

FPGA Implementation of the Lane

Detection and Tracking Algorithm

ROOZBEH ANVARI

Supervised by Professor Dr Thomas Braunl

The University of Western Australia

Faculty of Engineering, Computing and Mathematics

School of Electrical, Electronic and Computer Engineering

Centre for Intelligent Information Processing Systems

Master of Engineering Thesis

1

The Dean,

Faculty of Engineering, Computing and Mathematics

The University of Western Australia

35 Stirling Highway

CRAWLEY WA 6009

Dear Sir,

I submit to you this dissertation entitled “FPGA Implementation of the Lane Detection and

Tracking Algorithm” in partial fulfillment of the requirement of the award of Master of

Engineering in “Information and Communication Technology”.

Yours faithfully,

Roozbeh Anvari.

Roozbeh Anvari

42 Loftus St

Nedlands WA 6009 28�� MAY 2010

2

Abstract

The application of the Image Processing to Autonomous Drive has drawn a significant attention

in the literature and research. However the demanding nature of the image processing algorithms

conveys a considerable burden to any conventional real-time implementation. Meanwhile the

emergence of FPGAs has brought numerous facilities toward fast prototyping and

implementation of ASICs so that an image processing algorithm can be designed, tested and

synthesized in a relatively short period of time in comparison to traditional approaches. This

thesis investigates the best combination of required algorithms to reach an optimum solution to

the problem of lane detection and tracking while is aiming to fit the design to a minimal system.

The proposed structure realizes three algorithms namely Steerable Filter, Hough Transform and

Kalman Filter. For each module the theoretical background is investigated and a detailed

description of the realization is given followed by an analysis of both achievements and

shortages of the design.

3

Acknowledgments

Many thanks to my supervisor Professor Dr Thomas Braunl for his invaluable support and

guidance throughout the course of this project.

I would like to gratefully express my thanks and love to my family Vida, Javad and Hormoz who

have always been supporting me unconditionally.

4

Contents

1 introduction

1.1 Thesis scope ………………………………………………………………………………………………………1

1.2 Eyebot M6……2

1.3 Thesis outline……………………………………………………………………………………………………...3

2 Literature Survey

2.1 Literature Survey on the Conventional Design Methodologies on the FPGA for image processing . ……. 4

2.1.2 General Purpose Image Processing System on the FPGA……………………………………………..……5

2.1.3 Hardware/Software Co-design Approaches for Line, Detection ………………………………………..…6

2.1.4 FPGA design using Matlab/Simulink …………………………………………………………..……………7

2.2 A Literature Survey on the Lane Detection Problem…………………………………………….……………8

3 Edge Detection

3.1 Edge Detection theory……………………………………………………………………………...……………10

3.2 Steerable Filter Theory……………………………………………………………………………………….…11

3.3 FPGA implementation of the Steerable Filter…………………………………………………………...……13

3.3.1 Fraction Length……………………………………………………………………………..…………………13

3.3.2 Implementing the Filter Structure…………………………………………………………...………………16

3.3.3 Applying Orientations and Calculating Trigonometric Values………………………………….…………20

3.3.4 Determining the Register Sizes…………………………………………………………………….…………23

3.4 Results and Analysis of the Design………………………………………………………………….…………25

5

4 Lane Detection

4.1 Literature Survey………………………………………………………………………………..………………27

4.2 Hough Transform Theory………………………………………………………………………………………28

4.3 Lane Detection: Second Approach……………………………………………………………………………..30

4.4 Comparison between two algorithms………………………………………………………………………..…31

4.5 Proposed methodology………………………………………………………………………………………….32

4.6 FPGA implementation of the Hough Transform……………………………………………………………...34

4.7 Achievements and Analysis of the Results………………………………………………………………….....37

5 Tracking and Kalman Filter

5.1 Literature Survey……………………………………………………………………………………………….41

5.2 Kalman Filter Theory and Initialization………………………………………………………………………41

5.3 Floating Point Implementation…………………………………………………………………………………45

5.4 Fixed Point Implementation and Behavioral Modeling ……………………………………………………...50

5.4.2 Analysis of the Results of the Fixed point implementation ………………………………………………...53

6 Conclusion………………………………………………………………………………………………………...56

7 Future Work……………………………………………………………………………………………………...57

Appendix

A Required Equations to Port the Kalman Filter to Hardware………………………………………………...58

B Computer Listings………………………………………………………………………………………………. 60

References………61

6

List of figures

1.1 EyeBot M6 2

3.1 First Derivative Filter Masks 10

3.2 2D structure for the non-separable moving window 17

3.3 2D structure for the separable moving window 18

3.4 Dealing with the boarder pixels 19

3.5 applied orientations to the Steerable Filter 20

3.7 The block diagram of the implemented steerable filter 24

3.8 a) the original image b) image representing the ����	
 ��
°
 component c) image

representing the ����	
���
°
 component

25

3.9 Steerable Filter Module 26

3.10 summary of the utilized resources on the FPGA 26

4.1 Map between Cartesian and Hough space 28

4.2 The area required to be searched for road lanes 33

4.3 Top View of the implemented Hough Transform 34

4.4 Top View of the implemented Hough Transform 36

4.5 The implemented logic in the second FSM of the Hough Transform only searches

theindicated area and in the specified direction in a column by column fashion

37

4.6 ��
Hough Matrix on the SRAM��
 Thresholded Hough Matrix on the SRAM��

theleft lane as detected on the FPGA

39

4.7 summary of the utilized resources on the FPGA 40

5.1 image of the tracked point on to the Cartesian coordinate 45

5.2 initialization for the kalman filter in the left and right windows 46

5.3 proposed structure of tracking the intersection of the perpendicular 47

5.4 the efficiency of the implemented Floating point Kalman Filter to track the

measured values in terms of the image of the observable

48

5.5 the efficiency of the implemented Floating point Kalman Filter to track the

measured values in terms of the position of the lane

48

5.6 lane tracking in the left window 49

5.7 consisting modules of the Kalman filter 50

5.8 Kalman Filter’s FSM 51

5.9 Top view of the implemented Kalman Filter 52

5.13 inputs and outputs to the Kalman Filter during the four phases of object detection 53

7

List of the Tables

3.1 Filter taps corresponding to the basis functions of the Separable Gaussian

filter

14

3.2 basis functions of the Separable Gaussian filter in each direction 14

3.3 A comparison between different values of truncation noise 16

3.4 a fixed point representation of the required trigonometric values 21

4.1 An empirical comparison between the speed of the lane detection algorithms

in different light conditions

39

5.2 Fixed Point sizing rules that are applied to the current design 51

5.3 empirical comparison between the Floating point and Fixed Point

implementations of the Kalman Filter

54

1

Chapter 1

Introduction

Nowadays the advent of fast platforms has given a more significant role to image processing.

