i

INSTITUTE FOR REAL-TIME COMPUTER SYSTEMS

R

TECHNISCHE UNIVERSITAT MUNCHEN

~

PROFESSOR G. FARBER

Application Program Interface
for an Embedded Linux System

Thomas Sommer

Bachelor’s Thesis

Application Program Interface
for an Embedded Linux System

Bachelor’s Thesis

Executed at the Institute for Real-Time Computer Systems
Technische Universitat Minchen
Prof. Dr.-Ing. Georg Farber

Advisor: Prof. Thomas Braunl
Avuthor: Thomas Sommer
Trivastr. 4

80637 Minchen

Submitted in February 2007

Many thanks to:

Martin Hintermann for his patience and help
Prof Thomas Braunl for creating this opportunity
Adrian Boeing for his encouragement

and the people behind all the great GNU tools for facilitating this work enormously.

Abstract

With the advance of electronics and its ever growing miniaturization, embedded systems are
more prominent than ever. They have long made their way from industrial applications into
the consumer market, being contained in anything from cellular phones to automobiles.
Their power has grown substantially, too. Today’s embedded systems easily outperform a
desktop PC twenty years ago.

However, their new complexity calls for a new design approach in turn: one that emphasizes
high-level tools and hardware/software trade offs rather than low-level programming and
logic design. Modularity and abstraction layers gain an important role. Development is
simplified and sped up if the same concepts apply. Additionally, code can be used for
multiple products, lowering the development costs significantly.

The goal of this project was the partial implementation of an interface. It will be used in
programming applications for a specific embedded system: The RoBIOS library of the EyeBot
Mé robotics platform. The main purpose of such an APl is to make the programs written for
it independent of the layers below. This way they can remain essentially unchanged even if
the hardware or the operating system is modified.

The RoBIOS API and its implementation exist already and are successfully applied, however
only for the predecessors of the EyeBot Mé. These systems only share their purpose, the
hardware and software are fundamentally different. Therefore the implementation had to be
created from scratch while the interface was essentially unchanged.

Emphasis lay on routines for the user input section and the sound section of the RoBIOS
library. Display routines were developed in accompanying project by a fellow student. These
basic library segments allowed the creation of an application that serves as the main user
interface for the robot and illustrates the functionality of the API, also being part of this
project.

Contents

List of Figures

List of Symbols

1

2

Overview

Hardware and Software of the Target System

2.1 The Gumstix Platform o0

2.2 Operating Systems L L
221 Windows CE
222 Linux

2.3 EyeBot M6

2.4 Essex Robot

Employed Concepts

3.1 System Calls.

3.2 The Proc Filesystem
3.2.1 Definition
3.2.2 Application
3.23 Prosand Cons

3.3 Imput Interface

3.4 RoBIOS M6 Library

Implementation

4.1 Development Tools

4.2 Key Routines
421 Keycodes
4.2.2 Touchmap
4.2.3 List of Routines
4.2.4 Example

4.3 Audio routines
4.3.1 Device capabilities Lo
4.3.2 Fileformat

4.3.3 Nonblocking Playback and Exclusive Access

10
10
10
11
11
12

4.3.4 List of Routines

4.4 Example Application
4.5 Monitor Program
4.5.1 Purpose and Structure
5 Conclusion
5.1 Shortcomings
5.2 Future Work
A RoBIOS Routines
A1l Key Routines
A.2 Audio Routines
A3 OSRoutines

Bibliography

4.5.2 Page Example
4.5.3 Process Handling

Contents

List of Figures

1.1 Embedded System Appliance: Sony Camcorder [18]

2.1 Gumstix Connex [17] . .

3.1 Linux Input System |

4.1 EyeBot M5: menu and buttons: [14] 0000

List of Figures

List of Symbols

ALSA Advanced Linux Sound Architecture
API Application Programming Interface
ARM Acorn RISC Machine

ASIC Application Specific Integrated Circuit
DMA Direct Memory Access

FIFO First In First Out

FPGA Field Programmable Gate Array
HTTP Hyper Text Transfer Protocol
GNU GNU is not Unix

GPIO General Purpose Input/Output
I/0 Input/Output

IP Internet Protocol

IRQ Interrupt Request

LCD Liquid Crystal Display

LED Light-Emmitting Diode

MB Mega Byte

MMC Multi Media Card

NFS Networking File System

OSS Open Sound System

PC Personal Computer

RISC Reduced Instruction Set Computer
RoBIOS Robot Basic Input/Output System
SD Secure Digital

USB Universal Serial Bus

vi

List of Symbols

Chapter 1

Overview

With the advance of electronics and its ever growing miniaturization, embedded systems
are more prominent than ever. They have long made their way from industrial appli-
cations into the consumer market, being contained in anything from cellular phones to
automobiles. Their power has grown substantially, too. Today’s embedded systems easily
outperform a desktop PC twenty years ago.

However, their new complexity calls for a new design approach in turn: one that empha-
sizes high-level tools and hardware/software trade offs rather than low-level programming
and logic design. Modularity and abstraction layers gain an important role. Development
is simplified and sped up if the same concepts apply. Additionally, code can be used for
multiple products, lowering the development costs significantly.[15]

The goal of this project was the partial implementation of an interface. It will be used
in programming applications for a specific embedded system: The RoBIOS library of the
EyeBot M6 robotics platform. The main purpose of such an API is to make the programs
written for it independent of the layers below. This way they can remain essentially
unchanged even if the hardware or the operating system is modified.

The RoBIOS API and its implementation exist already and are successfully applied, how-

Figure 1.1: Embedded System Appliance: Sony Camcorder [18]

2 CHAPTER 1. OVERVIEW

ever only for the predecessors of the EyeBot M6. These systems only share their purpose,
the hardware and software are fundamentally different. Therefore the implementation
had to be created from scratch while the interface was essentially unchanged.

Emphasis lay on routines for the user input section and the sound section of the RoBIOS
library. Display routines were developed in accompanying project by a fellow student.
These basic library segments allowed the creation of an application that serves as the
main user interface for the robot and illustrates the functionality of the API, also being
part of this project.

In the course of this document, the development of the API’s implementation is described,
from its background to its application. The first section describes the system the API
is written for, the hardware as well as the operating system. Its special properties are
pointed out and it finally compared to a similar system to emphasize these characteristics.
The following section gives gives some background information on the concepts employed
to implement the API. They refer to the hardware and software that was used but are
general enough to be applicable to the development of any API for a similar system. In
the last section specific details about the implementation are discussed. The employed
tools are described and the workings of some parts of the library. To illustrate its use, an
application using this API is described, too. Finally, some details of the Monitor program
are looked at, the main user interface of the EyeBot M6.

