
School of Mechanical, Materials and Mechatronics Engineering

Omni-Directional Wheelchair

Honours Thesis

Benjamin Woods

10218282

Bachelor of Engineering (Mechatronics)

Faculty of Engineering, Computing and Mathematics

Supervisors:

Associate Professor Thomas Bräunl

Mr. Chris Croft

Centre for Intelligent Information Processing

School of Electrical and Electronics Engineering

30 October, 2006

ii

Benjamin Woods

12 Anaconda Place

Sorrento, WA 6020

30th October 2006

Professor Mark Bush

The Dean

Faculty of Engineering, Computing and Mathematics

The University of Western Australia

35 Stirling Highway

Crawley, WA 6009

Dear Professor Bush,

It is with pleasure that I present this thesis, entitled “Omni-Directional Wheelchair”

in partial fulfilment of the requirements for the degree of Bachelor of Engineering.

I hereby certify that both this document and the proceedings described within are

my own work unless otherwise stated.

Yours sincerely,

Benjamin Woods

10218282

iii

iv

Abstract

Since the beginning of 2004, the University of Western Australia’s Centre for

Intelligent Information Processing Systems (CIIPS) has been developing an omni-

directional wheelchair. Omni-directional vehicles can turn and drive in any direction,

including directly sideways. Therefore, an omni-directional wheelchair allows the

user to navigate through a confined environment with less difficulty than would

otherwise be possible with a conventional wheelchair.

This project aims to improve the driving accuracy, human interface and comfort

of the already existing omni-directional wheelchair found in the mobile robotics

laboratory at the University of Western Australia. This will be accomplished by

altering the wheels, batteries, motor driver cards, joystick, control software, chassis

and suspension system.

v

vi

Acknowledgements

I would like to thank the following people for helping me produce this work. Without

them, it would surely not have been possible.

• Associate Professor Thomas Bräunl for your guidance throughout the life of

this project (even whilst in Germany).

• Mr. Chris Croft for catching the handball from Thomas.

• Dr. Nathan Scott for your unforgiving eye and advice regarding the wheelchair

suspension system.

• The friendly staff and students within CIIPS and the EE workshops. It has

been a pleasure to work with you for a year.

• My family and friends for putting up with my scarce free time over the past

year and providing sound advice.

In addition to this, two organisations have been a great help in this project:

• DNM for supplying the university with the 4 shock absorbers necessary for the

project - at no cost! Along with shock absorbers for mountain bikes, DNM

also provide a large range of other suspension systems for bicycles and dirt

bikes. More details available at http://www.dnmsuspension.com/.

• TADWA for their supply of knowledge regarding practical wheelchair design.

TADWA provide a range of help for disabled people in WA. More details

available at http://www.technicalaidwa.org.au/.

vii

http://www.dnmsuspension.com/
http://www.technicalaidwa.org.au/

viii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Thesis Structure . 2

2 Literature Survey 3

2.1 Mecanum Wheels and Alternatives 3

2.2 Control Methods . 5

2.3 Human Interface . 6

3 Hardware 7

3.1 General Arrangement . 7

3.2 Mecanum Wheels . 9

3.2.1 Technical Details . 9

3.2.2 Kinematics . 9

3.2.3 Wheel Rims . 12

3.3 Motors . 13

3.4 EyeBot . 14

3.5 Batteries . 15

3.6 Position Sensitive Devices . 16

3.7 Footrests . 16

4 Motor Driver Cards 17

4.1 Introduction . 17

ix

CONTENTS

4.2 Selection . 18

4.3 Installation . 19

4.4 Programming . 20

5 Joystick 23

5.1 Introduction . 23

5.2 Selection . 23

5.3 Installation . 26

5.4 Programming . 28

6 Low Level Driving Routines 31

6.1 Introduction . 31

6.2 Design . 32

7 Suspension System 35

7.1 Introduction . 35

7.2 Design . 36

8 Results, Testing and Simulation 43

8.1 Motor Control . 43

8.2 Joystick . 43

8.3 Suspension and Chassis . 46

8.4 Modelling and Simulation . 47

9 Conclusion 49

9.1 Outcomes . 49

9.2 Recommendations . 49

Bibliography 51

A Code 55

A.1 ODW.h . 55

A.2 ODW.c . 57

A.3 ODW MotorCtrl.h . 60

x

A.4 ODW MotorCtrl.c . 65

A.5 ODW Joystick.h . 71

A.6 ODW Joystick.c . 75

A.7 ODW IR.h . 80

A.8 ODW IR.c . 82

A.9 Makefile . 87

A.10 Makeincl . 88

A.11 test.c . 89

A.12 mctest.c . 90

A.13 joytest.c . 92

A.14 joytest2.c . 97

A.15 psdtest.c . 103

B Mechanical and Electrical Designs 105

B.1 Joystick Circuit . 105

B.2 Suspension Designs . 107

C Information and Brochures 121

C.1 Roboteq AX1500 . 122

xi

xii

List of Figures

2.1 NASA OmniBot mobile base (Lippitt & Jones 1998) 3

2.2 Airtrax Sidewinder lift truck (Airtrax 2006) 4

2.3 New Mecanum wheel design (McCandless 2001) 4

3.1 The Mecanum wheel design . 9

3.2 Force components in the Mecanum wheel (seen from below) 10

3.3 Wheel rotations for different driving directions (seen from below) . . 10

3.4 The Mecanum wheel rims after machining 13

3.5 A 24V brushed DC motor . 13

3.6 EyeBot controller MK4 (front and back views) 14

3.7 Original car batteries and new sealed, deep-cycle gel batteries 15

3.8 Position sensitive devices (PSDs) . 16

3.9 Wheelchair footrests donated by TADWA 16

4.1 Pulse-width modulation (PWM) signal 18

4.2 The new Roboteq AX1500 motor controller cards 19

4.3 Roboteq input/output power connections 20

4.4 Daisy-chain serial cable for Roboteq AX1500 cards 20

5.1 A 2 axis joystick compared to a 3 axis joystick 24

5.2 The 3 joysticks purchased and tested 25

5.3 The USB connection originally on the joystick 27

5.4 The new joystick circuit . 27

6.1 Flow chart for the main ODW code 33

xiii

LIST OF FIGURES

6.2 Flow charts for the IR and Joystick modules 34

6.3 Flow chart for the MotorCtrl module 34

7.1 DNM DV-22 bicycle shock absorbers 36

7.2 Battery box design . 37

7.3 Battery box lid and chair mount . 38

7.4 Perpendicular requirement for the adopted Mecanum wheel design . . 39

7.5 A basic but inadequate suspension design 39

7.6 Two alternative trailing arm designs 39

7.7 Trailing arm connection to the chassis 40

7.8 The forces experienced by the trailing arm suspension 40

7.9 A steel gusset is used to add strength 41

7.10 The shock absorber angle determines the effective spring constant . . 42

8.1 Actual motor speeds achieved . 44

8.2 A textual joystick testing program . 45

8.3 A graphical joystick testing program 45

8.4 The wheelchair model in EyeSim . 48

9.1 The wheelchair after all alterations and improvements 50

B.1 The joystick circuit schematic . 105

B.2 The joystick PCB design . 106

xiv

List of Tables

3.1 Omni-directional wheelchair components summary - February 2006 . 8

4.1 RS232 settings for Roboteq AX1500 cards 20

4.2 Character strings for communication with daisy-chained Roboteq cards 21

4.3 Communication language for Roboteq AX1500 cards 22

5.1 The 3 joysticks purchased and tested 25

5.2 EyeBot I/O pins used . 28

5.3 RoBIOS commands for reading buttons 29

5.4 RoBIOS commands for reading potentiometers 29

8.1 Actual motor speeds achieved . 44

xv

xvi

Nomenclature

Acronyms

ASCII American Standard Code for Information Interchange

DOF Degrees Of Freedom

EEPROM Electrically Erasable Programmable Read-Only Memory

FSJ Force Sensing Joystick

I/O Input/Output

IR Infra-Red

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MotorCtrl Motor control

ODV/ODW Omni-Directional Vehicle/Wheelchair

PSD Position Sensitive Device

PSJ Position Sensing Joystick

PWM Pulse-Width Modulation

RS232 RETMA Standard 232

SHS Square Hollow Section

USB Universal Serial Bus

WC WheelChair

xvii

LIST OF TABLES

Mathematical Notation

r The radius of the Mecanum wheels

d The width of the wheelchair (from wheel to wheel)

s The length of the wheelchair (from wheel to wheel)

VX The forwards/backwards component of the wheelchair velocity (positive forwards)

VY The left/right component of the wheelchair velocity (positive left)

ϕ̇ The rotation speed of the wheelchair (positive counter clockwise)

θi The rotational speed of wheel i (positive forwards)

x The left/right axis of the joystick (positive right)

y The forwards/backwards axis of the joystick (positive forwards)

z The rotational axis of the joystick (positive clockwise)

t The throttle of the joystick (positive up)

xviii

Chapter 1

Introduction

1.1 Background

Navigating a wheelchair through a confined or congested space can be extremely

difficult. Conventional wheelchairs require an accurate approach path and a large

amount of free space to undertake simple maneuvers such as driving through a

doorway. One solution to this problem would be the development of a wheelchair

that was able to drive directly sideways; otherwise known as an omni-directional

wheelchair. The Centre for Intelligent Information Processing Systems (CIIPS) at

the University of Western Australia has been working on the development of such a

wheelchair since the beginning of 2004.

Omni-directional vehicles are able to drive in any direction in the 2D plane as

well as rotate at the same time. In other words, they have three degrees of freedom.

These vehicles differ from conventional drive arrangements (such as the Ackermann

arrangement found in automobiles or the differential drive arrangement found in

many scooters) in their ability to drive sideways.

Whilst working for the Swedish company Mecanum AB in 1973, Bengt Ilon

came up with a design which, when used in a rectangular arrangement of 4 wheels,

would allow such omni-directional motion. The wheel design, which was patented

(Ilon 1975), is now known as the Mecanum wheel. The omni-directional wheelchair

developed in this project uses this wheel design.

1

1.2. OBJECTIVES

1.2 Objectives

At the beginning of 2006, the omni-directional wheelchair being developed was

far from complete and had many flaws. The goals of this project were to make

improvements to both the hardware and the software of the already existing

wheelchair. Specifically, improvements were made to the already existing wheels,

batteries, motor controller cards and chassis. Additionally, a joystick and chair (with

both armrests and footrests) were added, progressing the project from a proof-of-

concept design to a fully functioning wheelchair.

An entirely separate project has also been conducted on the wheelchair by

Mei Leong for her final-year engineering project. Her project focused on both the

development of the chair and the use of the position sensitive devices (PSDs) for

semi-autonomous control of the wheelchair’s motion. This included advanced driving

methods such as obstacle avoidance, door-driving and wall following.

1.3 Thesis Structure

Chapter 2 presents background information on other relevant projects being carried

around the world. It is divided into three parts describing different wheel designs

that can provide omni-directional motion, control methods for the omni-directional

wheelchair and the available options for the human interface of a wheelchair.

Chapter 3 provides an overview of all of the hardware components used in the omni-

directional wheelchair, focusing particularly on the Mecanum wheel design and the

motors, micro-controller, batteries, sensors and footrests used. Chapters 4, 5 and

6 describe the motor controller cards and joystick used, and the software written

to communicate with them and produce the desired motion from the given input.

Chapter 7 describes a new chassis and suspension design which will provide a more

accurate drive system, and a more comfortable experience for the user. Chapters 8

and 9 present the results of the project, a brief summary and recommendations for

additional work on the project.

2

Chapter 2

Literature Survey

2.1 Mecanum Wheels and Alternatives

Omni-directional vehicles (ODVs) are by no means a new concept. Ilon (1975)

details the design of the Mecanum wheel, which allows the omni-directional

movement of a vehicle. This wheel is commonly used in robotic applications

requiring a high degree of manoeuvrability, such as those experienced by NASA

for hazardous environment exploration (Lippitt & Jones 1998) and Airtrax for their

range of forklift trucks, aerial work platforms and mobility platforms (Airtrax 2006).

Figure 2.1: NASA OmniBot mobile base (Lippitt & Jones 1998)

Whilst normal wheels have a line contact with the ground, Mecanum wheels

have a point contact with the floor in the ideal case. Due to the infinite pressure

which would result from a point contact, either the floor or the wheel must deflect,

3

2.1. MECANUM WHEELS AND ALTERNATIVES

Figure 2.2: Airtrax Sidewinder lift truck (Airtrax 2006)

resulting in an area of contact. Regardless, the higher contact pressures that occur

with Mecanum wheels can be minimised by using fewer rollers, with 6 rollers being

found to be optimal (Dickerson & Lapin 1991). This fact was used by McCandless

(2001) when developing his new Mecanum wheel design at the University of Western

Australia.

Figure 2.3: New Mecanum wheel design (McCandless 2001)

One disadvantage of the Mecanum design is the inefficient use of the kinetic

energy supplied to the wheels by the motors. Due to the rotation of the exterior

rollers, only a component of the force at the perimeter of the wheel is applied to the

ground and the resulting force only partially contributes to the motion of the vehicle.

Diegel, Badve, Bright, Potgieter & Tlale (2002) address this problem by introducing

two new wheel designs, one with lockable rollers and the other with rotatable rollers.

Although these designs are more efficient, their increased complexity makes them

almost impractical in a university project with a limited budget.

4

CHAPTER 2. LITERATURE SURVEY

Other designs use balls to facilitate the omni-directional movement, such as those

used by West & Asada (1992) with the balls arranged along a crawler, and by Wada

& Asada (1998) and Tahboub & Asada (2000) where four balls are used as the

points of contact with the ground. These designs are relatively complicated and

provide very few additional advantages over the Mecanum wheel design. As a result

they are less likely to be adopted in a commercial wheelchair application, where

manufacturing and maintenance costs are greatly reduced by simplicity.

2.2 Control Methods

The forward and inverse kinematics of the rectangular Mecanum wheel arrangement

used in this project are derived by Viboonchaicheep, Shimada & Kosaka (2003).

Unfortunately, using the wheel rotations and forward kinematic equations to

determine the vehicle’s current motion (also known as position rectification) is not

possible with the Mecanum wheels being used in this project. This is due to the high

level of slip experienced during normal operation providing inaccurate predictions

of the ODV’s velocity. As an alternative, a visual dead-reckoning system using

a camera and optical flow analysis can be used to determine the change in the

ODV’s position (Nagatani, Tachibana, Sofne & Tanaka 2000), (Shimada, Yajima,

Viboonchaicheep & Samura 2005) and (Cooney, Xu & Bright 2004). If accurate

feedback of the wheelchair’s position and/or velocity is required in a future project,

this technique would be the most appropriate.

It is not uncommon for the user of an electric wheelchair to experience strong

vibrations whilst driving. These vibrations have sometimes been known to excite the

user’s internal organs at their natural frequency, causing discomfort and sometimes

nausea. By avoiding the natural frequency of the chair and human organs using

frequency shape control, this effect can be minimised (Terashima, Miyoshi, Urbana

& Kitagawa 2004) and (Urbano, Terashima, Miyoshi & Kitagawa 2005). Although

this lies outside the scope of this project, if this problem is experienced at a future

date it can be rectified using the methods described in these two papers.

5

2.3. HUMAN INTERFACE

2.3 Human Interface

An alternative to the common position sensing joystick (PSJ) found in most

wheelchairs is the force sensing joystick (FSJ) or isometric joystick. This joystick

remains stationary, but measures the degree of force placed on it in both the x and y

axes. This requires virtually no range of hand motion, and allows easy optimisation

for each individual user. For example, these joysticks can be used to reduce the

effects of hand tremors on the vehicle’s motion (Ding, Cooper & Spaeth 2004).

Tests show that the PSJ and the FSJ provide similar accuracy and ease of use (Jones,

Cooper, Albright & DiGiovine 1998) and (Cooper, Jones, Fitzgerald, Boninger &

Albright 2000). The joystick used in this project has a third axis which is used to

control the third degree of freedom of the wheelchair. As a result, the wheelchair

continues to use the more conventional and intuitive PSJ.

For those individuals who do not have the ability to move their hands accurately,

there are the options of chin operated FSJs (Guo, Cooper, Boninger, Kwarciak

& Ammer 2002), or ultra-sonic non-contact head and voice activated control

(Coyle 1995). Finally, a touch screen displaying video footage of the current

surroundings can be used to control the vehicle (Kamiuchi & Maeyama 2004). Due

to the additional complexity of controlling an ODV, this project assumes a user who

has wrist movement which is acceptable for controlling a joystick.

As a user friendly alternative to obstacle avoidance, a variable impedance joystick

that increases the impedance of tilting the joystick in the direction of an obstacle can

be used (Kitagawa, Kobayashi, Beppu & Terashima 2001) and (Urbano, Terashima,

Miyoshi & Kitagawa 2004). This ensures the wheelchair’s motion always obeys

the users instructions even when obstacles are present, rather than altering the

trajectory of the vehicle. As an alternative to this method, the wheelchair requires

the user to manually enable the obstacle avoidance system. This ensures any altered

wheelchair trajectories are at least expected by the user, eliminating the need for

this complex arrangement.

6

Chapter 3

Hardware

3.1 General Arrangement

At the beginning of 2006, the omni-directional wheelchair project at the University

of Western Australia was a work in progress. The project was started by Iwasaki

(2005), who used the Mecanum wheels and low-level driving routines developed by

Voo (2000) to construct the basic frame and control software for this wheelchair. In

addition to this work, a suspension system and alternative Mecanum wheel design

had been developed for the miniature omni-directional driving robots used in the

CIIPS department (McCandless 2001).

This project is an extension of these works, with the major aim of improving

the ease of use and accuracy of the wheelchair by altering its hardware. Table 3.1

shows the state of the wheelchair components at the beginning of 2006. In summary,

this project made improvements to the Mecanum wheels, batteries, footrests, motor

controller cards, human interface, control software and chassis, whilst improvements

were also made to the chair, armrests and high-level driver assistance system by

Leong (2006).

7

3.1. GENERAL ARRANGEMENT
T
a
b
l
e

3.
1:

O
m

n
i-
d
ir
ec

ti
on

al
w

h
ee

lc
h
ai

r
co

m
p
on

en
ts

su
m

m
ar

y
-

F
eb

ru
ar

y
20

06
Q

ty
C

o
m

p
o
n
e
n
t

E
x
is

ts
?

S
u
it

a
b
le

?
R

e
q
u
ir

e
m

e
n
ts

R
e
fe

r
to

..
.

