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Chapter 1

Introduction

“Simulation is the process of designing a model of a real system and conducting experiments
with this model for the purpose either of understanding the system or of evaluating various
strategies (within the limits imposed by a criterion or set of criteria) for the operation of
the system” (R. E. Shannon 1975) [52]

1.1 Autonomous Underwater Vehicle

The CIIPS1 group at the University of Western Australia in Perth develops submarines,
so called “Autonomous Underwater Vehicles” (AUV). An AUV is a fully submersible, self
decision-making submarine capable to act on its own [47]. Their manifold application
in mining or for military purposes are only two indications for the importance of AUVs
[56]. Compared to remotely operated vehicles (ROV) they act on their own and perform
predefined tasks. These tasks are mostly in inaccessible or too dangerous areas for a crew.
AUVs do not depend on a steady communication like ROVs do. The need of a steady
communication harbours the risk of loosing the vehicle when the connection is interrupted.
By using a whole array of sophisticated sensor systems AUVs are able to act autonomously
via the provided real time data.

The construction of AUVs is still a mechanical and electrical challenge [37]. The en-
vironmental conditions and exceptionally physics under water demand cutting-edge tech-
nology. Therefore mastering these conditions is one of the most difficult tasks in the
development of AUVs.

1.2 Motivation Mako

Project Mako is an initiative originated from the increasing demand of robot research,
especially on AUVs. With the regard to commercial applications, the initiative wants to
enforce research in the field of AUVs [29].

1CIIPS: Centre for Intelligent Information Processing Systems - http://ciips.ee.uwa.edu.au
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Chapter 1. Introduction

The project Mako is mainly geographically restricted to the Australasian region. Its
role model is a related project in North America, namely “Association for Unmanned
Vehicle Systems International” (AUVSI) [11]. The mission tasks of the project Mako
initiative can be found in appendix A.

The decision was made to split the competition into two different streams, given the
rise to profit of either comparing simulated or physical AUVs. The basic research in the
field of sensors and control methods - driven by the project Mako - might result in a better
understanding of the essentials and might even offer novel approaches.

1.3 Motivation SubSim

SubSim is a simulation program for AUVs developed by the CIIPS group. Its main goal is
to ease research and to provide a base system for testing and debugging. It was developed
to allow running programs written for a real robot without any changes in the simulation.

Simulations appeal through their inexpensive and time saving properties. They are
customizable to desirable conditions, and parameters can be adjusted with ease. Control
programs can be tested without taking the risk of damaging or endangering the AUV.

SubSim is an acronym for “Submarine Simulator” and indicates for what it is build for.
Most simulation programs available are only capable to target a certain task and involve a
lack of flexibility. Therefore SubSim was developed to be as customizable as possible. The
simulation emulates the EyeBot microcontroller which finds application in many different,
distinguishable mobile robots developed by the CIIPS group.

1.4 Thesis Goals

Control optimization is often performed in simulated enviroments which can not be im-
plemented into real autonomous robots. The conditions of the real world are often not
simulated appropriatly, and real robots behave different in reality. The problem to transfer
a behaviour of a robot into a simulation and vice versa is refered a reality gap [40]. Proper
treatment of noise in the simulation however can close the this gap [44]. Brooks writes
in [30]:

“There is a real danger (in fact, a near certainty) that programs which work well on sim-
ulated robots will completely fail on real robots because of the differences in real world
sensing ... sensors simply do not return clean accurate readings. At best they deliver a
fuzzy approximation to what they are apparently measuring, and often they return some-
thing completely different.”
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1.5. Outline of Thesis

In the opinion of P. Husbands and I. Harvey, mentioned in [43], a simulation has to
meet, amongst others, the following three conditions:

• The simulation should be based on large quantities of carefully collected empirical
data

• Appropriately profiled noise should be taken into account at all levels

• Noise added in addition to the empirically determined stochastic properties of the
robot may help to cope with the inevitable discrepancies of the simulation

The latest release candidate of SubSim, version 2.3 , has no available error model, and
a program written for Mako was never applied in SubSim. In an available “TODO” list
for SubSim one of the past developer left the message:

“TESTING! TESTING! TESTING! TESTING! It seems that NO ONE has ever checked
if behavior of a real eyebot is the same as the one in the simulation”

This initial situation formed the goals for this thesis: the system of Mako and its
sensor suite has to be identified. Subsequent, an detailed error model for the simulation
SubSim has to be designed, developed, implemented and tested. Finally, the behaviour of
an available model of Mako for SubSim has to be compared with its real counterpart.

1.5 Outline of Thesis

In accordance with the order of the actual stages in this project, this thesis provides first
an overview about the initial situation and back ground knowledge, and then proceeds to
the experiments and model adaption.

Chapter 2 gives an overview about available AUVs and simulators. The initial situation
of Mako and SubSim is described in detail.

Chapter 3 goes into details of sensor for mobile robots. Typical sensor errors are iden-
tified. Finally, the available sensor suite for SubSim and Mako is presented and discussed.

Chapter 4 shows the results of experiments designed and conducted with Mako and
its sensor suite to identify the system.

In chapter 5 an introduced error model is presented. Results of experiments processed
within the simulation are presented and compared with results of chapter 4.

Chapter 6 summarises the overall results and undertakings in this thesis and contains
suggestions for future.
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Chapter 2

Current AUVs and Simulation

Systems

2.1 AUVs - an Overview

Some of the first versions of AUVs were developed in the 1970s e.g at the Massachusetts
Institute of Technology [1]. In the beginning, most of the AUVs were designed for military
purposes, primarily due to the fact of a higher budget available to them by companies,
whom look for more cost effective alternatives. However, this trend began to change, and
in the beginning of the 1990s AUVs became attractive for non-military purposes such as
the mining and oil industries. With increased reliability and Mores Law, research labs
were able to develop smaller and inexpensive AUVs [47]. In the last 20 years, a plenty
of AUVs were developed by universities and companies alike. However, in spite of these
encouraging trends only a few companies, even today, actually sell these vehicles, e.g.
Hydroid Inc. [6], Kongsberg Maritime [7] or Bluefin Robotics [8].

One reason for this hesitant trend is the significant element of risk in the development
and deployment of AUVs. Even the offshore industries, which are keen on looking for
cost effective possibilities, began using the service of AUVs relatively slowly. The key
point to stress in this discussion is the reliability factor. In order to accomplish this goal,
intensive research is being carried worldwide especially in the topics of autonomy, object
detection, energy sources, navigation and information systems. Countries all over the
world run intensive AUV research and development programs, a clear indication of the
growing importance and significance of these vehicles.

Typical applications of the AUV in scientific areas [56] include ocean modelling, ocean
bottom exploration, ocean bottom sampling, underwater survey and hydrodynamics. In-
dustrial applications involve conducting comprehensive 3D view of behaviour of oceans.
Mining and oil industries deploy them for mineral exploration. In the military arena,
AUVs found an important application in the Persian Gulf where they were used by the
US Navy for mine counter measures (MCM) [32].
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Chapter 2. Current AUVs and Simulation Systems

2.1.1 Commercial AUVs

The company Hybroid Inc. has been involved in the marketing of a series of AUVs, each
of them designed for specific purposes and mission areas. The Remus 100 [6] was been
designed to scale depths of up to 100 meters in coastal environments. It was constructed
with the intention of being compact and lightweight; its maximum diameter of 19cm, a
maximum length of 160cm and weight of 37kg allows economical overnight shipping and
ease of deployment and recovery. With the application of numerous missions and mission
hours it has proven its reliability and thus has become a cornerstone in the coastal AUV
market. It can also be further configured to include a wide array of customer specified
sensors like side scan sonar, conductivity, temperature and pressure sensors, but it can
also be equipped with video cameras, inertial navigation system or global position systems
(GPS). Typical applications are hydrographic surveys, harbor security operations, fishery
operations and scientific sampling and mapping.

Figure 2.1: Remus 100 market by Hydroid Inc. [6].

Another notable AUV is the HUGIN 3000 Model manufactured by Kongsberg Maritime.
It is a hybrid vehicle that can be operated in either supervised (ROV) or autonomous mode
down to an operating depth of maximum 3000 meters. Its advantages are high speed and
long endurance - up to 60 hours at full speed and all payload sensors running. It uses
a high sophisticated navigation system. By virtue of its characteristics it is suitable for
high-speed seabed mapping and imaging, inspection of underwater engineering structures
and pipelines. It has also found myriad applications in the military area like mine counter
measures or even anti-submarine warfare.

Figure 2.2: Deep water environment AUV, HUGIN 3000 Model [9].
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2.1. AUVs - an Overview

2.1.2 Research AUVs

The AUVSI and ONR’s 11th International Autonomous Underwater Vehicle Competition
was held in August 2008. To gain some ideas and compare Mako with competing AUVs it
is worth analysing this years winners. The team from the University of Maryland, USA,
secured Tortuga 2 [10] the first place [11]. Tortuga 2 was designed by Robotics@Maryland,
a student-run organization at the University of Maryland. It was created to be highly ma-
noeuvrable, regardless of speed or hydrodynamics, low cost, with an emphasis on simplicity
and reliability.

A modular chassis was implemented to achieve an easy design and the possibility for
future modifications. Aluminium was the choice of material. All electronics and batteries
were located in an acrylic pressure hull, the central component of that AUV.

The electronic system itself was once again implemented in a modular configuration. It
consisted of a backplane board and several plug-in cards for easy expandability. Another
advantage of the modularity is the reduction of complexity and ease of repair. Plug in cards
are e.g. a sensor board and a sonar board. The backplane performs the interconnection
between the boards and supply them with power.

Low-level algorithms use the inertial guidance sensors to stabilize the AUV, thus al-
lowing precise basic movements in the water. These sensors are a pressure transducer for
depth measurements, and a MEMSense nIM nano Inertial Measurement Unit containing a
three axis magnetometer, an accelerometer and an angular rate gyroscope. The accelerom-
eter and the magnetometer are used to gain angular readings, the gyroscope measures and
the angular velocity.

Figure 2.3: Tortuga 2 from the University of Maryland, USA [10].

The sonar system consists of a three sonar array to determine the direction of a pinger
in a 2D plane. The vision system use two cameras - one faces in front while the other
faces downward. The vision software was written in C++ and makes use of the openCV
image processing library.
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Chapter 2. Current AUVs and Simulation Systems

Tortuga 2 is not only able to translate fore/aft and up/down, through the placement
of the thrusters, it can also translate int port/starboard direction and precisely change its
orientation even when translating.

To accomplish its mission tasks, an AI (artificial intelligence) was implemented using
the sensor data. The AI was written completely in Python, thus making it unnecessary
to recompile the code after changes. The batteries last for two hours during underwater
operations.

A good overview over other current AUV research projects and groups can be found
at [12].