Chapter 2

Hardware and Software of the Target
System

The system the API was written for is a small robotics platform. It will be referred to as
the EyeBot M6. Before looking at the details of its implementation, a more general look
is taken at those systems.

Though not as prominent as PCs, embedded systems actually make up more than 99% of
all CPUs used. They can be found almost anywhere: typical applications include engine
contols, electronic testing equipment and medical instruments but also home appliances
like TVs, microwave ovens or cellular phones. A typical western houshold hosts around
40 embedded systems and a modern car around 80.[3]

An embedded system can be defined as an information processing system which is embed-
ded into a bigger technical context or technical system. More specifically, if that technical
system is a device, it will completely encapsulate the embedded system and draw all its
computing power from it, as opposed to a device that is connected to and controlled by
an independent computer.|Y]

Due to this close bond, the embedded system is typically a special purpose computing
system, meaning that it was designed to perform a specific, pre-defined task and has
specific requirements. This is very contrary to a general purpose computing system like
PCs or Servers. The restriction of its capabilities brings along the potential to optimize
it for the appointed task. In these optimizations, the sheer processing performance is
usually not the main goal. Aspects like size, reliability, power consumption and cost play
a more important role.

Taking a closer look at the reliability, this treat reveals the fundamentally different nature
of an embedded system quite clearly. Being just a small component of the device it serves,
it is not intended to be repaired or upgraded, even replacement might be difficult. This
is tolerable if it is reliable enough. Continuous uptimes of years may be required and
are well feasible. Physically it can be more robust than a general purpose processor due
to the lower complexity of the task. This simplicity also helps to avoid logical or design

4 CHAPTER 2. HARDWARE AND SOFTWARE OF THE TARGET SYSTEM

& connex 400xm-bt

B2 pin
bus header &

Bluatooth

60 pin Hirose
connaclor

Figure 2.1: Gumstix Connex [1 /]

errors, but they are also minimized through a closer review. Especially with real time
systems, this proof of reliability is a lot easier if not even possible in the first place.

Embedded Systems contain a software component. This makes them cheaper and more
flexible than special purpose chips (ASICs). Storage can be realized on the same chip,
so there would not be any difference on the outside. In fact, disc drives are avoided as
they are too complex, too big and not robust enough compared to read only memory or
flash memory on a chip. Though not as a whole, components of this software can be
reused, making development faster and easier. Often more general software is used in the
early development stages and is freed of unnecessary parts once the system goes into mass
production.

Typically embedded systems do connect to sensors and actors. Human interface devices
are not existent or reduced to a minimum, like LED lights and a few buttons. How-
ever with the advance of electronics more complex systems appeared, blurring the line
between embedded and general purpose systems. Examples of these devices are PDAs,
smartphones and navigation systems. They feature displays, keypads or touchscreens and
their software can be expanded. The tight link to the hardware they control still makes
them embedded systems, however.

2.1 The Gumstix Platform

The gumstix is a complete single-board computer that is literally the size of a stick of
gum. It hosts a Linux operating system and sells for less than $200, making it popular
with the open-source community and robotic system developers alike. [7]

The package measures 80 x 20 x 6.3 mm, making it well suitable for mobile applications.

2.2. OPERATING SYSTEMS 5

A 200- or 400-MHz Intel XScale processor enable to fulfill rather complex tasks while pro-
viding a well known architecure (ARM9). Finding approproate compilers should therefore
not pose a problem. Windows CE and Linux support it.

The Gumstix includes 64 MB of RAM and 4 or 16 MB of flash memory. This may seem
little, but bearing in mind that embedded systems pursue very specialized tasks and that
the operating system can be stripped down to the really neccessary parts, it is sufficient.
If more is needed it can be added via MMC flash memory cards, for which a socket is
optianlly provided. Unfortunately, SD cards, which expose the same form factor, are
not supported because the open-source drivers would reveal the proprietary encryption
scheme.

Usually the Gumstix single-board computer attaches to other boards using a Hirose con-
nector, allowing access to the power source, serial ports and USB port. This way a variety
of Gumstix expansion cards or application-specific custom baseboards can be attached.
Single-board-computer configurations are available that replace the MMC slot with a
second I/O connector to enhance expansion features. [17]

The company’s website provides a a variety of software. All Gumstix configurations run
the 2.6 Linux kernel and a user-space tool kit based on the embedded C library and the
Busybox utilities. The software offers a complete Linux operating-system environment
plus a range of open-source applications, including Bluetooth utilities, HTTP-server and
-client routines, audio players, and uClibc, a small-footprint C library for embedded Linux
systems. It is also possible to add a wide range of system and development tools to the
Gumstix using the supplied build-root package.[10]

A possible drawback of the design is the lack of a floating point math unit. Though
software emulation is possible, it will slow down processing so much that custom solutions
are necessary. The ability to access the gumstix main bus directly certainly helps in this
respect.

2.2 Operating Systems

Operating systems for embedded systems exist in many more varieties than those for PCs,
for example. The main reason for this is the greater variety of the underlying hardware
combined with harsher resource constraints: The operating system is custom fit to the
hardware and not vice versa, as the developments in the PC sector suggest.

With embedded systems becoming ever more complex and powerful, blurring the line
between them an general purpose computers, it became more attractive to make use of
the established solutions for the latter. Even if modifications are needed, there remain
enough advantages to building from scratch. In the following sections, two operating
systems for embedded systems are outlined.

6 CHAPTER 2. HARDWARE AND SOFTWARE OF THE TARGET SYSTEM

2.2.1 Windows CE

Microsoft’s Windows CE is an operating system specifically designed for minimalistic
computers and embedded systems. It is not a trimmed down version of a desktop Windows
as is the case with Windows XP embedded. Rather, it features a distinctly different kernel.
As a consequence, binaries from the desktop variants won’t execute under Windows CE.[5]

The system is widely used in PDAs and cellular phones but also in industrial devices
and embedded systems. Many technologies from the desktop variants are available mak-
ing the transition easier for programmers. At the same time, it can be configured to
require very little space by choosing just the really necessary among the approximately
500 components. The minimum build size is 200 KB.

The latest version (6.0) is available for a variety of architectures. It features a real time
kernel, supports up to 32.000 simultaneous processes and offers an addressable memory
range of 2 GB.