4
M

ec
an

u
m

w
h
ee

ls
X

X
M

ac
h
in

e
d
ow

n
ri

m
s

S
ec

ti
on

3.
2

4
24

V
b
ru

sh
ed

D
C

m
ot

or
s

X
X

N
on

e
S
ec

ti
on

3.
3

1
E

ye
B

ot
co

n
tr

ol
le

r
X

X
R

ep
ai

r
&

in
st

al
l
se

ri
al

p
or

t
2

S
ec

ti
on

3.
4

2
12

V
b
at

te
ri

es
X

7
P

u
rc

h
as

e
re

p
la

ce
m

en
ts

S
ec

ti
on

3.
5

6
P

S
D

se
n
so

rs
X

X
N

on
e

S
ec

ti
on

3.
6

2
F
o
ot

re
st

s
7

D
es

ig
n

&
in

st
al

l
S
ec

ti
on

3.
7

4
M

ot
or

co
n
tr

ol
le

r
ca

rd
s

X
7

P
u
rc

h
as

e
re

p
la

ce
m

en
ts

&
in

st
al

l
C

h
ap

te
r

4

1
J
oy

st
ic

k
7

P
u
rc

h
as

e
&

m
o
d
if
y

C
h
ap

te
r

5

1
C

on
tr

ol
so

ft
w

ar
e

X
7

R
ew

ri
te

fo
r

n
ew

ca
rd

s
&

jo
y
st

ic
k

C
h
ap

te
r

6

1
M

et
al

ch
as

si
s

X
7

R
ed

es
ig

n
&

ad
d

su
sp

en
si

on
C

h
ap

te
r

7

1
C

h
ai

r
7

D
es

ig
n

&
in

st
al

l
(L

eo
n
g

20
06

)

2
A

rm
re

st
s

7
D

es
ig

n
&

in
st

al
l

(L
eo

n
g

20
06

)

8

CHAPTER 3. HARDWARE

3.2 Mecanum Wheels

3.2.1 Technical Details

The Mecanum wheel works by using passive rollers around it’s circumference at an

angle offset from the axis of the wheel rotation. In the case where four of these

wheels are used in combination, the rollers are at an angle of 45 ◦ (see Figure 3.1).

Figure 3.1: The Mecanum wheel design

As the wheel is made to rotate, the force exerted on the ground only consists of

that component of the force along the axis of the rollers. The other component of

the force does not affect the motion of the vehicle as it simply works to rotate the

passive rollers. Hence, the resulting force on the vehicle from this particular wheel

is in a direction 45 ◦ to the wheel axis (see Figure 3.2). By controlling the rotation

of each individual wheel (and therefore every individual force), the vehicle can be

made to move in any desired direction (see Figure 3.3).

3.2.2 Kinematics

Due to the increased complexity of the wheels used in ODVs, the algorithms required

to control the vehicle’s motion are very different to the algorithms used in a standard

differential drive or Ackermann arrangement. The inverse kinematic equations are

used when determining the required rotational speed of the motors to fulfill the

9

3.2. MECANUM WHEELS

Figure 3.2: Force components in the Mecanum wheel (seen from below)

Figure 3.3: Wheel rotations for different driving directions (seen from below)

10

CHAPTER 3. HARDWARE

desired motion of the ODV. Similarly, the forward kinematic equations can be used

to determine the current trajectory of the ODV from the current rotational speeds of

the motors. The forward and inverse kinematics of the Mecanum wheel were derived

by Viboonchaicheep, Shimada & Kosaka (2003) and are shown below in Equations

3.1 and 3.2 respectively.

VX

VY

ϕ̇

 = 2πr

1
4

1
4

1
4

1
4

−1
4

1
4

1
4

−1
4

−1
2(d+s)

1
2(d+s)

−1
2(d+s)

1
2(d+s)

θ1

θ2

θ3

θ4

(3.1)

θ̇1

θ̇2

θ̇3

θ̇4

=

1

2πr

1 −1 −(d+s)

2

1 1 (d+s)
2

1 1 −(d+s)
2

1 −1 (d+s)
2

VX

VY

ϕ̇

 (3.2)

These formulas convert a desired wheelchair motion (measured in meters per

second and radians per second) into a required set of angular velocities for the

wheels (measured in radians per second) and vice versa. However, the high level

of wheel slippage experienced in the wheelchair would prevent the desired motion

from being accurately achieved. This effectively makes any feedback that could be

provided by shaft encoders useless, and as a result none are used on the wheelchair.

As an alternative, this project uses a method where the motion of the wheelchair

is set relative to it’s maximum speed. For example, if the user requests the wheelchair

drive forward at 50% speed, the wheels will rotate forwards at half of their maximum

speed. Similarly, if the user requests the wheelchair spin at 50% speed, the motors

run at half their maximum speed in the correct directions.

Using this method, the scaling factors for the dimensions of the wheelchair and

it’s wheels (d, s & r) are not required. The ratio between directional driving and

rotation is now lost, but the percentages between maximum speed and rotation are

kept in tact. The resulting forward and inverse kinematic equations are shown in

11

3.2. MECANUM WHEELS

Equations 3.3 and 3.4 respectively. This implementation also requires the wheel

speeds are occasionally scaled down to ensure the maximum wheel speed is kept at

100% in all situations (see Appendix A.4).

VX

VY

ϕ̇

 =
1

4

1 1 1 1

−1 1 1 −1

−1 1 −1 1

θ1

θ2

θ3

θ4

(3.3)

θ̇1

θ̇2

θ̇3

θ̇4

=

1 −1 −1

1 1 1

1 1 −1

1 −1 1

VX

VY

ϕ̇

 (3.4)

3.2.3 Wheel Rims

One of the recommendations made by Iwasaki (2005) in the final section of his

thesis was to “machine down the Mecanum wheel rims to increase clearance from

the ground and avoid its contact with carpet or other soft surfaces”. More simply,

only the white plastic rollers of the Mecanum wheel design shown in Figure 3.1

are intended to make contact with the ground; the metal wheel rims are merely

for structural support. If the rims were to come into contact with the ground, the

wheel would begin to behave like it’s more conventional counterpart, destroying the

wheelchair’s ability to move omni-directionally.

During initial tests, the metal rims were found to be making contact with the

ground in some situations (such as when driving on an uneven, or carpeted surface).

To fix this problem, the diameter of the wheel rims was reduced until the holes for

the roller pins were almost exposed (about 5mm off the radius). This was acceptable

since the force on the rims from the pins would always be towards the centre of the

wheel. As an additional safety feature, a chamfer was also added to the outside edge

of the rims to prevent serious injury if the wheels were to run over somebody. These

alterations are shown in Figure 3.4.

12

CHAPTER 3. HARDWARE

Figure 3.4: The Mecanum wheel rims after machining

3.3 Motors

The omni-directional wheelchair uses 4 motors to drive it’s 4 independent Mecanum

wheels. The 24V brushed DC motors used are made by Fortress and are commonly

found on scooters used by the disabled (see Figure 3.5). They are rated to 15A, but

generally only ever use up to 3A in normal operation.

Figure 3.5: A 24V brushed DC motor

13

3.4. EYEBOT

The motors have built in brakes as well as a switch which provides two modes

for the brakes:

Switch up: Always off, and

Switch down: On, unless a potential of 20V is applied across the brake inputs.

Currently, these brakes are not being used since they act very suddenly, causing

a large jerk to the user if the wheelchair is still moving. It would be possible

to implement a braking mechanism which activates the brakes 1 second after the

motors have come to a halt.

3.4 EyeBot

The wheelchair makes use of the EyeBot controller developed at the University of

Western Australia (Bräunl 2005a). It reads the inputs from the user and the sensors,

and calculates a suitable wheelchair trajectory. The EyeBot uses a 25MHz and 32

bit Motorola 68332 chip and has 1Mb of RAM and 512KB of ROM. Communication

with other devices is available via serial, parallel, digital input and analogue input

and output ports. Figure 3.6 shows the front and back of the EyeBot MK4 used on

the wheelchair.

Figure 3.6: EyeBot controller MK4 (front and back views)

14

CHAPTER 3. HARDWARE

3.5 Batteries

Initially, the wheelchair used two 12V lead-acid car batteries connected in series to

provide the required 24V. However, car batteries are designed for a 5 second burst

of power to crank the engine, followed by 30 minutes of charging from the car’s

alternator. This makes them unsuitable for the omni-directional wheelchair which

would require constant low-current power for many hours.

The batteries were replaced with two 12V deep-cycle lead-acid batteries with

a rating of 40Ah. Since each motor uses approximately 3A at a maximum, this

should provide for at least 3.5 hours of continuous usage. In reality, the motors are

not continuously drawing 3A, and the batteries last for approximately 7 hours of

semi-continuous usage.

The replacement batteries have two additional features to ensure they are

suitable for this application:

• The batteries are sealed to ensure the acid inside does not spill on the user if

they are tipped upside-down in a crash.

• The acid inside the batteries is a gel (rather than the typical liquid) to prevent

the wheelchair’s vibration from causing bubbles to form on the lead plates

inside, affecting their performance and life.

The original Exide LM380C batteries, along with the purchased FirstPower

LFP1240G batteries, are shown in Figure 3.7

Figure 3.7: Original car batteries and new sealed, deep-cycle gel batteries

15

3.6. POSITION SENSITIVE DEVICES

3.6 Position Sensitive Devices

The wheelchair makes use of Position Sensitive Devices (PSDs) for it’s driver-

assistance software (Leong 2006). The six Sharp GP2D02 sensors use an infrared

transmitter and receiver to detect the linear distance to the closest obstacle in the

direction of the beam. They are shown in Figure 3.8.

Figure 3.8: Position sensitive devices (PSDs)

3.7 Footrests

Two standard wheelchair footrests were kindly donated by TADWA for use on the

wheelchair. They were mounted in front of the two front motors once the new

chassis and suspension system had been completed (see Figure 3.9). To prevent the

footrests getting in the way of the user, they can be rotated up whilst the user gets

into or out of the wheelchair.

Figure 3.9: Wheelchair footrests donated by TADWA

16

Chapter 4

Motor Driver Cards

4.1 Introduction

The speed of a DC motor is proportional to the voltage applied across its inputs,

whilst the torque is proportional to the current it is drawing. Therefore, to control

the speed of a DC motor, an analogue voltage ranging from −Vmax to Vmax can

be used. This requires the use of a digital to analogue converter, which is very

expensive.

A common alternative is to use a constant supply voltage which is continuously

being switched on and off by a controller. When this is done at a very high frequency,

the input voltage is effectively reduced by the percentage of time that the signal is

off (see Figure 4.1). This technique is known as pulse-width modulation (PWM)

and allows the speed of a DC motor to be controlled by varying the pulse-width

ratio of the input signal (also known as the duty cycle).

Initially, the EyeBot controller’s digital outputs were used to generate a 5V and

8.191 kHz PWM signal for each motor. These signals were then fed into four motor

controller cards designed by the electronic workshop, where they were amplified to

24V before being passed to the motors. Unfortunately the circuits in these cards were

not designed to cope with the high currents generated when the motors were required

to suddenly change direction, resulting in irreparable damage to the MOSFETs. The

controller cards either needed to be redesigned to accommodate this sort of activity,

17

4.2. SELECTION

0 0.5 1 1.5 2 2.5

x 10
−4

0

5

10

15

20

25

30

Time (seconds)

D
C

 V
ol

ta
ge

 (
V

)

Figure 4.1: Pulse-width modulation (PWM) signal

or replaced with commercial DC motor controller cards. To save valuable workshop

time and ensure the new cards came with a warranty, it was decided that some

commercial cards would be purchased.

4.2 Selection

The following considerations were deemed important when selecting the new DC

motor controller cards:

• To fit within the project budget, the cards should be relatively cheap whilst

being of high enough quality to successfully perform the tasks required.

• The cards should be capable of handling a 24V signal with a current of up to

15A per motor (in the case of current spikes).

• The cards should include protections against over-heating, over-current and

incorrect polarity.

• If possible, the cards should be available through a local supplier in Australia.

• The cards should either accept 5V PWM signals as inputs, or allow serial

communication using the RS232 protocol.

The most suitable cards were found to be the Roboteq AX1500 controllers,

which are unfortunately only manufactured in and distributed from the USA (see

Figure 4.2). These cards can work with DC motor voltages between 12V and

18

CHAPTER 4. MOTOR DRIVER CARDS

40V, and are rated for continuous currents of up to 20A per motor or spikes of

up to 150A per motor (see Appendix C.1). Since the cards control 2 motors each

(either independently or using sum and difference commands), only 2 needed to be

purchased for the 4 motors.

Figure 4.2: The new Roboteq AX1500 motor controller cards

4.3 Installation

The two Roboteq cards are used to drive the four wheelchair motors independently.

One card controls both the front left and front right motors, whilst the other controls

the back left and back right motors. Each card requires 4 power inputs (+24V supply

and ground for each motor) and produces 4 power outputs (the PWM signal and

ground for each motor). These connections are all made on one side of the card, as

shown in Figure 4.3.

Additionally, the two cards are both connected to the second serial port on the

EyeBot using the daisy-chain cable shown in Figure 4.4. This allows the EyeBot

controller to communicate with the cards using only one of it’s serial port, leaving

the other free for communication with a PC. To allow the daisy-chaining of these

cards, their EEPROM first needed to be flashed with the latest firmware available

from Roboteq. The daisy-chain settings were then activated by sending the character

strings “^00 01” and “^00 11” to the first and second cards respectively (Roboteq

2005).

19

4.4. PROGRAMMING

AX1500 Quick Start

10 AX1500 Motor Controller User’s Manual Version 1.7b. November 3, 2005

Locating the Connectors

Take a moment to familiarize yourself with the controller’s connectors.

The front side (shown in Figure 1) contains the Power/Status LED and the 15-pin connector

to the R/C or microcomputer, as well as connections to optional switches and sensors.

Note: The Status LED is not used in version 1.7b of the controller’s software.

At the back of the controller (shown in the figure below) are located all the terminals that

must be connected to the batteries and the motors.

Status LED

FIGURE 1. AX1500 Controller Front View

Power LED

Connector to Receiver/Controls

and sensors

VMot

Motor 2 Motor 1

M2+ M1+ M1- VMotM2- 3 x Gnd

Pwr

Ctrl

FIGURE 2. AX1500 Controller Rear View

Note:

Both VMot terminals are

connected to each other in

the board and must be

wired to the same voltage.

Figure 4.3: Roboteq input/output power connections

AX3500 Motor Controller User’s Manual 87

Command Set

Command Set

Each controller echoes every character it receives.

Controller 0 recognizes the standard commands (e.g !a55, ?a ...) ignores the others.

Controller 1 recognizes commands+1 (see ASCII table: !+1 = ", ?+1 = @). E.g "a55, @a

ignores the rest

Inportant Notics

Since a “+” is a normal response of the controller after accepting a command, con-

troller at address 1 must be first in the daisy chain. If placed second, it will interpret

the “+” issued by the first controller as the start of a new command and cause an

error.

Command Latency and Delay

This scheme introduces a 1 character latency (~1ms). Furthermore the 9600bps bandwidth

must now be shared by two or more controllers.

TABLE 17.

ASCII HEX ASCII HEX Examples

Command ! 21 “ 22 !a55, “B7F

Query ? 3F @ 40 ?a, @p

Config ^ 5E _ 5F ^00, _01

Encoder * 2A + 2B *A8, +A9

Reset % 25 ‘ 26 %rrrrrr, ‘rrrrrr

1

15

6
DB9 Female

DB15 Male

to Controller

Address 0

to Controller

Address 1

Tx

Tx

Rx

Rx

9

8

915

18

915

FIGURE 2. Daisy Chained RS232 Cable for two controllers

Figure 4.4: Daisy-chain serial cable for Roboteq AX1500 cards

4.4 Programming

Communication with the cards is done via the serial cable shown in Figure 4.4 using

the RS232 protocol. As documented in the Roboteq AX1500 manual, the cards

only accept the RS232 settings shown in Table 4.1. These settings are therefore

used when initialising the second serial port on the EyeBot controller, prior to any

communication.

Table 4.1: RS232 settings for Roboteq AX1500 cards
RS232 Parameter Roboteq AX1500 Setting

Baud Rate 9600 bit/s
Word Size 10 bits
Start Bits 1
Data Bits 7

Parity Even
Stop Bits 1

Flow Control None

20

CHAPTER 4. MOTOR DRIVER CARDS

Once an appropriate serial connection has been established, the cards are

controlled by sending and receiving the character strings shown in Table 4.3. This

makes it extremely simple to interface with the cards, with the most common

command being to set the motor speeds (eg. !A3F to instruct the first motor on

card 1 to rotate forward at 50% speed).

Since the two controller cards are being daisy-chained to the one serial port, the

commands to each card must be differentiated. This is done by moving the first

character in the instruction 1 place along the ASCII table (by adding 1 to the it’s

hexadecimal notation). This creates the command set shown in Table 4.2.

Table 4.2: Character strings for communication with daisy-chained Roboteq cards
Card 1 Card 2

Event ASCII HEX Example ASCII HEX Example
Command ! 21 !a55 " 22 "a55

Query ? 3F ?a @ 40 @a

Config ^ 5E ^00 _ 5F _00

Encoder * 2A *A8 + 2B +A8

Reset % 25 %rrrrrr ’ 26 ’rrrrrr

21

4.4. PROGRAMMING
T
a
b
l
e

4.
3:

C
om

m
u
n
ic

at
io

n
la

n
gu

ag
e

fo
r

R
ob

ot
eq

A
X

15
00

ca
rd

s
E
v
e
n
t

S
e
n
d

to
R

o
b
o
te

q
R

e
ce

iv
e

fr
o
m

R
o
b
o
te

q
D

e
sc

ri
p
ti

o
n

P
ow

er
u
p

p
ro

m
p
t

R
o
b
o
t
e
q

v
1
.
7
b

0
2
/
0
1
/
0
5

F
ir

m
w

ar
e

ve
rs

io
n

an
d

d
at

e
?

?
is

ra
n
d
om

&
ca

n
b
e

ig
n
or

ed
E

n
te

r
R

S
23

2
M

o
d
e

\
r
\
r
\
r
\
r
\
r
\
r
\
r
\
r
\
r
\
r

O
K

10
ca

rr
ia

ge
re

tu
rn

s
O

n
ly

re
q
u
ir

ed
if

n
ot

d
ef

au
lt

m
o
d
e

B
ad

C
om

m
an

d
?
?
?

-
U

n
k
n
ow

n
or

in
co

rr
ec

t
co

m
m

an
d

S
et

m
ot

or
sp

ee
d

!
M
n
n

+
M

se
le

ct
s

th
e

m
ot

or
an

d
d
ir

ec
ti

on
:

A
⇒

M
ot

or
1,

fo
rw

ar
d

d
ir

ec
ti
on

a
⇒

M
ot

or
1,

re
ve

rs
e

d
ir
ec

ti
on

B
⇒

M
ot

or
2,

fo
rw

ar
d

d
ir

ec
ti
on

b
⇒

M
ot

or
2,

re
ve

rs
e

d
ir
ec

ti
on

n
n

=
H

ex
ad

ec
im

al
d
ig

it
s

fr
om

00
to

7F
Q

u
er

y
m

ot
or

sp
ee

d
?
v

or
?
V

n
n

n
n

=
M

ot
or

1
sp

ee
d

fr
om

00
to

7F
m
m

m
m

=
M

ot
or

2
sp

ee
d

fr
om

00
to

7F
N

o
d
ir

ec
ti

on
in

fo
rm

at
io

n
gi

ve
n
.

