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Abstract

With improvements in technology, especially microprocessors and Field
Programmable Gate Arrays (FPGA), it is possible to bring rapidly increasing levels
of intelligence to autonomous robots and other embedded systems. The University
of Western Australia and other research groups have need for a robotics control
platform which offers traditional features such as motor and servo control alongside
modern features such as fast processors, large memory, FPGAs, Bluetooth
networking for control and self-organisation, as well as high speed USEB interfaces
for expansion. Such a platform needs to be small form factor, low power

consumption and cost effective in small to medium quantities.

This project, working in a team of three, focuscs on the design and verification of a
new hardware platform that aims to meet all of the goals outlined, as well ag
accompanying software and FPGA logic designs to make the features accessible
{rom user space under a standard embedded Linux operating system. Individually,
research was also undertaken into stcreo vision, with the aim of proposing an
algorithm which can be made to fit this specific hardware platform, while

maximising quality and performance where possible.

Significant effort has been put not only into the design of the systems presented,
but also verification. Extensive testing of the timing critical components on the
PCE was undertaken, and results with accompanying analysis of maximum stable
speed is presented where relevant. On the logic design side, a software tool to assist
in bridging the gap between traditional test bench code and VHDL designs is
presented. This framework allows the rapid application of many automated test
cases to logic simulations at both the behavioural and timing levels. The stcreo
vision research code presented includes a powerful visnalisation and analysis system

to assist in testing algorithms for validity and comparing against expected results.
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Terminology

M6 Platform

CIIPS

FPGA

SAD

SASD

ADC

SRAM

SDRAM

The new generation of Eyebot robot controller board developed
during the course of this project.

Centre for Intelligent Information Processing Systems - A part
of the Department of Elcctrical, Electronic and Computer
Engineering at the University of Western Australia

Field Programmable Gate Array — A chip containing large
quantities of reprogrammable logic with IO and other
capabilities

Sumn of Absolute Differences - The combined difference of each
pair of values sharing the same location in each of two
comparison windows.

Sum of Absolute Squared Difference — Similar to SAD but the
difference of each pair of values is squared before the
summation

Analog to Digital Converter — Using inside a camera chip to
convert the analog signal generated by light hitting each
photo-detector into a binary digital signal.

Static Random Access Memory — High performance, low
density (high cost) usually clock synchronous memory which
does not require refresh periods and is usually capable of multi-
port access.

Synchronous Dynamic Random Access Memory - Lower
performance, higher density, compleiely clock synchronous

memory.

xiil




FINAL YEAR PROJECT: VARIABLE TABLE

Variable Table

SN

K
T
C
P

P

unidir

N batch

3D coordinate components (Horizontal)
{(Vertical)
(Depth)
2D lmage coordinate components (Horizontal) /
2D frequency component
2D image coordinate components (Vertical) /
2D frequency component
Camera Projection Matrix (intrinsic parameters)
Camera Transformation Matrix (simple extrinsic parameters)
Camera Calibration Matrix
Performance of fully loaded interleaved bi-directional data
{ransfers
Performance of fully loaded uni-directional data transfers
Number of items transferred before a change of direction occurs

under full bi-directional load.
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Chapter 1

Introduction

1.1 Robotics, Automation and the Rise of the FPGA

As computing power has grown and cost has decreased, robots and other
automation machinery have increasingly replaced human labour and supervision
required for manufacturing and other repetitive tasks. Similar automated
intelligence can play an active safety role, for instance in cars. Often automated
systems are only viable if they are reasonably priced, fit modest dimensions and
do not consume excesgive amounts of power. Since the dawn of microprocessors,
which pack many transistors onto a small area, the problem for most systems
has not been size of the electronics, but power consumption and the size, cost
and or weight of the supply required. In modern times, with chips consisting of
tens of millions of transistors becoming cheap and requiring only a few square

centimetres of area on a circuil board, this problem has only exacerbated.

Increasing on chip transistor counts have allowed general purpose processing
architectures to grow in performance. Usually, with more complex designs this
performance gain iz much smaller than the increase in power consumption. For
instance, a widcr issue on a super-scalar processing grows the power
consumption per instructionfl]. A slightly less power hungry approach is to go
for multiple, seperate cores or larger cache sizes. Still dedicated logic, becanse it
can be designed to perform many fixed steps with each clock cyele, can gain

much greater performance to power and performance to transistor count ratios.
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It accomplishes thigz by removing unnecessary operations, having no instruction
decoding and no execution tracking and automated fetch and cache management.
On suitable tasks dedicated logic can still achieve greater parallelism combined
with lower clock speeds to realisc the same or better throughpui as a general
purpose CPU. Despite this, dedicated logic is still used for very few tasks due to
the difficulties in design and testing of such logic, and the very high costs of
manufacture in small quantities. Recently the decrease in costs of large
transistor counts has made Field Programmable Gate Arrays (FPGAs) become
competitive, offering a good middle ground between software and true hard-
wired designs. They have dedicated logic to perform certain tasks, and vast
arrays of reconfigurable (through programming) logic to perform any task with
power efficiency not far behind dedicated logic. This means FPGA designs can
bring high end computing performance to cost and power conscions embedded

systems.

1.2 Embedded Vision

Computer vision is the body of theory related to the processing of images by
computational systems. Image data is two dimensional, and modern cameras will
produce pixels with hundreds of thousands or even millions of pixels at video
frame rates. Performing processing tasks on such data sets can involve high
orders of complexity, especially for advanced procedures such as stereo vision
depth recovery. Getting such {asks to run in real-time poses a challenge even to
high end PCs, for embedded systems they have traditionally been out of the

question.

As covered in the previous section, advances in technology to aid processing
performance, but dedicated logic will always be superior for most tasks.
Compnuter vision tasks in particular tend to have high degrees of exploitable

parallelism and repeiitiveness, because of their large input data sets. Using
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FP(zAs to implement algorithms with low power consumption and low cost cost

in small to medium guantities is therefore a rapidly growing area of research.

1.3 Project Motivations and Objectives

The University of Western Australia and other research institutions are
developing autonomous robots which can perceive and interact with the world.
This project aims to provide a base computing platform which can serve as the

nerve centre for these robots,

The specific objectives of this project were to:

e Design a major overhaul of the ageing Evebot platform with modern
computational power and expanded 10

¢ Maintain an affordable price in small quantity production

¢ Maintain a small form factor and low power consumption

s Utilise an FPGA to maximize 10 capabilities and image processing
performance

¢ Implement stereo vision to give robots utilising the new platform

depth perception

1.4 Outline of Thesis

Since the overall project began at the same time as this thesis project, the work
performed included selection, sourcing, design and testing of hardware in
collaboration with a team of other CIIPS students. The development of the
FPGA logic and software for the board were at many points stalled by the
hardware development. Therefore this thesis focuses on the following areas of

work performed:
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* Design and implementation of the FPGA logic and software testing
frameworks required for development of FPGA enhanced image
processing algorithms on the M6 platform. This includes the development
and verification of: an internal memory bus, communication with external
cache memory, communication with the main CPU oﬁ the board, and

communication with the cameras.

* Development and testing of FPGA logic [or a two-dimensional windowed
convolution algorithm. The windowed convelution is a common, multi-
purpose tool in image processing. The implementation of this algorithin
helped in determining the requirements of the FPGA internal processing
layout, and also serves as a guide to the resource utilisation and
performance of image processing constructs within the FPGA. The results
of the latter will be important in evaluating the suitability of other, more

complex algorithins before extensive time is spent on implementation.

& Development of code to link the Xilinx ISE and other HDL simulators to
C code. This can be used to evaluate circuit results on the fly during logic
level simulation, aiding debugging and verification of current and future

image processing designs.

¢ Rlesearch, analysis, implementalion and evaluation of software stereo
vision algorithins with the aim of creating a correct reference algorithm
which is suitable to FPGA implementation. An algorithm will be
proposed for implementation based on its quality, performance and

feasible resource requirements within the context of the M6 platform.
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1.5 The Eyebot M6 Feature Set

The new Eyebot M6 iz designed Lo be a vision processing platform. To this end
significant computation processing power has been included. For general purpose
calculations there is a 400MHz XScale processor, 64mb of SD-RAM, 16MB of
flazh. This processor runs Linux 2.6 and forms the basic user space programming
area for the board. A Spartan 3E FPGA with attached 1IMB SRAM provides

space for the implementation of dedicated vision processing acceleration logic.

The Eyebot M6 IO is mostly a super set of the original Eyebot functionality.
The new features that can be found include onboard USB slave and host ports,
10/100mbit Ethernet and Bluetooth for better expansion and communications
capabilties. In addition four motors are now supported, and all motors, servos,
P5Ds, infrared ports, serial ports and other peripherals can be used
simultaneously. The ability to connect two cameras to the FPGA is provided.
These cameras are criented to face the same direction and have modest spacing

to aide stereo vision processing.

There have been few compromises with respect to reproducing the old system’s
functionality. The number of user analogue inputs has been reduced from 5 to 3.
This is not anticipated to be a problem as analogue inputs can now be added in
any desired quantity via USB connections. The new CPU is not binary
compatible with the original Eyebot, but it will be possible to provide almost
perfect backwards compatibility to C code through a port of the standard
RoBIOS libraries, similar to how EyeSim current operates. This will allow
existing applications to be modified only where they need to take advantage of

the new functionality.

1.6 Alternative Platforms
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The updated Eyebot M6 developed during the course of this project is broadly
similar in concepl to the Balloon Board[2] developed jointly by the University of
Cambridge and MIT. Although this board has been released during the course of
the project, it does not meet all the objectives of the M6 project. Whilst most
immediate is the lack of onboard Ethernet and Bluetooth neiworking, a
potentially more serious disadvantage is the lack of dedicated FPGA to camecra
connectors. Without this the vision processing potential of the board is

hampered greatly.

1.7 Eyebot M6 FPGA Sub-System Details

This FPGA is a Xilinx Spartan3E 500 that saw commercial release during the
year this project was undertaken. At the time of its release, the Spartan3E series
was manufactured in the most up to date process of any FPGA (80nm) and
offered the maximum logic Lo dollar ratio of any suitably sized FPGA available.
The Spartan 3E differs from the Spartan3s of the same packaging in that it
offers more logic slices, Block RAM, hardware multipliers and input pins for the
same packaging. The disadvantage is mainly that it has less power pins, and is
therefore not capable of as high a total simullaneous drive current on its output
pins. Since all inputs and outputs from the FPGA in the M6 platform are logic
level, this disadvantage iz not considered important. The additional internal
resources and input pins, on the other hand, are important as they allow more

features than would be possible with the best Spartan3.

A comparison between the selected FPGA and non-Xilinx FPGAs is available in
[3]. A very strong argument in favour of the Xilinx part for image processing
was the largest amount of internal memory. For the other functions of the
platform, the high IO count available in a non-BGA was an important
consideration. For all applications the maturity of Xilinx’s free HDL

development environment was an important factor.
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One of the key intentions of the new hardware platform is to utilise the FPGA
to not only provide more IO than is possiblc from the CPU, but also to offload
many processing tasks to improve system performance. These tasks can be
divided into two categories. The interrupting tasks involve little computation,
but would need to interrupt the CPU often. This would cause a significant
performance penalty through inefficiency introduced by switching contexts. The
offloading of these tasks to the FPGA on the Evebot M6 platform is covered in
[3]. The other category of processing task that can be offloaded is image
processing. Computer vision systems typically require highly repetitive
operations performed across large 2D data sets. These tasks are often ideally
suited to offloading to the FPGA as the FPGA is at its most efficient when
performing tasks repetitively, and has multiple cache RAM blocks which can all
be accessed simultanecusly to achieve much higher bandwidth per clock than a
conventional processor. On the Eyebot M6 platform the FPGA also has its own
RAM, so these tasks can be performed without placing a high load on the CPU’s
memory bus. This ig particularly important because the CPU’s memory bus has
to sustain the LCD refreshes, in addition to serving the software memory
accesses. The rest of this thesis will describe the methods and attempts to
offload processing tasks from the CPU to the FPGA on the Eyebol M6 platform.
A discussion covering the offloading of different tasks on this platform can be

found in [4].






Chapter 2

FPGA Image Processing Base

As outlined earlier, the new Eyebot M6 platform features an FPGA to extend
the IO and image processing capabilities of the board. The implementation of
the ground work required in support of the image processing side is covered in

this chapter.

2.1 M6 Platform FPGA Resources and Clocking

The M6 platform features a Xilinx Spartan3E S3E500 FPGA chip in a PQ208
package. The resources available on this FPGA are summarised in Table 2-1.
Utilisation figures discussed in this thesis will be as a percentage of those
available in this particular FPGA. It is important to note that FPGA utilisation
does not sum strictly linearly. The placement and therefore routing methods
available vary as different combinations of logic components are included. 5till
these figures offer a rough guide which can help in estimating the feasibility of a

final design hefore it is fully implemented.

Feature Capacity

Multipliers 20 (18bitx18bit == 36bit)

Block RAM (1024x18bit) x 20 [360Kbit total]
Distributed RAM (16x1bit) x 4672 [73Kbit total]




CHAPTER 2: FPGA IMAGE PROCESSING BASE

Feature Capacity

Registers (1bit) x 9312 [9.1Kbit total)
Logic Slices 4656 '

Digital Clock Managers |4

Table 2-1 M6 Platform FPGA Resources [5].

The FPGA receives one external clock signal from a 50MHz oscillator, referred
to internally as M6CLK. This clock speed was selected as a lowest common
denominator based on experimentation with the clock period of various
algorithms. Reasonable degrees ol pipelining were employved at all stages to
ensure practical resnlts. A second clock which is usunally between one and a half
and two times faster than the main system clock is generated using a DCM.
This second clock is used by the memory controller, and is referred to as
MEMCLEK, but is also potentially available to other logic. Extreme care must be

taken when performing IQ between logic of different clock speeds.

It is recommended that algorithms aim to run purcly off the main clock where
possible. While it is possible to generate additional clock signals with the
remaining three DCMs available on the chip, the Xilinx XST synthesiser has
difficully routing circuits with complicated clocking constraints. This occurs
becanse the FPGA is divided into clock regions, and if there are more than four
clocks, the FPGA must decide which areas will receive which clocks. The
additional clocks required for the cameras and memory controllers already
require special care to realise a circuilt with valid routing. It is therefore
recommended that processing algorithms utilise only the clocks provided. Using
additional clocks is likely to result in unpredictable incompatibility with other

features.

