Evaluation of a Vision-based
Driver Assistance System in

Simulation

Centre for Intelligent Information Processing Systems (CIIPS)
University of Western Australia

Pal Simen Ruud
August 2007 — June 2008

Master of Engineering in Information and
Communication Technology Thesis

Supervisor: Associate Professor Thomas Braunl

il

Pal Simen Ruud

65B Burniston Street
SCARBOROUGH WA 6019
3 of June 2008

The Dean

Faculty of Engineering Computing and Mathematics
The University of Western Australia

25 Stirling Highway

CRAWLEY WA 6009

Dear Sir

I submit to you this dissertation entitled ”Evaluation of a Vision-based Driver Assistance
System in Simulation” in partial fulfilment of the requirement of the award of Master of

Engineering in Information and Communication Technology.

Yours faithfully

Pal Simen Ruud

il

iv

Abstract

Testing driver assistance systems on real vehicles in real environments are both costly and
dangerous. By developing an automotive simulation system, new driver assistance systems
for vehicles can be tested and improved in a safe and reliable way. My contributions in this
project have been to assist in the development of the automotive simulation system
AutoSim and further integrate the image processing framework ImprovCV in order to be
used for autonomous driving of vehicles in AutoSim. For the development of AutoSim my
main contributions have been in the area of content creation, 3D modelling and physics
simulations. Finally, lane detection based on image processing in ImprovCV was used in
order to demonstrate autonomous driving and a driver assistance system in AutoSim. Two
different scenarios were created for the experiments and different controllers were used in
order to find the most robust one. My implementation of the Fuzzy logic controller proved
to be the most suitable one when looking at the overall performance for the two scenarios.
Also as different physics engines are known to behave different, the experiments were
conducted using two different ones, Bullet and Newton, in order to further verify the
robustness of the autonomous driving. Differences in the physics engines were discovered
and only the Fuzzy logic controller implementation completed all scenarios with both

physics engines.

vi

Acknowledgements

I would like to thank the University of Western Australia for allowing me the opportunity
to do this interesting project in partial fulfilment of my Master of Engineering in

Information and Communication Technology.

Furthermore, the project would not have been possible without the supervision from
Associate Professor Thomas Brdunl and his guidance throughout the duration of the
project. The project has really opened my eyes for many new technologies that were
unknown to me before the start of the project and I am certain the new knowledge obtained

will help me in a future work setting.

I would also like to thank Adrian Boeing for all the good ideas and help that he has given

me. His experience, knowledge and desire to help have been greatly appreciated.

Finally, my thanks go to all the other people that have given me help and directions in

order for me to solve problems and finally finish the project.

vii

Table of Contents

1 INEOAUCTION. ...ttt ettt et st e bt e ettt e e s bbeeeeneas 11
L1 BacK@rOUNd.....c..ooiiiiiiiiiii ettt 11
1.2 PrOJECt ODJECHIVES. ...eeeiiieeiiieiiieeeiieeeite ettt ettt s et e et e et e e s bt eesabeessabeeennnbaeeaeeas 12
1.3 THESIS SIIUCTULE .c.uveiiiieiiieniieeieeeite ettt ettt s e s e e eeee s 13

2 LIETAtUIE SUTVEY...ccuiieeiiieeiieeeiieeeieeeetee et eeetee ettt e eteeeseteeesseeessseeessseeensseeensseeesnnssneeas 15
2.1 Driving STMUIALOTS. ...c..viieiiieeiiie ettt eeertee et eeeireeeaeeessaareeeesessnesaeeeeeennnns 15
2.2 Autonomous VERICIES.ooiiiiiiiiiiiiiiiiieeee e 18

2.2.1 DARPA Grand Challenge...........ccocceeviiriiiiieniiiienieeee e 18
2.2.2 EUREKA Prometheus Project..........cccoeviiiiiiiieniieeiieeieeeieeeeeeeeeieeeee e 19
2.2.3 SPACE RODOLS.....ceeiuiiiiiiiieeiieecie ettt ettt esnaee e s 20
2.3 Available SUDSYSIEMIS. ...cccuiiiiiiiiiieiiee e 21
2.3.1 SubSim and EyeSIm......cccccoiiiiiiiiiiiiiiieeee e 21
2.3.2 DEItABD ..o 22
2.3.3 The Open Racing Car Simulator (TORCS)cooviiiiiiiiiiiiiiiiieeeeeiieeeee 23
2.4 Driver ASSISTANCE SYSIEIMNS....ccvuiieriieerrieerieeeiteeesteestreessaeessseeessssneeeesesssssseeeesannns 24

3 AutoSim - The Automotive Simulation SYSteM........ccccvieeriieeiiieniieeeiie e 27
3.1 OVErview Of AULOSIML....ccoiuiiiiiiiiiiiieeitee ettt ettt sttt e s eesbeeeeeeas 27
B2 TITTHCRL. .ttt ettt ettt st bte e e e e e abeeeeas 29
3.3 OPENSITEEIIMIAD. ... eeeeueiieeiiieeitee ettt e ettt e e e et e et e ettt eeateesateesbaeesabaeesaseeeennssnaeaaeeas 30
3.4 TINYXML...iiiiii ettt sttt sttt e e 31
3.5 BIENAET.c....eiiiiieeeeeee ettt s 31

4 3D Modelling and CONLENL............eoruiiiiiieiiiieiieeete ettt e e e e e e e 33
4.1 Differences in Coordinate SYSEMS......cccuvterruieeriieiriieeniieerieeereeeeeesiiireeeeeesiieeeeas 33
4.2 Light REfIECHIONeeiiiiiiiiiiiieieeeee et st e e e 34
4.3 The Preferred Model Formats Used in the Simulatorcccccooieiiiiniiniennienee. 35

4.3.1 OBJI and 3DS...... et 35
4.3.2 The AS3D (AutoSim 3D) format...........cccovvveeeieeeiiiiiiiiieeeee e e 36
4.4 Traffic LIGRES.....coiiiiiiie ettt e e e 36
4.5 Other ODJECES....ueiiiiiieeiie et eeieeesieeerte e ettt e et eesteeesebee e abeeensaeessseesseeesnseeeseennnsseees 38

5 PhySiCS SIMUIAIONS. ...ccouuiiiiiiiieiiie ettt ettt ee et eesebeessabeeessbeeesseeesaeeennnns 39

5.1 PhySiCS ENEINES...c..coiiiiiiiiiiiiiiieiieeceeeee et s 39
5.1.1 Bullet PhySics LIDTary.......ccccccocieiiiniiiiieieicneceeeeeeceeeeeee e 40
5.1.2 Newton Game DYNAmICS.........cevueririieeriieeiiieeiieeeieeeeiteeeieeesieeesssiiraeeeeeennns 40

5.2 PAL ettt sttt 40

5.3 VEhiCle PhSICS.....eiiiiiiiiiiiiiiieie ettt 41
5.3.1 Straight Line PhySICS......cooouiiiiiiiiiiiiiiieiee et 41
5.3.2 WHREEIS ..t 44
5.3.3 SHEETIME. ...eeeiiieeiiie ettt ettt ettt ettt ettt e st e sttt e sbbeesbbeeeessnanbbaeeeeeennn 45
5.3.4 SPIINES...eiiitiieiiieeetie ettt e et e et e et e e tteeetaeeebeeesbeeeenbeeennbaeeeeeeennnrbaaeaaeannns 47
5.3.5 Implementation of Vehicle PhySics.........ccoocuieriiiiniiiiniiiieccee e 47

5.4 COLLADA ...ttt ettt ettt e sttt e e abeesbee e esbeeeeanbaeeeans 48

5.5 Scythe Physics EdIfOT.......cocuiiiiiiiiiiiiiieneceeeeese e 49
5.5.1 Scythe Loader for PAL.........ccccooiiiiiiiiiiie et e e e 50

6 Image-based Driver ASSiStanCe SYSEIMS.cevvuvieriurieriiieeniieenieeerieeerireeerireeesreeesseaeeennnns 51
6.1 IMPIOVCV ..ttt ettt ettt e e e eeeeas 51

ix

0.2 LLANE DBLECHION. ... ettt eeeeeee et e e e e e e e e e e e aeeeeeeeeaeanaaaseeeeeeeaanaaeeees 53

6.2.1 The Lane Detection AlgOrithm..........cccooieiiiiiiiiiiiniiiieneeececeee e 53
6.2.2 Finding the Outer Lane Markings.........cccccoceevieeiiinienieenieeeeee e 54
7 Control of a Simulated VEhiCle........c.c.coviiiiiiiiiiiiiiiiccceeeeeee e 57
7.1 Control MEhOMS.coiuiiiiiiiiiiiieeieeteeeete ettt e e 57
T.1.1 On-Off CONIOLIET.......ciiiiiiiieeeiiiee 58
7 T o | D I 00311 () (< S USSP UPP 58
T.1.3 FUZZY LLOZIC....eiiiiiieeiiie ettt ettt sttt e e e e e abraeeeeeenaes 61

7.2 Communication Between the AutoSim Client and ImprovCV Using Shared
IMLBIMIOTY ..o eievieeiiee ettt ettt e et e e eiee e ettt eesebeeesbeeesbeeessaeeensaeeessaeesasaeensseeeeaanssssaaaeesennsssnnaaeens 66
8 Experiments and ReSUILS.........cooiiiiiiiiiiiiiieee e 69
8.1 The TeSt SCENATIOS. ...ccerueiieiiieeiiieeitee et ettt ettt e et e st e st e sbte e sbteesabeeesabeeenanes 69
8.2 The Controllers for Steering the VehicCle..........coovviiiiiiiniiiiiiiiiiiiiccceee e 70
8.3 LIMILATIONS ..eeuetiiiieiieeiieeit ettt ettt ettt e st e bt et e st e sbteeabeesbeesaneeeenaeee 71
8.4 Scenario 1 RESULLS. ... cooiiiiiiiiiiieeeee et 72
8.5 Scenario 2 RESUILS.....cccuiiiiieiiiiie ettt et e e e eeeeeaaeeeens 74
8.6 Replacing the Physics ENgINecocooviiiiiiiiiiiiiiiceccceeeeececeecee e 76
8.7 Robustness Of the SYStEIM......ccc.uiiriiiiiiiiiiieeiee et e e e e 78
9 Conclusion and Future WOrk..........coc.coviiiiiiiiiiiiiictecteee e 81
FN 0] 03 1514 218 10 USRS USR 85
| S (5313 1 (61T OSSP PPRURPPSRNE 87
A APPEIIAIX ..ttt ettt ettt e st e e e bt e e st e e e s bt e e abeeenabeesnaeeeas 93
ALl Autonomous DIIVINZ.....ccoouiiiiiiiiiiiiiiiiie ittt ettt e b e saeee s 93
A.2 Preparing a Car Model for the SImulatorccooeeiiiiiiiiiiiiiceeeee, 94
A3 Creating @ WOTId......oooiiiiiiecieeceece e e s 97

1 Introduction

1.1 Background

Testing new technologies like safety warning and driver assistance systems on real
vehicles in real environments can both be expensive and dangerous. By developing an
automotive simulation system new systems like those mentioned above can be tested and
improved in a safe environment. As the traffic around the globe is getting denser and
denser every year, new driver assistance systems are necessary in order to reduce accidents
and the costs related to them [1]. It is estimated world-wide that 1.2 million people are
killed in road accidents each year and as many as 50 million are injured [2], and the
numbers are increasing every year. A simulator and driver assistance systems like the ones
described in this thesis can be used to prevent future accidents. Training and education of
new drivers [3] are other areas of use. Safety systems such as seat belts and air bags have
made cars safer, however the current trend among car manufacturers are to implement

systems that help people avoid crashing rather than help to survive them.

During the last two decades a number of systems have been implemented in cars world-
wide. Some of the most successful and widely used are the Anti-lock Braking System
(ABS) [4] and the Electronic Stability Program (EPS). These systems were first
implemented in high-end cars, but have now become standard in basically all cars. The
same trend can be seen nowadays in the high-end cars and some of the new systems in
these cars will probably become standard in the future. However, many of the new systems
developed these days are removing some control away from the driver of the vehicle and it
is therefore absolutely crucial that the systems are well tested [5]. Failure in a driver

assistance system can be disastrous.

12 Evaluation of a Vision-based Driver Assistance System in Simulation

Taking it even one step further is to design autonomous driving systems, vehicles that
drive themselves. It might sound like a science fiction movie, but a number of tests and
systems are already developed [6]. The DARPA Grand/Urban Challenge [7][8] is one
competition where teams compete in developing autonomous cars for cities and outback.
Similar projects in Europe are the European Land-Robot Trial (ELROB) and the EUREKA
PROMETHEUS Project [9]. Although autonomous vehicles are still in their infancy, the
new systems being developed are bringing us step by step closer to the ultimate goal;

autonomous driving available to the public.

In order for the simulations to provide the user with correct information it is important that
the simulation system has the accuracy needed. Depending on the simulation scenario this
can be the accuracy of the physics models used for the vehicle, such as tire friction and
behaviour of suspension [4]. Well developed physics engines will provide the foundation

for the automotive simulator in order to replicate real behaviour.

1.2 Project Objectives

The project objective is to create an automotive simulation system for various types of
vehicles. Developing an automotive simulation system is a major task and hence the
development is expected to continue for years to come. My contributions in the
development of the automotive simulation system have been in the area of content creation

and physics simulations.

Furthermore, the next goal is to test a driver assistance system in the automotive simulation
system. The driver assistance system is based on lane detection implemented in the image
processing framework ImprovCV. ImprovCV and lane detection algorithm are already
developed at the University of Western Australia for image processing specifically
designed for vehicles. However modifications are necessary in order to achieve
autonomous driving in the automotive simulation system. The robustness of the lane
detection and the control of the simulated vehicle will be tested using different scenarios
and controllers for the vehicle. Two different physics engines will also be used in order to

verify the robustness of the lane detection algorithm and the controllers for the vehicle.

Introduction 13

1.3 Thesis Structure

Chapter 2 will give a review of my literature survey which I conducted in the initial phase
of the project. Topics covered in the literature survey are available simulation systems and
driver assistance systems. An overview of the design and architecture of the developed
automotive simulation system, AutoSim, is given in chapter 3 before the 3D modelling and
content creation for AutoSim is discussed in chapter 4. In chapter 5 aspects of vehicle
physics and general physics simulations which are relevant for the simulation system is
described. The image processing in ImprovCV and the lane detection algorithm is
described in chapter 6 together with the communication between the two programs
ImprovCV and the AutoSim client. Chapter 7 discusses the theory behind the controllers
that are implemented in order to demonstrate autonomous driving before the experiments
and results are given in chapter 8. Finally, a conclusion is made in chapter 9 together with

future work and improvements.

2 Literature Survey

As preparation for the project a literature survey was conducted in order to learn about
current automotive simulations systems and their uses. The process of deciding which
subsystems the simulator would be based on was also an important part of this phase in the
project. A summary of available simulators, technologies and driver assistance systems are

described in this chapter.