2.2 Mako Abstract

Mako had to be designed and built up from scratch. This included the mechanical and
electrical system as well as the sensor suite. Mako was modelled and built by Louis Andrew
Gonzalez in 2004 during his final year project [39]. His work included the mechanical and
electrical design. Both had to be done simultaneously to prevent mutual exclusion. Several
other constraints influenced the choice of the design. Since Mako was also constructed
with the possibility to participate on the AUVSI competition, the rules from 2004 limited
the design of participating AUVs. These limits covered the dimensions and the weight
that each AUV entry must fit within a box of 180cm x 90cm x 90cm. The AUVSI rules
from 2008 [11] limit the dimensions of a box to 183cm x 91cm x 91cm and additionally
limit the weight to a maximum of 50kg.

Besides these constraints the main goals for the design were [29]:

• Ease in machining and construction

• The ability to survive in salt water

• Ease in ensuring watertight integrity

• Providing enough space for the equipment

• Providing static and dynamical stability

• A modular design to allow easy design changes

• Cost effective

• Long lasting batteries
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2.2. Mako Abstract

Mako measures 134cm long, 64cm wide and 46cm tall with a total mass of 35kg. An
aluminium skeletal frame was chosen due its lightweight characteristics and its resistance to
corrosion. It provides high modularity thus allowing easy design changes and the provision
of mounting extra external devices. Since the tasks of the AUVSI changes every year, the
ability of changing the setup was almost a pre-requisite.

Two PVC cylinders provide enough space for the internal equipment and ensure an
ease in terms of watertight integrity. The upper PVC cylinder contains a micro controller,
a sonar multiplexer and vision system as well as a couple of internal sensors. Theses
devices are mounted on an aluminium tray which can be removed with ease. Thus it is
possible to have quick access to the devices (appendix F).The lower cylinder contains the
heaviest part, the batteries. By mounting the batteries under the center of buoyancy and
thus moving the center of mass as well under the center of buoyancy it is ensured that
Mako always stays in an upright position. Three sealed lead acid batteries providing a
capacity of 31Ah end ensures sufficient operating time.

Figure 2.4: Mechanical system schematics of Mako [39].

2.2.1 Propulsion and Range of Motion

The propulsion system consists of 4 trolling 12V and 7A DC thrusters of the same kind.
Their original application in water ensures watertight integrity and allows forward as well
as backward movement. Two thrusters are aligned horizontally, one on the port side,
the one on the starport side for fore/aft translation. The other two thrusters are aligned
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Chapter 2. Current AUVs and Simulation Systems

vertically on the bow and stern, and thus facilitates a translation in the up and down
directions.

The decision was made not to use a ballast tank and single thruster system with
rudders mainly due to the advantage of easier control over the submarine. It also made
the design of mechanical systems much easier and thus reduces the complexity in terms of
watertight integrity. A disadvantage that arises is a higher consumption of energy during
diving tasks, since both, bow and stern thrusters, have to apply a steady force to keep the
submarine under water.

The current thruster setup gives Mako four controllable degrees of freedom (DOF):

• Movement in x-direction by setting both port and starboard thruster to the same
speed and direction (surge)

• Movement along the z-axis by setting both bow and stern motors to the same speed
and direction (heave)

• Turning around the z-axis is possible by setting different speeds and/or directions
to port and starboard thruster (yaw)

• Turning around the y-axis by setting different speeds and/or directions to bow and
stern motors (pitch)

Due to the fact that the center of mass is lower than the center of buoyancy the innate
metacentric righting moment passively controls roll and pitch. Mako lacks the ability to
translate in port or starboard direction but is still able to navigate to all world directions
and positions with the four DOF. The speed of the thrusters is set by a pulse width
modulation (PWM) with inverted logic. That means setting the modulation to a value of
’0’ produces maximum thrust.

Figure 2.5: Range of Motion of Mako by the use of its thrusters(4DOF) [39].
modularity
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2.2. Mako Abstract

2.2.2 Controllers

The control system is split into two parts. An EyeBot MK4 microcontroller is responsible
for reading sensor data and controlling the thrusters while a cyrix mini PC provides the
necessary computation power needed by the vision system. It was a logical decision to
separate these two independent systems and use the power of distributed computation.
To split these tasks implies a reduction in complexity and thus simplifies the writing of
applications for the EyeBot microcontroller and the vision system.

The EyeBot microcontroller runs in C or C++ written and compiled programs to
navigate Mako through its task, reading data from the sensors over analog, digital or
serial ports and setting the speed to the thrusters by changing the pulse width for the
PWM. The programs are transmitted serially to the controller, either with a cable or
preferably a bluetooth connection. The latter in particular is quite handy if the controller
is mounted inside Mako.

The specifications of the EyeBot MK4 microcontroller [28]:

• Operating system: RoBIOS

• 25MHZ 32bit Controller (Motorola 68332) overclocked to 35MHZ

• 512KB ROM for system + user programs, 2048KB of RAM

• 8 digital inputs

• 8 digital outputs

• 8 analog inputs

• 2 serial ports

• Graphics LCD (128x64 pixels)

Figure 2.6: left: EyeBot controller, right: mini PC [39].

The RoBIOS operating system offers a low-level API as well as a powerful high-level
API and simplifies developing applications enormously by offering interfaces to almost all
available sensors. A detailed documentation can be found under [28]. Each robot using
the EyeBot controller is coupled with a hardware description table (HDT). It is used to
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Chapter 2. Current AUVs and Simulation Systems

define low level attributes for sensors and actuators, and offer the possibility to balance
their different behaviours using these sensors or actuators.

The Cyrix mini PC runs with 233MHz and uses 32MB of RAM and thus has sufficient
power for computationally intensive image processes. The operating system is the Red
Hat Linux distribution using Kernel 2.4 without any graphical user interface (GUI).

2.2.3 Sensor Suite Overview

In recent times there have been a huge variety of sensors for mobile robots [38] [27].
Sensors for mobile robots has been a major topic in the past, and intensive research and
development has taken place in this field. However, the most difficult challenge is in
choosing the right sensor for the right application. Since the competition tasks of the
AUVSI changes every year, it is necessary to change the setup of the AUV accordingly.
This section gives only a short overview over the current mounted sensor on Mako, and a
detailed discussion will be provided in chapter 3.

Mako comes along with a couple of sensors that are essential to accomplish its mission
tasks. These sensors are connected directly or indirectly to the EyeBot microcontroller
and can be accessed by the RoBIOS API. The following sensors are currently mounted:

• Digital compass

• 3 axis accelerometer

• Velocity sensor

• Depth sensor

• Four sonar transducer, respectively one facing towards the front, backwards, left and
right

The vision system was implemented by Daniel Loung Huat Lim in 2004 [46]. However,
this will not be a part of this thesis primarily due to the fact that the camera is currently
non functional. Ivan Neubronner, a senior technician at the electronics workshop of the
school of electrical, electronic and computer engineering, was involved with the construc-
tion of Mako. According to him, the camera just might be not powered. It was not possible
to go into the matter any further since the back side of the upper PVC hull, where the
electrical power was distributed, is sealed.

2.3 Other Simulations

To get the necessary background and to spot ideas to fill the reality gap in SubSim it
was useful to have a look into other available simulations for mobile robots. Currently
there is a wide variety of different simulators available for robots. Most of these are
designed for the Microsoft Windows operating system but using the operating system
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2.3. Other Simulations

independent OpengGL graphics library (Open Graphics Library) [31] [13]. They find
their applications in military, commercial and scientific areas. Many universities, such as
the Naval Postgraduate School in California, USA, or the University of Tokyo, Japan, to
name a few, have conducted, their own simulations for their AUVs.

Due to the strong limitation in communication with autonomous and nearby au-
tonomous underwater vehicles, simulations try to minimize the operating risk since the
operating environment is extremely unforgiving and bears many, sometimes unexpected
risks. By closing the reality gap between offline simulations and real robot, real time
simulations reduce developing time and thus developing costs dramatically [24].

Rainer Trieb and Ewald von Puttkamer from the University of Kaiserslautern classify
their 3d7- Simulation Environment [51] into four distinguishable system aspects.

Characteristics of the operating environment : the simulated operating environment must
be abstracted from the real environment and mapped to an appropriate representa-
tion. Simplicity and realism have to be balanced

Configuration of the sensor system : to configure a sensor system it is necessary to model
individual sensors with the possibility of independent sensor configurations. The
purpose is to gain realistic output data which can be used for control programs. To
achieve this geometrical, physical and stochastical methods are used to describe the
behaviour in a real environment

Type of locomotion: the simulation of the locomotion system is necessary to develop con-
trol applications for navigation and obstacle avoidance

Partition of the control structure: the implementation of the control program

2.3.1 Webspots 5 Simulation

Webspots 5 is a commercial robot simulation, developed by Cyberbotics [14] and the Swiss
Federal Institute of Technology in Lausanne. It finds application in over 450 universities
and research centers around the world. Due to the maintenance of over eight years, this
simulation has proven to be both reliable and robust. It allows custom defined robots, in-
cluding the physical and graphical modelling. Its own software library enables the transfer
of the controller program, written for the simulation, to several commercial mobile robots,
e.g. Lego Mindstorms or Khepera, and comes along with its own IDE. External IDEs are
supported as well. Control programs can either be written in C, C++ or even Java.

It runs simultaneously several, different mobile robots in the same environment and
allows the communication amongst these. Wheeled, legged and flying robots are currently
supported. The available sensors are infrared and ultra sonic sensors, range finder, light
sensors, touch sensors, GPS, cameras including stereo view or 360 degree vision systems,
position and force sensors for servos and incremental encoders for wheels.
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Figure 2.7: Webspots 5 Simulation Software market by Cyberbotics [14].

The software makes use of the OpenGL graphical library and includes its own 3D
editor for modelling objects. Each component of an object is considered individually and
takes into account different mass distribution, static and kinematic friction coefficients,
whereby the Open Dynamics Engine (ODE) takes over the physical simulation. Changing
the simulation speed allows simulations either in slow motion or up to 300 times realtime.
A supervisor program allows changing the environment during the simulation and comes
very handy by computational expensive simulations like neural networking, where a lot of
training data is necessary.

2.3.2 EyeSim

Next to SubSim a couple of mobile robot simulations were developed at the robotics re-
search group of CIIPS. All of them make use of the RoBIOS operating system and allow
developing control programs using the same SDK. EyeSim is one such simulation and
was developed in 2004 to simulate mobile robots [45]. It is able to simulate all available
sensors and actuators supported by the RoBIOS including a virtual camera. The camera
allows real time image processing. Like Webspots 5, EyeSim supports multi robot and
multi tasking simulations simultaneously and allows a simulated wireless intercommuni-
cation between the robots. As other simulations developed at the robotic department,
applications are written in C or C++ and apply the RoBIOS API. The completely func-
tions and graphical representation of the EyeBot’s LCD were implemented as well. Most
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simulations run control programs and simulation in different applications or processes.
EyeSim instead dynamically links the control software during the runtime and executes it
in one application.

