Automotive Simulation System

Steven Bradley
Student Number: 10122985

University of Western Australia
School of Electrical, Electronic and Computer Engineering

Centre for Intelligent Information Processing Systems (CIIPS)

Supervisor: Associate Professor Thomas Braunl

Submitted: 28 May 2009

Steven Bradley
12 Lowanna Way
City Beach WA 6015

May 29, 2009

The Dean

Faculty of Engineering, Computing and Mathematics
The University of Western Australia

35 Stirling Highway

Crawley, Western Australia 6009

Dear Sir,
[submit to you this dissertation entitled “Automotive Simulation System” in
partial fulfilment for the Bachelor of Computer Science and Bachelor of

Engineering degree at the University of Western Australia.

Yours faithfully

Steven Bradley

1 Acknowledgements

[would like to thank the University of Western Australia, the faculty of
Engineering, Computing and Mathematics for the opportunity and support
during my course work. My thanks grow exponentially to and for Thomas

Braunl, and the CIIPS group, for all their support and advice.

[must acknowledge the inspiration, love and support of my family Anne, Rod

and Claire. Much love and thanks to you.

-Steven

2 Abstract

The Automotive Simulation is a large and complex software project with the goal
of bringing a realistic driving simulator to the workbench. Many attributes of
this a large system require reform and redesign to improve performance and
stability. To this end, this thesis discusses the attempt to move AutoSim to a new
operating system platform so as to make better use of hardware and leverage the

Client/Server architecture of the design.

3 Content Page

1 AcCKNOWIEdZEMENLS ... snsasssssssssnssssssnsssanss 3
2 ADSEracCt....cciisnmis s 4
R 000) 1 =) 0 L o T 5
3.1 LiSt Of FIGUIeS s s ssss s s s s s sssssss s s s s s s snsnss 7
3.2 List of Tables....iiinnnssssssssssss s 8
3.3 ADDBreviations......———————————— 9

2 S {110 o4 T 1) U 00) L 11
4.1 TRheSIS StIUCLUTE c.ccccciccrcms s s 11

5 Literature RevView. ... 12
5.1.1 Examples of Other SIMUIAtors. .. sesssssssesssesssessssssens 12
5.1.2 MOTIVALION ceuteerereecerecseissenssesssessse s ses s ss s ss s s bbb st 15

5.2 SOftware THeOTY ... s s s sns 16
5.2, 1 SINGIELOM ettt ettt ettt a s s s s bbb s 16
5.2.2 State Desi@n Pattern ..ottt seessesssessse e s ssss s sessssssse s sssse s sos 17
5.2.3 Chain of ReSPONSIDIIITY . cccuiuurieriereeseieeeseeieetseesseisseesse et bsss s sesssssse s ssssesssssseens 18

6 Review of the current implementation ... ———— 20
6.1 AUtOSIMCHENT .o ———————————— 20
6.2 AUTOSIMSEIVET . s 21
6.3 Used Software Libraries ... 22
G705 70 S DTS 22
6.3.2 RAKNET c.oeeueereeeseeesseess s sessssssessssesss s s sss bbb p s 23
6.3.3 TINYXML.coourereeerreeesseessseesssesssssesssssessssesssssesssssssssssesssssessssse st ssssssssssesssssessssssssssssssssssssssees 23
6.3.4 PAL oottt eees s 24

6.4 Limitations of the Implementation........———————— 24
6.4. 1 ODJECLIVES coeureeeereeecerecteit e s e bbb b s ss s bbb s 25

7 Implementation and QUECOMES........cocvvmnmrmmmmssmm e —————— 26
7.1 Objective: Stability by Exception Handling and State Transitions.............. 27
7.2 Objective: building on a LINUX SYSteM ... 31
7.2.1 POrting AULOSIMSEIVET ..ot ses s ss s s sessessessssssesseses 31
7.2.2 Dynamic MaKefile - IAa ..ot iseese et sssisss s sessss e sssss s 31
7.2.3 Makefile DeSigN TREOTY ...ocooieriereennereeereeeseetseesseesseesse et ssssssssssssssssssssessssssssssssns 33

7.2.4 Dynamic MaKefile — PracCtiCe....cnieeseiseesssessssssesssssssesssssssesssssssesssssseens 35

7.2.5 Dynamic Makefile CONCIUSION ..ovuriureerreeeetreeeseisecseiseesesetsssisess s sesssssssesssesssesssseseens 49

7.3 Improved Network EXECULIiONccciismsmnmnsssnssssisssnssssssssssssssss s sssssssns 49
7.3.1 NetworKking Principles TheOry ... seessssseessssssessssssssssesssessssssssens 51
7.3.2 Network Performance PractiSeeenmeneenneseesssisesssssssessssssssssssssesssssseens 52

7.4 Experiments to evaluate oUtCOMES.ccvicirnsinisnsmsmsssssnssss s 52
7.5 Analysis of the Second EXperiment.........ssss e 54

8 CONCIUSION ...t s 56
£ B 2 U] =) Y 4 U 57
D2] 013 1 59
9.1 AutoSimServer MaKefile.......s——ns 59
9.2 AutoSimClient MaKefile ... 67

3.1 List

Figure 1:
Figure 2 :
Figure 3 :
Figure 4 :
Figure 5 :
Figure 6 :
Figure 7 :
Figure 8:
Figure 9 :
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14 :

Figure 15

Figure 16:
Figure 17 :
Figure 18:

of Figures
Example screenshot of Racer (used from [1]) ..coeeemenmeeneeneeneesseesseeneens 12
Euro Truck has a realistic cabin (screenshot from [2]) ..ccoorneneerreeneens 13
RARS in action (screenshot from [3]) .coeoenemeeneneensessseseeseessessesseessesseens 14
TORCS a modern Al championship (screenshot from [4]) ...cccoeereerreeeens 14
A Singleton Class DIagramceeneenesseeseeeessesssssesssesssessessessssssessesssssanes 17
State Design INheritanCe..... e esesssessesssssseseees 18
Chain of RESPONSIDIIILY ...cueeeeeeereeeesseeeesseeeeeseessee s sesssssssesssssseseees 19
The Original AutoSimClient Interface, (used image from [13])....cccoeen... 21
AutoSimServer INErface ... 22
: Image of the AutoSimClient side panel........onnneneeeeeeseeeees 26
: The stand alone AutoSimClient visualisation windowcoueneennenns 26
: SimulationStopped without validation.........eeneeneenseeseeseeseeseeseenes 27
: ServerWorldBuilder blind to the results ... 28
SimulationStopped with validation.......enenreseeeeseeseeseesseeseeeens 29
: ServerWorldBuilder able to indicate SUCCESScmmrmirnirssessessseessenns 30
Program control flow diagram.oonscneensesseesesseesessessessseseesseeees 50
Performance before implementation..........eeneeneenseeseeseeseesseennes 53
Performance after implementation.........eeeenserneeseeeeeseeseeseessseees 55

3.2 List of Tables

Table 1 : INtrodUCtOTY TEMATKSceureeeeereeeeeseesreeseessessensse s s ssessssssse s sssssesssssssssssssssans 35
Table 2 : Useful Declarations ... rsssass 37
Table 3 : Compiler LIDrary flags ... eeeerneessesnsessesssssessssssessssssssssssssssssssssssssssans 38
Table 4 : Script CatCh-all.... e 39
Table 5 : Qt dEClarationsS.. .t s s se st s s s sss s s seeansans 40
Table 6 : Qt ToO0lS SOUICE GENETALION ...cuceeerrcerecee et sese e ess e ee s ssssssesseeaneans 43
Table 7 : LiSting Target ODJECLSuereeeeereererseessesseessessessssssessesssssssessssssessssssssssssssssssssssans 44
Table 8 : Implicit Build RUIES ...ttt sessssssssssesans 46
Table 9 : Linking, Cleaning and INCIUAINGcocoreureereenreeneenreereeseeneesseesessessseseessessesseenns 48
Table 10 : Benchmarking Hardware Platform.........onenncseenseseesesseeseesesseenne 53

3.3 Abbreviations

Al Artificial Intelligence

API Application Programming Interface

CIIPS Centre of Intelligent Information Processing Systems
COLLADA COLLAborative Design Activity

GCC GNU C/C++ Compiler

GNU arecursive acronym for “GNU's Not Unix”
GUI Graphical User Interface

KDE K Desktop Environment

PAL Physics Abstraction Layer

RARS Robot Auto Racing Simulator

TORCS The Open Racing Car Simulator

UWA University of Western Australia

XML Extensible Markup Language

4 Introduction

The Automotive Simulator, described hereafter as AutoSim, is a software
simulation and development platform for the design and calibration of
engineering projects. The Centre for Intelligent Information Systems (CIIPS) is a
research group in the school of Electrical and Electronic Engineering at the
University of Western Australia and has the goal of researching robotic and
automation systems as they apply to modern vehicles. AutoSim reinforces that
objective by consisting of a software realistic world simulation using
programmable robots that provides visualisation and instrumentation sensors
around a virtual road network environment. The software is developed for
Microsoft Windows™ with the goal of having a cross platform, distributable and
extensible modular system. These objectives are to be met in part by moving
also onto the Debian Linux™ operating system while improving reliability and
tweaking performance. AutoSim is built around the use of open source
technologies so that the software can be distributed to other research

institutions and is designed to communicate over an Ethernet network.