2.1 Driving Simulators

An automotive simulation system is not a new invention, but many of the available
systems developed are proprietary and owned by car manufacturers and research institutes.
The driving simulator at the Technische Universitit Miinchen (TUM), the DaimlerChrysler
systems and The National Advanced Driving Simulators (NADS) at the University of Iowa

[10] are three examples.

The TUM driving simulator's movement of the vehicle cabin is based on the Stewart
platform [11] with a dome surrounding the cabin. The inside of the dome displays the
graphics of the simulator [12]. The cabin itself is detachable in order to use different
vehicles, this is also the case for the actual simulation system (the software) which can be
modified to a specific vehicle. To enhance the feeling of driving, real vehicles can be fitted
to the platform. The Stewart platform gives the vehicle six degrees of freedom to simulate

real movement. Figure 2.1 shows the simulator set up.

16 Evaluation of a Vision-based Driver Assistance System in Simulation

Figure 2.1: The TUM Driving simulator with its
surrounding dome and Stewart platform [12]

The Stewart platform has been used in many simulators over the years to reproduce real
motion from e.g. a vehicle or an airplane. Compared to the platform that the NADS
simulator is based on (described below) using a Stewart platform can be fitted and used in

much smaller rooms. However the freedom of the movement is limited.

One of the NADS simulators at University of Iowa [13] uses a different system than the
TUM simulator. The NADS 1 system has a 13 degree of freedom system and like the TUM
simulator the vehicle cabin is placed inside a dome. The difference however is that the
dome can actually move around in a large room making the movement more realistic,

depicted in Figure 2.2.

Figure 2.2: The NADS 1 simulator and its 13 degs
of freedom platform [13]

Literature Survey 17

The platform system pictured in Figure 2.2 is said to be able to reproduce motion closer
than any other vehicle simulator and makes this simulator one of the world's most
advanced. Furthermore, the inside of the dome is fitted with a 360 degrees visual display

system making also the visual impression realistic.

DaimlerChrysler's Virtual Reality Centre in Germany consists of much high performance
equipment related to development of vehicle systems, especially in the area of
visualisation. Two of their visualisation systems are called the “Cave” and the
“Powerwall”. These systems are highly advanced screens for displaying both 2D and 3D
images and are designed to provide the user with a better reality than other systems. The

“Cave” can be seen as an advanced version of the TUM's dome.

As seen these three systems share many similarities. This is also the case for their use;
testing and development of driver assistance systems. The DaimlerChrysler's simulators
have been used in the development of numerous new systems for vehicles [14]. As in the
case for autonomous driving [14] it is absolutely necessary to test the newly developed

systems in a simulator before letting an autonomous car out in real-traffic.

Figure 2.3: An example driving simulator, in this case the
vehicle is fitted with a motion chair in the driver seat

18 Evaluation of a Vision-based Driver Assistance System in Simulation
2.2 Autonomous Vehicles

2.2.1 DARPA Grand Challenge

Defense Advanced Research Projects Agency (DARPA) Grand Challenge [15] is a
competition for autonomous vehicles, also known as driverless vehicles. The goal for the
competition is to encourage research environments to create and develop vehicles that are
capable of driving on their own and completing a predefined track in the shortest amount
of time. As of May 2008 three challenges have been held, with the first one in 2004. The
two first one were held in a desert-like environment while the last one, the DARPA Grand
Challenge 2007 was held in a closed air force base. The last one is often referred to as
“DARPA Urban Challenge” because the scenario was a more similar to a city rather than

desert.

In the first Grand Challenge no vehicles manage to complete the course. However, next
year, in 2005, five teams completed the course. The vehicle that completed the track in the
shortest amount of time and won was the Stanley robot developed at Stanford University
[16]. Although, the challenge was carried out in a desert-like environment there were
obstacles such as bridges, narrow gates and different types of surfaces making the
competition far from trivial. The robots of the 2005 Grand Challenge had to traverse
through 132 miles (212.4 km) of desert in less than ten hours [17]. This was a huge
achievement by the five robots that managed to get through the track and in comparison to
the previous year when the maximum distance driven by a robot was only 7.3 miles (11.7

km).

Literature Survey 19

Figure 2.4: Stanley, the winner of the DARPA Grand Challenge
2005 [16]

As the next step, DARPA organized the Grand Challenge's inheritor, the Urban Challenge.
In difference to the desert scenario in the Grand Challenge the scenario was now city-like.
This time the autonomous vehicles had to interact with other moving vehicles and obey the
traffic rules[18]. By utilising technologies like lasers, GPS and radars the winner was able
to navigate through the almost 60 miles (96.6 km) long track interacting with as many as
60 other vehicles. Although the scenario for the Urban Challenge was simplified in
comparison to a real-world traffic scenario, the challenge brought autonomous vehicles one

step closer to a fully autonomous car.

2.2.2 EUREKA Prometheus Project

The EUREKA Prometheus Project was one of the first serious projects in the area of
modern autonomous or driverless cars. It was established already in 1987 and one of the
participants was Ernst Dickmanns, which by many is regarded a pioneer in autonomous

cars [9].

Especially two famous robots were developed in the EUREKA Prometheus Project, the
VaMP and the VITA-2. In 1994 these two vehicles drove more than 1000 km in heavy
traffic near Paris, France, on a three-lane highway without human intervention. By using

systems such as computer vision these vehicles were able to demonstrate autonomous

20 Evaluation of a Vision-based Driver Assistance System in Simulation

driving involving lane changing and over-taking at speeds up to 130 km/h [19] already in

the 1990s.

The final achievement of the EUREKA Prometheus Project was a modified Mercedes car
driving from Munich in Germany to Copenhagen in Denmark and back again. Although
humans interacted with the car from time to time during the trip it did drive up to 150 km
on its own reaching speeds up to 175 km/h on the German Autobahn. After the projects
achievements from its birth in 1987 to its end in 1995 many milestones and new inventions
in autonomous vehicles were reached and developed. Many later projects in autonomous

vehicles are based on the results, experiences and developments from this project.

2.2.3 Space Robots

One industry that drives the development of autonomous vehicles is the space industry.
Ever since the space race started in the 1950s more and more sophisticated systems and
robots have been developed and many of them have successfully landed on other planets.
One example is the Mars Opportunity Rover vehicle which is a part of the National
Aeronautics and Space Administration (NASA) Mars Exploration Rover Mission [20]. The
Mars Opportunity Rover landed on Mars in 2004 and still (2008) function, even though it

was only expected to function for approximately 90 days.

In comparison to autonomous vehicles on the Earth, autonomous vehicles for the space
must often take many other factors into account. Rough surfaces and completely different
climates are two examples. And maybe most important; if something does not work you
might never be able to fix it and enormous amounts of money are wasted. In the case of the
NASA Rover Mission in 2004 the temperature at the landing site could vary up to 120
degrees Celsius every day. Such conditions can not be found on Earth and are also difficult
to artificially create. Another thing worth mentioning is that the actual conditions of a new
planet are sometimes partially unknown before the first robot lands there. This makes it
even harder [21]. From of the facts mentioned above it is clear that thorough testing and
simulations are key elements for a successful space mission with autonomous space

vehicles.

Literature Survey 21

Figure 2.5: The Mars Opportunity Rover [20]

2.3 Available Subsystems

Building an automotive simulation system from beginning is a huge project which involves
many time consuming and challenging tasks. Also, since there are many excellent
subsystems available it is rather unwise not to take advantage of the work that is already
done. In order to have the freedom of improving the subsystems, making user specific
modifications as well as integrating towards external hardware, e.g. sensor and actuators,
open source software is preferred. There are several well developed open source engines
for both graphics and physics available as well as other useful libraries. Some of the
subsystems used and also considered used for the automotive simulation system are briefly

presented in the sections below.

2.3.1 SubSim and EyeSim

Simulators for various robots have been developed at UWA's Centre for Intelligent
Information Processing Systems (CIIPS) before. SubSim [22][23] and EyeSim are two
examples that are still in use. Using parts from these previous projects and gaining

experience and knowledge from them will provide the automotive simulation system with

22 Evaluation of a Vision-based Driver Assistance System in Simulation

a good foundation which can speed up the project in its initial phase. SubSim is a
simulation system for underwater autonomous vehicles which is freely available from
UWA. The simulation system provides the user with the ability to customise the simulation
scenario and to write own user or client programs (programs that control the behaviour of
the underwater vehicle). These programs are written in C/C++ and compiled into a
Dynamic Linked Library (DLL). Although this simulation system is for underwater
vehicles, many sensors and actuators implemented for the SubSim will also be useful in a
vehicle simulator, e.g. Position Sensor Device (PSD), compass, velocity meter and so on.
SubSim and EyeSim's Application Programming Interface (API) with GET_DATA and
SET_DATA for the different robot devices will also be implemented in a similar way for

the automotive simulation system.

e wen Sk Fugns vmisks Hep

~$pead Conlpll—————
EE—
il |

260 100

RS

100 100 (8

E

Flyscd Nsie

Ee—

B o

| FolsObes
Maborilv =

Winsliee
W Comeras.
P Servors & slaic € dwien:

Massagss |k | Haroaly |
[E TR prp— &

Fheazde: I FALED mer [96716 frs: e

Figure 2.6: SubSim's graphical user interface [22]

2.3.2 Delta3D

The Delta3D [24] game and simulation engine is used in various sorts of game and
simulation based projects. Especially the military seems to find the engine useful in their
simulations, but driving simulators have also been developed based on Delta3D. Delta3D
includes many features such as terrain editors, network capability, High Level Architecture
(HLA) support among many others. Delta3D is a complete framework for game and
simulation and includes networking, physics and graphics in the same package. This makes

the whole framework quite large and some of the freedom of choosing different

Literature Survey 23

subsystems disappears. After evaluating different approaches Delta3D was not chosen for
the automotive simulation system, however looking at its implementation might be useful

in the future.

2.3.3 The Open Racing Car Simulator (TORCS)

TORCS [25] is a racing simulator derived from an earlier simulator called Robot Auto
Racing Simulator (RARS) which has ended its development. The simulator is under
constant development for platforms such as Windows and Linux and features, help and
specifications are well documented through user guides, forums and tutorials. Tutorials are
available for creating a custom track from a Google Earth images which is interesting as
the automotive simulation system will need virtual models of real cities in the future. Apart
from the normal user controlled car, development of robots (cars) are also possible. This
means creating a car with Artificial Intelligence (AI) that can drive on its own. These
programs are similar to the user or client programs for the SubSim and something which
will be implemented in the automotive simulation system as well. There are also
competitions and championships for creating the fastest autonomous car to drive around a
given track. As TORCS is open source we have the opportunity to use code fragments and

also graphics such as textures from the system.

FPS: 44.7

wo
E
X
o

Figure 2.7: TORCS, an open source driving simulator [25]

24 Evaluation of a Vision-based Driver Assistance System in Simulation

2.4 Driver Assistance Systems

Apart from systems that have now become standard in most cars (ABS, ESP etc.) many
cars in the high-end market have implemented many new and advanced systems in their
cars. Below some systems will be briefly described in order to get an overview of what

kind of driver assistance systems that are available, in development and use.

Adaptive Cruise Control (ACC) is an improved modification to the well-known cruise
control. In addition to keeping the speed of the vehicle constant, ACC also adjusts the
speed according to other cars and obstacles in front. This means that if a car in front of
your car is getting too close your car will automatically brake in order to bring the car in
front to a safe distance. There are basically two types of ACC systems available; one is
based on laser and one on radar. Laser based systems are significantly cheaper than
systems based on radars. Also the laser based systems are not as reliable as the radar based
systems, especially in difficult weather conditions [26]. The first radar based ACC systems
available to the public came in 1999 (Mercedes and Jaguar) and during the last years a

number of car manufacturers have implemented ACC systems in their cars.

Various systems for lane detection are developed. These systems notify the driver in the
case of an unwanted lane change. Realisation of such a system can be done using sensors
that sense the lane markings or by using cameras and image processing. This can prevent
drivers that tend to fall asleep during driving of driving off the road. This is one of the

features in the Honda Intelligent Driver Support (HIDS) system [27].

Driving during night time is tiring and difficult, especially as you get older. Night vision
cameras (e.g. infrared cameras) with monitors inside the cars can be used to assist the
driver in spotting obstacles on the road. Night vision assistance systems can among others

be found in selected Mercedes and BMW cars [28].

Blind spots around the car are a well-known problem and many have experienced
dangerous situations due to them. Volvo's Blind Spot Information System (BLIS) [29]

introduce cameras that notify the driver when objects are in the blind spot of the car.

Sensor technology is under constant improvement and will allow more complex and

advanced sensors and systems in the future. Furthermore, more cameras are used for driver

Literature Survey 25

assistance systems. Radars and laser based systems are also being used for ranging and
distance measurements and will be more used in the future. As with all new technology it
is often only available in the expensive models, however if the technology proves to be

good and robust they will probably become standard among all car manufacturers.

More and more features are built into vehicles. The other way of tackling the problems is
to build features into the road infrastructure as well to assist the systems that are already in
the vehicles. During the Demo '97 (Automated Highway Systems) magnets where placed
between the lanes in order to assist the vehicles in keeping within the lanes [3]. Later, more
sophisticated methods, using Radio Frequency Identification (RFID) technologies, have
been tested. An RFID system can provide the vehicle systems with a lot of useful

information like location, intersections and obstacles [3][30].

3 AutoSim - The Automotive
Simulation System

The automotive simulation system AutoSim is developed at CIIPS, UWA and is the work
of several students doing their bachelor and masters projects the last year. Development
and improvements of the system are expected to continue for several years. The goal of the
simulation system is to be a highly modular and extendible system where new driver
assistance systems can be tested. The image processing framework ImprovCV [31],
described in chapter 6 is one system that will be used together with AutoSim to test such
systems. The simulation system gives the developers of driver assistance systems a
platform to test their systems in an environment similar to the real world. Currently the
automotive simulation system is only available for Windows. However, all libraries and
programs used in the project are cross-platform so a future version of the simulator for

another platform should be possible with minimal effort.

The simulation system itself is based on a number of different and freely available libraries
and programs. The most important ones are mentioned briefly in this chapter together with

an overview of the simulator.

3.1 Overview of AutoSim

The simulation system is based on a client/server architecture. There are mainly two
reasons behind the choice of this architecture. Firstly, the server and clients can be
separated on different computers and the computations required for the simulations are
distributed on several computers. Also, several clients are able to participate in the
simulations. The server is responsible for doing the physics for the whole simulation

scenario while the clients are doing the graphics. Hence, the server does not necessary need

28 Evaluation of a Vision-based Driver Assistance System in Simulation

a graphics card, but the clients do. Secondly, the server and client are communicating over
an IP network which allows clients and server to be located at different locations. The
architecture and a simplified overview of the communication between the server and

clients are depicted in Figure 3.1.