Q
u
er

y
m

ot
or

cu
rr

en
t

?
a

or
?
A

n
n

n
n

=
M

ot
or

1
cu

rr
en

t
in

am
p
s

m
m

m
m

=
M

ot
or

2
cu

rr
en

t
in

am
p
s

Q
u
er

y
h
ea

ts
in

k
te

m
p
er

at
u
re

s
?
m

or
?
M

n
n

n
n

=
T

h
er

m
is

to
r

1
fr

om
00

to
F
F

m
m

m
m

=
T

h
er

m
is

to
r

2
fr

om
00

to
F
F

Q
u
er

y
b
at

te
ry

vo
lt

ag
es

?
e

or
?
E

n
n

n
n

=
M

ai
n

b
at

te
ry

fr
om

00
to

F
F

m
m

m
m

=
In

te
rn

al
12

V
fr

om
00

to
F
F

R
ea

d
co

n
tr

ol
le

r
se

tt
in

g
^
m
m

D
D

m
m

=
P
ar

am
et

er
n
u
m

b
er

D
D

=
C

u
rr

en
t

p
ar

am
et

er
va

lu
e

M
o
d
if
y

co
n
tr

ol
le

r
se

tt
in

g
^
m
m

n
n

+
m

m
=

P
ar

am
et

er
n
u
m

b
er

n
n

=
N

ew
p
ar

am
et

er
va

lu
e

R
es

et
co

n
tr

ol
le

r
%
r
r
r
r
r
r

W
il
l
re

se
t

an
d

d
is

p
la

y
p
ro

m
p
t

22

Chapter 5

Joystick

5.1 Introduction

Many people with disabilities rely on wheelchairs for use throughout their daily

life. As a result, a wheelchair’s control mechanism should be simple and accurate.

Unfortunately, controlling a vehicle with 3 degrees of freedom is not immediately

intuitive. Of the many human interface designs discussed in Section 2.3, a position-

sensing joystick is the most familiar and simple to use, and was therefore selected

for this wheelchair.

5.2 Selection

Joysticks come in all shapes and sizes, with many different features available. When

selecting the appropriate joystick for the wheelchair, two important considerations

were taken into account:

• Whether the joystick should be analogue or digital, and

• Whether the joystick should have 2 or 3 axes.

A digital joystick uses multiple on/off micro-switches to determine the direction

in which the stick is being pushed. Using such a joystick would require an

accompanying dial or pair of buttons to control the speed of the wheelchair.

Conversely, an analogue joystick (often) uses potentiometers to sense both the

23

5.2. SELECTION

magnitude and direction in which the stick is being pushed. In this way, the speed

of the wheelchair is directly proportional to the degree by which the stick has been

moved from it’s origin. Of the two methods, the former allows simpler joystick

control for disabled users with poor fine-motor skills, whilst the latter provides a

more intuitive interface.

Most joysticks have 2 axes, allowing the stick to move from side to side (the x

axis) and forwards/backwards (the y axis). A 3 axis joystick additionally allows the

stick to be twisted about it’s axis (the z axis), as shown in Figure 5.1. Using a 3 axis

joystick allows direct control of each of the wheelchair’s degrees of freedom, whilst

a 2 axis joystick requires a toggle button to alternate between two driving modes.

In the default mode, the x axis controls the rotation of the wheelchair, whilst in the

alternative “strafe mode” the x axis controls the sideways motion of the wheelchair.

Figure 5.1: A 2 axis joystick compared to a 3 axis joystick

24

CHAPTER 5. JOYSTICK

3 joysticks (described in Table 5.1 and shown in Figure 5.2) were purchased for

the wheelchair and tested with a PC.

Table 5.1: The 3 joysticks purchased and tested
Joystick Model # axes Control
QuickShot QS-130F 2 Digital
Logitech Wingman Light 2 Analogue
Microsoft Sidewinder 3 Analogue

After using all three joysticks, it was clear that as the functionality of the joystick

increased, the ease of use decreased. Therefore, a decision had to be made about the

target market for this wheelchair. Since it would be difficult to accurately maneuver

the wheelchair using either digital or 2 axis control, it was decided that the Microsoft

Sidewinder joystick would be used. This would unfortunately make it difficult for

users with certain disabilities (such as those which limit hand motion) to control the

wheelchair. It would, however, be possible to customise the design for users with

these disabilities.

Figure 5.2: The 3 joysticks purchased and tested

25

5.3. INSTALLATION

5.3 Installation

The Microsoft Sidewinder joystick purchased came with a USB cable for connection

with a PC (see Figure 5.3). Unfortunately, the EyeBot controller to which it is

connected does not have a USB host. This problem was overcome by removing the

internal circuit board and replacing it with a custom circuit board that directly

accesses the joystick’s potentiometers and buttons. This board was made exactly

the same size and uses exactly the same potentiometer connectors as the original

board, allowing it to fit easily into place (see Appendix B.1).

Using a multimeter to measure the resistance of the joystick’s potentiometers,

it was found that the x, y, and z axes have potentiometers with a resistance of

10kΩ, whilst the throttle potentiometer has a resistance of 20kΩ. The circuit board

connects these potentiometers to the analogue inputs of the EyeBot, which reads

their current value (see Table 5.2). However, since the EyeBot supplies a voltage of

5V and the analogue inputs can read voltages between 0V and 4.1V, a resistor is

required between the supply voltage and each potentiometer. Using simple voltage

division, it is possible to find the necessary resistances for the x, y, z potentiometers

(a) and the throttle potentiometer (b).

0.9
5

= a
10k+a

0.9
5

= b
20k+b

a = 2.2kΩ b = 4.4kΩ

The joystick has 4 buttons on it’s base and 7 buttons at the top of the stick.

Only the buttons on the base are used by the wheelchair, since only 4 buttons are

required and the user could accidentally press the buttons on the stick. The circuit

board directly connects these buttons to the digital inputs of the EyeBot, which

reads their current settings (see Table 5.2). When a button is not pushed, the open

switch causes no current to flow through that branch resulting in the 5V source

voltage being read by the EyeBot. When a button is pushed, the closed switch

causes current to flow through that branch and a voltage drop across the resistor,

resulting in 0V being read by the EyeBot.

26

CHAPTER 5. JOYSTICK

Figure 5.3: The USB connection originally on the joystick

Figure 5.4: The new joystick circuit

27

5.4. PROGRAMMING

Table 5.2: EyeBot I/O pins used

Signal Wire Colour EyeBot Pin
X Axis Yellow Analogue Input 5
Y Axis Green Analogue Input 6
Z Axis Brown Analogue Input 7

Throttle Grey Analogue Input 8
Button 5 Blue Digital I/O 9
Button 6 Thin Black Digital I/O 10
Button 7 Purple Digital I/O 11
Button 8 Orange Digital I/O 12

+5V Red Digital I/O 13
Ground Thick Black Digital I/O 16

5.4 Programming

Once the 4 buttons and 4 potentiometers are correctly connected to the digital and

analogue input pins on the EyeBot, the RoBIOS operating system makes it simple

to read their current values. The x, y and z potentiometers are used to control the

motion of the wheelchair left/right, forwards/backwards and clockwise/anticlockwise

respectively. The throttle potentiometer acts as an overall maximum speed control;

at it’s minimum position the maximum speed of the wheelchair is 20%, at it’s

maximum position the maximum speed of the wheelchair is 100%, and moving

between these positions causes a gradual increase in the wheelchair’s maximum

speed. The 4 buttons are used to control the advance driving modes of the wheelchair

(Leong 2006).

All of the digital inputs are read in one command: OSReadInLatch(0). This

command returns a 16 bit number, with each bit representing the current state of

the corresponding digital I/O pin. “AND masking” the number with a mask with

only the corresponding bit set to 1, and then dividing by the same mask causes the

number to be 0 if the button is pushed and 1 otherwise. This bit is then inverted

(a logical NOT) to give the desired result (see Table 5.3).

28

CHAPTER 5. JOYSTICK

Table 5.3: RoBIOS commands for reading buttons
Button Mask Command

5 BUTTON5 = 0x10 !((OSReadInLatch(0) & BUTTON5)/BUTTON5)

6 BUTTON6 = 0x20 !((OSReadInLatch(0) & BUTTON6)/BUTTON6)

7 BUTTON7 = 0x30 !((OSReadInLatch(0) & BUTTON7)/BUTTON7)

8 BUTTON8 = 0x40 !((OSReadInLatch(0) & BUTTON8)/BUTTON8)

The analogue inputs are each read by one command: OSGetAD(CHANNEL) (where

CHANNEL corresponds to the analogue input to read from). This command returns

an integer between 0 and 1000 (representing 0V and 4.1V respectively). Since the

joystick’s minimum and maximum values for each axis will not be exactly 0 and

1000, the joystick must be calibrated. After calibration, moving the joystick to the

minimum/maximum position on each axis should ideally result in a 0/1000 reading

respectively. This number is then scaled to a number representing the percentage

of the potentiometer’s movement (see Table 5.4).

Calibration can be performed manually each time the EyeBot is started by

introducing a routine that requires the user move the joystick to the bottom left

position with the joystick twisted fully left and the throttle at a minimum and then

pushing a button. The user then moves the joystick to the top right, twisted fully

right with the throttle at a maximum and pushes a button. The EyeBot would read

the minimum and maximum values for each axis and use them to convert the raw

readings to the desired values. As it turns out, the raw minimum and maximum

values stay relatively constant between uses and can therefore be hard coded into

the software, removing the need for this arduous calibration routine (see Table 5.4).

Table 5.4: RoBIOS commands for reading potentiometers

Pot. Channel Raw Min Raw Max Desired Min Desired Max
X 4 95 905 -100 100
Y 5 920 75 -100 100
Z 6 145 845 -100 100

Throttle 7 1000 58 0 100

29

5.4. PROGRAMMING

After calibration, the joystick input values are finally adjusted using threshold

values on each axis. This causes the input from an axis to be taken as zero unless

it is above a specified (and customisable) value. This is required for three reasons:

• The joystick is extremely sensitive around it’s origin, and any small accidental

movements would cause the wheelchair to drive.

• People with disabilities may have difficulty holding the joystick perfectly still

at the origin without shaking it.

• By thresholding each axis individually, driving directly forward is also made

easier by preventing a small component of the wheelchair’s velocity from being

in the sideways direction.

After testing, it was found that a threshold value of 15% was optimal for most

wheelchair users on each axis.

30

Chapter 6

Low Level Driving Routines

6.1 Introduction

For any driving robot, the low-level driving routines are the simple components of

the onboard software that determine the desired driving positions, velocities and/or

accelerations. This involves interfacing with all input and feedback devices on the

vehicle and calculating the required motor speeds before sending them to the motors.

In our current wheelchair design, there are 3 pieces of hardware with which the

low-level driving routines must communicate:

• the 3-axis joystick to read the human input,

• the infra-red remote control receiver as an alternative means of human input,

and

• the motor controller cards to ensure the correct motor speeds are achieved.

Higher level driving routines are also being developed which make use of

the wheelchair’s onboard position-sensitive devices (PSDs) to perform automatic

functions such as door-driving, wall following and obstacle avoidance (Leong 2006).

31

6.2. DESIGN

6.2 Design

The software has been written entirely in the C programming language and compiled

using the gcc68 compiler for the Motorola HC68332 chip (Bräunl 2005a). Although

C itself is not an object-oriented language, it can be made modular by using separate

text files for the different software components. Header files are used to define the

necessary variables and functions, as well as include documentation and comments

on their use. These files have the .h prefix (eg. ODW.h). The bulk of the code is

included in the C source files, with filenames using the .c prefix (eg. ODW.c).

The wheelchair’s code has 4 main components or modules, each modelled around

the hardware with which it is interfacing. A brief description of each component is

provided below.

ODW: This component of the software includes the main function which initially

starts the desired modules. Once these modules have been successfully started,

the main function continually loops and updates the LCD display, whilst

reading any EyeBot key inputs. When key 4 is pressed, the program stops

the running modules and exits gracefully.

ODW IR: This module interfaces with the infra-red remote control receiver,

allowing the wheelchair to be controlled by a Nokia remote control. The

module initialises the receiver and waits for a key input. When a key input is

received, the appropriate action (defined in the corresponding header file) is

taken. It is important to note that the functionality of this module is effectively

destroyed if the Joystick module is also activated.

ODW Joystick: This module interfaces with the modified 3-axis Microsoft Sidewinder

joystick discussed in Chapter 5. When started, the module first calibrates the

joystick and then continually reads the joystick’s current position and button

values. This data is converted into the appropriate motor speeds using the

inverseKinematics function, which are then set using the setWCSpeed function

(both of which are found in the ODW MotorCtrl module). The button values

can also be used to activate the advanced driving routines (Leong 2006).

32

CHAPTER 6. LOW LEVEL DRIVING ROUTINES

ODW MotorCtrl: This module serves two purposes; to supply functions which

provide a simple means for setting and reading the current wheelchair speed,

and to interface with the motor driver cards discussed in Chapter 4. The latter

works by continually reading the desired motor speeds and sending them to

the controller cards via the RS232 protocol.

This technical description is represented graphically in the following software

flow charts. For a full listing of the developed software, see Appendix A.

Start desired modules:
ODW_IR

ODW_Joystick
ODW_MotorCtrl

Success?

Stop modules:
ODW_MotorCtrl
ODW_Joystick

ODW_IR

while STOP_RUNNING != 1

Update LCD Read Keys Update STOP_RUNNING

Yes

No

Figure 6.1: Flow chart for the main ODW code

33

6.2. DESIGN

Read Current Wheelchair Speed
getWCSpeed()

Read IR Key
IRTVRead()

Calculate New Speed

Set New Wheelchair Speed
setWCSpeed(SPEED)

Stop?
No

Yes

Read Joystick Position & Button Values
updateJoystickPosition()
updateJoystickButtons()

Calculate New Wheelchair Speeds

Set New Wheelchair Speeds
setWCSpeed(SPEED)

Calibrate Joystick
calibrateJoystick()

Stop?
No

Yes

Figure 6.2: Flow charts for the IR and Joystick modules

Read Desired Motor Speeds
Global Variable:

DESIRED_MOTOR_SPEEDS

Check Validity & Adjust

Send Via RS232

Initialise RS232
Set Zero Speed

Stop?
No

Yes

Figure 6.3: Flow chart for the MotorCtrl module

34

Chapter 7

Suspension System

7.1 Introduction

At the beginning of 2006, the omni-directional wheelchair had no suspension system;

the wheels were directly coupled to the motors which were in turn directly mounted

onto the chassis. This initial setup was only intended to be a temporary solution,

until a superior design was developed.

As discussed in Section 3.2.2, the Mecanum wheels used on the omni-directional

wheelchair cause a large degree of slip during it’s normal operation. This makes

the wheelchair difficult to drive accurately, and deprecates any feedback that could

be obtained from shaft encoders. Part of this slip could be attributed to the rigid

design, which would cause only 3 of the 4 wheels to be in contact with the ground

when driving on uneven terrain. This would theoretically cause the wheelchair to

drive at 45◦ to the design direction.

This problem was overcome by designing and building a suspension system for

the wheelchair. Under the weight of the wheelchair and it’s user, each wheel is now

being constantly pushed down to the ground. In addition, the wheelchair is more

capable of handling rough terrain such as grassed or paved areas without causing

excessive user discomfort.

One final problem that was overcome by the inclusion of this system was the

issue of vibrations felt by the user during medium to high speed driving. These

35

7.2. DESIGN

vibrations could mainly be attributed to the minor machining inaccuracies of the

Mecanum wheels which resulted in a sudden jerk each time the roller in contact the

ground was alternated. Since the rollers were made of an inflexible plastic and there

was no suspension built into the design, the user would be left feeling these effects.

This was found to be particularly bad when driving on a rough terrain.

7.2 Design

Suspension systems often rely on a spring and a damper used in combination to

absorb both the small vibrations and the large movements. The spring acts as the

main absorber, whilst the damper acts to mitigate the oscillatory effects over time.

Many bicycle designs now include a small spring/damper shock absorber directly

below the seat in the main frame. These shock absorbers are available in many

different sizes, with varying spring stiffness and damping coefficients to match.

DNM Suspension is a Thai company which designs, manufactures and sells these

shock absorbers for both mountain bicycles and motorbikes. Four of their DV-22

shocks absorbers were selected for the wheelchair, and were kindly donated to the

project (see Figure 7.1). They come with a 350lbs spring, use an oil damping system,

weigh 180 grams, have an eye-to-eye uncompressed length of 125mm, bushing width

of 24mm and hole diameter of 8mm.

Figure 7.1: DNM DV-22 bicycle shock absorbers

36

CHAPTER 7. SUSPENSION SYSTEM

Since the wheels mount directly onto the shafts of the motors, these shock

absorbers are placed between the main chassis and the motors. The chassis therefore

serves three purposes:

• it holds/contains the batteries, electronics, sensors and wiring,

• it acts as a base for the actual chair the user sits on, and

• it acts as a strong frame to hold the motors.

For strength, the chassis has been made entirely of 30 × 30 × 3mm angle iron.

It has been made large enough to hold the two batteries and electronics between

them, and also allows for enough width to mount two motors back to back with

approximately 5mm between them. The angle iron faces in towards the centre of

the battery box on the bottom to provide a flat surface for the batteries to rest on.

Conversely, the angle iron faces outwards from the centre of the box at the top to

allow space for the batteries to be inserted and removed. This lip also acts as a

strong handle for lifting the wheelchair when required. This design can be seen in

Figure 7.2.

Figure 7.2: Battery box design

The chair, which was designed by Leong (2006), was mounted on top of this

battery box by welding it’s support arm onto a thick steel plate lid the same size

as the top of the box. If this lid had simply been screwed to the top of the box,

the entire chair would need to be lifted off each time maintenance was required on

37

7.2. DESIGN

the batteries or the internal electronics. Instead, the lid was attached to the box

with two hinges on the rear side, and locked down on the front side with a standard

barrel bolt. This allows the internal components of the battery box to be exposed

by simply unlocking the barrel bolt and tilting the chair back. This design can be

seen in Figure 7.3.

Figure 7.3: Battery box lid and chair mount

The final, and most important part of the design involved connecting the motors

to the chassis and incorporating a suspension system. This system is the most

likely section of the design to fail under the large forces and stress resulting from

any sudden impacts. In addition, the Mecanum wheel design being used on the

wheelchair requires that the wheels remain perpendicular to the floor at all times.