4.1 Thesis Structure

This thesis will examine some of the examples of simulation and the work
already completed into AutoSim in Chapter 5. Chapter 6 conducts a review and
explanation of the current implementation. Followed by Chapter 7 contains

discussion of the implementation of improvement objectives.

-11 -

5 Literature Review.

5.1.1 Examples of Other Simulators

There are various examples of automotive simulators currently being developed
for the purposes of entertainment, for specific applications like driver training

and for product development and research purposes.

Figure 1 : Example screenshot of Racer (used from [1])

Racer

This project is a free, as in cost, cross-platform arcade car simulation project.

Racer Author Ruud van Gaal in the Netherlands describes his project as,

“Racer is a free cross-platform car simulation project (for non-commercial use),
using professional car physics to achieve a realistic feeling and an excellent render
engine for graphical realism. Cars, tracks and such can be created relatively easy
(compared to other, more closed, driving simulations). The 3D, physics and other
file formats are documented. Editors and support programs are also available to
get a very customizable and expandable simulator.

OpenGL is used for rendering.” [1]

-12 -

Racer is similar in many functional ways to AutoSim however the project source
is not free enough to be distributable. This makes it unsuitable as AutoSim
intends to develop into a research and development platform that may be
distributed around the world. Racer also lacks any design consideration for use

of robotic programming or instrumentation.

Figure 2 : Euro Truck has a realistic cabin (screenshot from [2])

Euro Truck Simulator

The ‘Euro Truck Simulator’ is an immersive simulator experience of driving a
truck or various large transport vehicles around the cities and roads of Europe.
It aims to provide the most realistic experience with detailed graphics and rich
interactive environments. In particular of the driving cabin with items such as
wing mirrors. This proprietary simulator is designed to share the truck driving

experience around Europe with the patrons of the company SCS Software.

- 13-

(R)RARS
File View Speed Car Seftings

Lost 97,41

Damag'
Fuel: 4 K1999

50.43 fps 9887 MPH

Figure 3 : RARS in action (screenshot from [3])

Robot Auto Robotic Simulator (RARS)

Built with the idea of providing a simple 3d robot simulator for competitive
racing and educational purposes for the subjects of Artificial Intelligence and
real-time adaptive optimal control. This project has been superseded by The

Open Racing Car Simulator (TORCS) project.

Figure 4 : TORCS a modern Al championship (screenshot from [4])

The Open Racing Car Simulator (TORCS)

Using more modern graphics technologies over the previous project. TORCS
continues RARS effort in Al competition by focusing on the competitive

programming of compliant programmed routines to handle a given track layout.

- 14 -

TORCS is built around a community of fun seeking technological savvy fans who
want to see their racers exceed, the project does allow users to create events for
their Al programmed racing teams and allows tracks to be customised for the
development of real world tracks. Users contribute based on their want to

participate in an event based on a particular scenario.

5.1.2 Motivation

Road transport safety is an ongoing concern as the number of road transport
vehicles increases nationally [5], and this importance for Australia, continues to
grow as does the proportion of road transportation in Australian society [6]. Car
manufacturers are seeking ways to prevent traffic accidents in a many new

directions, often with the inclusion of a driver assistance product [7].

Systems have also been developed for the use of simulating hardware through a
hardware-in-the-loop vehicle simulation. This is a vehicle on a workbench
approach in order to develop complex adaptive systems like traction assist [8].
AutoSim will bring the software bench-top to a device. Visual, interface and
monitoring devices that can help manage risks in the national road transport
system are important technologies that need innovative and sometimes complex
solutions. At present driver assistance and enhancement innovations are slow to
market and expensive to develop. The steep start-up costs of providing real
hardware for testing and the rigorous testing requirements mean significant
time delays between development iterations that inhibit research. A worthwhile
goal therefore is to provide a targeted testbed for driver-assistance functions.
By building on the existing work of AutoSim the CIIPS group will be able provide
realistic simulated data and instruments for use in driver-assistance technology

projects.

Testing and development of driver assistance and safety systems can be an
expensive, dangerous and time intensive iterative process. The development of a

useful simulation is required therefore to provide an abstract way of dealing

-15-

with real world situations and hence reduce the expense, danger and length of

time involved with development iterations.

Advances in computation and electronics has shown promise to improve the
safety and lives of individuals with the introduction of quality cheap cameras and
microcontroller capability. With the assistance of this development platform the
opportunity to leverage those technologies in the improvement of safety,
through research projects such as Active Advance Warning Systems [9] and

assistance Adaptive Cruise Control [10].

Existing platforms catering for the simulation of automotive systems have been
focused on engine performance and car dynamics. Vehicle manufacturers in
general do research in house and keep their development tools proprietary. The
use of virtual reality environments to simulate data for use in further research
has strong potential to accelerate improvements in driver assistance technology,
and vehicle instrumentation research [11]. This is where AutoSim is positioned,
to provide an adaptable and available workstation to efficiently and rigorously

test new automotive devices.

5.2 Software Theory

Software engineering concepts applied to AutoSim and discussed later in this

thesis are described in the following section.

5.2.1 Singleton

The singleton design pattern uses methods to ensure a class only has one
instance or a specified number of instances and provides a global point of access

for them.

Figure 5 is a class diagram of a singleton design, here the function getlnstance()

returns a reference to the unique singleton attribute. The class Singleton has a

- 16 -

constructor that initialises the unique singleton variable or returns it if already

established.

Singleton

singleton : Singleton

Singleton() : void
getlnstance() : Singleton

Figure 5 : A Singleton Class Diagram

This design pattern of a unique ubiquitous object has the advantage of
controlling access. Managing and encapsulating the sole instance, due to the
Singleton being a class, it has complete and strict control over when and how
other classes access it. The same principles may be achieved by using global
variables however the Singleton design pattern avoids complicating the name
space by polluting it with global variables to store sole instances. Another
advantage comes from the flexibility this approach provides over class methods
of software control, including allowing a variable and dynamic number of
instances. Singleton classes, as a class can have their operation and structure

refined by use of inheritance.

5.2.2 State Design Pattern

A state design pattern uses class methods to convert objects between classes.
The object becomes the state and this allows an object to alter behaviour based
on the internal state changes in that object. This is achieved by implementing an
abstract state class that acts as a proxy for explicitly defined state classes that

inherit the abstract class (see Figure 6).

-17 -

SimulationState

returninstance() : SimulationState

AN

SimulationPaused SimulationStopped
returninstance() : SimulationState returninstance() : SimulationState
SimulationRunning SimulationlLoad
returninstance() : SimulationState returninstance() : SimulationState

Figure 6 : State Design Inheritance

This design modality has the consequence of localising behaviour of a state to the
relevant class which partitions behaviour for different states. The alternative is
to use variables and data within a class to define internal states and have context
operations validate data and hence the current state explicitly. This
complication must be implemented repeatedly and throughout the
implementation. Further without this design pattern including a new state

would require changing several large conditional operation statements.

An advantage of the state design pattern is it ensures state transitions are
explicit, when an object defines a state by the internal data values of a class the
change of state has no representation in the data until such time as assignment
to those variables has been complete. By having state objects, the context is
protected from invalid and inconsistent internal states due to context shifting.
These state transitions are atomic and will be independent of interruptions from

another task and hence protected from circumstances of race conditions.

5.2.3 Chain of Responsibility

The chain of responsibility design pattern avoids coupling the sender of a
request to a receiver by using more than one object as an intermediately to
handle the request. These chains receiving objects do pass requests along the

chain until an object handles it or drops it.

- 18 -

The reasons for having a decoupled sender and receiver can be because a class in
a chain may not have to know how the object will be handled. A handler can only
interpret where to further process an object but can only know within its own
context what an object is and is required of it. In a chain of responsibility, see
Figure 7, each class is an object handler sorting or manipulating until the object

is handled.

(_/_ServerWorIdBuilder
_— R P
BuildData
~

)
— I
\/ —
{ XMLFileLoader
~.

—
—_—

. ~
TinyXML b
— -

—_—

Figure 7 : Chain of Responsibility

A chain of responsibility has the advantage of loose coupling because this frees
an object from having to know which other object handles a request. An object
requires only that it will be handled appropriately for an object of that class. The
sender, ServerWorldBuilder, and receiver, TinyXML, need not know of each
other while maintaining software integrity. This allows for increased flexibility
when handling object responsibilities. Objects can be replaced with various
alternatives at run-time and various requests can be interpreted by another
single object.