Figure 2.8: left: EyeSim simulator version 6.5, right: the detailed error model

Robots and environments can be customized with different parameter files and pre-
sented through a 3D visualization. Again the OpenGL 3D library was used for the 3D
drawings. Milkshape1 shareware was used to provide 3D polygon representations for
objects and robots. Much effort was spent on the error model to emulate a realistic en-
vironment for the robots. The error model is based on statistical behaviour descriptions
and can be applied on sensors, actuators, the wireless communication and the virtual
EyeBot camera. Next to the error model a debugging mode was implemented for sensor
data visualization. It enables, amongst others, the graphical representation of PSD beams
(Positional Sensitive Device) and the visualization of the camera frustum, and thus assists
the user in terms of developing and debugging.

2.4 Subsim

SubSim was designed and developed in 2004, during the same time as Mako, with the
goal to be extendable and flexible as possible [29]. Many different projects mostly done by
final year project students enhanced the SubSim to version 2.3. This section describes the
status of SubSim at the beginning of the thesis. The implemented extensions and changes
will be discussed in chapter 3 and 5.

1http://chumbalum.swissquake.ch/
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2.4.1 Requirements, Restrictions and Shortcomings

Some basic requirements and important properties for the design were defined before the
actual implementation could be done:

• The simulation must be able to simulate an environment for the AUV with all its
sensors and special physical underwater properties

• Additional passive objects like buoys, ships or pipes should be able to be placed

• Any EyeBot program written for an AUV has to be executable without any changes
on its real counterpart

• Therefore the EyeBot LCD must be emulated with all its functions

• The user must be able to watch the scene from different perspectives

• The movement of any objects must be visualized

• The user should be able to observe the sensor data

• The user should be able to change the speed of the simulation

• Position and orientation of AUVs should be changeable by the user

• It must be highly extensible through plugins and provide appropriate functions to
access the simulator

• Pre-setups through customizable settings files must be provided

• A developer documentation should be provided

Version 2.3 fulfils most of the above mentioned points, however some functionality is
still missing. The execution of any EyeBot programs is not completely possible. This is
mainly due to the reason that some sensors, e.g. the sonar system, used by Mako were not
part of RoBIOS. Furthermore a sonar system was not implemented in version 2.3. The
possibility to observe sensor data was implemented and was working in previous versions,
however this was observed to be broken in this version. The functionality to set the
position and orientation of AUVs was not implemented. A user documentation to setup
the simulation through its settings files as well as a documentation on how to implement
a new AUV model are available. However, a full up-to-date documentation for SubSim is
currently not available.
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2.4.2 Definition of Objects

To understand the model design and concept of SubSim it is necessary to define and explain
its inherent objects. The environment is referred as World. It contains other objects
called WorldObjects. These WorldObjects are distinguished as passive and active objects.
Passive objects are such as the buoys and ships. Active objects like submarines extend the
properties of the world and are referred as WorldActiveObjects. Each WorldActiveObject
is attached with appropriate descriptions for its sensors and actuators and is coupled with
a client dynamic link library (DLL), containing the control program, and a HDT.

2.4.3 Software Architecture

SubSim is a single process application. The physics and graphics are computed within one
application. Even the client control programs are performed in the same application as it
is done in EyeSim. Due to the fact that only one active object can be simulated at a time,
to split the physics and graphics to a distributed architecture was not necessary. Current
PCs can easily handle the computational work load.

A layered based client/server architecture was implemented to reduce code dependen-
cies. The ability to keep the software architecture abstract allows defining clear interfaces
between these layers. The server component consists of the program core, the physics
and graphics engine and performs the data processing. Two different APIs provide the
access for plugins or client programs. The abstract layer model consists of a presentation,
control, application and data layer.

Figure 2.9: The layer architecture of Subsim [24]

The GUI shown in figure 2.10 covers the presentation and control layer. The pre-
sentation layer is implemented by a software canvas which will be explained later in this
chapter. It shows the World with all its contained world objects. The canvas accepts
mouse gestures for changing the visible frustum by translating, rotating and zooming in
and out of view.

The control layer is represented by the main frame and offers many functions. However,
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Figure 2.10: GUI mainframe with its controls and the simulated EyeBot LCD of SubSim

only the most important functionality will be mentioned. A full description can be found
at [24]. It is possible to change the visible frustum with five different slide bars for
translating and rotating on the x and the y axes respectively. Zooming is approached by
translating forward or backwards along the z-axis (figure 2.11). On the right side are the
controls for the simulation. Two buttons are available to start and stop the simulation. A
speed panel allows the user to change the simulation speed. Another interesting feature
is the possibility to toggle the canvas to a stereo view and this allows a three dimensional
view of the scene. The mainframes menu bar contains several entries. The “File” entry
allows to load a simulation description file needed to run a simulation or to quit. The
Plugins” entry gives the opportunity to place different plugins to extend the simulation.
One plugin, the EyeBot LCD, is already included and gives developers the chance to see
how to develop new plugins. Another important entry is “Visualize” and holds several
options in order to visualize sensors and cameras of active objects.

The core of the simulation covers the application layer. It consists of a single object
and was thus implemented with a singleton software pattern. Its task is to connect the
GUI with the data layer. During the start up of the simulation it initializes the application
and the GUI. Comandline parsing allows the loading of a simulation description with the
start up of the simulation. The core is also connected to the API plugin component and
offers a low and high level API to the function provided by the RoBIOS. These functions
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are defined in a global static space and makes it impossible to run multiple client programs
simultaneously.

Figure 2.11: The right-handed coordinate system and view orientation in SubSim

The data layer holds the information loaded from the different extensible markup
language (XML) description files. The XML file format was chosen due to its easy readable
syntax. The “settings.xml” is loaded at start up of the application and contains the relative
paths to other description files, GUI resources and plugin files. A simulation description
file is the main configuration file for any simulation and carries a “sub” file extension.
This file has to be loaded to start any simulation. Hence each simulation can have only
main description file. It describes all objects used by the simulation, including a world
description file and a description file for world objects. Furthermore several pre-setups
for the simulation can be set e.g. the visualization for sensors, the simulation speed or
view settings. A world description file defines the environments, its dimensions and what
graphic files in particular are used to render the world. Settings for the water physics and
gravity can also be found but are not used at in this version. However, each simulation can
use only one world description file. A world object file describes both, the graphical and
the physical properties of a world object respectively, which are processed by the physical
or graphical engine of SubSim. Active objects are distinguished from passive objects by
adding an additional XML tag “Submarine” inside a simulation description file.

2.4.4 Physics Engine

To enable realistic simulation behaviour an appropriate physics engine is required. The
influence of forces and the liquid effects as they occur in water environments also needed
to be considered. In particular sensors have to act like their real counterparts. Like other
simulations developed at the robotics lab of CIIPS, it came to the decision to implement
the physical abstraction layer (PAL) [25]. PAL provides a unique interface for physical
bodies, sensors, actuators and fluids. Its most important property is the unified interface
to a number of different physic engines and thus allows the integration of multiple physics
engines with ease. This makes it possible to choose an engine that gives the best per-
formance for a certain application and makes it easy to compare them. For SubSim two
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different, free commercial physic engines are applied, the Newton Games Dynamics [2] and
PhysX [3]. However, the way both the physic engines were implemented does not allow
switching between them easily as yet. PAL and SubSim are interconnected without a clear
interface. For each of them the application has to be compiled independently. SubSim
version 2.3 was published using Newton engine. The interconnection makes it also difficult
to update PAL to newer versions and provides additional complexity.

Newton is an integrated solution for real time simulations of physical environments
and can be integrated with ease. It assures producing a realistic behaviour with basic
physic principles.

PhysX, also known as Novodex, is a real time physics engine developed by Nvidia. It
uses the hardware acceleration for compatible graphic- or physic cards and runs in software
mode for the others. PhysX offers a greater API and allows real fluid simulation. This
feature is currently not implemented in SubSim, but it looks very promising in terms of
realistic liquid effects and might be regarded for future projects.

2.4.5 Graphics Engine

As in EyeSim, the Milkshape shareware was used to provide 3D polygon models. It allows
easy 3D modelling of complex graphics. With the decision to use Milkshape it was ensured
that users can add their own object models to use them in simulations. Again OpenGL
was used for graphics drawings and allows to render the scene from any viewpoint. With
the help of the 3D polygon models the environment and all its contained objects can be
visualized. Furthermore, the prerequisite to visualize PhysXs real fluid is given.

2.4.6 Other 3rd Party Libraries

The GUI of SubSim was created with wxWidgets [4], an open source C++ frame for writing
cross platform GUIs. Besides the common standard widgets, it offers support libraries
for multi-threading and a special canvas, wxGLCanvas, for OpenGL drawings. Multi-
threading support was used to emulate the EyeBot LCD controller so that it supports
multi-threading as its real counterpart. The current version of wxWidgets is 2.8.9 but
version 2.4.2 is still used for SubSim and might be upgraded in the future.

All description files used by the application and simulations are written in the XML
syntax. These files are processed through tinyXML, a simple XML parser [5]. It creates a
Document Object Model (DOM) that can be easily read within the data layer of SubSim.

2.4.7 Sensor Suite

PAL provides the available sensor class suite of SubSim version 2.3 and was extended
through this project. This section describes the sensor suite of version 2.3, a depth and
sonar sensor were implemented within this thesis and are described in chapter 3.
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The PAL sensor suite was designed to enable them to couple with an error model. An
error model is necessary to allow the user to simulate their equipment to return data as the
physical equipment does. Position and orientation of certain sensors can be modelled by a
low level physics library. Each sensor instance has to be attached to the body of an active
object. Position and orientation vectors inside an active object description file determine
accordingly the position and orientation relative to the body of its owning active object.
Physical and graphical orientation apply the right-handed coordinating system as shown
in figure 2.11.

These settings are read independently from other description files since PAL itself is
designed as an independent component. This enables PAL to define a simpler interface,
but on the other hand it is more complex since data from the same description file are
read in different components inside SubSim. In SubSim version 2.3 the following sensor
classes are available:

• PSD sensor

• Inclinometer

• Gyroscope

• Compass

• Velocity sensor

• Camera

2.5 Feedback Control Theory

Feedback control is one of the most used control mechanisms for mobile robot control
applications. Measurements from sensors are compared with set values. The difference
between both is given as input to appropriate controllers. Depending on the implemen-
tation, a controller produces an output which is applied to the robot to change its status
and thus to reduce the discrepancy. A feedback loop is an iterative process. After each
iteration, consisting of the calculation of the difference, producing the output value and
applying it on the robot, the controller awaits the next measurement.

