C. Arkin, “Reactive control as a substrate for telerobotic systems,” IEEE

Aerospace and Electronic Systems Magazine, vol. 6, pp. 24–31, June 1991.

[16] R. C. Arkin and T. R. Balch, “Aura: Principles and practice in review,” Journal

of Experimental and Theoretical Artificial Intelligence(JETAI), vol. Volume 9,

pp. 175–188, April 1997.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning I: An Introduction. MIT

Press, 1998.

[18] A. Ram, R. C. Arkin, and R. J. Clark, “Learning momentum: On-line per-

formance enhancement for reactive systems,” Proceedings of the 1992 IEEE

International Conference on Robotics and Automation, pp. 111–116, May 1992.

82

REFERENCES

[19] J. B. Lee and R. C. Arkin, “Learning momentum: Integration and experimen-

tation,” Proceedings of the 2001 IEEE International Conference on Robotics

and Automation, pp. 1975–1980, May 2001.

[20] A. Ram, R. C. Arkin, K. Moorman, and R. J. Clark, “Case-based reactive

navigation: A method for on-line selection and adaptation of reactive robotic

control parameters,” IEEE Transactions on Systems, Man and Cybernetics -

Part B: Cybernetics, vol. 27, pp. 376–394, June 1997.

[21] M. Likhachev and R. C. Arkin, “Spatio-temporal case-based reasoning for be-

havioral selection,” 2001.

[22] B. E. Cline., “Tuning q-learning parameters with a genetic algorithm,” Septem-

ber 2004. http://www.benjysbrain.com/ThePond/Tuning.pdf.

[23] I. Kamon and E. Rivlin, “Sensory-based motion planning with global proofs,”

IEEE Transactions on Robotics and Automation, vol. 13, pp. 814–822, Decem-

ber 1997.

[24] K. S. Ali and R. C. Arkin, “Implementing schema-theoretic models of animal

behavior in robotic systems,” 5th Annual Workshop on Advanced Motion Con-

trol, pp. 246–253, June 1998.

[25] A. F. R. Araujo and A. P. S. Braga, “Reward-penalty reinforcement learning

scheme for planning and reactive behavior,” Proceedings of the 1998 IEEE Intl.

Conference on Systems, Man and Cybernetics, 1998.

[26] R. C. Arkin and D. T. Lawton, “Reactive behavioral support for qualitative vi-

sual navigation,” IEEE International Workshop on Intelligent Motion Control,

August 1990.

83

http://www.benjysbrain.com/ThePond/Tuning.pdf

REFERENCES

[27] T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot

teams,” IEEE Transactions on Robotics and Automation, vol. 14, pp. 926–939,

December 1998.

[28] T. Braunl, Embedded Robotics. Springer-Verlag, 2003.

[29] R. A. Brooks and A. M. Flynn, “Robot beings,” IEE/RSJ Intl. Workshop on

Intelligent Robots and Systems, September 1989.

[30] S.-B. Cho and K. Shimohara, “Modular neural networks evolved by genetic pro-

gramming,” Proceedings of the IEEE Intl. Conference on Evolutionary Compu-

tation, pp. 681–684, May 1996.

[31] Y. Endo and R. C. Arkin, “Anticipatory robot navigation by simultaneously

localizing and building a cognitive map,” Proceedings of the 2003 IEEE/RSJ

Intl. Conference on Intelligent Robots and Systems, pp. 460–466, October 2003.

[32] Z. Kira and R. C. Arkin, “Forgetting bad behavior: Memory management for

case-based navigation,” Proceedings of 2004 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pp. 3145–3152, September 2004.

[33] T. Kitamura, “Can a robot’s adapative behavior be animal-like without a learn-

ing algorithm?,” Proceedings of the 1999 IEEE Intl. Conference on Systems,

Man and Cybernetics, 1999.

[34] J. B. Lee, M. Likhachev, and R. C. Arkin, “Selection of behavioral parameters:

Integration of discontinuous switching via case-based reasoning with continu-

ous adaptation via learning momentum,” Proceedings of the 2002 IEEE Intl.

Conference on Robotics and Automation, pp. 1275–1281, May 2002.

[35] J. B. Lee and R. C. Arkin, “Adaptive multi-robot behavior via learning mo-

mentum,” Proceedings of the 2003 IEEE/RSJ Conference on Intelligent Robots

and Systems, pp. 2029–2036, October 2003.

84

REFERENCES

[36] W.-P. Lee, J. Hallam, and H. H. Lund, “Applying genetic programming to

evolve behavior primitives and arbitrators for mobile robots,” Proceedings of

the IEEE Intl. Conference on Evolutionary Computation, pp. 501–506, April

1997.