A disadvantage of the chain design pattern, is a receipt of a request is not
guaranteed. Since the sender does not know explicitly of the receiver an object
may be handled inappropriately or go unhandled when a chain is not established

properly during runtime.

-19 -

6 Review of the current implementation

AutoSim is an open source simulation platform. An environment is replicated
with models that include vehicles, roads, intersections, buildings and various
obstacles including trees road signs. The effects of gravity and wind are
replicated on the virtual vehicle which a user can drive using automated

scripting, GUI controls and a joystick control steering wheel and pedals.

Maps, model positions, car parameters are read from XML files generated from
user input as well as information freely available from the Open Street Map
Project [12]. Open Street Map is a public collaboration effort to provide an open
and free database of geographical data for public access. AutoSim uses this as

the basis of the maps which it uses running a simulation.

AutoSim has responsibilities to create a visualisation of a virtual three-
dimensional environment and to maintain track of a virtual world of elements
and obstacles. This is broken up into a client and server executables to allow the
simultaneous execution on multiple computers and at different locations can be
connected to the same virtual world via a network. This client server
architecture is an important part of the transition to a multiple node network

simulation.

The two executables are broken up into several key responsible classes.

6.1 AutoSimcClient

The AutoSimClient has the responsibility of creating the graphical interface and
visualisation of the models and environment of the physical simulation. It has a

graphical user interface shown below in Figure 8.

-20 -

AutoSimClient -0X

File Simulation
v w
Simudation Objects

Object Data
® limprezal
landcruser)
® traffic_light1_1
traffic_ight1 2
@ traffic_light1_3
+ traffic_ight1_4
® traffic_ight2_1
¥ traffic_ight2 2
® traffic_lightz_3
traffic_ight2_4
& traffic_ight3_1
 traffic_ight3 2
traffic_ight3_3
traffic_ight3_4
terrain0d
terrainl
terrain2
terraingd
terraind
terrainS
terrainé
<

User Program
Robot Name:
imprezal

User Program:

DemoUserProgram.di

Network

Server Ip Address:

1278. [0 . [0 &

Figure 8 : The Original AutoSimClient Interface, (used image from [13])

The AutoSimClient dominant software architecture design is the Singleton. A

Singleton design pattern, described by Figure 5, restricts the instantiation of a

class to a single object. In software a single instance is useful for co-ordinating

actions across a system. [14]

The classes that are key singletons in AutoSimClient are ClientController,

GraphicsManager, RakNetClient and UserProgramDLL. They are

implemented to be individual threads to execute their individual part. They are

regularly referring back to another singleton of other threads for triggers to

enact load and run behaviours over shared memory.

6.2 AutoSimServer

The AutoSimServer has the responsibility of handling the status of the

environment in the simulation. It produces interactions of the models through

the physics engine.

221 -

(W avtosimserver =lofx|

Eile Simulation

Simulation Objects

Data

Object
G

lght3_2

W) tr ¥
% traffic_light3_3

%) traffic_lighta_4

Clear

Figure 9 : AutoSimServer Interface

The simple interface of AutoSimServer displays a expandable tree of robots in
the simulated world. Expanding each item shows which body the robot is

connected to and the attributes of the body in the world.

6.3 Used Software Libraries

AutoSim adopts several free, open-source libraries to provide features and

functionality for the simulation. The libraries relevant to this thesis are:

6.3.1 Qt

Qt, to be pronounced like the word “cute”, is the GUI and application
development framework that AutoSim is built upon. This well documented
library is used to create the GUI of applications and to provide some, XML
parsing and cross platform file handling features. Qt is well known for being
used in the Linux desktop environment KDE and several leading applications

including Google Earth and the browser Opera [15].

Qt runs on all major platforms including Java based Qt Jambi and support for

Embedded Linux with Qt Extended. Qt Software, formally known as Trolltech

-22 -

Software, releases the software. The library uses C++ and has the notable
exceptions to a normal library by the use of non-standard tools to produce

standard C++ source code before compilation.

6.3.2 RakNet

RakNet is game network engine developed for the rapid development of
multiplayer gaming software. Based on the UDP protocol this C/C++ library is a
protocol with low overhead and low response time. The project written in large
part and administered by Jenkings Software, the tagline of RakNet is “Multiplayer
on the Deadline” [16].

In AutoSim RakNet is used to provide the application network stack and to
communicate between the core applications the client and server. During the
development of AutoSim this communication has been done through localhost,

the loopback address of a computer.

6.3.3 TinyXML

TinyXML is a super lightweight and simple open source XML parser written in
C++. Without support for features such as Extensible Stylesheet Language and
ignoring Document Type Definitions TinyXML focuses on ease of
implementation. Developed by Lee Thomason as a cross platform freely
available open source project TinyXML is used in AutoSim for the parsing and
storage of simulation information XML files. Thus providing AutoSim with

human readable and editable data files.

_23 .

6.3.4 PAL

Physics Abstraction Layer or PAL is an open source physical simulation API
abstraction system. It works as an interface between the low-level physics
engines and a high-level simulation application allowing flexibility for an
application to switch physics engines such as Bullet, Newton Game Dynamics
Engine and the Tokamak Physics Engine to name a few. In AutoSim, PAL acts as
the interface for physics engines for AutoSimServer where all the physics
calculations take place. PAL provides an extensive range of features including
support for XML, the Sycthe Physics Editor file format, COLLADA and

benchmarking tools.

6.4 Limitations of the implementation

AutoSim is a large and complex project. It has had the participation of several
students over the time it has been in development. This includes Torsen
Sommer who designed the physics and server implementation [17], Johannes
Brand who created the graphics virtualisation and road generation features [13]
and Pal Ruud who built on the vehicle models and physics with a focus on vision
[18] these three contributed the foundations of the project. And the project has

been and continues to be built on by students.

On inheriting the project in 2008 the project faced some major issues.

One included the lack of documentation of the project that can be expected in
any large software project. Another was the performance of the software; the
simulation had grown in complexity in such a way as to become unstable in
various ways and the slow progression of iterations of the physics simulation
itself. It appeared complexity was introduced to the software system by the lack

of development in the overall software design.

-4 -

In the source code of AutoSim, the implementation began to rely too heavily on
the singleton pattern for application control. In these cases each thread of
control is a singleton and presumes an overall objective and attempts to enact
that behaviour. The crossing of responsibilities is inevitable as is creating race
conditions between responsibilities. This issue is further exemplified with the
use of a chain of responsibility whose classes handle requests with no receipt or
reply to update the singleton master class. A singleton itself is useful in defining
a global state because it can be referenced uniquely and globally without
complication. However with several singleton ‘global states’ and with no
validation, by the use of objects in a chains of responsibility, rebuttal of a forward
global state transition in runtime is impossible. Unchecked transitions internally
will allow the simulation to lead into to an unknown and invalid working
condition. When this occurs a terminal segmentation fault or invalid access
error will occur as internal references executing in one of the singleton classes
has become stale and invalid. Once a global inconsistent state occurs there is no

means to move back to a previous state or into a correcting state.

At the time of writing steps were being made to address some of the software
design issues identified. The lack of any clear state design made execution
complex. The singleton designs were being enhanced to deal with that
complexity by implementing state design patterns with their internal state

information. Validation of state transitions will be discussed in this thesis.

6.4.1 Objectives

Improvement objective would be to test and implement cross platform feature of
the project by building AutoSimServer for the Linux platform. The problem
starts is two fold, to replicate the build process already in place and to introduce

more stability to the application by introducing state transitions.

_25.-

7 Implementation and Outcomes

The client interface has changed quite a bit since the previous version of
AutoSim.
=

Help

File
H 3 v -

Simulation Objects ——————

Object [pata i’
camarol
landcruiser1
traffic_light1_1
traffic_light1_2
traffic_light1_3
traffic_light1_4
traffic_light2_1
traffic_light2_2
traffic_light2_3
traffic_light2_4
traffic_light3_1
traffic_light3_2
traffic_light3_3
traffic_light3_4
terraind
terrainl

terrain2 v
4« - | @

DB
= ipl)

—User Program

Robot Name:

I camarol

User Program:

DemoUserProgram.dil Change

Display Mesh |
Reset |
Switch View |
i~ Network
Server Ip Address:

£

Figure 10 : Image of the AutoSimClient side panel

W AutoSimClient-v0.03

Figure 11 : The stand alone AutoSimClient visualisation window

- 26 -

The client now consists of two windows. The second, the visualisation window
can be maximised for use with a second monitor or projector. The two-window
interface of AutoSimClient provides an uncluttered view of the controls of the
client. The controls of the client are gathered into a separate dialog that provides

input for the connection process over the network.

7.1 Objective: Stability by Exception Handling and State Transitions

The internal state of independent threads is reliant on the memory of what they
have executed explicitly as well as the implicit memory of the position of that
thread. As an example, when loading the SimulationManager initialises from
new simulation data loaded by ServerWorldBuilder an independent thread that
may or may not have parsed the world attributes correctly. If
ServerWorldBuilder, which runs on a separate thread and received an error and

so has not loaded yet or is invalid, a fatal error occurs.