Two different, simple input simple output (SISO) and very common controller were
deployed in this project and implemented in software, one PID- and one FUZZY Logic
controller.
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2.5.1 PID Controller

A PID controller contains three independent control terms: a proportional, an integral
and a derivative term. Process variables (PV ) refer to the measurements of sensors, set
values are referred as set points (SP ) and the difference of both is referred as an error
(e). It uses current and recent error values and error changing rates as input parameters
[36]. Depending on these input values and on controller gain factors it produces different
outputs. This output is applied to Mako to change its status. The PID controller is used
as a part of a software control program and is processed by the EyeBot microcontroller.
The controller gains Kp Ki Kd are constant factors set independent for each term and
determines the influence of the respective term.

Figure 2.12: Block diagram of a PID Controller

Figure 2.12 shows the 3 terms of an PID controller. The proportional part is calculated
with

Pout = Kpe(t) (2.1)

Where Pout is the proportional term output and behaves proportional to the error e at
the time t. The integral output Iout is calculated with:

Iout = Ki

∫ τ

0
e(τ)dτ (2.2)

Where τ is the relative time used to accumulate error values from the past. This term
is used to eliminate a residual steady state, which can occur by using a controller with a
proportional term. Finally the derivative term is calculated with:

Dout = Kd
de

dt
(2.3)

The derivative term uses the error changing rate by determining the slope of the error
over time. This term can be considered as a damping term to prevent the controller from
“overshooting”.
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All terms can be put together into one formula:

uout = Kpe(t) +Ki

∫ τ

0
e(τ)dτ +Kd

de

dt
(2.4)

where uout is defined as controller output.

2.5.2 FUZZY Logic Controller

The human reasoning is imprecise and uncertain. Machines however often reason in binary.
FUZZY logic, proposed by Lofy Zade in 1965 [57], enables machines to reason in a fuzzy
manner. This is done by setting up heuristic rules in the form of “IF <condition >THEN
<consequence>” [53], which associates conclusions with conditions. Strategies are devel-
oped from experience rather than from complex mathematical models. This represents
the human understanding of describing fuzzy things. A linguistic control implementation
is faster accomplished and easier to setup then a PID controller. A disadvantage has to
be taken in account due to a computationally intensive processing.

Figure 2.13: A fuzzy set for describing the distance to a wall [33]

Fuzzyfication is the process to define input and output fuzzy sets. One set consists of
at least one membership function. Figure 2.13 shows a typical input fuzzy set to describe
the distance from a wall. It contains three membership functions. The functions are setup
by defining their spaces and belonging values. The higher the degree of membership for
a function is, the more it belongs to this space. Membership functions should overlap
to accomplish smooth transitions of the system. Multiple input and output sets can be
defined. Rules describe how input membership functions are mapped to output member-
ship functions. Defuzzification is the process used to map output membership functions
back to a single value. For this process different methods are available. Some of them
take into account just the element corresponding to the maximum point of the resulting
membership function. Andrew de Gruchy implemented in 2008 a fuzzy controller with two
input sets for the Mako [34] and uses the centroid defuzzification method. This method
computes the centroid of the composite area in the fuzzy output set. This controller was
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readjusted and used within this thesis for several experiments that will be described in
chapters 4 and 5.

To follow a wall on the left hand side de Gruchy developed nine rules for the controller:

IF “TOO CLOSE” AND “GETTING CLOSER” THEN “TURN RIGHT”
IF “TOO CLOSE” AND “JUST RIGHT” THEN “TURN RIGHT”
IF “TOO CLOSE” AND “GETTING FURTHER AWAY” THEN “TURN RIGHT”
IF “JUST RIGHT” AND “GETTING CLOSER” THEN “TURN RIGHT”
IF “JUST RIGHT” AND “JUST RIGHT” THEN “CONTINUE STRAIGHT”
IF “JUST RIGHT” AND “GETTING FURTHER AWAY” THEN “TURN LEFT”
IF “TOO FAR” AND “GETTING CLOSER” THEN “TURN LEFT”
IF “TOO FAR” AND “JUST RIGHT” THEN “TURN LEFT”
IF “TOO FAR” AND “GETTING FURTHER AWAY” THEN “TURN LEFT”
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Sensors

The word sensor is derived from the Latin word “Sentiere” and means to sense and to feel.
A sensor in technical terms is a device for qualitative or quantitative surveys of chemical or
physical properties like temperature, moisture, pressure or sound. The information gained
from a sensor is used for further processing, mostly converted to electrical signals [23].

3.1 Sensors for Robotics

At present a vast number of sensors are used for robotics. To choose the right sensor
for a given task can therefore be a difficult task [27]. Various sensor systems offer their
own unique strengths and weaknesses. Currently there is no system available which suits
all needs [42]. The success or failure of a mobile robots operation depends highly on the
interactions between the robot and its environment. The quality of the sensors used for
a robot also determines the reliability of the robot. Most sensors used in robotics are
derived from a biological role model. Their role models are e.g. the human five senses.

There are three important and notable properties to sensors which are listed at [15]
and were influences in this thesis.

• the sensor should be sensitive to the measured property

• the sensor should be insensitive to any other property

• the sensor should not influence the measured property

3.2 Sensor Errors and Limits

This section describes typical sensor errors and behaviours. In the following chapter, each
sensor of Mako’s sensor suite is analysed in detail. National Instruments provides on its
homepage a substantial and detailed sensor terminology, which provides the basis for this
section. It can be found at [16].
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Sensitivity : sensitivity is defined as the input change which produces a noticeable change
in the sensors output. The sensitivity can been visualized as the slope of a charac-
teristics curve dy/dx where y is the sensor output and x the sensor input, thus a
sensitivity error is the deviation from the actual slope.

Range : a maximum and minimum output value, due to change of input parameters,
define a sensors range. The positive or negative ranges are often unequal. Ranges
play a major role for distance sensors, where the minimum range is greater than
zero.

Precision : ideal sensors produce always the same output value for the same input pa-
rameter. Real sensors however produce an output which is distributed relative to its
ideal output. Deviations have therefore to be considered for all sensors.

Resolution : the resolution is defined as the incremental change of the sensors output,
due to a change of its input parameter. This is somehow similar to the sensitivity,
however resolution is mostly a matter for digital sensors or A/D (analog-digital)
converted values.

Accuracy : the accuracy of a sensor indicates the maximum possible difference between a
sensors actual value and measured output.

Offset : An offset of a sensor indicates the linear difference between real value and the
sensors output under certain conditions of their environment. E.g. sensors are often
affected by temperature changes, but most effects of environmental conditions can
be easily compensated.

Linearity : The linearity of the sensor is often specified in terms of the percentage of
non-linearity. The static non-linearity is defined by

Nonlinearity(%) =
Din(max)

INf.s.
∗ 100 (3.1)

where Nonlinearity(%) is the percentage of the non-linearity, Din(max) is the max-
imum input deviation (accuracy) and INf.s. is the maximum, full-scale input. It
simply describes the non-linear sensitivity of a sensor [15].

Response time : sensors do not respond immediately. The change over a period of time
is called response time, and is defined as the time the sensors needs to change from
a previous state to a new correct value within a given tolerance band.

Hysteresis : ideal sensors produce an output regardless of the direction of the input
change. Some real sensors however show a different offset in different directions due
to a delay in the response time. Since Mako operates in controlled environments [39],
rapid input changes for all sensors are unlikely.
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Dynamic linearity : the dynamic linearity of a sensor shows its ability to adapt to follow
rapid changes. Amplitude distortion characteristics, phase distortion characteristics,
and response time are important to determine dynamic linearity. It is defined by

f(x) = ax+ bx2 + cx3 + ...+ k (3.2)

where f(x) is the sensors output, the x-terms are its harmonics and k an optional
offset. As mentioned before, Mako is built to operate in controlled environments
and thus dynamic linearity can be disregarded.

Figure 3.1: Example characteristics of sensors where y is the sensor output and x the
input parameter : a) shows an ideal curve of a sensor, a respective sensitivity error and
the maximum and minimum range ymax and ymin, b) demonstrates a non-linear behaviour
of a sensor, c) visualizes the meaning of resolution, d) Tr shows the response time of a
sensor caused by a sudden change in the input parameter.
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Some sensors produce an analogue output instead of digital signals. To process them
on microcontrollers their values have to be digitized with an A/D converter. Their most
important characteristics can be described with their accuracy, depending on the number
of bits used to express a value, the speed in terms of the number of conversion per time
interval and their input range. These characteristics lead to another source of possible
errors sources like quantization or offset errors [17].

3.3 Sensors Mako

After identifying typical characteristics of sensors, each sensor of Mako’s sensor suite was
analysed in detail.

3.3.1 Accelerometer

The low-cost three axis low-g micro machined accelerometer from Free Scale Semiconduc-
tor was implemented to measure the acceleration in x, y and z direction [18]. It integrates
a low pass filter and a temperature compensation to reduce noises and influences from
the environment. The lowest selectable sensitivity with 1.5g is set but it is still a high
value. Mako is never expected to reach that value in operational conditions. The sensi-
tivity is given with 800mV/g, the maximum output range from 0.45V to 2.85V . Since the
EyeBot’s A/D-converter have an input range of 0 to 5V and an output resolution of 10
bit, only 491 different digital values are detectable. The typical effective noise influence is
given as 4.7mV rms.

3.3.2 Sonar System

The sonar system is one of the most important and at the same time the most complex
sensor system mounted on Mako. Additionally the characteristics of ultrasonic sensors
offer their own extensive complexity. An active sonar is necessary to detect passive objects
like walls. Transmitters convert electrical signals to acoustical vibrational energy. This
energy produces ultra sonic waves which are geometrically spread out and reflected on the
surfaces of objects. The returned signal then is then converted back by a receiver into an
electrical signal.

There are a couple of reasons which are responsible for energy transmission losses.
A finite amount of time is needed to transmit the energy wave through a medium. The
intensity decreases over the distance due to the continuous dispersion of the wave. Another
reason is scattering and absorption caused by the transmission through a medium [54].

Acoustic signals, especially in enclosed or confined environments, are returned scat-
tered off the surrounding surfaces. This results in the return signal containing multiple
components from many different ray paths and thus masking the direct path signal to
receiver. These components are called reverberations. Crosstalk is another noise source
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which and occurs when different sensors receiving signals from one sender at the same
time (figure3.2a).

Figure 3.2: Figure a) shows a typical of crosstalk situation, b) a sonar sensor out of its
beam width can not receive return signals

3.3.2.1 Transducer and Controller

Mako posses four low-cost Navman 2100 Depth sonar transducers and two sonar con-
trollers as a part of its navigation system [19]. The transducers act as transmitters and
receivers which are connected via relays to the sonar controllers. One controller is there-
fore connected with two transducers. These controllers produce the electrical signal which
is converted by the transducers to acoustical vibrational energy. The reflected wave again
is received by these transducers, and their electrical return signal is sent back to the
controllers.