If the wheels were on an angle, the rims would contact the ground making omni-

directional motion impossible (see Figure 7.4).

Each wheel requires independent suspension to allow movement without affecting

the wheelchair chassis or the other wheels. The most basic independent suspension

design positions the shock absorber directly between the motors and the chassis (see

Figure 7.5). This design does not provide strength against sideways or rotational

motion of the motors, making it unsuitable for use in the wheelchair.

A slightly more complicated design uses a trailing arm which runs from the

motors to the chassis, where it is connected in such a way that it is only allowed

38

CHAPTER 7. SUSPENSION SYSTEM

Figure 7.4: Perpendicular requirement for the adopted Mecanum wheel design

Figure 7.5: A basic but inadequate suspension design

to rotate in the vertical direction. The shock absorber then connects to both the

chassis and the arm to limit this motion. The trailing arms can either extend to

the sides of the chassis, or to the front and back of the chassis. Since the Mecanum

wheels need to remain perpendicular to the ground the latter was chosen for this

design (see Figure 7.6).

Figure 7.6: Two alternative trailing arm designs

39

7.2. DESIGN

Rather than using a simple plate for the trailing arm, a 50× 50× 3mm square-

hollow-section (SHS) tube was used. This allows the arm to remain rigid and resist

both bending and twisting forces which would otherwise have resulted in failure.

This arm is bolted to the motors at one end and welded to a 20mm diameter solid

steel rod at the other end. This rod runs perpendicular to the trailing arm and is

held by rotational bearings at each end. The bearings are housed in pressed-metal

straps which are bolted onto the main chassis of the wheelchair. This design is

shown in Figure 7.7.

Figure 7.7: Trailing arm connection to the chassis

Figure 7.8 shows the forces that could be experienced by the wheels and motors

(in red), and the corresponding forces and torques each independent suspension

system will need to overcome (in green).

Figure 7.8: The forces experienced by the trailing arm suspension

40

CHAPTER 7. SUSPENSION SYSTEM

The design in Figure 7.7 successfully resists all of the forces shown in Figure 7.8

except those which act to rotate the trailing arm sideways. The torque generated by

this force is amplified by the long trailing arm, and the connection between the arm

and the rod could easily fail. For additional strength, a triangular gusset was added

between the trailing arm and the rod (shown in Figure 7.9). This also stops any

motion of the trailing arm from side to side, preventing the motors from contacting.

Figure 7.9: A steel gusset is used to add strength

Finally, the shock absorbers are connected between the trailing arms and the

sides of the battery box. Four small mounting blocks were welded onto the arms

and box to achieve this. The mounting angle of the shock absorbers between the

arm and the chassis determines the extent to which the springs will be compressed

or expanded for a given amount of movement of the wheels. This therefore dictates

how easily the wheels will be able to move up and down. The compression of the

springs was tested on a prototype, and the angle of the shock absorbers was chosen

to cause the springs to compress approximately 50% under the weight of the chair

and a standard user. This allows leeway for the wheels to move both up and down

from the default position, as required. An extra set of holes were drilled for the

bearings to allow an alternative setting for slightly heavier users (see Figure 7.10).

The final designs of the new wheelchair chassis and suspension system can be

seen in Appendix B.2.

41

7.2. DESIGN

Figure 7.10: The shock absorber angle determines the effective spring constant

42

Chapter 8

Results, Testing and Simulation

8.1 Motor Control

The speeds of the four independent DC motors on the wheelchair are now controlled

by the new Roboteq AX1500 controller cards. This is done by sending ASCII

characters through the daisy-chain serial cable using the RS232 protocol (see

Chapter 4). Tests were performed on the motors, by measuring the actual speeds

achieved for certain requested values. Even though no feedback is used to control

the motor speeds, they are in general very accurate. The test results can be seen in

Table 8.1 and Figure 8.1. If the motors were to become inaccurate in the future, it

would be possible to write simple software instructions to calibrate them.

8.2 Joystick

The 3-axis joystick installed in this project allows highly accurate control of each of

the wheelchair’s degrees of freedom. Although this style of joystick is new to most

users, the design is intuitive and easy to learn. To prevent accidental wheelchair

motion resulting from small movements of the stick near the zero position of an axis,

independent threshold values were implemented on each axis. These values can be

customised to also allow users with deteriorated fine-motor skills (such as those with

Parkinson’s disease) to use the joystick.

43

8.2. JOYSTICK

Table 8.1: Actual motor speeds achieved

Requested FL FL FR FR BL BL BR BR
Speed Fwd Rev Fwd Rev Fwd Rev Fwd Rev

!Ann !ann !bnn !Bnn "Bnn "bnn "ann "Ann

/127 nn % RPM RPM RPM RPM RPM RPM RPM RPM
12 0C 9.45 - - - - - - - -
25 19 19.69 - - - - - - 43 42
38 26 29.92 59 58 57 57 56 56 65 63
50 32 39.37 77 76 75 75 75 75 86 83
63 3F 49.61 97 97 94 95 95 95 108 104
76 4C 59.84 117 117 114 114 114 114 130 125
88 58 69.29 135 135 131 131 133 133 150 144
101 65 79.53 155 155 151 150 153 153 172 165
114 72 89.76 173 175 170 169 173 173 193 186
127 7F 100 192 193 189 186 192 192 214 205

y = 1.9412x - 0.0625

R2 = 1

y = 1.8895x + 0.25

R2 = 1

y = 1.9186x - 7E-15

R2 = 1

y = 2.1155x + 2.4444

R2 = 0.9999
-250

-200

-150

-100

-50

0

50

100

150

200

250

-150 -100 -50 0 50 100 150

Requested Speed (%)

A
ct

u
al

 S
p

ee
d

 (
R

P
M

)

FL

FR

BL

BR

Linear (FL)

Linear (FR)

Linear (BL)

Linear (BR)

Figure 8.1: Actual motor speeds achieved

44

CHAPTER 8. RESULTS, TESTING AND SIMULATION

Two programs were developed for testing the joystick on the EyeBot. The first

program, shown in Appendix A.13, prints both raw and calibrated joystick values

to the LCD, as well as the current values of the buttons (see Figure 8.3). This

program was used for the initial joystick testing and for finding the calibration

constants required to keep the joystick readings within the desired range. The

second program, shown in Appendix A.14, plots the current joystick values onto

a map on the LCD (see Figure 8.2). This program is useful for determining the

appropriate threshold values for each axis, and for visualising the actual joystick

position.

Figure 8.2: A textual joystick testing program

Figure 8.3: A graphical joystick testing program

45

8.3. SUSPENSION AND CHASSIS

8.3 Suspension and Chassis

After the installation of the trailing-arm suspension system, the wheelchair’s motion

was found to be much more accurate on uneven surfaces. Motions which used to

cause the Mecanum wheels to slip (such as sideways and diagonal driving) can now

be executed with a higher degree of accuracy. This is due to the wheels always being

pushed down to the ground by the springs in the shock absorbers. In addition, the

vibrations felt by the user when driving the wheelchair are now mostly absorbed by

the shock absorbers. This greatly improves the level of comfort for the user.

Maintenance can be performed on the wheelchair by simply unlocking the barrel-

bolt on top of the battery box, and tilting the entire chair backwards to expose the

electronic circuits and batteries. This prevents any injuries that would otherwise

result from the user lifting the entire chair off the battery box to access the internal

components.

An unexpected side-effect of the suspension system can be seen when the

wheelchair is driven directly to the side. These movements cause the springs on

the side away from the direction of motion to compress, resulting in a slight tilt

of the chair in this direction. This is due to the combination of the angular forces

from the Mecanum wheels, and cannot easily be overcome. Although this may at

first startle the user, there are no devastating effects and overtime the user learns

to anticipate it.

46

CHAPTER 8. RESULTS, TESTING AND SIMULATION

8.4 Modelling and Simulation

The new chassis and suspension system were designed with the aid of AutoDesk

Inventor version 10. Inventor is the 3D modelling version of AutoDesk’s popular

AutoCAD software, and is similar to other 3D CAD programs such as Solid Edge

and Solid Works. The model was used to ensure that all the components would

actually fit together as planned, and that the workshop would be able to get the

required access to all the nuts and bolts that needed to be fitted and tightened.

The model developed in AutoDesk Inventor was then converted to a Milkshape

3D model, developed by chUmbaLum sOft. This allowed the model to be used

in the EyeSim EyeBot simulation software developed at the University of Western

Australia (Bräunl 2005b). A program called Deep Exploration, developed by Right

Hemisphere, was used to convert the Inventor assembly files (with extensions .iam

and .ipt) into a AutoDesk drawing interchange/exchange format file (with extension

.dxf). This file was then imported into Milkshape 3D where it was scaled, coloured,

and saved (with extension .ms3d) ready for use in EyeSim. A picture of the

wheelchair model in EyeSim is shown in Figure 8.4.

47

8.4. MODELLING AND SIMULATION

Figure 8.4: The wheelchair model in EyeSim

48

Chapter 9

Conclusion

9.1 Outcomes

The omni-directional wheelchair being developed at the University of Western

Australia’s Centre for Intelligent Information Processing Systems (CIIPS) allows

the user to easily manoeuvre in what would otherwise be an extremely complicated

environment. This project made improvements to the Mecanum wheels, batteries,

motor driver cards, human interface, control software, chassis and suspension

system.

These improvements transformed the partially working prototype into a fully

usable wheelchair (see Figure 9.1). The result is much higher driving accuracy and

a greatly improved overall experience for the user in both comfort and easy of use.

On the whole, the project was extremely successful and will provide a very solid test

bed for advanced driving and mapping projects in the future.

9.2 Recommendations

The following recommendations are made for future projects involving the wheelchair.

• Replace the current Mecanum wheels with an alternative material and design.

The current wheels are inherently slippery, and a rubbery material would

most likely prevent any slip from occurring. In addition to this, a soft rubber

49

9.2. RECOMMENDATIONS

Figure 9.1: The wheelchair after all alterations and improvements

would have a shock absorbing effect and would aid the suspension system in

mitigating vehicle vibrations. To prevent issues with the rims contacting the

ground, the new design should use a fork to hold each external roller, similar

to that developed by McCandless (2001). The final result would be similar to

that used by Lippitt & Jones (1998).

• With the new Mecanum wheels mentioned above, the issue of wheel slip should

be overcome. This would allow feedback from the motors to actually provide

useful information for the driving routines. Shaft encoders should be installed

on each wheel, and the information used to provide both velocity and position

feedback for the wheelchair. A simple PID control system should be developed

for the overall wheelchair velocity and position, rather than for each individual

wheel.

• Using the feedback from the motors and PID control system mentioned above,

software similar to the V ω interface could be written for the wheelchair,

allowing for movements in certain directions for a specified distance. This

could be extended to provide fully autonomous driving through a known

environment, using a map of the walls and obstacles. For example, the

wheelchair could be made to drive from room 3.13 of the Electrical Engineering

building at the University of Western Australia, to room 4.04 (making use of

the elevator).

50

Bibliography

Airtrax. (2006). Omni-Directional Technology: Changing the way vehicles move,

[Online]. Available from: <http://www.airtrax.com/> [September 2006].

Bräunl, T. 2003, Embedded Robotics: Mobile Robot Design and Applications with

Embedded Systems, Springer, New York.

Bräunl, T. (2005a). EyeBot - Online Documentation, [Online],

The University of Western Australia. Available from:

<http://robotics.ee.uwa.edu.au/eyebot/index.html> [April 2006].

Bräunl, T. (2005b). EyeSim - Mobile Robot Simulator, [Online],

The University of Western Australia. Available from:

<http://robotics.ee.uwa.edu.au/eyebot/doc/sim/sim.html> [September

2006].

Cooney, J.A., Xu, W.L., Bright, G. 2004, ‘Visual Dead-Reckoning for Motion

Control of a Mecanum-Wheeled Mobile Robot’, Mechatronics, vol. 14,

pp. 623–637.

Cooper, R.A., Jones, D.K., Fitzgerald, S., Boninger, M.L. & Albright, S.J. 2000,

‘Analysis of position and isometric joysticks for powered wheelchair driving’,

IEEE Transactions on Biomedical Engineering, vol. 47, pp. 902–910. Available

from: IEEE Xplore, [April 2006].

Coyle, E.D. 1995, ‘Electronic wheelchair controller designed for operation by hand-

operated joystick, ultrasonic noncontact head control and utterance from a

small word-command vocabulary’, IEEE Colloquium on New Developments

51

BIBLIOGRAPHY

in Electric Vehicles for Disabled Persons, pp. 3/1–3/4. Available from: IEEE

Xplore, [April 2006].

Dickerson, S. & Lapin, B. 1991, ‘Control of an omni-directional robotic vehicle with

Mecanum wheels’, Proceedings of the National Telesystems Conference, vol. 1,

pp. 323–328. Available from: IEEE Xplore, [April 2006].

Diegel, O., Badve, A., Bright, G., Potgieter, J. & Tlale, S. 2002, ‘Improved mecanum

wheel design for omni-directional robots’, Proceedings of the Australasian

Conference on Robotics and Automation, pp. 117–121.

Ding, D., Cooper, R.A., Spaeth, D. 2004, ‘Optimized joystick controller’, Proceedings

of the 26th Annual International Conference of the Engineering in Medicine and

Biology Society, vol. 2, pp. 4881–4883. Available from: IEEE Xplore, [April

2006].

Guo, S., Cooper, R.A., Boninger, M.L., Kwarciak, A. & Ammer, B. 2002,

‘Development of power wheelchair chin-operated force-sensing joystick’,

Proceedings of the Second Joint Engineering in Medicine and Biology, vol. 3,

pp. 2373–2374. Available from: IEEE Xplore, [April 2006].

Ilon, B.E. 1975, Wheels for a course stable selfpropelling vehicle movable in any

desirable direction on the ground or some other base, US Patent 3876255

Iwasaki, Y. 2005, Omni-Directional Wheelchair, Honours Thesis, The University of

Western Australia.

Jones, D.K., Cooper, R.A., Albright, S. & DiGiovine, M. 1998, ‘Powered wheelchair

driving performance using force- and position-sensing joysticks’, Proceedings

of the IEEE 24th Annual Northeast Bioengineering Conference, pp. 130–132.

Available from: IEEE Xplore, [April 2006].

Kamiuchi, S. & Maeyama, S. 2004, ‘A novel human interface of an omni-

directional wheelchair’, 13th IEEE International Workshop on Robot and

Human Interactive Communication, pp. 101–106. Available from: IEEE Xplore,

[April 2006].

52

BIBLIOGRAPHY

Kitagawa, L., Kobayashi, T., Beppu, T. & Terashima, K. 2001, ‘Semi-autonomous

obstacle avoidance of omnidirectional wheelchair by joystick impedance

control’, Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, vol. 4, pp. 2148–2153. Available from: IEEE Xplore, [April

2006].

Leong, M. 2006, Active User Omni-Directional Wheelchair, Honours Thesis, The

University of Western Australia.

Lippitt, T.C. & Jones, W.C. 1998, ‘OmniBot Mobile Base’, KSC Re-

search and Technology Report [Online], NASA, USA. Available from:

<http://rtreport.ksc.nasa.gov/techreports/98report/09-ar/ar06.html> [April

2006].

McCandless, A. 2001, Design and construction of a robot vehicle chassis, Honours

Thesis, The University of Western Australia.

Nagatani, K., Tachibana, S., Sofne, M. & Tanaka, Y. 2000, ‘Improvement

of odometry for omnidirectional vehicle using optical flow information’,

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, vol. 1, pp. 468–473. Available from: IEEE Xplore, [April 2006].

Roboteq. 2005, AX1500 User’s Manual [Online]. 1.7b. Available from:

<http://www.roboteq.com/> [June 2006].

Shimada, A., Yajima, S., Viboonchaicheep, P. & Samura, K. 2005, ‘Mecanum-wheel

vehicle systems based on position corrective control’, 32nd Annual Conference

of IEEE Industrial Electronics Society, pp. 2077–2082. Available from: IEEE

Xplore, [April 2006].

Tahboub, K.A. & Asada, H.H. 2000, ‘Dynamics analysis and control of a holonomic

vehicle with a continuously variable transmission’, Proceedings of the IEEE

International Conference on Robotics and Automation, vol. 3, pp. 2466–2472.

Available from: IEEE Xplore, [April 2006].

53

BIBLIOGRAPHY

Terashima, K., Miyoshi, T., Urbana, J. & Kitagawa, H. 2004, ‘Frequency shape

control of omni-directional wheelchair to increase user’s comfort’, Proceedings

of the IEEE International Conference on Robotics and Automation, vol. 3,

pp. 3119–3124. Available from: IEEE Xplore, [April 2006].

Urbano, J., Terashima, K., Miyoshi, T. & Kitagawa, H. 2004, ‘Impedance control

for safety and comfortable navigation of an omni-directional mobile wheelchair’,

Proceedings of the International Conference on Intelligent Robots and Systems,

vol. 2, pp. 1902–1907. Available from: IEEE Xplore, [April 2006].

Urbano, J., Terashima, K., Miyoshi, T. & Kitagawa, H. 2005, ‘Velocity control

of an omni-directional wheelchair considering user’s comfort by suppressing

vibration’, IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 3169–3174. Available from: IEEE Xplore, [April 2006].

Viboonchaicheep, P., Shimada, A. & Kosaka, Y. 2003, ‘Position rectification control

for Mecanum wheeled omni-directional vehicles’, The 29th Annual Conference

of the IEEE Industrial Electronics Society, vol. 1, pp. 854–859. Available from:

IEEE Xplore, [April 2006].

Voo, C.Y. 2000, Low level driving routines for the omni-directional robot, Honours

Dissertation, The University of Western Australia.

Wada, M. & Asada, H. 1998, ‘A holonomic omnidirectional vehicle with a

reconfigurable footprint mechanism and it’s application to wheelchairs’,

Proceedings of the IEEE International Conference on Robotics and Automation,

vol. 1, pp. 774–780. Available from: IEEE Xplore, [April 2006].

West, M. & Asada, H. 1992, ‘Design of a holonomic omnidirectional vehicle’,

Proceeding of the IEEE International Conference on Robotics and Automation,

vol. 1, pp. 97–103. Available from: IEEE Xplore, [April 2006].