Unlike its desktop counterparts, it is distributed as shared source meaning that customers
are able to have insight into a large part of the source code, including the entire kernel,
device drivers and the file system. However, other parts remain closed. According to
Microsoft, the source availability will help in providing documentation, let users add
kernel space features and allow developers to share their modifications (under the shared
source license).[13]

2.2.2 Linux

The Linux operating system, often referred to as the Linux kernel, was open source from
the very beginning. In fact, this trait was the main reason for its creation and Linux
became almost synonym for open source systems.

The access to the source code lead to a multitude of different flavors of the kernel, which
makes it hard to characterize it as a whole. Initially written for the Intel 80386 processor,
it has been ported to all major architectures. Although the kernel is monolithic, device
drivers are easily configured as modules. This allows to load and unload them while
running the system, saving resources and making it easier to isolate faulty drivers. This
way, kernel parameters can be changed easily without rebooting the system.

The support for not-so-common hardware has traditionally been somewhat problematic.
Hardware vendors were hesitant to release their code or even to provide detailed specifi-
cations of their products. With a broader acceptance of Linux this has however changed
for the better and cannot be considered a key disadvantage anymore. [0]

Not surprisingly there exist approaches to add real time capabilities to the kernel, which
it does not have by default. In RT-Linux, for example, a simple real time executable
runs a non-real-time kernel as its lowest priority task, but other approaches have been
undertaken, too. [15, 19]

2.3. EYEBOT Mé /

Linux is a preferable choice for robotic platforms and embedded systems. Besides the
features and tools it already provides, it is backed up by a large and capable developer
community, offering documentation, patches and extensions. For example Gumstix Inc.
attributed part of the success of their products to the help of outsiders in developing
drivers. [1]

2.3 EyeBot M6

The EyeBot is a robotic platform that lays emphasis on image capturing and processing,
hence the name. A major goal of the design was the capability to perform the processing
on-board. It is still a general robotics platform, as it does not feature any dedicated logic
to fulfill these tasks. Rather it offers the capabilities to handle complex tasks in real time.

Early models of this family where built around a Motorola 68332 controller. Although
they fulfill the requirements and where quite successful, more complex image processing at
desirably higher resolution, color depth and frame rate exposed the limits of the system.

Thus the latest model, the EyeBot M6, was a complete redesign based on the a gumstix
board. The Connex 400m-bt features an 400MHz Intel XScale PXA255, 64MB of RAM,
16 MB flash memory as well as Bluetooth, USB and LCD controllers. Though this meant
a considerable gain in performance, the true breakthrough lies in the incorporation of an
FPGA, a Xilinx Spartan3-500E. Especially repetitive tasks that occur in image processing
can be delegated to a specialized circuitry, resulting not only in a better performance but
giving the CPU more time to do more completely tasks, like steering the robot.[/]

To further emphasize its purpose, the EyeBot M6 is equipped with dual cameras. This
way, stereo vision is possible. A color LCD with a resolution of at least 240 x 160 pixels
and a touchscreen are also noticeable improvements.

Another strength of the new design are the numerous communication ports it offers. USB
and Bluetooth where mentioned before, but the EyeBot also offers serial ports, infrared
and Ethernet. Audio connectors are supplied as well, and, of course connections to servo
and motor controllers, encoders, position sensing devices and GPIO lines for the robotic
tasks. As a mobile platform, the EyeBot may be run with batteries although the power
consumption is considerable if all components are powered. [2]

2.4 Essex Robot

A fairly similar system compared to the EyeBotM6 is realized at the University of Essex.
The goal of this project is to explore visual guidance of a small, autonomous robot. A
visual sensor was chosen as sonars were considered too slow, lasers too bulky and infrared
sensors too limited in their coverage. The robot pursues two tasks: reach a predefined
target and avoid obstacles in the way. While the first task can have a low priority, the

8 CHAPTER 2. HARDWARE AND SOFTWARE OF THE TARGET SYSTEM

second must be performed in real time, since the safety of the robot is directly affected.
The obstacle detection is performed omnidirectional by means of a spherical mirror and a
camera. Processing this data is fairly complex, therefore the developers chose a Gumstix
system in favor of a microcontroller. Larger and more power-hungry systems were not an
option since the mobility of the system needed to be maintained.

All image processing is done by the CPU. To transfer the data fast enough from the
camera, it’s FIFO is directly attached to the CPU bus, which the Gumstix provides
for in some of the Connex models. Some more quirks were necessary to ensure real
time processing: For once, the kernel memory mapping is bypassed through the use of
a custom built driver. The data transfer is handled by the hardware DMA modules
alone, not disturbing the CPU. Furthermore, a fast IR(Q architecture called FIQ, which
is supported by the ARM processor of the Gumstix.

With these measures, the system was successful in processing the images of the 320x240
resolution camera in real time, prerequisite to avoid the obstacles. The remaining pro-
cessing capacity could be used for steering and other tasks. The team stated, that the
use of the Gumstix greatly sped up the development due to the USB connectivity and
the NFS support of the board. This provides for a simple and fast transfer of files, which
is important in the development phase.[7]

Chapter 3

Employed Concepts

3.1 System Calls

System calls are requests to the kernel to provide a certain service. This class of routines
cannot be called directly as uncontrolled access to them by user space applications would
greatly compromise the stability of the system. For example, sending data to the hard
disc drive by writing to a certain region in memory is not only too low level to be practical
but could also damage hard and software.

Instead, the hard disk driver or the kernel itself provide a routine that receives bytes and
writes them to disk. These routines would be specific for each driver, as naturally very
different actions have to take place before these bytes are stored on the device. Also,
only the kernel would be allowed to execute them. In order to give user space programs
access to the device, the kernel provides routines that operate on the device. They are
called system calls to distinguish them from ordinary library calls. For example the write
system call will select the appropriate write routine depending on the device and issue
the write.

Well over 300 different system calls are defined on a recent Linux, but only a few are
needed when communicating with devices. Obviously reading and writing is needed,
covered by the system calls read and write respectively. The data involved in these calls
will always be outputted, so to control the device, the system call ioctl is used. It covers
all routines that are to device specific to have an own system call. Finally open and close
should be mentioned, that grant or terminate access to a device.

One may ask why system calls are necessary here when they are rarely seen elsewhere.
The answer is simple: library routines use system calls internally, so they are not apparent
to the programmer. When creating a library, however, one cannot just resort to other
library routines. The performance would be low and the need for the library would be
questionable when it is only redefining already existing routines. When dealing with
custom built device drivers, libraries usually don’t exist for them anyways.