This system was originally developed for depth measurements. Their performance is
not suitable to act as a navigation system due to several shortcomings [50]:

• very slow data rate of 1 Hz

• serial data line

• lack of programmability

• poor resolution of 10 cm

Transmitters send signals at their resonance frequency and receivers receive signals
at their anti-resonance frequency. Since transducers are used as a dual system, both
frequencies have to be as close as possible, but at the same time they have to be different.
This causes the transducers to transmit and receive signals on a frequency that is not
optimal [19].

Ultra sonic receivers have only a finite beam width in which they can detect an echo re-
turn signal (Figure3.2a). The Navman 2100 Depth sonar controller returns only a distance
value if the return value of the transducer was valid.
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3.3.2.2 Multiplexer

Due to the lack of serial ports of the EyeBot controller, the sonar system was implemented
with a multiplexer [22]. The multiplexer uses three PICAXE microcontrollers, one micro
controller represents the master, the other two are slaves.

The master is responsible for receiving instructions from the EyeBot controller and
sending sonar data back to it. The communication between the master and the Eye-
Bot controller happens via a serial RS232 connection. Therefore a simple protocol was
developed and implemented.

Each slave is responsible for one controller and determines, with the activation of the
relays, which transducer is currently connected to a controller. At the same time only
one controller can communicate with one transducer. The sonar controllers digitise the
returned signal from the transducers and then send it to their connected slaves. The
data is then available for requests from the master. For the communications between the
slaves and the master a kind of the NMEA 0183 1 protocol was implemented. Is specifies
the communication between marine electronic devices such as echo sounder and enables
unidirectional conversation with multiple listeners.

A couple of issues on the multiplexer could be solved within this thesis. The input pins
for reprogramming the PICAXE controller where not grounded, thus floating and forcing
the controllers to reset regularly. It had a major effect on the response time which could be
reduced from an average value of 2.8 seconds to 1.5 seconds [33]. Further the protocol to
change between two transducers was inadequately implemented. A simple commitment,
sent by the master to the EyeBot, ensures now correct switching on the multiplexer. The
time to switch the relays could be also reduced by an average of 75%.

Figure 3.3: The sonar system of Mako

1http://www.nmea.org/pub/0183/
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3.3.3 Velocity Sensor

The Navman Speed 2100 velocimeter shall provide the surge velocity of Mako. It deter-
mines the velocity of the vehicle by simply counting the number of half rotations of its
paddle. The sensors poor resolution of 5cm/s is unsuitable for navigating purposes. With
this sensor no experiments with sufficient results could be accomplished in the past.

The output of the velocity sensor is connected to a 5V A/D-converter of the EyeBot
controller. At the beginning of this thesis, the velocimeter was connected to a 12V power
supply which respectively was the output voltage. This caused a significant distortion on
all A/D-converters of the EyeBot. The connected A/D converter is polled every 10ms and
is used to count the number of encoder ticks from velocity sensor, every second then the
velocity is calculated.

3.3.4 Digital Compass

A low-cost Vector 2X digital magnetic compass provides the yaw for heading information.
This sensor has an accuracy of 2 ◦ and a resolution of 1 ◦ [20]. It has proven as the most
reliable among all sensors used within this thesis, however, since it measures the magnetic
field in a single plane, it is strongly influenced by tilts as can be seen in chapter 4.

3.3.5 Depth Senor

A depth sensor system, using the SenSym SX15GD2 pressure sensor, was introduced by
Elliot Alfirevich in 2005 for on-board usage [22] to measure the absolute depth of Mako. It
was reported with an operating range of 0 to 5m. It outputs an analogue value from 0 to
5V which is digitised by one of Mako’s A/D-converter, thus using the full accuracy of 10
bits. The application note assures sufficient characteristics for its arranged operations [21].
Typical values are:

• 0.1% hysteresis of its full scale range

• sensitivity of 0.1mV

• response time of 0.1ms

At the beginning of this thesis, the system was completely destroyed due to a faulty
seal and had to be replaced and recalibrated.

3.4 Sensors in SubSim

The physical model of Mako in SubSim is realized by a simple box with the dimensions
x ∗ y ∗ z, a PAL Body Box [25]. PAL itself supports connected bodies to allow different
shapes presented by multiple bodies. This was not implemented in SubSim and has an
influence to the physics as it can be seen in chapter 5.
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Figure 3.4: a) depth sensor system schematics [22], b) typical noise of the applied
SenSym SX15GD2 pressure sensor [21]

PAL sensors have to be always attached to a parent body like a PAL Body Box.
Their initial position and orientation are set in a relative term to their parent’s body if
appropriate. This is done with 3D vectors, one vector indicates the orientation, the other
indicates the position.

Physic engines like Newton Game Dynamics allows to choose custom defined units.
For SubSim the basic units are “meter” for length and distances, “seconds” for the time,
“radians” for angles, “kg” for weight and “Newton” for forces are used. Respectively
is the output of the PAL sensors defined with these units, which are accessible through
the low-level API. However in SubSim access to the sensors is also possible on a high
level through the emulated EyeBot controller plugin, and thus different output units are
possible. Adding new sensor classes to the application and attaching them on a submarine
model makes it necessary to update the HDT respectively.

PSD sensor : a positional sensitive device measures the distance from its body to the
nearest surface which blocks the line of sight. In SubSim a single ray is projected
from the sensors position into the sensors direction until it reaches an object, thus
determining the intersection point. The return value is the length of this ray. The
high-level distance is returned in millimetres.

Inclinometer : an inclinometer returns the angle which depends on the orientation of
its body. The return value is the angular difference of its current and the initial
orientation. The body of inclinometers are always attached to the dead centre of
its parent’s body, thus an orientation vector is not present. The orientation vector
indicates the initial orientation which indicates implicitly the reference plane.

Gyroscope : this class of sensor is very similar to the inclinometer class. The return
value is the angular velocity, calculated with the comparison of angular orientations
in constant time intervals. A sensor instance needs also one vector to indicate its
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reference plane and is attached to the dead centre of its parent’s body.

Compass : a SubSim compass sensor is identical to an inclinometer with its reference
plane along the x- and z-axis. It is located at the dead centre of its parent’s body
and the high-level return value is between 0 and 359 degrees.

Velocity sensor : the return value of this sensor in version 2.3 was the absolute velocity
of it’s attached body. Within this thesis the possibility to influence objects with a
steady flow was implemented inside the simulation. Thus the sensor was adjusted
to return the velocity relative to the water.

Sonar : in version 2.3 of SubSim a sonar was not available. Since sonar sensors are a
very common sensor class for submarines and one of Mako’s most important sensor
system, the implementation of a sonar sensor class was an important part of this
thesis. To simulate sonar systems is a big challenge in itself. Due to the fact
that Mako’s operation environments are of simple shapes like rectangles or ovals
(appendix A), a simplified sensor was implemented. This sensor class inherits the
functionality of the PAL PSD sensor class and extends it with additional attributes.

Depth sensor : a depth sensor class was implemented within this thesis and gives the
opportunity to measure the absolute distance to the virtual water surface.

Camera : camera instances simulate a robots camera to receive images from the robots
environment. The camera class extends the functionality of the synthetic camera,
which is used to visualize the environment on the applications canvas. Two vectors
indicate their position and orientation relative to the attached body.
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Figure 3.5: Inheritance class diagram of the SubSim sensors. One device class is imple-
mented with up to 6 level of inheritance
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Chapter 4

System Identification Mako

After studying the characteristics of sensors, several static and dynamics experiments
with Mako and it’s sensor suite were processed. These experiments have been necessary
to identify Mako under operational conditions. The outcomes of the experiments were
not only beneficial for the model adaption of SubSim, weaknesses and short comings could
be highlighted, test procedures will be discussed and the results can be used for future
projects.

4.1 Depth Sensor

Elliot Alfirevich conducted experiments with the depth sensor as part of his final year
project [22]. His methods and results have been found sufficient for the purposes of this
thesis.

The first experiment was processed to indicate the influence of electromagnetic inter-
ference (EMI) and supply voltage noise produced by the pulse width modulation from the
motor drives. Fast on and off switching of the motors leads to a sudden increase of the
electric current on the power supply. Since depth sensor and motors are connected to the
same power supply, this has a strong effect on the accuracy of the depth sensor. Figure
4.1 shows the effect of different PWM settings of the stern motor. The stern motor is
the closest to the depth sensor, thus the strongest EMI effects have been observed using
this motor. A simple low-pass filter however could reduce the effect of both noise sources
significantly.

The results of the second experiment (figure 4.1) demonstrates the output linearity of
the sensor. As shown in chapter chapter 3 the sensor shows a good linearity. At each
measurement depth four sensor readings were taken.

4.2 Compass

The digital compass has been found to be the most reliable sensor analyzed within this
thesis. The accuracy of 2 ◦ given in the data sheet could not be verified. It indicates
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Figure 4.1: Influence of the PWM of the stern motor on the depth sensor [22]

Figure 4.2: Actual depth against depth sensor reading [22]
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the precision of this sensor rather than its accuracy. A reason might be that the sensor
is very close attached on the aluminium tray what influences the sensors environment.
Furthermore, this sensor has shown a strong reaction to tilts. Compass errors due tilt
measurements can be quite significant [41] and depending on the geographical location
and inclination of the compass measurements can lead to different results.

To examine the effect of a tilt of 5 ◦ an accurate experiment was designed and executed.
A tilt of 5 ◦ represents an usual operational condition of Mako, since it is influenced by
wind and waves when it is not submerged. When Mako accelerates it experiences a jiggling
behaviour as will be shown within this chapter. Under submerged conditions a slope might
occur due to non-uniform thrusts of the stern and bow motor.

Before the experiment the compass had to be recalibrated due to a high output non-
linearity. The RoBIOS provides the function COMPASSCalibrate(int mode) to calibrate
the sensor. This function has to be called twice. The second call has be done after the
sensor is turned around 180 ◦.

The hole tray of Mako’s upper hull was clamped in an adjustable bench vise to set up
a tilt of 5 ◦. The bench vise itself was mounted on a turn table, thus it was possible to
turn the tray about 360 ◦ precise around the perpendicular axis.

Figure 4.3: Absolute heading error of the digital compass with a tilt of 5 ◦ and without

4.3 Motors

During experimentation it could be observed that Mako tends to turn right when setting
the same thrust on port and starboard actuator. Gonzales [22] processed thrust measure-
ments with a load cell on all actuators. All four motors produced different thrusts when
setting them to the same PWM. Gonzaless solution was to implement a look-up table in
the motor controller to balance the different forces on the actuators. Thus it was possible
to set each motor to a similar thrust with ease.