54

Appendix A

Code

A.1 ODW.h

1 /**
2 * ODW.h
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * This is the header file for the general ODW code.
12 *
13 * Note:
14 * The types , variables and functions defined here should ←↩

be available
15 * regardless of the implementation.
16 */
17
18
19 // GLOBAL VARIABLES
20
21 /**
22 * If set to 1, the program and wheelchair control will stop.
23 */
24 int STOP_RUNNING;
25
26
27 // FUNCTIONS
28

55

A.1. ODW.H

29 /**
30 * Input: NONE
31 * Output: 0 = ok
32 * -1 = error
33 * Semantics: Initialise and start all the functions of ←↩

the ODW
34 */
35 int ODWInit(void);
36
37 /**
38 * Input: NONE
39 * Output: 0 = ok
40 * -1 = error
41 * Semantics: Stop and release all functions of the ODW
42 */
43 int ODWStop(void);

56

CHAPTER A. CODE

A.2 ODW.c

1 /**
2 * ODW.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * This file contains the main function and other general ←↩

initialisation and
12 * stop functions for the ODW code.
13 */
14
15
16 #include "eyebot.h"
17 #include <math.h>
18 #include <stdlib.h>
19 #include "ODW.h"
20 #include "ODW_MotorCtrl.h"
21 #include "ODW_IR.h"
22 #include "ODW_Joystick.h"
23
24
25 int ODWInit ()
26 {
27 int result;
28
29 STOP_RUNNING = 0;
30
31 // Motor Control
32 result = startMotorCtrl ();
33 if(result != 0) return result;
34
35 OSWait (10);
36
37 // Joystick Control
38 result = startJoystick ();
39 if(result != 0) return result;
40
41 OSWait (10);
42
43 // Infra -red Remote Control
44 result = startIR ();
45 if(result != 0) return result;
46

57

A.2. ODW.C

47 return result;
48 }
49
50
51 int ODWStop ()
52 {
53 int result;
54
55 // Infra -red Remote Control
56 result = stopIR ();
57 if(result != 0) return result;
58
59 OSWait (10);
60
61 // Joystick Control
62 result = stopJoystick ();
63 if(result != 0) return result;
64
65 OSWait (10);
66
67 // Motor Control
68 result = stopMotorCtrl ();
69 if(result != 0) return result;
70
71 return result;
72 }
73
74
75 int main(int argc , char *argv [])
76 {
77 int result;
78
79 // Start all control modules
80 LCDPrintf("Starting ODW ...\n");
81 result = ODWInit ();
82 if(result != 0)
83 {
84 LCDPrintf("Start ODW Failed !\n");
85 LCDPrintf("Stopping & Exiting\n");
86 ODWStop ();
87 return result;
88 }
89
90 LCDPrintf("Success !\n");
91 OSWait (100);
92
93 // Update LCD and loop until KEY4 pressed
94 while(STOP_RUNNING != 1)
95 {

58

CHAPTER A. CODE

96 WCSpeed wcspeed = getWCSpeed ();
97
98 LCDClear ();
99 LCDMenu("", "", "", "Exit");

100 LCDPrintf("x: %f\n", wcspeed.x);
101 LCDPrintf("y: %f\n", wcspeed.y);
102 LCDPrintf("w: %f\n\n", wcspeed.w);
103 LCDPrintf("IRstep: %d\n", IRstep);
104
105 if(KEYRead () == KEY4) STOP_RUNNING = 1;
106 }
107
108 // Stop all control modules
109 LCDPrintf("Stopping ODW ...\n");
110 result = ODWStop ();
111 if(result != 0)
112 {
113 LCDPrintf("Stop ODW Failed !\n");
114 LCDPrintf("Exiting anyway ...\n");
115 return result;
116 }
117
118 LCDPrintf("Success !\n");
119
120 // Exit program
121 return 0;
122 }

59

A.3. ODW MOTORCTRL.H

A.3 ODW MotorCtrl.h

1 /**
2 * ODW_MotorCtrl.h
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * This is header file for the code that controls the ←↩

motors and the speed of the ODW.
12 *
13 * Note:
14 * The types , variables and functions defined here should ←↩

be available
15 * regardless of the implementation.
16 */
17
18
19 // DEFINITIIONS
20
21 /**
22 * Set to 1 if using daisy -chaining of Roboteq cards.
23 * Set to 0 otherwise.
24 */
25 #define DAISY 1
26
27 /**
28 * Required settings for serial communication with Roboteq ←↩

cards
29 * Baud: 9600 kb/s
30 * Handshaking: None
31 * Start bits: 1
32 * Data bits: 7
33 * Parity: Even
34 * Stop bits: 1
35 */
36 #define ROBOTEQ_BAUD SER9600
37 #define ROBOTEQ_HANDSHAKE NONE
38
39 /**
40 * 100/Hz
41 * Frequency at which to transmit speed signals to motors
42 */
43 #define MOTOR_CTRL_FREQ 100/2
44

60

CHAPTER A. CODE

45 /**
46 * ODW physical specifications
47 */
48 #define ODW_WIDTH 5.20
49 #define ODW_LENGTH 5.40
50 #define WHEEL_RADIUS 0.95
51
52 /**
53 * Speed value for stopping the ODW
54 */
55 #define WC_STOPPED (WCSpeed) {0,0,0}
56
57 /**
58 * Address of values to change in MC68332 chip to set values←↩

for serial communication
59 */
60 #define sccr1 0xfc0a
61
62
63 // TYPE DEFINITIONS
64
65 /**
66 * Holds speed values for each individual motor in the ODW ←↩

in rads/sec
67 */
68 typedef struct
69 {
70 int FL;
71 int FR;
72 int BL;
73 int BR;
74 } WCMotorSpeeds;
75
76 /**
77 * Holds speed values for the overall motion of the ODW
78 */
79 typedef struct
80 {
81 double x;
82 double y;
83 double w;
84 } WCSpeed;
85
86 /**
87 * Holds position values for the overall motion of the ODW
88 */
89 typedef struct
90 {
91 double x;

61

A.3. ODW MOTORCTRL.H

92 double y;
93 double phi;
94 } WCPosition;
95
96
97 // GLOBAL VARIABLES
98
99 /**

100 * The currently desired individual motor speeds.
101 * Max value per motor = 127 = 0x7F
102 */
103 WCMotorSpeeds DESIRED_MOTOR_SPEEDS;
104
105 /**
106 * The currently desired overall ODW speed.
107 * Max value per axis = 100
108 */
109 WCSpeed DESIRED_WC_SPEED;
110
111 /**
112 * The handle for the timer which continues to
113 * send the currently desired motor speeds to the
114 * motor controller cards.
115 */
116 TimerHandle MotorCtrlTimer;
117
118
119 // FUNCTIONS
120
121 /**
122 * Input: (wcmotorspeeds) The motor speeds to convert
123 * Output: The corresponding overall speed of the ODW
124 * Semantics: Convert individual motor speeds into the ←↩

overall WC speed
125 */
126 WCSpeed forwardKinematics(WCMotorSpeeds wcmotorspeeds);
127
128 /**
129 * Input: (wcspeed) The overall speed of the ODW to convert
130 * Output: The corresponding speeds of the individual motors
131 * Semantics: Convert the overall WC speed into required ←↩

individual motor speeds
132 */
133 WCMotorSpeeds inverseKinematics(WCSpeed wcspeed);
134
135 /**
136 * Input: NONE
137 * Output: 0 = ok
138 * -1 = error

62

CHAPTER A. CODE

139 * Semantics: Set up and start the control of the motors
140 */
141 int startMotorCtrl(void);
142
143 /**
144 * Input: NONE
145 * Output: 0 = ok
146 * -1 = error
147 * Semantics: Stop the control of the motors and release ←↩

the serial ports
148 */
149 int stopMotorCtrl(void);
150
151 /**
152 * Input: NONE
153 * Output: NONE
154 * Semantics: Control the motors using the global ←↩

parameters
155 */
156 void MotorCtrl(void);
157
158 /**
159 * Input: (wcspeed) The speed values to set for the ODW
160 * Output: 0 = ok
161 * -1 = error
162 * Semantics: Set the speed of the overall ODW (rather ←↩

than each motor independently)
163 */
164 int setWCSpeed(WCSpeed wcspeed);
165
166 /**
167 * Input: NONE
168 * Output: The currently desired speed for the ODW
169 * Semantics: Get the current desired speed of the overall←↩

ODW (rather than each individual motor)
170 */
171 WCSpeed getWCSpeed(void);
172
173 /**
174 * Input: (wcmotorspeeds) The speed of each motor to set
175 * Output: 0 = ok
176 * -1 = error
177 * Semantics: Set the speed of each motor independently ←↩

(rather than the overall ODW)
178 */
179 int setWCMotorSpeeds(WCMotorSpeeds wcmotorspeeds);
180
181 /**
182 * Input: NONE

63

A.3. ODW MOTORCTRL.H

183 * Output: The currently desired motor speeds
184 * Semantics: Get the current desired speed of each ←↩

individual motor (rather than the overall ODW)
185 */
186 WCMotorSpeeds getWCMotorSpeeds(void);

64

CHAPTER A. CODE

A.4 ODW MotorCtrl.c

1 /**
2 * ODW_MotorCtrl.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * This is code to control the motors and the speed of the←↩

ODW.
12 * This implementation uses the Roboteq AX1500 cards ←↩

installed.
13 */
14
15
16 #include "eyebot.h"
17 #include "ODW_MotorCtrl.h"
18 #include <math.h>
19 #include <stdio.h>
20 #include <stdlib.h>
21
22
23 WCSpeed forwardKinematics(WCMotorSpeeds wcmotorspeeds)
24 {
25 WCSpeed wcspeed;
26
27 // Find ODW speeds by converting motor speeds
28 wcspeed.x = (wcmotorspeeds.FL + wcmotorspeeds.FR + ←↩

wcmotorspeeds.BL + wcmotorspeeds.BR) * 100.0 / ←↩
(127.0*4);

29 wcspeed.y = (-wcmotorspeeds.FL + wcmotorspeeds.FR + ←↩
wcmotorspeeds.BL - wcmotorspeeds.BR) * 100.0 / ←↩
(127.0*4);

30 wcspeed.w = (-wcmotorspeeds.FL + wcmotorspeeds.FR - ←↩
wcmotorspeeds.BL + wcmotorspeeds.BR) * 100.0 / ←↩
(127.0*4);

31
32 return wcspeed;
33 }
34
35
36 WCMotorSpeeds inverseKinematics(WCSpeed wcspeed)
37 {
38 WCMotorSpeeds wcmotorspeeds;
39

65

A.4. ODW MOTORCTRL.C

40 // Find motor speeds by converting ODW speed components
41 wcmotorspeeds.FL = round((wcspeed.x - wcspeed.y - ←↩

wcspeed.w) * 127.0/100.0);
42 wcmotorspeeds.FR = round((wcspeed.x + wcspeed.y + ←↩

wcspeed.w) * 127.0/100.0);
43 wcmotorspeeds.BL = round((wcspeed.x + wcspeed.y - ←↩

wcspeed.w) * 127.0/100.0);
44 wcmotorspeeds.BR = round((wcspeed.x - wcspeed.y + ←↩

wcspeed.w) * 127.0/100.0);
45
46 // If any of the motor speeds are outside [-127, 127] ←↩

then scale all speeds down
47 // the fastest motor is spinning at 100% speed (either ←↩

-127 or 127).
48 double scaling_factor = 1;
49 if((wcmotorspeeds.FL > 127) && (←↩

127.0/ wcmotorspeeds.FL < scaling_factor)) ←↩
scaling_factor = 127.0 / wcmotorspeeds.FL;

50 if((wcmotorspeeds.FR > 127) && (←↩
127.0/ wcmotorspeeds.FR < scaling_factor)) ←↩
scaling_factor = 127.0 / wcmotorspeeds.FR;

51 if((wcmotorspeeds.BL > 127) && (←↩
127.0/ wcmotorspeeds.BL < scaling_factor)) ←↩
scaling_factor = 127.0 / wcmotorspeeds.BL;

52 if((wcmotorspeeds.BR > 127) && (←↩
127.0/ wcmotorspeeds.BR < scaling_factor)) ←↩
scaling_factor = 127.0 / wcmotorspeeds.BR;

53 if((wcmotorspeeds.FL < -127) && ←↩
(-127.0/ wcmotorspeeds.FL < scaling_factor)) ←↩
scaling_factor = -127.0 / wcmotorspeeds.FL;

54 if((wcmotorspeeds.FR < -127) && ←↩
(-127.0/ wcmotorspeeds.FR < scaling_factor)) ←↩
scaling_factor = -127.0 / wcmotorspeeds.FR;

55 if((wcmotorspeeds.BL < -127) && ←↩
(-127.0/ wcmotorspeeds.BL < scaling_factor)) ←↩
scaling_factor = -127.0 / wcmotorspeeds.BL;

56 if((wcmotorspeeds.BR < -127) && ←↩
(-127.0/ wcmotorspeeds.BR < scaling_factor)) ←↩
scaling_factor = -127.0 / wcmotorspeeds.BR;

57
58 wcmotorspeeds.FL = round(scaling_factor * ←↩

wcmotorspeeds.FL);
59 wcmotorspeeds.FR = round(scaling_factor * ←↩

wcmotorspeeds.FR);
60 wcmotorspeeds.BL = round(scaling_factor * ←↩

wcmotorspeeds.BL);
61 wcmotorspeeds.BR = round(scaling_factor * ←↩

wcmotorspeeds.BR);
62

66

CHAPTER A. CODE

63 return wcmotorspeeds;
64 }
65
66
67 int startMotorCtrl ()
68 {
69 // Initialise the second serial port for transmission to←↩

Roboteq cards
70 LCDPrintf("Init SERIAL2 ...\n");
71 int result = OSInitRS232(ROBOTEQ_BAUD , ←↩

ROBOTEQ_HANDSHAKE , SERIAL2);
72 // The next line sets even parity for serial interface 2
73 (*(((volatile BYTE*) Ser1Base)+3)) = 0x1a;
74
75 // If not using daisy chaining , also initialise the ←↩

first serial port
76 if(!DAISY) {
77 LCDPrintf("Init SERIAL1 ...\n");
78 result = result && OSInitRS232(ROBOTEQ_BAUD , ←↩

ROBOTEQ_HANDSHAKE , SERIAL1);
79 // The next line sets even parity for serial ←↩

interface 1
80 (*((volatile unsigned short *) sccr1)) = 0x042c;
81 }
82
83 setWCSpeed(WC_STOPPED);
84
85 MotorCtrlTimer = OSAttachTimer(MOTOR_CTRL_FREQ , ←↩

MotorCtrl);
86
87 return (result);
88 }
89
90
91 int stopMotorCtrl ()
92 {
93 // Stop continuous transmission of speed signals
94 int result = !OSDetachTimer(MotorCtrlTimer);
95
96 // Send one last transmission of zero values
97 setWCSpeed(WC_STOPPED);
98 MotorCtrl ();
99

100 return result;
101 }
102
103
104 void MotorCtrl ()
105 {

67

A.4. ODW MOTORCTRL.C

106 // Grab a snapshot of the currently desired motor speeds
107 int FL = DESIRED_MOTOR_SPEEDS.FL;
108 int FR = DESIRED_MOTOR_SPEEDS.FR*-1; // FR motor spins ←↩

backwards with +ve signal
109 int BL = DESIRED_MOTOR_SPEEDS.BL;
110 int BR = DESIRED_MOTOR_SPEEDS.BR*-1; // BR motor spins ←↩

backwards with +ve signal
111
112 // Limit speeds to allowed values between -127 and 127
113 if(FL > 127) FL = 127;
114 if(FR > 127) FR = 127;
115 if(BL > 127) BL = 127;
116 if(BR > 127) BR = 127;
117 if(FL < -127) FL = -127;
118 if(FR < -127) FR = -127;
119 if(BL < -127) BL = -127;
120 if(BR < -127) BR = -127;
121
122 // Convert integer values into hexidecimal characters
123 char sFL[3], sFR[3], sBL[3], sBR [3];
124 snprintf(sFL , 3, "%X", abs(FL));
125 snprintf(sFR , 3, "%X", abs(FR));
126 snprintf(sBL , 3, "%X", abs(BL));
127 snprintf(sBR , 3, "%X", abs(BR));
128
129 // Ensure all character arrays contain exactly 2 ←↩

characters
130 // (Pad the first character with a 0 if only 1 character←↩

is used)
131 if(FL < 16 && FL > -16)
132 {
133 sFL[1] = sFL [0];
134 sFL[0] = ’0’;
135 }
136 if(FR < 16 && FR > -16)
137 {
138 sFR[1] = sFR [0];
139 sFR[0] = ’0’;
140 }
141 if(BL < 16 && BL > -16)
142 {
143 sBL[1] = sBL [0];
144 sBL[0] = ’0’;
145 }
146 if(BR < 16 && BR > -16)
147 {
148 sBR[1] = sBR [0];
149 sBR[0] = ’0’;
150 }

68

CHAPTER A. CODE

151
152 // Transmit commands for the front left motor
153 OSSendCharRS232(’!’, SERIAL2);
154 if (FL < 0) OSSendCharRS232(’a’, SERIAL2);
155 else OSSendCharRS232(’A’, SERIAL2);
156 OSSendCharRS232(sFL[0], SERIAL2);
157 OSSendCharRS232(sFL[1], SERIAL2);
158 OSSendCharRS232(’\r’, SERIAL2);
159
160 // Transmit commands for the front right motor
161 OSSendCharRS232(’!’, SERIAL2);
162 if (FR < 0) OSSendCharRS232(’b’, SERIAL2);
163 else OSSendCharRS232(’B’, SERIAL2);
164 OSSendCharRS232(sFR[0], SERIAL2);
165 OSSendCharRS232(sFR[1], SERIAL2);
166 OSSendCharRS232(’\r’, SERIAL2);
167
168 // Transmit commands for the back right motor
169 OSSendCharRS232(’!’+DAISY , SERIAL1+DAISY);
170 if (BR < 0) OSSendCharRS232(’a’, SERIAL1+DAISY);
171 else OSSendCharRS232(’A’, SERIAL1+DAISY);
172 OSSendCharRS232(sBR[0], SERIAL1+DAISY);
173 OSSendCharRS232(sBR[1], SERIAL1+DAISY);
174 OSSendCharRS232(’\r’, SERIAL1+DAISY);
175
176 // Transmit commands for the back left motor
177 OSSendCharRS232(’!’+DAISY , SERIAL1+DAISY);
178 if (BL < 0) OSSendCharRS232(’b’, SERIAL1+DAISY);
179 else OSSendCharRS232(’B’, SERIAL1+DAISY);
180 OSSendCharRS232(sBL[0], SERIAL1+DAISY);
181 OSSendCharRS232(sBL[1], SERIAL1+DAISY);
182 OSSendCharRS232(’\r’, SERIAL1+DAISY);
183 }
184
185
186 int setWCSpeed(WCSpeed wcspeed)
187 {
188 // Convert desired ODW speed into required wheel speeds
189 WCMotorSpeeds wcmotorspeeds = inverseKinematics(wcspeed←↩

);
190
191 return setWCMotorSpeeds(wcmotorspeeds);
192 }
193
194
195 WCSpeed getWCSpeed ()
196 {
197 WCMotorSpeeds wcmotorspeeds = getWCMotorSpeeds ();
198