3. The physics system
calculates the updated

2, The server receives the
data from the clientsthat |=——

ositions/rotations
have sent d;ta c—— P
and passes it onto i —

the physics system

la, Steering/movement information
from cliert 1 is transmitted
tothe server

1b. Steering/movement information
from cliert 2 is transmitted
tothe server

4a. The server sends the
new positions to client 1
for client 1 to update the
graphics
4b, The server sends the
new positions to client 2
for cliert 2 to update the
graphics

Client 1 Client 2
Active client driving a vehicle, Active client driving a vehicle,
e.g. using a steering wheel e.g. using a steering wheel

Figure 3.1: Overview of the client/server architecture of AutoSim

The behaviour of the vehicles (sometimes referred to as robots) can be specified in one or
more user programs. These user programs are written in C/C++ and can be loaded into the
simulator. Later, a user program for driving autonomously based on data from the lane
detection in ImprovCV is used for my experiments. Another use of a user program is to
connect a vehicle to a steering wheel. The user program takes care of connecting the given

vehicle to the steering wheel.

All robots have an XML file that specifies what device a robot can access and the physics

and position related to them. There are a number of currently supported devices such as

AutoSim - The Automotive Simulation System 29

PSD, velocity meter, GPS and lights. If specified in the robot file the robot can access
theses devices through a user program using GET_DATA and SET_DATA functions. The

user programs and its structure and details are described in [32].

Similarly with robot files describing the robots, there are world files for describing the

world. The appendix contains an example of how to create a world.

AutoSimClient

File Simulation
L b -

Simulation Objects

Object Data
imprezat
landcruiser1
traffic_light1_1
traffic_light1_2
traffic_light1_3
traffic_light1_4
traffic_lightz_1
traffic_light2_2

{12

traffic_light?_3
traffic_lightz_4
traffic_light3_1
traffic_light3_2
traffic_light3_3
traffic_light3_4
- kerraind
o kerrainl
o terraing
terrain3
o kerraind
o kerrains
o terraing
terrain? bt
< | =

User Program

Robaot Mame:

[imprezat |

User Program;:

':oS\m-vU‘Ua\re\ease\Joystlck.dll|[Change l

Metwork

Server Ip Address:

ez Pow Pow o

Figure 3.2: Screenshot from the AutoSim Client

3.2 Irrlicht

Irrlicht [33] is a 3D graphics engine and the one used in the automotive simulation system.
It is also open source which makes it possible to make modifications according to the
needs of the simulator. As of May 2008 some small modifications are in fact made. There
are many freely available graphics engines available, however Irrlicht was chosen mainly
because its good reputation, documentation and long list of features. Also, the engine is
cross-platform, runs on Windows, Linux and MacOS, which means a future version for

any of the platforms is possible.

The features of the engine make it easier to develop and improve the automotive

30 Evaluation of a Vision-based Driver Assistance System in Simulation

simulation system. Irrlicht has direct import of most 3D mesh formats and also image
formats, which makes the job of finding and incorporating new models easy and minimal
conversions are needed. Furthermore, a number of special effects are already implemented
such as different types of lights, billboards (used in e.g. traffic lights and lights on the
vehicles), skyboxes and particle systems (simulating fog, smoke, fire etc.). Irrlicht is used
as the graphics engine in many applications and projects, also for the visualisation part in

robot simulation packages [34].

3.3 OpenStreetMap

OpenStreetMap [35] is a free and editable map of the whole world made by users world-
wide. The map project is similar to the well-known Google Maps, however Google maps
are copyrighted and hence can not be used freely. As with Google maps some areas are not
as good mapped, but the details of areas are increasing every day. Users all around the
world can participant in making the maps better and better by using a GPS device, drive

around and finally submit the GPS data to the OpenStreetMap web site.

For the automotive simulation system it is desired that the user can choose an area using
the OpenStreetMap and further import the map area into the simulator to create a close to
real representation of the real area or city. When a selected area is chosen the map can then
be modified using the Java OpenStreetMap (JOSM) program [36]. The process of creating
a world with the help of OpenStreetMap is described in the appendix.

e Esa

F igure 3.3: Left picture: The graphical user interface of JOSM. Right picture: The
OpenStreetMap over UWA

AutoSim - The Automotive Simulation System 31

3.4 TinyXML

As the name implies the TinyXML [37] library is a small and simple Extensible Markup
Language (XML) parser written in C++. As the simulation systems consists mainly of
XML files for storing preferences, robot information and world information an XML
parser is important in order to retrieve and save data. TinyXML simplifies this job through

its easy-to-use functions.

3.5 Blender

There are many commercial 3D modelling software packages available, e.g. 3D Studio
Max and Maya, however, these programs are expensive to purchase. Blender [38] is
another 3D modelling software package which is open source and available for all major
platforms. The features and possibilities you have with Blender are similar to what you
have in the commercial packages, but as the software is full of features and the Graphical
User Interface (GUI) a bit different from other packages it takes a bit of training and time
to get used to. However, there are lots of information available on the web such as forums
and tutorials. Also, Blender has support for plugins and through this it supports import and

export of the most popular used 3D mesh formats.

[§ f = Fie Add Timelne Game Render Help [_=[SR:2-Model [X] [=]sCE:scene [x)5 Ve:#-8 | Ed12-12 | Fab-6 | Mem:2.87M Cube

3 v view Select Mesh | A Editmode | [# f = View Select Mesh [A Edit Mode

(1) Cute

= JoctMash OI810]= [oovar L3 = view seiect wash [eatmone -] BI810]a [sova_
B~ rees [e[Eo[e]0@] @ISE)

Gauss ¥

Figure 3.4: Blender's graphical user interface

4 3D Modelling and Content

In a simulation systems like AutoSim a lot of time has to be spent on the models that will
take part in the simulation scenario in order to make it realistic and good looking. During
the process of building up the simulation system and creating different scenarios many
limitations in respect to the 3D models themselves were discovered. These limitations
together with different techniques used will be described in this chapter. Detailed
descriptions of how to create a virtual world, prepare new 3D models for the simulator are
found in the appendix and in [39]. Note that robots are not only cars but all objects that
have one or more user programs connected, for example the traffic lights. Also some minor

differences in the way applications interprets coordinate systems will be discussed.

4.1 Differences in Coordinate Systems

Unfortunately, different applications interpret coordinate systems different ways which can
result in confusion. The most notable difference in the programs and libraries used in the
automotive simulation system is between the graphics engine Irrlicht and the 3D modelling
application Blender. Basically this means that the up-axis and the axis pointing into the 3D
space are swapped. The up-axis in Blender is called the Z-axis and in Irrlicht this is the Y-
axis. Similarly the axis pointing into the 3D space in Blender is called the Y-axis and in
Irrlicht the Z-axis. Also note that positive Z-axis in Irrlicht and positive Y-axis in Blender

are pointing into the 3D space (which is common in computer graphics).

34 Evaluation of a Vision-based Driver Assistance System in Simulation

z
(blue) Y
F A
Y Z
(green)
» X » X
Blender (red) Irrlicht

Figure 4.1: Showing the difference in coordinate systems for Blender and Irrlicht

As seen from Figure 4.1 both system are so called left-hand systems and the only
difference is that the Z and Y-axis are swapped. This means that if you are using Blender
to find the size of for example a building which you will use for collision detection in the
simulator, you also have to swap the axis when inserting the numbers into the file
containing the physics information. The swapped axis must also be considered when
exporting models to a different format with Blender export plugins, more information can

be found in the appendix.

4.2 Light Reflection

In computer graphics surfaces are often described using three components, ambient,

diffuse and specular [40].

Ambient light is sometimes referred to as fill light. Applying ambient light or reflection on

an object will only give the object a “flat colour”.

Diffuse reflection is the reflection from light on an uneven surface. One example of

diffuse reflection is if you have a matte surface of an object.

Specular reflection is the often known as the perfect reflection of light, like in a mirror.

Hence, if a light ray hits a surface with a certain angle the ray will be reflected equal to the

3D Modelling and Content 35

incoming angle. This is known as the law of reflection.

Ambient Diffuse Specular = Phong Reflection

Figure 4.2 Illustrating the light parameters; ambient, diffuse and specular. Combination of
the three is often known as Phong reflection or shading [40]

When using the Lightwave 3D format (.obj extension) which is a readable text format
these parameters can be manually edited in the file to match and suit a particular
simulation scene. Often the light reflection can cause confusion and manually editing the
3D files is a good way of debugging. Nevertheless, knowing the difference between

ambient, diffuse and specular components is needed in order to understand it.

4.3 The Preferred Model Formats Used in the
Simulator

43.1 OBJand 3DS

Although Irrlicht supports direct import of several 3D model formats it is preferable to just
use the .obj (Lightwave) and .3ds (3D Studio Max) format. By working with models and
exporters there are a lot of small, but significant differences with formats that you have to
be aware of. Hence, keeping the number of different formats to a minimum will reduce

possible errors.

The advantage of the .obj format is that the model information is stored in readable text
files. The .3ds format on the other hand stores the information in a binary format which
makes it unreadable. A readable format is a big advantage. If a model is not looking as it
should in the simulator, for example if the texture or material looks odd you can open the
file in a text editor and manually edit the data. The other option is to edit the graphics data

in a 3D modelling program, e.g. Blender.

36 Evaluation of a Vision-based Driver Assistance System in Simulation

4.3.2 The AS3D (AutoSim 3D) format

Building realistic worlds for the simulator requires a lot of 3D models. There are many free
3D models available on the web, e.g. houses and vehicles. However, many of these models
are either to complex (consisting of too many polygons) or too simple (not realistic). A too
complex model will slow down the performance of the simulator significantly and is
therefore not wanted. The solution is to have models with minimum number of polygons
and make them realistic using textures. Free models like this are however not easy to find.
Hence we decided to buy a set of houses optimised for real-time applications. These
houses are built using simple shapes, but textured with nice textures which make them look

good.

To retain the rights of the creator of the models, the models had to be converted into our
own proprietary 3D format. The format is an obfuscated version of their original format
which makes it hard to use the models outside the simulator. A new file format loader for
Irrlicht was developed in order to use the new 3D format. The models were given the

extension as3d (AutoSim 3D).

4.4 Traffic Lights

Not only are the vehicles in the simulation system regarded as robots. All objects in the
simulation system that are either controlled by a user or a user program are considered to
be robots. This also applies to the traffic lights which are controlled by a user program to
automatically change the between the states; green, yellow, red and red/yellow.
Nevertheless, there is one difference between traffic lights and vehicles and how they are
interpreted by the simulation system, namely the traffic lights are static robots. This means
that if you for example place a traffic light two metres above the ground the traffic light
will not fall down to the ground like a vehicle. The traffic light will just stay in the air. A
result of this is that the traffic lights must be placed in the correct height (Y-axis), just
above the ground. To get this absolutely right is time consuming so therefore the actual
graphics pole of the traffic light is longer than it should be, however the physics is not.
Hence you can place a traffic light for example 20 centimetres above the ground, but it will
still look right. This is illustrated in Figure 4.3. Another thing to notice is that a static robot

is only static as long as nothing is colliding with it. Crashing a car into a traffic light will

3D Modelling and Content 37

make the traffic light fall over. The reason why the traffic lights need to be static is simple.
The physics box for the traffic lights is just a narrow high box which would be difficult to

make standing unless the ground is exactly even, which it most likely is not.

Figure 4.3: The traffic light
including its physics box, as seen
the actual physics box is a bit over
the terrain

The current traffic light system is based on a simple fixed time control system. This means
that after a given time the lights change for one direction of an intersection and at the same
time the opposite happens for the other direction. Although this is a simple system it is still
widely used in real traffic intersection, especially smaller ones. However, implementing a
more complex dynamic control system with sensors for sensing vehicles is possible if

desired. In that case a new user program for the traffic lights must be written.

As with other robots they are defined in the world file. This means that also their
placement is specified in this file. Placing traffic lights in their correct position is a tedious
process, but there is no need to change the rotation as all the sides of the traffic light have
lights and hence the rotation will match the light states. Another useful program is
developed in order to assist with placing robots, it is called RobotPlacer and maps between

longitude and latitude to X and Z coordinates.

38 Evaluation of a Vision-based Driver Assistance System in Simulation

4.5 Other Objects

Loading complex models consisting of many vertices into the simulation system will slow
down the system a lot. Using models with simple shapes and instead use good textures
will give huge improvement in performance and rendered frames per second for the
simulator. However, objects like trees are not easy to make realistic and good looking
using simple meshes. The solution to displaying trees is therefore to simply display a tree
as a billboard. A billboard in computer graphics is a texture that is always rotated straight
at the camera. By using good textures of trees this method proved to be very realistic

without making a big impact on the performance.

Figure 4.4: Showing the trees made as billboards

S Physics Simulations

The simulations of the physics in an automotive simulation system like AutoSim are an
essential part in order to get realistic results from the simulations carried out. As there are a
vast number of aspects and relationships to consider in a complex scenario containing
vehicles, other moving objects and static objects (like in a real traffic scenario) this is far
from a trivial task to handle correctly. Luckily, there are physics engines available that will

take care of the low level physics and provide its user with a more user-friendly interface.

This chapter will focus on the physics simulations used in AutoSim, the physics engines
used and some aspects of vehicle physics. The experiments and results done with different

physics engines are discussed in chapter 8.

5.1 Physics Engines

Physics engines are handling the physics for games and simulators such as AutoSim.
Physics calculations related to a given scenario, e.g. scenarios in AutoSim can be very
complex. Hence simplifications are done and different methods for solving the differential
equations involved are used in different engines. The simplest numerical integrator used is

the Euler method where
Yos1=Y.Thf (2,,y,) , where h is the step size

The accuracy of the Euler method depends on the step size, a large i will give greater error
but faster computation. On the other hand, smaller step size will give less error but longer
computation time. Variations of the Euler method are often used in physics engines due to

the simplicity [44].

The different ways of solving the differential equations is one of the reasons why different

40 Evaluation of a Vision-based Driver Assistance System in Simulation

engines not necessarily will behave similarly. To verify some of the results given later in
the thesis two different physics engines were used for the experiments. The Bullet physics
engine is the original engine used in AutoSim, but as AutoSim uses Physics Abstraction
Layer (PAL) changing physics engine is fairly trivial. The second engine used for the
experiments is the Newton Game Dynamics. A brief description of these two is given

below.

5.1.1 Bullet Physics Library

The physics engine used for the simulation system is called Bullet [41] and is a free open
source library used in several professional games and programs, e.g. in the Blender 3D
modelling program. A physics engine is an essential part of an automotive simulation
system in order to simulate real-world physics in a correct way to increase realism. The
engine handles such things as gravity, collision detection and car physics. An important
part is that Bullet contains vehicle physics model which is essential in an automotive
simulation system. Physics calculations can be very complicated, but by using a physics

library like Bullet a lot of the low-level details are hidden from the developer.