Before the transition to the simulation state ‘SimulationLoaded’, a validation of
completion must occur. The following describes what happens without class

transition validation.

From SimulationStopped.cpp

void SimulationStopped::Load(Simulation* pSimulation, QProgressDialog
*pQProgressDlg, STRING worldFileName)

{
MSG_LOG << "loadSimulation()";
ServerWorldBuilder::buildAll(pQProgressDIg, worldFileName);

ChangeState(pSimulation, SimulationLoaded::Instance());

}

Figure 12 : SimulationStopped without validation

_27 -

Here the buildAll() function is unchecked and executes to create the objects for
the simulation. The change of state occurs when buildAll() returns, and

SimulationStopped becomes SimulationLoaded.

From ServerWorldBuilder.cpp

void ServerWorldBuilder::buildAll(QProgressDialog *pQProgressDIlg, STRING
fileName) {

ServerWorldBuilder *builder = new ServerWorldBuilder();

BuildDataCreator* buildDataCreator = new BuildDataCreator(new

XMLFileLoader(fileName));

builder->buildWorld();
builder->buildGraphics(buildDataCreator->createBDGraphics());
builder->buildPhysics(buildDataCreator->createBDPhysics());
builder->buildObjects(buildDataCreator->createBDObjects());
builder->buildTerrain(buildDataCreator->createBDTerrain());

}
delete buildDataCreator;

delete builder;

}

Figure 13 : ServerWorldBuilder blind to the results

Here function buildAll() will always return quietly as the chain of responsibility
in handling objects will drop unhandled requests such as invalid XML. This is not
good as the behaviour of SimulationStopped is no longer blocked and inevitably
the application will achieve an invalid state. What is assumed here is an implicit
understanding between ServerWorldBuilder and the rest of the simulation
towards the required creation of simulation data containing the nodes for each of

the XML objects required.

_28 -

From SimulationStopped.cpp

void SimulationStopped::Load(Simulation* pSimulation, QProgressDialog
*pQProgressDlg, STRING worldFileName)

{
MSG_LOG << "loadSimulation()";
if(!ServerWorldBuilder::buildAll(pQProgressDlg, worldFileName)) return;

ChangeState(pSimulation, SimulationLoaded::Instance());

}

Figure 14 : SimulationStopped with validation

In the modified SimulationStopped Load() method below control is diverted
from the transition if the buildAll() function returns false.
Returning of a Boolean is only possible when a process can state success or

otherwise.

From ServerWorldBuilder.cpp

bool ServerWorldBuilder::buildAll(QProgressDialog *pQProgressDlg, STRING
fileName)

{
ServerWorldBuilder *builder = new ServerWorldBuilder();

BuildDataCreator* buildDataCreator = new BuildDataCreator(new

XMLFileLoader(fileName));

try
{
pQProgressDlg->setValue(10);
builder->buildWorld();
pQProgressDIg->setValue(20);
builder->buildGraphics(buildDataCreator->createBDGraphics());

pQProgressDIg->setValue(40);

-29.

builder->buildPhysics(buildDataCreator->createBDPhysics());
pQProgressDIg->setValue(60);
builder->buildObjects(buildDataCreator->createBDObjects());
pQProgressDIg->setValue(80);
builder->buildTerrain(buildDataCreator->createBDTerrain());
pQProgressDIg->setValue(99);
}
catch(string e)
{
cerr << "exception: " << e << endl;
delete buildDataCreator;
delete builder;
return false;
}
delete buildDataCreator;
delete builder;

return true;

}

Figure 15 : ServerWorldBuilder able to indicate success

Validity checking is established through the use of a try catch method and the
use of exceptions. This is a generic way to provide feedback without requiring
passing of references between functions. The exception collected is a string so
that an error can be reported, further this exception is used to inform the state
transition of the failure by returning false which in turn prevents the change of
state to an invalid one. Any object in a chain of responsibility can create an
exception. However the cost to performance of using such an approach makes it
inappropriate for highly used functions. In the case of high performance sections

of code, it is better to use functions with a neutral realisation to the validity of

-30 -

context relevant to the next executed commands. For this example of loading
XML, the only time penalty is for the user when there is an invalid data set being

loaded which is not time critical.

7.2 Objective: building on a Linux system

Towards the objective of achieving the outcome of bringing AutoSim to the Linux
platform a build process was required that would produce the required binary
files using a Linux system compiler. GCC is a GNU C/C++ compiler GCC was the
logical choice with almost universal availability on Unix based systems. GNU
Make is a build scripting toolset to provide automation for the compilation
process and is similarly widely supported.

AutoSim being of client/server architecture allowed movement of the Server
executable over to the Linux platform. This was achieved and is described in the

following section.

7.2.1 Porting AutoSimServer

Building AutoSim on another platform was made easier by the design choices
and contribution of previous work on the project. This includes the work of
Ruud, Sommer and Brand with references in their development process to
choosing popular open source libraries, and in large part platform independent

libraries [18] [17] [13].

The process of preparing AutoSim involved many tweaks and rewriting
differences between what is allowable on the Microsoft compiler and standard

C/C++ or varient of implemented in the GNU GCC compiler.

7.2.2 Dynamic Makefile - Idea

The Microsoft Visual Studio integrated developer environment and compiler

handled and organised building executables under the Windows environment

-31 -

with modifications for the use of QT source generation tools. This process was

roughly followed in order to replicate the build process under Linux. The build

process was attempted as follows:

1.

2
3.
4

Compile the third party Libraries.

Build all the source files.

Link all the required source binaries, link dependent libraries.

Create the executable binaries AutoSimServer and AutoSimClient to their

respective locations.

It was clear from the failure that more conditions and scripting must be

implemented to achieve this objective. The extra steps included are:

1.

Run the QT source generation tools to generate source files for the GUL
This is required as QT uses an XML file structure to transparently contain
the GUI design specification. This allows programmers to read, modify
and implement their own changes using the tools provided by QT or even
a basic text editor. QT provides tools to ‘generate’ C++ source files that
can be called and in turn call functions within AutoSim that are linked to
them. Thus providing the cross-platform and transparent GUI module
that AutoSim needs to also be cross-platform.

Check dependencies of source files & compile dependencies first.

In Microsoft Visual Studio, an integrated software development
environment, this is handled internally as links and dependencies
between source files are handled as development occurs. For an
independent build script this is not true. The choices made by the script
must be dynamic in order to prevent long build times and frequent
modification.

Building dependencies from project locations outside of AutoSimServer.
Both AutoSimClient and AutoSimServer share source files that reproduce
functionality and are identically used. It is important to be able to build
each executable independently when contributing to a group project as
client code may be unstable and it is unnecessary to build both projects

completely.

-32-

The implementation of a script to achieve these steps was required. Building on
a Linux platform can vary widely based on the tools available and supported for
various distributions. To keep AutoSim widely distributable the very wildly

supported set of tools, GNU Make and GCC were chosen to be the build platform.

7.2.3 Makefile Design Theory

GNU Make is an application for automated scripting of the build process. It uses
a ‘Makefile’ script to execute commands based on rules and dependencies.

A Makefile is a script of explicit or implicit rules, variable declarations, directives
and comments [19]. Rules define how and when a target, for example a source
file, is built. Directives execute commands and control logic within make while
comments are ignored lines for the purpose of annotation and begin with the

hatch symbol ‘#".

Rules are based on the standard example as follows:

targets : prerequisites

command

This is interpreted as, when making target, ensure prerequisites are made, if so
execute command. Any command that returns an error will halt the make

process.

An explicit list of commands can be written to build the executables of AutoSim
however such a list must be modified with every addition or removal of source
files in the project. And also every explicit target must list each and every
dependency required so that the build command can be executed with an

assumed success. This is an unwieldy complication.

-33 -

Implicit rules in Makefiles describe a type of rule for building a type of file,
usually based on a partial filename. The set of implicit rules in Make provide
useful utility when compiling simple source structures and checking
prerequisites. Many of the implicit rules are described from the built-in rules of

the GNU Make program.

Variable declarations are written in the form of:

VARIABLE=SomeValue

And can be included in a future part of the script using the following syntax:

all :

echo $(VARIABLE)

The above example would when running make execute ‘echo SomeValue’.

Directives are the useful control and command features of GNU Make. These
allow inclusion of source and program flow and stop from within a Makefile

itself.

Comments are the useful descriptors that help summarise information for a
human reader and can be used to ignore or block sections of code from

executing.

To be used productively in a multiple programmer environment a Makefile to
build AutoSim must make use of the following properties: it will
* Balance simplicity while being general enough for use with little need for
modification as source code and dependencies change.

* Be dynamic so that each source file binary will be compiled separately

-34 -

* Be specifically described in the process so that errors can be understood

and that each executable can be compiled separately.