69

A.4. ODW MOTORCTRL.C

199 // Convert wheel speeds into resulting ODW speed
200 return forwardKinematics(wcmotorspeeds);
201 }
202
203
204 int setWCMotorSpeeds(WCMotorSpeeds wcmotorspeeds)
205 {
206 // Limit motor speeds to allowed values (between -127 ←↩

and 127)
207 if(wcmotorspeeds.FL > 127) wcmotorspeeds.FL = 127;
208 if(wcmotorspeeds.FR > 127) wcmotorspeeds.FR = 127;
209 if(wcmotorspeeds.BL > 127) wcmotorspeeds.BL = 127;
210 if(wcmotorspeeds.BR > 127) wcmotorspeeds.BR = 127;
211 if(wcmotorspeeds.FL < -127) wcmotorspeeds.FL = -127;
212 if(wcmotorspeeds.FR < -127) wcmotorspeeds.FR = -127;
213 if(wcmotorspeeds.BL < -127) wcmotorspeeds.BL = -127;
214 if(wcmotorspeeds.BR < -127) wcmotorspeeds.BR = -127;
215
216 DESIRED_MOTOR_SPEEDS = wcmotorspeeds;
217
218 return 0;
219 }
220
221
222 WCMotorSpeeds getWCMotorSpeeds ()
223 {
224 return DESIRED_MOTOR_SPEEDS;
225 }

70

CHAPTER A. CODE

A.5 ODW Joystick.h

1 /**
2 * ODW_Joystick.h
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * This is the header file for the code that initialises ←↩

and reads from the ODW’s joystick.
12 *
13 * Note:
14 * The types , variables and functions defined here should ←↩

be available
15 * regardless of the implementation.
16 */
17
18
19 // DEFINITIIONS
20
21 /**
22 * 100/Hz
23 * The frequency with which to read from the joystick
24 */
25 #define JOY_FREQ 100/10
26
27 /**
28 * The bitmasks for extracting the bit values for ←↩

associated buttons
29 */
30 #define BUTTON5 0x10
31 #define BUTTON6 0x20
32 #define BUTTON7 0x40
33 #define BUTTON8 0x80
34
35 /**
36 * The analogue channels to which each axis is connected
37 */
38 #define X_CHANNEL 4
39 #define Y_CHANNEL 5
40 #define Z_CHANNEL 6
41 #define T_CHANNEL 7
42
43 /**
44 * The threshold values for each axis

71

A.5. ODW JOYSTICK.H

45 */
46 #define X_THRESHOLD 15
47 #define Y_THRESHOLD 15
48 #define Z_THRESHOLD 15
49
50 /**
51 * With the throttle set to the minimum level , the maximum ←↩

possible ODW speed
52 * will be limited to 100/ THROTTLE_DIVISOR %
53 */
54 #define THROTTLE_DIVISOR 5.0
55
56
57 // TYPE DEFINITIIONS
58
59 /**
60 * Holds position values for each axis in the joystick.
61 */
62 typedef struct
63 {
64 int x;
65 int y;
66 int z;
67 int t;
68 } JoyPos;
69
70 /**
71 * Holds bit values for each button on the joystick.
72 */
73 typedef struct
74 {
75 BYTE b5;
76 BYTE b6;
77 BYTE b7;
78 BYTE b8;
79 } ButtonState;
80
81
82 // GLOBAL VARIABLES
83
84 /**
85 * Hold the minimum , central and maximum values for each ←↩

axis in the joystick
86 */
87 JoyPos JOY_MIN , JOY_MAX , JOY_CURRENT;
88
89 /**
90 * Holds integer values representing button states
91 */

72

CHAPTER A. CODE

92 ButtonState BUT_CURRENT;
93
94 /**
95 * TimerHandle for Joystick timer
96 */
97 TimerHandle JoystickTimer;
98
99

100 // FUNCTIONS
101
102 /**
103 * Input: NONE
104 * Output: 0 = ok
105 * -1 = error
106 * Semantics: Callibrates the minimum and maximum values ←↩

for each axis
107 * in the joystick and sets the global variables.
108 */
109 int callibrateJoystick(void);
110
111 /**
112 * Input: NONE
113 * Output: 0 = ok
114 * -1 = error
115 * Semantics: Callibrates the joystcik , and starts the ←↩

reading of joystick values
116 */
117 int startJoystick(void);
118
119 /**
120 * Input: NONE
121 * Output: 0 = ok
122 * -1 = error
123 * Semantics: Stops the reading of joystick values
124 */
125 int stopJoystick(void);
126
127 /**
128 * Input: NONE
129 * Output: NONE
130 * Semantics: Updates the current settings of the ←↩

joystick , and sets the
131 * ODW speed appropriately
132 */
133 void Joystick(void);
134
135 /**
136 * Input: NONE
137 * Output: NONE

73

A.5. ODW JOYSTICK.H

138 * Semantics: Get the current position of each axis in the←↩
joystick.

139 * The result will be stored in the global ←↩
variable JOY_CURRENT

140 */
141 void updateJoystickPosition(void);
142
143 /**
144 * Input: NONE
145 * Output: NONE
146 * Semantics: Get current state of each button on the ←↩

joystick base
147 * The result will be stored in the global ←↩

variable BUT_CURRENT
148 */
149 void updateJoystickButtons(void);
150
151 /**
152 * Input: NONE
153 * Output: The current position of the joystick
154 * Semantics: Get the current position of the joystick
155 */
156 JoyPos getJoystickPosition(void);
157
158 /**
159 * Input: NONE
160 * Output: The current state of all 4 joystick buttons
161 * Semantics: Get the current state of the 4 buttons
162 */
163 ButtonState getJoystickButtons(void);
164
165 /**
166 * Input: Button code
167 * 0 = Any buttons pushed
168 * 5 = Button 5
169 * 6 = Button 6
170 * 7 = Button 7
171 * 8 = Button 8
172 * Output: A bit value for whether the buttons are ←↩

currently being pushed
173 * -1 = Illegal button code
174 * 0 = Not pushed
175 * 1 = Being pushed
176 * Semantics: Get the current state of a button on the ←↩

joystick , or
177 * determine whether any button is currently ←↩

being pressed.
178 */
179 BYTE isButtonPushed(int button_code);

74

CHAPTER A. CODE

A.6 ODW Joystick.c

1 /**
2 * ODW_Joystick.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * This is the code for initialising and reading from the ←↩

ODW’s joystick.
12 */
13
14
15 #include "eyebot.h"
16 #include "ODW_Joystick.h"
17 #include "ODW_MotorCtrl.h"
18 #include <math.h>
19
20
21 int callibrateJoystick ()
22 {
23 // Auto callibration (magic numbers)
24 JOY_MIN = (JoyPos) {95, 920, 145, 1000};
25 JOY_MAX = (JoyPos) {905, 75, 845, 58};
26
27 /*
28 // Manual callibration
29 LCDClear ();
30 LCDPrintf ("Move joy to...\n");
31
32 LCDPrintf (" bottom left\n");
33 LCDPrintf ("& push button 5\n");
34 while(!isButtonPushed (5));
35 AUBeep ();
36 JOY_MIN = joy();
37 OSWait (50);
38
39 LCDPrintf ("top right\n");
40 LCDPrintf ("& push button 6\n");
41 while(!isButtonPushed (6));
42 AUBeep ();
43 JOY_MAX = joy();
44 LCDPrintf ("Done!\n");
45 OSWait (100);
46 */

75

A.6. ODW JOYSTICK.C

47
48 return 0;
49 }
50
51
52 int startJoystick ()
53 {
54 int result = callibrateJoystick ();
55
56 if (result != 0) return result;
57
58 JoystickTimer = OSAttachTimer(JOY_FREQ , Joystick);
59
60 if (JoystickTimer == 0) result = 1;
61 else result = 0;
62
63 return result;
64 }
65
66
67 int stopJoystick ()
68 {
69 int result = !OSDetachTimer(JoystickTimer);
70
71 return result;
72 }
73
74
75 void Joystick ()
76 {
77 double divisor;
78
79 // Read current joystick values and update global ←↩

variables accordingly
80 updateJoystickPosition ();
81 updateJoystickButtons ();
82
83 // Adjust speed values to account for throttle position
84 divisor = THROTTLE_DIVISOR - (THROTTLE_DIVISOR -1) /100 * ←↩

JOY_CURRENT.t;
85
86 // Set the ODW speed accordingly
87 setWCSpeed((WCSpeed) {round(JOY_CURRENT.y/divisor), ←↩

round(JOY_CURRENT.x/divisor), ←↩
round(JOY_CURRENT.z/divisor)});

88 }
89
90
91 void updateJoystickPosition ()

76

CHAPTER A. CODE

92 {
93 // Read raw values from joystick
94 JOY_CURRENT.x = OSGetAD(X_CHANNEL);
95 JOY_CURRENT.y = OSGetAD(Y_CHANNEL);
96 JOY_CURRENT.z = OSGetAD(Z_CHANNEL);
97 JOY_CURRENT.t = OSGetAD(T_CHANNEL);
98
99 // Adjust for min/max and threshold region

100 // Convert to absolute value between 0 and 100 (does not←↩
account for +ve and -ve)

101 double x = 100*(←↩
abs (200*(JOY_CURRENT.x-JOY_MIN.x)/(JOY_MAX.x-JOY_MIN.x) -100) ←↩
- X_THRESHOLD)/(100- X_THRESHOLD);

102 double y = 100*(←↩
abs (200*(JOY_CURRENT.y-JOY_MIN.y)/(JOY_MAX.y-JOY_MIN.y) -100) ←↩
- Y_THRESHOLD)/(100- Y_THRESHOLD);

103 double z = 100*(←↩
abs (200*(JOY_CURRENT.z-JOY_MIN.z)/(JOY_MAX.z-JOY_MIN.z) -100) ←↩
- Z_THRESHOLD)/(100- Z_THRESHOLD);

104
105 // Check limits of 0 and 100 are enforced
106 if(x<0) x=0;
107 if(y<0) y=0;
108 if(z<0) z=0;
109 if(x >100) x=100;
110 if(y >100) y=100;
111 if(z >100) z=100;
112
113 // Convert back to positive and negative values between ←↩

-100 and 100
114 if(JOY_CURRENT.x > 500) x = -1*x;
115 if(JOY_CURRENT.y > 500) y = -1*y;
116 if(JOY_CURRENT.z > 500) z = -1*z;
117
118 // Round to integers
119 JOY_CURRENT.x = (int) round(x);
120 JOY_CURRENT.y = (int) round(y);
121 JOY_CURRENT.z = (int) round(z);
122
123 // Correct throttle to account for the min/max
124 JOY_CURRENT.t = round (100 * (JOY_CURRENT.t - ←↩

JOY_MIN.t)/(JOY_MAX.t - JOY_MIN.t));
125 if(JOY_CURRENT.t<0) JOY_CURRENT.t=0;
126 if(JOY_CURRENT.t>100) JOY_CURRENT.t=100;
127 }
128
129
130 void updateJoystickButtons ()
131 {

77

A.6. ODW JOYSTICK.C

132 // Read raw values from joystick , and extract associated←↩
bit

133 BUT_CURRENT.b5 = !((OSReadInLatch(0) & ←↩
BUTTON5)/BUTTON5);

134 BUT_CURRENT.b6 = !((OSReadInLatch(0) & ←↩
BUTTON6)/BUTTON6);

135 BUT_CURRENT.b7 = !((OSReadInLatch(0) & ←↩
BUTTON7)/BUTTON7);

136 BUT_CURRENT.b8 = !((OSReadInLatch(0) & ←↩
BUTTON8)/BUTTON8);

137 }
138
139 JoyPos getJoystickPosition(void)
140 {
141 JoyPos joypos;
142
143 joypos.x = JOY_CURRENT.x;
144 joypos.y = JOY_CURRENT.y;
145 joypos.z = JOY_CURRENT.z;
146 joypos.t = JOY_CURRENT.t;
147
148 return joypos;
149 }
150
151 ButtonState getJoystickButtons(void)
152 {
153 ButtonState bs;
154
155 bs.b5 = BUT_CURRENT.b5;
156 bs.b6 = BUT_CURRENT.b6;
157 bs.b7 = BUT_CURRENT.b7;
158 bs.b8 = BUT_CURRENT.b8;
159
160 return bs;
161 }
162
163 BYTE isButtonPushed(int button_code)
164 {
165 switch (button_code) {
166 case 0:
167 return (BUT_CURRENT.b5 || BUT_CURRENT.b6 || ←↩

BUT_CURRENT.b7 || BUT_CURRENT.b8);
168 break;
169 case 5:
170 return BUT_CURRENT.b5;
171 break;
172 case 6:
173 return BUT_CURRENT.b6;
174 break;

78

CHAPTER A. CODE

175 case 7:
176 return BUT_CURRENT.b7;
177 break;
178 case 8:
179 return BUT_CURRENT.b8;
180 break;
181 }
182
183 return -1;
184 }

79

A.7. ODW IR.H

A.7 ODW IR.h

1 /**
2 * ODW_IR.h
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * This is header file for the code that allows control of←↩

the ODW via an
12 * infra -red remote control.
13 *
14 * Note:
15 * The types , variables and functions defined here should ←↩

be available
16 * regardless of the implementation.
17 */
18
19
20 /**
21 * Key Code Meaning
22 *
23 * 0 No Key
24 * RC_0 0 Key
25 * RC_1 1 Key
26 * RC_2 2 Key
27 * RC_3 3 Key
28 * RC_4 4 Key
29 * RC_5 5 Key
30 * RC_6 6 Key
31 * RC_7 7 Key
32 * RC_8 8 Key
33 * RC_9 9 Key
34 * RC_PLUS + Key
35 * RC_MINUS - Key
36 * RC_FF >> Key
37 * RC_RW << Key
38 * RC_STOP Stop Key
39 * RC_PLAY Play Key
40 * RC_STANDBY On/Off Key
41 * RC_OK OK Key
42 */
43
44
45

80

CHAPTER A. CODE

46 // DEFINITIIONS
47
48 /**
49 * 100/Hz
50 * The frequency with which to check for an IR key press
51 */
52 #define IR_FREQ 100/10
53
54
55 // GLOBAL VARIABLES
56
57 /**
58 * Handle for the Infra Red Timer which checks for an
59 * infra red key press with frequency determined by IR_FREQ.
60 */
61 TimerHandle IRTimer;
62
63 /**
64 * The size of a step increase in speed.
65 */
66 int IRstep;
67
68
69 // FUNCTIONS
70
71 /**
72 * Input: NONE
73 * Output: 0 = ok
74 * -1 = error
75 * Semantics: Initialise and start the control by IR ←↩

remote control
76 */
77 int startIR(void);
78
79 /**
80 * Input: NONE
81 * Output: 0 = ok
82 * -1 = error
83 * Semantics: Check for and deal with a key press
84 */
85 void IRKey(void);
86
87 /**
88 * Input: NONE
89 * Output: 0 = ok
90 * -1 = error
91 * Semantics: Stop the control by IR remote control
92 */
93 int stopIR(void);

81

A.8. ODW IR.C

A.8 ODW IR.c

1 /**
2 * ODW_IR.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * This is code to allow control of the ODW via an ←↩

infra -red remote control.
12 */
13
14
15 #include "eyebot.h"
16 #include "ODW_IR.h"
17 #include "ODW_MotorCtrl.h"
18 #include "irtv.h"
19 #include "IRnokia.h"
20
21
22 int startIR(void)
23 {
24 // Initialise IR using appropriate settings
25 int result = ←↩

IRTVInit(SPACE_CODE ,15,0,0x03ff ,SLOPPY_MODE ,1 ,10);
26
27 IRstep = 10;
28 IRTimer = OSAttachTimer(IR_FREQ , IRKey);
29
30 return result;
31 }
32
33
34 int stopIR(void)
35 {
36 int result = !OSDetachTimer(IRTimer);
37 // Terminate IR
38 IRTVTerm ();
39
40 return result;
41 }
42
43
44 void IRKey(void)
45 {

82

CHAPTER A. CODE

46 int IRKey = IRTVRead ();
47 int x, y, w;
48 WCSpeed currentwcspeed = getWCSpeed ();
49
50 switch(IRKey)
51 {
52 case 0:
53 // No key pressed
54 break;
55
56 case RC_0:
57 // 0 key pressed: STOP!
58 setWCSpeed(WC_STOPPED);
59 break;
60
61 case RC_1:
62 // 1 key pressed: Forward -Left
63 if (currentwcspeed.x == currentwcspeed.y && ←↩

currentwcspeed.w == 0)
64 {
65 x = currentwcspeed.x;
66 y = currentwcspeed.y;
67 if (x < 0) x = 0;
68 if (y < 0) y = 0;
69 x = x + IRstep;
70 y = y + IRstep;
71 } else {
72 x = IRstep;
73 y = IRstep;
74 }
75 setWCSpeed((WCSpeed) {x, y, 0});
76 break;
77
78 case RC_2:
79 // 2 key pressed: Forward
80 if (currentwcspeed.y == 0 && currentwcspeed.w ←↩

== 0)
81 {
82 x = currentwcspeed.x;
83 if (x < 0) x = 0;
84 x = x + IRstep;
85 } else {
86 x = IRstep;
87 }
88 setWCSpeed((WCSpeed) {x, 0, 0});
89 break;
90
91 case RC_3:
92 // 3 key pressed: Forward -Right

83

A.8. ODW IR.C

93 if (currentwcspeed.x == -1* currentwcspeed.y && ←↩
currentwcspeed.w == 0)

94 {
95 x = currentwcspeed.x;
96 y = currentwcspeed.y;
97 if (x < 0) x = 0;
98 if (y > 0) y = 0;
99 x = x + IRstep;

100 y = y - IRstep;
101 } else {
102 x = IRstep;
103 y = -1 * IRstep;
104 }
105 setWCSpeed((WCSpeed) {x, y, 0});
106 break;
107
108 case RC_4:
109 // 4 key pressed: Left
110 if (currentwcspeed.x == 0 && currentwcspeed.w ←↩

== 0)
111 {
112 y = currentwcspeed.y;
113 if (y < 0) y = 0;
114 y = y + IRstep;
115 } else {
116 y = IRstep;
117 }
118 setWCSpeed((WCSpeed) {0, y, 0});
119 break;
120
121 case RC_5:
122 // 5 key pressed: STOP!
123 setWCSpeed(WC_STOPPED);
124 break;
125
126 case RC_6:
127 // 6 key pressed: Right
128 if (currentwcspeed.x == 0 && currentwcspeed.w ←↩

== 0)
129 {
130 y = currentwcspeed.y;
131 if (y > 0) y = 0;
132 y = y - IRstep;
133 } else {
134 y = -1 * IRstep;
135 }
136 setWCSpeed((WCSpeed) {0, y, 0});
137 break;
138