There is no wonder any more that there are image processing units embedded in such small

platforms like cellphones and cameras, however the demanding nature of the image processing

algorithms is still putting a barrier to realize a wide range of existing advancements in theory into

the world of real time implementation. On the other hand the great amount of resources available

on the FPGAs besides the flexibility to test and prototyping an ASIC that it offers, has made

FPGA an ideal choice for realizing image processing algorithms in the real time and autonomous

drive is no exception. A brief literature survey agrees that although there are numerous

advancements in trying to either developing new algorithms or to refining existing ones, only a

little attention is drawn to the realization.

1.1 Thesis scope

This thesis aims to design the required modules of a real-time platform capable of distinguishing

between desired lane roads and the rest of the peripherals. Indeed there are many issues that have

to be addressed. Firstly the image must be preprocessed so that all the data irrelevant to the goal

of the algorithm are distinguished. The level of noise, undesired lanes parallel to the desired ones

and the light under which the experiment is conducting are all determining factors that must be

considered into account. The next step is to obtain a formal description of the present lanes.

Hence it must be decided which algorithm is an optimum choice so that it gives a more accurate

description while demanding less resources. Finally it comes to the step where the platform must

come to a decision what to do when the outcome is deviated due to either noise or the lack of

visual information.

2

1.2 Eyebot M6

It is desired to tailor the design to fit the resources available on the EyeBot-M6 which is a mobile

robot designed in the University of Western Australia capable of image processing tasks. There

is a small sized FPGA of the Xilinx’s Spartan-3E family[1] embedded on the board that is

intended to be the host platform for this design. One major challenge of this project would be on

how to cope with limited resources on the Spartan-3E. The image stream is provided by two

color cameras named OV6630 from OmniVision [2]. The embedded cameras have a maximum

resolution of 352 * 288 pixels and can reach a maximum frame rate of 50 fps. In order to enforce

the cameras to generate a 8 bit stream, they are required to be fed a frequency of 18 Mhz. In

order to save the on-chip resources a 18 Mbit SRAM is interfaced to the FPGA that has the

capacity to hold 10 frames simultaneously. The FPGA platform is connected to the CPU with an

asynchronous bus interface called Variable Latency I/O. The main processor on the EyeBot-M6

is a PXA-255 [3] running at 400MHz embedded in a Gumstix Board [4] in which there are

64MB of SDRAM, 16MB of flash and a bluetooth module embedded on the board.

Figure 1.1 : An overview of the EyeBot-M6

3

1.3 Thesis outline

chapter 2 conveys the results of the conducted survey on the conventional approaches already

practiced by the expert toward implementing lane detection on the FPGA

chapter 3 expands the theory of the Steerable filter used for edge detection and image

refinement. Then explains the advantageous and disadvantageous brought to the design by

applying this approach. Finally the implemented structure on the FPGA is explained, following

by an analysis of the performance of the implemented hardware.

chapter 4 investigates two conventional approaches in the literature for a hardware

implementation of lane detection followed by the theory of both approaches. The theory behind

the Hough transform and its implementation are given in detail. An analysis of the performance

of the design follows.

chapter 5 discusses the need for a tracking module to be added to the design. The theory of

the Kalman filter and the practiced approach toward transferring the matrix calculations to the

hardware is given following by a discussion on the difficulties faced in the implementation and

an analysis on the results.

chapter 6 summarizes the implemented design and its achievements. Explains both

achievements and shortages of the design and gives suggestions for a future work.

4

Chapter 2

Literature Survey

This thesis aims to implement the consisting modules of a lane detection and tracking system on

the FPGA. However a survey on the literature proved that this topic is a very active and

significant area of research and numerous papers are investigating the boarders of knowledge in

this domain. Since the thesis aims to implement the design on the FPGA platform, firstly a

survey on the conventional FPGA structures that are related to the topic of this thesis is

conducted. In the following a brief summary of all the different approaches toward lane detection

and tracking follows. Furthermore the literature review relevant to the three main topics of this

thesis namely Steerable Filters, Hough Transform and Kalman Filter will be investigated in the

corresponding chapters.

2.1 Literature Survey on the Conventional Design Methodologies on the

FPGA for Image Processing

The first paper[5] that was found to be very related to the topic of this thesis is investigating the

implementation of the lane detection problem on the FPGA. Indeed this paper is proposing a

solution for two out of the three concerns of this thesis. This paper is applying the Canny filter

for edge detection and is suggesting the Hough Transform as a solution for lane detection.

The canny edge detector is implemented on the FPGA using 2D convolution combined with a

moving window structure. The following steps are taken to detect the edges, the image is

smoothed by Gaussian convolution, then in order to obtain gradient information the image’s

derivatives in both directions is calculated using the Prewitt operator. Once the image is edge

detected, the Hough transform is applied to approximate the present lines in the image.

Unfortunately the article describes the implementation procedure in a very brief and inadequate

approach. Actually the focus of the implementation was to apply pipelining as much as possible

in such way that one output pixel per clock edge is obtained. Cascaded FIFOs are used to

implement the moving window. A 5 � 5 window structure for smoothing and two 3 � 3 windows

5

for derivation are applied. The result of the canny edge detector on each pixel is presented as a

one bit structure where 1 represents an edge and 0 represents a none-edge. By applying this

approach the authors are trying to map the whole image to a considerably smaller space so that

the whole image is available at once on the FPGA. Calculations of the sine and cosine functions

are implemented using look up tables. The whole project is synthesized on a Xilinx’s virtexII [1]

and the exact number of the consumed logic resources is given for each processing block. This

implementation has achieved a speed of 44MHz. In this project the whole code is written in

Matlab [13] and is simulated on the MODELSIM [16] prior to synthesis.