10
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2.2 Component Design

Developing efficient implementations of algorithms to fit an FPGA’s processing
model is a laborious process. It is important that each routine implemented be
able to co-exist in the greater system. To this end, several small interface
standards were agreed during the implementation of the first image processing
routines on the FPGA. These common standards deal mainly with the method

for streaming data between different rontines and external memory.

One of the primary goals of the design was to componentise the FPGA logic as
much as possible. It is hoped that users in the future will be able to mix and
match different FPGA components within the limits of the resources available.
Typically designing for an FPGA involves HDL coding which is far from
intuitive. Alternative design systems that feel more like conventional procedural
programming languages do exist. These alternatives still require specialist
gkills[6], and are often tailored very specifically to fit within a particular eco-
system such as the AMD Opteron CPU and Xilinx Virtex FPGA pairings
popularised by Cray’s XD-1 super-computer|[7].

2.3 FPGA Bus Arbitration

Individual image processing components within the FPGA need to be able to
stream data to each other with the maximum practical bandwidth. Since most
data sets to be processed are larger than the FPGA's entire intemal memory, it
is also necessary that one or both ends of this bus for each device may be
connected to a buffer in the external cache memory. Furthermore, the bus must
arbitrate requests so that multiple devices making simultaneous access to the

external memory do not interfere with each other.
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Clock; |

Request J

Acknowledge

[Data Lines i >< D, >< [, >< z >< D, >€

Figure 2-1 FPGA image processing internal inter-connect bus sample timing diagram

To solve all of these objectives in a single, wuniform system, a
request/acknowledge scheme was implemented with timing as shown in Figure
2-1. This underlying protocol forms the building block of all data stresming
connections. The request/acknowledge scheme chosen ensures that source
devices know when they need to throtile their output speed for the destination
device to keep up, but does not limit transfer rate when the second device is

able to process data on every clock cycle.

It is important to note that devices are meant to send their output data lines
high impedance unless the host is asserting the acknowledge line. This is to
allow for the use of an arbitration tree to divide up access to the memory bus. A
binary tree arbitration scheme is used as propagation dclay is sufficiently fast as
to not slow down devices running off the main clock. The binary tree arbitration
scheme is also the simplest to implement and reconfigure priority wise, as great
flexibility can be achieved utilizing only the two types of arbitration blocks
provided. The first, called the alternate arbiter, alternates between each of its
inputs every time it gets access to the bus. The second type, called the priority
arbiter, always gives priority to one of ils request line, and only allows the other

through when the first is idle.
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Figure 2-2 Example schematic for internal image processing bue inter-connection.

2.4 CPU Interface

The centre of the Eyebot M6 platform from a user’s perspective is the ARMY9
CPU. It iz necessary that the CPU and FPGA can reliably communicate, so the
CPU can give instructions and retrieve results in a timely fashion. The
discussion of CPU to FPGA communication will be split into the two separate
cases of read and write. In all cases, the CPU is the bus master, and the FPGA
implementation must give consideration to this and the other slaves on the PCR,
holding the data pins in a high impedance state unless it is meant to be writing

to the bus.
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The pin layout on the initinl PCB configuration required that reads be
performed in VLIO mode. In addition, the ready pin was tied to a constant
value making it always enabled. This meant, despite using VLIO transfers, the
FPGA always had to respond in the minimum time possible. The pin limitation
forcing the board to run in VLIO mode has been corrected on the latest PCB
generation, and this may make even faster transfer rates possible in the future.
The implementation covered below is for the always ready VLIO mode necessary
on the first version of the board. The techniques described here allow the FPGA
to communicate accurately on all current PCB layouts with all PXA255 bus

latencies set to their lowest (fastesi) seltings.

2.4.1 CPU Addressing

The FPGA has 20 address lines connected to the CPU bus, allowing for a 20 bit
address space. The top level FPGA module carves this address space up into 32
device IDs, and each lower module is allowed to rcad and write through one or
more of these IDs. This leaves each device with 15 bits of address space, which
corresponds to a 64KB addressable region as the lowest address bit corresponds

to 16 bit words.

2.4.2 CPU Reads

Allowing the CPU to read data from the FPGA is the mosi difficult task. The
CPU makes a request on the address lines, and the FPGA needs to respond by
placing the appropriate information on the data lines in a timely fashion. Under
minimum VLIQ timing conditions (highest performance), the total response time

must be, at most, four of the PXA processor’s memory clock cycles[8].
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Working backwards from the point where the CPU latches the data the FPGA
has placed on the bus, there is a propagation delay dependent on the selected
drive current between the FPGA placing data on the bus and the CPU being
able to latch it. This is caused by the delay of the buffer chip (approximately
0.5ns), the rise time of the buffer chip output and the rise time of the FPGA
output (the last is the only one which is drive current dependent). Since only
one of these times can be altered, there is a minimum time in which the FPGA
must place data on the bus early of approximately 4ns. Considering the problem
from the start, the FPGA must also latch the appropriate address from the
CPU on an edge, and since the address data could settle immediately after the
appropriate edge has passed, a full FPGA clock period (20ns) must be allowed
for the FPGA to latch the data from the time the bus settles. In addition, there
is a small propagation delay for the address lines (approx. 3 nz) and a small
propagation delay internally to the FPGA to send the appropriate device’s bus
output high iropedance (negligible). This makes for a maximum total delay of
approximately 27ns. This is perfectly acceptable as the period of 4 of the CPUs

memory clocks is 37ns (108MHz memory bus).

A problem arises when an attempt is made to directly map FPGA Block RAM
into the CPU’s address space. Since both addresses and data are synchronouns
for Block RAM, an additional 20ns delay is introduced between the FPGA
latching the address and being able to present the correct data at the output.
Although this happens in parallel with the other internal FPGA delays, this still
brings the total propagation delay to approximately 46ns, much greater than the
37ns maximum response time. The solution (o this, as utilized in the CPU to
FPGA SRAM DMA controller logic, is to latch the Block RAM addresses on
the falling edge of the clock, and the data output registers on the rising edge.
This is perfectly acceptable as the Block RAM is effectively now clocked at
100MHz, far below it’s 200MHz maximum. It also halves the added response
delay from 20ns to 10ns, bringing the total response time to a total of 36ns, just

slightly faster than the 37ns required. This technique has been extensively tested
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with a variety of test patterns and multiple gigabyvtes of data, with no errors

recorded.

Since the PXA255 CPU is the bus master, it writes all addresses to the bus.
Therefore the FPGA drive current only affects the data portion of reading on
the bus. The effect of varying FPGA drive current is demonstrated in Figure 2-3.
A 6mA drive current was chosen because it provided a sufficiently small delay
for all tested PCBs to work flawlessly over large volumes of test data. It is
possible, but unlikely that, if future FPGA images have significantly slower
timing characteristics between the output data being latched internally and the
same data reaching the output pins (due to a particular routing scenario), a
higher drive current of up to 16mA may resolve the issue. It is preferable to
keep the drive current to the minimum which does not cause errors, however, as
an unnecessarily high drive current causes more interference than need be with
other traces on the PCB, as well as causing roore difficulties for the power

supply circuitry in the form of sharper transjients on the source and ground.

Tek.... el - Twp M Pos: 760L0ns CURSOR Tek,, .J. - Stp M Pas: 40006 CLRSOR
“whi H H T AR ARRE IS R LRI F b AR AL LA R L L L
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ILH1 LHY
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12.40ri5 Priabe i i : i i i i 1 6800
G0.830Hz 147, 1MHz
Curser 1 1 Cursor 1
712805 =3.600ns
2 2
4 Curser 2 Eobodo g coeeereeed Cursor 2
T I Bt T A - 1,
CHi 200V CHZZG0Y O CHT 710 CHT 2000 CHE 2000 s CHY 7 1807

Figure 2-3 QOscilloscope output for FPGA side (top) and CPU side (bottom) of buffer chip for
2mA (left) and 6mA (right}) FPGA drive current strength

2.4.3 CPU Writes
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CPU Writes present a different set of challenges from the reads. Now the data
pins are driven by first the PXA255 CPU, and then the buffer, and unlike the
FPGA it is not possible to adjust the drive strength of the PXA255, so it is not
possible to improve the rise or fall times without PCB medifications. This is not
a problem however as timing is much simpler for bus master writes. The bus
master elects the address to write to, and therefore sends both address and data
at the same time. The FPGA merely needs to latch both signals at any point in
time where they are simultaneously valid on the bus. This is taken care of in the
top level modules, and individual devices simply need to be aware that they
must accept data if it is available or it will be lost (maximum of once every two
FPGA clock cycles.)

2.5 FPGA External Memory Bus (SRAM)

The Eyebot M6 platform’s FPGA is directly connected to a RAM chip. This
cache memory is dedicated image processing working memory. The chip selected
for this task is a single-port Static RAM (SRAM). A dual port chip was not
selected, not simply because this would have increased cost, but also because it
would have taken additional FPGA IO pins, and this would have required the
sacrifice of other features on the board. The SRAM chip was selected over
conventional Synchronous Dynamic RAM (SDRAM) for its high performance
relative to the complexity of the logic required to utilize it. Unlike SDRAM, the
SRAM chip does not have refresh periods and has a simple, consistent low

access latency.

2.5.1 Controller Design

The chip selected supports back to back reads and writes at 100Mhz clock speed.
There are also burst modes for compatibility with the Pentium CPU’s as an

external L2 cache[9]. These do not offer any bandwidth advantage compared to
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the back to back modes. The back to back modes have the advantage that &
completely new address can be specified for every individual read or write

operation. An overview of this mode is included in Figure 2-6.

Since back to back mode is utilized, there is no need for components to make
their requests in bursts. Therefore, to maximize flexibility, the bus is designed to
accept all requests in umits of individual SRAM data words (18 bits.)
Conveniently this corresponds with the word size of the FPGA’s internal
SRAMs (Referred to by Xilinx as Block RAMs.) When using the SRAM’s back
to back mode, there iz one factor that must be taken into consideration: The
effect of switching between write and read mode on the bandwidth of the chip.
Although a read or write can be performed every single clock cyele for
unidirectional transfers, the individual reads actually take two clock cycles, one
for the address and a second for the data. These cannot be overlapped with the
writes as the write requires both sets of lines during the same cycle. The result is
that switching from rcad to write mode requires a clock cycle where no new
request initiates, and the result is that, alternating between read and write mode
each access limits the chips to performing two memory accesses only every three

clock cycles.
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Figure 24 FPGA external memory aystem overview

To reduce the performance penalty, it is necessary to avoid mixing of read and
write operations too often. This can be achieved by queueing both both read and
write requests, and then performing each type of request in batches. The
maxiturn bidirectional performance can be expressed thus:

2N
P =
bidir 2N

atch
A1 (2.1)
The maximum bidirectional performance as a percentage of the common
unidirectional performance for selected batch sizes is indicated in Table 2-2.
There is a diminishing performance gain with increasing batch size and clearly
queue sizes greater than 16 offer extremely small gains relative to additional

queue size.

Request Batch Size (Npaen) | Performance (% Unidir)
1 66.7%
2 80.0%
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3 85.7%
4 88.9%
& 92.3%
8 94.1%
10 95.2%
12 86.0%
14 96.6%
16 87.0%
24 98.0%
32 98.5%
Infinite 100.0%

Table 2-2 Relative performance of bidirectional transfers
compared to unidirectional for selected batch sizes

Xilinx Core Generator offers a pre-designed, heavily customisable FIFO with a
minimurm queue size of 16. Although this FIFQ consumes more logic than a
custom solution might require, it has several advantages compared to a simpler
design. One advantage of using Xilink’s solution is that it contains already
heavily tested and proven code, which is very important to a logic design as
faults can be difficult to diagnose. Another advantage lies in its key feature, a
grey code counter connecting the two ends of the FIFO. This allows each end to
run off independent clock signals without glitches. Asynchronous clocking is very
useful because the two ends of the FIFO have different clock speed limitations.
Whereas the algorithms in the FPGA operate on a 50Mhz clock, the SRAM chip
and associaled FPGA logic can operate at 100Mhz. The actual maximum
memory clock can be slightly lower than 100MHz which the chips can support,
depending on the PCB layout and other external factors. Even so, by combining
a 30Mhz read and a 50Mhz write bus and connecting them to a near 100Mhz,
single port 5RAM, a pseudo dual-port arrangement is achieved. This
arrangement running at 80MHz is able to achieve unidirectional transfers at the
maximum 50MHz supported by the FPGA devices, while batching requests up
to twelve at a Lime can achieve 77% of the bandwidth of a true dual-port
50MHz SRAM under worst case (full load) conditions. This is a significant
improvement over a synchronous (50MHz) single port configuration which would
achieve only 48% of the bandwidth of the dual port configuration. This pseudo
dual port RAM offers most of the benefit of truc dual port RAM, whilsi saving
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the cost difference for a true dual port chip, and more importantly for the small
form factor design desired, a large amount of FPGA IQ pins and PCB real

estate.

2.5.2 Determining Maximum Memory Clock

Tek .. @S0 MPos-2000ps  CURSOR The maximum memory
clock of an individual
........ { Source PCB can be estimated
e LH! by examining the time

: : 1 Deka . .
1 IEI llillllillliill Vi : B.200ns requ:IIEd fDI' the s to
: 1 161.3MHz
\\\\\\\\\\\\\\\\\\\\\\\ it oo ... F+——— change levels on an
. 3 Cursor 1 .
R IURUESUTRETUUUE Y IO EOURUE RSN S 1 -2.500ns oscilloscope. The
Cursar 2 output of the
. : : : :,: . N . . 1 5400 .
........................ " oscilloscope for data
CH1 1.00% CH2 500mY M 5ns CH1  1.08%

Figure 2-5 Oscilloscope output for FPGA to SRAM data pin 0 pin 0 on the second
PCB revision is shown in Figure 2-5. It can be observed that the mcasured rise
time is 6.2ns. This corresponds to a frequency of 161MHz, twice the 80MHz max
reliable transfer rate found for this board. Similarly, for the first PCB built the
rise time was 6.0ns, which corresponds to a frequency of 167MHz, or twice the
&3MHz clock speed which was the maximum stable transfer rate achieved with

this board. These findings are summarized in Table 2-4.
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Figure 2-6 timing diagram for FPGA to SRAM transfers, back to back read and write modes

Period Variable Description

T Address set-up Lime

Ty Address propagation time

Tine SRAM output data set-up time

Tep, SRAM output data propagation lime
Tene FPGA output data set-up time

Tep, FPGA output data propagation time

Table 2-3 Time period variables for FPGA - SRAM bus timing

There are two reasons the clock speed achievable is highly PCB dependent.
Since the drive current for the SRAM chip cannot be altered, the rise and fall
time when the FPGA reads data from the SRAM (Tg,,) cannol be shortened by
raising the current. By comparison, Ty, the equivalent transition time for the

FPGA, can be shortened by raising the soltware configurable drive current as
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necessary. The propagation of Ty, is the major performance bottleneck
therefore, and was the signal whose rise time showed a directly proportional
relationship to minimum clock period. It is important to consider that the RAM
iz not Double Data Rate (DDR), and thercfore the clock signal has to hoth rise
and fall during every clock period, almost twice as {ast as the address and data
signals. Fortunately this signal is output by the FPGA and the drive current
can be raised to achieve a sufficiently fast rise and fall time. It is necessary to
raise the clock drive current from the default of 2mA to at least BmA to achieve

the speeds indicated on the current board.

