
Multimodal Behaviour Learning

for Mobile Robots

Evgeni Sergeev 10428622

Supervisor: Assoc. Prof. Dr. Thomas Bräunl
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Abstract

We present a brief analysis of robotic programming techniques in the context of

service robots, deriving the requirements of such systems to incorporate a high-level

planner, a behaviour-based layer responsible for addressing unstructured problems,

and machine learning modules for working with specific, complex motions which

may involve many degrees of freedom. As the most important requirement for

large-scale systems, we see the traceability of observed aspects of behaviour back

to the modules causing these aspects.

We present an initial prototype developing these ideas in application to the task of

navigation in a cluttered, maze-like environment. The prototype uses an expand-

able set of event monitors, the states of which regulate which behaviour rules are

enabled at any given time. Behaviour rules have both a level and a weight: levels

for unconditional precedence over other rules, when such is required, and weights to

facilitate an arbitrary selection of behaviours which are at the same level. The sys-

tem allows behaviour rules to be added and modified rapidly. Record-and-replay

functionality is provided, for reviewing the actions of the robot and the reasons for

taking particular actions—these are easily and explicitly observable through the

user interface.

A Q-Learning module is applied to the task of basic trajectory learning. It is shown

that given high-quality sample output by a human operator, this unsupervised

learning module learns faster than otherwise.

Contents overview. There are three chapters:

1. Background explains the motivation for the study.

2. Multimodal behaviour learning discusses the logic of the approach and the

details.

3. Experimental evaluation describes the experiments and the results.
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Introduction

The overarching goal of robotics is to create mechatronic systems which assist

humans and are cost-effective overall.

If we plot a timeline for a hypothetical service robot working on a hypothetical

generic task, we would observe phases such as the following:

These are stages of an unambiguous algorithm, where each stage fits between two

neighbouring stages in a definite order. However, if we consider just one of these,

for example “Navigating with object in tow”, in detail, then we are likely to observe

patterns as follows:

These occur in response to occurrences in the environment, which have been an-

ticipated, but the time of occurrence of which is unpredictable.

Furthermore, if we examine one of these patterns of motion, or even the “Fastening

harness” or “Fine positioning” stages of the algorithm, we see that they are single-

purpose motions of considerable complexity, in which the trajectory of the robot

(or its manipulators) is affected in real time by the environmental aspect it is

controlling. (Fine positioning is relative to the object; its relative position must

be continually sensed by the robot as it adjusts its own.)
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Much research is concerned with designing effective frameworks which would allow

robot programmers to group and sequence many simple actions, to allow them to

express how the robot is ought to behave, and to be able to do so as promptly as

they would explain the same to a human being.

The transfer of “skills” to robots has largely been addressed by either placing

tight constraints on production environments, or the use of simple behaviour-based

robotics in less-structured environments.

However, the creation of a highly versatile and scaleable behaviour management

system has proved to be a major challenge. Attempting to scale existing systems

to moderately complicated tasks is problematic. The simple vision of being able

to train a general-purpose robot to perform a new unstructured, repetitive task in

a matter of hours is in sharp contrast with reality: months are necessary rather

than hours.1

1The ASIMO robot has been in development for over twenty years and is estimated to cost

close to $1 million per unit, and while it is able to run and even dance, its ability to manipulate

objects is still very limited [25].
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Chapter 1

Background

1.1 Summary of the problems

We shall now briefly outline the problems preventing robotics paradigms from

realising the vision.

Software for highly structured environments is actuator-centric. Sensors

are used as ON/OFF switches, detecting specific and highly anticipated events (e.g.

a beam indicating the presence of an object on a conveyor-belt). In unstructured

environments, the programming style must change to be sensor-centric.

Deliberative planning systems for unstructured environments perform a sub-

stantial amount of sensing, which they use to build a world model. This approach

is criticised for the empiric difficulty of building an accurate-enough world model,

and for the unresponsiveness of such systems

In behaviour-based systems, many independent functional units may be said

to maintain their own, partial world models of only the aspects of the environ-

ment relevant to their function. Behaviour-based systems are successful in simple-

to-moderate applications in unstructured environments. Scaling them to more

complicated applications is problematic precisely because the behaviours are so

independent. Pure behaviour-based systems often seem to lack a governing sense

10



Evgeni Sergeev

of purpose, (the kind of situational awareness that is afforded by maintaining a

world model), while responding to stimuli elegantly.

Hybrid systems combine behaviour-based (also called reactive) modules with

deliberative planners. These systems have been very successful. Once again, how-

ever, the best of them have not reached a level of effectiveness that advanced

service robots would require.1

What are the weaknesses in these systems?

An illuminating example might be to consider a representative service robot task,

such as the use of a human-like hand end-effector, in combination with video cam-

eras, to manipulate textile (in predetermined ways). The use of pressure feedback

and visual feedback are essential. The end-effector could have of the order of 20

degrees of freedom. It seems that the necessary motions cannot be represented as

a text-based program elegantly.

Machine learning endeavours may be seen as a pursuit of systems which program

themselves, either through trial-and-error (in the case of unsupervised learning),

or of systems which can be programmed via non-text-based methods (supervised

learning). The machines are informed of desirable outputs, and are expected to

produce them. Where robots are concerned, these outputs are motions, which

depend non-trivially on the system inputs.

Machine learning approaches can be very successful for narrow applications (e.g.

movement with one, unchanging, goal), even when the required output is complex

(involving many degrees of freedom).

We define our problem as follows:

1In over a decade, no advanced service robots have emerged onto the market, indicating that

the technology is still insufficient.
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Deliberative planners, behaviour-based robotics, machine

learning are each good for solving different problems. The

timely synthesis of a control system for a service robot would

require the use of all these techniques and it would require

for them to be well organised in a systematic, scaleable way,

such that any discrepancy in its behaviour against the

expected behaviour could be unambiguously traced to

a specific component.

It seems that the key to the problem is that we are dealing with large systems. In

an analogy to software systems, we are now able to work with software programs

of enormous size, debugging and extending them with speed which is almost inde-

pendent of the size of the rest of the codebase, as a result of the introduction of

object-oriented programming techniques, which essentially did nothing more than

to compartmentalise previously available functionality for manageability.

The key enabler seems to us to be the ability (if OO techniques are used prop-

erly) of the programmer to trace the source of a particular program action to the

corresponding place in the code in a reasonable amount of time. Hence we em-

phasise in our problem statement above, what seems to be the parallel in robotics.

Whereas software is concerned with changing variables and performing calcula-

tions, robotics deals with sensing and motion, and these, we believe, can also be

organised scaleably.

1.2 Literature review

1.2.1 Service robots

To help direct our study into an area of relevance, we have studied two major

roadmaps of robotics: the EURON (European Robotics Network) Roadmap [13]

and the US Department of Energy Robotics and Intelligent Machines Roadmap

[14]. The highlights identified include the drive towards modularisation and stan-
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dardisation of interfaces for robotics hardware, but more directly important to

us:

• The expansion of the robotics industry into service robot applications,

where unstructured environments are unavoidable;

• The state of the art in robotic vision being identified as a key bottleneck;

• The emerging necessity to develop methods to control generic multi-purpose

end-effectors (especially human-like hands, as so many aspects of the hu-

man environment are designed for them); and

• Applications such as the manipulation of soft materials necessitating a sig-

nificant volume of high-quality sensory feedback.

Both multi-purpose end-effectors and the manipulation of soft materials require

the ability to handle many degrees of freedom, coordinated in such a way that

programming in terms of individual degrees of freedom becomes impractical.

The EURON Roadmap reminds us that previously unavailable opportunities are

opening up in this area of technology, due to the constantly reducing cost and the

improving performance of embedded systems reaching a stage where many of the

applications considered are approaching commercial feasibility.

1.2.2 Behaviour-based robotics

Prior to the emergence of behaviour-based robotics, common robot control systems

could be described as deliberative planners or symbolic manipulators (often referred

to as “traditional” systems in behaviour-based robotics literature): these systems

attempted to build inside themselves a world model, plan a route within that

model, and then put the plan into action. Responsiveness was poor, limiting

robots to low velocities. A system of such a design would be centrally controlled

by the sequential symbolic manipulator, which is decoupled from direct sensing

and only reads sensor data at times determined by its algorithm. It was realised
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that to achieve better responsiveness, changes in sensor readings had to play a

central, not a background, role in driving control. For responses to such changes

to be fast, the processing associated with each important sensory change has to

be limited, hence many agents would be necessary to account for many possible

types of changes. An in-depth criticism of symbolic manipulators can be found in

Brooks’ “Elephants Don’t Play Chess” [16].

Behaviour-based robotics is an approach to robotics programming, where inde-

pendent functional units, called behaviours, control the robot at different times.