This paper contributed a lot to the advancement of the thesis. Even though the article is just

briefing about their applied algorithm and reveals no information about implementation, the

general idea of possibility of implementing the Hough transform on the FPGA was adopted from

this paper. On the contrary this paper is applying a very demanding algorithm for edge detection

i.e. Cany filter that is relatively too much more complex in comparison to the concept of using

the Steerable Filter applied to this thesis. Finally the idea of implementing ��� and ��� values is

derived from this paper as will be discussed in chapter 4.

2.1.2 General Purpose Image Processing System on the FPGA

Even though it is out the scope of this thesis to implement a general purpose image processing

system, it is worth to investigate the expert attitude toward satisfying the requirements of such

design. The following two papers are investigating such generic solution that can fit any image

processing system. By applying such approaches, the problem of ASIC design reduces to

implementation of high level languages like C and assembly on the FPGA.

The second paper[6] that is being discussed here is suggesting a totally different methodology in

comparison to those of the first paper. This paper is implementing a Sobel Filter as a 2D moving

window structure. The main idea of this design is to make the modules as generic as possible so

that the camera and RAM interface modules are independent of the image processor unit’s

structure. This design is using the embedded multipliers available on the FPGA. Unfortunately it

became apparent within this thesis that utilizing the embedded modules is not always possible

and sometimes it is required to re-implement some existing modules. The image processing

module on this design is interfaced to the outer world by means of handshaking with both the

camera and memory interface. It is also remarkable that this design is applying truncation to

6

adjust the numbers. Although this idea is accepted and applied to this thesis but finally it became

apparent that truncation noise can cause great distortion as will be discussed in the following

chapter.

The third investigated design[7] is aiming to realize an Embedded Image Processing System on

the FPGA by utilizing the Microblaze [8] soft processor as the main approach suggested by

Xilinx. Indeed the importance of this article is that it represents a shortcut towards designing the

whole embedded system on the FPGA using the automation facilities embedded in the XILINX

development studio. Microblaze is the soft core processor that can be adjusted to meet the

design’s requirements. Since this software is professionally designed and tested by the

manufacturer and since according to the Xilinx it is the best approach towards utilizing the

Xilinx FPGA’s resources, this article is highlighted here. The Microblaze soft-processor is a 32

bit Harvard RISC architecture. It originally includes a 3stage pipeline and 32 general purposed

registers besides an ALU, shift unit, and 2 levels of interrupt. Based on the requirements of the

project extra modules like barrel shifter, floating point unit, cashes, exception handling facilities,

debug logic, and many other blocks can be added to the soft core processor. In this paper

different kinds of interface between modules on the FPGA as a pretested freeware are explained.

Microblaze is not only offering a professional interface between modules but also between the

FPGA and the PC if required. Although this article only introduces the structure itself and does

not explain how filters are implemented on the Microblaze, the results of implementing Soble

and Wavelet filters on the image are presented.

2.1.3 Hardware/Software Co-design Approaches for Line, Detection

This paper [9] represents another approach toward designing ASICs on the FPGA. The whole

procedure is written in ImpulseC[10] which enables one to prototype the hardware as fast as

possible, since once the algorithm is written in ImpulseC, the compiler automatically generates

the FPGA’s structure, interface between the FPGA and peripherals and the software operating at

the host processor. Although ImpulseC has many advantages like automating the hardware

design procedure and generating parallel structures, it is not a free ware. Instead systemC[11] can

7

be applied that offers the same facilities but a less convenient compiler. In this article the Robert

kernel is applied in order to derivate the image and then Hough transform is used to detect the

lines. The most significant contribute of this paper addresses the amplitude of the gradient.

Although the gradient magnitude must be calculated as

 ���� ���
� � ��� ���
� �1

in practice the following equation is being used as a proper approximation

 |�| ! |�"| � $�%$ �2

Equation �2
 was found to be very useful and is applied to this thesis in the steerable module

2.1.4 FPGA design using Matlab/Simulink

This article [12] highlights the roll of high level design by introducing the Matlab/Simulink

based approaches. Although there are obvious advantages using this technique but the

throughput of the design is dependent to the sophistication of the libraries at hand, and the cost

and availability of development tools. Recently both major FPGA vendors i.e. Altera[15] and

Xilinx, have begun to support Matlab development environment since it is the main platform for

DSP development. To use the benefits of high level design the free web based version is not

adequate and the full tool subscription is required to support DSP builder by Altera or System-

Generator by XILINX. This article investigates the efficiency of this approach when applied to a

Xilinx or an Altera board.

When compared in size and efficiency there are no advantages in using one library over another

to choose between Altera or Xilinx. In either case there are enough building blocks to design

almost any DSP system without generating any custom block. In the following the article

explains the advantages and disadvantages of using either Xilinx or Altera when compared for

cost, design flow, Simulink support and design flow implementation. It is concluded that both

vendor’s are almost identical except when it comes to porting from Simulink to the physical

8

layer where Altera is significantly superior since all the design procedure must be done once

again for Xilinx while it can be generated for Altera directly from the Simulink environment.

2.2 A Literature Survey on the Lane Detection Problem

According to the comprehensive survey conducted by Joel C. McCall and Mohan M. Trived [17],

all the driver assistance system design literature 1984–2006, follow a very similar design flow.

First a model for the road and vehicle is proposed. This model varies between a simple straight

line, Clothoid or Spline. Next a set of sensors are used to gather the environmental information

used for extracting features like motion flow, edge, texture etc. These extracted features in

combination with the actual road model are used to estimate the lane’s position. Finally a model

is required for the moving vehicle to refine these estimates. Only a few design have been

excepted from this methodology. Two cases are cited as an exception, first one is a combinatory

control strategy used by Taylor et al[18] in which various control strategies are coupled together,

second is the ALVINN [20], autonomous land vehicle in a neural network, in which the neural

network “directly incorporates the feature extraction into the control system with no tracking

feedback”.