PCB | Rise time | Est. Frequency | Highest stable setting
(t) (1/2t)) in testing (mult./div.)
First 6.0ms 81MHz 8/5 (30MHz)
Second 6.2ns 83MHz 5/3 (83MHz)

Tabla 24 Data pin 0 rise times and estimated / experimental maximum clock settings for the
two PCBs tested

2.6 FPGA Camera Interface

The M6 platform has been designed so that either one or two COMedia C3038
cameras may be connected to the FPGA. If two cameras are connected, the
FPGA can gather data from both simultaneously. In the standard setup each
camera outputs a number of signals and the FPGA is merely a passive listener.
It would be possible for the FPGA to provide a common pixel clock to both
cameras if their on board clocks were disabled, but the implementation discussed

here is for use with unmodified cameras.

For the FPGA to receive appropriate data [rom the carperas, it is necessary to
first program the cameras settings via an I)C bus. The details of this along with
an outline of all the special considerations relating to multiple OV6630 chips on

one I°C bus are available[3].
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Camera OuiEPut

Description

PCLK

Pixel Clock - Each rising edge of this clock during a line

corresponds Lo one pixel being available on the bus.

HSYNC

This signal is held high for exactly the duration of each
line. The falling and rising edges of this signal occur
between each line, and pixels received while this signal is
low are invalid.

This signal remains low during vertical blanking periods.

VSYNC

This signal encodes the start of each frame as a pulse that
is longer than the period of the pixcl clock. A relumn to

low occurs before the next line begins (HSYNC goes high.)

YO-YT

The low 8 bits of the data bus are fed into the FPGA. All

pixel data is received via these lines.

Uvoe.uvr

The remainder of the 16 bit hus is not connected on the
M6 platform. To receive complete data it is necessary to

request an & bit mode from the camera (default is 16 bit.)

Table 2-5 Summary of relevant camers output pins

Since the maximum frequency of the cameras in & bit mode as utilised is

approximately 18MHz[10], it is unreliable to attempt to observe the PCLK

signal using sampling methods. It is therefore necessary to treat this as an

FPGA clock signal, and latch the outer camera pixel data registers off this. This

latched data is then fed to the MBCLK circuitry using a toggle input, for which

sampling is reliable. A similar tcechnique was necessary to observe the HCLK

signal with reliabie relative timing to the PCLK sampling. Although it is

possible to apply this technigque to VSYNC, doing so results in routing problems

for Xilinx’s XST synthesiser. During testing the result has been that if only

PCLK and HSYNC are treated as clocks, as necessary for reliability, then all

devices can coexist without causing XST’s clock routing to fail.
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Chapter 3

FPGA Convolution
Implementation

3.1 2D Convolution

The multiplication of two functions in the frequency domain is equivalent to the

convolution of the functions in the time domain, and vice versa:

C,, = FuvGuywy) (3.1)
¢, = J*glxy) (3.2)
= 2D flx+iy+ gl ) (3.8)

p——

3.1.1 Windowed Convolution

Theoretically the calculation of the convolution value in time domain at a single
(%,y) coordinate requires a sum over the entire overlapping range of the (post-
translation for each step) functions. To compute the convolution for every value
in an image or other data source with a mask of the same size as the image (as
required for equivalence to an arbitrary frequency domain multiplication)
requires an O{N,"2 N,~2) order calculation where N, and N, are the image
dimensions. Defining M, and M, as the dimensions of the image N, and N,

rounded up to the nearest powers of two respectively, the FFT and inverse FFT
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of the data can be calculated with a computational order of O(M;M,.log,(M,M,)}.
We can also ignore the bit reversals on the FFT and inverse FFT when
performing convolution via this method[11]. Clearly the basic 2D convolution is

not an efficient way of performing an arbitrary frequency domain multiplication.

The windowed convolution is an optimisation which does not maintain direct
equivalence with a frequency domain multiplication. Il works on the principle
that a function which consists entirely of zcros outside a small range of values
can be computed in a much shorter time than a full convolution. The zero
values themselves and the source valucs which multiply with the zeros in the
source image do not need to be considered at each step. Therefore a windowed
convolution can be computed in a complexity that is only O(N,N,.W,W,) where
W, and W, are the dimensions of the window. Assuming the best case for the
FFT where N; = M, and N, . M,, if W,W, is smaller than log(M,M,) then the
windowed convolution will still have a lower complexity. In practice, the window
size at which the windowed convolution gains the complexity advantage is much
smaller, due to its more efficient handling of non-power of two sizes. Another big
advantage for an FPGA implementation is the relative simplicity of the
operations in the convolution, compared to the FFT, multiply and inverse FFT
alternative. This advantage is important because the implementation must be
hardwired, rather than implemented in software, and therefore the logic cannot

easily be reused for another task when the convolution is not taking place.
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3.1.2 Windowed Convolution Examples

-1 -1 -1
118 | -1
-1 -1 -1

Original Image

-1 01 -1 -2 -1
210 2 0 0 0
-1 0 1 1 2 1
Sobel Horizontal Edge Detector Sobel Vertical Edge Detector

Figure 3-1 Examples of edge detectors using 3x3 windowed convolutions. Source image
reproduced courtesy of Lixin Chin.

Several functions have been developed which exactly fit the windowed

convolution model. Examples include the Sobel and Laplacian edge
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detectors(Figure 3-1), which operate a litile like directional and omni-directional
high pass filters respectively, but locked closely to a specific frequency range
such that they tend to retain features with a dimension of a single pixel in the
appropriate directions. Although only a limited number of candidate functions
can be expressed exactly like this, mauy can be approximated adequately. A
particularly common and conceptually simple example is the Gaussian low pass
filter. The inverse Fourier transform (time domain) version of a 2D Gaussian
function is itself a 2D Gaussian function. Gaussian functions in general tend
towards zero rapidly, to a few decimal digits of precision, beyond a similar
number of standard deviations away from the centre point(Figure 3-2).
Therefore a very small window is often appropriate for approximating this
function. It is also extremely useful in image processing, as it can be used to
reduce both texture and noise from a source (Figure 3-3). This noise reducing

property will be applied in Section 5.2.

Gaussian low-pass filter (frequency Inverse 2D FFT of Gaussian low-pass

domain) filter (spatial domain.)

Figure 3-2 2D Gaussian filter in frequency (left) and spatial (right} domains
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0.018 | 0.049 | 0.049 ¢ 0.018

0.049 | 0.134 | 0.134 | 0.049

0.049 | 0.134 | 0.134 | 0.049

0.018 | 0.049 | 0.040 | 0.018

Figure 3-3 Noisy source image (above
right) and resultant image with reduced
noise and texture (right) after
application of  dxd windowed
convolution Gaussian filter (above). An
enlarged region (red box) helps identify
the difference in noise.

3.2 FPGA Implementation

Implementing algorithms in an FPGA is very different to writing software code
to perform the equivalent task. Although it is possible in theory to design an
FPGA layout which executes software code similar to a CPU, this would be
extremely inefficient compared to the real CPU. The strength of the FPGA lies
in the ability of the designer to comstruct logic that is highly specialised to a
particular task. An FPGA circuit necessarily operates at a slower clock rate
compared to a hard-wired circuit implemented in the same technology, but the

FPGA can be hardwired to perlorm many steps of a repetitive task
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simultanecusly, and gain a performance advantage through parallelism. The
advantage of doing this with an FPGA over a regular ASIC or CMOS design is
the ability to reprogram a new layout, allowing one chip to perform muitiple
tasks, minimizing low volume (< 100,000 unit) design and production costs, and

maximising flexibility.

Fromm an FPGA’s perspective, the most difficult aspect of the convolution
algorithm is the multiplication. For each oufput pixel, for which the total
number is similar to the number of input pixels, The numhber of multiplications
is W, W,, where W, and W, are the window width and height respectively. Each
single multiplier would take up an enormous portion of the FPGA logic, and
operate at a slow speed. Fortunately to solve this, Xilinx provide 20 dedicated
multipliers on the Spartan3E chip utilized. These multipliers are a precious
resource, and since they can perform a multiplication cvery clock cycle for a
50MHz system, a circuit for calculating convolutions using only a single
multiplier, and taking W, W, clock cycles per multiplication was devised. The
initial implementation uses a window size of 4x4, as memory performance suffers
dramatically if the number of block RAMs in the hardwired pre-fetch cache is
not at least equal to the number of lines of the window plus one divided by 5,
rounding up. Since both block RAMs and multipliers exist in the same quantity
on most Xilinx chip, this symmetry in utilisation for each convolution operator
makes sense. Convolution can be speeded up further by adding multiple
convolutions in parallel on different image locations. Convolutions of larger
window sizes can be achieved by summing the results of smaller convolutions.
Combining these techniques reduces the wvariability in convolution

mnplementations necessary.
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4x4 Convolution FPGA Utilisation

6%
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Eﬂ/a P
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Slices Slice Flip LUTs Block RAMs  Multipliers
Flops

FPGA Resource

Figure 3-4 FPGA resource utilisation for 4x4 convolution block.

One difficully with implementing an algorithm in an FPGA context is the
inability to run the chip in any kind of debug mode. Combined with the
complexity of adding simple debugging IO (o the design, locating bugs becomes
extremely time consuming. To address this, special code was written to the
Xilinx VHDL logic and timing level simulators to external C-++ applications.
This code uses only standard VHDL and C++ libraries, and so should work
with any development simulator/programming environment combination. In
addition, a GUI for analysis the convolution algorithm under different conditions

was implemented.
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CHAPTER 8: FPGA CONVOLUTION IMPLEMENTATION

Figure 3-5 C++ test harness with .NET TU1.

3.2.1 Performance Results

The performance results for the convolution algorithm are quite predictable. As
work on the FPGA peripherals could not begin until the PCB was completed,
time did not allow for the testing of convolution algorithms on the real FPGA.
Still the hard-wired logic has predictable performance characteristics, from

which estimates were derived(Figure 2-5).
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Figute 3-6 Performance estimates for full real-titne convolution system running on FPGA, with
comparigon to PC performance (Reference algorithm rynning on a 1.83GHz Intel Core Duo,
binaries built with Microsoft Visual Studio 8.
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Chapter 4

(Geometry of Depth Perception

The Eyebot M6 platform has a standard arrangement of two cameras facing the
same direction, spaced a small distance apart. This arrangement, similar to the
human visual system, gives the platform stereo-vision. The key bencfit of this
arrangement is the potential ability to pcreeive depth. The determination of
depth from multiple, two-dimensional images can often be achieved through
comparison of the varving relative locations of points visible in both images. The
initial steps in the development of an implementation of this technology on the

Evebot platform will be discussed.

Stereo-vision algorithms require large amounts of computation to achieve good
results. It iz not expected that a satisfactory real-time, general purpose stereo
vigion system can be implemented using the general purpose CPU of the new
eyvebol platform. Instead the focus of this discussion will be the selection and
optimisation of algorithms in such a way as Lo [il an implementation on the
platform’s Spartan 3E FPGA. Consideration will be given to the utilisation level
of the specific resources available on this FPGA at every stage. The goal is to
derive a stereo algorithm which can be implemented so as to provide several
frames of depth information per second, whilst offering the maximum

information possible.
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CHAPTER 4: GEOMETRY OF DEPTH PERCEPTION

4.1 Projective Geometry

The first step in deriving a sterco algorithm is to consider the geometry involved,
and a method of relating the 2D image data to the true 3D scene. To do this,
the geometry of the camera is considered to be like that of a pin-hole camera
(cameras that introduce no significant lens dislortion lo the image.)
Understanding this simplified relationship mathematically beging by defining the
projection matrix X which converts hetween a coordinate (w.v) in 2D image
space and a coordinate (x,y.z) in 3D space. The explanation which follows has in
part been adapted [rom [12]. Equation (4.1) shows the construction of a malrix
from the lollowing parameters:

f : focal length

{(uo,vo) : intersection of Z axis with image plane
The geometry for this situation is illustrated in Figure 4-1.
Note that square pixels, as found almost exclusively on modern cameras, have
been assumed here. For rectangular pixels with different widths and heights two

separate focal lengths fu and fv would be required.

F 0 u O
0O 0 1 0
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1.2 FULL PINHOLE CAMERA GEOMETRY

X

Figure 4-1 Basic projective geometry[12]

4.2 Full Pinhole Camera Geometry

The projection matrix K requires the camera to be at a fixed position in world
space, which is obviously incompatible with the notion of two cameras viewing
the same scene. To generalize to multiple cameras, a calibration matrix C can be
constructed which includes an arbitrary transformation of the camera relative io
world coordinates. The additional parameters for this matrix, shown in equation

(4.2) are:

R : 3x3 rotation matrix
t : 3x1 translation vector
T t R
“los 1 (4.2)
C=KT (4.3)
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CHAPTER {: GEOMETRY OF DEPTH PERCEPTION

This relationship for a pair of cameras viewing the same 3D scene is expressed in

equation (4.4).

x X
. 5,1 y Satty
C|- LY C =¥
1 z 1*1 2 z 2¥y (4,4)
5 §
1 ! 1 ?

4.3 Epipolar Geometry

The geometry for two pinhole cameras as derived in 4.2 is illustrated in Figure
4-1. There are two crucial points to be made at this stage. The first is that, for
each poinl seen by one camera, there arc infinitely many object positions which
share the relationship so that the lines connecting them to the camera's
projection centre overlap, and therefore share the same image coordinate. The
second is that all of these object positions project to different points in the
second image (ignoring the lack of non-discrete pixel locations), and all of these
points form a single line on which lies the epipole (The point where the baseline
intersects the image plane.) This iz the well known epipolar constraint that

reduces depth searching from a 2D to 1D problem.