The arbitration, or selection, of which behaviour is active at any given time, is

the primary point of difference between existing behaviour-based architectures.

The early Subsumption architecture allowed only fixed precedence rules: some be-

haviours could suppress or inhibit others [15]. Ronald Arkin describes a number

of differring approaches in the book Behaviour-Based Robotics [2], in particular

his own Autonomous Robot Architecture, in which behaviours output one vector

each (specifying the best direction for the robot to move in, from that behaviour’s

functional perspective). The vectors are weighted, with the weights being provided

by a higher-level planner, and then added together. The resulting vector is then

forwarded to the motor control system. To override the effect of other behaviours,

a single behaviour in this system would output a vector of large magnitude—for

example, an obstacle-avoidance behaviour in close proximity to an obstacle would

thus take over the system to avoid an accident.

Our view is that the relationship between behaviours should be appropriate to the

application and the situation: outright suppression, cooperative vector summation

and random selection are all useful types of relationships and should be allowed

for, especially now, when the hardware available to us can accommodate them

easily.

1.2.3 Hybrid systems

Hybrid systems aim to combine the strengths of both paradigms: the “farsighted-

ness” of deliberative planning systems and the speed of response of reactive sys-
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tems. While reactive systems are well-suited to respond to clear stimuli and simple

patterns of stimuli, planning further ahead is problematic, because the number of

cases that require associated responses becomes intractable rapidly. Viewing a

reactive system as a type of hard-wired cache for the commonly recurring outputs

of a deliberative system, and noting that there are memory (or component count)

constraints on the size of such a cache, a conclusion is made that a high-level plan

must be synthesised online [17]. In light of Brooks’ argument for the use of the

“world as its own best model” [16], we can liken a deliberative algorithm to the

imagination of a human being, which is able to test the probable consequences of

a large number of possible actions much faster than the time required to actually

perform them.2 It seems then that deliberative systems cannot be totally replaced

by behaviour-based robotics. The converse is also true, as the requirement of

quick reactions necessarily implies high parallelism and mutual independence of

agents—which is a general definition of the parallel-reactive approach.

A representative example of a hybrid system is the 3T architecture [17]. The

system consists of three tiers. Apart from a reactive layer and a deliberative

planner, there is middle layer, called the sequencer, which selects sets of skills to

accomplish the tasks at hand. Each type of task is associated with a Reactive

Action Package—these are hierarchical modules containing the skills relevant to

a particular task. Event monitors are used for sequencing skill sets. In T3, the

planner is able to counterplan: anticipate the actions of the agents in the reactive

layer, referred to as uncontrolled agents (i.e. uncontrolled by the planner).

Other hybrid systems of note include SOMASS [11] (where it is noted that the use

of behaviours simplies the planner, while the planner is effective at ensuring the

reliable execution of plans) and SSS [12].

Criticism of hybrid systems usually concerns the interface between the planner and

the reactive system. The two systems are very different in nature—the planner is

mostly sequential, performing the stages of a long-running algorithm in order, while

the reactive system consists of many independent, lightweight units which operate

2Humans do play chess.
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in parallel. In particular, there is the model-coherency problem [6], arising from

conventional deliberative planners (within hybrid systems) having to explicitly

query sensors to update their internal world models; the programmer has to ensure

that such queries are timely and and at all times to be conscious that the world

model might be outdated.

1.2.4 Generalisations of behaviour-based systems

The Subsumption architecture, and the family of related behaviour-based archi-

tectures outlined in [2], all share several essential properties, the properties that

make them necessarily reactive. Generalisations, which we refer to as parallel-

reactive systems, attempt to retain these properties, while providing tools similar

to those used in development of deliberative planners, as these tools often allow

the intentions of programmers to be expressed naturally.

One generalisation, exemplified in a system called Cerebus, is centred around the

property of circuit semantics : a strictly feed-forward system composed of logic

gates and finite-state machines guarantees that changes in premises (i.e. immediate

outputs of sensory systems) propagate through the network in O(1) time (“flow”

through it), if the mechanism for such propagation is parallel.3 The set of the finite-

state machines is the short-term memory of the system. Higher-order semantics

are derived through the use of the same finite-state machines via role passing.

Role passing is a generalisation of deictic representation—where information about

the current situation is represented by the true/false values of a great number of

predicates which have been anticipated at design time. [5]

The language GRL has been designed such that valid programs in it compile to such

finite-state machine networks as described above. GRL is based on a restricted

subset of LISP. It allows the expression of very general parallel-reactive systems [6].

Although we do not use GRL in our work, the concepts of circuit semantics and

3When the parallelism is emulated by a sequential system (a microprocessor), it follows that

the speed of propagation is limited by the instantaneous volume of sensory updates—not a

concern in the case of Cerebus, which performs at “sensory frame-rates” [5].
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finite-state machines, in the way they are used in Cerebus, are key ideas shaping

our system.

1.2.5 Blackboard systems

The concept of the blackboard, used in generic multi-agent systems, has been

applied to a behaviour-based mobile robot architecture, in order to scale up the

capabilities of behaviours, whilst retaining the decomposition of the system into

separate agents [7]. A blackboard is a shared large data structure, the information

on which is used opportunistically by agents (the behaviours in this case). Some

agents produce information which they place on the blackboard and which may

be used by other agents. This model allows reflective behaviours to be created by

having behaviours which should be monitored put useful information about their

internal state onto the blackboard.In spirit, the motivation for this effort is similar

to the parallel-reactive Cerebus, in which it is safe to use any predicate within the

system, because it is assured that all predicates are current.

1.2.6 Machine learning for robotic tasks

Owing to the difficulties of specifying, in code, precise and complex motions relying

on sensory information such as pressure feedback and the accurate position of parts,

we have explored the field of machine learning (ML) applicable to mobile robotics.

The generic requirement of a machine learning system is, given a set of relevant

inputs and a set of possible outputs, and provided with training time, to then be

able to find the optimal output for any valid state of the inputs. Here “optimal”

implies an objective, or subjective, metric on the quality of outputs, given the

inputs. This metric, called a fitness function, is often much more straightforward

to specify than the actions which maximise it (in other word, what has to be done

is easier to specify that how to do it). Types of approaches are:

• Supervised learning, where an operator provides outputs which the ma-

chine considers ideal and attempts to approximate. The provision of
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correct examples is the process of specifying the fitness function.

• Unsupervised learning, where a fitness function is fully pre-specified and the

machine uses trial-and-error to discover the relationship between the inputs

and the desirable outputs.

Thus supervised learning is more applicable where the fitness function is elusive,

but perfect examples are readily available, whereas unsupervised learning is more

suited to applications where the fitness function is trivial, and perfect examples

are hard to construct and must be discovered.

Mobile robotics appears to be mostly concerned with unsupervised learning. The

goal of a robotic action is usually clear, while the best action to use is not. Su-

pervised learning is more applicable to classification tasks, where a machine is

required to assign classes to items, given a range of a priori correct examples.

It has been noted [18] that while human operators may not always be able to sup-

ply perfect examples of robotic control, they often provide acceptable examples,

and these may be used to seed an unsupervised learning system, greately speeding

up learning during the initial stages. In the later stages, an operator’s contribu-

tion becomes less relevant, as the performance of the robotic system, on average,

surpasses that of the operator.

In reinforcement learning, the reward plays a central role. The reward is another

name for the fitness function. What differentiates reinforcement learning from

other types of machine learning is the temporal nature of the process which is to

be learnt and delayed rewards. Thus reinforcement learning is highly applicable

to temporal motion control. Reinforcement learning is addressed in-depth in the

book Reinforcement Learning: An Introduction by Sutton and Barto [9].

Q-Learning

Q-Learning has been identified as a simple and effective reinforcement learning

algorithm for the control of mobile robots [18]. The aim of the algorithm is to
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find a policy : a map from states to actions such that the reward over long peri-

ods of time is maximised. It has been compared with a similar technique called

Adaptive Heuristic Critic in [19] and found to be easier to implement, to have

more intuitively defined parameters controlling the learning rate and to be explo-

ration insensitive: convergence to optimal values is guaranteed independently of

the exploration strategy (on the assumption that all state-action pairs are reached

often enough). It is concluded that Q-Learning “seems to be the most effective

model-free algorithm for learning from delayed reinforcement” ([19], page 251).

This view is supported by Lin [4]. (Model-free refers to algorithms which learn a

policy directly, in contrast with model-based algorithms, which learn the reward

function and the state transition probabilities4 and derive the policy from them;

in fact model-based algorithms are generally described as needing less experience

at the expense of greater computational resources, but we rely on the software

simulator as an unlimited source of experience.)