Road Modeling is necessary for “eliminating the false positives via outlier removal”. Parallel

lines, piecewise constant parallel lines, curvatures like splines and even maps generated by dGPS

are examples are applied road models. The applied model is determined based on the expected

degree of sophistication e.g. a spline model is too much complex for a system intended for only

highways.

Road marking extraction seems to be the most determining phase. Since the road and lane

marking vary greatly, applying only a single feature extractor is challenging. Edge based

techniques work properly with solid and segmented lines. On the contrary if there are many

extraneous lines this approach is very likely to fail. In this case i.e. extraneous lines, the

frequency domain methods like what is used in LANA [24] is more effective. On the other hand

the frequency based system is limited to the diagonal lanes. In addition there are cases in which

9

the lane position is based on an adaptive road model e.g. RALPH system [25]. This approach can

fail in case the road texture is not constant.

In order to improve the extracted features and estimates post processing is mandatory. There are

various approaches towards post processing namely Hogh Transform [26],[27], attenuation or

enhancement of features using orientation [23] or likelihood [21],[24], culling features using

stereo vision [22], dynamic programming [28], and finally cue scheduling [29]. In all these

approaches some features are amplified and are chosen to be fed into position tracking module

while some extraneous features are attenuated or eliminated due the system’s structure.

The last phase is tracking. There are two common tracking techniques namely Kalman filtering

[18],[19] and particle filtering [29],[30]. There are combinatory structures with a more complex

structure like [31] as well. In all these approaches feature extraction and position tracking are

combined in a closed feedback loop.

10

Chapter 3

Edge Detection

3.1 Edge Detection theory

As a formal definition, any step discontinuity is regarded as an edge. Hence, traditional

approaches of edge detection are simply a process of finding the local maxima in the first

derivative or the zero crossings in the second derivative by convolving the image by some form

of linear filter that approximates either first or second derivatives [1]. While an odd symmetric

function can approximate the first derivative, the second derivative is approximated by an even

symmetric function.

In fact, in the discrete domain, the gradient of the image can be simply calculated by taking the

difference of the gray values in the image. This procedure is equal to convolving the image by

the mask&'1,1). The obvious disadvantage of this simplification is that it is not clear which pixel

the result is associated to. There are various approaches to this issue among which the following

filter masks offer a first derivative solution

 �� ��� �� ���

Robert * 0 1'1 0, *1 00 '1,

Prewitt -'1 0 1'1 0 1'1 0 1. - 1 1 10 0 0'1 '1 '1.

Sobel -'1 0 1'2 0 2'1 0 1. - 1 2 10 0 0'1 '1 '1.

Figure 3.1 : First Derivative Filter Masks

11

To point the gradient map of the frame, in each case the magnitude of the gradient map is

calculated by

 ���� ���
� � ��� ���
� �1

The main concern in derivative edge detection is the effect of the noise since the local maxima

due to the white noise can mask the real gradient maxima due to an edge. That is why it is

required to convolve the image with a smoothing function e.g. Gaussian function, so that the

effect of the white noise is minimized. Both of the mentioned operators namely the gradient and

the Gaussian are linear and it is computationally more efficient to combine them. Therefore if the

image and its gradient are indicated by � and � then

 �� / �
0 ! � / �0 �2

3.2 Steerable Filter Theory

The input image stream usually contains lanes in various directions which are redundant to the

problem of autonomous drive. Therefore it is required to apply oriented edge detectors to

different parts of the image such that the unwanted lanes are suppressed. One approach to do so

is to apply many versions of an edge detector each of which differing from others in the angle, to

different parts of the image. This approach obviously consumes huge amount of extra logic and

is not reasonable to implement, although is quite fast. A more efficient approach is proposed by

[33],[34] in which required filters of arbitrary orientation can be expressed as a linear

combination of a set of basis filters. One then only needs to know how many filters are required

and what interpolation function satisfies the requirements. This class of oriented filters is referred

to as Steerable Filters. A function 1�� , �
 is steerable if it can be written as a linear sum of

rotated versions of itself. This constraint can be expressed as

 23��, �
 ! ∑ 56�	
237869� ��, �
 �3

12

where 2�� , �
 is an arbitrary isotropic window function, 56�	
 are the interpolation functions

and M is the number of basis functions required to steer a function 13��, �
. In order to

investigate what functions are steerable, function 2�� , �
 is expressed in polar coordinates where : ! ;�� � �� , < ! arg ��, �
. If 2 is expandable in a Fourier series in polar angle < we have

 2�:, <
 ! ∑ �@�:
A6@BC@9DC �4

The number of the required basis functions and the basis functions themselves are determined as

a results of the following theorems [33]

Theorem F: the steering condition �1
 holds for functions expandable in the form of �2
 if and

only if the interpolation functions 56�	
 are solutions of

 G 1A63HA6C3I ! J 1 1 K 1A63L A63M K A63NHA6C3L HA6C3M HK HA6C3N
O J5��	
5��	
H58�	
O �5

Theorem P : Let Q be the number of nonzero coefficients �@�:
 for a function 2�:, <

expandable in the form of �5
. Then, the minimum number of basis functions sufficient to steer 2�:, <
 by �1
 is Q.

Therefore if a function 2�:, <
 is expandable in Fourier series in polar angle, it is steerable. The

number of the none zero coefficients determines the minimum number of the required basis

functions required to steer a function. Finally in order to obtain the basis functions equation �5

must be solved.

For instance the two dimensional symmetric Gaussian function G that is used in edge detection is

described as

 ���, �
 ! AD�"MR%M
 �6

13

by expressing the first derivative of ���, �
 in polar coordinates we have

 ��
T�:, <
 ! '2:ADUM cos�<
 ! ':ADUM�A6B � AD6B
 �7

Obviously ��
T�:, <
 has two none zero coefficients in its Fourier decomposition in polar angle <, therefore only two basis functions would suffice to synthesize ��3 out of its basis functions.