10 CHAPTER 3. EMPLOYED CONCEPTS

Apart from using system calls to communicate with devices, they can be utilized to get
information about the state of the kernel, too. Processes, for example, are managed by
the kernel. Querying the kernel about them would naturally be the most direct and thus
fastest way.

3.2 The Proc Filesystem

3.2.1 Definition

The /proc filesystem is a facility that permits communication between kernel and user
space, thus allowing user space programs to access kernel data as well as to change the
runtime state of the kernel. In accordance to the Linux philosophy that puts files as a
cornerstone of organisation, the /proc filesystem is realized as a hierarchical set of files,
as the name suggests. However, it is a pseudo-filesystem, meaning that the files are not
located anywhere on disk or in memory but exist only a reflection of kernel data structures.
This is possible by by exploiting the virtual filesystem layer Linux provides.

3.2.2 Application

This approach makes it quite easy to access the desired data: Ordinary tools that read
from files can be applied to extract information and consequently tools that write to files
are enough to manipulate the current settings. The following example shows how to use
the cat command to read out the current setting of whether the system is forwarding IP
datagrams between network interfaces:

\# cat /proc/sys/net/ipv4/ip_forwarding

In this case, the output consists of a single digit: 1 if the property is set and 0 if it is not
set. This makes writing to the file rather easy - the echo command will be sufficient to
set the entry to say 1 to enable it:

\# echo 1 > /proc/sys/net/ipv4/ip_forwarding

Unlike settings in config files, this change will take effect immediately as it is written
directly to the corresponding memory position. As said before, the files of the proc
filesystem are not a copy of the current state nicely refined to make access easier. They
don’t have to be scanned in again for the kernel to acknowledge the changes. Rather they
represent an interface. This is expressed, too, by the fact that all these files have a size
of 0 and a modification time that is always the current time.

3.3. INPUT INTERFACE 11

3.2.3 Pros and Cons

Thus the /proc filesystem offers the advantages of having fast and easy access to kernel
data. Fast, because the fact that files are used is just representation - essentially the
kernel is communicated with directly. Easy, because the data is organized hierarchically
and independently of the names and forms of the underlying data structures. This is an
important point for the portability of programs that use this data.[12]

However, making use of the /proc filesystem goes along with some disadvantages as well.
The most striking would be that the facility is relatively new and does not impose strict
standards or naming conventions. While this may be acceptable for a real person trying
to get some information, it poses problems for programs that rely on it and should be
portable.

But even if the data can be found reliably, it must be parsed. Many files contain not just
a single value but a whole table. Extracting values from such files is certainly more error
prone and time consuming than receiving a structure as when using appropriate system
calls.

At last, security issues shall not be overlooked: Manipulating the filesystem (not the /proc
filesystem itself but the root filesystem, mount points and standard paths) could be used
to intercept or change the data read via /proc.

3.3 Input Interface

The input interface under Linux is covered here, as it serves as an example that accessing
the devices directly is not always the preferred way.

User input usually does not come from a single source. A standard desktop PC offers at
least a keyboard and a pointing device like a mouse or trackball. And even if the mouse is
not used, modern keyboards are often recognized as multiple distinct devices when they
feature additional keys. Those keys usually provide faster access to often used functions
like copy and paste or email and cannot be handled by the standard driver. Even the
buttons on monitors can form an input device.

It would be a nuisance if an application would have to know about all these different
drivers. Instead, it expects input events and is not actually concerned what physical
device generated them. It does so by communicating to event handlers, which in turn
communicate with a single entity, the input core driver. It unites feeds from all specific
input device drivers and is the only one that communicates with them directly.[l]

User space programs don’t need to access the input core driver if they make use of the
generic event interface. This facility will create a device node for each input device that
uses the input core. They are named event0 ... event3l and reside under /dev/input/.
Moreover, the event driver registers itself as an event handler. As a result, user space
programs can read(2) on the file descriptor and will receive the input event generated by

12 CHAPTER 3. EMPLOYED CONCEPTS

input device \\
input device —
input device /
input device /

> device driver \ / event handler user space
|| device driver ~=- - input core - = event handler
| | device driver / \ event handler kernel space

Figure 3.1: Linux Input System [1 1]

the corresponding device in the form of input_event structures. Their layout is specified
in section 4.

This indirect access of the input device drivers offers the advantages mentioned above
without requiring a big and time consuming framework.

3.4 RoBIOS M6 Library

The RoBIOS Library for the EyeBot M5 contained the following sections and so will the
version vor the M6.

e Image Processing

e Key Input %

e LCD Output

o Camera

e System Functions o

e Multitasking

e Semaphores

e Timer

e Download and RS-232

e Audio x

e PSD Sensors

e Servos and Motors

e V-Omega Driving Interface
e Bumper / Infrared Sensors
e Latches

e Parallel Port

3.4. ROBIOS M6 LIBRARY 13

e A/D Converter
e Radio Communication
e Compass
e TV Remote Control
(o: partially implemented)
A detailed list can be found in the EyeBot Online Documentation. [14]

It shall be mentioned that the implementation of the complete RoBIOS library would
suffice for several such projects. Here, only a portion of it was to be implemented (x).
Another part was assigned to fellow student Martin Hintermann, specifically the LCD
routines. He also contributed substantial parts to the Monitor program and his work
in setting up the cross compiler and the EyeBot made this project feasible in the fist
place.[10]

14

Chapter 4

Implementation

4.1 Development Tools

Gumstix provides not just a compiler for its boards but also an entire toolchain. These
tools are GNU and run best under a Linux or at least a POSIX operating system. Al-
though they are ported to Windows, too, the absence of a powerful shell and the different
file system greatly diminish their usefulness.

Thus the entire development was done under a Linux system. This offered another major
advantage: Since the target system runs Linux, too, the code could be compiled for a
standard PC and executed nicely. Of course, the hardware differences forbade reliable
tests, but for developing purposes, this method proved useful.

In order to compile the code on any platform, the make tool was used and appropriately
configured. With the created setup, code specific configuration files could be reduced to
a minimum. All settings are derived from the path of the code and the naming scheme of
the files. This way, cross compiling is reduced to copying the files to a certain directory
or by changing the directory’s name.