4.4 Co-planar Images
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4.5 PRACTICAL RECTIFICATION

O,
If two pinhole cameras are lined up
0, z such that they share a common
e»x image plane, then the epipoles will
Yy now be at infinity. Since they only

meet at infinity, all epipolar lines

C, c, will be parallel and horizontal[13].
The projective geometry for this

P, e— = P, gituation is illustrated in Figure 4-2.
dpis If the x and y axis are paralle]l to
Figure 4-2 Geometry for & pair of cameras the image planes of the cameras,

aligned to give parslle] image plan
s give par riage planes objects Ol and O2 are spaced in

between the two camerss on the x-axis or have the identical y coordinates, and
both objects project to the same coordinate in the left hand camera’s image,
then the corresponding projecied points in the right image will have the same y

coordinate as in the left, and therefore be on the same scanline.

4.5 Practical Rectification

Disparity mapping algorithms, as discussed in Chapter 3, calculate disparity by
searching image sets for matching regions and calculating distances between
them. It will be shown that, if it is possible, using the techniques discussed in
this chapter, to constrain all equivalent points to lie on epi-polar lines that are
parallel in the source images, then it will be possible to compute high quality
disparity maps in real-time on the M6 platform. This becomes possible because
the search space for disparity maps is reduced substantially, and the use of
rectangular windows which can have their SAD computation optimised, rather

than cireular windows, is possible.
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CHAPTER 4: GEOMETRY OF DEPTH PERCEPTION

Repetitive

Plain

Table 4-1 Stereo source images captured with a single camera moved by hand, along with SAD
disparity mep snd miniman, window error. It can be seen that the SAD algorithm, az discussed
later, does not require perfect alignment. In particular many of the regions with poor accuracy
are due to deficiencies in the SAD algorithm irrespective of rectification, which will be covered
in motre detail in the later chapters.

Two cameras that ook sitvilar physically (same make, model) may not, when
their casings are lined up side by side facing the same direction, give a good
approximation of co-planar images. Large stereo systems typically employ a bi-
prism setup[i4], where a single sensor is used to capture the image data, and a
gpecial lens system with a prism focuses views from two disparate positions onto
this sensor. The bi-prism system ensures that the stereo image pair will be co-
planar regardless of the small variation in the position and orientation of the
capture surface in different camecras. The optical portions of the camera may
introduce a rotation with unacceptable pitch and yaw components. In our
testing of three Cameras of identical make and model (OV6630) we found that
two had only a roll and translation as the significant misalignment components,

while the third had pitch and yaw significant cnough to prevent the affine
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4.5 PRACTICAL RECTIFICATION

transform from recovering a suitably rectified pair. Therefore it is necessary to
be cautious when assuming that s simpler transformation will be sufficient based

off the external geometry of the cameras utilised.

4.5.1 Affine Transform Rectification

If we restrict ourselves to roll rotations, x translations and y translations, then
the transform required on cach coordinate in the second image relative to the
first is independent of the depth. A single transformation can then be found and
applied to the second image only. This transformalion will remain constant

between frames as long as the relative alignment of the cameras is unchanged.

Aligned Yaw Piteh Roll

Figure 43 A comparison of the different components of relative rotation for two camera images,
including the depth skew from the yaw and pitch components.

This transformation would be at most half as computationally complex as the
full calibration method. If the roll rotation is within a few degrees then it is
possible to allocate sufficient block RAM within the FPGA to only require
reading each pixel from the SRAM once during the transform. In this case the
impact of the transformation on the performance of other components is greatly

reduced.

It is likely that, with further testing, it can be demonstrated that the Eyebot

M6 can give useable quality depth information from its slereo cameras using
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CHAFPTER 4: GEOMETRY OF DEPTH PERCEPTION

only this level of rectification. The yaw and pitch will not be significant with
most camera pairs as the physical geometry always aligns them correctly
externally. This would make a real-time (multiple frames per second)

implementation leasible,

4.5.2 General Stereo Rectification

There are four steps required for rectification with complete generality with

respect to eamera position[15].

+ Rotate the left camera so that the epipole goes to infinity along the
horizontal axis (i.e. the left image plane becomes parallel io the baseline
of the gystem).

« Apply the same rotation to the right camera to recover the original
geometry.

« Rotate the right camera by A.

» Adjust the scale in both camera reference frames.

There are two problems with supporting this general case on an cmbedded
platform. The first iz the complexity of the [ull transformation, which is
significant not only because it requires extremely high performance
multiplication, but also hbecause it has unpredictable memory access
characteristics which do not fit well with the FPGA user designed cacheing
model. If this level of rectification is required, it may be necessary to involve the
CPU, which will almost certainly bring performance down to below one frame

per second.
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Chapter 5

Real Time Disparity Mapping

5.1 Disparity Mapping Methods

It has been established that the geometry of stereo vision lends itself to the
estimation of depth through observing the varying relative location (disparity)
of common points in a set of images simultaneously viewing the same scene. The
most significant challenge in sterco vision is the analysis of the image set (pair
in the case of the M6 platform which has two cameras) in order to ascertain the
location of common points. Algorithms which alteropt this task are called
disparity mapping algorithms, since their result is a set of data which identifies

the disparity as a function of position in one or more of the images.

There are two fundamental classes of disparity mapping algorithms[16],
distinguished by their feature detection being either area based or feature based.
Area based algorithms identify a local window surrounding each point for which
they wish to ascertain a disparity, and compare this to similarly sized windows
at all possible corresponding points in the other images. Generally a metric is
used to evaluate the difference of the windows compared, and a local minimum
of this difference is selected as the most likely match. In this way, area based
algorithms produce a disparity map which provides a result for all, or at least
most, of the points in the original images. This property means they are said to
produce “dense” disparity maps. The alternative, feature based, detection

methods look for a small set of particularly distinctive features, and then
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CHAPTER 5: REAL TIME DISPARITY MAPPING

attempt to pair as many of these as possible with the distinctive features
present in the rest of the image set. This class of algorithms provide sparse
disparity data since they typically attempt to determine a best match for only a
small minority of the original image pixels. In a software implementation,
feature based methods tend to be faster and more reliable, but offer much less
information than area based methods. By contrast, area based methods offer a
much greater potential pool of information. Another advantage of arca based
methods is their highly repetitive and parallel nature, which it will be shown
makes them amenable to high performance FPGA implementation, important

for achieving real time mapping rates from the M6 platform.

There are a number of properties which can be varied to arrive at a particular
area based disparity technigque. This makes for an enormous sel of potential
combinations from which an algorithm must be chosen. Since these potential
combinations are almost endless, it is not possible to evaluate all of them.
Further, the ideal set of parameters depends on the objects viewed, depths
involved, and camera propertics. Instead of attempting to optimise globally, a
variety ol conditions will be tried, and assumptions of generality made to arrive
at a recommendation on how to narrow the search space of candidate
algorithms for an FPGA implementation. Finally a recommendation for the M6
platform will be made, based not only on these quality tests, but an estimate of
performance and resource usage derived from experience implementing other

features.

3.2 Pre-Processing Filters

Typically when calculating disparity maps with the SAD metric, a “Laplacian of
Ganssian” (LoG) filter is first applied to each source image by convolution. The
Gaussian portion of the filter reduces noise, and the Laplacian acts as a feature
analyser to reduce the complexity of the input data to its most significant

gignal. Thiz can reduce the computation required to complete the SAD
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5.2 PRE-PROCESSING FILTERS

comparisons, by allowing a logarithmic conversion of the output data down to a

much smaller word size, without sacrificing a great deal of quality[17].

001100
0 |-1|-2]-1|0
-1 (-2(16)-21-1
0i-1]-2(-1]90
010]|-1[0]|0

Although the LoG filter technique makes a

great deal of sense when faster processing

allows the addition of more cameras to the

sysiem for greater final quality, it makes little

sense in our system which is limited to only

i Figure 51 Example discrete 5xd
two cameras. Further, the LoG algorithmn paplacian of Gaussian  (LoG)

would require additional hardware to compute, fitter{18]

counter-acting its SAD calculation benefits on the FPGA resources. In summary
this algorithm would would result in slightly faster computation through
reduced memory bandwidth requirements, especially for the SAD previous line
lookup table discussed in 5.5.3, but would not save resources and would

drastically lower the final quality.

Pre-processing Count Sum Sum Squared
None 28990 1176258 99343992
Discretised bxb LoG 33527 1926640 213116672
Gaussian 5x5 (o=1) 26611 1057024 81472512

Table 5-1 Error compared to ground truth[19] for Tsukubs imege set using various pre-
processing methods followed by a Tx7 SAD disparity map

Another option is to apply only a small Gaussian {ilter, exchanging feature
detail for reduced noise in the source images. This pre-processing method can
slightly increase the quality of SAD disparity maps, at the expense of an extra
pre-processing step. Now both FPGA resource utilisation and computation time
have increased, but quality is superior. This technique has merits in certain
situations, but another method will be realised in section 6.5.2 which can remove
a other, potentially bigger types of errors with much lower FPGA resource
requirements, and no additional time. This technique relies on the presence of

the very errors that the Gaussian filter helps remove in order to locate much
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CHAPTER 5: REAL TIME DISPARITY MAPPING

bigger sources of errors. Therefore it is recommended that the images nsed for
disparity mapping do not undergo pre-processing, unless they suffer from greater

than usual amounts of camera sensor noise,

Error Comparison for Various Pre-
Processing Filters

4
35
3
= 2.5 —— Count (10Md)
E 2 —a— Sum (10%6)
1.? Sum Squared (1018)
0.5
0!
None LoG Gauss
Filter

Figure 5-2 Graphical sutmmary of data from Table 5-1.

5.3 Choice of Match Comparison Metric

Arca based disparity map algorithms invariably require some type of similarity
metric to determine which pairs of windows make the best matches. A number
of these have been proposed in the past, including Sum of Absolute Differences
(SAD), Sum of Squarcd Absolute Distances {SSAD), Cencus and a class of
algorithms referred to as Rank (non-parametric algorithms that rely on
ordering). Comparisons have been done in the past, with for instance a
comparison of the first three finding that SAD produced equal best quality with
8SAD, and Cencus producing the lowest quality[20]. Another more detailed
study including Rank algorithms found that SAD was the best as long as a
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5.4 SELECTING WINDOW SIZE

zero-mean condition was applied[21]. This seems unnecessary in testing done for
this thesis and it is suggested thai this condition may be necessary for cameras
with incorrect gamma balance or other serious relative colour problems. It has
been suggested that Rank style ordinal methods can also be more effective in
cancelling the effects of difficult geometry or gamma variation errors to the
point where SAD is always inferior under non-ideal conditions[22, 23]. Whether
this proves a genuine advantage of the SAD algorithm in the case of the

Eyebots is an area that requires further investigation with real Eyebot setups.

An approximation of the resource requirements for different match metrics no
FPGAs has been done previously[2d]. According to this study, the FPGA
resource requirements for the SAD algorithm are a close second lowest, behind

the Rank method. 88D and Cencus are significantly more expensive.

Overall, the SAD algorithm, seemingly traditionally popular in real-time
implementations[17], seems both the best and safest choice for implementation.
A rank based algorithim may be effective as an alternative for scenarios where
the SAD algorithm is not sufficiently accurate. Cencus and 5SS are more
expensive than SAD and offer little or no quality gain, and therefore should be
avoided. Based on this, the SAD algorithm is used as the basis for the rest of

this analysis.

SAD_ (v, v )= D I ix+i, v+ ) (x+v +i, vy 4] 61
. VLA _

5.4 Selecting Window Size

One property that can be varied for all area based disparity algorithros is the

size and shape of the window to use for each comparison. The two obvious
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CHAPTER 5: REAL TIME DISPARITY MAPPING

choices of window geometry are a square and a circle. The circular window has
the advantage of being directionless, a useful property when the camera
geometry is unknown. The square window is similarly effective where the
geometry is known and the images can be rectified (see Section 4.5.2), and is

much simpler to calculate, especially since it is more amenable to optimisation

as covered in the next section.

Since the camera geometry is fixed on the M6 platform and efficiency is
paramount to enable real-time analysis, a square window should be employed.
The remaining question is what sizc window to use. The quality of the basic

SAD algorithm performed on a number of window sizes is summarised below:

Window Size Count of bad | Disparity Error | Error (Sum of

pixels (Sum) Squares)

3x3 40777 2206912 235035648
5x5 32797 1452240 133423872
77 28990 1176288 993458992
9x9 26733 10240600 80260608
11x11 25479 956016 72347392
13x13 246060 926112 69288448
15x15 24084 911648 66949120
17x17 23811 904800 65426432
19x19 23606 909280 65165824
21x21 23367 919264 66016768

Table 52 Hesults of comparing the effectivenese of different window sizes on calculating the
depth of the Tsukubae image pair as compared to the supplied pround truth[19).

There is a clear trend for quality (inverse of errors) as a function of window size.
For both the sum and sum of squared error metrics the result drops with
increasing window size down to a minimum point, and then increases again after
that. The total count of pixels with errors continues to drop right up to the last
window size tested, but iz expected to reach a similar minimum soon after.

Therefore to minimize initial error a large window size (17x17, 19x19 or 21x21)
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5.4 SELECTING WINDOW SIZE

is most appropriate. In percentage terms however, the increase from a 3x3 to
5x5 reduces both sum and sum squared errors by 35% and 45% respectively,
whereas the next step to a 7x7 window only yields reductions of a 13% and 26%.

For the count of errors the improvements are even smaller.

Tsukuba Error vs. True Disparity for Varying
Window Size

[ —e—Count (10'\4)

—a— Sum (10/6)
Sum Squared (10@

Error

> o A ,\ R ,3:. A e N

¥

Window Size

Figure 5-3 Disparity Error for vatious window sizes using the plain SAD disparity method

Computational complexity of the optimised SAD algorithm grows linearly with
the size of a single side of the SAD window. When real-time performance is
desired, window size has to be minimized. A window size of between 7x7 and
13x13 therefore seems a more logical choice. In the case of the FPGA, there is
another factor to consider. Although the total amortized clock cycles per window
required does not grow with the size of the window, the hardware resources
requited and minimum time period of each clock cycle do. There is a SAD
calculator required in numbers which grow linearly with the side length of the
window. It will be difficult to fit 26 of these into the M6 platform’s FPGA
alongside the other logic required to implement stereo vision. Assuming 352x283
gource data (the resolution of the M6 platform’s camera), the are n/4 Block

RAM resource required, where n is the number of lines of the window plus one.
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CHAPTER 5: REAL TIME DISPARITY MAFPPING

If this much Block RAM is not available, appropriate caching is not possible and
performance will degrade dramatically due to memory bus bottlenecks. there is
also a summation circuit, the length of which grows base two logarithmically
with the window side length. Table 5-3 summarises these requirements. We can
see that the Tx7 window requires dramatically less resources and cycle times
compared to the 9x9, with only a small additional crror introduced. Therefore,
in the abgence of evidence a larger size can co-exist alongside rectification,
camcra input, memory controller and other required circuitry, this is the
recommended starting point for a real-lime implementation. The 11x11 window
also offers a good balance between resource usage and gquality, but may prove
too expensive for real-time iroplementation on the M6 platform in a complete

syatem context.