Since the motors are inexpensive trolling motors and especially with the horizontal
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motors being used by many experiments from 2004, a considerable amount of wear was
assumed. Due to the fact the motors are fixed to Mako’s body thrust tests with a load cell
could not be repeated. Instead an optical tachometer was used to measure the revolutions
of the propellers. Each propeller consists of three propeller blades, so that the results of
the tachometer had to be divided by three.

The tachometer provided its output on a LCD display. The output was updated 1.5
times per second. To capture the readings contiguous, movies of the display were recorded
which could be played in slow motion afterwards. The readings were processed with a step
size of 3% of the maximum pulse width beginning with 0% (full speed due to the inverted
logic) until the motor stopped. For each motor and each pulse width modulation, 30
contiguous readings were captured and the arithmetic average was calculated. The results
of the bow motor are shown in figure 4.4 and 4.5 in relation to the thrust measurements
from 2004. A linear dependency between revolution per minutes (RPM) and produced
thrust can be seen. However, the experiment shows that the motors still rotate with higher
pulse width modulation than in the experiments done in 2004. One reason is the missing
water resistance since the revolution experiment was processed with the actuators in air.
Another reason because of wear the motors are run in and experience a lower resistance.

Figure 4.4: Motor revolution versus actuator thrust force, bow motor forward direction

As a result the look-up table was respectively updated. The results of the other motors
can be found in appendix C.

Figure 4.6 also indicates how the speed of the motors fluctuates. The motors are only
controlled by the PWM without any feedback to control the actual speed. Higher speeds
have a higher fluctuation.
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4.3. Motors

Figure 4.5: Motor revolution versus actuator thrust force, bow motor reverse direction.
A much lover thrust can be observed due to motor and propeller optimizations to operate
in forward direction

Figure 4.6: Fluctuation of the bow motor in forward direction
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4.4 Sonar

The sonar system works well only in a water environment, and large space is necessary
to avoid disturbing reverberations. This makes it necessary to process experiments with
the sonar in a environment such as a pool. The shortcomings mentioned by Nguyen in
his final thesis were replicated within this thesis [50]. Many experiments by Nguyen and
Alfirevich were processed to analyze the sonar system and especially the sonar transducer
without the sonar controller. Since the the transducers are fixed mounted on Mako, and no
seperate transducer has been available, these experiments could not repeated within this
thesis. However, more roughly static and dynamic experiments were processed with the
whole Mako involved, and the behaviour could be verified which was observed by previous
experiments. For transducer experiments both Alfirevich and Nguyen, used a digitally
output from the EyeBot microcontroller to create the input signal for the transducer. The
returning signal was again received by the microcontroller, thus replacing the function of
the sonar controller to retrieve transparent results from the transducer. This was quite
helpful since the sonar controller provides data with a rate of only 1Hz. One measured
distance value from the controller is obtained from multiple samples which the controller
generates.

The results shown in figure 4.7 show the detection rate of samples in a static situation.
Individual signals were sent out orthogonal to a wall and reflected on its surface. The
required detection rate was defined with a minimum of 50% to be sufficient for navigating
purposes.

Figure 4.7: Static detection rate for different distances [50]

As experienced within this thesis, the detection rate decreases with a deviation from
the surface normal until the transducer leaves the beam width of the signal (Figure 3.2b).

Figure 4.8 shows the result of a dynamic experiment. The transducer was directed to
a wooden rod. This rod was moved then several times perpendicular to the transducer in
a distance from 0.5 meters to 2 meters. The effect shows in a lower detection rate. One
reason for this is the produced distortion of the water which comes along with environ-
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mental noise. Another reason might be the occurring Doppler Effect and it was suggested
by Nguyen to operate Mako with very slow speed.

Figure 4.8: Measuring distances from a moving wooden rod [50]

An experiment processed by Alfirevich gave the possibility to estimate the beam width
of the transducers (figure 4.9). The transducer was turned around a fixed point at one side
of a pool to send and receive signals from a greater area. In the middle of that pool an
obstacle was placed. The result indicates that the transducer had to pass the obstacle of
around 5 ◦ before it measures the pool wall rather than the obstacle. Thus a beam width
of 10 ◦ was estimated. Experiments done within this thesis commit to this estimation.

Figure 4.9: Distance measurement at different angles [22]
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4.5 Velocity Measurement

To compare the surge behaviour of Mako with the model in SubSim a couple of experiments
were processed to obtain Mako’s maximum velocity and acceleration. In these experiments
a heading control using the digital compass was applied to have Mako travelling straight
as possible. A control was necessary due to the fact that setting the same thrust on port
and starboard motor, even with the updated look-up table, does not mean that Mako will
travel in a straight line. With the heading control Mako is able to drive almost on an ideal
straight line.

All experiments were processed without submerging thus Mako travels like a ship.
Because of time constraints and a destroyed depth sensor at the beginning of this thesis,
not all targeted experiments could be completed. A picture in appendix E shows that,
even when Mako is in a non submerged state, it is almost completely underwater and thus
only small differences to submerged experiments are expected.

Figure 4.10: Maximum velocity of Mako at 100% thrust

Since the accelerometer does not provide a sufficient sensitivity, and the velocity sensor
has a low resolution, a different method had to be found to obtain the wanted data. A
water tight camera was mounted on top of the camera facing to the port side of the
submarine. At the inside of a pool wall a 10 meter long measuring tape with large scale
markings was attached. Movie records with a resolution of 30 frames per second were
taken from this measure tape. This gave the possibility to step through movie afterwards
frame by frame to measure the progress of Mako in forward direction in respect to the
time.

The maximum velocity of Mako was determined by setting both horizontal motors to
100% thrust. For the acceleration experiment Mako was accelerated from a stationary
position and suddenly accelerated by setting port and starboard motor to 100% thrust.
The deceleration data were gained by switching off both motors while running Mako at
full speed.
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Through the recorded movies the progress in respect to the measure tape was deter-
mined each 200 milliseconds. The result is shown in the figures 4.10, 4.11 and 4.12. An
average maximum velocity of 5 ∗ 8.8cm

200ms = 44cm/s has been determined. The fluctuation
of the values shown in figure 4.10 can be explained by the jiggling Mako experiences in
port/starboard direction while driving straight. Mako reaches its maximum velocity after
6 seconds and returns after 32 seconds of drifting from the full velocity to a stationary
position. Figure 4.11 shows also the result of the velocity sensor. The sensors output was
divided by 5 to adjust it to the determined velocity with the camera. The outputs gradual
rise is an indication of the low resolution of the sensor. With higher velocities the sensors
accuracy decreases.

Figure 4.11: Determined velocity at full acceleration from a stationary position

Figure 4.12: Drifting from maximum velocity to a stationary position
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4.6 Acceleration

The velocity measurements also allowed the determination of Mako’s maximum and mini-
mum acceleration. Reading the maximum progress from figure 4.11 implicates the highest
acceleration is 9.5cm/s2 ≡ 9.7mg. Due to the jiggling behaviour of Mako this value can
be regarded as an upper bound. The data obtained during this experiment from the ac-
celerometer did not indicate any detectable acceleration. This is because of a too low
sensitivity of the sensor. The sensitivity in the data sheet [18] is given with 800mV/g.
The maximum detectable difference in the output voltage is thus

∆Vmax = resolution ∗ acceleration (4.1)

∆Vmax = 800
mV

g
∗ 0.0097g (4.2)

∆Vmax = 7.76mV (4.3)

The A/D converter of the EyeBot microcontroller has a resolution of 5V/10bit =
4.883mV . Assumed the A/D converter has an offset of 0.5LSB (least significant bit) the
maximal detectable digital difference will be 1.58LSB, since

7.76mV − 1.5 ∗ 4.883mV = 0.44mV < 4.883mV/2 (4.4)

Considering that the sensors typical noise influence is given as 4.7mV rms [18] it be-
comes obvious that almost no acceleration of Mako is detectable by this sensor. This
means the sensor unusable for navigation purposes.

The method to gain the maximum acceleration values for the sensor applied by de
Gauchy [34], by simply shaking the sensor with the hands in different directions, does
not lead to reasonable results. The results were not repeatable since the applied force is
unknown.

To calibrate the sensor it’s axis of sensitivity has to be turned into the direction of
gravity to gain the acceleration of 1g and reversed to gain the acceleration of −1g where g
is the acceleration of gravity. The output function of the sensor follows the sinusoid, thus
having the highest sensitivity at 0g and the lowest at ±1g.

Figure 4.13 shows the calculated output line of the sensor at V dd = 2.6V . To verify
the sensors sensitivity it was turned ±90 ◦, ±45 ◦ and 0 ◦ to the surface normal for each
axis and 50 samples from the output of the A/D converter in each position were recorded.
The results of the y- and z-axis can be found in appendix D.

4.7 Spot Turn

An experiment was processed to determine how fast Mako can turn 360 ◦ around the yaw
direction. Therefore either port motor was set to 100% forward thrust and the starboard
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Figure 4.13: Angular response of the accelerometer

Axis -90 ◦(LSB) -45 ◦(LSB) +0 ◦(LSB) +45 ◦(LSB) +90 ◦(LSB)

x 1.31 1.5 1.34 1.24 1.2
y 1.2 1.32 1.31 1.26 1.14
z 1.17 1.19 1.25 1.07 1.08

Table 4.1: Measured standard deviation of the accelerometer over 50 samples

motor to 100% backward thrust or vice versa. This did not lead to a spot turn due to
the fact Mako traveled in a circle as shown in figure 4.14. Forward and backward thrust
of the motors are quite different as it can be seen in figure 4.4 and 4.5. To determine the
way Mako traveled a movie of the scene was recorded. Therefore a camera was mounted
on a 4.5m high stand directly over Mako. For an anti-clockwise turn Mako needed 23.17
seconds, for a clockwise turn 23.5 seconds were measured. A picture of the experiment
setup can be found in appendix E.

Figure 4.14: Travel way of Mako in anti-clockwise direction with 100%thrust forward
direction on the starboard motor and backward direction on the port motor
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4.8 Wall Following

The wall following problem is the first competition task from the project Mako initiative.
It has been used to evaluate the sonar system with FUZZY and PID controllers by Alfire-
vich, Daws and de Gauchy during their final year projects. However the results of their
experiments were not always repeatable and therefore not reliable as already mentioned
by Daws [33]. The problem is the shortcoming of the sonar system. The data rate is too
slow, the output data has a too high resolution, and with a moving Mako a certain degree
of rejection rate is unavoidable. An additional problem occurs when Mako tries to correct
the distance and thus changing the angle of the sensor in respect to the wall. The greater
the angle between the transducer normal and the the normal from the wall the greater is
the measured distance from the sonar as seen in figure 4.15a). The feedback of the sonar
used as input value for the FUZZY or PID controller lead to a even stronger correction.