4.2 Key Routines

As stated before, the user input device of the EyeBot M6 differs greatly from its prede-
cessor. Yet it was still desired to change the RoBIOS routines only as much as necessary,
and, if possible, emulate the behavior of the EyeBot M5. The following section shows
how this was achieved.

16 CHAPTER 4. IMPLEMENTATION

Figure 4.1: EyeBot M5: menu and buttons: [14]

4.2.1 Keycodes

The EyeBot M5 featured four buttons located at the lower edge of the display. This way,
their current function could be made visible to the user by displaying a descriptive label
in the last line of the display, the so called menu. As the number of keys was fixed, so was
the size of the menu and, more importantly, the representation of the keys in the code.

The routines of the old RoBIOS implementation now returned an integer value represent-
ing the key. Each key corresponded to a bit in this value: if it was set, the key had been
pressed. So these functions were able to communicate the state of all keys in a single
value. However this feature was rarely exploited.

The EyeBot M6 does not have physical keys, it relies on the touchscreen alone. The use
of a touchscreen certainly has the advantage of being much more flexible and intuitive:
Arbitrary numbers of keys can be defined and visualized on the display. The user can
directly press these virtual keys, not a key in their vicinity. Moreover input methods that
do not relate to keys at all can be implemented, for example scroll bars.

Along with this flexibility comes a greater complexity. With the resolution of the touch-
screen being similar to that of the display, hundreds of keys could be specified. This does
not just include keys that relate to a single pixel: Usually a range of pixels should be
linked to a single key, so a key is represented by a list of these pixels or, more generally,
by a geometric description of them. For example, the first menu button could be specified
by a rectangle int the lower 10 percent of the screen extending from the left border to
25 percent of the width. While this is feasible, the type of the keycode variable would
have to be replaced by something that can hold this information - an integer would not
be enough.

Instead of modifying the API this drastically, an intermediate variable was introduced. It
helps to resolve the location and shape of a key into an identifier, for simplicity a positive

4.2. KEY ROUTINES 17

integer. Depending on this value, a bit is set in the keycode. With an integer range if 32
bit, the state of roughly 30 keys can be represented in the keycode of that type (some bits
may want to be reserved to indicate an invalid keycode and such). Recalling that a even
a standard PC keyboard has only about 100 keys, this limit seems reasonable, especially
since the dimensions of the touchscreens are such that only about 20 keys can be accessed
by a finger tip. If still more keys are needed, extending the keycode variable type to say
64 bit is an easy adjustment to the code.

4.2.2 Touchmap

As mentioned above, the use of a touchscreen required a mechanism to translate the
data received into key identifiers. The touchscreen driver will generate input events that
contain coordinates. More specifically, these data if these events can be interpreted as the
following structure, defined in linux/input.h:

struct input_event {
struct timeval time:
__ul6 type;
__ulé code;
__ul6 value;

+;

Of main interest are the events that contain absolute coordinates of the area that is
touched. These values are relative to the touchscreen’s coordinate system and generated
from analog signals. As it makes no sense to calculate with a a higher resolution that
that of the screen, they are converted to screen coordinates, fist. This includes a rotation
of the screen by 180 degrees, as that the display of the EyeBot M6 is used upside down.
Also, their analog origin requires that the values are capped.

Certainly the most flexible way to specify which coordinates belong to which key would be
to maintain a list of geometrical objects. They would be relative to the screens dimension
to be independent of the hardware. To test which key was pressed, a check would be
performed whether the point lies in the boundaries of such an object.

However, this approach adds a lot of complexity to such a minor task. Even for rectangular
key regions, four comparisons are necessary. Triangles would require some calculations
and circles would even call for floating point math, which is to be avoided whenever
possible. To avoid gaps or overlaps, a lot of care would have to be taken when creating
these objects.

Instead, a lookup table was opted for, referred to as the touchmap. It can be viewed as a
two-dimensional array that represents the screen. Each entry is equal to the key identifier
of the key at that location. Realized as an array of bytes, 256 different identifiers can be
addressed, far more than the keycode can hold. The dimensions of the table are variable,
which allows to adjust them to just the size that is needed.

18 CHAPTER 4. IMPLEMENTATION

The menu of the EyeBot M5 is located in the last text mode line. Turning it into touchable
keys, one could specify the text mode resolution as the dimensions of the touchmap. Thus
every character cell would correspond to a tochmap cell. Filling the first cells of the last
line with the value 1 will enable the fist menu key. In review, it becomes clear that
horizontally only a resolution of 4 is required. Even if now the border of the touchcells
might not be aligned with that of the character cells, that just shows the limitations of the
text mode: after all, the menu items should be evenly distributed. Going a step further,
one can reduce the vertical resolution to say 2, allowing any touch in the lower half of
the screen to hit the menu. This may seem inaccurate, but again, only the fact that the
menu shared the space with the rest of the displayed information made it so small. The
touchscreen is transparent so this limitation does not apply.

Specifying a touchmap larger than the text mode resolution may seem unnecessary. After
all, these cells would be hard to pick with a stylus, not to mention a finger tip. Still there
is use for it: A touchmap could be created automatically from a picture, only the relation
of what color corresponds to what key would be needed. Thus it is easy to implement
arbitrarily shaped key regions or touchmaps created in during runtime.

A reverse effect is, that the location of the keys can be displayed easily and fast. This way,
a menu can be done without when the key location is intuitive enough. The keys would
be invisible but could be displayed when help is required. A steering cross for panning a
picture would be an application for this.

4.2.3 List of Routines

| NAME | DESCRIPTION |

KEYGetBuf | wait for keypress and write keycode into buffer
KEYGet wait for keypress and return keycode
KEYRead read keycode an return it (nonblocking)
KEYWait wait for a specific keypress and return it
KEYGetXY | wait for keypress an return screen coordinates
KEYSetTM | configure the touchmap

KEYGetTM | get a string representation of the touchmap

4.2.4 Example

The following code illustrates the use of the keycode. A message is printed depending on
the pressed key.

keycode_t keycode;

keycode = KEYGet ()

if (keycode == 8);
LCDPutString("key 3 pressed");

4.3. AUDIO ROUTINES 19

or more intuitive:

#define KEY3 1<<3

keycode_t key;

key = KEYGet()

if (key == KEY3)
LCDPutString("key 3 pressed");

more advanced:

keycode_t keycode;
keycode = KEYWait(1<<3 | 1<<4)
if (keycode == 1<<3)
LCDPutString("key 3 pressed");
else
LCDPutString("key 4 pressed");

4.3 Audio routines

The general principle of the audio routines is simple: The right device file is opened either
in read or write mode. Then ioctl system calls are used to configure it and finally the
data is written to or read from the device. However, some additional aspects had to be
taken care of in the implementation.