The identified weaknesses of Q-Learning are a lack of an inherent capability to

generalise over state and action spaces and the resulting potentially slow rate of

convergence where the state or action spaces are large [19].

The algorithm is described and thoroughly analysed in [3] (Watkins and Dayan

1992). Q-Learning is based on a Markov Decision Processes (MDPs) model. In

this model, there is a set of states S. At any time t (discrete, starting from an

initial time t = 0), the system is in exactly one state; which one is known precisely.

There is also a set of actions, A, one of which the system may choose. There is

a set of unknown probabilities associated with each action a ∈ A and the current

state st ∈ S, of transitioning to each of the other possible states. The system

attempts to maximise the discounted cumulative reinforcement (or utility)

∞∑
t=0

γtR(st) (1.1)

where R(st) is the constant reward given for being in state st for one time step,

and γ is the discount rate, 0 ≤ γ ≤ 1, controlled by the operator of the system.

4The probability of transitioning to a state s′ from a state s after an action a has been taken,

∀s′, a, s.
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When γ = 1, each reward is equally important to the system, no matter when it

occurs in the future. For γ = 0, only the immediate reward is important, and the

algorithm reduces to taking the action with the maximum predicted immediate

reward at any point in time.

It has been shown that the algorithm converges to an optimal policy [3]. A policy

π is a map from the current state to an action. An optimal policy is a policy which

maximises (1.1). Central to the algorithm is a table of Q-values Q(s, a) (one real

number is kept for each of the state-action pairs).

The algorithm proceeds as follows:

s′ ← initial state

loop:

s← s′

With probability ε select action a maximising Q(s, a).

Otherwise select random a.

Perform action a (transition to a new state).

s′ ← the resulting state

r ← reward

Q(s, a)← (1− α)Q(s, a) + α[r + γ maxa′Q(s′, a′)]

In the above, α is the learning rate, 0 ≤ α ≤ 1. It represents the balance of reten-

tion of past experience and the significance of new data. The process converges

for any value of the parameters γ and α, but the speed of convergence depends on

these values, hence it is important to adjust them appropriately.

Besides slow convergence, which is a feature of Q-Learning itself, problems arise

when the adaptation of Q-Learning to a particular domain is short of meeting

the requirements of providing an ideal MDP. Significantly, the perceptual aliasing

problem is the poor reliability with which the robot is able to identify which state

it is in [4].

Algorithms based on artificial neural networks [8] can be used in various forms
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for learning. However, we prefer a method such as Q-Learning for its greater

introspective amenability (it seems to allow us to more readily answer questions

such as “why was this particular action taken in a given situation?”—if enough

history is kept5; neural networks tend to alias effects, making it difficult to discover

the influence of a particular effect on the final weights in the system.

1.3 Preceeding behaviour-based work on the Eye-

Bot platform

We have reviewed the dissertation of Tom Walker’s Final Year Project (2006) [1],

in which he developed behaviour-based controllers for navigation tasks with dif-

ferent arrangements of obstacles. Machine learning was used in the rotation of

behaviours6, and was based on instantaneous PSD sensor readings (which, quan-

tised, defined the state-space for Q-Learning).

Paying particular attention to section 6.6, in which paths are plotted and analysed,

we see that while generally successful, even the best controller encounters a problem

in a box canyon scenario, where its path makes several loops in one area before

escaping and proceeding to the goal. This highlights the importance of being able

to identify, as a developer, unfavourable conditions and to modify behaviour just

for those conditions, while not changing the successful behaviour elsewhere.

In section 7.3 (Future Work), Tom recommends that an expanded set of behaviours

would benefit the effectiveness of the controllers and that a graphical user interface

would simplify the creation of behaviour-based applications. He also considers that

the addition of a high-level deliberative planner would add to the robustness of

the platform.

5The answer would be: “because it received the rewards R1, R2, R3, ... in particular situa-

tions.” This allows insights to be gained and the algorithm to be modified accordingly.
6Note that in this work we use Q-Learning also, but in a very different mode—for the learning

of trajectories.
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1.4 Direction of the project

While reviewing the literature, we constantly returned to the question:

Why do we not have advanced service robots in operation

today?
7

It is a fact that the computer vision means available to us in the present are

modest, but even if we had a system capable of reliably estimating 3D structure,

recognising objects and tracking moving features, it still would not be a trivial

task to make use of this information for controlling a robot.

Our high-level aims are to:

1. Streamline the process of editing behaviour selection rules.

2. Facilitate the implementation of some behaviours as learning modules.

3. Provide sufficient introspection into both behaviour selection and learning

modules to enable useful conclusions to be drawn, which can be used to

improve the system.

Our system shall be parallel-reactive, with any iterative features encapsulated as

opaque agents.8 It shall allow for reflective and higher-order behaviours by sharing

information internally, similarly to a blackboard. Any such shared information

should be very well defined.

Learners should be as simple as possible, one learner attached to one type of

movement. Such an approach to learning would keep learners’ state spaces to a

manageable size, making learning efficient.

7There are commercially successful service robots, such as the behaviour-based vacuum cleaner

Roomba, with sales reaching several million units in the US [24], but they are very simple and

will not scale to advanced tasks, such as cooking, without major advances in sensing technology

and robot skill development technology.
8The actual prototype implementation is sequential, but only to simplify the prototyping

process. It is parallelisable and the parallelisation is the next logical step after the system is

deemed satisfactorily stable.
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Chapter 2

Multimodal behaviour learning

We first analyse the requirements of the system we have sketched in the previous

section definitively, and then we describe the real prototype that we have created.

2.1 Requirements

As was mentioned in the Introduction (page 8), we deal with tasks which often have

a well-defined high-level hierarchy of goals and sub-goals. One major requirement,

therefore, is the ability to track the situation in terms of the current goal, the

top-most goal and the goals inbetween. In other words, a planning system is most

appropriate at this level. The nature of these goals is the same as the nature

of directions on a culinary recipe—unambiguous, essential steps on the way to

accomplish a task. For example:

1. Pick up container.

2. Move the container over the bucket.

3. Tip the container over.

4. Return the container to its original location.

23



Evgeni Sergeev

There can be no alternative way to accomplish the task, although many things

might go wrong. These procedures may be effectively represented by one or more

finite state machines.

The identification of the state of affairs itself can be a challenge (in other words,

building a system which does only sensing). Such a system must almost never

make mistakes—otherwise the robot will be trying to accomplish the wrong goals

at the wrong time.

Requirement R1: ability to deal with a well-defined high-level workflow.

Our next requirement is the ability for a system to accomplish goals which are not

decomposable, in the sense of the foregoing discussion. Examples are:

• Moving an object while avoiding other objects (on a surface or through space,

with a manipulator).

• Grasping objects of different shape securely.

• Opening a door.

• Opening a sealed box.

• Straightening out an arbitrarily-folded sheet of textile.

• Cutting a variety of materials with a blade.

• Connecting together components such as constructor set blocks.

Requirement R2: ability to learn and perform single-purpose movements de-

pendent on sensory feedback and dealing with many degrees of freedom.

Another important requirement which overlaps with the previous two, but is im-

portant in its own right, is a vision system segmenting the observable environment

into edges and surfaces, permitting the identification and tracking of objects and

inferring the 3D position of features.

Requirement R3: a well-developed vision system.
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Now, various results of computer vision research make R3 a matter of implemen-

tation.1 We therefore assume that sufficient vision primitives are available to work

with R1 and R2. R1 heavily depends on the availability of such a vision system

for its most difficult aspect, but is otherwise simple to satisfy. We, therefore,

concentrate on R2.

The examples given above for R2 are all composite movements, which may be

said to consist of several, in some cases many, phases, without a strict ordering

connecting them. There may be multiple equally-effective (on average) ways to

proceed when navigating. Force feedback is necessary to judge how securely an

object is being held, but it is affected by external forces on the object (for example,

if manipulating a drill). In any one of these examples, there is an overwhelming

number of factors and special cases, making rigorous analysis and design a major

undertaking. Human beings find these examples intuitive.

Much in the R2 examples is reminiscent of feedback control systems, often several

acting in parallel. The feedback control systems arise and disperse dynamically, as

the process passes through phases (or states). In the rest of the report, we address

a way of building systems with the capability to support R2-like processes and

their acquisition.

2.1.1 Target applications

We have developed our approach against the application to mobile robot navi-

gation. This application belongs to the class described by R2, and was chosen

because it was most appropriate for the hardware and software available to us.

Application A1: navigation through an unspecified warehouse-like environment.

By “warehouse-like” we refer to the restrictions that:

• The floor is flat; and

• The obstacles have approximately vertical walls.