Error (increase cf. 15x15)
Side Length | Block RAMs | Tree Depth | Count Sum Sum Squarcd
) 2 3 36% 59% 99%
7 2 3 20% 29% 48%
9 3 4 11% 12% 20%
11 3 4 6% 5% 8%
13 4 4 2% 2% 3%
15 4 4 0 0 0

Table 53 Comparison of selected FPGA resource / timing requirements and errors incurred for
different SAD window eide lengths

Ground Truth 3x3 Window Disparity / Error

20
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7x7 Window Disparity / Error 13x13 Window Disparity / Error

Figure 54 Disparity maps and error relative to ground truth(18, 25] for basic disparity
algorithm applied to Tsukuba image set at selected window sizes.

5.5 Performance Optimisation of SAD Algorithm

5.5.1 Minimisation of Search Area

The most basic optimisation to make in calculating the SAD algorithm is to
limit the disparity search to a range that covers all viewable source depths. If
rectification ensures that epi-polar lines are near horizontal, and points of
infinite distance are identically positioned in the two images, then the search
width required is related to the camera parameters and the closeness of objects

which must be viewed.

For the Tsukuba image set, the maximum disparity in the ground truth
corresponds to a separation of 15 pixels. Although maximum performance conld
be obtained by limiting search width to this length, this is not realistic as a
larger search width (as required for closer objects) will degrade quality (greater
uncertainty about location of matching point.) To keep results more realistic to
the Eyebot case where detection is desired even when objects are close, a search
width of 20 was used when performing error evaluations. Although a larger still
search width could be used, it is not necessary to include an extremely large
value for disparity evaluation as localisation of similar objects means the

likelihood of a mistaken match being caused by a wider search width diminishes
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CHAPTER 5: REAL TIME DISPARITY MAFPPING

with distance. For performance evaluations presented at the end of this section,
a search width of 32, which covers objects very close to the viewer is used
instead, to demonstrate the real-time expectations for the system under a wide
variety of conditions. In general this value should be selected based on the
minimum distance of object desired to be searched form, with minimized width

for quality reasons only a secondary concern.

5.5.2 Multiple Resolution Search

One method is to approximate the SAD search by performing initial searches at
lower resolutions[26], and performing a detailed search of the remaining region.
Thizs method will not be considered for pixel level precision disparity map
computation. The main advantage of this method occurs when the search must
be performed on a 2D area rather than a 1D epi-polar constrained search. This
will not normally be the case for the Eyebot M6 platform where the relative
camera positions are fixed, and calibration is possible. This optimisation also has
a number of deficiencies from an FPGA implementation perspective. Since the
numhber of different operations in the algorithm has increased, the logic required
is substantially greater, and therefore the resource usage and power
requirements increase. In addition, the final result suffers from lower accuracy,
owing to the stepwise minimom search which may miss the global minimum.
Therefore this is an inappropriate choice in an FPGA implementation context

unless the camera geometry is not known.

5.5.3 Reusing Earlier Results as a Lookup Table

One method of improving the accuracy of the SAD algorithm without a
reduction in accuracy is to reuse earlier values. References to this technique have

been found in past attempted real-time implementations[27] although the
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algorithm is not explained in detail. The technique exploits the fact that in
comparing two windows, the previous . This relationship is explained in
equation (5.2), where Vx represents the disparity offset being tested, x and y
represent the centre of the window on the first image, Total is the sum of
absolute differences total for the window, and P,(x,y) and P,(x,y) are the pixel

value at the specified locations for the first and second images respectively.

M M
Total_ny (Vx) = TOtalx,y_] (Vx ) - ___ZMSAD-""H"Y_J‘ (-Vx ) + .__ZMS'ADx+i‘y+3 (Vx ) (5,2)
_ Sizel'ﬁm:luw -1
M= — Y (5.3)
SAD, ,(V,)=|P(x,y)~ P,(x+V . ¥)| (5.4)

5.6 FPGA Performance Estimates

The challenge of implementing real-time stereo vision utilising dedicated logic is
quite different to that faced in software. Whereas software writers tend to worry
about the total number of calculations, an FPGA designer is more concerned
with the diversity of logic and throughput required of different memory sub-
systems systems. The FPGA is excellent for simple, repetitive, parallelisable
tasks where the high bandwidth of the multiple parallel block RAM caches can
be utilised. When it is hampered by external memory bandwidth, the FPGA
may be no more efficient and significantly more complicated as a solution than a
conventional processor. Where the task requires many complicated operations

the FPGA may even be inferior.

Fortunately, after optimization, the SAD algorithm is an excellent candidate for
FPGA implementation. The level of exploitable parallelism is above what a
SIMD processor can supply, but achievable by the FPGA. The FPGA

implementation would also have a nesr constant turn around time, the ideal
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CHAPTER 5: REAL TIME DISPARITY MAPPING

case for real-time systems. A reference PC implementation was obtained by
performing the optimized SAD calculation a number of ways, compiling with the
latest Microsoft C++ Compiler (Visual C 8.0). The best algorithm was selected,
executed five times, and the best two resulls averaged to generate the resulis
below. An FPGA implementation based derived from the discussion in this
chapter should have a near constant performance which can be estimated simply
as the number of comparisons to make, multiplied by the time per comparison
at the FPGAs clock rate. Extra comparisons were incorporated to account for
the starting condition when the lockup table requires filling. Although this still
only yields an amortized time, it should be extremely close to the final total.

These results are summarised in Figure 5-5.

SAD Performance (Time) SAD Parformanca (FPS)

1000
800 1 ,
S E; B [ares
: :
('S

200

FPGA G Gedde (PC) FPGA C Code (PC)

Implementation Implementation

Figure 5§ FPGA Implementation SAD performance estimates for 50MHz Xilinx Spartan
S83E600 FPGA with 100MHz RAM compared o 1.83GH=z Intel Core Duo based PC (single
thread code) with 2MB cache and 667TMHz DDR2 RAM (352x288 source image resolution, 7x7
window.)
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Chapter 6
Disparity Errors

There are a number of difficulties in establishing depth through disparity of
corresponding image regions. There can never be a perfect correspondence
routine as pixels in each image do not always derive from a point in 3D space
which corresponds to the visible region of the second image’s view projection
(Figure 6-1). In addition, because of sensor noise (Figure 6-2), detector
sensitivity discrepancies(Figure 6-4), 2D spatial quantisation (Figure 6-2), and
lens distortion, a portion of an object visible in both images of a stereo pair,
being viewed from similar angles and distances in each image, will not
necessarily produce identical pixels in the images. Finally different distances
between cameras and points will lead to different sizes of areas in the images,
which will cause problems for any algoritbim which makes the assumption of
objects appearing the same size and orientation in each image after rectification.
A variety of solutions to these problems have been proposed in the past, and
many of these will be explored and compared along with other suggested, high

performance methods.
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Non-overlapping field of view areas Parallax view discrepancies
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Figure 6-1 The two types of visible area discrepancy between stereo image paits

Tmage Quantisation Errors

Left Image Right Image Right Image
(Pre-quantisation) (Post-quantisation,
error circled)

Fignre 6-2 Discrepancy in quantised stereo image windows due to sub-pixel offsets.
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Detector ADC Noise Errors

Left Image Right Image Right Image
{Noise free) {Noise included)

n

Figure 63 Discrepancy in stereo image windows due to noise in detector ADC

Detector Sensitivity Variation Errors

Left Image Right Image Right Image
(Degired) (Actual)

Figure 6-4 Discrepancy in quantised stereo image windows due to sub-pixel offeets

The errors outlined previously can be roughly sorted into two categories. The
random errors which occur due to quantisation and sensor noise, and the
expected errors caused by the geometry and texture of the scene. It is the latter,
scene dependent errors which contribute most to the error sum. One of the
obvious problems with area based metrics such as SAD is the fundamental
inability to cope with regions that lack detail (texture and boundaries.) These
areas are often not distinguishable by simply comparing pixel intensity or colour
values. Similarly, windows containing multiple depths will fail to match because

of the size and parallax position problems|28].
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Errrors
Error Suggested | Area Size Count Sun Sum Squared
Depth Discontinuities | 17008 (19%) | 7119 (25%) | 457008 (39%) | 45153024 (45%)
Textureless 47538 (54%) | 19732 (68%) | 674224 (57%) | 49523968 (50%)
Oceluded 2258 (3%) | 2006 (7%) | 160400 (14%) | 15695616 (16%)
Combined 60744 (69%) | 24737 (85%) | 1031888 (88%) | 86622624 (37T%)
Entire Image 87606 28990 1176288 09348992

Table 6-1 Error compared to ground truth for Teuknba image set for a 7x7 SAD disparity map
in the region expected to have particular difficulties[29].

An evaluation of the accepted known error sources|29] with the Tsukuba image
set reveals these account for 69% of pixels with crror, and more importantly,
88% and 87% respectively of the sum and sum of squared values for these errors.
Clearly these arc far more taxing than camera ADC noise, quantization and

other random sources.

6.1 Sub-pixel Matching

Sub-pixel matching is can improve both the success rate and precision of the
correspondence search. Sub-pixel matching can significantly reduce errors caused
by quantisation. Implementing true sub-pixel precision requires utilising some
type of filter (typically linear) to upsizce the secondary image much larger than
the original source provides. Generating this image on the fly, even linearly,
requires significant additional rescurces. Fach new pixel value will have four
inputs from the original image, and multiplication or division will be required for
any size other than a multiple of two in each dimension. Even more significantly,
there will be a linear incresse in the search complexity with the increase in the

total pixel count:
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Widtha'ub—pi.ml = Widthurigirml hdghrma—pam - heightn,,g,m,

O(Search,,_

pixel ) = O(SearChan'gim! )><

width height o
True sub-pixel searching is thercfore a poor choice for a low power, embedded

nriginal

platform.

An alternative to this is to consider it as a multiple resolution optimisation and
only perform sub-pixel matching in the region surrounding the best match at the
original level, This technique makes perfect sense in a software implementation,
as the slower algorithm can be applied to a small target area, and only this
small area need undergo up-sampling, hence a small increase in total run-time
will yield a higher quality result. Unfortunately this does not translate well to an
FPGA implementation where a longer, slower routine applied occasionally leads
to a large decrease in implementation efficiency. The ecircuit required to
implement this dynamic programming optimisation would be approximately
twice that required by the original disparity technique. It is not possible to
merely trade additional runtime for the application of this technique. Since it
was established earlier that sub-pixel errors do not account for a large
proportion of disparity errors, and this technique is difficult to implement, this
optimisation is not a good candidate for FPGA implementation on the M6

platform.

6.2 Disparity Analysis Tool

To evaluate the effectiveness of different confidence algorithms, an application
was written to compute, visualise and transform the various data sets. This
program allows the user to test hypothesise, both subjectively and analytically,
through a toolbox of image editing and comparison functions. The ability to
quickly view numerical values at the same point in multiple 2D data sets also

aids in verifying and debugging algorithms. In the future this application could
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be combined with the tools presented earlier o verify the accuracy of simulated

hardware implementations.

The wuser interface of the disparity analysis tool provides a powerful
manipulation environment. A significant part of this is the use of binary masks,
which can be created by performing binary operations on other masks or
thresholded image data. The application implements all algorithms for which
results are provided in thiz Chaptler, with an emphasis on replicating as closely
as possible the integer methods which would be employed in a future FPGA
implementation. In addition, data analysis tools for evaluating results, detailed
logs of all action taken during a session, and a three dimensional visualisation
environment to aid subjective evaluation of results are all provided. A more
detailed description of the usage and source code layout of this application is

provided in Appendix A.

6.3 Accuracy Improvement through Confidence

Estimation

Rather than improving the precision of the original test, an alternative option to
improve accuracy is to find and reduce errors by assigning values a confidence,
and then ignore, replace or blend values of low confidence. This method is
particularly suitable to a hardware implementation as many confidence
estimation techniques would require very little additional hardware resources or

processing time.
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6.3 ACCURACY IMPROVEMENT THRQUGH CONFIDENCE
ESTIMATION

Figure 6-5 7x7 window Tsukuba disparity map with example low confidence matches highlighted
next to ground truth

Figure 6-6 An early build of the final disparity analysis application written in support of this
Frojeci. A simultaneous cursor and detailed snalysis logging can be seen in action.

Several algorithms for deriving properties with potentially useful statistical
correlations to confidence were tested. Some of these were found through
experimentation with the custom Disparity Analyser application, whilst others
were located in the literature. A quick summary of these algorithms and their

success in detecting or correcting errors is given in Table 6-2. An analysis of
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their ability to improve the complete depth map through the use of the high

quality nearest replacement technique is also provided (Table 6-3).

False Exroxs Errors Detected
Algorithm Parameters Count Count Sum Sum Squared
Multi-window threshold==1 6125 11534 520912 46363392
distance. threshold=2 5149 8409 400192 3673344
Minimum low 42323 20820 798800 64646912
Window threshold=128
high
threshold =750
2™ Best Dist. threshold=2 22180 15201 620864 51301600
Comespondence | threshold=1 18543 19475 905264 25280512

Table 6-2 Error totals and counts of good pixels mistakenly marked as errors for verious
confidence estimation techniques and parameters.