4.3.1 Device capabilities

First of all, the capabilities for the device have to honored. This may sound trivial, but
it has to be kept in mind, that by communicating with the device file, one does not
access the hardware directly. A setting must be supported by the hardware module and
the sound API. Usually a request for a certain setting returns the value to which the
device was set to. The standard values are usually accepted and if invalid values are
passed, the device will pick the closest valid one. In a general sound application, no
assumptions on the sound cards capabilities must be made. Thus every setting should
be checked and appropriate measures should be provided if it fails. But as the library
targets a specific system these steps were left out, to simplify and speed up the code. The
current implementation supports only a few standard settings, as an thorough survey of
its capabilities was not undertaken.

4.3.2 File format

The old RoBIOS was able to handle various file formats. This capability was dropped or
at least postponed in order to have a simpler interface and sleeker code. After all, it is

20 CHAPTER 4. IMPLEMENTATION

not vital for the EyeBot to master multitudes of sound formats, its main application lies
in image processing. Due to the limited space, sound files should always be converted to
the lowest acceptable quality when transferring them to the EyeBot.

The WAV file format was chosen as the format for sound samples and files alike. It is
commonly used and platform independent. The standard is very flexible, in fact, the WAV
format are a subset of RIFF format that allows much more than just sound contents. [7]

In order to speed up the processing of the files, it was made a requirement that they
confirm to a specific layout. It is referred to as canonical RIFF-WAV-PCM in the code
and is well suitable for simple sound files. Most ordinary WAV files comply to it, although
the WAV format does not demand this.

4.3.3 Nonblocking Playback and Exclusive Access

It was desired to have any lengthy RoBIOS routine be non-blocking, i.e. it will execute
its work in the background and allow the calling program to execute the next command.
Audio playback and recording certainly fall into this category. Special routines exist to
check on their status, to avoid simultaneous access to the sound device or simply to start
processing the result.

This functionality was implemented with threads. Global variables exist to represent the
state of a sound playback, a sound recording or a tone playback. They are set once the
corresponding routine successfully gets access of the device and reset by the thread. As
usual, care must be taken to avoid concurrent access to these variables. The pthread
library that comes with the Linux kernel offers the necessary tools.

4.3.4 List of Routines

] NAME \ DESCRIPTION

AUPlaySample Plays an audio sample.
AURecordSample | Records an audio sample.
AUPlayFile Plays an audio file.
AURecordFile Records an audio file.
AUCheckSample | Checks for audio playback end.
AUCheckRecord | Checks for audio recording end.
AUCheckTone Checks for tone end.

AUTone Plays a tone.

AUBeep Plays a short tone.
AUCaptureMic Probes the microphone input.

4.4. EXAMPLE APPLICATION 21
4.4 Example Application

This small example illustrates the use of the RoBIOS library. It is essentially a beefed up
version of the classic ”‘Hello World”’ that will output a message on the screen. Here a
tune is played too and the program waits for the user to touch the screen. In fact, this is
necessary to hear the sound at all: The play thread would terminate if the main program
exited too fast.

#include "eyebot.h"

int main (void)

{
LCDInit () ;
KEYSetTM(M6KEY_CLASSIC) ;
AUPlayFile("nicetune.wav");
LCDSetString ("Nice tune playing ...");
KEYGet O);
KEYSetTM(M6KEY_RESET) ;
LCDRelease();
return O;

}

For compilation, the library needs to be included via -leyebot. Also, the wave file is
expected in the working directory. ..

4.5 Monitor Program

4.5.1 Purpose and Structure

The purpose of the so called Monitor program are twofold. For once, it should demonstrate
the capabilities of the platform and the use of the API. Secondly, it should provide a base
for controlling the EyeBot and launching other programs.

The program is started automatically after the bootup completes. As the user has no
means of text input, no login must be required and all other available programs should be
located at predefined places, so they are accessible easily. Normally, exiting the program
should not be provided for, though it may prove useful to allow termination just to respawn
it immediately and thereby essentially resetting it.

The current implementation is heavily modular. The building blocks are referred to
as pages, as they usually clear the screen and display a new content. Pages cannot
communicate with each other and only share a single global variable. This is a table of
the currently available keys, together with a description of them and a pointer to a page.

22 CHAPTER 4. IMPLEMENTATION

It allows displaying help on the available keys and a more elegant handling of the key
presses.

Other global variables are implicitly set, like properties if the display or the touchmap.
This is important since pages may change them. When no standard values are defined, a
page will have to save the current state and reload it when it finishes.

A repeating element in the Main Program is a list of items of which the user selects one.
As the list generally won’t fit on the display, it is scrollable in a sense, that it flips to
the next section. An indicator marks the current entry. that indicator can be moved via
menu buttons or directly via the touchscreen.

This facility is realized as a separate routine, which not only saves resources but also
introduces a common look and feel. For the developer, it allows fast and easy creation
of such lists. It should be noted that the KEYSetTM routine has a mode just for this
application, so this list illustrates its use.

4.5.2 Page Example

In this example, a help page is created. It clears the screen, outputs some text and
waits for user input. The page has its own menu, so the old keys are saved and restored
afterwards. In this special case, the second menu button is empty. Therefore, only certain
keys are accepted when the user input is queried.

int page_help (void)

{
keylist_t *orig_keylist_p = Keylist;
keycode_t keycode, valid_keycode;
int key;

Keylist = create_keylist (4);

set_key (1, "BACK", "previous page", run_nothing_ func);
set_key (3, "MAP", "key region map", page_touchmap);
set_key (4, "LIST", "key list", page_keylist);
valid_keycode = 1<<1 | 1<<3 | 1<<4;

do
{
LCDClear ();
LCDMenu (Keylist->key[1].label, Keylist->key[2].label,
Keylist->key[3].label, Keylist->key[4].label);
LCDSetString (0, 0, "Help-Page");
LCDSetString (2, 0; "Bla Bla ...");
keycode = KEYWait (valid_keycode);
for (key = 0; keycode >> (key + 1); key++);

4.5. MONITOR PROGRAM 23

Keylist->key[key] .run_func ();

}
while (key != 1<<1);

free (Keylist);
Keylist = orig_keylist_p;
return O;

4.5.3 Process Handling

The Main Program can execute arbitrary other programs. It reads directory contents and
offers these files to the user. Of course, the vast majority of programs is not suitable,
as they either require arguments or they output to standard streams, which will not be
displayed in the Main Program. Still the possibility to create simple shell scripts that
give access to the Linux tools is welcomed, if only as a temporary solution.