1Likely to be enormously time-consuming.
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These restrictions are in place primarily to reduce the complexity of the vision

system that has to be developed. An additional restriction we introduce is that

the floor texture should not have sharp variations in luminosity (lines drawn on

the floor, or texture containing clearly defined edges). This restriction does not

invalidate our approach, because a stronger vision algorithm, which we intended

to implement initially, but then moved out of the scope of the project, would have

been capable of correctly interpreting any floor texture.

Robot navigation is the most important functionality of consumer-grade service

robots today—from an engineering point of view, all such robots are navigation

machines which perform an activity, such as vacuum cleaning, or lawn mowing, as

a side effect [20].

Application A2: pushing an object through a warehouse-like environment.

While this task may not have many directly useful applications, it is similar to

some of the useful tasks that a robotic manipulator would be required to perform,

and it seems to be sufficiently complex. While our system is geared to begin to

learn for this task, we have not been able to train robots for it, as the EyeSim

simulator does not, at present, facilitate a collision algorithm which is realistic

enough for training to have meaning in the real world.2

The aim of the project is not to solve these particular problems—it is rather to

develop a method that would allow these, and similar problems, to be solved

simply.

2.2 Features

We now proceed to formalise the features that our system needs to have in order

to address our core requirement R2.

2Objects are moved upon colliding with a robot in a way which contradicts the laws of physics

severely. While originally planning to upgrade the collision engine in EyeSim, or at least to

implement an object as a masquerading robot which would obey the proper physics of collision,

time constraints have prevented us from doing so.
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Interaction with a high-level planner

A high-level planner (R1) will not be a part of our prototype—at this stage we

concentrate on achieving a single goal only (warehouse navigation), from a hy-

pothetical “recipe” of necessary goals (see page 23). The purpose of a high-level

planner is to rotate the goals of this type as they are completed. For each goal it

would invoke a corresponding goal-module. The purpose of the term “goal-module”

is to encapsulate the functionality described in R2. A goal-module has a single

goal.

As long as goal-modules report the success or failure of achieving their goal reliably,

the high-level planner would be a trivial part of the system. Besides rotating goal-

modules, it may also need to monitor the environment independently, to respond

to emergencies or to revise its strategy when new opportunities become available.

A parallel-reactive system, of the type described in [6] (the Cerebus project) would

be suitable, because it is able to both support the rotation of goal-modules, and

to re-evaluate at a high frequency, which makes it responsive.

While we do not build a high-level planner, our goal-modules must have an appro-

priate interface to such a planner, to fit into a complete system.

F1. Interface to a high-level planner.

F1a. A goal-module must inform the planner when it has attained the goal.

F1b. A goal-module must inform the planner when it has failed to achieve a goal.

(For example, if the robot is stuck and cannot proceed, or if a time limit has

been exceeded.)

Activity phases or interim goals

As discussed in the Introduction (page 8), the activity of a single goal-module,

as it proceeds towards its goal, is partitioned temporally into identifiable non-

reducible phases, or trajectories. The overall trajectory may be influenced by

certain constraints for a length of time, and later it may be influenced more by
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another set of constraints. These patterns are the phenomena which behaviours

were first introduced to encapsulate.

We may say that a behaviour corresponds to one interim goal (such as “move away

from that obstacle”) and the degree to which this behaviour is in control of the

system is the degree to which the corresponding interim goal is active. (We may

have a few behaviour cooperatively controlling the robot, as with a vector-sum

arbiter—then the analogy is that the system is pursuing several interim goals at

the same time.)

F2. A goal-module is a set of distinct behaviours.

F2a. Each behaviour is active under definite conditions (called the support of a

behaviour—a subset of state in the state space, to be explained later).

F2b. Each behaviour corresponds to one interim goal.

F2c. A behaviour should be as simple as possible. (If a behaviour could be de-

composed into two, it should be.)

F2d. A behaviour combines with other behaviours active under the same condi-

tions (i.e. they have overlapping supports) in a simple, specified way: adding

to, overriding the other behaviours, or through the system making an arbi-

trary choice from among the active behaviours.

For F2a, we could add that the support for each behaviour should be maximally

wide, rather than having many similar behaviours differentiated by unnecessary

conditions. This is a heuristic for the operator to be aware of when they edit the

behaviours.

State space size and state monitors

We would like to make use of all the available sensors, and of memory as required.

Our state space, if we consider all possible values of the sensor outputs and the

memory, would therefore be very large. Behaviours would need to make use of

monitors to define their support. A monitor is an implementation of a function
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over the state space which monitors a relevant feature of the state (e.g. the density

of obstacles in a given direction). There is potentially a many-to-many relation

between behaviours and monitors, such that many behaviours could rely on a

certain monitor, and likewise the converse.

F3. Monitors extract important features from the state.

F3a. Monitors maintain any memory they need.

F3b. Monitors may use other monitors’ outputs.

The design of a system’s monitors is highly application-dependent and is likely to

be non-trivial. A monitor would only be added if it is required, hence maintaining

the memory within the monitors goes some way to ensure that memory is handled

efficiently (that “information” is stored rather than “data”, roughly speaking).

The human operator’s expertise

Because many motion-based tasks are difficult to describe, but are intuitively

known by the operator (i.e. motor skills, in the psychological sense), the process

of developing behaviours should be guided by an operator controlling the robot.

F4. An operator controls the robot to accomplish the goal of the goal-module.

The operator then identifies the distinct behaviours (or interim goals) that were

used in the process and specifies each in terms of the salient monitors and the

interim goal. This is done iteratively.

Learning the behaviours

Complex motions which are not readily specified in code, must be learnt.

F5. When the operator, and then the system autonomously, controls the robot,

as a behaviour with a learner attached is selected, the learner updates, over time

optimising the motion it is responsible for.

Our fundamental design objectives are the systematic introspection into behaviour

cycling in real time and the minimisation of the delay between making a change and

testing its effects. These objectives guide how the user interface should display the
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monitors, the behaviours and the sensory data received by the robot. Best results

would be achieved when the operator can see what the robot sees—relying only

on the same view of the world as the robot itself.

2.3 Description of the target hardware

We work with a simulated model of a real robot, using only the simulated capa-

bilities corresponding to those of the real robot. Figure 2.1 shows the simulator

view of the robot model.

Figure 2.1: EyeSim simulator 3D view of the robot inside a “warehouse-like” en-

vironment. The camera is angled slightly downwards to capture nearby obstacles.

The directions of the three PSD sensor beams can be seen.
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2.3.1 Portability of the code

The design of the EyeBot hardware platform and the EyeSim simulator is such

that it allows the same source code to be used, without modifications, on both

platforms. Only the compiler has to be switched.

Our GUI works only on a PC (tested only under Windows), and the corresponding

code is hence isolated with “#ifdef EYESIM” statements. The portable parts

of the system have no knowledge of the GUI. The GUI queries them to display

their internal state. A full diagram of the classes appears in figure 2.2.

Our proof-of-concept implementation is highly sequential. Monitors are updated

first, in order, then the action rules are evaluated. Then the process repeats. The

model, however, allows for a high degree of parallelism: independent monitors

may be updated simultaneously, or at least, on separate threads. This would be

necessary for very high responsiveness in practice, because the sequential imple-

mentation causes time-consuming monitor update routines to become bottlenecks.

We had the option of a sequential implementation and have taken it for its greater

simplicity—making our design process more efficient. Later the algorithms could

be parallelised and otherwise optimised to create a production prototype.

2.4 Description of software

We describe the algorithms used together with the design of the user interface

of our system. The system consists of approximately 10 000 lines of code, not

including the simulator.

The main window is the NavAssistWindow, shown with annotations in figure

2.3. A description of the user interface elements follows.

• Spatial map. Displays the local map built from sensor data. A thorough

description is provided below.3

3Note: there is a rarely-occurring bug where the spatial map becomes unresponsive (is no
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Figure 2.2: The implementation of the system, showing the most important rela-

tionships between files. The files containing the main(..) function are shown

in red (two versions). Abstract classes are distinguished by dotted boundaries.

Classes entirely on the right of the grey line are EyeSim-only, while the classes

that are entirely on the left are intended for RoBiOS only, although they may be

tested on the simulator also. The classes appearing across the grey line are the

same for both platforms.
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Figure 2.3: The main window of our prototype, with labels naming elements of

the user interface. 33
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• Goal detection view. Displays the segmented goal when visible by the

robot. The goal is a generic tall red object.

• Robot’s unfiltered view. Displays the frame as read from the (simulated)

camera. Note that this will change unexpectedly as the robot will activate

behaviour rules to scan the environment.

• Results of edge detection. Shows the image after all filtering steps, which

is used to derive obstacle boundaries.