Now, one needs to obtain the interpolation functions by solving the equation �5
 for two basis

functions that results to

 ZA63[! �A63L A63M
 \5��	
5��	
] �8

Solving equation �6
 is straight forward and if we pick 	� ! 0° and 	� ! 90° then the

interpolation functions are obtained as

 5��	
 ! cos�	
 �9

 5��	
 ! sin�	
 �10

And finally the first derivative of the two dimensional symmetric Gaussian function G that is

widely used in image processing is expressed in terms of its basis functions as

 ��3 ! ∑ 5a�	
��3b�a9� ! cos�	
 ��
° � sin�	
 ���
° �11

Now it comes to the point to combine the concept of a separable and steerable filter. Let the cth

derivative of a Gaussian in the x direction to be written as �@ and let �…
3 represent the rotation

operator. The first � derivative of a Gaussian is

 ��
° ! ee" AD�"MR%M
 ! '2�AD�"MR%M
 �12

The same function when rotated 90° is

 ���
° ! ee% ADZ"MR%M[! '2�ADZ"MR%M[�13

and ���
° are separable and can be described as

14

 ��
° ! 2���
 · 2���
 �14

 ���
° ! 2���
 · 2���
 �15

 2���
 ! '2�AD"M
 , 2���
 ! AD"M

 �16
, �17

Freeman[33] suggests a sample spacing of 0.67 in the range which leads to the sampled 9 taps

of table 1.

tap# f1 f2

0 0.0 1

1 -0.5445 0.6383

2 -0.2833 0.1660

3 -0.0450 0.0176

4 -0.0026 0.0008

 filter in x filter in y ���
 f1 f2 ��
 f2 f1

Table 3.1 : Filter taps corresponding to the basis functions of the Separable Gaussian filter

Table 3.2 basis functions of the Separable Gaussian filter in each direction

15

3.3 FPGA implementation of the Steerable Filter

Prior to combining the filter with the rest of the image processing modules it is required to

implement the filter structure itself. According to the fact that filter coefficients are none integers

and all have a fraction part, it was required to apply fixed point arithmetic. Indeed a more precise

design needed a floating point module to take care of the fractions but in order to keep the design

concise it was decided to apply the Fixed Point logic.

3.3.1 Fraction Length

In order to implement a 7 � 7 filter it was required to differentiate between filter taps 2 and 3,

that is equivalent to realizing fixed point numbers with a precision that can differentiate a

decimal value of 0.01 i.e. the third tap of 2�. Hence, considering the fact that 2Dh � 2Di j 0.01, at least 8 bits are required to be considered for the fraction part. According to the fact that

there are 11 signed bits considered to keep the gradient value of the edge detected pixels, it was

required to implement multipliers with a word length of 8 � 11 � 1 ! 20 bits, such

implementation enforced pipelining and more strict timing constraints. Therefore it was decided

to realize the steerable filter as a 5 � 5 window and to realize a larger window only if the

precision of design were not satisfying enough. However, the results of the physical

implementation proved that no more precision was required. Moreover, after analyzing the

truncation error, as is depicted in table 3.3, it became apparent that by the current constants taps,

there is no difference between implementing a fraction length of 5 or 6. That is why a fraction

length of 5 is adopted for the filter taps.

16

tap#

f�

required

Fraction

length

f�

Binary

implementation

f�

Truncation

error

error

%

f�

required

f�

Binary

implementation

f�

Truncation

error

error

%

0 0.0 5 .00000 0 0 1 .11111 .03125 3

1 0.5445 5 .10001 .01325 2.43 0.6383 .10100 .0133 2

2 0.2833 5 .01001 .00205 0.72 0.1660 .00101 .00975 5

0 0.0 6 .000000 0 0 1 .111111 .0156 1.5

1 0.5445 6 .100010 .01325 2.43 0.6383 .101000 .0133 2

2 0.2833 6 .010010 .002050 0.72 0.1660 .001010 .00975 5

0 0.0 7 .0000000 0 0 1 .1111111 .0079 0.7

1 0.5445 7 .1000101 .00543 0.99 0.6383 .1010001 .00175 2

2 0.2833 7 .0100100 .00205 0.72 0.1660 .0010101 .0019 1

0 0.0 8 .00000000 0 0 1 .11111111 .0039 0.3

1 0.5445 8 .10001011 .00153 0.28 0.6383 .10100011 .0015 2

2 0.2833 8 .01001000 .00205 0.72 0.1660 .00101010 .0019 1

3.3.2 Implementing the Filter Structure

In order to implement the steerable filter, equation �11
 must be realized. There are various

remarkable points regarding to realizing this equation that will be addressed in the following.

Firstly it is required to access the values of ��
° and ���
° for each pixel. There are two possible

approaches to address this issue. First one is to implement a two dimensional moving window

that is moving across the five rows. The second approach is to decompose ��
° and ���
° to their

basis filters. So that a two dimensional convolution is decomposed to two one dimensional

convolutions. Indeed both approaches are equivalent in terms of time requirements, but the

second approach demands smaller number of logic gates. The importance of this approach might

not be obvious for smaller filters like the Sobel filter, but for a larger filter with a large number

of none zero taps such conversion means huge amount of savings in terms of logic gates. It is

worth to note that in Soble filter, the process of multiplying each tap involves a single shift,

while in a filter whose taps are none integer values it is a must to separate basis functions,

otherwise unreasonable amount of multipliers are required to implement the Fixed Point

Table 3.3 : A comparison between different values of truncation noise

17

multiplications. A comparison between the separable and non-separable moving windows

depicted in figures 3.2 and 3.3 gives a clear perception of the need for designing a moving filter

as a separable structure if applicable.

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

Figure 3.2 : 2D structure for the non-separable moving window

18

z
1−

z
1−

z
1−

z
1−

z
1−

The second issue addresses the demand for a structure able of keeping the value of 5 rows.

Obviously the number 5 is related to the window size of the implemented steerable filter. Hence

if it was opted to implement a 6 � 6 window, it was required to simultaneously access the values

of the 6 rows. This adds one more reason to the previous discussion on the size of the filter,

justifying why only 5 taps out of 9 are implemented i.e. if another 2 taps were applied, it was

required to keep another two rows on the FPGA that would waste a lot of resources. Since there

are negative filter taps, it is required to convert the unsigned bit stream coming out of the camera

interface to signed values. Therefore prior to any further calculation, the input data stream

coming from camera interface is extended to 9 signed bits.