5.1.2 Newton Game Dynamics

Similarly with Bullet the Newton engine [42] is free to use, however its source code is
closed. The Newton engine is said to focus on accuracy over speed and this might cause it
to be a bit slower than other engines. However, this was not noticeable in comparison to
Bullet in the later experiments with the engine. Similarly with Bullet, Newton is widely

used for physics simulation and was the one used in SubSim [23].

5.2 PAL

The Physics Abstraction Layer (PAL) [43] can be seen as a physics wrapper library with
extended abilities, hence an abstraction layer. PAL supports a long list of physics engines
which makes it easier to test and benchmark your system with different physics engines in
order to find the one that is most suitable for your system. As seen in [44] none of the
tested physics engines are perfect, hence a good physic engine for one system is not

necessarily the best for another system. In the automotive simulation system PAL is used

Physics Simulations 41

and as mentioned this makes it easy to replace the physics engine in the future if that is
desired. PAL's ability to easily replace the physics engine was tested and demonstrated in

my later experiments.

5.3 Vehicle Physics

The physics involved in moving objects are important for a simulation system like
AutoSim. Although these details are handled by the physics engine some general concepts
will be described in this section. Areas that will be covered are straight line physics,
curves, wheels and springs. A short section on the implementation of the various aspects in

the simulator is also given.
For this section the following notations will be used
v=a vector

|v|=magitude of the vector

5.3.1 Straight Line Physics
A number of forces are acting on a vehicle moving in a straight line. If the force from the
vehicle engine was the only force involved, the vehicle would be able to accelerate to

infinite velocity. However this is not the case.
The force contributed by the engine is given as [45]

. T
Fdrive uR

drive

, where

wheel

u 1is the unit vector in direction of vehicle
R, .., 1s the radius of the wheel

42 Evaluation of a Vision-based Driver Assistance System in Simulation

Furthermore, the engine's torque that is actually put on the wheels of the vehicle, Tye, 1S

given by [45]

Tdrive = T

-rg-rdn,where

engine

T
r, is the gear ratio

is the actual torque produced by the engine at a given RPM

engine

r, 1s the differential ratio
n is transmission efficiency

As the torque varies according to the Revolutions Per Minute (RPM) for a specific vehicle
and the ratios and efficiency also depends on a specific vehicle these numbers need to be

looked up from the specification of the vehicle to be used.

Torque is given as force times distance. Hence applying 50 Newtons at 2 metres from the
axis of rotation will give a torque of a 100 Nm (Newton meter). The torque for an engine is

given as the force put on the drive wheel (Tengine)-

Faive gives the force in the direction of the vehicle. Now the forces that act in the opposite

directions will be considered.

At high speed the aerodynamic drag is the biggest force acting in the opposite direction of
the movement of the vehicle. The aerodynamic drag is proportional to the square of the

velocity and is given as [46]

Physics Simulations 43

As seen from the equation above the velocity vector is multiplied with the magnitude of
the velocity vector giving a new vector for the square of the velocity. The minus sign
represent that the force is applied in the opposite direction as the velocity. Furthermore

Curae depends on the frontal area of vehicle, shape of vehicle and air density [46].

1

drag :5

C -C,p-A, where

C, is a constant

p is the air density (l%)
m

A is the frontal area of the vehicle (m”)
C, varies with the shape of the vehicle and is usually measured in wind tunnels.

The final force that is acting in the opposite direction as the direction of the vehicle is the
friction from the wheels, axles etc., known as rolling resistance. At low speeds the rolling
resistance is the main resistance force and at high speeds the drag takes over. It is
estimated that at 100 km/h (approximately 30 m/s) the rolling resistance is equal to the
aerodynamic drag force [47]. Hence the C,; can be approximated to be 30 times the value

of Cdrag-

F =—C._%

rr rr

Finally this gives the below equation for the total forces acting on the vehicle moving

along a straight line

ﬁ:Fdrive_Fﬁdmg-i_ﬁrr

According to Newton's first law an object where the total forces acting on the object is zero
will continue at a constant velocity [48]. Hence if F from the above equation is zero the
vehicle will move at a constant velocity. This will also be the vehicle's maximum velocity
at a certain engine force. Moreover, if the forces acting on the vehicle is not zero the

vehicle will follow Newton's second law [48]

F=m-a

44 Evaluation of a Vision-based Driver Assistance System in Simulation

Acceleration, a , in the above equation is the rate of change of the velocity [49] hence

. dv - . . o .
azz, or v(t)=f a-dt , furthermore the position vector, p , can be obtained by

integrating the velocity in respect to time.
- - - d P
p(t):f v-dt, or v:d_tp

When the vehicle is braking the engine force is replaced by a braking force acting in the
same direction as the rolling resistance and the aerodynamic drag force. The equation is

given as

> -
Fbraking =—u Chraking

This will cause negative acceleration and Newton's second law will still apply. The braking

constant Cyaine depends on how much the driver of the vehicle brakes.

5.3.2 Wheels

The tires of a vehicle are an important part of the vehicle's behaviour as they are the only
contact between the surface and the vehicle itself. It is also probably the most difficult part
in terms of forces acting on the vehicle [46]. Steering of a vehicle produce an angle on the

wheels (8) which finally develop the force that turns the vehicle (yaw) [50].

Roll

Pitch

Figure 5.1 Roll, yaw and pitch axis
definition [50]

Slip ratio is the common term used when discussing wheel forces. In a typical scenario

with a vehicle driving straight forward the wheels with the power (front, rear or 4WD) will

Physics Simulations 45

experience some slip. This slip will produce a friction force and it is what is moving the
vehicle forward. This means, e.g. for a rear wheel driven vehicle the rear wheels will
actually rotate slightly faster than the front wheels which are just rolling without providing
any forward motion. Example of a slip ratio curve can be seen in Figure 5.2. The important
part to note from Figure 5.2 is the fact that some slip is required in order to get maximum
force in the forward direction (or backward if driving in reverse). However, too much slip
will reduce the force again. Also, a slip ratio of zero means that the wheels are only rolling
without providing any drive. Curves like Figure 5.2 depend on factors like tire, surface and
temperature so the one depicted is only applicable for demonstrating the concept of slip

ratio.

Slip Ratio Curve (at SKN load)

(=l mTw
[mim

G000
4000
2000 H

o
L} T T

-30 -20 -0 20004 10 20 an
Ao
0o

(mimimnl
(.

Slip Ratio (%)

Longtitudinal Force (N}

Figure 5.2 Slip ratio curve [47]

Similar concepts are also applicable when turning a vehicle, however it gets more
complex. A model used in many applications is based on the work of Hans B. Pacejka,
known as the Pacejka's formula [51]. Again, for real-time simulations the complexity of
the models to be used must be considered as the computations might get too time

consuming and be more accurate than actually needed.

5.3.3 Steering

In the case of the vehicle is turning there are two different scenarios to be considered. The
first one is when steering in low speed and the other one is steering in high speed. Only
low speed steering will be discussed here as this is most relevant to driver assistance

systems and the simulator developed. High speed steering is when the angle of the front

46 Evaluation of a Vision-based Driver Assistance System in Simulation

wheels is not the same as the movement of the vehicle. This usually happens when the

vehicle is driving too fast in a curve and either understeers or oversteers [52].

During low speed steering it is trivial to find the steering radius as long as the distance
between the front and rear axle (L) of the vehicle is known. As shown in Figure 5.3 the

turning circle radius (R) can be solved using the right triangle sine definition [53]

L
sin(5)

sin(6)=%@R=

Figure 5.3 Illustrates a vehicle turning right at
low speed [47]

The above equations give the turning circle radius and from this the angular velocity (in

radians per second) of the vehicle can be found using [45]

v) .
W= where w is the angular velocity

By using the two equations above the steering angle can be calculated based on the

vehicle's velocity and turning circle radius.

Physics Simulations 47

5.3.4 Springs

Most springs are implemented and obey Hooke's law, this is also the case for the springs
from the wheels to the vehicle chassis. Hooke's law states that the force in which a spring
pushes back is linear proportional to the distance from its equilibrium (unstretched

position) given as [48]

-

F=—k-x, where

F is the force vector of the result
k 1is the spring constant (stiffness)
X is the vector of the direction and distance from the equilibrium

The negative sign in the equation indicates that the force is applied in the opposite
direction as the load. Hence, if stretching a spring the force will be applied in the opposite

direction and opposite when compressed.

5.3.5 Implementation of Vehicle Physics

The physics abstraction layer PAL implements the concepts about vehicle physics
described in the above sections. However, most of the details are hidden from the user and
only the respective parameters need to be considered when using PAL or any physics

engines for that sake.
Initialising a vehicle in PAL is done using the below function

palvehicle::Init(palBody *chassis, Float MotorForce, Float BrakeForce)

The Init function transforms a palBody into a vehicle and the engine and brake force

can be specified. The forces specified are the maximum values.

Furthermore, wheels to the vehicle can be initialised using the below function. For a

normal car four wheels need to be initialised and further added to the palVehicle.

palWheel::Init(Float x, Float y, Float z, Float radius, Float width,
Float suspension_ rest length, Float suspension Ks,
Float suspension Kd, bool powered, bool steering,
bool brakes)

48 Evaluation of a Vision-based Driver Assistance System in Simulation

Where the x, y, and z represent the position of the wheel relative to the vehicle's
centre. Radius and width is the dimensions of the wheel. The suspension is specified as
the suspension rest length, suspension Ks and suspension Kd.
These parameters relate to 5.3.4 and Hooke's law where suspension rest length
is the spring's equilibrium and suspension_Ks is the spring constant. Moreover, the
dampening effect is given by suspension Kd. The three last boolean parameters

specify whether or not the wheel has power on it, able to steer and has brakes.

As the parameters for different vehicles are different the details are stored in the robot files
for the AutoSim simulator. The robot files are based on an XML scheme and located in the

folder /robot/ in the installation folder of AutoSim.

5.4 COLLADA

In all forms of computing people are striving to develop an open interchange format for
data between different applications. There are various formats available for 3D and physics
information. However, some of them are proprietary and not all applications support all the
formats. This makes working with these formats time consuming as much time is wasted
on converting various formats into the desired format for the application you use.

Furthermore, format conversions sometime introduce defects into the data.

To overcome the above mentioned issues the COLLADA (COLLAborative Design
Activity) [54] has been developed. COLLADA's goal is to become the de-facto standard
for sharing 3D and physics data between applications. As COLLADA stores the data in an
open standard XML scheme the proprietary disadvantages of many 3D formats are
removed. The format itself was originally developed for PlayStation 3 and PlayStation
Portable by Sony. But as the format now is maintained and developed by the Khronos
Group (a consortium) together with Sony several applications, game and animation studios

have adopted the format.

As of version 1.4 of the COLLADA format, physics data was introduced to the format in
addition to the original 3D data. This allows 3D and visual object to be linked to physical
properties, all in the same file and format. However, for a standard physics format to be

useful it must work with a range of different physics engines that have different constraints

Physics Simulations 49

and interpretations [54]. Examples of popular physics engines are: Bullet, Newton Game
Dynamics, Open Dynamics Engine (ODE), PhysX and Havok. Hence, in order to achieve
this compatibility among physics engines a generic representation of physics data is under

development.

In a basic COLLADA file (with extension .dae) the scene can be represented by a visual
and a physics scene. The visual scene describes the visual components related to the
rendering of the scene whereas the physics scene consists of rigid bodies that are linked to
their visual counterpart. In physics a rigid body is an idealisation of a solid body of finite
size in which deformation is neglected. These are the objects that are of interest to the
physics engine (that is based on rigid body dynamics) and through COLLADA various
properties and geometries of these rigid bodies can be specified. Examples are friction,
mass, position and rotation. Another aspect is the geometry which is important in collision
detection. A reuse of the visual geometry may be used for this purpose, but is usually not
done as visual objects may be of high complexity [54]. Simpler shapes or a collection of
simpler shapes are often preferred for collision detection. E.g. in AutoSim the body of the
vehicle is a simple bounding box around the body of the vehicle. Under many

circumstances this will give a good enough approximation, but not in all cases.

A future use of the COLLADA format for the simulator might simplify the interchange of

formats and merging the graphics and physics data into one file.

5.5 Scythe Physics Editor

The Scythe physics editor [55] is a modelling tool for physics simulations. As the 3D
modelling tools mentioned in the previous chapter are mainly related towards graphics
modelling (although Blender has some support for physics) this modelling tool allows you
to simulate the physics of objects in a fairly simple way. Complex objects and shapes can
be constructed using primitives and joints and then simulated in different environments and

using different physics engines.

Natively Scythe supports the three physics engines; Newton Game Dynamics, Open
Dynamics Engine (ODE) and PhysX. However, as part of the project a Scythe loader for

PAL was developed which means that Scythe can be used with all the engines supported

50 Evaluation of a Vision-based Driver Assistance System in Simulation

by PAL [56]. The Scythe Physics Editor is used to create collision detection shapes for the

objects in the simulator.

5.5.1 Scythe Loader for PAL

Scythe uses its own physics format known as .phs. As Scythe and its format is open source,
a Scythe loader for PAL was developed. This extends the number of physics engine
compatible with Scythe to all the engines supported by PAL [56]. The loader developed
demonstrates the way a complex physics model can be used with PAL to do physics

simulations.

As physics models are invisible a demonstration program was developed that displays the
physics objects as graphics and hence makes more sense to users. Currently the following

features are supported by the loader:
e boxes, spheres and capsules (cylinders)
e convex meshes
e hinges and ball joints
e mass

However, not all physics engines support all this features, e.g. convex meshes.

Figure 5.4: Simulation of a ragdoll in the PAL Scythe
loader

6 Image-based Driver Assistance
Systems

The image-based driver assistance system described in this chapter is based on the
OpenCV computer vision library and the work done by S.A. Hawe while developing
ImprovCV [31] at the University of Western Australia. The lane detection algorithm used
for the later experiments is the algorithm developed for ImprovCV with modification to
work with my experiments. This chapter will describe the lane detection algorithm and also
the modifications done in order to use ImprovCV's lane detection as a driver assistance

system for a vehicle in AutoSim.

6.1 ImprovCV

A widely used library for image processing is called OpenCV. This is an open source
computer vision library originally developed by Intel, but now maintained by an online
community of developers. The OpenCV library provides its user with already implemented
functions of many frequently used filters and features used in the area of computer vision.
Two examples are the Canny filter and the Hough transform which later is used in the lane
detection algorithm which my experiments are based on. OpenCV is known to be used in
many different areas of computer vision like face recognition, surveillance and robotic, in

fact the 2005 DARPA Grand Challenge winner Stanley utilised the OpenCV library [17].