• Monitors. Each icon represents one monitor. A green frame means that

the condition watched by the monitor is present. The absense of a green

frame indicates that the condition is not satisfied. Monitors may be selected

by the user by clicking and Shift-clicking to select multiple monitors. Se-

lected monitors appear with black outer frames. Two monitors in the upper

right corner of the monitors box are shown selected in figure 2.3. The se-

lection functionality is available for the purpose of defining new behaviours,

described in a later section.

• Behaviour rule table. Each behaviour rule is a panel. The user may select

panels by clicking and then use arrow keys to move rules up or down. This

ordering has no effect on how behaviours are chosen, but logically related

behaviours should be grouped together. The support of each behaviour rule

is shown as the monitor icons (a behaviour rule is applicable if the monitors in

its support all have a state matching that displayed on its panel. Applicable

behaviour rules are shown with a light blue square. Competing behaviour

rules are shown with a dark blue square, and the selected rule is shown with

an orange square. The relative weight of competing behaviours is shown

as a yellow bar: the size of the yellow bar as a fraction of the grey bar

underneath is the probability that the behaviour rule will be selected. The

label of a behaviour rule displays the action key, the level and the current

longer refreshed) after some running time. Data should be saved and the application should then

be restarted.
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weight in parentheses. If the weight is represented by a weight function, an

equal sign is shown before the calculated weight. (Note: tooltips include the

weight function definition.)

• Scalar monitors. Displays the names and values of scalar monitors.

• Action selection pad. An alternative means for the user to control the

robot, required for learning: the user clicks and holds the mouse pointer

somewhere over the “pad” to set the velocity of the robot. Distance from

the bottom, centre of the “pad” increases with increasing forward velocity.

The angle subtended by the bottom edge and the line from the bottom,

centre point to the cursor is related to the rotational velocity (omega) which

is set: it is zero for the vertical axis of the “pad” and maximum clockwise

and anticlockwise at the extremes. A more intuitive method of controlling

the robot is through the use of the arrow keys on the keyboard (but this

is not suitable for learning). Note that manual mode must be on for either

direct control method to work.

• Echo box. Displays the selected behaviour rules and feedback for commands

entered using the command line.

• Manual button. Overrides the navigation system’s control of the robot

motion. The operator is then able to control the robot using arrow keys or

the action selection pad.

• Pause button. Prevents rules from being sent to the navigation system.

Useful for debugging behaviour rules.

• The “1” button. While paused, allow one rule to be sent to the navigation

system. Useful for debugging.

• Freeze button. Prevents the navigation system from doing any processing.

This is used when replaying a recorded session.

• Reset button. Resets the state to the first recorded frame.
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• Recorded frame counter. Increments during recording. Recording is

a memory-consuming process and should not be left running for too long

without need.

• Record button. Press to start or to end recording.

• Write Path button. After typing the a filename into the command line,

press this button to write an SVG file containing a diagram of the path

traversed during the recorded period.

• Graphs button. Press to display the Replayer window.

• Q button. Press to display the Q-Learning visualisation window.

• Save button. Press to write the current behaviour table to disk. Warning:

this button must be pressed before exiting, for the changes to be

saved.

2.4.1 The spatial map

A spatial map is implemented using a radial idiom: it measures the distance to

the closest obstacle in the direction of each degree (360 integers are used for the

base map). White pixels indicate the boundaries derived from edge detection (via a

simple trigonometric relationship, see the code). Orange pixels indicate boundaries

obtained from PSD sensor data. The field of view of the camera (intersecting with

the floor) is shown as a white outline. The robot is a white triangle at the centre

of the map. A “thread”, with light blue or tea-coloured segments indicates the

recent path of the robot. Red arcs show the directions which are deemed to be

insufficiently known and must be sensed before the robot would move there. The

grey area shows areas which are deemed to be accessible (i.e. enough sensing has

been done and there are no obstacles in such areas; the centre of the robot could

safely move onto any grey location. If the interim goal is a point location, it

appears as a yellow star. If it is a rotation to a particular heading, it appears as
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a double green arrow. If the goal direction is known, it appears as a double red

arrow, and if the goal point location is known, it appears as a red star.

As the robot rotates, boundary points that have been visible, but subsequently

moved out of the field of view, are retained. Their lifetime is discounted by the

amount of motion on the spatial map (the more the robot moves, the more outdated

they become and could be a source of error).

The robot does not see beyond the “awareness horizon”, which is set at 2m away

from the robot.

The visualisation is reminiscent of those that can often be seen accompanying

descriptions of deliberative planners. It therefore seems important to stress that

this is not a visualisation of a world model being built, even though it may look

like one to the observer. There is no attempt in this system to distinguish

features of the world, such as straight-line walls—we observe such features

in the visualisation, because they are present in the world being sensed by the

robot.

The visualisation was essential to guide the development of the algorithms that

provide the spatial awareness monitors. However, the algorithm itself uses only

seven arrays of integers, of 360 elements each, for all its processing. It transforms

the sensed data into a form that is amenable to use by behaviours. It keeps a

local memory of measurements while they are reliable—also within the same seven

arrays. The transformation can be optimised to be extremely efficient, such that

the processing bottleneck would be the acquisition of the image frame.

The visualisation is a relatively computationally-intensive process, but it would

not be a feature of a production system. Its purpose is to reveal the workings of

the transformation algorithms for the developer and for the operator.

Essentially, the transformation process gains us two valuable abilities. Firstly, it

allows us to fuse information from the PSD sensors and the camera, by using a

representation that is commonly functional for both types of measurements. Sec-

ondly, it is a representation in which memory is meaningful—that is, information

in this representation remains invariant under known conditions, and may be used
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while these conditions continue to hold.

Areas of interest

During the development of the navigation behaviours, it was found that a heuristic

was required to be able to distinguish areas on the spatial map which could lead

to new corridors, from areas which, based on the available data, could not. Such a

heuristic was found: accessible areas close to large discontinuities in the boundary

map often meant that the discontinuities, when explored, turned into open areas

(this is clear from common sense by looking at the robot’s view or the spatial

map). Such areas we call areas of interest. They are marked as yellow areas on

the spatial map. Navigation with the behaviours that have been developed almost

always prioritises areas of interest higher than other accessible areas, when areas

of interest are visible and when the navigation system chooses a new interim goal.

The “thread” trailing the robot, which is used for a number of monitors, is tea-

coloured in places from which no areas of interest were visible when the robot

passed there (otherwise it is light blue). The lack of areas of interest was found to

often, but not always, be associated with a dead-end.

2.4.2 The command line

The command line is multi-purpose:

• Typing in any of the action names (see below) in manual mode results in

that action being performed.

• If a behaviour rule panel is clicked, typing two numbers on the command

line and pressing enter causes the level and the weight of the behaviour to

be updated, in respective order.

• Most importantly, to define a new behaviour rule, the monitors for its sup-

port need to be selected. They must be in the right state (alternatively
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the current.mbt file may be edited between program invocations). The

commands are of the following format:

∼ACTION 3 10.0; Comment

Defines a behaviour rule in terms of ACTION, level 3 and weight 10.0.

The comment describes the purpose of the behaviour rule.

∼ACTION 3 =SCALAR-MONITOR-NAME:3@1,5@2; Comment

Defines a similar behaviour rule, except that its weight is given as a

weight function in terms of a scalar monitor, discussed below.

2.4.3 Design of the monitors

Specific rather than general

An important consideration is that there was no effort at all to make the monitors

generic across many different types of robots. Quite to the contrary, the monitors

should be designed for a specific model of robot only. This allows us to take

full advantage of our knowledge of the robot’s features and frees us from the

complications of working with multiple levels of abstraction that generic monitors

would need.

This means, of course, that monitors would have to be rewritten, or adapted,

for each new robot model. The justification is that monitors are (or should be)

comparatively lightweight and simple to write.

We make this argument on the basis of general recommendations of R. A. Brooks

[21], who suggests that embodied entities use the most readily available shortcuts

to sense the environment. In particular, the distance to an obstacle seen by a

robot’s camera is a simple function of the height of the obstacle’s base in the

image (for a specific robot with a constant viewpoint height, in an environment

with flat floors). So, simple thresholding on this height is enough to find if the

obstacle is too close [21]. We use a related approach for our obstacle detection.

39



Evgeni Sergeev

List of monitors

Pursuing an interim goal (motion: moving or turning).

The goal is visible on the left.

The goal is visible straight ahead.

The goal is visible on the right.

There is a direct path towards the goal.

There is an area of interest to the left.

There is an area of interest directly ahead.

There is an area of interest to the right.

There is not enough data from the left.

There is not enough data in the forward direction.

There is not enough data from the right.

The goal has been reached.

It is possible to move a short distance forward and left.

It is possible to move a short distance forward.

It is possible to move a short distance forward and right.