The proper structure for realizing time delay is a FIFO. Each FIFO must be of the length of 352 � 9 ��l� so that it can hold the value of the whole row. Although it is straight forward to

implement a FIFO as a large shift register, Xilinx strongly suggests the use of the IP cores for

Figure 3.3 : 2D structure for the separable moving window

19

implementing such large FIFO structures on its FPGAs. These FIFOs are generated using the

internal Block RAMs available on the FPGA. The number of words in each FIFO is an integer

multiplicand of 2. Therefore in order to implement a FIFO of the length of 352 it is required to

choose a FIFO of the length of 512. The logic of these FIFOs is programmable so that after 352

pixels the first output is generated. However an area equivalent to 160 � 9 ��l� will be wasted.

There is another remarkable issue regarding to the borders of the frame. As mentioned earlier, it

is a requirement for a window structure to access all the pixel values within a window. Otherwise

an irrelevant value is obtained that is useless. Hence it is required to exclude the borders. This

issue is very easily handled by implementing counters for tracking the number of pixels.

Therefore the filtering process only starts after 4 rows and 3 pixels are entered the steerable

filter. Figure 3.4 depicts this issue. Once end of the frame is reached the remainder of the data

residing within the FIFOs is redundant and must be cleared. This problem is easily solved by

keeping the track of the filtered pixels by updating the row and column indexes. Furthermore a

comparison between figures 3.4 and 3.7 confirms that the boundary rows and columns of the

figure 3.7 are distorted as in confirmation with the area indicated in figure 3.4.

Figure 3.4 Dealing with the boarder pixels

20

3.3.3 Applying Orientations and Calculating Trigonometric Values

Now that the separable moving window structure is implemented, one more step is required to

generate the output. Indeed at this stage it is required to alter the orientation of the filtered

window by applying the proper basis functions. In fact if the design was tailored to reach the best

possible efficiency for the autonomous drive problem, it is recommended that processing half of

the image is always redundant since it contains no relevant information about the road lanes.

However in order to keep the design as generic as possible, as is the goal of this thesis while

emphasizing the autonomous drive problem, the whole pixels of the frame are processed. Figure

3.4 depicts the desired orientations that are applied to different districts of the image.

By altering the orientation of the edge filters to the directions depicted in figure 3.5, one makes

sure that the edges in the desired directions are strengthened while the others are weakened. The

need for this practice becomes more clear when noticing the fact that in a non ideal environment

too many edges are present due to the adjacent vehicles, multi parallel lanes in a highway or the

obstacles around the road, that are all redundant to the problem of autonomous drive. As

Figure 3.5 : applied orientations to the Steerable Filter

21

discussed earlier in the chapter the main goal of implementing steerable filters was to address

this problem since the main advantage of the steerable filter is just to steer the filter to the desired

orientation.

In order to steer the filters, it was required to implement sin�	
 and cos�	
 functions. According

to the figure 3.5 there are only 8 angles for which the values of sin�	
 and cos�	
 are required to

be implemented so that a generic function is redundant to the design. Thereby the values of the

required functions are pre-calculated and saved into a look up table as is summarized in table 3.4.

In fact for the Hough transform module implemented in the next chapter another look up table

for trigonometric functions were required, but in order to make the modules generic and

independent it was decided to opt for redundancy. Once again it is easy to refer to the required sin and cos values for a certain range of pixels by applying the proper control logic to check the

row and column indexes.

 degree cos�	
 sin�	

80 0.1736 00101 0.9848 11111

75 0.2588 01000 0.9659 11110

55 0.5736 10010 0.8192 11010

25 0.9063 11101 0.4226 01101

65 0.4226 01101 0.9063 11101

35 0.8192 11010 0.5736 10010

10 0.9848 11111 .01736 00101

50 0.6428 10100 0.7660 11000

In order to implement the required multiplication in cos�	
 � ��
°
 and sin�	
 � ���
°

 , three

approaches were investigated. The best approach suggested by Xilinx is to apply the embedded

fast multipliers on the chip itself. This approach is applied to the Hough module in the next

Table 3.4 a fixed point representation of the required trigonometric values

22

chapter. However it became apparent that due to the small size of the Spartan 3E, the adjacent

Block RAMs and multipliers are accessible only through the same predefined fixed route on the

chip. According to the fact that there are only 20 multipliers available on the chip among which 2 are used for other components on the chip, and considering the fact that there are 18

multiplications required per steerable filter and that none of the remainder multipliers adjacent to

one of the used Block RAMs for implementing the required FIFOs can be used, it became

apparent that fixed point multiplications must be implemented manually.

There are two approaches investigated towards implementing the fixed point multiplications.

Firstly it was decided to implement a fully pipelined multiplier by applying the shift and sign

extension structure. Once the final value is obtained the fraction part is truncated. The reason is

that it was decided to limit the steerable filter to the integer numbers. This simplification proved

quite efficient for image processing purposes where truncation noise is only affecting the

numerator. In case the truncation is applied to the denominator, as is the case in the Kalman

Filter design in chapter 5, a small amount of truncation would make a huge error in the result.

That is why there is a very large fixed point representation i.e. 19bits, chosen for the Kalman

filter registers to decrease the truncation noise as much as possible. The fixed point multiplier is

tested with a wide range of positive and negative numbers and it proved to operate accurately.

However after more investigation it became apparent that it is possible to drop the multipliers by

applying simple shifts. The reason behind that is the fact that firstly the filter taps are fixed, and

secondly there are only a few none zero bits present in each filter tap, otherwise this approach

would dramatically decrease the efficiency. Having calculated the values of cos�	
��
°
 and sin�	
���
°

 there is only one more step left to generate the gradient value of the pixel by adding

these two values.

23

3.3.4 Determining the Register Sizes

The final remark is about the need to determine the proper word lengths. Indeed there are two

approaches in a more comprehensive design toward designating the proper word length to the

applied registers when the design is larger than to be measured and estimated manually. The

more professional solution advised by Xilinx is to apply the design to the AccelDSP[35] in order

to calculate the required bit length of each register present in the design by considering the range

of applied data input and the operation that the register is involved in. Unfortunately this

software is not a freeware and must be purchased. This solution requires the whole design to be

ported and simulated in MATLAB. This approach would be a perfect solution for any design if

the scheme is originally designed in SIMULINK. Since in this thesis all the modules are

developed straight away out of the scratch, it did not worth to redesign the whole procedure in

MATLAB due to the time constraints.