84

CHAPTER A. CODE

139 case RC_7:
140 // 7 key pressed: Backward -Left
141 if (-1* currentwcspeed.x == currentwcspeed.y && ←↩

currentwcspeed.w == 0)
142 {
143 x = currentwcspeed.x;
144 y = currentwcspeed.y;
145 if (x > 0) x = 0;
146 if (y < 0) y = 0;
147 x = x - IRstep;
148 y = y + IRstep;
149 } else {
150 x = -1 * IRstep;
151 y = IRstep;
152 }
153 setWCSpeed((WCSpeed) {x, y, 0});
154 break;
155
156 case RC_8:
157 // 8 key pressed: Backward
158 if (currentwcspeed.y == 0 && currentwcspeed.w ←↩

== 0)
159 {
160 x = currentwcspeed.x;
161 if (x > 0) x = 0;
162 x = x - IRstep;
163 } else {
164 x = -1 * IRstep;
165 }
166 setWCSpeed((WCSpeed) {x, 0, 0});
167 break;
168
169 case RC_9:
170 // 9 key pressed: Backward -Right
171 if (-1* currentwcspeed.x == -1* currentwcspeed.y ←↩

&& currentwcspeed.w == 0)
172 {
173 x = currentwcspeed.x;
174 y = currentwcspeed.y;
175 if (x > 0) x = 0;
176 if (y > 0) y = 0;
177 x = x - IRstep;
178 y = y - IRstep;
179 } else {
180 x = -1 * IRstep;
181 y = -1 * IRstep;
182 }
183 setWCSpeed((WCSpeed) {x, y, 0});
184 break;

85

A.8. ODW IR.C

185
186 case RC_PLUS:
187 // + key pressed: Increase Step Size
188 IRstep = IRstep + 10;
189 if (IRstep > 100) IRstep = 100;
190 if (IRstep < 5) IRstep = 5;
191 break;
192
193 case RC_MINUS:
194 // - key pressed: Decrease Step Size
195 IRstep = IRstep - 10;
196 if (IRstep > 100) IRstep = 100;
197 if (IRstep < 5) IRstep = 5;
198 break;
199
200 case RC_FF:
201 // >> key pressed: Rotate Right
202 if (currentwcspeed.x == 0.0 && currentwcspeed.y←↩

== 0.0)
203 {
204 w = currentwcspeed.w;
205 if (w > 0) w = 0;
206 w = w - IRstep;
207 } else {
208 w = -1 * IRstep;
209 }
210 setWCSpeed((WCSpeed) {0, 0, w});
211 break;
212
213 case RC_RW:
214 // << key pressed: Rotate Left
215 if (currentwcspeed.x == 0.0 && currentwcspeed.y←↩

== 0.0)
216 {
217 w = currentwcspeed.w;
218 if (w < 0) w = 0;
219 w = w + IRstep;
220 } else {
221 w = IRstep;
222 }
223 setWCSpeed((WCSpeed) {0, 0, w});
224 break;
225
226 case RC_STOP:
227 // Stop key pressed: STOP!
228 setWCSpeed(WC_STOPPED);
229 break;
230 }
231 }

86

CHAPTER A. CODE

A.9 Makefile

1 include Makeincl
2
3 LIBS = -lm
4 CFLAGS =
5 AFLAGS =
6
7 ASMSOURCE = $(wildcard *.s)
8 CSOURCE = $(wildcard *.c)
9

10
11 all: ODW.hex
12
13 ODW.hex: ODW.o ODW_MotorCtrl.o ODW_Joystick.o ODW_IR.o
14 $(CC68) $(CFLAGS) -o ODW.hex ODW.o ODW_MotorCtrl.o ←↩

ODW_Joystick.o ODW_IR.o $(LIBS)
15
16 clean:
17 -$(RM) $(addsuffix .hex ,$(basename $(CSOURCE)) ←↩

$(basename $(ASMSOURCE))) \
18 $(addsuffix .elf ,$(basename $(CSOURCE))) \
19 $(addsuffix .o,$(basename $(CSOURCE))) \
20 $(addsuffix .o,$(basename $(ASMSOURCE))) \
21 *.hex core
22
23 %.o: %.c
24 $(CC68) $(CFLAGS) -c -o $@ $<
25
26 %.o: %.s
27 $(AS68) $(AFLAGS) -c -o $@ $<

87

A.10. MAKEINCL

A.10 Makeincl

1 # Shell script works for Linux and Windows
2 # Thomas Braunl , March 2004
3
4 # Set current version
5 mc = /home/bwoods/ROBIOS
6 CC68 = gcc68
7 AR68 = m68k -eyebot -elf -ar
8 RANLIB68 = m68k -eyebot -elf -ranlib
9 SREC2BIN = srec2bin

10
11 # Detect if running on Unix or DOS. ’ver ’ exists on DOS only
12 ifeq ($(sh ver),)
13 PLATFORM = UNIX
14 COPY = cp -f
15 RM = rm -f
16 TMPDIR = /tmp
17 AS68 = gas68
18
19 else
20 PLATFORM = DOS/Windows
21 COPY = copy
22 RM = del
23 TMPDIR = .
24 AS68 = gas68
25
26 endif

88

CHAPTER A. CODE

A.11 test.c

1 /**
2 * test.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * Test the basic use of the Eyebot LCD.
12 */
13
14 #include "eyebot.h"
15
16 int main(int argc , char* argv[])
17 {
18 LCDPrintf("Hello , World !\n");
19
20 OSWait (500);
21
22 return 0;
23 }

89

A.12. MCTEST.C

A.12 mctest.c

1 /**
2 * mctest.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * Test the communication with the Roboteq cards and the ←↩

resulting motor speeds
12 */
13
14 #include "eyebot.h"
15
16 #define BAUD SER9600
17 #define HANDSHAKE NONE
18 #define INTERFACE SERIAL2
19
20 #define sccr1 0xfc0a
21
22 int main(int argc , char *argv[])
23 {
24 int key , error;
25 char ch;
26
27 LCDClear ();
28 LCDMenu("GO", "", "", "STOP");
29
30 LCDPrintf("Init ...\n");
31 OSInitRS232(BAUD , HANDSHAKE , INTERFACE);
32
33 // Set RS232 on SERIAL2 to 7Bit EvenParity and 1 Stopbit
34 (*(((volatile BYTE*) Ser1Base)+3)) = 0x1a;
35
36 // Set RS232 on SERIAL1 to 7Bit EvenParity and 1 Stopbit
37 //(*((volatile unsigned short *)sccr1)) = 0x042c;
38
39 do
40 {
41 key = KEYGet ();
42 } while (key != KEY1 && key != KEY4);
43
44 OSWait (10);
45
46 if(key == KEY4) return 0;

90

CHAPTER A. CODE

47
48 LCDPrintf("Start ...\n");
49
50 while(KEYRead () != KEY4)
51 {
52 error = OSRecvRS232 (&ch, INTERFACE);
53 if(error == 0) LCDPutChar(ch);
54 else if(error != 1) LCDPrintf("Error: %d\n", ←↩

error);
55 ch = 0;
56
57 OSSendCharRS232(’!’, INTERFACE);
58 OSSendCharRS232(’a’, INTERFACE);
59 OSSendCharRS232(’5’, INTERFACE);
60 OSSendCharRS232(’5’, INTERFACE);
61 OSSendCharRS232(’\r’, INTERFACE);
62 }
63
64 LCDPrintf("Stop ...\n");
65 OSSendCharRS232(’!’, INTERFACE);
66 OSSendCharRS232(’a’, INTERFACE);
67 OSSendCharRS232(’0’, INTERFACE);
68 OSSendCharRS232(’0’, INTERFACE);
69 OSSendCharRS232(’\r’, INTERFACE);
70
71 return 0;
72 }

91

A.13. JOYTEST.C

A.13 joytest.c

1 /**
2 * joytest.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * Test the joystick by displaying readings as numbers on ←↩

the screen.
12 * The LCD can be set (using the Eyebot keys) to display ←↩

either:
13 * - Raw values read from the 4 potentiometers in the ←↩

joystick
14 * - Percentage and thresholded values of the joysticks ←↩

position
15 * - 0’s and 1’s representing the states of the 4 ←↩

joystick buttons
16 */
17
18 #include "eyebot.h"
19 #include <limits.h>
20 #include <math.h>
21
22 #define BUTTON5 0x10
23 #define BUTTON6 0x20
24 #define BUTTON7 0x40
25 #define BUTTON8 0x80
26 #define X_CHANNEL 4
27 #define Y_CHANNEL 5
28 #define Z_CHANNEL 6
29 #define T_CHANNEL 7
30 #define X_THRESHOLD 15
31 #define Y_THRESHOLD 15
32 #define Z_THRESHOLD 15
33
34 typedef struct
35 {
36 int x;
37 int y;
38 int z;
39 int t;
40 } JoyPos;
41
42 int STOP_RUNNING;

92

CHAPTER A. CODE

43 int percent , buttons;
44 JoyPos MAX , MIN;
45
46 int button(int MASK)
47 {
48 return (int) !((OSReadInLatch(0) & MASK)/MASK);
49 }
50
51 JoyPos joy()
52 {
53 JoyPos joypos;
54
55 joypos.x = OSGetAD(X_CHANNEL);
56 joypos.y = OSGetAD(Y_CHANNEL);
57 joypos.z = OSGetAD(Z_CHANNEL);
58 joypos.t = OSGetAD(T_CHANNEL);
59
60 return joypos;
61 }
62
63 void callibrate ()
64 {
65 // Auto callibration (magic numbers)
66 MIN = (JoyPos) {95, 920, 145, 1000};
67 MAX = (JoyPos) {905, 75, 845, 58};
68
69 /*
70 // Manual callibration
71 LCDClear ();
72 LCDPrintf ("Move joy to...\n");
73
74 LCDPrintf (" bottom left\n");
75 LCDPrintf ("& push button 5\n");
76 AUTone (5000 , 50);
77 OSWait (100);
78 AUTone (5000 , 50);
79 OSWait (100);
80 AUBeep ();
81 MIN = joy();
82 OSWait (300);
83
84 LCDPrintf ("top right\n");
85 LCDPrintf ("& push button 6\n");
86 AUTone (5000 , 50);
87 OSWait (100);
88 AUTone (5000 , 50);
89 OSWait (100);
90 AUBeep ();
91 MAX = joy();

93

A.13. JOYTEST.C

92
93 LCDPrintf ("Done!\n");
94 OSWait (100);
95 */
96 }
97
98 int main(int argc , char *argv[])
99 {

100 STOP_RUNNING = 0;
101 percent = 0;
102 int b5 , b6, b7, b8, key;
103 JoyPos joypos;
104
105 while(STOP_RUNNING == 0)
106 {
107 LCDClear ();
108 LCDMenu("RAW", "%", "BUT", "EXIT");
109
110 if(buttons == 0)
111 {
112 joypos = joy();
113
114 if(percent == 0)
115 {
116 LCDPrintf("Raw:\n");
117 } else {
118 double x = 100*(←↩

abs (200*(joypos.x-MIN.x)/(MAX.x-MIN.x) -100) ←↩
- X_THRESHOLD)/(100- X_THRESHOLD);

119 double y = 100*(←↩
abs (200*(joypos.y-MIN.y)/(MAX.y-MIN.y) -100) ←↩
- Y_THRESHOLD)/(100- Y_THRESHOLD);

120 double z = 100*(←↩
abs (200*(joypos.z-MIN.z)/(MAX.z-MIN.z) -100) ←↩
- Z_THRESHOLD)/(100- Z_THRESHOLD);

121
122 if(x<0) x=0;
123 if(y<0) y=0;
124 if(z<0) z=0;
125 if(x >100) x=100;
126 if(y >100) y=100;
127 if(z >100) z=100;
128
129 if(joypos.x < 500) x = -1*x;
130 if(joypos.y > 500) y = -1*y;
131 if(joypos.z < 500) z = -1*z;
132
133 joypos.x = (int) round(x);
134 joypos.y = (int) round(y);

94

CHAPTER A. CODE

135 joypos.z = (int) round(z);
136
137 joypos.t = round (100 * (joypos.t - ←↩

MIN.t)/(MAX.t - MIN.t));
138 if(joypos.t<0) joypos.t=0;
139 if(joypos.t>100) joypos.t=100;
140
141 LCDPrintf("Percent :\n");
142 }
143 LCDPrintf("X: %d\n", joypos.x);
144 LCDPrintf("Y: %d\n", joypos.y);
145 LCDPrintf("Z: %d\n", joypos.z);
146 LCDPrintf("T: %d\n", joypos.t);
147 } else {
148 b5 = button(BUTTON5);
149 b6 = button(BUTTON6);
150 b7 = button(BUTTON7);
151 b8 = button(BUTTON8);
152 LCDPrintf("Buttons :\n");
153 LCDPrintf("B5: %d\n", b5);
154 LCDPrintf("B6: %d\n", b6);
155 LCDPrintf("B7: %d\n", b7);
156 LCDPrintf("B8: %d\n", b8);
157 if(b5 || b6 || b7 || b8) ←↩

AUTone(b5 *1000+ b6 *1500+ b7 *3000+ b8*3500, 50);
158 }
159
160 key = KEYRead ();
161 switch(key)
162 {
163 case KEY1:
164 percent = 0;
165 buttons = 0;
166 break;
167 case KEY2:
168 percent = 1;
169 buttons = 0;
170 callibrate ();
171 break;
172 case KEY3:
173 buttons = 1;
174 percent = 0;
175 break;
176 case KEY4:
177 STOP_RUNNING = 1;
178 break;
179 default:
180 break;
181 }

95

A.13. JOYTEST.C

182
183 OSWait (10);
184 }
185
186 LCDPrintf("Stopping ...\n");
187
188 return 0;
189 }

96

CHAPTER A. CODE

A.14 joytest2.c

1 /**
2 * joytest2.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * Test the joystick using a graphical display on the ←↩

Eyebot LCD.
12 */
13
14 #include "eyebot.h"
15 #include <limits.h>
16 #include <math.h>
17
18 #define BUTTON5 0x10
19 #define BUTTON6 0x20
20 #define BUTTON7 0x40
21 #define BUTTON8 0x80
22
23 #define X_CHANNEL 4
24 #define Y_CHANNEL 5
25 #define Z_CHANNEL 6
26 #define T_CHANNEL 7
27
28 #define X_THRESHOLD 15
29 #define Y_THRESHOLD 15
30 #define Z_THRESHOLD 15
31 #define JOY_FREQ 100/5
32
33 typedef struct
34 {
35 int x;
36 int y;
37 int z;
38 int t;
39 } JoyPos;
40
41 typedef struct
42 {
43 BYTE b5;
44 BYTE b6;
45 BYTE b7;
46 BYTE b8;

97

A.14. JOYTEST2.C

47 } ButtonState;
48
49 int STOP_RUNNING;
50 JoyPos JOY_MAX , JOY_MIN , JOY_CURRENT , JOY_OLD;
51 ButtonState BUT_CURRENT , BUT_OLD;
52
53 int xy_realx(int x)
54 {
55 return (round(x/4.0) + 32);
56 }
57
58 int xy_realy(int y)
59 {
60 return (32 - round(y/4.0));
61 }
62
63 int z_realx(int z)
64 {
65 return (round(z*0.15) +83);
66 }
67
68 int t_realy(int t)
69 {
70 return (52-round(t*0.2));
71 }
72
73 void xy_plot(int x, int y, int col)
74 {
75 LCDSetPixel(xy_realx(x), xy_realy(y), col);
76 }
77
78 void xy_drawline(int x1 , int y1 , int x2 , int y2 , int col)
79 {
80 LCDLine(xy_realx(x1), xy_realy(y1), xy_realx(x2), ←↩

xy_realy(y2), col);
81 }
82
83 void xy_drawrectangle(int x1 , int y1 , int x2, int y2, int ←↩

col)
84 {
85 xy_drawline(x1, y1, x1, y2, col);
86 xy_drawline(x1, y2, x2, y2, col);
87 xy_drawline(x2, y2, x2, y1, col);
88 xy_drawline(x2, y1, x1, y1, col);
89 }
90
91 void xy_drawcross(int x, int y, int col)
92 {
93 xy_drawline(x-2, y-2, x+2, y+2, col);

98

CHAPTER A. CODE

94 xy_drawline(x-2, y+2, x+2, y-2, col);
95 }
96
97 void drawrectangle(int x1 , int y1 , int x2, int y2, int col)
98 {
99 LCDLine(x1 , y1 , x1 , y2 , col);

100 LCDLine(x1 , y2 , x2 , y2 , col);
101 LCDLine(x2 , y2 , x2 , y1 , col);
102 LCDLine(x2 , y1 , x1 , y1 , col);
103 }
104
105 void drawmap ()
106 {
107 xy_drawrectangle(-100, -100, 100, 100, 1);
108 xy_drawline(X_THRESHOLD , -100, X_THRESHOLD , 100, 1);
109 xy_drawline(-1*X_THRESHOLD , -100, -1*X_THRESHOLD , 100, ←↩

1);
110 xy_drawline(-100, Y_THRESHOLD , 100, Y_THRESHOLD , 1);
111 xy_drawline(-100, -1*Y_THRESHOLD , 100, -1*Y_THRESHOLD , ←↩

1);
112
113 drawrectangle(68, 12, 98, 22, 1);
114 LCDLine(z_realx (-1* Z_THRESHOLD), 12, ←↩

z_realx (-1* Z_THRESHOLD), 22, 1);
115 LCDLine(z_realx(Z_THRESHOLD), 12, z_realx(Z_THRESHOLD),←↩

22, 1);
116
117 drawrectangle(78, 52, 88, 32, 1);
118
119 drawrectangle(110, 7, 120, 17, 1);
120 drawrectangle(110, 20, 120, 30, 1);
121 drawrectangle(110, 34, 120, 44, 1);
122 drawrectangle(110, 47, 120, 57, 1);
123 }
124
125 void drawzt(int z, int t, int col)
126 {
127 LCDLine(z_realx(z), 12, z_realx(z), 22, col);
128 LCDLine(78, t_realy(t), 88, t_realy(t), col);
129 }
130
131 void drawbuttons(BYTE b5, BYTE b6, BYTE b7, BYTE b8, int ←↩

col)
132 {
133 if(b5) LCDArea(111, 8, 119, 16, col);
134 if(b6) LCDArea(111, 21, 119, 29, col);
135 if(b7) LCDArea(111, 35, 119, 43, col);
136 if(b8) LCDArea(111, 48, 119, 56, col);
137 }

99

A.14. JOYTEST2.C

138
139 void drawreadings ()
140 {
141 xy_drawcross(JOY_OLD.x, JOY_OLD.y, 0);
142 drawzt(JOY_OLD.z, JOY_OLD.t, 0);
143 drawbuttons(BUT_OLD.b5, BUT_OLD.b6, BUT_OLD.b7, ←↩