Point interim goal cancelled (no longer accessible).

Camera is pointing to the left.

Camera is aimed forward.

Camera is aimed to the right.

The camera has been turned very recently.
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Previous interim goal was: turn to area of interest on the left.

Previous interim goal was: turn to central area of interest.

Previous interim goal was: turn to area of interest on the right.

Previous interim goal was: proceed to the end goal.

Previous movement-related interim goal was a left rotation.

Previous movement-related interim goal was a right rotation.

We are very close to the interim goal.

We are facing a trail which is a probable dead end.

There is some accessibility directly to the left.

There is some accessibility directly right.

In the recent past our heading changed to the left.

In the recent past our heading did not change.

In the recent past our heading changed to the right.

2.4.4 List of actions

Behaviour rules are written in terms of generic actions. Neither the behaviour rules

or these actions correspond to conventional behaviours directly. Rather, sets of

behaviour rules, when taken together, form a consistent behaviour. For example,

many behaviour rules which are written in terms of the right side of the robot

need mirror rules for the left side; together the right and the left, and possibly the

centre behaviour rules, they form a behaviour. The actions listed below are best

seen as behaviour building blocks.
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MG Move towards the end goal.

CL Turn camera to the left.*

CC Turn camera directly forward.*

CR Turn camera to the right.*

RL180 Turn around, in the anticlockwise direction.

RL90 Turn 90 degrees to the left.

RLL Large rotation to the left.

RL Small rotation to the left.

RR Small rotation to the right.

RRR Large rotation to the right.

RR90 Turn 90 degrees to the right.

RR180 Turn around, going in the clockwise direction.

FL Rotate to face an area of interest to the left.

MC Move to the centremost area of interest.

FR Rotate to face the area of interest to the right.

SL A small step forward and to the left.

SC A small step directly forward.

SR A small step forward and to the right.

MM Pick a random accessible location.

STOP Stop motion and other actions.

SUSPEND Suspend motion.*

LEARN Select a random goal. Set highest learning rate.

- Continue.*

Entries marked with * indicate non-motional actions for the purposes of setting

the very important monitor “Pursuing an interim goal.”

Many of the monitors and actions described have been introduced while using the

interface to develop the navigation system. Hence they are, in themselves, relevant

as results.
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2.4.5 The behaviour selection model

According to F2d, the design of the behaviour selection model has been made

flexible. Each behaviour rule must be assigned a level (an integer) and a weight (a

non-negative floating point number) at the time of its definition. There are three

aspects determining which action is chosen:

1. The supports of all behaviour rules are matched to the monitor states, the

matching group being the applicable rules for the situation.

2. From the set of applicable rules, the rules occupying the highest level form

the set of competing rules.

3. An arbitrary rule is selected from the competing rules, such that the proba-

bility of selecting a rule is proportional to the weight of that rule.4

Levels allow for absolute precedence, when it is needed, while weights can be

used to control the relative importance of behaviours when there exist multiple

acceptable alternatives for the next interim goal.

Since there are no constraints on the implementation of monitors, any functionality

which can be expressed in code may be approximated with a finite number of

monitors and behaviour rules—more for a better approximation. The use of scalar

monitors and piecewise-linear weight functions improves conciseness substantially

in certain cases (see the next section).

2.4.6 Representing behaviour weight variability

When we consider behaviours in the general sense—patterns of motion that a robot

might perform in response to an interim goal—we see that often a behaviour’s

importance, or urgency, varies smoothly with a linear parameter. For example, in

basic obstacle avoidance, the importance of moving away from an obstacle increases

as the distance to it decreases—smoothly. Or, if a robot depends on a rechareable

4The “wheel-of-fortune” method.
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battery, the importance of seeking out a recharge station increases with time. In

our initial design, we could approximate such a relationship using several behaviour

rules and threshold monitors which depend on the linear parameter (e.g. monitors

which turn on at P < 20, P < 50, P < 100, etc., where P is the parameter). Then

we could have rules such as:

• A: level 1, weight 10, 6P-LESS-THAN-100.

• A: level 1, weight 20, P-LESS-THAN-100 6P-LESS-THAN-50.

• A: level 1, weight 40, P-LESS-THAN-50 6P-LESS-THAN-20.

• A: level 1, weight 100, P-LESS-THAN-20.

In the above, A represents the same action. The four behaviour rules really specify

one unit of functionality, which may be represented as in figure 2.4.

Figure 2.4: How a variable weight would be achieved under our initial, fixed-weight

system.

There are two problems with this approach:

1. The approximation is piecewise-constant, not smooth.

2. One conceptual behaviour requires several monitors and several rules to de-

scribe, leading to a proliferation of items, reducing clarity.

A solution to this is to incorporate monitors which have scalar values, rather than

the binary true/false values of our basic monitors. The weight of one behaviour

rule is defined as a function of the scalar monitor. Parameter-weight pairs are

44



Evgeni Sergeev

supplied and the system linearly interpolates the weight function between these

coordinates. Continuing the above example, P becomes a scalar monitor and now

only one behaviour rule is required:

• A: level 1, weight=P :130@10,50@30,20@60,10@100

For the pairs we have chosen to use the notation w@v, where w is the weight that

the function has at P = v. The resulting approximation is graphed in figure 2.5.

The quality of the approximation is much better than necessary.

Figure 2.5: How a variable weight would be achieved under our improved weight

system.

The scalar monitors can measure any internal or external parameter. There is no

reason not to take advantage of a useful scalar aspect of the environment when

one is able to write code to detect it. Scalar monitors could be functions of mul-

tiple other scalar monitors—this makes the system very general—it is a challenge

to concieve of an effect that cannot be expressed using these tools, if it can be

expressed in code at all.

The next bottleneck on the way to building a versatile embodied system is indeed

about effects which are difficult to express in code—so we use machine learning to

capture them.

2.4.7 Recording and replaying

During development, it was found that the system often made decisions too quickly

for the operator to take note of the decision and the antecedents. Therefore, a
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facility was developed allowing the operator to review the progress of the navigation

system. Pressing the Graph button brings up the review window (figure 2.6).

Pressing the Record button in the main window begins recording.

The facility is useful when identifying the causes of certain decisions, as it allows

to freeze in time the state of affairs leading up to that decision, and to examine

the applicable behaviour rules at a glance.

2.4.8 Q-Learning of simple trajectories

Motions involving many degrees of freedom are not strongly present in the nav-

igation task. We used machine learning to learn perhaps the simplest possible

trajectory suite: the most efficient driving trajectory to any point location within

the field of view of the robot (defined thus such that the robot can see any obsta-

cles).

This value is the measure of the value of the state, and is the most important

Q-value for that state. The other Q-values are not shown, but are stored in the

file qtable.q.

We have set up the Q-Learning algorithm with states being the spatial points on

the local map, as shown in figure 2.7. The spacing between the points increases

linearly with distance from the robot: the aim was to make movements more

precise in close vicinity of the robot. The set of actions is similarly large: the set

of all possible V-Omega combinations is spanned by points which are actions. The

“Action selection pad” device allows the actions to be sampled in Manual mode.

In the Q-Learning window, the value maxaQ(s, a) is displayed for each state in

colour approximately as shown below.

The “Save Q table” button writes the table to the file qtable.q. It is possible to

display the next best transition state for each state by clicking the check button.
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Figure 2.6: The window allowing to replay all recorded states. The rows correspond

to behaviour rules—all are shown in the window at the same time. Columns

correspond to one saved state of the navigation system. Applicable behaviour

rules are shown in light blue. Competing behaviour rules are shown in blue with

their current weight as a fraction of the total weight of all competing behaviours

superimposed in dark blue. The actual behaviour that was selected at a particular

time is shown with an orange frame. Replaying is achieved by dragging the black

bar across columns with the mouse. The spatial map is restored to the state

corresponding to the column being replayed, as are the goal-seeking area and the

area showing the results of edge detection. The states of the monitors are also

correctly replayed.
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Figure 2.7: The window displaying the state of the Q-Learning algorithm. This

window may be brough up using the Q button on the main window. Each state is

displayed as it is spatially defined. There is a zoomed-in version of the first several

layers of states to the right of the main display.
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A line connecting a state and its next best state is drawn for all states where it

is known. This helps understand how an exploitation-only strategy would behave.

As the algorithm learns, the expected trajectory for the selected action is shown

as a green line and the “from” and “to” states are shown as a yellow and a blue

boxes respectively.