Clearly the complexity of the code leaves the process of writing a completely
explicit build script will be nearly impossible, as dependencies follow
dependencies like a rabbit warren. To overcome these difficulties a dynamic

approach was taken and is described in the following chapter.

7.2.4 Dynamic Makefile — Practice

The following section is a detailed examination of the concepts involved in the

execution of the dynamic build process.

##

AutoSimServer Makefile

Written to replicate the build process used in VS, to build under Linux
Assumes all libraries are built beforehand this includes:

#i Raknet, PAL, Qt, Bullet, tinyXML

Author : Steven.John.Bradley+AutoSim@gmail.com

##

Requires: binutils

##

Table 1 : Introductory remarks

Beginning this script is a description of the purpose and author of the script.
Some useful notes are also attached to remind users of the requirements and
expectations that may accompany the script. Everything here is put into

comments so they will not interfere with the make process. A second hatch

-35-

symbol was produced to allow the comment to stand out away from any line of

ignored code.

In designing this script there are a few requirements before it can become useful.
Declarations are used to specify information relevant to the process. These are
placed near the top of the script so that they can be observed easily for error
checking, and also relatively easy editing. They include locations of important
files and resources and also the flags used in the build process. In the code below
in Table 2 we see the declaration ‘$(CURDIR)’ this is an inbuilt function of Make

that refers to a string containing the absolute current working directory.

-36 -

CXX=/usr/bin/g++

MAKE=/usr/bin/make

INTERNAL_PATH=$(CURDIR)/../release

CFLAGS=-D STATIC_CALLHACK -Wall -Wextra -ansi

##-pedantic

##-pedantic ##libraries headers are not compiled with pedantic and will fail

CONFIG=release

LIBDIR=$(CURDIR)/../../lib
QTDIR=$(LIBDIR)/Qt
RAKDIR=$(LIBDIR)/RakNet
PALDIR=$(LIBDIR)/PAL
XMLDIR=$(LIBDIR)/tinyxml

BULDIR=$(LIBDIR) /bullet

CLIENTDIR=$(CURDIR)/../AutoSimClient-v0.03

SERVERDIR=$(CURDIR)

Table 2 : Useful Declarations

Table 2 contains declarations of the compiler flags and references to applications
used in the build process which are the ‘make’ binary and the compiler binary
‘g++’. Also included are a number of declarations with arrays of paths to the
install location of every library used in this build process. It is assumed that
every library is installed under ‘LIBDIR’ and have the normal name as their

directory.

-37 -

#H#
#i Paths

##

INCLUDE=-1../AutoSimCommon -I1$(RAKDIR)/Source -1$(PALDIR) -
I$(PALDIR)/pal_i -1./GeneratedFiles -1./GeneratedFiles/Release -1$(XMLDIR) -
I$(SERVERDIR) -I$(CLIENTDIR) -I$(QTDIR)/include -I1$(QTDIR) /include/QtCore -
I$(QTDIR)/include/QtGui -I$(BULDIR) /src

##Include has a reference to AutoSimClient/Server source files but they should be

made mostly independent

LIB_PATHS=-L$(PALDIR)/lib/debug -L$(BULDIR)/src -L$(RAKDIR)/Lib/GNU-
Linux-x86 -L$(QTDIR)/lib

##-L$(XMLDIR)

##
Libs

##

##QTLIBS=-1Qt3Support -1QtScript -1QtWebKit -IQtCore -1QtSql -1QtXml -1QtGui -
[QtSvg -1QtXmlPatterns -1QtNetwork -1QtTest -1QtOpenGL -1QtUiTools

QTLIBS=-1QtCore -1QtGui
LIB_NAMES=-Ibulletcollision -Iraknetd $(QTLIBS)
##-llibpal -Itinyxml

LIBS=$(LIB_PATHS) $(LIB_NAMES)

Table 3 : Compiler Library flags

-38 -

The contents of Table 3 show flags used when pre-processing headers for
compilation and declaration of paths for linking libraries to the main executable.
The Libs section builds the declaration ‘LIBS’ so that it can be used during the
linking process. The lines in ignored comment tags contain all the Qt libraries
that are not required but are listed for future reference as they are installed on
the system. PAL and tinyXML are not included in the library list as they will be
statically linked. They should be included here for dynamic linking as well as

removed from inclusion in the static object list before compiling.

#H#
#i AutoSim Builds

##

all: AutoSimServer

@echo "***** $< [s now built ******"

Table 4 : Script Catch-all

Table 4 contains the default explicit rule. The rule for ‘all’ will be executed if the
script is run with no parameters and is the part of the script that triggers the
default behaviour to continue the rest of the build process. If it is satisfied, i.e.
that AutoSimServer is built without error, then a message informing the user is

displayed.

-390 .

##
Qt MOC and UIC

##

##Makefile path == $(CURDIR)
GEN=$(CURDIR)/GeneratedFiles/$(CONFIG)

GENPATH=$(CURDIR)/GeneratedFiles

MOC_FLAGS=-DUNICODE -DQT_THREAD_SUPPORT -DQT_CORE_LIB -DQT_GUI_LIB
-I$(CURDIR)/GeneratedFiles -1$(QTDIR)/include -1$(GENPATH)/$(CONFIG) -
I$(CURDIR) -1$(QTDIR)/include/QtCore -1$(QTDIR)/include/QtGui

Using our own Qt's binaries prevents compatibility issues.
MOC=$(QTDIR)/bin/moc

UIC=$(QTDIR)/bin/uic

Typical System Locations with QT-Dev packages installed
##MOC=/usr/bin/moc

##UIC=/usr/bin/uic

Table 5 : Qt declarations

The Qt requires that the XML files be processed by tools provided as part of Qt to
generate source files related to the GUI. To facilitate this the above declarations

in Table 5 will be used in following build rules.

- 40 -

##
BUILDING QT -> UIC -> MOC
##

Qt:

cd $(QTDIR); ./configure -prefix $(QTDIR) -static -qt-sql-sqlite -no-openssl
<yes && make -j 5

Remove -j 5 to stop parallel processing and enable clear reading of output
#H# Example: cd $(QTDIR); $(MAKE) -f Makefile
~"" above is taken out, unnecessary, as long as Qt built beforehand

if included add to the dependencies of MOC below

MOC _FILES : $(GENPATH)/ui_mainwindow.h\
$(GEN)/moc_mainwindow.cpp\
$(GEN)/moc_treemodel.cpp)
$(GEN)/moc_serializabletree.cpp\
$(GEN)/moc_messagelist.cpp)
$(GEN)/moc_controller.cpp

MOC: $(GEN) MOC _FILES

$(GEN):
@echo "*****Creating Qt Release Directory"

mkdir $(GEN)

$(GEN)/moc_controller.cpp:
@echo "****Moc'ing $@"

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/Controller.h -o
$(GEN)/moc_controller.cpp

_4] -

$(GEN)/moc_messagelist.cpp:
@echo "****Moc'ing $@"

@$(MOC) $(MOC_FLAGS) $(CURDIR)/MessageList.h -o
$(GEN)/moc_messagelist.cpp

$(GEN)/moc_controller2.cpp:
@echo "****Moc'ing $@"

@$(MOC) $(MOC_FLAGS) $(CURDIR)/Controller2.h -o
$(GEN)/moc_controller2.cpp

$(GEN)/moc_simulation2.cpp:
@echo "****Moc'ing $@"

@$(MOC) $(MOC_FLAGS) $(CURDIR)/Simulation2.h -o
$(GEN)/moc_simulation2.cpp

$(GEN)/moc_serializabletree.cpp:
@echo "****Moc'ing $@"

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/SerializableTree.h -0
$(GEN)/moc_serializabletree.cpp

$(GEN)/moc_treemodel.cpp:
@echo "****Moc'ing $@"

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/TreeModel.h -o
$(GEN)/moc_treemodel.cpp

$(GEN)/moc_mainwindow.cpp:

@echo "****Moc'ing $@"

-4 -

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/mainwindow.h -0
$(GEN)/moc_mainwindow.cpp

$(GENPATH)/ui_mainwindow.h: $(GEN)/moc_mainwindow.cpp mainwindow.ui
@echo "***Uic'ing $@"

@3(UIC) -0 $(GENPATH)/ui_mainwindow.h mainwindow.ui

Table 6 : Qt Tools Source Generation

The specialist command rules in Table 6 are explicit. While this would normally
be an issue as any change to the name, number or structure of these files would
require manual editing, however they are unlikely to change as frequently and
are an unusual build process they do not fit into the pattern of dependency
checking accomplished in the later part of the script. Therefore they can be kept
as a reference in an explicit rule. The directories are specifically made to
maintain the layout as used by the Windows build process. Commented out is
code for building Qt from source, both the libraries and the source generation
tools, when it has been extracted from an archive into QTDIR.

For each case as this set of explicit rules is executed, if required, a notice is

printed to the console indicating the activity it is processing.