BUT_OLD.b8 , 0);
144
145 drawmap ();
146
147 JOY_OLD.x = JOY_CURRENT.x;
148 JOY_OLD.y = JOY_CURRENT.y;
149 JOY_OLD.z = JOY_CURRENT.z;
150 JOY_OLD.t = JOY_CURRENT.t;
151
152 BUT_OLD.b5 = BUT_CURRENT.b5;
153 BUT_OLD.b6 = BUT_CURRENT.b6;
154 BUT_OLD.b7 = BUT_CURRENT.b7;
155 BUT_OLD.b8 = BUT_CURRENT.b8;
156
157 xy_drawcross(JOY_OLD.x, JOY_OLD.y, 1);
158 drawzt(JOY_OLD.z, JOY_OLD.t, 1);
159 drawbuttons(BUT_OLD.b5, BUT_OLD.b6, BUT_OLD.b7, ←↩

BUT_OLD.b8 , 1);
160 }
161
162 void button_beep ()
163 {
164 if(BUT_CURRENT.b5 || BUT_CURRENT.b6 || BUT_CURRENT.b7 ←↩

|| BUT_CURRENT.b8)
165 AUTone(BUT_CURRENT.b5 *1000+ BUT_CURRENT.b6 *1500+ BUT_CURRENT.b7 *3000+ BUT_CURRENT.b8*3500,←↩

50);
166 }
167
168 void joy_update ()
169 {
170 BUT_CURRENT.b5 = !((OSReadInLatch(0) & ←↩

BUTTON5)/BUTTON5);
171 BUT_CURRENT.b6 = !((OSReadInLatch(0) & ←↩

BUTTON6)/BUTTON6);
172 BUT_CURRENT.b7 = !((OSReadInLatch(0) & ←↩

BUTTON7)/BUTTON7);
173 BUT_CURRENT.b8 = !((OSReadInLatch(0) & ←↩

BUTTON8)/BUTTON8);
174
175 JOY_CURRENT.x = 200*(OSGetAD(X_CHANNEL) - ←↩

JOY_MIN.x)/(JOY_MAX.x - JOY_MIN.x) - 100;
176 JOY_CURRENT.y = 200*(OSGetAD(Y_CHANNEL) - ←↩

JOY_MIN.y)/(JOY_MAX.y - JOY_MIN.y) - 100;

100

CHAPTER A. CODE

177 JOY_CURRENT.z = 200*(OSGetAD(Z_CHANNEL) - ←↩
JOY_MIN.z)/(JOY_MAX.z - JOY_MIN.z) - 100;

178 JOY_CURRENT.t = 100*(OSGetAD(T_CHANNEL) - ←↩
JOY_MIN.t)/(JOY_MAX.t - JOY_MIN.t);

179 }
180
181 void callibrate ()
182 {
183 // Auto callibration (magic numbers)
184 JOY_MIN = (JoyPos) {95, 920, 145, 1000};
185 JOY_MAX = (JoyPos) {905, 75, 845, 58};
186
187 /*
188 // Manual callibration
189 LCDClear ();
190 LCDPrintf ("Move joy to...\n");
191
192 LCDPrintf (" bottom left\n");
193 LCDPrintf ("& push button 5\n");
194 AUTone (5000 , 50);
195 OSWait (100);
196 AUTone (5000 , 50);
197 OSWait (100);
198 AUBeep ();
199 JOY_MIN .= joy();
200 OSWait (300);
201
202 LCDPrintf ("top right\n");
203 LCDPrintf ("& push button 6\n");
204 AUTone (5000 , 50);
205 OSWait (100);
206 AUTone (5000 , 50);
207 OSWait (100);
208 AUBeep ();
209 JOY_MAX .= joy();
210
211 LCDPrintf ("Done!\n");
212 OSWait (100);
213 */
214 }
215
216 int main(int argc , char *argv[])
217 {
218 STOP_RUNNING = 0;
219 int key = 0;
220
221 callibrate ();
222

101

A.14. JOYTEST2.C

223 TimerHandle joyHandle = OSAttachTimer(JOY_FREQ , ←↩
joy_update);

224
225 while(STOP_RUNNING == 0)
226 {
227 button_beep ();
228
229 drawreadings ();
230
231 key = KEYRead ();
232 if(key == KEY4) STOP_RUNNING = 1;
233
234 OSWait (15);
235 }
236
237 LCDPrintf("Stopping ...\n");
238 OSDetachTimer(joyHandle);
239
240 return 0;
241 }

102

CHAPTER A. CODE

A.15 psdtest.c

1 /**
2 * psdtest.c
3 *
4 * Author:
5 * Benjamin Woods (10218282)
6 * The University of Western Australia
7 * Bachelor of Engineering & Bachelor of Commerce
8 * Final Year Mechatronics Engineering Project 2006
9 *

10 * Description:
11 * Test the position sensitive devices on the wheelchair
12 */
13
14 #include <eyebot.h>
15
16 int main()
17 {
18 PSDHandle psdright;
19 int start , key , current , stop , release;
20 psdright = PSDInit(PSD_RIGHT);
21 start = PSDStart(psdright , TRUE);
22 LCDPrintf("Start: %d\n", start);
23 LCDMenu("GO", "", "", "END");
24 do {
25 key = KEYGet ();
26 } while(key!=KEY1 && key!=KEY4);
27
28 while(key!=KEY4 && start ==0)
29 {
30 if(PSDCheck ()) current = PSDGet(psdright);
31 if(current == PSD_OUT_OF_RANGE) LCDPrintf("Out of ←↩

range\n");
32 else LCDPrintf("Right: %d\n", current);
33 key = KEYRead ();
34 OSWait (10);
35 }
36
37 stop = PSDStop ();
38 LCDPrintf("Stop: %d\n", stop);
39 OSWait (10);
40
41 release = PSDRelease ();
42 LCDPrintf("Release: %d\n", release);
43 OSWait (10);
44
45 return 0;
46 }

103

A.15. PSDTEST.C

104

Appendix B

Mechanical and Electrical Designs

B.1 Joystick Circuit

6����O 6����O 6����O

6�

�O�

6����O 6����O 6����O

6�

�O�

6����O 6����O 6����O

6�

�O�

6�

�O�

6�

�O�

6�

�O�

6�

�O�

6���O 6���O 6���O

7;�7;�7;�7;�7;�7;�

6�

�O�

7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�7;�

:�:�:�:�:�:�

Figure B.1: The joystick circuit schematic

105

B.1. JOYSTICK CIRCUIT

Figure B.2: The joystick PCB design

106

CHAPTER B. MECHANICAL AND ELECTRICAL DESIGNS

B.2 Suspension Designs
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

1

T
IT
L
E

W
h
e
e
lc
h
a
ir
 D
e
si
g
n

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

107

B.2. SUSPENSION DESIGNS
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

2

T
IT
L
E

B
a
tt
e
ry
 B
o
x

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

290.00

5
6
0
.0
0

4
9
4
.0
0

2
2
4
.0
0

108

CHAPTER B. MECHANICAL AND ELECTRICAL DESIGNS

1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

3

T
IT
L
E

B
a
tt
e
ry
 B
o
x
 B
a
se

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

5
0
0
.0
0

170.00

4
4
0
.0
0

224.00

1
7
2
.0
0

1
7
2
.0
0

230.00

109

B.2. SUSPENSION DESIGNS
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

4

T
IT
L
E

B
a
tt
e
ry
 B
o
x
 S
id
e

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

2
0
4
.0
0

2
0
4
.0
0

5
0
0
.0
0

180.00

3
0
.0
0

30.00

3
.0
0

3.00

110

CHAPTER B. MECHANICAL AND ELECTRICAL DESIGNS

1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

5

T
IT
L
E

B
a
tt
e
ry
 B
o
x
 T
o
p

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

290.00

5
0
0
.0
0

3
0
.0
0

30.00

30.00

3
0
.0
0

111

B.2. SUSPENSION DESIGNS
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

6

T
IT
L
E

M
o
to
r
M
o
u
n
ts

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

1
0
.0
0

7
0
.0
0

1
0
.0
0

2
4
.0
0

112

CHAPTER B. MECHANICAL AND ELECTRICAL DESIGNS

1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

7

T
IT
L
E

M
o
to
r
M
o
u
n
t
S
H
S
 A
rm

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

2
1
5
.0
0

5
0
.0
0

50.00

3
.0
0

n
2
0
.0
0

39.00

19.00

n
1
0
.0
0

R
1
0
.0
0

21.00

1
6
.5
0

9
0
.0
0

1
5
.0
0

113

B.2. SUSPENSION DESIGNS
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

8

T
IT
L
E

S
w
iv
e
l
A
rm

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

n
2
0
.0
0

n
1
2
.0
0

1
4
5
.0
0

2
2
.0
0

2
2
.0
0

114

CHAPTER B. MECHANICAL AND ELECTRICAL DESIGNS

1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

9

T
IT
L
E

M
o
u
n
ti
n
g
 B
ra
ck
e
t

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

2
7
.0
0

5.00

n
8
.0
0

R
1
0
.0
0

16
.43

5.00

14.00

24.00

1
7
.0
0

14.00

115

B.2. SUSPENSION DESIGNS
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
1
/0
8
/2
0
0
6

2
1
/0
8
/2
0
0
6

D
W
G
 N
O

1
0

T
IT
L
E

S
w
iv
e
l
A
rm

 -
 S
H
S
 T
u
b
e
 C
o
n
n
e
ct
o
r
P
la
te

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

B

8
0
.0
0

80.00

n
2
6
.0
0

4
5
.0
°

2
3
.0
0

23.00 5.00

116

CHAPTER B. MECHANICAL AND ELECTRICAL DESIGNS

1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
0
/0
9
/2
0
0
6

2
0
/0
9
/2
0
0
6

D
W
G
 N
O

1
1

T
IT
L
E

C
h
a
ir
 &
 L
id

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

A

25.00

117

B.2. SUSPENSION DESIGNS
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
0
/0
9
/2
0
0
6

2
0
/0
9
/2
0
0
6

D
W
G
 N
O

1
2

T
IT
L
E

B
a
tt
e
ry
 B
o
x
 L
id

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

A

5
6
0
.0
0

284.00

5
0
.0
0

30.00

3
3
.0
0

33.00

3.00

2
5
5
.0
0

2
5
5
.0
0

118

CHAPTER B. MECHANICAL AND ELECTRICAL DESIGNS

1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
0
/0
9
/2
0
0
6

2
0
/0
9
/2
0
0
6

D
W
G
 N
O

1
3

T
IT
L
E

E
le
ct
ro
n
ic
s
B
o
x
 M
o
u
n
t
-
L
o
w
e
r

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

A

230.00

1
3
0
.0
0

24.50

25.00

7
5
.0
0

119

B.2. SUSPENSION DESIGNS
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H
E
E
T
 1

O
F
 1

D
R
A
W
N

C
H
E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O
V
E
D

B
e
n
ja
m
in
 W

o
o
d
s

C
h
ri
s
C
ro
ft

2
0
/0
9
/2
0
0
6

2
0
/0
9
/2
0
0
6

D
W
G
 N
O

1
4

T
IT
L
E

E
le
ct
ro
n
ic
s
B
o
x
 M
o
u
n
t
-
U
p
p
e
r

S
IZ
E

C
S
C
A
L
E

T
h
e
 U
n
iv
e
rs
it
y
 o
f
W
e
st
e
rn
 A
u
st
ra
lia

R
E
V

A

230.00

1
3
0
.0
0

24.50

25.00

120

Appendix C

Information and Brochures

121

C.1. ROBOTEQ AX1500

C.1 Roboteq AX1500

Dual Channel
Forward/Reverse
Digital Robot Controller

for Computer Guided and
Remote Controlled Robotic Vehicles

AX1500

Key Features Benefits

Microprocessor digital
design

Accurate, reliable, and fully programma-
ble operation. Advanced algorithms

R/C mode support Connects directly to simple, low cost R/
C radios

RS232 Serial mode
support

Connects directly to computers for
autonomous operation or to wireless
modem for two-way remote control

Analog mode support Connects directly to analog joystick
Header for Optional
Optical encoder

Stable speed regardless of load. Accu-
rate measurement of travelled distance

Built-in power drivers
for two motors

Supports all common robot drive meth-
ods

Up to 30A output per
channel

Suitable for a wide range of motors

Programmable current
limitation

Protects controller, motors, wiring and
battery.

Open loop or closed
loop speed control

Low cost or higher accuracy speed con-
trol

Closed loop position
control

Create low cost, ultra-high torque
jumbo servos

Data Logging Output Capture operating parameters in PC for
analysis

Built-in DC/DC con-
verter

Operates from a single 12V-40V battery

Compact Board Level
Design

Lightweight and easy to incorporate in
most applications

Field upgradable soft-
ware

Never obsolete. Add features via the
internet

Roboteq’s AX1500 controller is designed to convert com-
mands received from a R/C radio, Analog Joystick, wireless
modem, or microcomputer into high voltage and high cur-
rent output for driving one or two DC motors. Designed for
maximal ease-of-useby professionals and hobbyist alike, it
is delivered with all necessary cables and hardware and is
ready to use in minutes.

The controller's two channels can either be operated inde-
pendently or mixed to set the direction and rotation of a
vehicle by coordinating the motion on each side of the vehi-
cle. The motors may be operated in open or closed loop
speed mode. Using low-cost position sensors, they may
also be set to operate as heavy-duty position servos.

The AX2850 version is equipped with quadrature optical
encoders inputs for precision speed or position operation.

Numerous safety features are incorporated into the control-
ler to ensure reliable and safe operation.

The controller can be reprogrammed in the field with the
latest features by downloading new operating software
from Roboteq.

Applications

• Light duty robots
• Terrestrial and Underwater Robotic Vehicles
• Automatic Guided Vehicles
• Electric vehicles
• Police and Military Robots
• Hazardous Material Handling Robots
• Telepresence Systems

2 x 30 SmartAmps

122

CHAPTER C. INFORMATION AND BROCHURES

Model Description

AX1500 Dual Channel DC Motor controller up to 30 SmartAmps per channel

Microcomputer-based Digital Design

• Multiple operating modes
• Fully configurable using a connection to a

PC
• Non-volatile storage of user configurable

settings. No jumpers needed
• Simple operation
• Software upgradable with new features

Multiple Command Modes

• Serial port (RS-232) input
• Radio-Control Pulse-Width input
• 0-5V Analog Voltage input

Multiple Motor Control modes

• Independent channel operation
• Mixed control (sum and difference) for

tank-like steering
• Open Loop or Closed Loop Speed mode
• Position control mode for building high

power position servos
• Modes can be set independently for each

channel

Optical Encoder Inputs (option)

• Two Quadrature Optical Encoders inputs
• 250kHz max. frequency per channel
• 32-bit up-down counters
• Inputs may be shared with four optional

limit switches

Automatic Command Corrections

• Joystick min, max and center values
• Selectable deadband width
• Selectable exponentiation factors for each

command inputs
• 3rd R/C channel input for accessory output

activation

Special Function Inputs/Outputs

• 2 Analog inputs. Used as
• Tachometer inputs for closed loop

speed control
• Potentiometer input for position (servo

mode)

• External temperature sensor inputs

• User defined purpose (RS232 mode
only)

• One Switch input configurable as
• Emergency stop command

• Reversing commands when running
vehicle inverted

• Up to 2 general purpose outputs for acces-
sories or weapon
• One 24V, 2A output

• One low-level digital output

• Up to 2 digital input signals

Built-in Sensors

• Voltage sensor for monitoring the main 12
to 40V battery

• Voltage monitoring of internal 12V
• Temperature sensors near each Power

Transistor bridge

Advanced Data Logging Capabilities

• 12 internal parameters, including battery
voltage, captured R/C command, tempera-
ture and Amps accessible via RS232 port

• Data may be logged in a PC or microcom-
puter

• Data Logging Software supplied for PC

Low Power Consumption

• On board DC/DC converter for single 12 to
40V battery system operation

• Optional 12V backup power input for pow-
ering safely the controller if the main
motor batteries are discharged

• 100mA at 12V or 50mA at 24V idle current
consumption

• Power Control input for turning On or Off
the controller from external microcom-
puter or switch

• No consumption by output stage when
motors stopped

• Regulated 5V output for powering R/C
radio. Eliminates the need for separate R/C
battery.

High Efficiency Motor Power Outputs

• Two independent power output stages
• Dual H bridge for full forward/reverse oper-

ation
• Ultra-efficient 5 mOhm ON resistance

MOSFETs
• Four quadrant operation. Supports regen-

eration
• 12 to 40 V operation
• User programmable current limit up to 30A
• Standard Fast-on connectors for power

supply and motors
• 16 kHz Pulse Width Modulation (PWM)

output

 Advanced Safety Features

• Safe power on mode
• Optical isolation on R/C control inputs
• Automatic Power stage off in case of elec-

trically or software induced program failure
• Overvoltage and Undervoltage protection
• Watchdog for automatic motor shutdown

in case of command loss (R/C and RS232
modes)

• Run/failure diagnostics on visible LEDs
• Programmable motors acceleration
• Built-in controller overheat sensors
• “Dead-man” switch input
• Emergency Stop input signal and button

Compact Design

• All-in-one board-level design.
• Efficient heat sinking. Operates without a

fan in most applications.
• 4.25” (108mm) L, 4.25” W (108mm), 1”

(25mm) H
• -20o to +70o C operating environment
• 3oz (85g)

Technical Features

Ordering Information

www.roboteq.com

8180 E.Del Plomo Dr.

Scottsdale, AZ 85258 - USA

602-617-3931

123

	Introduction
	Background
	Objectives
	Thesis Structure

	Literature Survey
	Mecanum Wheels and Alternatives
	Control Methods
	Human Interface

	Hardware
	General Arrangement
	Mecanum Wheels
	Technical Details
	Kinematics
	Wheel Rims

	Motors
	EyeBot
	Batteries
	Position Sensitive Devices
	Footrests

	Motor Driver Cards
	Introduction
	Selection
	Installation
	Programming

	Joystick
	Introduction
	Selection
	Installation
	Programming

	Low Level Driving Routines
	Introduction
	Design

	Suspension System
	Introduction
	Design

	Results, Testing and Simulation
	Motor Control
	Joystick
	Suspension and Chassis
	Modelling and Simulation

	Conclusion
	Outcomes
	Recommendations

	Bibliography
	Code
	ODW.h
	ODW.c
	ODW_MotorCtrl.h
	ODW_MotorCtrl.c
	ODW_Joystick.h
	ODW_Joystick.c
	ODW_IR.h
	ODW_IR.c
	Makefile
	Makeincl
	test.c
	mctest.c
	joytest.c
	joytest2.c
	psdtest.c

	Mechanical and Electrical Designs
	Joystick Circuit
	Suspension Designs

	Information and Brochures
	Roboteq AX1500