A special action (in the sense of being a building block for a behaviour, not an

action in Q-Learning) called LEARN has been added. It sets the exploration-

to-exploitation tradeoff ε to zero (i.e. maximum exploration). An empty world

was created and a behaviour table (called learning.mbt) was implemented to

scan the field and cycle the LEARN action, which selects a random state from

the Q-Learning state space and makes it an interim goal. An action selection

algorithm is then applied and the (Q-Learning) action chosen is applied to the

V-Omega controller for a constant amount of time. The position of the interim

goal after the action has been performed determines the state that the system has

transitioned to.
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Chapter 3

Experimental evaluation

3.1 Development of behaviour rules

A set of 44 behaviour rules has been developed. The rules may be examined

from within the program, provided on CD. The tooltips contain the comments

describing the purpose of each rule. Generally:

• The camera control behaviours have been placed at level 100, as environment

awareness was the most important factor for being able to proceed.

• Rules involving areas of interest (24 rules) have all been placed at level 50,

although they have differing supports, which means that only some of them

compete at any time.

• Back-up rules, not involving areas of interest, have been placed at level 0.

There is scope for further incremental improvement, but our efforts were redirected

to the learning task. We were satisfied that the proposed approach worked as

expected. Figure 3.1 contains some representative paths that have been recorded.
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Figure 3.1: Representative paths obtained without the use of Q-Learning (point

interim goals were approached by rotating to face them directly and then moving

towards them). The circles indicate points of rotation on the spot: the greater the

radius, the more rotation occurred. Clockwise from top-left: a frequently occurring

path in this scenario: the navigation system is quite good at following corridors;

an example showing a problem leaving the initial starting area—this is an example

from which further monitors and behaviour rules could be derived to avoid such

behaviour; quite sane exploration of the area, except that the robot unfortunately

turns around at the entrance to the area containing the goal; another typical trial.

Inportantly, the top-right example shows the corrected behaviour of dealing with

the dead-end in the middle of the map: the robot turns around upon reaching it.51
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3.2 Performance of Q-Learning

3.2.1 Modifications to the algorithm

In order to adjust the algorithm to our problem, we have modified the action

selection part of it. The conventional selection in Q-Learning either selects the

action with the most associated reward, or any action at random. Since we have

chosen a very large action space, the random selection of actions would have caused

the algorithm not to converge in a reasonable amount of time. In the intensive

learning mode, when we set the exploration-exploitation balance to maximum

exploration, we now randomly choose one of three selection methods, each with

equal probability:

1. We could choose an action which is close to the currently most-profitable

action for the present state. This allows the best action to slowly drift

towards the optimal action for that state. In our problem, local maxima are

also global maxima, hence over time this method alone would have converged

to a reasonable policy.

2. We could choose the best action from the most successful (in terms of max-

imum Q-value) of our neighbouring states. Hence, if a neighbouring state

“discovers” a profitable action, it would affect the states next to it. This,

and the previous method, are appropriate in our setting, because we expect

neighbouring states to have very similar optimal actions.

3. The third method is the original random choice from all possible actions.

This allows some states to find good actions by luck.

It was found that after leaving this algorithm to run overnight, at 1:1 simulation

time to real time ratio, in intensive learning mode, the average velocity of the

actions was still very low (the optimal velocity should be the maximum for all

states except the states very near the robot). See figure 3.2. This meant that the

algorithm was not converging well.
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Figure 3.2: The state of the Q-Learning table after the initial training run.

It was then that the “Action selection pad” was implemented. As predicted,

the algorithm benefitted greately from the operator’s not always optimal, but

often high-quality choices of actions. The algorithm was left for another night

after the operator training phase, producing the best of our Q-Learning trajectory

controllers (figure 3.3).

Believing that the speed of learning could still be improved, we have implemented

a control on the Q-Learning window, which restricts to a particular radial tier

the set of states from which the LEARN action randomly chooses for intensive

learning. It was believed that if the states closer to the robot would be intensively

learnt first, and then the radius extended gradually, the overall learning rate would

improve. In actual fact, while the Q-values propagated faster, as expected, this

strategy produced a policy involving significant unwanted rotation. This may be

seen from figure 3.4, from the pattern of the lines.
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Figure 3.3: The state of the Q-Learning table after training with an operator,

followed by an overnight autonomous training.
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Figure 3.4: The state of the Q-Learning table after “progressive” training.
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Figure 3.5 shows several paths that were observed after the Q-Learning module

replaced the default cautious driving behaviour.

3.3 Miscellaneous observations

3.3.1 Analysis from a bird’s eye view

While we noted in section 2.2 that the operator would be most effective if driving

the robot while observing the world through the robot’s own sensory means, we

neglected the fact that external observation could also be useful. Athletes often

record and replay video footage of their performance, to observe it from a third-

person perspective and identify aspects which may not be obvious from a first-

person view. The internal view is essential, but the more views the operator uses,

the more likely they are to detect useful heuristics.

3.4 Review of requirements and features

Feature F4 (describing the operator’s strategy in developing behaviours) in practice

changes as the behaviour table is built up. At the beginning the author indeed

manually traversed the navigation scenario, noting heuristics that needed to be

used, but as these heuristics were incorporated into the behaviour table, the system

gradually attained acceptable performance levels. The operator’s strategy then

changed: the operator observes the system in action, identifies weaknesses and

augments the behaviour table (patching the system).

Having developed the navigation system, we, as an operator, find our design of

the behaviour-formulation workflow to be a workable means of eliciting valuable

rules-of-thumb.
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Figure 3.5: The motion towards the interim goal was much faster than with the

original implementation—the learner had learnt the near-optimal V-Omega pa-

rameters to reach an interim goal, while before the implementation had to set

conservative values, in order not to skip past the interim goal point. The camera

frame rate seems to be too slow to keep up with the speed of the learner. Hence

it was found that the navigation system made rapid decisions based on cached

boundary data before it was updated by a new frame, in effect causing the robot

to avoid non-existing obstacles and trace oscillating patterns, as in the top-left

figure. Again, our visual interface allowed us to identify the problem. It may be

easily fixed through the introduction of monitors to delay making decisions until a

new frame is processed, for instance. Notwithstanding these problems, the system

with learned trajectories could produce paths of good quality, as shown in the

diagram.
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3.4.1 Why an operator is necessary as a source of heuristics

Consider our experience with developing behaviours for the navigation task. When

we have identified the “areas of interest” heuristic (prompting us to explore ac-

cessible regions near discontinuities in the visual boundaries map), this was in

response to the question “are some accessible areas more attractive for exploration

than others?” Our initial direction-selection heurstic was based solely on the reach

of the accessibility region—the further it stretched in a certain direction, the more

likely we would be to follow that direction. The problem was that sometimes the

machine would choose a direction that the operator would never choose under the

same circumstances. A most obvious example is, when facing a medium-length

corridor with a clear dead-end, the operator would back-track, but the machine

would not.

Our question now is: it is within the ability of a machine learning algorithm to

derive this heuristic independently? We cannot highlight the importance of border

discontinuities to the algorithm, because doing so would defeat the purpose—

the algorithm would surely find this heuristic, but our main achievement, as an

operator, in elucidating this heuristic was to identify that boundary discontinuities

are significant.

A machine learning algorithm may be applied by placing the robot at one particular

point on the map, and allowing it to test different directions at random, before

being returned to the initial location for another trial, in a long series of such trials.

We can suppose that it would identify areas closer to the boundary discontinuities

as more attractive (because they really are, on average). But this knowledge

would be useless in another scenario, because the algorithm would not have linked

the increased attractiveness to the proximity of boundary discontinuities. This

is because a machine learning algorithm does not “think” in terms of boundary

discontinuities and it has no facility to identify them as a feature. This is the

saliency problem well-known in AI. (Described for example in Chapter 3, “Artificial

Intelligence: From High Hopes to Sober Reality,” in [23].)

As an operator, we were able to identify the feature from experience of years of
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navigating in the real world, but even if we ignored this experience, a boundary

discontinuity is a feature that clearly stands out to us—it is provided as “hard-

ware”, in some sense, as a result of our evolution. Many features stand out—the

lightness of surfaces, the sharpness of corners, and many others beside. This makes

it easy for us to correlate one particular feature with advantageous decisions.

A device would need to be provided with the ability to distinguish thousands

of features, before it will be able to compete with the human brain at deriving

heuristics. Such a device would need to be enormously complex. It seems na ive

to think that a simple algorithm would solve this problem. This is why a human

operator is an essential component of our system. They are a source of heuristics.

Thus we believe we were justified in placing the responsibility of providing the

strategy onto a human operator, rather than setting up a machine learning al-

gorithm to attempt to learn a strategy. It seems that the domain is simply too

complex.

3.4.2 The decomposition of functionality into monitors and

behaviour rules

A possible criticism of our approach may be that most work during development

goes into setting up the monitors. Editing the rules introduces significant changes

into the behaviour, but only as a consequence of the rules relying on the monitors.

So why have we divided the labour so unevenly?