_43 -

##
Object Compiling

##

All source files must be listed here, wildcards include new files automatically

SOURCES = $(wildcard ../AutoSimCommon/*.cpp) $(wildcard $(GEN)/*.cpp)
$(wildcard *.cpp)

Static link libpal due to PAL breaking dynamic linking support for GCC

OBJECTS = $(SOURCES:.cpp=.0) $(PALDIR)/lib/liblibpal.a

MAKEDEPEND = $(CXX) -MM $(INCLUDE) -0 $*.d $<

##

Required Objects from another location.

##

DEPEND = $(CLIENTDIR)/RoadFactory.o\
$(CLIENTDIR)/MaplInfo.o\
$(CLIENTDIR)/TerrainBuilder.o\
$(CLIENTDIR)/node.o\
$(CLIENTDIR)/OsmParser.o\
$(CLIENTDIR)/RectNode.o\
$(CLIENTDIR)/segment.o)\
$(CLIENTDIR)/hvector.o\

$(CLIENTDIR)/kbspline2d.o

Table 7 : Listing Target Objects

_44 -

To build a process dynamically we require that targets be listed without
requiring an authored list. The wildcard function achieves this where asterisk
alone would fail because when used without the wildcard function; in part of a
dependency with a file which has an extension for example, file.o, does already
exists, the normal behaviour is to then look for the incorrect string *.0" as a
filename. Which then usually fails, the wildcard function correctly handles the
use of asterisks to avoid this confusion. SOURCES now contains the list of source
files to be compiled and linked, however each file may depend on others and
require the building of some other parts of the project. OBJECTS also now
contain a list of file names to be built by compiling SOURCES using a simple
extension substitution. Some binary object files from AutoSimClient are required

to build AutoSimServer, and so they are listed here.

Importantly the declaration of MAKEDEPEND is a command used later in the
build process that uses the GCC pre-processor to create a list of dependencies for
a given source file. The argument is supplied through the $< macro and the
output generates text files from each C++ source file with the extension .d
containing the paths to all dependencies. This is used in the build process and is
required for it to complete without complaint of missing dependencies. This
automatic process is key to making this dynamic script work. With each source
file now with a similarly named .d dependency file all that remains is to

manipulate this information into a form usable by GNU Make.

- 45 -

##
TinyXML library objects
##

TINYXML = $(XMLDIR)/tinyxml.o $(XMLDIR)/tinystr.o
$(XMLDIR)/tinyxmlerror.o $(XMLDIR)/tinyxmlparser.o

testing:

@echo $(SOURCES)

%.0: %.cpp
@echo "**Compiling Object $@ for $<"
@$(MAKEDEPEND); \
cp $*.d $*D; \
sed -¢ 's/#.4//" e 's/"[:]* *//)
-e's/*\\$8//" |
-e'/"$$/d'\

-e's/$8/:/" < $*d >> $*.D; \
rm -f $*.d

@$(CXX) $(CFLAGS) $(INCLUDE) -c $< -0 $@

Table 8 : Implicit Build Rules

Now the information required for the dependencies is located in a .d file with a

lot of otherwise useless information references to system files and includes.

The “.d’ file will contain lists of dependencies in the form:

- 46 -

/pathtodependency/filename.extension

/anotherpathtodependency/filename.extension

To transform those lists into useful explicit dependency rules the list of
commands in Table 8 uses a stream editor tool to read and manipulating the files
contents (simply put it removes unwanted parts, adds colon characters and

leaving useful parts [20]) which is then redirected to a file with the extension “.D’.

The files contents will then be of the form:

<filename.o> : <dependency of filename> \

<dependency of filename>\

<filename.cpp> : <dependency of filename>\

<dependency of filename>\

Which is later included onto the bottom of the running script. In doing so, the
explicit rules for all the source files have been defined dynamically and are in to
be used in the compile command (the last line of Table 8) as the rules are
executed again. The ‘%.0 : %.cpp’ is a pattern matching rule so that the
commands to generate dependencies and compile is only run when a new file
matching the pattern *.0’ is required or a dependency of that rule, the ‘%.cpp’, is

changed.

_47 -

##
Linking

##

AutoSimServer: MOC $(OBJECTS) clientdepend
@echo "*Linking $@"

$(CXX) $(CFLAGS) $(INCLUDE) -0 $(INTERNAL_PATH)/AutoSimServer
$(OBJECTS) $(DEPEND) $(TINYXML) $(LIBS)

clientdepend:

cd ../AutoSimClient-v0.03; $(MAKE) -f Makefile dependAutoSimServer

clean:

@echo "*I*I*I*Cleaning.. *I*I*/*"

@/bin/rm -rf *.0 $(INTERNAL_PATH)/AutoSimServer $(GENPATH)/*

-include $(SOURCES:.cpp=.D)

Table 9 : Linking, Cleaning and Including

In this final section are the rules for linking the binary object files into a complete
executable. The rule ‘clientdepend’ executes a more simple script to build the
components required of AutoSimClient. The last line is of interest because this
directive includes all .D files generated from the dependency pre-processing
command. Providing the dynamic list of explicit dependencies. This dependency

map allows the script to compile and link the final executable easily.

- 48 -

7.2.5 Dynamic Makefile Conclusion

The objectives were to produce a build process that handles source code and
dependency changes, to have a process that compiles objects and projects
independently, to be specific so where problems occur they can be identified and
to include the extra build steps, running Qt tools, dependency checking and
building projects independently. These objectives have been met by a
combination of specific explicit rules, and a dynamic approach of pre-processing
the source to build rules so that the script can mostly modify itself as the project

changes.

7.3 Improved Network Execution

One of the largest issues confronting AutoSim is the lack of performance in the
simulation. Moving to separate the client and server processes on separate
machines does help the overall throughput however refinement and reform of
the approach taken to communicate over the network should yield results given
the recent move away from the chain of responsibility singleton class structure

to a more organised approach of state based control.
Benchmarking around the network classes is the easiest way to measure

simulation throughput, as the code is highly predictable and subject to the

performance of the rest of the application structure.

- 49 -

AutoSimClient s /\ AutoSim Server

RakMNetClient RakNetServer

RakNetLibrary ,m RakMNetLibrary

Figure 16 : Program control flow diagram.

In both the client and the server are implementations from an extension of the
class RakPeer from the RakNet Library API. RakPeer is the main interface for
network communications and contains all the major functions for the RakNet
library. Both RakNatClient and RakNetServer are singleton classes in their own
executable that also implement threading so that they can run in their own loop
of execution. In this loop are functions to the rest of AutoSim that pass
information updates and trigger code execution through the Singleton class
chain of responsibility in order to update and maintain coordination throughout
the system. Figure 16 shows the relationships between RakNetServer and
RakNetClient classes to the rest of the project; they both call functions into the
rest of the binary and program control returns to them. Which then loops over
RakNet API calls checking for more data from the network. The class
RakNetServer evaluates the passing of real time to ensure the simulation is not

processed too quickly and in doing so limits the packet throughput.

When active the RakNetClient checks for a received packet as the active thread
and new packet is received, it is de-serialised before being passed on for use in
other singleton classes like GraphicManager. This acts as a chain of

responsibility from between different types of request.

-50 -

7.3.1 Networking Principles Theory

AutoSim uses a physics engine to handle interactions with the models in the
simulation. To evaluate their movement physics engines adopt a Euler equation

approach to integration of the realistic physical relationships they uphold [21].

To do so requires providing them with a delta of time to run the simulation over
from the current state. This means the lower the delta of time the higher the
precision but the longer the calculation time. The inverse is also true that the
longer the delta the less ability to correct changes to the simulation and hence a
loss of accuracy. The value designed for in AutoSim is a thirty millisecond time
delta. This means that the resolution of the Simulation is thirty milliseconds and
that no new information between the client and server is developed earlier than
this time. The time the simulation states is known as a simulation tick.

Computer cycles and time are referred to as tocks.

AutoSim networking stack is handled by the use of the Raknet Network
Multiuser Network library. Raknet is open source UDP and C++ based network

library designed to provide low response time with little overhead.

The simulation maintains a tree data structure with the simulation status
information. It is serialised for storage and transmission of simulation data

between the client and server.

The simulation processes the simulation in specific finite quantum of time or
ticks; these ticks represent a specific amount of simulated time. In AutoSim the
base tick time represents thirty milliseconds of simulation time. This is one
simulation iteration and the physics engine. The process of communicating this
evolution of the physics simulation and the position of models in AutoSim occur
by the connection of an AutoSimClient to the Server. This occurs when the
AutoSimClient establishes a connection through Raknet by sending a datagram

to AutoSimServer. The server proceeds to modify simulation state information

-51 -

each tick, which is transferred by a serialised simulation tree as a message to the

client in a datagram via Raknet and the network stack.

To assess the performance of the software attention was given to the process of
communication between the two major executable, the client and server. In the
Server, the responding thread is of class ‘NetworkThread’, this is defined as a
wrapper for the class ‘RakNetServer’ which implements functionality for the
communication with Raknet and code to process the serialised simulation

information tree.