Post-Fill Nearezt Error

Algorithm Parameters Count Sum Sum Squared
Multi-window threshold—1 28939 1141434 91072300
distance. threshold=2 28580 1134860 90467080
Minimum low 21663 913184 73636864
Window threshold—-128
high
threshold=750
2** Best Dist. threshold=2 27718 1243165 134018067
Correspondence | threshold=1 29144 1079248 76039424

Table 6-3 Error totals for nearest replacement scherne revised depth maps for various confidence
estimation techniques and parameters.
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6.8 ACCURACY IMPROVEMENT THROUGH CONFIDENCE
ESTIMATION

Minimum window (Low threshold=128 2" best dist. (threshold — 2)
high threshold=750)

Correspondence (threshold==1)

Figure 6-7 Disparity maps with low confidence regions highlighted for various estimation
techniques.
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6.4 Applications of the Uniqueness Constraint

6.4.1 Variable-Window Matching

Another method of improving the quality of disparity maps is to apply multiple
SAD tests for each pixel. Examples of such algorithms include testing multiple
window sizes[30] and using an adaptive window([31]. There algorithms require
significant additional implementation work on an FPQA platform. Since the
computation of the smaller window is, in fact, a subset of the original problem,
it should not require a large amount of additional FPGA resources to implement
in an efficient design. Unfortunstely the opportunity for parallelism, if re-
utilising the same hardware, will drop in proportion with the window size, and
so the additional execution time will be the same, not smaller, than the time
required for the base disparity search. Also significant is that the largest
consumer of memory bandwidth, the lookup table, will also double in size and so
the total time required by an FPGA implementation of this algorithm is
approximately twice that of the single window size disparity search.
Correspondingly, the achicvable frame rate would halve assuming the non-

disparity portions of the operation are negligible.

The multi-window method for which results were presented is comparing the
distance between the matched locations for the window sizes. The secondary
window size was chosen Lo be 2 smaller in each dimension than the base window
size. As expected, this method proved effective at eliminating many of the faults
which occur normally due to multiple depths in the large window (parallax

eIT0rS. )

Tests were also performed on a basic, non-adaptive multi-window approach.

This method produced a lower quality than the most basic single window size
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approach and is therefore not included in the testing. Although this result may
not hold for images with significantly more occluded regions, the adverse
consequences under typical conditions combined with the doubled run-lime
means it is recommended that a non-adaptive multi-window approach hbe

avoided.

Adaptive windows may offer advantages, but introduce further complexity. An
additional algorithm is required to detertnine the most appropriate window such
that it improves the reliability of the final match. If quality was of utmost
importance, then it would be worth investigating strategies employing this
technique. It may be that a method which does not burden the FPGA
significantly beyond the doubled SAD computation time may be possible. This
would likely involve some other method for statistically predicting the preferred

window.

6.4.2 Second Map Correspondence Test

The correspondence test involves calculating a second entire depth map, with
the source images swapped. It is then verified that for each point in the left
image, the point in the right image it was matched to was also matched back to
the original point in the left image. A slightly more advanced version of this was
implemented where the offset between the corresponding matches was calculated,

rather than just a binary true/false correspondence.

Statistically this was the most successful technique, but suffers from the
disadventage that it requires slightly more than twice as much computation as
the original disparity techmnique. This can be accomplished in half the time
rather than double the resource wsage however, so this technique is worth

considering for high quality, slower speed matching.
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6.5 Statistically Derived Method

6.5.1 Second Best Match Distance

This method works on the assumption that, if the two best matches are close to
each other, they are probably identifving the same, correct match. If the two
best matches are spaced far apart, they are signiflying the choice of match was
more likely to have been random and incorrect. This algorithm is cheap to
computer, as the disparily circuit simply has to retain two, rather than one, of
the best windows il has seen so far at each step. After this a single sum of
absolute difference of the distance of the points is compuled and the result is
calculated. Unfortunately this method did not make a good improvement, and

therefore this method is not recommended.

6.5.2 SAD Window Comparison Minimum Error Thresholding

SAD window error thresholding is a technique which was derived statistically
using the analysis application written for this project. A reference to this
technique was not found in any literature, although it is likely to be in use (at
least commercially) due to its computational simplicity and strong correlation

with image error.
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Metric 1: Minimum SAD Window Error (Tsukuba)
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Figure 6-8 Mean disparity etror value as a function of the minimum SAD window’s error value

This chart shows that the values of low average error when compared to the
true disparity actually congregate towards the middle of the chart. What makes
this a particularly worthwhile test is that the majority of the values congregate
in this good region. It is therefore a very simple method of locating a small

subset of values with particularly low confidence.

67



CHAPTER 6: DISPARITY ERRORS

Metric 1; Minirnum SAD Window Error (Teukuba)
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Figore 6-9 Mean error and area adjusted pixel counts asz a function of the hest matching SAD
window's error value. Counts are adjusted so that all areas along the logarithmic graph
correspond to the same amount of pixels.

It is intuitively obvious that values with & high minimwn SAD error should

have a low confidence. These values correspond to regions where no pair of
regions formed a particularly close match. These regions are likely to correspond
with regions where parallax errors mean the objects visible in each image differ

substantially.
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Metric 1: Minimum SAD Window Error {Tsukuba)
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Figure 6-10 Plot of the adaptive moving average of SAD disparity error compared to the true
disparity for different minimum SAD window error values. The adaptive moving average groups
the values into equally sized bing, irrespective of the density of data points along the x-axis.

Whereas the relationship between high minimum SAD error values and poor
confidence is obvious, the more difficult question must also be asked: why it is
that values with lower errors can in fact be less relisble than those that fall in
the midrange. An alternate angle on this is to consider why having a higher
error appears to make a value more reliable, up to a point. One possible
explanation is that the random sensor noise and quantisation errors, which
should be ever constant, appear to have disappeared when the errors value is too
small. This would happen in regions of flat colour, which normally cause
disparity error. Flat regions are inherently less susceptible to gquantisation errors,
since the strength of such errors is relative to the difference in inlensity between
neighbouring pixels. These regions also suffer from a low signal to noise ratio:
They can pick from several similar areas when matching, since the true grey
scale signal is relatively uniform and thus weak, and therefore choose areas
where the random noise contributions are most similar. This increased selection
would enable a better noise match than if the area were limited by the presence

of distinct features, as is usually the case in those areas which make a valid
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6.6 IMPLEMENTATION DETAILS

ay Window

Figure 6§11 3D visualisation of minimwn window error threshold corrected depth
map(green) as compated to original (red) and truthk (grey.) Green areas represent
points where the depth map was not completely fixed, while red errors represent
areas that are wrong In the plain disparity map but fixed after thresholding and
nearest replacement.

Once regions of poor accuracy in depth maps have been identified, there is an
application dependent decision of the fix to make. The standard method is to
blank out the bad regions (and expect algorithms to be able to ignore them.) A
number of other corrective methods (Figure 6-12) were implemented. These vary
in how accurately they correct the image and how much FPGA processing time

and resources would be required for implementation.
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match. It is suggested therefore that there iz a value below which having a lower
error actually makes a match less likely to be correct, and that this low value
will depend on the statistical noise properties of a particular camera and

environment combination.

Statistically this technique was the second best at detecting errors, and in fact
yielded the best correcled depth map. This technique would be exiremely cheap
to implement, as it is simply a matter of including a pair of comparators. On the
other hand, it does require calibration which can be a disadvantage when

conditions such as lighting are highly variable.

6.6 Implementation Details

The simple thresholding and second best distance test algorithms are special
because they require a very tiny amount of additional effort (both processing
time and FPGA logic) to implement. Both of these algorithms produce good
results compared to the more complicated solutions, and are therefore deemed
more appropriate to a high performance, low power embedded implementation.
The advantage of the second algorithm is its invariance to image paramelers,
and therefore lack of need for calibration. The minimum and maximum
threshold method produces & better result with the appropriate calibration, but
how easy it will be to maintain such calibration when conditions such as lighting
are variable it is difficult to quantify. It may be that the ideal algorithm
involves some cormbination of these two methods. No combination was found
during testing that outperformed the minimum and maximum algorithm alone,

but if the calibration situation became more difficull this would likely change.
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Original Weighted Convolution
Use Previous Use Nearest diagonal

Figure 6-12 Results of applying threshold test followed by varicus corrective procedures to test
images.
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Chapter 7

Conclusion

Outcomes

This project has seen the part selection, schematic design and post-fabrication

debugging of & new generation Eyebol plalform conducted as part of a small

team. This project has also covered the implementation of a variety of logic

design elements for the new platform including

C)ptimised,i multi-clock domain memory controller

Compatible binary tree arbitrating memory bus and high speed inter-
connect bus

Camers /0 with constrained clock signal availability

Optimised (within constraints) communication with an Intel PXA255
CPU

Optimised windowed convolution element with small resource foot print

In addition, code was developed to integrate C—++ verification suites with

simulated VHDL code. A GUI application for convolution verification was also

implemented.

A large GUI application was written to analyse, verify and visualise disparity

mapping algorithms. Analysis was performed on a varicty of techniques for
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calculating and refining disparity maps. M6 platform specific recommendations
have been made with regards choice of metrics, window sizes and confidence

estimation.

7.2 Future Work

The base FPGA image processing system for the M6 platform lacks programmer
friendliness at present. Each 10O device group is separated into its own code base,
and there exists no user spacc library which can adequately shield users from the
lowest level Linux kernel 10. Time to obiain the initial test boards was a hig
limiting factor in this regard, and it is expected that future project which can

start from the base provided in this project will be able to easily improve on this.

There exists the possibility for improvemed CPU to FPGA communication
performance on the second revision M6 PCBs through the use of ported IQ. This
was not an option on the original board as Lhe pins necessary for the CPU Lo
read data at higher rates than those achieved were not connected. This would

greatly reduce the CPU bus time absorbed communicating with the FPGA.

The most important stereo vision work which remains is the implementation of
rectification. Rectification iz currently the biggest unkmown in all areas of
concern (speed, FPGA resource usage and effect on final image quality.) Again
it was difficult to enter into a more thorough analysis of this subject as many
other areas had to be deall with first, most of which now have. Further analysis
of disparity algorithms is perhaps the most exciting work which has not yet been
completed. It is likely that multi-variate stalistics applied to existing data in
this project could find an efficient algorithm with even greater accuracy than
those discussed here. Even with univariate statistics, further scope exists with
the current stereo application (o statistically draw conclusions as to which types

of errors are better corrected with cach algorithm. This would not lead directly
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to an improved algorithm, but instead act as a guide to likely areas of success in
multi-variate analysis. An implementation and corresponding analysis of & good
Rank method may alzo prove beneficial to users of the M6 platform, especially
those who have to deal with challenging conditions (lighting, geometry.) Finally,
a true FPGA implementation of one or more of the the real-time disparity
algorithms derived needs to be implemented. This will require verification and
optimisation of VHDL code similar to that documented for the convolution

algorithm is needed.
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Appendix A

Stereo Vision Analysis Source
Code Overview

Disparity Analyser was the third and final prototyping system for stereo vision
algorithms developed during the course of this project. It is a GUI based system
which attempts to ease the debugging, verification, analysis and interpretation

of primarily disparity maps.

There are two main features which enable this. The first is the use global cursor
positioning, as indicated in Figure 6-6. This feature is important both to quickly
ascertain if algorithms are functioning as intended, and to utilise the viewer's
ability to identify trends. The second important feature of the program is the
ability to apply algorilhms and other manipulations to the data set and
immediately inspect the results after each step. It is this combination of features
which allows the effective creation, verification and quality optimisation of

algorithms.

A.l Source Overview

The complete source code of Digparity Analyser is written in a hybrid language
called Managed C++. Managed C++ is Microsoft’s replacement for managed
extensions for C4++ as a method for mixing Net and regular C++4 code. The

advantage of using a hybrid language is that it allows the mixing of garbage
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collected, byte coded APIs such as the .Net Forms user interface with regular
high speed completely system native code. The advantage of Managed C+—+
over its predecessor managed extensions is that it provides a relatively clean
syntax for both languages simultaneously. Another advantage is the availability
of a frec compiler which supports virtually all features and libraries as the older

standard Visual Studio editions with the notable exception of MFC.

Important sections of the code are documented with doxygen style cominents.
Unfortunately with the Manaped C++ language only becoming available the
year before this project was undertaken, the main doxygen distribution does not
support the language. Palches are available from the doxygen forwms and the
feature is due to appear in the main relcases within a month. A temporary

alternative to doxygen generated comments is provided later in this document.

The remainder of this overview section is divided inlo two parts, the native
C++ algorithms and the wrapper code which allows them to interoperate with
the managed environment, and the managed user interfacc which provides a
powerful mechanism for applying and evaluating the algorithms. The native
algorithm code is written in standard C+-+ and can be casily separated from the

user interface if an implementation on a different platform is desired.

Al.1 Algorithms (Native C++)

Most of the features of Disparity Analyser are based around 2D Regions. The
concept of a region is applied at two different abstraction levels within the code
base. The first of these, discussed here, is essentially a 2D array of any type of
object. Care should be taken mot to confuse this with the UI's more specific
concept of a region, covered in the next section, and built up [rom this low level
implementation. The 2D region class has a template parameter which,

depending on the function, is usually intended to be either a numerical data
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type or a Boolean. Boolean types are usually specified explicitly whereas
nurnerical types are left as a parameter to allow maximum reuse flexibility. This
offers an advantage over the most common scripted image manipulation
environment Matlab, which casts all data to doubles before performing most

operations.

There are three small classes in the algorithms header, two being very specific to
storing a particular type of result data set, and the third, Line, being the 1D
equivalent of Region. The line data type is rarely useful as its functionality is

very similar to the standard C++ library’s vector data type.

A.1.2 User Interface (Managed C++ - .Net 2.0)

The user interface, like the algorithms, is built around the concept of a 2D
region. The user interface’s 2D region actually represents two low level regions.
The first is referred to as the source region, and the main display bitmap for
visualizing the region is usually derived directly from this, hence the name. This
region contains 32bit integer values, which may, depending on the situation, be
treated as 24bit RGB colour pixels with & bits per colour component, or more

commonly as scalar values allowed to occupy the full range of the int data type.

In addition to the source region, there iz the mask region, which containg
Boolean values. The mask region, when enabled, affects almost every operation,
controling which portion of the image is modified or included in calculations.
Usually for modification operations the mask is equivalent to applving the
operation to the entire image, and then incorporating the masked portion of the
new dats set with the unmasked portion of the original data set. This is not
always strictly true, however, as, for instance, with the fill operations. This lack
of consistent definition of a mask is one of the reasons this code could not

efficiently be implemented directly in a conventional manipulation environment
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such as Matlab. The mask is extremely important as it allows regions to
effectively be of any shape, including those made from mulliple (disconnected)

areas.