On the other hand, using OpenCV for testing various filters, parameters and such is a
tedious process as it needs to be recompiled when parameters are changed. Thus, the image
processing framework ImprovCV was developed at the University of Western Australia
[31]. ImprovCV introduces a user-friendly user interface to OpenCV suitable for testing

various filters with different parameters. Also, new filters can easily be developed and

52 Evaluation of a Vision-based Driver Assistance System in Simulation

included. By adding filters to a video sequence in real-time the effects of the filters can
immediately be seen and further experimented with (Figure 6.1). The experiments on
controlling a simulated vehicle (described in chapter 8) are based on the ImprovCV

framework and its features.

il

File Edit Help

'
=
Videos Preview: FindOuterLanes

Filter Groups inge

GreyScale Filter

Mot grouped (e
Channel Filter ,m!gg

Data Flow .)

Edge Filter Clip_Filter
H\stogram Executlor\ll;rr‘r;eg.ED.DDDDsec
Size Filter

waorphological Filter L=ae

Moise Filter Canny_Filter
Optical Flow Estimator Executiontime: 0.0000sec
Shape Filter Imae

Image

_
Filter HoughLinesFilter

Executiontime: 0.0000s2¢
Image Point

Image Foint

SeperateStreets2
Executiontime: 0.0000sec
g0 Lane:

Ima;

a 0]

Figure 6.1: ImprovCV user interface. Filters can be applied by dragging and dropping

A specific setup of various filters can be stored as an XML file and later loaded into
ImprovCV. Algorithms for doing e.g. lane detection which consists of many filters can
hence be stored and later easily used. A part of a lane detection algorithm in ImprovCV

can be seen in Figure 6.1.

There are currently two ways to input data into ImprovCV in order to do image processing.
The first option is to use an already saved video file (AVI format) and the second options
is to use real-time video from cameras. None of these methods are useful in order to do
image processing based on the data from AutoSim. Hence a third option for video input

into ImprovCV was developed. This method using shared memory is described in 7.2.

Image-based Driver Assistance Systems 53

6.2 Lane Detection

Lane detection using image processing faces many issues and challenges. Firstly, lane
detection systems should work regardless of the weather conditions. Sunshine, different
lighting conditions and rain usually have negative effects on many systems and algorithms
developed due to changes in visibility and reflections. Secondly, lane markings change
from place to place and the type of road you are driving on. Depending on the system and
what information that should be collected and analysed, dashed and solid lines with
different colours might need a different interpretation. Old lane markings with poor
sharpness and heavy traffic are also known to be issues with many image based lane
detection systems [57]. A robust lane detection algorithm or system may have many
applicable uses such as avoiding traffic accidents. Systems that warns the driver that he/she
is about to make a lane shift are already available in vehicles. Another and more advanced
use is systems that enable vehicles to autonomously follow a given lane without the driver
interacting with the vehicle. A lane following system as mentioned above is simulated and

described in chapter 8.

Several methods and algorithms are proposed for detecting lane markings in roads [58]. It
is shown that developing a robust algorithm for a range of different scenarios and
conditions is very challenging, hence proposed methods tends to focus on one particular
problem or condition [59]. Nevertheless, many of the same techniques used are still the
same. The techniques used for the ImprovCV lane detections are described in the below

section.

6.2.1 The Lane Detection Algorithm

When image processing is to be used for real-time applications like in the example for lane
detection to autonomously control a vehicle, it is desired to reduce the amount of
calculations to be done as much as possible. As described in [31] it is estimated that up to
40% of a normal image used for vehicle image processing is useless in terms of lane
detection. The upper part of the image usually consists of only sky and bottom part of the
bonnet of the vehicle. By removing these parts of the image the overall computations
needed later in the process are reduced significantly. This process is done using a Clip

Filter. Furthermore, by first transforming the original image into a grey-scale image and

54 Evaluation of a Vision-based Driver Assistance System in Simulation

then further into a binary black and white image further reductions are achieved. Still the
black and white image will contain the information needed to perform lane detection. This

is achieved by an edge filter, in this case a Canny filter.

The next phase involves extracting the actual lane markings. A popular method is using
Hough transforms, which is a way of finding imperfect instances of shapes, e.g. in an
image. A slightly simplified Hough transform (in terms of calculations) known as
probabilistic Hough transform was used for the lane detection algorithm in ImprovCV.
Only a slight reduction in accuracy is the result [31]. Applying the Hough transform to a
road scenario image will give many unwanted lines not relevant to lane detection.
Horizontal lines found by the Hough transforms are the first ones to be discarded. To solve
this and remove the unwanted lines and verify the lane markings, several methods are used

and described in detail in [31].

Finally, the lane markings are detected and verified by comparing the current image frame

with previous frames.

The lane detection algorithm used is summarised below with the actual name of the filters

used in ImprovCV.

1. Using a Clip filter to reduce the image
Edge detection using a Canny filter

Finding lines in images using a Hough lines filter

Ll

Separating the actual lane markings from the Hough lines that are not lane
markings using the filter Separate streets
5. Find outer lane markings that are of interest to the vehicle by using the

FindOuterLanes filter

6.2.2 Finding the Outer Lane Markings

To be able to use ImprovCV's lane detection to autonomously drive a vehicle in AutoSim
some improvements and modifications were done. Firstly, the lane detection in ImprovCV
detected all visible lane markings, but only the two lane markings on each side of the
vehicle are of interest for this control system (Figure 6.2). Hence a new filter for

ImprovCV was created to find the two outer lane markings on each side of the vehicle. The

Image-based Driver Assistance Systems 55

new filter takes two parameters as input as depicted in Figure 6.1, lanes and image. The
image is the image that is modified in the previous filters and the lanes are the detected
lane markings from the SepreateStreets? Filter. Based on the lanes data from the
SeperateStreets2 Filter the centre point between the outer lane markings can be found. The

lane markings on each side of the vehicle will have the following equations

y=m-x+b for the lane on the left hand side and

y=—m-x+b for the line on the right hand side of the vehicles

Furthermore, the centre point between these two lines, and where the vehicle should be,

can be found by finding the intersection points (X, and x,;) with another line e.g.

y=0

Furthermore, the centre point can easily be found by

. X1~ X
centre point =

This centre point can be seen in Figure 6.2 as the circle in the bottom of the figure. Before
this centre point is fed back into the AutoSim control user program it is normalised to a

value between -1 and 1.

56 Evaluation of a Vision-based Driver Assistance System in Simulation

=101 x|

Figure 6.2: Lane detection where the two outer lane markings are found and the centre
point calculated and displayed as the bottom circle

As seen in Figure 6.2 there are several lane markings detected in the scene. Finding the two
lane markings that are of interest to us can be done by iterating through all the detected
lane markings and find the two lane markings where the sign of the gradient swaps over

from + to -. This is summarised in the pseudo-code below.

for (int i = 0; i < (number of lanes markings detected); i++) {
if (current sign != previous_sign) {
// save the current i and this is where the
// line markings swap from + to -, hence the
// outer lane marking of interest
}
// save the sign of the m-variable of lane marking number i
// as previous sign

7 Control of a Simulated Vehicle

The goal is to make a simulated vehicle in AutoSim drive autonomously on a slightly
turning road based on image processing from ImprovCV. ImprovCV is able to detect lane
markings in the streets and based on this information it should be possible to keep the
vehicle inside its correct lane of the street. Different control systems will be described in

this chapter and later tested for the control of a simulated vehicle.

File Edit Help
B x| O | @ oo oot oo res
Videos SRS I SiA00T) 2 e o Preview: Canny_Filter
S [1500 [® [w]|5 aparruresize-7
File Simulation
Fiiter Groups ﬂ oh
[Source
| Mot grouped Simulation Objects:
Channel Filter
Data Flow Object Data =
Edge Filter imprezal
Histogram terraing
Size Filter :e"a‘";
errai
[Morphological Filter bl
| Noise Filter i
Optical Flow Estimatar terains
Shape Filter terrsing
terrsin?
. tersing
Filter anand
terraindl
terrain2
Image Foint terrainl3
189% of sle ims terraint4
S et srobes temaints
[temaints
I temaint7
image Lanes tenaints
1.25% of whole time ke 19
FindOuterLanes S =
Eecouiontime!.00075e0
imga L « »rl
<
User program
Robat MName:
[mprazat
User Program:
WrikeToSharedMemary. di Change
Metwork————————————————————————————
n32 Thread' (0xcld4) has exived wivh code 0O (0x0). S e
1273: o0 3: o 3: 1 3:
—op
Ghpaints | (=] Output [54 Eror List [33 Callrs Graph
2

Figure 7.1 Lane detection in ImprovCV to drive simulated car autonomously

7.1 Control Methods

Controlling a system according to some specification is widely needed in the industry, e.g.

controlling the speed of a car. Cruise control systems are designed to keep the speed of a

58 Evaluation of a Vision-based Driver Assistance System in Simulation

vehicle constant. Several methods can be used to achieve this. For this specific simulation
four methods will be considered; on-off, P, PID and Fuzzy logic controller. A description
of the four methods is given below. As it is the steering that is vital for the control of the
vehicle being simulated, the four controllers are implemented for the steering of the

vehicle. For maintaining constant speed of the vehicle a PID controller is used.

7.1.1 On-Off Controller

An on-off controller is often referred to as bang bang controller. The on-off controller is
the simplest form of controlling a system and because of its simple nature it has some
disadvantages. Maintaining constant speed of the vehicle will be used as an example for

the on-off controller.

If the actual speed is lower than the desired speed the acceleration of the vehicle is
increased and if the actual speed is higher than the desired speed the acceleration is
decreased. By performing this check and adjustment at a fixed interval the desired speed
will be achieved. However, the speed of the vehicle will continue to be either a little bit
higher (overshooting) or lower (undershooting) than the desired speed and constantly
change between faster or slower than the desired speed. An oscillating effect is achieved
and this is not ideal. Nevertheless, on-off controllers are still used in many areas due to its

simplicity.

7.1.2 PID Controller

A Proportional Integral and Derivative (PID) controller is a more advanced controller
which removes some of the disadvantages of the on-off controller. By using a proportional,
an integral and a derivative component a PID controller can be adjusted and tuned to fit
many systems. For some systems a P, PD or PI controller gives a satisfactory result leaving

out one or two of the components.

The proportional component of the controller determines the reaction to the current error in
the system and is done by multiplying the desired value minus the actual value by a

constant, the proportional gain.

P=K X (Desired value— Actual value) , where

Control of a Simulated Vehicle 59

(Desired value — Actual value)=Current error in system=e (¢)

In order to achieve the desired effects for the system the controller should be used in the
proportional gain should be tuned. An easy way of tuning a PID controller is described
later on in this section. A large proportional gain will give the system quick response time
however may lead to undesirable behaviour like overshooting and oscillation. Also, if error
is reduced to zero it will output zero to the system, this will lead to that a P controller never
settles at the desired value [60] seen in Figure 7.2. Depending on the proportional gain it

might however settle fairly close to the desired value.

A

L — —_— —_ —_ —_ —_— e e Desired value

Controller does not settle
on the desired value

>

Time
Figure 7.2: By only using the proportional component of a PID controller the
controller will not settle at the desired value

To solve the issue with not settling at the desired value an integral component can be added
to the controller. The integral component integrates the error (summing the error over time)

and 1s multiplied to the integral gain, K.

t
I:K,.xf e(t) dt

o

The integral component can have two effects on the controller. Firstly, it can reduce the
steady-state error to zero, hence the controller will achieve its desired value. Secondly, it

can make the controller's response time faster by increasing the integral gain [60].

60 Evaluation of a Vision-based Driver Assistance System in Simulation

However, increasing the gain too much will again have downsides like overshooting and

oscillation (depicted in Figure 7.3).

Overshooting and oscillation due to too large
integral gain

— Desired value

>

Time
Figure 7.3: Overshooting and oscillation due to too
large integral gain

The final component of a PID controller is the derivative component. The derivative
component is mainly used in order to reduce the overshoot introduced by the integral
component. Furthermore, the derivative component may give the controlled system more

stability. As with the other components this also has a tunable gain, K.

de

D=K X—
“dt

Finally the PID controller will have the below equation. As it is sometimes sufficient or

desired only to use some of the three components the gain of the components being left out

can be set to zero.

t
PID=K ,X(Desired value — Actual value)+ K Xf e(t) dt+K ;X %

o

Control of a Simulated Vehicle 61

The PID controller is summarised in Figure 7.4.

=

Desired Value Error ——p | System |— oOutput —»
\—) D

Figure 7.4: PID controller

Tuning the three gains in a PID controller is essential to make the controller behave the
desired way. There are a large number of different methods developed [61]. For the
purpose of the controller developed for controlling the simulated car, the tuning is based on

[60].

1. Set K; and K, to zero and start increase K, until oscillation occurs using a likely
desired value.

2. If the system starts to oscillate, divide K, by two.

3. Increase K4 and pay attention to its effects when changing the desired value by 5%.
K, should give a dampening effect on the curve.

4. Increase K; until system starts to oscillate, then divide K; by two or three.

5. Finally it is important to check if the controller gives you satisfactory results in
terms of performance. Note that if the desired value changes, this might have a

negative effect on the controller which is optimised for a certain desired value.

7.1.3 Fuzzy Logic

Fuzzy logic was introduced by Lotfi A. Zadeh in 1965 and is a concept of processing data
that are imprecise or vague using an approximate reasoning [62]. This allows higher
reliability e.g. when used in control of various systems that are noisy and do not have

precise inputs.

Instead of modelling a system mathematically (which sometimes can be very hard or

impossible) Fuzzy logic is based on simple linguistic rules of the form IF x AND y THEN

62 Evaluation of a Vision-based Driver Assistance System in Simulation

z. The rest of this section will describe the process of creating the linguistic rules,
membership functions, inferences, fuzzification and defuzzification steps in order to design
a Fuzzy logic control system. The description is based on creating a control system for the

steering of a vehicle which is tested on the simulated vehicle in chapter 8.

The linguistic rules are based on a set of defined linguistic variables. Depicted in Figure
7.5 it can be seen that according to the values of error and error_dot (change in error) fed
back from the simulator and ImprovCV the Fuzzy logic system will take the appropriate

actions. For this specific example the linguistics variables are:
e ecrror: too_far_left, too_far_right, just_right
e error_dot: going_left, going_right, no_change

e output: steer_left, steer_right, do_nothing

Desired value _— steer_right
———» Fuzzy Logic > Simulator
B

steer_left

Error feedback and
rate of change of error (error_dot)

Figure 7.5: Fuzzy logic of a control system for vehicle steering

This example is based on the example in [63]. As shown in [63] the same method can be

applied to a whole range of other control scenarios in a similar manor.