7.3.2 Network Performance Practise

The movement of work away from any unnecessary responsibility held by the
network threads in both the client and the server is expected to help network
threads adapt better when computer cycle conditions change. Outcomes cannot
be determined by the subjective experience of the simulator as the simulation
behaves differently when simulated changes are not reflected on by user input.

The following section conducts to evaluate the code reform.

7.4 Experiments to evaluate outcomes.

[t was clear from the sluggish response of AutoSim that the simulation execution
was not occurring efficiently. To evaluate the usefulness of the implemented
reforms a log was collected of events in the AutoSimServer RakNetServer class in
the control loop, which governs the evolution speed. When events take place so
that the simulation is executed more than the simulation step size apart, and
event and time was recorded. The actual time was printed to a log and is

pictured in the following performance chart, Figure 17.
The experiment was conducted using default settings and the

‘residential_area.xml’ world file. This allowed the simulation to drive the car

straight forward through the town models and then out onto a space of empty

_52.-

grass fields with little input from the driver. Events in the single digits would be
influenced by the connection of the client, and similarly events at the tail end of
the simulation represent server load once the client has disconnect. Each time
the same motion was completed by the experiment under the exact operating
system conditions and experiment run was completed in two minutes. A number
of trial runs were completed to ensure that the log used was a representative

sample of the simulation performance.

These experiments were all conducted using the following hardware.

Processor Intel Core Duo 2.0GHz
System Memory 2GB of DDR2

Operating System Microsoft Windows XP SP3
DirectX Version 9.0c

Table 10 : Benchmarking Hardware Platform

Original Benchmark Performance Jan 2009

200

Time (m$)

150
~&—Event Time

=i "Weighted Ave. T=2"

100

0 5 10 15 20 25 30 35 40

Event Number

Figure 17 : Performance before implementation

Each event only occurs when the period between simulation ticks or iterations is
over thirty milliseconds. This may be due to the length of execution time within
the simulation governing control loop of AutoSimServer. These events are
indicated as an overload reporting errors such as “Can Not Keep Up!” to the

console.

-53 -

The first series is the raw record of the simulation lag event. The second series is
a weighted average over the last two records. From the graph it can be stated
that the average lag event that occurs is one hundred milliseconds. While this
does not seem like much, it should be remembered that each point on the graph
represents successive lag events, and multiple events may occur together. This
results in the user experiencing what is referred to as chugging as an apt

comparison to a struggling and slowly moving motor engine.

In general the longest lag event occurred near the beginning of the simulation,

and the lag events stopped when the client disconnected.

Figure 17 is the benchmark that this work aims to improve on.

7.5 Analysis of the Second Experiment

After the changes to code in the shift towards a state design pattern and the
removal of work on the network thread. The exact context of the experiment
trails was repeated. And a representative sample result created the following

chart:

_54 -

Simulation Benchmark May 2009

180

Time (mS)

—&=Event Time
i~ Weighted Ave T=2

20

0 20 40 60 80 100 120 140

Event Number

Figure 18 : Performance after implementation

In Figure 18 we can see a good reduction in the average intensity of lag events.
The average time for a lag event is around forty-five milliseconds. The number of
events has increased two and a half fold. The increased number of events may
indicate that the simulation is actually completing more of the actual physical
states between the start and finish of the experiment. Chugging appeared to be
reduced. Figure 18 also represents well the early lag seen in the earlier
experiment. And an unusual spike at the end of the experiment is an outlier but

before that point the clear drop-off of events has occurred as before.

-55-

8 Conclusion

This thesis attempted to achieve three objectives, one to bring AutoSimServer to
the Linux platform, to improve stability with the improvement of transitions to
help prevent invalid internal states and all while improving the network
performance of the simulation so that the simulation was more realistic. It has
mostly achieved what it set out to do. AutoSim remains a large and complex
piece of software however now the implementation now stands on two
platforms with improved stability and more efficient processes for producing an

automotive simulation.

- 56 -

9 References

[1]
[2]
[3]
[4]
[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

"Racer Car and Racing Simulator”, Retrieved May 2009
http://www.racer.nl/

"Euro Truck Simulator”, Retrieved April 2009
http://www.eurotrucksimulator.com/

"Robot Auto Racing Simulator"”, Retrieved February 2009
http://rars.sourceforge.net/

"Welcome to The TORCS Racing Board", Retrieved February 2009
http://www.berniw.org/trb/index.php

"Road fatalities and fatality rates - 1925 to 2003", Retrieved 10
September 2008
http://www.abs.gov.au/AUSSTATS /ABS@.NSF /Previousproducts/1301.
OFeature%?20Article302005?opendocument&tabname=Summary&prodn
0=1301.0&issue=2005&num=&view=

Australian Bureau of Statistics, "Use of urban public transport in
Australia”, Retrieved 10 September 2008
http://www.abs.gov.au/Ausstats/abs@.nsf/90a12181d877a6a6ca2568b
5007b861c/d81efef6e2252cf4ca256f7200833049!0penDocument

W. D. Jones, "Keeping Cars from Crashing," IEEE Spectrum, vol. 38, pp. pp.
40-45, Sept. 2001.

S. Alles, C. A. Swick, M. E. Hoffman, S. M. Mahmud, and L. Feng, "The
hardware design of a real-time HITL for traction assist simulation,"
Vehicular Technology, IEEE Transactions on, vol. 44, pp. 668-682, 1995.
"Mobileye - Advanced Warning Systems", Retrieved January 2009
http://www.reverseinsafety.co.uk/advanced-warning-
systems/mobileye.html

Retrieved January 2009

http://www.toyota.eu/06 Safety/03 understanding active safety/03 cru
ise control.aspx

T. Guo, X. Wang, and G. Yu, "Virtual-Reality-Based Instrument
Development in a Virtual Vehicle Simulation System," in Electronic
Measurement and Instruments, 2007. ICEMI '07. 8th International
Conference on, 2007, pp. 3-215-3-219.

"OpenStreeMap"”, Retrieved http://www.openstreetmap.org/

J. G. Brand, "Graphics for a 3D Driving Simulator," in Center for Intelligent
Information Processing Systems: University of Western Australia, 2008.

R. H. Erich Gamma, Ralph Johnson, John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software: Addison-Wesley
Publishing Company, Inc, 1996.

"Qt - A cross-platform application and Ul framework", Retrieved February
2009 http://www.gtsoftware.com/

-57 -

[16]
[17]

[18]

[19]
[20]

[21]

"RakNet - Multiplayer game network engine", Retrieved October 2009
http://www.jenkinssoftware.com/

T. Sommer, "Physics for a 3D Driving Simulator," University of Western
Australia 2008.

Pal Simen Ruud, "Evaluation of a Vision-

-based Driver Assistance System in Simulation," in

Centre for Intelligent Information Processing Systems (CIIPS):

University of Western Australia, 2008.

"GNU "make'", Retrieved February 2009
http://www.gnu.org/software/make/manual/make.html

"sed, a stream editor", Retrieved March 2009
http://www.gnu.org/software/sed/manual/sed.html

T. B. A. Boeing, ""Evaluation of Real-Time Physics Simulation Systems","
Int'l Conf. Comp. Graphics Interaction Techniques Australia and Southeast
Asia, pp. pp- 281-288, 2007.

- 58 -

Appendix

9.1 AutoSimServer Makefile

##

AutoSimServer Makefile

Written to replicate the build process used in VS, to build under Linux
Assumes all libraries are built beforehand this includes:

Raknet, PAL, Qt, Bullet, tinyXML

Author : Steven.John.Bradley+AutoSim@gmail.com
##

Requires: binutils

#H#

CXX=/usr/bin/g++

MAKE=/usr/bin/make

INTERNAL _PATH=$(CURDIR)/../release

CFLAGS=-D STATIC CALLHACK -Wall -Wextra -ansi

##-pedantic

##-pedantic ##libraries headers are not compiled with pedantic and will fail

CONFIG=release

LIBDIR=$(CURDIR)/../../lib
QTDIR=$(LIBDIR)/Qt
RAKDIR=$(LIBDIR)/RakNet
PALDIR=$(LIBDIR)/PAL
XMLDIR=$(LIBDIR)/tinyxml
BULDIR=$(LIBDIR)/bullet

CLIENTDIR=$(CURDIR)/../AutoSimClient-v0.03
SERVERDIR=$(CURDIR)

-59 -

##

Paths
##
INCLUDE=-1../AutoSimCommon -I$(RAKDIR)/Source -I$(PALDIR) -

I$(PALDIR)/pal_i -l./GeneratedFiles -l./GeneratedFiles/Release -I$(XMLDIR) -
I$(SERVERDIR) -1$(CLIENTDIR) -1$(QTDIR)/include -1$(QTDIR)/include/QtCore -
I$(QTDIR)/include/QtGui -1$(BULDIR)/src