A2 Overview of Important Classes

Unless noted, classes are written in Managed C++ containing a mixture of Net
and regular C++ code. All code was built with Visual Studio 2005, and
managed classes may require NET 2.0 and the Win32 Platform SDK. Certain
parts of the code require OpenGL and or SG mathematics library. This is noted
in their descriptions. The Visual C++ 2005 Express edition available freely from
Microsoft is capable of building this source code. The Win32 Platform SDK and
OpenGL libraries are also available freely from Microsoft. The S mathematics

library is available free as a component of the PLIB portable games library.

Only the algorithm and OpenGL related classes are documented below.

Purely .Net User interface classes have been omitted.

Class Name | File Location | Description
Namespace: DAlgorithms
Region Algorithms.h A templated class which stores a two

dimensional set of its target parameter,
created with the element’s new
allocator. The templated type needs to
be bool or a numerical type for most
operations to make sense. All disparity
algorithms are implemented in this
clags. (Does not require .Net or Win32,
although conversion from Win32 image
types will be excluded if Win32 is not
available.)

RegionManag | AlgorithmsManaged.h | A NET Wrapper for the Region Class.
ed

Line Algorithms.h Similar to the region class but stores &
one dimensional data set. {Does not
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require .Net or Win32.)

Histogram

Algorithms.h

Stores the result of a histogram
operation - min and max range covered
pluz a Line containing the actual
values.

{Does not require .Net or Win32)

MetricDomain
Stat

Algorithms.h

Quter class:
Region

Stores the result of an intensity
domain conversion. (Does not
require .Net or Win32)

Namespace:

DepthGL

GLCamera

GLCamera.h

Stores the position and orientation of
the camera, and sends appropriate
matrices to OpenGL.

{Does not require .Net or Win32 but
requires OpenGL and SG)

DepthModel

DepthMaodel.h

Stores the settings and datsa for a
single disparity map model. Can send
appropriate rendering commands 1o
OpenGL. (Does not require .Net or
Win32 but reguires OpenGL)

DepthModelS
ettingsControl

DepthModelSettingsC
ontrol.h /
DepthModelSettingsC
ontrol.cpp

A wrapper 1o support modification of a
DepthModel through a .Net GUI.
Serves events which notify of the need
to repaint the model when modified.

DepthGLCont
rol

DepthGLControl.h

Wraps the actual OpenGL context and
provides most of the initialisation code.
Also provides some of the basic
geometry setup and the outer-mosi
render routine.

Namespace: Stereo3

RegionDisplay
| Control

RegionDisplayContro.c
PP/
RegionDisplayControl.
h

Represents a complete region set
(image, mask and the actual region.)
Implements many of the algorithms,
mostly by deferring calculations to the
Region class. Implements the undo
functionality.

StereoPair

StereoPair.h /
StereoPair.cpp

Represents a pair of source images,
and implements the disparity
algorithms through use of the base
algorithms and other features in the
Region class.
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Appendix B

Stereo Vision Analysis Logs

Transcriptions of test logs for data used in the dissertation. Logs have been
omitted from the printed version for tests involving intensity domain transforms
as these produce extremely large data sets. Note that transcripls are edited to
remove irrelevant lines. This should only be apparent in discontinuous numbers,

and should not affect reproducibility.

[001] Opened Left Source from C:\stereo\t\left.tif
[002] Opened Right Source from C:\stereo\t\right.tif
[003] Created New Disparityl4Error Pairl from sources Left Source and Right
Source
Settings - Type: Std. Minimum Sum, Direction: Left, Window Size: 4,
Left Search Width: 20, Right Search Width: 0
[004] Pairl Disparity[ | : Multiplied with 16
[005] Opened Sourcel from C:\stereo\t\truedisp.png
[006] Pairl Disparity Mask : and with Sourcel mask
[007] Pairl Disparity Mask : and (boolean) with Sourcel
[008] Pairl Disparity Mask : inverted
[009] Pairl Disparity[M] : Multiplied with 0
[010] Created New DisparityldError Pair2 from sources Left Source and Right
Source |
Settings - Type: Std. Minimum Sum, Direction: Left, Window Size: 3,
Left Search Width: 20, Right Search Width: 0
[011} Pair2 Disparity[ | : Multiplied with 16
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[012] Created New Disparityl4Error Pair3 from sources Left Source and Right
Source
Settings - Type: Std. Minimum Sum, Dircction: Left, Window Size: 5,
Left Search Width: 20, Right Search Width:
(013] Pair2 Disparity Mask : and (boolean) with Sourcel
[014] Pair2 Disparity Mask : inverted
[015] Pair2 Disparity[M] : Multiplied with 0
[016] Pair3 Disparity Mask : copied from Pair2 Disparity
[017] Pair3 Disparity[M] : Multiplied with 0
[018] Pair3 Disparity| | : Multiplied with 16
[019] Cmpl[]: Sumn = 1176288
[020] Cmpl[]: Sum of Squares = 99348992
[021] Cmp3[] : Sum = 1024000
[022] Cmp3 ] : Sum of Squares -. 80260608
[023] Cmp4[ ] : Sum = 956016
[024] Cmp4[ ] : Sum of Squares = 72347392
[025] Created New Disparityl4Error Paird from sources Left Source and Right
Source
Settings - Type: Std. Minimmum Sum, Direction: Left, Window Size: 6,
Left Search Width: 20, Right Search Width: 0
[026] Paird Disparity| | : Multiplied with 16
[027] Pair4 Disparity Mask : and (boolean) with Sourcel
[028] Pair4 Disparity Mask : inverted
[029] Pair4 Disparity[M] : Multiplied with 0
[030) Cmp5[ ] : Sum = 926112
[031] Cmp5[ | : Sum of Squares — 69288448
[032] Created New Disparityl4Error Pair5 from sources Left Source and Right
Source
Settings - Type: Std. Minimum Sum, Direction: Left, Window Size: 7,
Left Search Width: 20, Right Scarch Width: 0
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[033] Paird Disparity[ ] : Multiplied with 16
[034] Pair5 Disparity Mask : and (boolean) with Sourcel
[035] Pair5 Disparity Mask : inverted
[036] Pair5 Disparity[M] : Multiplied with 0
[037] Cmp6[ ] : Sum = 911648
[038] Cmp6][ | : Sum of Squares = 66949120
[039] Created New Disparityl4Error Pair6 from sources Left Source and Right
Source
Settings - Type: 5td. Minimum Sum, Direction: Left, Window Size: 8,
Left Search Width: 20, Right Search Width: 0
[040] Pair6 Disparity[ ] : Multiplied with 16
[041] Pair6 Disparity Mask : and (boolean) with Sourcel
{042] Pair6 Disparity Mask : inverted
[043] Pairé Disparity[M] : Multiplied with 0
[044] Cmp7[ ] : Sum = 904800
[045] Crp7[ ] : Sum of Squares = 65426432
[046] Created New DisparityldError Pair7 from sources Left Source and Right
Source
Settings - Type: Std. Minimum Sum, Direction: Left, Window Size: 9,
Left Search Width: 20, Right Search Width: 0
[047) Pair7 Disparity[ | : Multiplied with 16
[048] Pair7 Disparity Mask : and (boolean} with Sourcel
[049] Pair7 Disparity Mask : inverted
[050] Pair7 Disparity[M] : Multiplied with 0
[051] Pair7 Disparity[ | : Multiplied with 16
[052] Undo of [051] Pair7 Disparity| | : Multiplied with 16
(053] Crap8[ | : Sum = 909280
[054] Cmpg[ | : Sum of Squares = 65165524
[055] Created New Disparityl4Error Pair® from sources Left Source and Right

Source
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Settings - Type: Std. Minimum Sum, Direction: Left, Window Size: 10,
Left Search Width: 20, Right Search Width: 0
[056] Pair8 Disparity[ | : Multiplied with 16
[057] Pair8 Disparity Mask : and (boolean) with Sourcel
[058] Pair8 Disparity Mask : inverted
[059] Pair8 Disparity[M] : Multiplied with 0
[060] Crup9[ ] : Sum = 919264
[061] Cmp9[ ] : Sum of Squarcs = 66016768
[072] Created New Disparityl4Error Pairl0 from sources Left Source and Right
Source
Settings - Type: Std. Minimum Sum, Direction: Left, Window Size: 2,
Left Search Width: 20, Right Search Width: 0
[073] Pairl0 Disparity[ | : Multiplied with 16
[074] Pair10 Disparity Mask : and (boolean) with Sourcel
[075] Pairl0 Disparity Mask : inverted
[076] Psir10 Disparity[M] : Multiplied with 0
[077] Cmpl0[ ] : Sum = 1452240
[078] Cmpl0[ | : Sum of Squares = 133423872

[[001] Opened Left Source from C:\stereo\t\left.tif
[002] Opened Right Source from C:\stereo\t\right.tif
[003] Opened Sourcel from C:\stereo\t\truedisp.png
[004] Created New Disparityl4Error Pairl from sources Left Source and Right
Source
Settings - Type: Std. Minimum Sum, Direction: Left, Window Size: 1,
Left Search Width: 20, Right Search Width: 0
(005} Pairl Disparity| ] : Multiplied with 16
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[006] Pairl Disparity Mask : and (boolean) with Sourcel

[007] Pairl Disparity Mask : inverted

[008] Pairl Disparity{M] : Multiplied with 0
[009] Cmpl[ | : Count = 40777

[010] Cmp1]] : Sum = 2206912

[011) Cmpl[] : Sum of Squares = 235035648
[012] Opened

C:\stereo\t\window_size comparion\Cmpl _

[013] Source2| ] : Count = 23990
[014] Opened Left

C:\stereo\t\window _size_comparion\Cmp3_

[015] Left Source[ ] : Count = 26733
[016] Opened

C:\stereo\t\window _size comparion\Cmp4d

[017] Source3| ] : Count = 25479
[018] Opened

C:\stereo\t\window _size_comparion\Crp5_

[019] Sourced| | : Count = 24600
[020] Opened

C:\stereo\t\window size comparion\Cmp5

[021] Source5| | - Count — 24600
[022] Opened

C:\stereo\t\window _size_ comparion\Crmp6_

[023] Sourcef| | : Count = 24084
[024] Opened

C:\stereo\t\window size comparion\Cmp7_

[025] SourceT| ] : Count = 23811
[026] Opened

C:\stereo\t\window_size_ comparion\Cmp8&_

[027] Source8| | : Count = 23606

Source?

Window3 Plain.png

Source

Window4 _Plain.png

Sourced

Windowb Plain.png

Sourced

Window6_ Plain.png

Sourceb

Window6 _ Plain.png

Sourcet

Window7_Plain.png

Source?

Window8 Plain.png

Sourced

Window9_Plain.png

from

from

from

from

from

from

from

from
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[028] Opened Sourced from
C-\stereo\t\window _sizc comparion\Cmp9 Windowl0 Plain.pug
[029] Sourced|[ ] : Count = 23367

{001} Opened Left Source from C:\gtereo\t\left.tif
[002} Opened Right Source from C:\stereo\t\right.tif
[003] Created New Disparityl4Error Pairl from sources Left Source and Right
Source
Settings - Type: Std. Minimum Sun, Direction: Left, Window Size: 3,
Left Search Width: 20, Right Search Width: 0
[004] Pair1 Disparity[ | : Multiplied with 16
[005] Opened Sourcel from C:\stereo\i\truedisp.png
[006] Pairl Disparity Mask : and (boolean) with Sourcel
[007] Pairl Disparity Mask : inverted
[008] Pairl Disparity[M] : Multiplied with 0
[009] Pairl Disparity : Comparison created with Sourcel as Cmpl
[010] Created New DisparityldError Pair2 from sources Left Source and Right
Source
Settings - Type: Std. Minimum Sum, Direction: Left, Window Size: 2,
Left Search Width: 20, Right Search Width: 0
[011] Pair2 Disparity Mask : inverted
[012] Pair2 Disparity Mask : inverted
[013] Pair2 Disparity Mask : and (boolean) with Sourcel
[014] Pair2 Disparity Mask : inverted
[015] Pair2 Disparity]M] : Multiplied with 0
[016] Pair2 Disparity| | : Multiplied with 16
[017] Pair2 Disparity : Comparison created with Sourcel as Cmp?2
[018] Cmp2[ ] : Count = 32757
[019] Cmp2[ ] : Sum = 1452240
[020] Cmp2| } : Sum of Squares = 133423872
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Log of window size comparison data generation

[001] Opened Left Source from C:\stereo\t\left.tif
[002] Opened Right Source from C:\stereo\t\right.tif
[003] Opened Sourcel from C:\stereo\t\truedisp.png
[004] Created New Disparityl4Error Pairl from sources Left Source and
Right Source
Settings - Type: Std. Minimum 5Sum, Direction: Left, Window
Size: 3, Left Search Width: 20, Right Search Width: 0
j005] Pairl Disparity| | : Multiplied with 16
[006] Opened Source2 from C:\stereo\LoG.png
[007] Source2| ] : Added -2
[008] Left Source : Convolved with Source2
[009] Right Source : Convolved with Source2
{010] Created New Disparityl4Error Pair2 from sources Left Source and
Right Source
Settings - Type: Std. Minimum Sum, Direction: Left, Window
Size: 3, Left Search Width: 20, Right Search Width: 0
[011] Pair2 Disparity[ | : Multiplied with 16
[012] Opened Left Source from C:\stereo\t\left.tif
[013] Opened Right Source from C:\stereo\t\right.tif
[014] Opened Source3 from C:\stereo\gaussian-5x5_stdl.png
[015] Left Source : Convolved with Source3
[016] Right Source : Convolved with Source3
[017] Created New Disparityl4Error Pair3 from sources Lefi Source and
Right Source
Settings - Type: Sid. Minimum Sum, Dircction: Left, Window
Size: 3, Left Search Width: 20, Right Search Width: 0
[018] Pair3 Disparity| | : Multiplied with 16
[019] Pairl Disparity Mask : and (boolean} with Sourcel

93



94

[020] Pairl Disparity Mask : inverted

[021] Pairl Disparity[M] : Multiplied with 0

[022] Pair2 Disparity Mask : copied from Pairl Disparity

[023] Pair2 Disparity[M] : Multiplied with 0

[024] Pair3 Disparity Mask : copied from Pairl Disparity

[025] Pair3 Disparity[M] : Multiplied with 0

[026] Pair] Disparity : Comparison created with Sourcel as Crupl
[027] Pair2 Disparity : Comparison created with Sourcel as Cmp2
[028] Pair3 Disparity : Comparison created with Sourcel as Cmp3
[029] Cmpl] ] : Count = 28990