Control of a Simulated Vehicle 63

When the linguistic variables are defined the linguistic rules can be created as follow:

[Sm—

IF too_far_left AND going_left THEN steer_right
IF just_right AND going_left THEN steer_right

IF too_far_right AND going_left THEN steer_left
IF too_far_left AND no_change THEN steer_right
IF just_right AND no_change THEN do_nothing
IF too_far_right AND no_change THEN steer_left
IF too_far_left AND going_right THEN steer_right
IF just_right AND going_right THEN steer_left

A RO T o

IF too_far_right AND going_right THEN steer_left

Furthermore, the linguistic rules defined above serve as the basis for the membership
functions, which in fact are graphs showing the relationship between the inputs. As there
are two inputs, error and error_dot, these two will have different values since the rate of
change of the error not necessary is the same as the error. An example of an error

membership function is given in Figure 7.6.

1:"1 too_far_right

-1.0 -0.5 just_right 0.5 1.0

Figure 7.6: Membership function for error input for the
steering control system

A similar membership function is created for the error_dot. However, the error_dot
membership function will have different values along the x-axis. As the steering values

used in AutoSim ranges from -1.0 to 1.0 these values are used in the above membership

64 Evaluation of a Vision-based Driver Assistance System in Simulation

function. The contribution from each of the inputs for a given value can now be calculated
using the two membership function for the inputs error and error_dot. E.g. if the error is

0.25 then the contributions will be:

e too_far left =0.0

e just_right=0.5

e too_far_right =0.5

The same is done for the error_dot, note that the x-axis values in Figure 7.7 are just

example values.

1:‘: going_right

5.0 -2.5 no_change 2.5 5.0

Figure 7.7: Membership function for the error_dot for
the steering control system

Similarly as for error the contributions from error_dot at 1.25 will be

e going_left =0.0

e no_change=0.5

e going_right=0.5

Control of a Simulated Vehicle 65

By using these values the interferences can be calculated based on the linguistic rules. For

each rule the minimal value is to be chosen.

—

IF too_far_left AND going_left THEN steer_right = 0.0 AND 0.0 — 0.0
IF just_right AND going_left THEN steer_right = 0.5 AND 0.0 - 0.0

IF too_far_right AND going_left THEN steer_left — 0.5 AND 0.0 — 0.0
IF too_far_left AND no_change THEN steer_right — 0.0 AND 0.5 = 0.0
IF just_right AND no_change THEN do_nothing — 0.5 AND 0.5 — 0.5
IF too_far_right AND no_change THEN steer_left = 0.5 AND 0.5 — 0.5
IF too_far_left AND going_right THEN steer_right — 0.0 AND 0.5 — 0.0
IF just_right AND going_right THEN steer_left = 0.5 AND 0.5 - 0.5

o %© 2 s w Db

IF too_far_right AND going_right THEN steer_left — 0.5 AND 0.5 — 0.5

Finally the interferences for all rules are evaluated and the output (what action to be taken
by the system) can be calculated. There are several methods available, but the root-sum-
square methods is recommended in [63] and hence used. When the root-sum-square
method is applied to the values from the rules the defuzzification process can start which

outputs a specific value to be used as the control value for the system.

For each output (in this case: steer_right, steer_left and no_nothing) of the current system

the root-sum-square method must be applied.

Strength for output: steer_left= Vrule3* + rule6® +rule8* +rule9® , where rule3 is the

interference for rule number 3.

An example for output steer_left

Strength for output: steer_left=1/0.0>+0.5>+0.5’+0.5°=10.75=0.866

66 Evaluation of a Vision-based Driver Assistance System in Simulation

Finally the strength for the three outputs is calculated and the defuzzification can be done.
By using the strength for each output the final action to be taken by the system can be

calculated as per below.

N
> (strength,-centre,)
i=1

Output = , where N is the number of outputs (steer_right,

N
Z strength,
i=1

steer_left and do_nothing) and centre; is the centre of that particular output from the

membership function in percentage.

Hence, the output gives the number (in percentage) of the maximum that the steering

should be adjusted to for the calculated error and error_dot.

Tuning of the Fuzzy logic can be done by changing the x-axis values of the contributions

in the membership functions for the error and error_dot, e.g. wider or narrower triangles.

7.2 Communication Between the AutoSim Client
and ImprovCV Using Shared Memory

In order to allow the two programs AutoSim and ImprovCV communicate with each other
a shared memory approach was used. The shared memory allows different processes to
access the same memory which is not the case in traditional programming. Usually the
operating system assigns each process with its own memory space where the process can

read and write.

In addition to shared memory there are two other possibilities of sharing information

between processes without going through a network API.
e Read and write the shared information to and from a file.
e Share information that is located in the kernel of the operating system.

As reading and writing to file would be far too slow for sharing the data between AutoSim
and ImprovCV and shared memory is regarded the fastest mechanism for communication

between processes, the shared memory approach was chosen. For the shared memory

Control of a Simulated Vehicle 67

communication the Boost C++ library's interprocess features were used. The Boost library
gives programmers a relatively easy approach to use shared memory without going into the
low-level details of it. The way this works is that a memory region in RAM is allocated
according to the size specified and then different processes can access this memory region
by a given name. The different processes can also be assigned with different accesses

depending on their role in the system.

Firstly, a user program for AutoSim was written. This user program extracts image from
the simulator and stores the image as RGB (Red Green Blue) values into the shared
memory. ImprovCV on the other hand is therefore able to read the image data from the
same shared memory and use the image. However, one image will not make any sense and
images have to be continuously written to shared memory from AutoSim. ImprovCV on
the other hand has to similarly read the images continuously into a sequence which is
usable to control a vehicle. As writing and reading at the same time to the same area of the
shared memory will give unwanted results a method of using several image buffers was
used. This seemed to be the best way, also in terms of performance and avoid getting
choppy video sequences in ImprovCV. Nevertheless, doing lane detection in ImprovCV
requires a lot of CPU time and the same for AutoSim. Hence, the two systems might be
slow when communicating together, depending on the processing power of the computer
running the two systems. Figure 7.8 shows how the image buffers in shared memory were
implemented. A large chunk of shared memory was allocated to fit two images and a
header containing which buffer currently being written to. This means that AutoSim client
can write to buffer 1 while ImprovCV is reading from buffer 2. The header contains a
count on number of images written. Experiments were made with using more buffers
without any noticeable performance boost. In ImprovCV the reading from shared memory

feature was implemented in the new filter FindOuterLanes.

68 Evaluation of a Vision-based Driver Assistance System in Simulation

Header

Buffer 1

Buffer 2

Figure 7.8:
Shared memory
with two buffers

Getting images from AutoSim to ImprovCV is one of the tasks related to shared memory.
The other one is to feed information back to AutoSim in order for the simulated vehicle to
keep inside its lane based on ImprovCV's lane detection. This is simply done by writing a
floating-point number to another shared memory that another AutoSim user program can

read from and hence make the necessary steering to stay in the correct lane.

8 Experiments and Results

Based on the control methods and lane detection described previously a series of
experiments were conducted on autonomous driving using ImprovCV and AutoSim. Two
different scenarios were created and each of the scenarios was tested with the four different
control systems. Also, two different physics engines were used for the experiments. This

chapter will give describe the scenarios and the results for each scenario in detail.

8.1 The Test Scenarios

Two different test scenarios were created in order to test the lane detection in ImprovCV

and the control of the simulated vehicle in AutoSim.

1. Scenario 1 is a simple straight road where the car started slightly angled on the
outer lane marking of the road. This scenario is created to be a good test scenario to
tune the different controllers of the car. Also this scenario and the angle of the car
will approximately reflect a normal scenario when a car is changing lane on a
multi-lane highway. The objective of the simulated car is to stabilise itself in the
middle of the lane as fast as possible without crossing over in the other lane and

with minimum steering (oscillation).

70 Evaluation of a Vision-based Driver Assistance System in Simulation

Figure 8.1: Scenario 1 overview

2. Scenario 2 was created to test the simulated car's ability to drive autonomously for
a long period of time on a turning road. A double S-shaped road was created and

the vehicle was initially placed in the middle of the left lane of the road.

o

Figure 8.2: Scenario 2 overview (not exact representation of road)

8.2 The Controllers for Steering the Vehicle

For both the scenarios mentioned above four different controllers were used in order to see
which one that was most robust and suitable for the steering of the simulated car. For all

the scenarios the vehicle maintained constant speed after an initial acceleration phase. The

below controllers were used

e On-off controller

Experiments and Results 71

e Proportional controller (P)
e Proportional Integral and Derivative Controller (PID)
e Fuzzy logic controller

As tuning of the controllers are essential in order to achieve the desired behaviour the first
test scenario was mainly used for this purpose. This scenario is especially suited as the
road is straight and the controller should stabilise itself as quickly as possible. After the
tuning phase in this scenario the same controllers were tested on the scenario 2. However it
turned out that tuning the controller for just scenario 1 did not give good results in scenario

2. Hence both scenarios were used for tuning.

8.3 Limitations

There are a few limitations related to the two systems AutoSim and ImprovCV that are
important to keep in mind. Firstly, the lane detection algorithm used in ImprovCV only
detects straight lane markings, hence it can not be used on a too curvy road. Secondly,
running the two programs AutoSim and ImprovCV on the same computer is very
demanding in terms of processing power. Although AutoSim can be run on two different
computers (AutoSim server and client on separate computers) this will not result in
noticeable higher performance. The graphics for AutoSim requires a lot of processing
power and as the graphics are done on the AutoSim client which must be on the same
computer as ImprovCV, the performance becomes an issue. Solutions to this problem are

discussed in chapter 9.

The two limitations mentioned above results in that the roads can not be too curvy and that
the vehicle itself must drive fairly slowly. A slow driving vehicle gives the system time to

make the appropriate calculations related to the lane detection.

72 Evaluation of a Vision-based Driver Assistance System in Simulation

The simulations and experiments were carried out on a laptop computer with the following

specifications:
e Dell Inspiron 8600
e Intel Pentium M Processor 1.7 GHz
e 1GB of RAM
e ATI Mobility Radeon 9600 graphics card, 128 MB RAM

e Windows XP Professional Edition

8.4 Scenario 1 Results

Scenario 1 is especially suited to tune the controllers in addition to the real-world nature of
the scenario. The four controllers were tuned for this scenario and the exact same
controllers with the same parameters are used throughout the rest of the experiments.
However, before the controllers were finally tuned, scenario 2 test were carried out and the
controllers were further tuned for that scenario. The final tuning is based on getting
acceptable results for both scenarios. As seen in Graph 8.1 oscillations and overshooting
occur, but this is so the controllers also would manage the scenario 2 experiments in a

satisfactory manor.

From Graph 8.1 the paths driven by the four controllers are plotted. As 118 on the x-axis is
exactly on the centre line between the lanes it can be seen that all four controllers managed
to stay inside the correct lane. As expected the on-off controller will keep oscillating
forever and would not be very suitable for a steering control system in a vehicle. Too much
oscillation will reduce the comfort of the passengers and increase the chance of motion
sickness. A controller that stabilise fast with minimum amount of turning is desired. From
Graph 8.1 the three other controllers will stabilise themselves eventually. The Fuzzy logic
controller is eventually the most stable when z=-50 is reached, however it does have to
make many correction. From Graph 8.1 it can also be seen that the use of a PID controller

instead of P controller improved the path driven by reducing the overshooting.

Experiments and Results 73

-50

-70

-90

-110

-130

Z-axis in 3D space

-150

-170

-190

114 114.5 115 115.5 116 116.5 117 117.5 118

X-axis in 3D space

Graph 8.1: Comparison of the different controllers

An image sequence of scenario 1 using the Fuzzy logic

8.3.
| 1

5

== On-off controller

" P controller

— PID controller

B Fuzzy logic controller

controller can be seen in Figure

Figure 8.3 Image sequence of the start of scenario 1 using Fuzzy logic controller. The top
left images is the first frame and the bottom right is the last frame.

74 Evaluation of a Vision-based Driver Assistance System in Simulation

8.5 Scenario 2 Results

Similarly with the previous scenario the same four controllers were used in this scenario in
order let the vehicle drive autonomously on the double S-shaped road. The vehicle position
for each controller was saved in order to compare the paths each controller drove. Also to
compare the paths driven with the actual road, the curvature of the road itself was saved.

The paths driven and the actual road curvature are shown in Graph 8.2.

500
400
300
(0]
(&)
S
g m
Q200 Actual road
c == On-off controller
2 " P controller
,:,P — PID controller
100 == Fuzzy logic controller
0
-100

100 105 110 115 120 125 130 135

X-axis in 3D space

Graph 8.2: Paths driven by the simulated vehicle with different controllers compared
to the real curvature of the road

Graph 8.2 clearly shows that the on-off controller was not able to stay on the road. And
when the simulated vehicle first drove off the road it is random where it will go as the

image input to the image processing does not contain lane markings. Furthermore, the

Experiments and Results 75

three other controllers seem to behave quite similarly and they all managed to stay in the
correct lane and hence complete the road in a satisfactory manor. However, by zooming
into an area of the road where there was a turn some differences in these three controllers

can be seen. This is depicted in Graph 8.3.

100
80

60

I Actual road

1" p controller

— PID controller

== Fuzzy logic controller

Z-axis in 3D space

-80

-100
125 126 127 128 129 130 131 132 133

X-axis in 3D space

Graph 8.3: Zoomed in on a turn to see precisely which controller controlled the vehicle
using the most optimal path

Graph 8.3 shows that the Fuzzy logic controller drives the most optimal path of these three
controllers. However the difference between the P, PID and Fuzzy logic controller are

marginal.

76 Evaluation of a Vision-based Driver Assistance System in Simulation

8.6 Replacing the Physics Engine

As described in [26] there are differences in how physics engines behave. To verify the
results from the above sections the same experiments are carried out with a different
physics engine. The original physics engine in AutoSim, Bullet, was replaced with Newton

Game Dynamics.

By running the same test cases again for the Newton physics engine different behaviour of
the vehicle was experienced. Graph 8.4 shows the behaviour of the simulated vehicles in
scenario 1. All of the controllers failed expect the Fuzzy logic controller. The reason
behind this high failure rate is probably related to different interpretations between the
physics engines. The simulations clearly showed that the acceleration of two vehicles using
Bullet and Newton where quite different. Similar difference might be the case for the
steering and this is probably the reason for the high failure rate. Also, when running the
experiments for the Bullet physics engine in scenario 1 it was seen that ImprovCV had
problems with detecting the correct lane marking and was close to fail as well (Figure 8.4).
However, for the Bullet physics engine ImprovCV recovered and detected the correct lane
markings just in time, this was not the case for the Newton physics engine and three of four

controllers failed.

Figure 8.4 Impov V detects incorrect lane markings when
vehicle is turning too quickly

Experiments and Results 77

-140
-145
-150
-155
-160
165 == On-off controller
111 P controller
— PID controller
== Fuzzy logic controller
-170
113 114 115 116 117 118 119 120 121 122 123

Graph 8.4: Comparison of controllers for scenario 1 using Newton physics engine

Although the failure rate for scenario 1 was high, the results for scenario 2 proved to be
consistent with the results from the Bullet physics engine. All controllers finished the

scenario except the on-off controller.