Figure 4.15: a) The turning transducer problem, b) the new transducer setup

A new transducer setup was chosen to reduce this effect and to increase the effective
beam width of the transducer. Two transducer on the port side and two on the bow were
mounted, each with an offset of 15 ◦ of their respective axis. The setup can be seen in
figure 4.15b). Additionally to avoid Mako turning out of the beam width, the control
program applied for this task used the information from the digital compass to narrow the
possible turn angle. Crosstalking is avoided with the help of the multiplexer. Only one
transducer from a pair of two transducer at each side is active at the same time.

Since it is unknown from which transducer the returned value from the multiplexer
is three readings were taken to ensure readings from two different transducers. The first
reading from the transducer 1, the second from transducer 2 and the third again from
transducer 1 for each pair. The shortest distance of all three received values was taken
as the controller input. This however lead to a significant time overhead. The total time
for three readings was determined with 4.8 seconds in average and forced a very slow
operation speed for Mako.

Regardless the new setup has proven more robust and with the help of the digital com-
pass Mako passed for the first time a rectangular corner autonomously thus accomplishing
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the first mission task of the project Mako initiative.
The result of a FUZZY wall following experiment is shown in figure 4.16. Mako tried

to keep a distance of 10dm of its port side. The average thrust on port and starboard
motor was set to 10%. The effective distance is the smallest distance determined by the
two transducers on the port side. Velocity measurements with the velocity sensor did not
lead to reasonable results due to the low resolution of the sensor and the low operating
velocity applied at this experiment. A successful run with a PID controller could not be
accomplished due to time constraints.

Figure 4.16: The result of a FUZZY wall following experiment
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Chapter 5

Simulation Model Adaption

The experiments done in chapter 4 were necessary for the model adaption to fill the
reality gap in SubSim. With the observations and results of the experiments a detailed
error model could be implemented within this thesis. SubSim reached its version status
2.4. To evaluate the changes on SubSim the same experiments designed and processed for
Mako were repeated in SubSim, using the same control programs. However, the RoBIOS
API does not provide access to all sensors attached on Mako. E.g the RoBIOS does not
support velocity sensors and deals not with a multiplexer system used for the sonar. The
EyeBot plugin in SubSim was emulated to represent its original counter part, including the
RoBIOS API. The decision was made to write a wrapper API, which allows to run control
programs written for Mako, without any changes in SubSim. This enables applications to
be written for Mako without considering the implementation of the API in SubSim. Not
changing the EyeBot plugin specifically for Mako also ensures a consistent and independent
interface for different robots using the simulation.

5.1 Drag, Buoyancy and Propulsion in SubSim

In SubSim the physics engine is responsible for calculations of the physical model. A
liquid model provided by a physics engine to simulate water has not been implemented.
Therefore a fake buoyancy and drag was implemented to simulate the liquid effects of
water.

In SubSim version 2.3 the body of Mako was represented by a PAL box with the
dimensions 1.8m∗0.5m∗0.5m which results in a volume of 0.45m3. The weight of the body
was given with 500g and the density of the liquid with ρ = 0.99829kg/m3. These settings
coupled with an error in the buoyancy calculation lead to a physical model, which allows
the Mako model to travel in its environment under ideal conditions with no noticeable
effects of draft and drift. Tasks like “wall following” can be accomplished with ease, thus
making sophisticated controls unnecessary.
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The applied formula in SubSim for the liquid drag is:

D =
1
2
∗ ρ ∗ Cd ∗A ∗ v2 (5.1)

Where D is the applied drag force in Newton (N) on the object body like Mako, ρ is
the fluid density in kg/m3, A is the frontal surface of the object in m2(PAL Box) and v

the relative velocity in m/s2 [25]. The fake buoyancy is calculated by dividing the models
volume in four equal spheres, calculating their buoyancy and applying impulses on four
different symmetrical points on the body. This enables an even appliance of impulses to
stabilize the body (figure 5.1).

Figure 5.1: The fake buoyancy Model of SubSim

Changing the density of the fluid to ρ = 998.29kg/m3 and the weight of the Mako that
it produces a buoyancy similar to the real Mako lead to a series of reactions, since it has
also a major influence on the propulsion and drift model. Due to the fact that no units
were specified anywhere the impact of this outcome could not be foreseen at the beginning
of this thesis.

The propulsion model is implemented by propeller by class, which simulates a propeller
actuator and a corresponding DC motor. The simplified formula to calculate the applied
thrust on an attached body is

T = αlumped ∗ V (t) (5.2)

where αlumped is an experimentally determined lumped parameter and V the voltage
which is set by a control program. No units for this formula are specified.

Another outcome was found via running experiments on SubSim with different simu-
lation speeds. Different speeds lead to different results. The problem is a lack in synchro-
nisation with the simulation time and real time, but it does not effect the physics itself as
seen in figure 5.2. Despite the fact that with different simulation speeds the model travels
the same path, the model travels different speeds. For a simulation speed of “5”, the Mako
model needs 38.5 seconds of simulation time to complete one circle. With a speed of “15”
it needs 40 seconds and with a speed of “30” it needs around 70 seconds. The model
travels an ideal circle with a diameter of around 1.3 meter. The real Mako needs only 0.8
meter.
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Figure 5.2: Anti-clockwise Spot Turn Experiment, with three different simulation speeds
and changed physical model

Figure 5.3 and 5.4 show the results of acceleration experiments in SubSim using the
same heading control as being used for Mako. Three different simulation speeds show the
effect of the lack of synchronisation. Figure 5.4 shows that the model travels different
distances within the same time. The maximum velocity of this model was determined to
be 9cm/s in comparison to 44cm/s for its real counterpart. This is explainable due to the
inexistence of an appropriate physical model.

Figure 5.3: Velocity of the Mako model during the acceleration in SubSim with different
simulation speeds and changed physical model

Due to the fact that the physical object of Mako model does not contain information
about applied forces or accelerations on its body, no accelerometer could be implemented
into Makos sensor suite in SubSim.
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Figure 5.4: Surge progress of the Mako model in SubSim during the acceleration with
100% thrust, different simulation speeds and changed physical model. Significant different
travel distances can be seen at different simulation speeds

Figure 5.5: Surge progress of the Mako model in SubSim during the deceleration from
100% thrust, different simulation speeds and changed physical model

In theory it is possible to determine acceleration of a body with:

a =
∆v
∆t

(5.3)

Where a is the acceleration in m/s2, ∆v is the difference of velocity in m/s and ∆t is
the difference in time in s. Due to a non consistent simulation time in SubSim, applying
this formula does not lead to reasonable results.

5.2 Error Model

As the experiments in chapter 4 have shown, introducing a noise model to SubSim is crucial
to test, improve and evaluate the robustness and reliability of control algorithms written
for Mako. EyeSim played a role model for developing and implementing a noise model for
SubSim. However the noise model in EyeSim is based on a statistical noise model. The
results and the experience gained within this thesis resulted in an implementation of an
error model not only based on a statistical model.

Before noise classes were defined and implemented, it was necessary to determine the
output units for each single sensor class. As already described in chapter 2, the basic units
meter for distances, rad for angles and seconds for time are used for the return values of
the sensors.
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As in EyeSim all sensors and the actuators can be influenced with a standard normal
distribution with zero mean. Depending on the output value for a certain sensor class the
variance of the distribution can be changed. The central limit theorem method was chosen
to produce the standard distribution [55]. An appropriate algorithm was found at [35].
The model implemented in SubSim can be described by

f [i] = s[i] + n[i] (5.4)

where f [i] is the resulting signal at the time i, s the unchanged source signal and n is
the standard normal distribution [45]. Further a uniform discrete distribution model was
implemented as it was applied in [48]. It can be described by

f [i] = s[i] + u[i] (5.5)

where u is the uniform noise.

A number of different noise sources were added to each sensor class and different
settings can be chosen. E.g the the maximum range for PSD or the sonar sensors can be
adjusted. Additionally for sonar sensors, settings for the maximum angle of incidence, the
resolution and the response time are available. Compass sensors can be influenced by tilt
noise and for velocity sensors the resolution can be changed. Despite the fact that the
vision system is not part of this thesis, the error model for the EyeBot camera of EyeSim
was adopted. This error model consists of Salt and Pepper noise, Hundreds and Thousands
noise and a standard normal distribution noise (Gaussian distribution) (figure 5.6). Salt
and Pepper noise adds random black and white pixels to the camera image. Hundreds
and Thousands noise produces colored random pixel. The standard normal deviation is
applied on all RGB (red, green, blue) channels for each individual pixel.

Figure 5.6: EyeBot plugin with activated camera: a) original image, b) Salt and Pepper
noise, c) Hundreds and Thousands noise, d) Gaussian noise
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Salt and Pepper and Hundreds and Thousands noise can be described by [45]

f(i) = (1− e) ∗ s(i) + en(i) where (5.6)

e =

{
1, with probabilityPe
0, otherwise

Figure 5.7 shows the designed and implemented software package “noise source‘” with
available noise sources. A software package is a group of related classes. All noise sources
extend the class Noise which provides a pure virtual function to apply “noise” on an given
input value. This allows the application to register noise sources for each sensor class.
Available noise sources for a sensor are kept in a list of the class SubSimNoiseDevice,
which itsself extends all sensor classes and the simulated EyeBot camera.

Figure 5.7: Noise package: the noise source family

5.3 Error Model Control

The error model was implemented that it is accessible via the robot settings file or the
GUI. By adding parameters into the robot settings file it is possible to preset a robots
error model for each single sensor. It allows for different robot description files of the same
robot, with different noise settings, to be defined. This comes quite handy if settings have
to be compared and used for multiple experiments.

An error GUI control was implemented and enables access to all sensors of a robot
during runtime. Allowing changes on the error model even when the control program of
a simulation has been started. The GUI control is implemented in a new frame which is
accessible trough the main frame menu bar (figure 5.8). It extends the wxFrame class and
contains a wxNotebook object [4]. The notebook acts like a register where new wxPanels
can be added as pages. Therefore each sensor class has its own panel hence enables an
easy overview over all available sensor classes.

For each single error source, for a specific sensor class the strength of the noise can
be changed with wxSliders. These are sliders which can be defined with a minimum and
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maximum range. Unfortunately floating point values are not supported.

On each sensor panel a pull down menu was implemented to allow a sensor to be
chosen and thus adjusting the noise settings for each sensor individually. The names of
the sensors in the pull down menu are equal to those in the robots settings file. Hence it is
possible to identify each sensor with ease. If no sensor of a given sensor class is attached
to a robot, the pull down menu for this sensor class indicates this simply with “none” in
its text field.