[37] M. Likhachev, M. Kaess, and R. C. Arkin, “Learning behavioral parameteriza-

tion using spatiotemporal case-based reasoning,” 2002.

[38] A. D. Mali, “On the behavior-based architectures of autonomous agency,” IEEE

Transactions on Systems, Man and Cybernetics - Part C: Applications and

Reviews, vol. 32, pp. 231–242, August 2002.

[39] M. Mataric, “Behavior-based control: Main properties and implications,” Pro-

ceedings of the IEEE International Conference on Robotics and Automation,

1992.

[40] I. W. Thomas Miller, F. H. Glanz, and I. L. Gordon Kraft, “Cmac: An associa-

tive neural network alternative to backpropagation,” Proceedings of the IEEE,

vol. 78, October 1990.

[41] J. Ojala, K. Inoue, K. Sasaki, and M. Takano, “Interactive graphical mobile

robot programming,” IEEE/RSJ Intl. Workshop on Intelligent Robots and Sys-

tems, November 1991.

[42] D. W. Payton, “An architecture for reflexive autonomous vehicle control,” Pro-

ceedings of the 1986 IEEE Intl. Conference on Robots and Automation, 1986.

[43] M. Pearce, R. C. Arkin, and A. Ram, “The learning of reactive control pa-

rameters through genetic algorithms,” Proceedings of the 1992 IEEE/RSJ Intl.

Conference on Intelligent Robots and Systems, pp. 130–137, July 1992.

[44] R. J. Clark, R. C. Arkin, A. Ram, and K. Moorman, “Case-based reactive

navigation: A case-based method for on-line selection and adaptation of reactive

85

REFERENCES

control parameters in autonomous robotic systems,” tech. rep., Georgia Tech.,

1992.

[45] A. Ram, R. C. Arkin, G. Boone, and M. Pearce, “Using genetic algorithms to

learn reactive control parameters for autonomous robotic navigation,” Adaptive

Behavior, vol. 2, no. 3, pp. 277–304, 1994.

[46] A. Stoytchev and R. C. Arkin, “Combining deliberation, reactivity and moti-

vation in the context of a behavior-based robot architecture,” Proceedings of

the 2001 Intl. Symposium on Computational Intelligence in Robotics and Au-

tomation, pp. 290–295, July 2001.

[47] H. Suh, S. Lee, B. O. Kim, B. J. Yi, and S. R. Oh, “Design and implementa-

tion of a behavior-based control and learning architecture for mobile robots,”

Proceeings of the 2003 IEEE Intl. Conference on Robotics and Automation,

pp. 4142–4147, September 2003.

[48] E. Uchibe, M. Asada, and K. Hosoda, “Behavior coordination for a mobile

robot using modular reinforcement learning,” 1996.

86

	Title page
	Letter to the Dean
	Abstract
	Acknowledgements
	Introduction
	Project Aims
	Dissertation Outline

	Background
	Behaviour based robotics
	Reinforcement learning
	Q-learning

	Rule-based adaptation

	Literature Review
	Classification of Robot Behaviours
	Architectures
	Subsumption
	Autonomous Robot Architecture

	Adapative Control
	Q-Learning
	Learning Momentum
	Case-based reasoning

	Framework
	Overview
	Architecture
	Design
	Implementation

	Subsumption Architecture
	Implementation of Subsumption

	Controller
	Q-learning
	Task specification
	QMoveToGoal
	QMoveToGoal2

	Learning Momentum
	Rules

	Navigation Task
	Overview
	Training
	Basis
	Regime
	Analysis

	Comparison Task Environment
	Metrics
	Evaluation
	Time
	Path Length
	Rotation
	Collisions

	Paths
	Cluttered environments
	Dead-end environments

	Evolution Analysis

	Conclusion
	Behaviour based frameworks
	Adaptive controllers
	Future Work

	Primary Framework
	Overview
	Creating behaviour
	Primitive types
	Operators
	Other

	Implemented Schemas
	General Purpose
	EyeBot Specific

	Controller Hierarchy
	SimpleEyebotController
	AdapativeEyebotController
	QLearningEyebotController
	LearningMomentumController

	Sample Program: Ball-finding example

	Subsumption Framework
	Appendix for the Subsumption Framework
	Creating behaviour
	Buffers
	Supressors
	Inhibitors

	Behavioural Modules
	General purpose
	Eyebot Specific

	Implemented Control System

	Image Processing
	Colour space conversion
	Histogram Analysis
	Determining the field of view
	Retrieving object coordinates

	DVD Listing
	References