As with the Bullet physics engine the Fuzzy logic controller also proved to be the best for
the Newton physics engine. Graph 8.5 compares the path driven by the Fuzzy logic
controller for both Bullet and Newton physics engine. As seen, the paths only differ

slightly.

78 Evaluation of a Vision-based Driver Assistance System in Simulation

500

400

300

200 — Bullet — Fuzzy logic

controller
= Newton — Fuzzy logic
controller

Z-axis in 3D space

100

-100
100 105 110 115 120 125 130 135

X-axis in 3D space

Graph 8.5: Comparison of the Fuzzy logic controller using Bullet and Newton physics
engine

8.7 Robustness of the System

When replacing the physics engine used by AutoSim different behaviours were
experienced. Scenario 1 appeared to be more challenging with the Newton physics engine
and hence some of the controllers failed to complete scenario 1. In terms of scenario 2
similar results were gathered from using Newton as with Bullet and again the Fuzzy logic

controller seemed to be the most suited controller.

As the Fuzzy logic controller managed to both complete scenario 1 and 2 with both Bullet
and Newton verifies the robustness of the controller and its ability to behave satisfactory in
different environments. By verifying that the controller works for two different physics
engines this also enhance the chance of it would work in a real physics environment on a

real vehicle.

Tuning one of the controllers for a given scenario proved to be fairly easy with respect of
getting satisfactory results. However, tuning a controller in order for it to work with the
two physic engines and different scenarios proved to be more challenging. Tuning e.g. the
PID controller to be perfect for scenario 1 did not really work too well for scenario 2 and

hence a balance in the tuning had to be made in order to complete both scenarios for a

Experiments and Results 79

given controller. Furthermore, replacing the physics engine showed that tuning a controller

for one physic engine does not necessary mean it will work for another physics engine.

If the vehicle makes to sudden and sharp turn in the lane this will make the virtual camera
attached in front of the vehicle to loose the sight of one of the outer lane markings (seen in
Figure 8.5). Loosing the sight of one of the lane markings will make the vehicle drive in a
random manor and probably off the road. Hence, if a large correction is received from
ImprovCV to AutoSim the vehicle must adjust the steering gently. Changing the virtual
camera position of the vehicle and the camera's height and width may improve this. Also,
parameters for the Clip Filter in the lane detection algorithm can be adjusted and possibly
improve the performance and make the system more robust. The comparison of the output
from ImprovCV and the output of the four controllers shows that although a large
correction is needed the vehicle is only steering gently (Graph 8.6).

File Simulation

Je b -

o kerrainl 3
o kerrainld
e kerrainls
- terrainlé
o kerrainl?
- terrainls
o kerrainl®
e kerrainz0
- terrainzl
o kerrainZ2

- terrainz3 -
Kl | »

—Lser Progri

Rabot hame:

I\mprezal

User Program:
IWriteTDShardeemUry‘dll Change

— Metwork.

Server Ip Address:

. Option:
] ’7 Switch View | | FE= [= O = = |

Figure 8.5 The vehicle making a too sharp turn and looses track of lane marking

The lane detection algorithm is already tested on real video recorded from a real car in a

real traffic scenario. These tests show that it works also under non-ideal conditions [31].

80 Evaluation of a Vision-based Driver Assistance System in Simulation

For the simulations and experiments conducted the images used for the image processing
were perfect in terms of noise, quality of lane markings and weather. In a real scenario this
is not the case. Future experiments with different weather conditions and with added noise
to the image could help with verifying the robustness of the lane detection algorithm.
Hence implementing these features (change in weather and noise) in the simulator would

be useful.

051
\ —ImprovCV . o
output _ mprovCV output
== On-off controller P controller
0 output output
-0.5
-1
1.5 15
1 \ 1
05 05
. \ — ImprovGV output . \ — ImprovCV output
\ - PLIJItD ctontroller \ =7y logic
oup controller output
0 - 0 P
-0.5 -0.5

Graph 8.6: Comparison of the controller outputs (top left: on-off, top right: P, bottom left:
PID, bottom right: Fuzzy logic)

From Graph 8.6 it can be seen that the controllers responded (thick line) in a gentle way to
the output from ImprovCV. This way, the vehicle will not make a too sharp turn and avoid
loosing track of one of the outer lane markings. The controller output in Graph 8.6 is taken

from scenario 1.

9 Conclusion and Future Work

My involvement in this project has been two-sided. Firstly, I was assisting in the initial
development of the automotive simulation system AutoSim. Although AutoSim is still in
its infancy and will be gradually improved in the years to come the driving simulator is
already able to simulate driving behaviour and test driver assistance systems. This relates
to the second part of my project where an image-based driver assistance system was tested
in the simulator. The driver assistance system was based on lane detection using the image
processing framework ImprovCV [31] already developed at the University of Western
Australia. Nevertheless, modifications and improvements to ImprovCV had to be made in
order to achieve the desired behaviour when using the lane detection to autonomously

control a simulated vehicle in the simulator.

Creating the content, both in terms of physics and graphics models, for AutoSim proved to
be two major tasks. The physics in a driving simulator are essential in order to achieve a
close to real world behaviour of vehicles and objects making up the scenario. An already
developed physics engine, Bullet, was used for this together with the Physics Abstraction
Layer (PAL) [44]. PAL allows the simulator to replace its physics engine to any of the
engines that are supported by PAL [56] with minimal effort. This was demonstrated during
my experiments when the Bullet physics engine was replaced with Newton Game
Dynamics. In terms of the physics for the simulator there are still issues that need to be

solved.

At the current state in the development of AutoSim the complexity and demand in
processing power keeps increasing as new features are added. To be able to run the
simulator on a fairly normal workstation, optimisations in all aspects of the simulator must

be made. Complex graphics models versus simpler models proved to make a huge

82 Evaluation of a Vision-based Driver Assistance System in Simulation

difference in terms of performance. Hence, simpler models, with fewer polygons, are
preferred and the realistic look of the models should be provided using other methods, e.g.

texturing and normal maps.

As mentioned the final part of my project consisted of demonstrating autonomous driving
of a vehicle in AutoSim based on lane detection from ImprovCV. Four different controllers
were implemented in order to find the most robust one. The four controllers were; a simple
on-off controller, P controller, PID controller and a Fuzzy logic controller. Furthermore,
the four controllers were tested in two different scenarios and with two different physics
engines. Physics engines are known to behave different depending on their implementation
and simplifications done and this was further showed in the experiments where different
behaviour was experienced when the physics engine was replaced. The two scenarios
created for the experiments were; (1) straight road where the vehicle started on the side of
the road slightly angled and should straighten up, (2) a double-S shaped road where the
vehicle had to make several turns and corrections in order to complete the scenario. Tuning
the different controllers to behave optimal in both the scenarios proved to be challenging.
Optimal tuning for one scenario was not optimal for the other one. Some of the reasons for
this are limitations discussed later. Nevertheless, my implementation of the Fuzzy logic
controller managed to complete the two scenarios using different physics engines in a

satisfactory way. The other controllers failed one or more of the challenges.

Running AutoSim and ImprovCV one the same computer whether or not you run the
AutoSim server on a separate computer requires a powerful computer. If the simulated
vehicle was set to drive too fast, the image processing in ImprovCV would fall behind and
the vehicle would eventually drive off the road due to inexact information from ImprovCV.
My solution during the experiments were to drive the vehicle fairly slow, this allowed the
two systems to run in a satisfactory way. Utilising the Graphics Processing Unit (GPU) for
the calculations related to the lane detection in ImprovCV, e.g. using CUDA [64], could
speed up the systems. However the graphics in AutoSim are probably already using much
of the available GPU resources. Faster computers can always be purchased and used,
however the ideal would be to implement the image processing system on an embedded

system for deployment in a real car.

The paths driven using the different controllers showed that none of the controllers drove

Conclusion and Future Work 83

absolutely in the centre of the lane and behaved perfect, especially not for both scenarios
and physics engines. Hence, further tuning and improvements of the controllers can be
made. Furthermore, turning the vehicle too much inside the correct lane will make the
camera loose sight of one of the outer lane markings and the vehicle would drive off the
road. Further tuning of the filter parameters inside ImprovCV and changing the virtual
camera view on the vehicle might solve this issue to some extent. Also the current lane
detection algorithm in ImprovCV only detects straight lines and a too curvy road would not
work with the current system. Due to the performance issue mentioned above ImprovCV
sometimes loose track of the lane markings when the vehicle is either driving too fast or
making to sudden turns. This feeds incorrect data back to the simulator and the vehicle
might end up making wrong steering corrections. Implementing a filter to filter away the

incorrect data would probably make the overall system more robust.

An initial demonstration of autonomous driving is made and there are several future
scenarios and driver assistance systems that can be demonstrated and tested using AutoSim
and ImprovCV. Adaptive cruise control, traffic light and sign detection and vehicle
detection are just some examples. And as traffic lights, traffic signs and Position Sensor
Devices (PSD) already are available and implemented these concepts can be demonstrated
in the close future. In terms of the simulator, changes in the weather conditions (like
sunshine and fog) and day/night would be useful to implement as driver assistance systems

need to work in all conditions to be useful in real vehicles.

84

Evaluation of a Vision-based Driver Assistance System in Simulation

Abbreviations

ABS
ACC
Al

API
BLIS
CIIPS
COLLADA
CUDA
DARPA
DLL
ELROB
ESP
GPU
GUI
HIDS
HLA
NASA
ODE
PAL
PID
PSD
RARS
RFID
RPM
TORCS
UWA
XML

Anti-lock Braking System
Adaptive Cruise Control

Artificial Intelligence

Application Programming Interface

Blind Spot Information System

Centre for Intelligent Information Processing Systems

COLLAborative Design Activity

Compute Unified Device Architecture
Defense Advanced Research Projects Agency
Dynamic Linked Library

European Land-Robot Trial

Electronic Stability Program

Graphics Processing Unit

Graphical User Interface

Honda Intelligent Driver Support

High Level Architecture

National Aeronautics and Space Administration
Open Dynamics Engine

Physics Abstraction Layer

Proportional Integral Derivative

Position Sensor Device

Robot Auto Racing Simulator

Radio Frequency Identification

Revolutions Per Minute

The Open Racing Championship Simulator
University of Western Australia

Extensible Markup Language

References

[1] D.J. Verburg, A. Knaap, J. Ploeg, “VEHIL: Developing and Testing Intelligent
Vehicles,” Intelligent Vehicle Symp., IEEE, June 2002, pp. 537-544

[2] Margie Peden et al., World Report on Road Traffic Injury Prevention — Summary,
World Health Organization, 2005

[3] P. Backlund et al., “Games and Traffic Safety — an Experimental Study in a Game-
Based Simulation Environment,” 11th Int'l Conf. Information Visualization (IV'07), IEEE,

July 2007

[4] D. Yang et al., “Development of Anti-Lock Brake System in Virtual Environment,”
Int'l Conf. Virtual Environment, Human-Computer Interfaces and Measurement Systems

(VECIMS 2004), IEEE, July 2004, pp. 131-135

[5] M. Short, M.J. Pont, “Hardware in the Loop Simulation of Embedded Automotive

Control Systems,” Proc. 8th Int'l Conf. Intelligent Transportation Systems, IEEE, Sept.
2005, pp. 226-231

[6] S. Kubota, Y. Okamoto, H. Oda, “Safety Driving Support System Using RFID for
Prevention Pedestrian Involved Accidents,” Proc. Int'l Conf. ITS Telecommunications,

June 2006, pp. 226-229

[7]1 0. Ozgiiner, C. Stiller, K. Redmill, “Systems for Safety and Autonomous Behaviour in
Cars: The DARPA Grand Challenge Experience,” Proc. IEEE, vol. 95, no. 2, Feb. 2007,
pp. 397-412

[8] J. Steven et al., “Vision Based Vehicle Localization for Autonomous Navigation,”
Proc. Int'l Symp. Computational Intelligence Robotics Automation, IEEE, June 2007, pp.
528-533

[9] M. Maurer, E.D. Dickmanns, “A System Architecture for Autonomous Visual Road
Vehicle Guidance,” Conf. Intelligent Transportation System, IEEE, Nov. 1997, pp.
578-583

88 Evaluation of a Vision-based Driver Assistance System in Simulation

[10] The University of lowa, “The National Advanced Driving Simulator,” Information

Brochure

[11] K-Y. Tu, T-C. Wu, T-T. Lee, “A Study of Stewart Platform Specifications for Motion
Cueing Systems,” Int'l Conf. Systems, Man and Cybernetics, IEEE, 2004, pp. 3950-3955

[12] Technische Universitidt Miinchen, “The FTM driving Simulator”

http://www.fahrzeugtechnik-muenchen.de/content/view/11/64/lang,en/ [accessed May

2008]

[13] National Advanced Driving Simulator (NADS), http://www.nads-sc.uiowa.edu/
[accessed May 2008]

[14] U. Franke, et al., “The Daimler-Benz Steering Assistant — a Spin-off from

Autonomous Driving,”, Proc. Intelligent Vehicles Symp., 1994, pp. 120-124
[15] DARPA, “Participants Conference Presentation,” May 2006

[16] S. Thrun et al., “Stanley: The Robot that Won the DARPA Grand Challenge,” Journal
of Field Robotics, 2006, pp. 661-692

[17] S. Thrun, “Winning the DARPA Grand Challenge: A Robot Race through the Mojave
Desert,” 21st IEEE Int'l. Conf. Automated Software Engineering (ASE'06), 2006

[18] D. Zeng, “Self-Driving Cars and the Urban Challenge,” IEEE Intelligent Systems,
2008, pp. 66-68

[19] E.D. Dickmanns et al., “The Seeing Passenger Car 'VaMoR-P',” Proc. Intelligent
Vehicles, 1994, pp. 68-73

[20] Mars Opportunity Rover,
http://marsrovers.jpl.nasa.gov/gallery/artwork/hires/rover3.jpg [accessed May 2008]

[21] E. Tunstel, “Validation of Autonomous Rover Functionality for Planetary

Environments,” Proc. World Automation Congress, 2005, pp. 447-452

[22] SubSim Submarine Simulator, http://robotics.ee.uwa.edu.au/auv/subsim.html

[accessed May 2008]

89

[23] T. Bielohlawek, “SubSim - An Autonomous Underwater Vehicle Simulation
System ,” thesis, School Electrical, Electronic and Computer Eng., Univ. of Western

Australia, 2006
[24] Delta3D Game/Simulation Framework, http://www.delta3d.org/ [accessed May 2008]
[25] TORCS Racing Simulator, http://torcs.sourceforge.net/ [accessed May 2008]

[26] W.D. Jones, “Keeping Cars from Crashing,” IEEE Spectrum, vol. 38, no. 9, Sept.
2001, pp. 40-45

[27] S. Ishida, J.E. Gayko, “Development, evaluation and introduction of a lane keeping

assistance system,” [EEE Intelligent Vehicles Symp., 2004, pp. 943-944

[28] Road-Ready Night Vision at Last,
http://www.wired.com/science/discoveries/news/2006/02/70182 [accessed May 2008]