The execution of the Main Program will not be blocked by these calls. Rather, the
processes can be run in the background. They are added to an internal process list, which
can be brought up to check the status or forcefully terminate a process.

24

25

Chapter 5

Conclusion

In the course of this project, substantial parts of the RoBIOS M6 library were implemented
and an application for it was created. In preparation of this work, the EyeBot was set up
and development tools were configured. This will facilitate future work on the system.

The implemented parts of the library include the key input section, the audio section
and some routines for the OS section. The code is thoroughly documented, including
shortcomings. For every section, a test application is provided. It allows the developer
to verify that the functions work as they should. Together with the LCD section, these
routines provide a foundation for the RoBIOS M6 library.

With the Monitor program, an application was created to demonstrate the potential of
both hardware and library. This application also serves as the user interface for the robot.
It is highly modular to allow easy adjustments and extensions once other sections of the
library are implemented.

5.1 Shortcomings

Not all goals of this project were met. In general, the code certainly leaves room for
optimizations and some techniques may have to be reconsidered.

Specifically, the use of the OSS interface for the audio routines may be inappropriate -
ALSA could be the better choice. It has officially replaced OSS in the kernel. However,
the advanced functionality ALSA offers is not needed for the EyeBot. This and the fact
that OSS is more established and mature than ALSA lead to the current situation.

The *Tone routines will not work with the installed kernel. They require a console,
which is possible with newer versions. Besides that, the AUCaptureMic routine was not
implemented.

The key input routines may deserve a mode in which the event device is read out con-
stantly. Thus it would not have to be opened upon every invocation and key states

26 CHAPTER 5. CONCLUSION

could be determined. Whether the extra resources justify that method would have to be
investigated.

5.2 Future Work

Future work will certainly include the completion and optimization of the library. In this
course, the interface should be reevaluated to see what parts of it are not suitable anymore
and what new parts will have to be introduced.

Once the library is complete, the naming of constants and globals should be revised.
Currently some identifiers are rather long and comply to different naming schemes. Also,
standards on return values and error messages should be imposed to display a common
behavior.

Apart from that, there will hopefully be many applications for this library, making the
EyeBot M6 as successfully as its predecessors.

Appendix A

RoBIOS Routines

A.1 Key Routines

keycode_t KEYGet (void)

Wait for a keypress and return a keycode. (See libM6key-types.h for a definition of
keycode.) Basically a wrapper for KeyGetBuf.

Returns: The keycode.

int8_t KEYGetBuf (keycode_t * buf)

Wait for a keypress and store the keycode into the buffer. (See libM6key-types.h for a
definition of keycode.)

Parameters:
buf A pointer to the variable the keycode is written to.

Returns: 0 on success, -1 on failure

void« KEYGetTM (int8_t mode)

Returns a printable representation of the current touchmap. The needed space for the
return value is allocated and should be released by the calling function!

Supported modes:

M6KEY _TOUCH String with key index at nearest positon only.

M6KEY _TEXT String with key index at all positions. For multi-digit indices, a conversion
is used. Currently: A..T for 10..29, then cycle.

M6KEY _POINTER a pointer to the underlying structure. (do not mess with it - use it
merely to save the current state and restore it later)

27

28 APPENDIX A. ROBIOS ROUTINES

Globals used: m6_touch_p (internal)
Prerequisites: LCDInit()

Returns: void# (chars or touchmap_tx)

coord_pair_t KEYGetXY (void)

Wait for a keypress and return the correspnding coordinates. This makes sense only if a
touchscreen is the source of key events.

Returns: The coordinates (x,y). (See libM6key-types.h for a definition of ”coord _pair”)

keycode_t KEYRead (void)

Check whether a key is pressed and return its keycode. Unlike KEYGet etc it will return
after a short time even if no key is pressed. In this case, a special ”invalid” keycode is sent.
This function does not read out which keys are pressed (held down) at the moment i.e.
it does not query the state of the keys. It will only acknowledge actions that took place
after the function was called. The query state functionality is not available, as the Eyebot
M6 uses a touchscreen that does not generate "key events” but merely coordinates. It
would still be possible to realize this in a function, but modifying the touchscreen module
is the cleaner way... (See libM6key-types.h for a definition of keycode.)

Returns: The keycode of pressed (i.e. pushed down and held) keys is returned or 0 if no key is
pressed. Warning: if you use a touchmap that contains ”empty key” entries (index
0), you will not ba able to distinguish between ”empty key pressed” and "no key
pressed”. This is ok, because thats what the key is for...

int8_t KEYSetTM (int8_t mode, ...)

Sets the global "key region map” where the location and the values of each key are stored.
Entries in this map are what the other KEY* functions use for return values.

Globals used: m6_touch_p

Supported modes:

M6KEY _RESET frees the memory allocated for the "key region map”
M6KEY_CLASSIC: 1..4 on lower half

M6KEY _CLASSIC2: 1..4 on lower half, 5..8 on upper half

M6KEY 3ROWMENU: 1..4 on lower half, 5..X in text mode rows More precisely, 2 title
rows are spared, followed by 3 rows per key. If rows remain between last bundle and
menu, they are set to 0 like the title rows.

M6KEY _POINTER: set "key region map” to the supplied pointer. This is could be used
when saving and restoring the map.

Globals used: m6_touch_p

Prerequisites: LCDInit() for SBROWMENU

A.2. AUDIO ROUTINES 29

Parameters:
mode one of the modes explained above.
. additional parameters depending on each mode.

Returns: 0 on success, -1 on failure See libM6key-types.h for a definition of ”coord_pair”

keycode_t KEYWait (keycode_t excode)

Wait for a specific key configuration, i.e. until all keys that are contained in the keycode
"excode” are pressed. (maybe others, too!) To wait for a certain key press and nothing
else, use KEYWait and evaluate the result until it matches ”excode” exactly. (See lib-
M6key-types.h for a definition of keycode.)

Parameters:
excode The keycode of the keys expected to be pressed.

Returns: keycode of ALL pressed keys.

A.2 Audio Routines

int AUBeep (void)

Generates a short tone (beep).

Returns: ’0’ always.

int AUCaptureMic (void)

Grab current microphone input value.