##Include has a reference to AutoSimClient/Server source files but they should be
made mostly independent

LIB PATHS=-L$(PALDIR)/lib/debug -L$(BULDIR)/src -L$(RAKDIR)/Lib/GNU-
Linux-x86 -L$(QTDIR)/lib

##-L$(XMLDIR)

##
Libs
##

##QTLIBS=-1Qt3Support -1QtScript -1QtWebKit -1QtCore -1QtSql -1QtXml -IQtGui -
1QtSvg -1QtXmlPatterns -1QtNetwork -1QtTest -1QtOpenGL -1QtUiTools
QTLIBS=-1QtCore -1QtGui

LIB_NAMES=-Ibulletcollision -Iraknetd $(QTLIBS)

-llibpal -Itinyxml

LIBS=$(LIB_PATHS) $(LIB_NAMES)

- 60 -

##
AutoSim Builds
##

all: AutoSimServer

@echo "***** $< s now built ******"

##
Qt MOC and UIC
##

##Makefile path == $(CURDIR)
GEN=$(CURDIR)/GeneratedFiles/$(CONFIG)
GENPATH=$(CURDIR)/GeneratedFiles

MOC_FLAGS=-DUNICODE -DQT_THREAD_SUPPORT -DQT_CORE_LIB -DQT_GUI_LIB
-I$(CURDIR)/GeneratedFiles -I$(QTDIR)/include -1$(GENPATH)/$(CONFIG) -
I$(CURDIR) -1$(QTDIR)/include/QtCore -1$(QTDIR) /include/QtGui

Using our own Qt's binaries prevents compatibility issues.
MOC=$(QTDIR)/bin/moc
UIC=$(QTDIR)/bin/uic

Typical System Locations wiht QT-Dev packages installed

##MOC=/usr/bin/moc
##UIC=/usr/bin/uic

-61 -

##

BUILDING QT -> UIC -> MOC

##

Qt:

cd $(QTDIR); ./configure -prefix $(QTDIR) -static -qt-sql-sqlite -no-openssl <
yes && make -j 5

Remove -j 5 to stop parallel processing and enable clear reading of output
Example: cd $(QTDIR); $(MAKE) -f Makefile

""" above is taken out, unnecessary, as long as Qt built beforehand

if included add to the dependancies of MOC below

MOC FILES : $(GENPATH)/ui_mainwindow.h\
$(GEN)/moc_mainwindow.cpp
$(GEN)/moc_treemodel.cpp)
$(GEN)/moc_serializabletree.cpp
$(GEN)/moc_messagelist.cpp)
$(GEN)/moc_controller.cpp

MOC: $(GEN) MOC_FILES

$(GEN):
@echo "*****Creating Qt Release Directory"

mkdir $(GEN)

$(GEN)/moc_controller.cpp:

@echo "****Moc'ing $@"

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/Controller.h -0
$(GEN)/moc_controller.cpp

$(GEN)/moc_messagelist.cpp:
@echo "****Moc'ing $@"

-62 -

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/MessagelList.h
$(GEN)/moc_messagelist.cpp

$(GEN)/moc_controller2.cpp:

@echo "****Moc'ing $@"

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/Controller2.h
$(GEN)/moc_controller2.cpp

$(GEN)/moc_simulationZ2.cpp:

@echo "****Moc'ing $@"

@$(MOC) $(MOC_FLAGS) $(CURDIR)/Simulation2.h
$(GEN)/moc_simulation2.cpp

$(GEN)/moc_serializabletree.cpp:

@echo "****Moc'ing $@"

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/SerializableTree.h
$(GEN)/moc_serializabletree.cpp

$(GEN)/moc_treemodel.cpp:

@echo "****Moc'ing $@"

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/TreeModel.h
$(GEN)/moc_treemodel.cpp

$(GEN)/moc_mainwindow.cpp:

@echo "****Moc'ing $@"

@3$(MOC) $(MOC_FLAGS) $(CURDIR)/mainwindow.h
$(GEN)/moc_mainwindow.cpp

$(GENPATH)/ui_mainwindow.h: $(GEN)/moc_mainwindow.cpp mainwindow.ui

@echo "***Uic'ing $@"
@$(UIC) -0 $(GENPATH)/ui_mainwindow.h mainwindow.ui

-63 -

##
Object Compiling
##

All source files must be listed here, wildcards include new files automatically
SOURCES = $(wildcard ../AutoSimCommon/*cpp) $(wildcard $(GEN)/*.cpp)
$(wildcard *.cpp)

Static link libpal due to PAL breaking dynamic linking support for GCC

OBJECTS = $(SOURCES:.cpp=.0) $(PALDIR)/lib/liblibpal.a
MAKEDEPEND = $(CXX) -MM $(INCLUDE) -0 $*d $<

##

Required Objects from another location.

##

DEPEND = $(CLIENTDIR)/RoadFactory.o\
$(CLIENTDIR)/MaplInfo.o\
$(CLIENTDIR)/TerrainBuilder.o\
$(CLIENTDIR)/node.o\
$(CLIENTDIR)/OsmParser.o\
$(CLIENTDIR)/RectNode.o)\
$(CLIENTDIR)/segment.o\
$(CLIENTDIR)/hvector.o)\
$(CLIENTDIR)/kbspline2d.o

- 64 -

##

TinyXML library objects

##

TINYXML = $(XMLDIR)/tinyxml.o $(XMLDIR)/tinystr.o
$(XMLDIR)/tinyxmlerror.o $(XMLDIR)/tinyxmlparser.o

testing:
@echo $(SOURCES)

%.0: %.cpp
@echo "**Compiling Object $@ for $<"
@$(MAKEDEPEND); |
cp $*%d $*.D; \
sed -e 's/#.*//"\
-e s/ TR/
-e’s/*\\$8//"\
-e'/"$$/d"-e's/$3/ /" < $*.d >> $*.D; |
rm -f $*.d
@$(CXX) $(CFLAGS) $(INCLUDE) -c $< -0 $@

##
Linking
##

AutoSimServer: MOC $(OBJECTS) clientdepend

@echo "*Linking $@"

$(CXX) $(CFLAGS) $(INCLUDE) -o $(INTERNAL PATH)/AutoSimServer
$(OBJECTS) $(DEPEND) $(TINYXML) $(LIBS)

clientdepend:
cd ../AutoSimClient-v0.03; $(MAKE) -f Makefile dependAutoSimServer

- 65 -

clean:
@echo "*I*I*I*Cleaning..*I*I1*I*"

@/bin/rm -rf *.0 $(INTERNAL_PATH)/AutoSimServer $(GENPATH)/*

-include $(SOURCES:.cpp=.D)

- 66 -

9.2 AutoSimClient Makefile

#H#

AutoSimClient Makefile

Written to replicate the build process used in VS, to build under Linux
Assumes all libraries are built beforehand this includes:

Assumes all libaries are built beforehand this includes: Raknet, PAL, Qt,
Bullet, tinyXML

Author Steven.John.Bradley+AutoSim@gmail.com

#H#

CXX=/usr/bin/g++

MAKE=/usr/bin/make

INTERNAL_PATH=$(CURDIR)/../release

CFLAGS=-Wall -Wextra -ansi

##-pedantic ##libraries are not compiled with pedantic and will fail

CONFIG=release

LIBDIR=$(CURDIR)/../../lib
QTDIR=$(LIBDIR)/Qt
RAKDIR=$(LIBDIR)/RakNet
PALDIR=$(LIBDIR)/PAL
XMLDIR=$(LIBDIR)/tinyxml
BULDIR=$(LIBDIR)/bullet

INCLUDE=-I../AutoSimCommon -I$(RAKDIR)/Source -I$(PALDIR) -
I$(CURDIR)/GeneratedFiles -I$(CURDIR)/GeneratedFiles/Release -I$(XMLDIR) -
I$(CURDIR)/../AutoSimServer-v0.03 -I$(CURDIR)/../AutoSimClient-v0.03 -
I$(QTDIR)/include -I$(QTDIR)/include/QtCore -I$(QTDIR)/include/QtGui

##Include has a reference to AutoSimClient/Server source files but they should

be made mostly independent

all: dependAutoSimServer

-67 -

@echo "*****$< has successfully compiled Objects for AutoSimServer"
##0BJECTS
dependAutoSimServer: RoadFactory.o depend-RoadFactory MapInfo.o depend-

MaplInfo TerrainBuilder.o node.o depend-Node OsmParser.o

H# This indicates the depth of dependency of the Server on the Client

depend-MapInfo: RectNode.o
depend-Node: segment.o hvector.o
depend-RoadFactory: kbspline2d.o

%.0: %.cpp
@echo "**Compiling Object $(CURDIR) / $@"
@$(CXX) $(CFLAGS) $(INCLUDE) -c $< -0 $@

clean:

@echo "*I*I*I*Cleaning..*I*I*[*"

@/bin/rm -rf *.0

- 68 -