Hence it was required to intake extra bits to make sure that no overflow is occurring. First of all,

all the unsigned 8-bit input data stream coming from camera interface is casted to 9-bit signed

values so that the pixel values are capable of keeping a sign without loosing a bit. Furthermore it

was opted to extend the data length to 11-bits prior to multiplying by filter taps. The reason is

that after multiplying by either 4 taps of 2� or 5 taps of 2� , all the 4 or 5 resultants are summed

together to form the required input to the next stage. Indeed all these filter taps are less than 1,

but there is a probability that their sum can exceed the 10 bits. When it comes to fixed point

multiplications at the steering part, the 11 -bit integer operand is multiplied by a number

consisted of only a fraction of length 5 bits. The fixed point result is truncated afterwards to fit

the 11-bit as an integer number. At the final stage when all the calculations are done, the values

corresponding to cos�	
 ��
°
 and sin�	
 ���
°

are each 11-bit long, therefore it is required to

truncate the values to 8 bits. It was observed that there are some negative values present as the

output of either cos�	
��
°
 or sin�	
 ���
°

, therefore in try to scale back the pixel values to the

gray scale it was required to add a positive value so that all the negative values are shifted to the

range of gray scale. Finally it is unavoidable to truncate the extra 2 least significant bits. Figure

3.7 depicts the diagram summarizing the overall implemented structure for steerable filter.

24

z
1−

z
1−

z
1−

z
1−

z
1−

2
1

f
−

2
0

f

2
2

f

2
1

f

2
2

f
−

1
1

f
−

1
2

f1
1

f1
2

f
−

2
1

f
−

2
0

f 2
2

f2
1

f2
2

f
−

z
1−

z
1−

z
1−

z
1−

z
1−

1
1

f
−

1
2

f

1
1

f

1
2

f
−

G
0

1

G
90

1

Figure 3.7 : The block diagram of the implemented steerable filter

25

3.4 Results and Analysis of the Design

The designed steerable filter is fully synthesized and routed on the FPGA Spartan 3E present on

the Eyebot-M6 and proved to work properly. The following figures are obtained by simulating

the proposed structure for steerable filter on the eyebotM6.

There are both advantageous and disadvantageous regarding to the implemented structure. The

implemented design satisfies the requirement to have the lanes in the undesired directions

suppressed. It is apparent that the peripheral lanes in the other bands of the highway are not

detected any more. In addition lanes due to the other obstacles i.e. other vehicles and other

Figure 3.8 a) the original image b) image representing the cos�	
 ��
° component c) image

representing the sin�	
 ���
° component

a)

b) c)

26

obstacles are dramatically suppressed. On the other hand the lane in the desired direction is

heavily empowered.

On the other hand it was observed that some distortion is introduced to the boundaries of the

image. Although the road lane detection is the beneficiary of this issue, since all the distortion

occurs at boundaries where no lane is expected, but it is not acceptable for a generic design.

After further investigation it is suggested that the introduced distortion is related to the truncation

noise due to the short size of the fraction length. Such issue did not occur in designing the other

two modules since a relatively large fraction length were introduced to the design.

Figure 3.9: Steerable Filter Module

Figure 3.10: summary of the utilized resources on the FPGA

27

Chapter 4

Lane Detection

4.1 Literature Survey

There are four approaches widely used in the literature to identify lines in the image. Hough

Transform[36],[37] has been used for a long time and is applied to a wide variety of applications.

In fact, the Hough Transform is a very demanding algorithm in terms of computational

requirements and in most of the cases either search space is limited to certain parts of the image

or is combined with some heuristic approaches to reduce the calculations. In the second approach

[38] the image is divided to certain number of tiles and each tile is searched for the lane passing

the center of mass in that tile. Even though this approach is not used widely in the literature and

is applied to a few number of problems, the implementation of the algorithm in C language on

the Eyebot-M6 proved that it is a more proper choice for a Floating Point implementation.

However as will be discussed after later in the chapter, this thesis recognized the Hough

transform as a better choice for hardware implementation. The third approach that is widely used

in the literature aims to find the present lanes in the image by interpolating a variety of different

Splines to the interest points in the image. Among all the investigated Splines B-snakes [39]

found to be more accurate and popular. Finally the statistical approaches [40] have drawn a lot of

attention among the literature. The last two approaches have gained a lot more in comparison to

the first two, but obviously are very expensive in terms of computational demands and have

never been the subject of a hardware implementation.

28

4.2 Hough Transform Theory

An object in the image can be described by various number of mathematical functions describing

its boundary. Although applying complex functions is theoretically possible, the demanding

computational requirements make the physical implementation impossible. The original Hough

transform is patented after Paul Hough in 1962 and suggests an efficient approach to describe the

boundaries of the object of interest. In this approach much of the information present in the

image is not used since the edge image is firstly converted to a bi-valued space by applying a

threshold value to the pixel gradients. Therefore a pixel is regarded as a potential boundary pixel

only if its associated gradient is higher than a certain value. In fact the need for determining such

threshold values is the main disadvantage of the Hough transform as will be addressed in the

analysis of the implemented structure. A single lane in the Cartesian space is formulated by

 � ' m� ' � ! 0 �1

where m and � are corresponding to the slope and intercept of the lane. One single point in the

Cartesian space can be considered to belong to a whole family of lines with different m and �

values. A single line in the m - � space can represents all the possible m and � values

corresponding to all the lines that can pass that point. Therefore a set of points in the Cartesian

space can be mapped to a set of lines in the m-� space and that forms the main idea behind the

Hough approach towards extracting the present lines in the image. Figure 4.1 depicts the

concept of the Hough Transform.