Figure 5.8: Error model GUI control

It has been shown in EyeSim that visualizing sensor devices and sensor readings is of
great help for users in terms of debugging and understanding their applications. Within
this thesis the visualization of PSD sensors and sonar sensors has been implemented.
A PSD sensor is represented as a small black cube and indicates its localisation at the
robots body. For the sonar sensors a frustum can be drawn, which indicates besides its
localisation the beam width. This frustum changes its angle when the beam width is
changed in the error model respectively. A line, projected from the sonar sensor itsself,
shows the perpendicular beam of the acoustic signal. Further, to have a instantaneous
visual feedback if the sonar sensor reads in its beam width, a line is drawn on intersecting
surfaces of surrounding objects. This line represents a normal vector, which is calculated
of the position where the beam of the sensor hits the surface. A blue line shows that the
sensor reads within its beam width and switches over to red, when the sensor leaves the
beam width (figure 5.9).

To simulate steady flows in water, the error model provides the possibility to apply
equal impulses on all objects within a simulation. Two sliders allow the setting of longitude
and latitude direction of a applied impulse, one slider determines the strength. To give the
user a visual feedback of the impulse an arrow is drawn above the scene. Its direction shows
respectively the direction of the applied impulse. The tail is implemented bi-coloured.
Besides the arrows colour a blue line in the tail indicates the strength of the applied
impulse.
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Figure 5.9: Visualization in SubSim: a) frustum of the sonar beam width, b) the normal
vector of a intersecting wall from a sonar beam, c) arrow indicator for steady flow

5.4 Wall Following - Comparison

The wall following experiment presented in chapter 4 was repeated in the simulation
to evaluate the changes on the physics model and the newly implemented sonar sensor.
Multiple runs with different parameters for the physics model were tried. Owing to a
oversimplified physical model of Mako and a missing liquid model provided by the physics
engine it was impossible to find parameters, which lead to a behaviour of the model close
to its real counterpart.

In [26] a comparison between different physic engines has been processed. The ex-
periments show significant different physical behaviours of different engines. To find an
appropriate physic engine is therefore difficult for developers. Further it indicates how
important it is to find physical models as close to reality as possible.

To evaluate the experiments it was attempted to repeat the method applied in [49]. A
quantitative measure of discrepancy of behaviours could be calculated with the Euclidean
distance between the coordinates of a simulated and real travel path. Therefore, coordi-
nates in commensurate time steps from the travel paths were taken. To record the travel
path in SubSim was accomplished with ease, this was not the case for the real Mako.
The stand used for the sport turn experiment was not high enough. A visible distance of
only 5.5 meter could be recorded with the applied camera, to less for a comparison. The
recorded movies however can be used for documentation purposes.

Because of this drawback the following two charts were designed to have a visible feed-
back of the control data. Both diagrams show the results of a wall following experiments.
The same control program as it was used by experiments on the real Mako was applied,
and the same sonar setup was attached to the model as used for the experiment described
in chapter 4.

The first chart 5.10 shows five different runs of the wall following experiment with
different settings on the error model. Different settings in terms of the sensor resolution
and the response time were applied to visualize the effective difference. The response
time is applied for each sensor individual. Thus multiplying this time by four gives the
absolute response time. The higher the resolution and the higher the response time is set
up, the more time it takes until the model reacts to correct its distance. A setting with the
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resolution of 10 centimeters and the response time of 1.2 seconds matches the observations
from the real Mako. However, with these settings the model reacted too slowly and hit
the wall.

Figure 5.10: Comparison of different error model settings using the wall following control
program

The chart seen at Figure 5.11 shows the result of the wall following experiment from
chapter 4 of the real Mako and experiments processed with SubSim version 2.3 and 2.4.
An example wall following control program, available for SubSim version 2.3 using PSD
sensors, shows that no sophisticated control is necessary to accomplish the task. The Mako
model travels on an ideal line without any deviation. However, due to the new sensor set
up and due to the fact, that the FUZZY control program was not designed for this physical
model, the travel path indicates a variation as seen in figure 5.11. In version 2.3, the alpha
parameter for the motors was given with 0.5. This caused a too high thrust and thus a
too fast traveling model. Another run with an alpha factor of 0.005 was processed to slow
down the model appropriately, both runs lead to a wall hit.

The results gained from SubSim version 2.4 indicates a path way with a similar sinu-
soidal amplitude as the real Mako did.

5.5 Software Framework of Mako

Within this thesis, available control software for Mako has been adjusted, logically divided,
and extended. For some sensors new classes have been designed. Many sensor classes are
implemented with a singleton design pattern, since the respective physical sensors are only
one time existent. This avoids multiply instances of the same sensor and hence reduces
possible software failure. A FUZZY and a PID controller are now integral part of a
controller system. This controller can be extended with additionally control algorithm.

For each single experiment a new main application was written. This reduced the size
and the complexity of applications developed for a certain task.
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Figure 5.11: Comparison of SubSim version 2.3, 2.4 and Mako using the wall following
control program

Experiences from experiments have shown that it is crucial to have fully customizable
applications during runtime. This enables the setup of a control program with ease and to
react to unforeseeable conditions. Therefore, much effort was spent for the user interface.
As a result a full software framework Mako could be implemented and is available for
future projects. A class diagram is shown in figure 5.12.

Figure 5.12: Software Framework of Mako
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Conclusions and Future Work

The comparison between SubSim version 2.3 in chapter 5 has indicated how big the reality
gap has been at the begin of this thesis. Due to the implementation of the error model
and the changes of the physical model a much closer behaviour to the real counterpart
was accomplished. For the first time a controller program written for Mako was applied
successfully in SubSim. The API wrapper and the new added sensor classes for SubSim
allows now testing control programs in a simulated environment before testing it on the
real Mako. This means a major improvement for software developing and debugging.
The implementation of a steady force allows now more realistic simulations for offshore
environments. SubSim reached version status 2.4 successfully.

A new sonar setup for Mako was applied and has proven more robust for the wall
following task. The depth sensor system was replaced, calibrated and its water tightness
was assured. It will be available for future projects. For the first time the first mission
task of the project Mako initiative was accomplished by passing successfully a rectangular
corner.

6.1 Mako

Makos body has proven robust, stable and well balanced. The solution of mounting all
inertial devices on a tray inside the upper hull enabled easy access. Thus smaller defects
could be repaired while conducting experiments. The maximum velocity speed has been
found more than sufficient, since speed is not a matter of the missions tasks.

The velocity sensors resolution is too low to gain reasonable output values. The ac-
celerometer is not applicable for navigational purposes due to its too low sensitivity. A
stable communication with the sonar multiplexer could be accomplished after fixing a
problem with floating input gates. With only 4 transducers it is impossible to navigate
Mako through an unknown environment, even with very low velocity. Due to the fact that
the vision system is not in service no image processing can be applied.

The platform Mako posses the prerequisites to accomplish its mission task but suffers
under its insufficient sensor suite.
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6.2 SubSim

An additional plugin might be introduced which simulates the needs of Mako and replacing
the developed wrapper API used within this thesis, thus having multiple micro controller
emulators for SubSim.

The simulation posses an easy to use GUI interface. The possibility to preset the envi-
ronment via many settings files makes the application highly customizable. The XML file
format ensures readability for users. Many available examples are assistant for developing
new environments, robots and control programs.

The implementation of a multiple layer architecture keeps the software development
clear. However the lack of documentation will be drawback for new developers. The way
the physics engine is implemented might confuse developers. The possibility to update
PAL with ease is not given. Specific changes for SubSim were applied. These changes are
necessary to provide the functionality needed by SubSim.

For the future it is recommended to improve the physical model and to provide a
developer documentation. Introducing new features to SubSim, without re-factoring its
current state, will increase complexity, thus becoming a bottle neck.
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Appendix A

Mission Tasks Mako 2005 [29]

Task1

Wall Following: The AUV is placed close to a corner of the pool. The task is to follow the
pool wall without touching it. The AUV should perform one lap around the pool, return
to the starting position, then stop.

Task2

Pipeline Following: A plastic pipe (diameter and color to be specified) is placed along the
bottom of the pool, starting on one side of the pool and terminating on the opposite side.
The pipe is made out of straight pieces and angle pieces. The AUV is placed over the
beginning of the pipe close to a side wall of the pool. The task is to follow the pipe on the
ground until the opposite wall has been reached.

Task3

Target Finding: The AUV is placed close to a corner of the pool. A target plate with a
distinctive checkerboard texture (size and color to be specified) will be placed at a random
position within a 3m diameter from the center of the pool. The task is to find the target
plate in the pool, drive the AUV directly over it and drop an object on it from the AUVs
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payload container. (AUVs without the ability to drop a payload should just hover over
the target plate).

Task4

Object Mapping. A number of simple objects (balls and boxes, color and sizes to be
specified) will be placed near the bottom of the pool, distributed over the whole pool area.
The AUV starts in a corner of the pool. The task is to survey the whole pool area, e.g.
using a sweeping pattern, and record all objects found at the bottom of the pool. The
AUV shall return to its start corner and stop there. In a subsequent data upload (AUV
may be taken out of the pool and a cable attached to its on-board system), a map of some
format should be uploaded that shows location and type (ball or box) of all objects found
by the AUV
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Class Diagrams

B.1 Full class diagram SubSim version 2.4

Figure B.1: Full class diagram of SubSim version 2.4
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B.2 Class Diagram SubSimDevices

Figure B.2: Class diagram software package SubSimDevices of SubSim version 2.4 with
members
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Appendix C

Motor Characteristics

Figure C.1: Motor revolution versus actuator thrust force, stern motor forward direction

Figure C.2: Motor revolution versus actuator thrust force, stern motor reverse direction

65



Appendix C. Motor Characteristics

Figure C.3: Motor revolution versus actuator thrust force, port motor forward direction

Figure C.4: Motor revolution versus actuator thrust force, port motor reverse direction
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Figure C.5: Motor revolution versus actuator thrust force, starboard motor forward
direction

Figure C.6: Motor revolution versus actuator thrust force, starboard motor reverse di-
rection
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Appendix D

Accelerometer Characteristics

Figure D.1: Angular response of the accelerometer y-axis

Figure D.2: Angular response of the accelerometer z-axis
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Appendix E

Photos of Experiment Setups

Figure E.1: With a 4.5m high stand the scene could be recorded and observed from the
bird’s eye view
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Figure E.2: A 10m long measure tape was attached on the wall to determine the velocity
of Mako

Figure E.3: An optical tachometer was used to measure the revolutions of the propellers
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Appendix F

Upper and lower PVC Hull

Figure F.1: The upper PVC Hull and the Tray with internal sensors, the sonar multi-
plexer and EyeBot microcontroller

Figure F.2: The lower PVC Hull with its containing three batteries for the power supply
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Appendix G

Multiplexer Circuit Diagram

Figure G.1: The multiplexer of the sonar system. The red circle highlights the open
gates [33]
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