[29] L.-P. Becker et al., Advanced Microsystems for Automotive Applications, Springer,
20055 pp' 71_84

[30] S. Kubota, Y. Okamoto, H. Oda, “Safety Driving Support System Using RFID for
Prevention of Pedestrian-involved Accidents,” Proc. 6th Int'l Conf. ITS

Telecommunications, June 2006, pp. 226-229

[31] S.A. Hawe, “A Component-Based Image Processing Framework for Automotive
Vision Applications,” diplomarbeit, School Electrical, Electronic and Computer Eng.,

Univ. of Western Australia, 2008

[32] T. Sommer, “Physics for a 3D Driving Simulator,” thesis, School Electrical,

Electronic and Computer Eng., Univ. of Western Australia, 2008
[33] Irrlicht Graphics Engine, http://irrlicht.sourceforge.net/ [accessed May 2008]

[34] A. Ettlin, P. Buchler, H. Bleuler, “A Simulation Environment for Robot Motion
Planning,” Proc. 5th Int'l Workshop Robot Motion and Control, June 2005, pp. 277-282

[35] OpenStreetMap, http://www.openstreetmap.org/ [accessed May 2008]

90 Evaluation of a Vision-based Driver Assistance System in Simulation

[36] Java OpenStreetMap (JOSM), http://wiki.openstreetmap.org/index.php/JOSM
[accessed May 2008]

[37] TinyXML, http://sourceforge.net/projects/tinyxml/ [accessed May 2008]

[38] Blender 3D modelling program, http://www.blender.org/ [accessed May 2008]

[39] J.G. Brand, “Graphics for a 3D Driving Simulator,” thesis, School Electrical,

Electronic and Computer Eng., Univ. of Western Australia, 2008

[40] Phong Shading, http://en.wikipedia.org/wiki/Phong_shading [accessed May 2008]
[41] Bullet Physics Library, http://www.bulletphysics.com [accessed May 2008]

[42] Newton Game Dynamics, http://www.newtondynamics.com/ [accessed May 2008]

[43] Physics Abstraction Layer (PAL), http://www.adrianboeing.com/pal/ [accessed May
2008]

[44] A. Boeing, T. Bréaunl, “Evaluation of Real-Time Physics Simulation Systems,” Proc.
Sth Int'l Conf. Comp. Graphics Interactive Techniques Australia and Southeast Asia, 2007,
pp- 281-288

[45] B. Karlsson, et al., CarSim — A Suspension System Model, TNM032 Modelling Project

, Dept. of Science and Technology , Linképing University , 2005

[46] T. Zuvich, “Vehicle Dynamics for Racing Games,”
http://www.gamasutra.com/features/gdcarchive/2000/zuvich.doc [accessed May 2008]

[47] M Monster, “Car Physics for Games,” http://immi.inesc-id.pt/~brar/avt2006/projecto/
Car%?20Physics.htm, [accessed May 2008], 2003

[48] C. Callin et al., ERGO — fysikk 3FY, Aschehoug, 1998 [Norwegian physics book]

[49] C. Hecker, “Rigid Body Dynamics,” Game Developer Magazine, Oct. 1996 — June

1997 [series of four articles]

[50] Yaw, pitch and roll described, http://en.wikipedia.org/wiki/Flight_dynamics [accessed
May 2008]

91

[51] Racer Simulator, “Pacejka's Magic Formula,”

http://www.racer.nl/reference/pacejka.htm [accessed May 2008], 2008

[52] M. Abdulrahim, “On the Dynamics of Automobile Drifting,” Univ. of Florida,

Society of Automotive Engineers, Inc., 2006

[53] B. Beckman, “The Physics of Racing,” http://phors.locost7.info/contents.htm
[accessed May 2008], 2008

[54] E. Coumans, K. Victor, “COLLADA Physics,” Proc. 12th Int'l. Conf. 3D Web
Technology (Web3D '07), April 2007, pp. 101-104

[55] Scythe Physics Editor, http://www.physicseditor.com/ [accessed May 2008]

[56] Physics Engines supported by PAL, http://www.adrianboeing.com/pal/ [accessed May
2008]

[57] A. Watanabe, M. Nishida, “Lane Detection for a Steering Assistance System,” Proc.
Intelligent Vehicle Symp., 2005, pp. 159-164

[58] C. D'Cruz, J.J. Zou, “Lane Detection for Driver Assistance and Intelligent Vehicle
Applications,” Int'l. Symp. Communication and Information Technologies (ISCIT 2007),
2007, pp. 1291-1296

[59] C-C. Wang, et al., “Driver Assistance System for Lane Detection and Vehicle
Recognition with Night Vision,” Proc. IEEE Intelligent Robots and Systems Conf., 2006,
pp- 3530-3535

[60] T. Braunl, Embedded Robotics: Mobile Robot Design and Applications with
Embedded Systems, Springer, 2006

[61] G.J. Silva, A. Datta, S.P. Bhattacharyya, “On the stability and controller robustness of
some popular PID tuning rules,” IEEE Transactions Automatic Control, 2003, vol. 48, no.

9, pp. 1638-1641

[62] L.A. Zadeh, “Fuzzy Logic, Neural Networks and Soft Computing,” Communication
of the ACM, vol. 37, no. 3, March 1994

92 Evaluation of a Vision-based Driver Assistance System in Simulation

[63] T. Braunl, “Fuzzy Logic,” lecture notes Fault Tolerant Computer Systems, Univ. of

Western Australia, 2003

[64] NVIDIA, “NVIDIA CUDA Programming Guide Version 1.1,” 2007,
http://www.nvidia.com/object/cuda_develop.html [accessed May 2008]

A Appendix

A.1 Autonomous Driving

This short tutorial will demonstrate how to set up both AutoSim and ImprovCV in order to

drive a vehicle in AutoSim autonomously based on the lane detection in ImprovCV.

1. Start AutoSim client and server. If you want to use the lane detection in ImprovCV
and make a vehicle in Autosim drive according to the detected line markings,

specify the user program FollowRoad.dll in the world file to its appropriate robot.

2. Choose the user program called WriteToSharedMemory.dll from the AutoSim
client. This user program writes images to shared memory in order for ImprovCV

to read the images from AutoSim.
3. Run both the AutoSim server and client.
4. Start ImprovCV.

5. Using the shared memory images from AutoSim as input into ImprovCV can be

done using two different methods.
(1) From the file menu in ImprovCV choose Load From Shared Memory.

(2) Open the XML file containing the filters you want to use, e.g. lane2SM.xml
from the file menu's Load. Then click on source and a Choose connection box will

appear on the top of the window. From the box choose Connect to Shared Memory.

94

Evaluation of a Vision-based Driver Assistance System in Simulation

A.2 Preparing a Car Model for the Simulator

From you have a nice looking model to you can use it in the simulation systems several

steps must be carried out. Scaling, detaching the wheels and rotations are some of the

steps. Below, a more thorough explanation is given. The steps below are all done in the

Blender 3D modelling program.

The model is imported into Blender according to the model's file format.
Furthermore, the model needs to be scaled to the correct size. One unit in Blender

is one metre in the simulation system.

To give the car the correct orientation the car must be rotated. Because of the
differences in the coordinate systems and differences in how the export plugins
interpret the coordinate system you should at this stage choose what format you
want the model exported in. If you are going to export it as a .3ds model the car
should be rotated so it is pointing in the positive Y-direction (according to
Blender's coordinate system). However, if the model is exported as .obj, rotate the
car so it points in the negative Y-direction. This is because the obj-exporter

interprets the coordinate system differently.

Figure A.1: Left picture: Correct rotation for .3ds model. Right picture: Correct rotation
for .obj model

3.

In order to get the position of the car correct in the simulator the car must be moved
so that the coordinate system's origin is centred exactly in the centre of the car. It is
important to get this as accurate as possible as this will simplify many of the later

steps, e.g. placing lights and wheels.

4. The body of the car is selected and exported in the desired format. Name the model

95

as model with the appropriate extension. The folder structure is explained in Figure

A2.

5. Delete the body of the car from the scene together with three of the wheels, leaving
only one wheel left in the scene. Move this wheel to the origin like with the car.
Export the wheel. The name for the wheel should also be model, but saved in a

different folder (Figure A.2).

6. Rotate the wheel to create the wheel for the other side of the car. Make sure it is

centred in the origin before you export this wheel as well.

Sl] cainaro |
=l |) chassis
= [LoDn

) model
= |) wheels

= |) back_left
= [LoDD

1) model
+ |) back_right
+ |) front_left
+ |) Front_right
Figure A.2: Folder structure for a
car

All the parts of the car are now ready for the simulation system, but the wheels need to be
attached to the body of the car again inside the simulator. Also front, brake and turning
lights must be attached to the car. This information is stored in the robot file, for example
camaro.xml. As of May 2008 there is no easy and quick way of doing this and the only
solution is to measure X, Y and Z distances in Blender and manually type the numbers into
the robot file. Moreover, the numbers must probably be finely adjusted from the initial

position because the car was not exactly centred on the coordinate system's origin.

96 Evaluation of a Vision-based Driver Assistance System in Simulation

Below are some of the important sections of a car robot file shown.

<?xml version = "1.0"?>
<Robot name = "impreza">
<Parts>

<Box name="chassis">
<Position x="0.0" y="0.0" z="0.0" />
<Size x="1.994999" y="1.265000" z="4.760004" />
<Mass value="1400.0" />
<CenterOfMass x="0.000000" y="0.376204" z="-0.764765" />
<Model path="models/impreza/chassis" type="3ds" />
</Box>
</Parts>
<Devices>
<WheelDevice name="front right">
<Part name="chassis" />
<DriveActuator name="drive chassis" />
<Position x="0.80" y="-0.45" 2z="1.35" />
<Radius value="0.36"/>
<Width value="0.245"/>
<SuspensionRestLength value="0.1"/>
<SuspensionKs value="200"/>
<SuspensionKd value="23"/>
<Powered value="true"/>
<Steering value="true"/>
<Brakes value="false"/>
<Model path="models/impreza/wheels/front right" type="3ds"/>
</WheelDevice>

<VelocimeterSensor name="veloO" >
<Part name="chassis" />
<!-- Axis along which the speed is measured -->
<Axis x="0.0" y="0.0" z="1.0" />
</VelocimeterSensor>
<LightDevice name="brake light rightl">
<Part name="chassis" />
<Texture file="media/particles/brakelights/red.bmp" />
<Intensity value="1.0" />
<Position x="0.72" y="0.0" z="-2.35" />
<Size width="0.5" height="0.5" />
</LightDevice>
</Robot>

97

A.3 Creating a World

This section will briefly describe the steps needed to create a new world. The first thing to
consider is whether you want to create roads and streets based on actual streets from
OpenStreetMap or if you want to create you own streets. Remember that the larger area

you use and the more streets in the area the slower the simulation system will run.

1. There are two preferred ways of getting the streets from OpenStreetMap. The first
options is to type in the below URL into a web browser and use the desired latitude

and longitude values.

http://www.openstreetmap.org/api/0.5/map?bbox=-0.5,51.3,-0.4,51.4

Where the bounding box (bbox) is defined this way; west edge, south edge, east
edge, north edge. Depending on the size of your chosen area you will finally be
asked to save a file, which is your map file in XML format. Coordinates south of

the equator and west of Greenwich are negative.

The other option is to use a feature in the Java OpenStreetMap program (JOSM) for

downloading the map.

Regardless of which method used you get an XML file containing the streets

which can be opened in e.g. JOSM.

2. When the map file is downloaded it is a good idea to clean up the map by removing
unwanted streets, this will speed up the simulation system. The clean-up process
can easily be done with JOSM. Also, you can define different areas such as forest
and residential areas. This will place trees and residential buildings in those areas

respectively.

3. The next step is to place buildings next to the street. This is done using the
OsmManipulator program. The OsmManipulator simply places buildings and

objects next to the streets according to what is specified in the map file.

4. As the OsmManipulator only helps you place a lot of objects, the map needs to be

98 Evaluation of a Vision-based Driver Assistance System in Simulation

edited after the original map is manipulated. One problem is that some houses are

placed in the middle of intersections. These need to be removed.

Another tutorial on world creation and further details can be found in: J.G. Brand,
“Graphics for a 3D Driving Simulator,” thesis, School Electrical, Electronic and

Computer Eng., Univ. of Western Australia, 2008

	1 Introduction
	1.1 Background
	1.2 Project Objectives
	1.3 Thesis Structure

	2 Literature Survey
	2.1 Driving Simulators
	2.2 Autonomous Vehicles
	2.2.1 DARPA Grand Challenge
	2.2.2 EUREKA Prometheus Project
	2.2.3 Space Robots

	2.3 Available Subsystems
	2.3.1 SubSim and EyeSim
	2.3.2 Delta3D
	2.3.3 The Open Racing Car Simulator (TORCS)

	2.4 Driver Assistance Systems

	3 AutoSim - The Automotive Simulation System
	3.1 Overview of AutoSim
	3.2 Irrlicht
	3.3 OpenStreetMap
	3.4 TinyXML
	3.5 Blender

	4 3D Modelling and Content
	4.1 Differences in Coordinate Systems
	4.2 Light Reflection
	4.3 The Preferred Model Formats Used in the Simulator
	4.3.1 OBJ and 3DS
	4.3.2 The AS3D (AutoSim 3D) format

	4.4 Traffic Lights
	4.5 Other Objects

	5 Physics Simulations
	5.1 Physics Engines
	5.1.1 Bullet Physics Library
	5.1.2 Newton Game Dynamics

	5.2 PAL
	5.3 Vehicle Physics
	5.3.1 Straight Line Physics
	5.3.2 Wheels
	5.3.3 Steering
	5.3.4 Springs
	5.3.5 Implementation of Vehicle Physics

	5.4 COLLADA
	5.5 Scythe Physics Editor
	5.5.1 Scythe Loader for PAL

	6 Image-based Driver Assistance Systems
	6.1 ImprovCV
	6.2 Lane Detection
	6.2.1 The Lane Detection Algorithm
	6.2.2 Finding the Outer Lane Markings

	7 Control of a Simulated Vehicle
	7.1 Control Methods
	7.1.1 On-Off Controller
	7.1.2 PID Controller
	7.1.3 Fuzzy Logic

	7.2 Communication Between the AutoSim Client and ImprovCV Using Shared Memory

	8 Experiments and Results
	8.1 The Test Scenarios
	8.2 The Controllers for Steering the Vehicle
	8.3 Limitations
	8.4 Scenario 1 Results
	8.5 Scenario 2 Results
	8.6 Replacing the Physics Engine
	8.7 Robustness of the System

	9 Conclusion and Future Work
	Abbreviations
	References
	A Appendix
	A.1 Autonomous Driving
	A.2 Preparing a Car Model for the Simulator
	A.3 Creating a World