[030] Cmp1[] : Sum = 1176288

[031] Cmpl] | : Sum of Squares — 99348992

[034] Cmp2[ ] : Count = 33527

[035] Cmp2[ ] : Sum = 1926640

[036] Cmp2[ ] : Sum of Squares = 213116672

[037] Cmp3[ ] : Count = 26611

[038] Cmp3[] : Sum . 1057024

[039] Cmp3[ ] : Sum of Squares — 81472512

Log of pre-processing filter comparizon data generation

[001] Opened Left Source from C:\stereo\t\left.tif
[002] Opened Right Source from C:\stereo\t\right.tif
[003] Opened Sourcel from C:\stereo\t\depth_discont.png
[004] Opened Source2 from C:\stereo\t\tcxtureless.png
[005] Opened Source3 from C:\stereo\t\occl.png
[006] Created New Disparityl4Error Pairl from sources Left Source and
Right Source
Settings - Type: Std. Minimum Sum, Direction: Left, Window
Size: 3, Left Search Width: 20, Right Search Width: 0




[007] Pairl Disparity[ | : Multiplied with 16

[008] Opened Sourced from C:\stereo\t\truedisp.png

[009] Pairl Disparity : Comparison created with Source4 as Cmpl

[010] Cmpl Mask : and (boolean) with Source4

[011] Cmpl Mask : inverted

[012] Cmpl[M] : Multiplied with 0

[013] Cmpl[] : Min = 0

[014] Cmp1]]: Max = 240

[015] Cmpl Mask : reset

[016] Cmpl Mask : and (boolean) with Sourcel

[017] Cmp1[M] : Multiplied with 0

[018] Cmpl[]: Count = 7119

[019] Cmpl] ] : Sum = 457008

[020] Cmpl[ ] - Sum of Squares = 45153024

[021] Opened Sourced from
C:\stereo\t\error_causes_test\Cmpl_Plain_7x7_possibly_too_large r
ange_to_save.png

[022] Source5 Mask : and (boolean) with Source2

[023] Source3{M] : Multiplied with 0

[024] Sourced Mask : reset

[025] Sourceb Mask : and (boolean) with Source4

[026] Source5 Mask : inverted

[027] Source5[M] : Multiplied with 0

[028] Source5[ | : Count = 18732

[029] Source5[ ] : Sum = 674224

[030] Source5| | - Sum of Squares = 49523963

[031] Source5[ ] - Count — 19732

[032] Opened Source6 from
C:\stereo\t\error causes test\Cmpl Plain_7x7_possibly_too_large r

ange to_save.png
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[033] Sourcef Mask : inverted

[034] Source6 Mask : inverted

[035] Source6 Mask : and (boolean) with Source3

[036] Source6[M] : Multiplied with 0

[037] Source6] | : Count = 2006

[038] Source6| ] : Sum = 160400

[039] Source6[ ] : Sum of Squares = 15695616

[040} Opened Source? from
C:\stereo\t\error_ causes _test\Cmpl_Plain_7x7_possibly _too_large r
ange to save.pug

[041] Source7 Mask : and (boolean) with Source3

[042] Souree7 Mask : reset

[043] Source7 Mask : or (hoolean) with Source3

[044] Source3| | : Inverted (binary)

[045] Source3 Mask : and {boolean) with Source?

[046] Source7 Mask : and (boolcan) with Source3

[047] Sourcel| | : Inverted (binary)

[048] Source? Mask : or (boolean) with Sourcel

[049] Source?] | : Inverted (binary)

[050] Source7 Mask : or (boolean) with Source2

[051] Source?[M] : Count = 24737

[052] SourceT[M] : Sum = 1031888

[053] Source7[M] : Sum of Squares = 86522624

[054] QOpened SourceR from
Ct\stereo\t\error _causes_test\Cmpl _Plain_7x7_possibly too large r
ange to_ save.png

[055] Source8| | : Count, = 28990

[056] Source®[ | : Sum - 1176288

[057] Source8[ | : Sum of Squares = 99348992

[058] Sourcel| ] : Count = 17008




[059] Source2| ] : Count = 47538

[060] Source3[ ] : Counl = 2258

[061] Opened Source9 from C:\stereo\t\depth_discont.png
[062] Source9[ ] : Inverted (binary)

[063] Sourced Mask : and (boolean) with Source2
[064] Source9 Mask : reset

[065] Sourced Mask : or (boolean) with Source2
[066] Source9 Mask : and (boolcan) with Source3
[067] Source9[M] : Added 1

[068] Source9 Mask : reset

[069] Source9 Mask : and (boolean) with Source2
[070] Sourced[M] : Added 1

[071] Sourced| | : Count = 60744

Log of disparity error type testing

[001} Opened Left Source from C:\stereo\t\left.tif
[002] Opened Right Source from C:\stereo\t\right.tif
[005] Created New Disparityl4dError Pair2 from sources Left Source and
Right Source
Settings - Type: Mulli Window Dist., Direction: Left, Window
Size: 3, Left Search Width: 20, Right Search Width: 0
[006] Pair2 Disparity| | : Multiplicd with 16
[007] Pair2 FError 1| | : Thresholded with value 2
[008] Pair2 Disparity Mask : and (boolean) with Pair2 Error 1

[034] Opened Source2 from
C:\stereo\t\error finder test\Cmpl_Window7_NoPre.png

[035] Source2 Mask : copied from Pair2 Disparity

[036] Source2[M] : Count = 8409

[037] Source2[M] : Sum — 400192
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[038] Source2[M] : Sum of Squares = 36793344

[042] Source2 Mask : inverted

[043] Source2[M] : Count = 20581

[044] Source2[M] : Sum = 776096

[045] Source2[M] : Sum of Squares = 62555648

[046] Undo of [007] Pair2 Error 1] ] : Thresholded with value 2

[047] Pair2 Error 1] | : Thresholded with value 1

[048] Pair2 Disparity Mask : reset

[049] Pair2 Disparity Mask : and (boolean) with Pair2 Error 1

[050] Opened Source3 from
C:\stereo\t\error_finder _test\Cmpl_Window7 NoPre.png

[051] Source3 Mask : copied from Pair2 Disparity

[052] Source3[M] : Count = 11534

[053] Source3[M] : Sum = 520912

[054] Source3[M] : Sum of Squares = 46363392

[055] Opened Sourced from
Ci\stereo\t\error_finder _test\Cmpl Window7 NoPre.png

[056] Sourced Mask : copied from Source3

[057] Source4 Mask : and (boolean) with Sourcel

[058] Sourced] | : Inverted (binary)

[059] Source4[M] : Sum = 6125

[060] Sourced[M] : Count = 6125

(077] Opened Source5 from
C:\stereo\t\error_finder_test\Disparity Map Basic.png

[078] Source5 Mask : copied from Sourced

[079] Source5[M] : Filled masked region from previous unmasked

[080] Source5[M] : Filled masked region from nearest unmasked

[081] Source5 : Comparison created with Sourcel as Cmp2

[082] Cmp2 Mask : and (boolean) with Sourcel

[083] Cmp2 Mask : inverted




[084] Cmp2[M] : Multiplied with 0

[085] Cmp?2[ ] : Count = 28580

[086] Cmp2[ ] : Sum = 1134860

[087] Cmp2[ | : Sum of Squares = 90467080

[090] Opened Source6 from
C:\stereo\t\error_ finder_ test\Disparity Map_Basic.png
[091] Source6 Mask : copied from Source3

[092] Source6[M)] : Filled masked region from nearest unmasked
(093] Source6 : Comparison created with Sourcel as Cmp3
[094] Cmp3 Magk : and (boolean) with Sourcel

[095] Cmp3 Mask : inverted

[096] Cmp3(M] : Multiplied with 0

(097} Crmp3[ ] : Count = 28939

[098] Cmp3| | : Sum = 1141434

[099] Cmp3[ ] : Sum of Squares = 91072300

Multi-window Distance test

[001] Opened Left Source from C:\stereo\t\error finder test\right.tif
[002] Opened Right Source from C:\stereo\t\error finder test\left.tif
[003] Created New Disparityld4Error Pairl from sources Left Source and
Right Source

Settings - Type: Std. Minimum Sum, Direction: Left, Window
Size: 3, Left Search Width: 20, Right Search Width: 0
[004] Opened Left Source from C:\stereo\t\error finder test\left.tif
[005] Opened Right Source from C:\stereo\t\error_finder test\right.tif
[006] Created New Disparityl4Error Pair2 from sources Left Source and
Right Source

Settings - Type: Std. Minimum Sum, Direction: Left, Window
Size: 3, Left Search Width: 20, Right Search Width:
[007] Pair2 Disparity[ ] : Multiplied with 16
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[008] Pair2 Error 1[ ] : Thresholded with value 128

[009] Pair2 Disparity Mask : reset

[010] Pair2 Disparily Mask : and (boolean) with Pair2 Error 1
[011] Pair2 Disparity Mask : inverted

[012] Undo of [008] Pair2 Error 1[ ] : Thresholded with value 128
[013] Pair2 Error 1] | : Thresholded with value 750

[014] Pair2 Disparity Mask : or (boolean) with Pair2 Error 1
[015] Undo of [013] Pair2 Error 1] | : Thresholded with value 750
[016] Opened Sourcel
Cr\stereo\t\error_finder_test\Cmpl_Window7? NoPre.png
[017] Sourcel Mask : copied from Pair2 Disparity

[018] Sourcel[M] : Count = 20820

[019] Sourcel[M] : Sum - 798800

[020] Sourcel[M] : Sum of Squares = 64646912

[021] Opened Souree2
C:\stereo\l\error_finder _test\Cmpl Window7_NoPre.png
[022] Source?] | : Inverted (binary)

[023] Source2 Mask : copied from Sourcel

[024] Source2|M] : Count = 42323

from

from

[025] Pair2 Disparity[M] : Filled masked region from nearest unmasked

[026] Opened Source3 from C:\sterco\t\error_finder _test\truedisp.png

[027] Pair2 Disparity : Comparison created with Source3 as Crpl
[028] Cmpl Mask : and (boolean) with Source3

[029] Cmpl Mask : inverted

[030] Cmpl[M] : Multiplied with 0

[031] Cmpl|] : Count = 21663

[032] Cmpl[] : Sum = 913184

[033] Crapl[ ] : Sum of Squares = 73636864

Minimum window threshold test




[001] Opened Left Source from C:\stereo\t\error_finder _testleft.tif
[002] Opened Right Source from C:\stereo\t\error_finder_ test\right.tif
[003] Created New DisparityldError Pairl from sources Left Source and
Right Source
Settings - Type: 2nd Best Dist., Direction: Left, Window Size: 3,
Left Search Width: 20, Right Search Width: 20
[004] Pairl Error 1] } : Thresholded with value 2
j005] Opened Sourcel from
C:\stereo\t\error_finder_test\Cmpl_Window7_NoPre.png
[006] Pairl Disparity Mask : and (boolean} with Pairl Error 1
[007] Sourcel Mask : copied from Pairl Disparity
[008] Pair] Disparity| | : Multiplied with 16
[009] Sourcel[M] : Count = 15201
[010] Sourcel[M] : Sum — 620864
[011} Sourcel[M] : Sum of Squares = 51801600
[012] Opened Source2 from
C:\stereo\t\error_finder_test\Cmpl_Window7_NoPre.png
[013] Source?| | : Inverted (binary)
[014] Source2 Mask : and (boolean) with Pairl Error 1
[015] Opened Source3 from C:\stereo\t\error _finder _test\truedisp.png
[016] Opened Sourced from
C:\gtereo\t\error _finder_test\Cmpl_Window7_ NoPre.png
[017] Source4] | : Inverted (binary)
[018] Source4 Mask : and (boolean) with Source3
[019] Source4[M] : Inverted (binary)
[020] Undo of [019] Source4|[M] : Inverted (binary)
[021] Source4 Mask : inverted
[022] Source4|M] : Multiplied with 0
[023] Sourced| | - Inverted (binary)
[024] Source4 Mask : copied from Sourcel
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[025] Sourced|M] : Count — 22190

[026] Source4[M] : Sum -. 22190

[027] Pairl Disparity[M] : Filled masked region from nearest unmasked
[028] Pairl Disparity : Comparison created with Source3 as Cropl
[029] Cmpl Mask : and (boolean) with Source3

[030] Crnp1[M] : Multiplied with 0

[031] Undo of [030] Cmp1[M] : Multiplied with 0

[032] Cmpl Mask : inverted

[033] Cmpl[M] : Multiplied with 0

[034] Cmpl[] : Count = 27718

[035) Cmpl|] : Sum = 1243165

[036] Cmp1]] : Sum of Squares - 134018067

2* best distance log

[001] Opened Left Source from C:\stereo\t\error_finder _test\left tif
[002] Opened Right Source from C:\stereo\t\error finder test\right.tif
[003] Created New Disparityl4Error Pairl from sources Left Source and
Right Source

Settings - Type: Equivalent Right Map Dist., Direction: Lefi,
Window Size: 3, Lelt Search Width: 20, Right Search Width: 0
[004] Pairl Disparity[ ] : Multiplied with 16
[005] Pairl Error 1] | : Thresholded with value 1
[006] Pairl Disparity Mask : and (boolean) with Pairl Error 1

[007] Opened Left, Source from
Ci\stereo\t\error_ finder test\Cmpl Window7 NoPre.png
[008] Opened Soureel from

Cr\stereo\t\error_finder_test\Cmpl_Window7 NoPre.png
[009] Sourcel Mask : copied from Pairl Disparity

[010] Sourcel[M] : Count, — 19475

[011] Sourcel[M] : Sum = 905264




[012] Sourcel|M] : Sum of Squares = 85280512

[013] Opened Source2 from
C:\stereo\t\error_finder_ test\correct _count_ Lester.png

[014] Source2 Mask : copied from Pairl Disparity

[015] Opened Source3 from C:\stereo\t\error _finder _test\truedisp.png
[016] Source2 Mask : and (boolean) with Source3

[017) Source2]M)] : Count = 19475

[018] Pairl Disparity{M] : Filled masked region from nearest unmasked
[019] Pairl Disparity : Comparison created with Source3 as Cmpl

[020] Cmpl Mask : and (boolean) with Source3

[021] Cmpl[M] : Inverted (binary)

[022] Undo of [021] Cmp1[M] : Inverted (binary)

[023] Cmpl Mask : inverted

[024] Cmpl[M] : Multiplied with 0

[025] Cmpl[] : Count — 29144

[026] Cmp1[] : Sum = 1079248

[027) Cinpl[] : Sum of Squares = 76039424

Correspondence test log
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