The defence is that monitors report information which is easily observable by

the operator visually. It is therefore straightforward to test the correctness

of each monitor’s implementation. This division of labour also provides crucial

insights when things go wrong: the reason why the robot performed a certain

action becomes very clear by the examination of the rule that was in control and

the values of the monitors at that time. There is no need to guess an explanation.

Another way of looking at monitors is that they are many modules with relatively

simple functionality (simple to comprehend) and we are not concerned with their
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implementation, just that they work reliably. We are, however, very concerned

with the way in which simple actions are combined, hence we are interesting in

closely examining that mechanism. Monitors remaining black boxes help us hide

unnecessary complexity.

3.4.3 Editing behaviours versus learning strategies

Considering the navigation task, we could have stopped short of letting the oper-

ator edit rules, and limited their role to defining monitors for extracting features

(which, in the previous section we argue, is only feasible with the help of an op-

erator). It would be possible to use an ML algorithm to build the equivalent of

our behaviour table—to provide appropriate actions, based on the states of the

monitors. We have chosen not to do this, because we do not see any significant

improvement to be gained by such an algorithm over our best behaviour table. It is

likely, provided we were successful in setting up the learner, that the performance

of the two policies would be comparable, because there is a straightforward rela-

tionship between the states of the monitors and the set of appropriate actions to

take—in most cases these are clearly evident. In other words, our best behaviour

table represents a strategy that is close to the optimal possible for this task (con-

sidering several objective performance metrics we could define), and a learning

algorithm would produce just another approximation to the optimal. Moreover,

we have no way to guarantee an acceptable convergence time.

3.5 Relationship to similar systems

Our monitor may be compared to a perceptual schema as described by Arkin [2].

The idea also appears in the description of the 3T architecture [17].
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3.6 Future work

3.6.1 Transferring the system onto real robots

There are a number of differences between the simulated and the real robots. In

particular, the characteristics of the camera: the field of view, abberations, focus,

etc. Our system would need to be adapted before it can successfully control the

real robots—however, the bulk of it should carry over without changes. Only the

sensory processing code would be significantly affected.

The most effective way to achieve the transition initially would be to write a

communications system which would forward the camera output and PSD sensor

readings to a suitably modified version of our operator’s software. It would forward

the servo settings and the V-Omega parameters back to the robot.1 It would then

be possible to write the necessary extra image filtering procedures, testing them

immediately on the live image stream. In this phase of development, the robot is

a terminal which does not perform significant processing on-board.

The learners would have to be adjusted on the real robots, through training, to

account for the differences in motor characteristics and physical effects not present

in the simulation. It is unclear how quickly the simulator-trained learners would be

able to adapt to the real world. It is probably best to adjust the simulator’s model

of a particular robot’s dynamics by measuring its real-world response characteris-

tics, and then learn trajectories on the simulator. This would require changes to

EyeSim’s V-Omega module.

Once the robot-as-a-terminal system performs acceptably, and is ready to be fielded

on an untethered, autonomous robot, the system would first have to be optimised.

During the construction of our prototype, liberal use was made of space and of

processor power, to speed up our development cycle. During optimisation, multiple

image filter passes could be combined into one. Not all of a frame would have to

1This has been planned for: all code interacting directly with RoBiOS is located in

NavLearningMain.cpp, and the class SensorData represents a packet that would need to

be transmitted across the wire.
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be processed. (Only up to the first obstacle edge from the bottom of the image).

Also:

• Floating-point operations could be replaced by the use of integers (e.g. a

fixed exponent idiom), for a gain in efficiency where needed.

• Trigonometric operations could be replaced with look-up tables.

In the latter two optimisations, we would be trading precision (we do not need

accuracy to 6 decimal places) for speed.

3.6.2 Mapping out a room

Mobile service robots would often work within the context of a room, or a set of

rooms, such as a floor in a multi-storey building. Their applications would very

often require them to work in terms of a map of their context. Building such a

map manually, for each robot-room pair deployed, may be a considerably tedious

task.

We note that our spatial awareness map is currently only being used to determine

accessibility, with the data discarded once it leaves the awareness radius. Instead,

it could be used to build a persistent map of the territory. Substantial work would

be required:

• The drift inherent in the internal position-tracking facility would need to be

taken into account. In practice, a reasonable technique might be to locate

features (i.e. corners) in the boundary, assume that they are connected with

straight walls, discover these features and walls by wall-following, and then

to navigate from feature to feature in a random sequence (across rooms and

corridors). Each feature-feature trip would provide a measurement of the

relative displacement of the two features. Combined with an assumption

that most walls are at right angles to each other, it seems plausible that an

accurate map could be produced in the end.
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• More sophisticated image processing would be necessary, to deal with pat-

terned floors, shadows and varying lighting conditions. Indeed, it is likely

that immediate edge-detection would be insufficient. Edges would need to

be tracked as the robot moves, iteratively estimating their distance away

from the camera. Whilst this approach seems to be useful and transferable

to other domains, it would be a matter for a whole separate project. Making

heavier use of PSD sensors, or even adding a sonar module, may be a much

simpler alternative.

There are three apparent benefits of an ability of a robot to build its own map

(besides relieving a human being of this activity):

1. The features that the robot determines will be recorded as seen through its

own sensors and sensory processing mechanisms. We expect that it would

be significantly easier to match a feature to one that has been previously

identified using the same sensors, than to correlate an observed feature with

that described on a foreign map.

2. Manual maps are prone to error and must be updated if, for example, large

furniture items are moved. A service robot that is able to build its own map

could invoke this mode at any time and update the map automatically.

3. The navigation system supplemented with a persistent map could use path-

planning to guide its reactive obstacle avoidance. Such a system would ap-

pear purposeful and efficient, though it would still be fully reactive (the

path-planner would be another set of monitors for the system to consider

when navigating). Our present system wanders randomly.

3.6.3 The EyeSim simulator

In the current version of EyeSim, there is a bug which prevents the intended use

of the “Sim time to real time ratio” feature, which would ideally allow simulations

to proceed at many times the normal speed. As it is, changing the ratio changes
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the rate at which frames are delivered to the robot, so speeding up the simulation

this way affects the robot’s perception of the world quite adversely. Hence we

have been running our learning algorithms at normal speed. The reason for the

occurrence of the bug has yet not been determined. If the bug is fixed, many more

variations of learning algorithms could be run, providing empirical comparisons of

their effectiveness.

3.7 Conclusion

A minimalist long-term planner sets goals of a persistent nature. Behaviours pro-

ceed towards such a goal, reacting to events in the robot’s immediate environment.

We see one behaviour as reacting to a particular type of event by setting an in-

terim goal (for example: “move to point P”). Certain interim goals require complex

motion, and, henceforth, are realised through the use of a trajectory learner.

• A planner is best for ordering and controlling checkpoint goals.

• Behaviours are most appropriate for representing the conditions for, and the

precedences of, interim goals.

• Learning is effective at dealing with ad-hoc trajectory control.

We have designed a prototype system to apply these broad principles, to test their

practicality. The results have been generally positive, but the navigation task that

we have had time to develop is very simple. In particular, we had no practical

exposure to effectors with many degrees of freedom, and while it seems plausible

that machine learning is the right approach for attacking this problem, practical

implementation is the only interesting test.

The process we have devised, of implementing monitors with outputs which can be

visually verified for correctness, exceeded our expectations by how well it seemed

to work. We have no doubt that the navigation system could be developed further,

to incorporate still more heuristics and to achieve superior navigation performance.

The process of defining behaviour rules works well with the monitors and we are
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satisfied with the generality that the combination of both levels and weights offer

for our control of behaviour arbitration.

The trajectory learning method performed acceptably, though even after modifi-

cations to improve the speed of learning, we still expect that there are much much

faster ways to learn using nearly the same system. Such improvements would have

permitted many types of trajectories to be learnt for a task such as pushing an

object.

In general, having undertaken this study, we believe that the creation of an effective

architecture is not a matter of establishing “the right” constraints, but relaxing

as many as possible. Instead, a focus should be placed on the introspective power

the architecture allows.

In one way, our work may be seen as work on the scaffolding for the efficient

editing of behaviours. The real problem being faced in robotics is exactly the

kind of inefficiency of breathing life into the hardware that may be addressed

by effective human-machine interfaces. After all, the robots are not required to

perform anything bewildering—they are required to perform a great number of

simple actions, at the right times. It is the efficient management of this complexity

that is the bottleneck, and the right user interface seems to be a worthwhile pursuit.

We are convinced that our emphasis on the verifiability of monitors by visual

inspection and the traceability of observed behaviours back to the exact situation

and rules that applied in it (provided by the record-and-replay function) is the

most important aspect of this study.
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