Returns: 7

int AUCheckRecord (void)

Checks whether there is an ongoing recording. Will only detect recording by AURecordsx
routines.

Returns: 0’ if recording takes place, ’1’ if not.

30 APPENDIX A. ROBIOS ROUTINES
int AUCheckSample (void)
Checks whether there is an ongoing playback. Will only detect playback by AUPlayx

routines.

Returns: 0’ if playback takes place, "1 if not.

int AUCheckTone (void)
Checks whether there is an ongoing beep or tone. Will only detect playback by AUTone
and AUBeep routines.

Returns: 0’ if recording takes place, ’1’ if not.

int AUPlayFile (char x file)
Plays a sound sample from a file. This is no wrapper for AUPlaySample(), as the data
transfer is buffered.
Parameters:
file file name the data is read from. (canonical WAV /PCM)

Returns: ’0’ on successfully preparing playback - the actual writing may fail, though. -1" on
failure.

int AUPlaySample (char « sample, long length)

Plays a sound sample. The actual writing to the audio device is handled in a separate
thread, so the playback is non-blocking. The function will fail if another sample is played
(via the libM6au routines). The audio parameters are fixed to: 8 bit, mono, 11025 sample
rate, pcm.

Parameters:

sample defined as the contents of a canonical WAV /PCM file (for details, see libM6au-
types.h)

length length of the sample in bytes.

Returns: ’0’ on successfully preparing playback - the actual writing may fail, though. ’-1" on
failure.

A.2. AUDIO ROUTINES 31
int AURecordFile (char =« file, long length, long sample rate)

Records a sound sample. This is no wrapper for AURecordFile(), as here the data transfer
is buffered.

Parameters:

file file name the data is written to. (canonical WAV /PCM) implicit settings: 16 bit, 1
channel

len bytes to sample, including the header (44 bytes).
sample_rate samples per second.

Returns: ’0’ on successfully preparing recording - the actual recording may fail, though. -1’
on failure.

int AURecordSample (char « buffer, long length)
Records a sound sample into the provided buffer. The audio parameters are fixed to: 8
bit, mono, 11025 sample rate, pcm. (see top of this file)

Parameters:

buffer memory region that receives the sample, which is defined as the contents of a canon-

ical WAV /PCM file, (for details, see libM6au-types.h)
length bytes to sample, including the header (44 bytes).

Returns: ’0’ on successfully preparing recording - the actual recording may fail, though. -1’
on failure.

int AUTone (int freq, int msec)

Generates a tone. Creates a thread to prevent blocking execution of the main process.
Parameters:
freq tone frequency in Hz.
msec tone duration in ms.

Returns: ’0’ on successfully preparing recording - the actual recording may fail, though. -1’
on failure.

32 APPENDIX A. ROBIOS ROUTINES

A.3 OS Routines

info_cpu_t« OSInfoCPU (void)

Collects appropriate information and returns a filled structure.
Returns: pointer to a structure (see libM6os-types.h for details)

info_mem tx OSInfoMem (void)

Collects appropriate information and returns a filled structure.
Returns: pointer to a structure (see libM6os-types.h for details)

info_misc_tx OSInfoMisc (void)

Collects appropriate information and returns a filled structure.
Returns: pointer to a structure (see libM6os-types.h for details)

info_proc_tx OSInfoProc (void)

Collects appropriate information and returns a filled structure.
Returns: pointer to a structure (see libM6os-types.h for details)

charx OSVersion (void)

Returns the current RoBIOS version as a string.

Returns: string containing version number (see libM6os-types.h for details)

Bibliography

1]
2]

ANDERSON, DON: A one year report. paper, 2005. 7

BLACKHAM, BERNARD: The development of a hardware platform for real-time image
processing. paper, 2006. 7

CHERBA, MIKE: Introduction to embedded linuz. EUGLUG Presentation Series,
2005. 3

CHIN, LIXIN: Fpga based embedded vision systems. paper, 2006. 7

CORPORATION, IBM and MICROSOFT CORPORATION: Multimedia programming
interface and data specifications 1.0. paper, 1991. 20

GARRELS, MACHTELT: Introduction to linuz. paper, 2006. 6

GEORGE FRANCIS, LIBOR SPACEK: Linux robot with omniderectional vision. paper,
2006. 4,8

HALL, MIKE: Comparing windows ce and windows xp embedded.
www.embeddedtechjournal.com, 2005. 6

HERKERSDORF, A.: Hw/sw-codesign introduction. lecture script, 2006. 3

HINTERMANN, MARTIN: Development Tools for an Embedded Linux System. paper,
2007. 13

HoNiG, TiMoO: Input Abstraction Layer. paper, 2005. iii, 11, 12

JONATHON T. GRIFFIN, GEORGE S. KOLA: Linux process controll via the file
system. paper, 2005. 11

LINUXDEVICES.COM: Microsoft opens full windows ce kernel source. online journal,
Nov. 2006. 6

ROBOTICS.EE.UWA.EDU.AU/EYEBOT/: Eyebot online documantation. www, 2007.
iii, 13, 16
STRAUMANN, T'.: Open source real time operating systems overview. paper, 2001. 6

WEBB, WARREN: Tiny computer holds embedded treasue.
www.edn.com/contents/images/6363909.pdf, 2006. 5

33

34 Bibliography

[17] WWW.GUMSTIX.ORG: Connex product details. online documentation. iii, 4, 5
[18] WWW.SONY.DE: Sony consumer products. online documentation. iii, 1

[19] YODAIKEN, VICTOR: The rt-linuz approach to hard real-time. paper, 1997. 6

	Contents
	List of Figures
	List of Symbols
	Overview
	Hardware and Software of the Target System
	The Gumstix Platform
	Operating Systems
	Windows CE
	Linux

	EyeBot M6
	Essex Robot

	Employed Concepts
	System Calls
	The Proc Filesystem
	Definition
	Application
	Pros and Cons

	Input Interface
	RoBIOS M6 Library

	Implementation
	Development Tools
	Key Routines
	Keycodes
	Touchmap
	List of Routines
	Example

	Audio routines
	Device capabilities
	File format
	Nonblocking Playback and Exclusive Access
	List of Routines

	Example Application
	Monitor Program
	Purpose and Structure
	Page Example
	Process Handling

	Conclusion
	Shortcomings
	Future Work

	RoBIOS Routines
	Key Routines
	Audio Routines
	OS Routines

	Bibliography