Figure 4.1: Map between Cartesian and Hough space

29

At this point all the edge points located on a single straight line in the �-� space will intersect on

a single point in the m-� space. Therefore the problem of finding the straight lines in the �-�

space reduces to finding a single point in the m-� space. The presented formulation of a straight

line does not satisfy computational requirements since the values of m can tend to infinity. A line

can be represented by its shortest distance and its orientation by

θ

ρ

 n ! � ����	
 ' �����	
 �2

Hence for each single edge point whose gradient is above the threshold a procedure is invoked in

which firstly the corresponding shortest distance i.e. n@ associated which each orientation 	@ is

found, secondly the index number representing the calculated distance is obtained and finally the n-	 space associated with n@ and 	@ is incremented by one. Substituting the values of n and 	

in �2
 indicates that a line in the �-� space is mapped to a sinusoid in the n-	 space.

 ��6, �6
 o p ! ;�6� � �6� M , cos�<
 ! �6 p� , sin�<
 ! �6 p� �3

 n ! p����<
 cos�	
 ' p sin�<
 sin�	
 ! p cos �< ' 	
 �4

In practice, there are numerous number of lines passing each point, hence the n-	 space is

divided to discrete points each representing a range of points in its neighborhood. For instance if 100 points are determined to represented the orientation, each represents a vicinity of 3.6°
degrees. Once all the edge points in the �-� space are mapped to their corresponding sinusoids in

30

the n-	 space, the problem of the lane detection is equivalent to finding the local maximums in

the n-	 space.

4.3 Lane Detection: Second Approach

In this approach the present lines in the image are obtained by calculating the first and second

moments of the image [37],[38]. In fact this approach is looking for the minor and major

principal axis of an object. That is why in this approach it is required to isolate the objects prior

to lane detection otherwise the moments of different object will affect each other. It is easy to

deal with this problem in a high level language like C by preprocessing and segmenting the

objects. But for an embedded realization such preprocessing is not reasonable and usually the

image is segmented to equally distributed tiles. Finally a clustering method is required to

combine all the locally found coordinates. The algorithm can be summarized as follows. Firstly

Area of the object i.e. the whole tile in practice, is obtained by the 0�� moment of the object as

 q ! ∑ ∑ ���, �
 �5

where ���, �
 equals to ��A for pixels whose gradient is above threshold. The center of mass,

denoted by ��r, �s
 represents the center of the desired object e.g. line and is calculated by

 �r ! ∑ ∑ "t�",%
∑ ∑ t�",%
 �6

 �s ! ∑ ∑ %t�",%
∑ ∑ t�",%
 �7

At this step the axis of minimum inertia of the object passing from the center of mass is required

to indicate the orientation. This is the axis of least 2@umoment [37]. This aim is satisfied by

finding a line for which the following integral is a minimum

 � ! ∑ ∑ :� ���, �
 �8

31

where : is the perpendicular distance from ��, �
 to the desired line, but prior to this step it is

needed to confirm a proper representation to parameterize a straight line. For the same reasons

discussed in the previous entry, the line is represented by equation �2
. The equation �8
 is

solved in &37) in detail and the orientation corresponding to the major principal axis i.e. 	� and

minor principal axis i.e. 	� are obtained by

 	� ! �� �l��2� t;tMR�vDw
M , vDw;tMR�vDw
M
 �9

 	� ! �� �l��2� Dt;tMR�vDw
M , wDv;tMR�vDw
M
 �10

 � ! ∑ ∑ �́����́ , �́
 �11

 � ! 2 ∑ ∑ �́�́���́, �́
 �12

 � ! ∑ ∑ ��y ���́, �́
 �13

 �́ ! � ' �r �14

 �́ ! � ' �s �15

the constants � , � , � are called the second moments and 	� represents the direction of the line

that we are looking for. Both approaches are implemented by C language on the Eyebot-M6 and

the results will be compared together at the end of the chapter.

4.4 Comparison between two algorithms

In this part it is justified why Hough Transform is opted as a better choice for hardware

implementation by giving three reasons against the second approach. The first limitation for a

fixed point implementation is due to the truncation error. It is easy to count that there are four

divisions involved in the second approach. According to the fact that divisions are more sensitive

to small modifications, a small amount of truncation error in the denominator introduces a

considerable amount of truncation noise that will propagate to the next stages. The second reason

32

is that although Hough Transform is a very demanding algorithm in terms of computational

demands, the second approach is more demanding. In case parallelism is properly applied to the

problem, equations �6
, �7
 can be calculated in one trace and equations �11
, �12
, �13
 can be

calculated in the second trace. Therefore in case the Hough Transform is implemented properly

so that it searches only certain parts of the image, Hough Transform is expected to perform

faster. The third reason is related to the need for calculating l��D�. Indeed there is no fixed

point solution toward obtaining trigonometric calculations unless expanding them to their

equivalent series that makes the design so complex for a fixed point realization.

4.5 Proposed methodology

The standard Hough Transform is a demanding algorithm in terms of both time and search space.

However by restricting the range of the lanes for which the algorithm is either updating the

Hough Matrix or is searching for a lane, the algorithm could be fitted to the real time

implementation requirements. A line is parameterized by equation �2
. There are two choices for

the range of possible orientations. First choice is to have z { 	 | 0 and n can hold both

positive and negative values. It is also possible to limit n to the positive values but the

orientations vary in the range 0 { 	 | 2z. Here it was opted to choose the first approach. for a

certain reason that will be justified by following the fixed point implementation of the Hough

Transform in the next part.

Two FSMs are implemented for each window to realize the Hough Transform in order to detect

the road lanes. Once the whole image is edge detected by the steerable filter and is written to the

SRAM, the lane detector module is triggered by a signal to detect the local lanes corresponding

to the bottom left and bottom right windows of the image. The first FSM in each module fetches

the values corresponding to the gradient of each pixel by putting the address of each pixel on the

address bus. On the current design, each word in the

SRAM simultaneously holds the values of cos�	
 ��
°and sin�	
 ���
° . Once a word is read to

the Hough module sum of the ����	
 ��
°and ����	
 ���
°is compared to a threshold value in

order to distinguish between an edge and a non edge. Indeed by comparing the pixel values with

33

a threshold only when it is required, there is no need to pre-threshold the image. by applying the

Hough Transform to various video streams it became clear that the distribution of the road lanes

in the left and right windows are not identical and two different threshold values are required to

be applied to the design. Overall, a value of 50 for distracted lines and a value of 80 for

continuous lanes were obtained. For the rest of the rest of the cases the proper value seems to

always sit somewhere in this range.

Since the design aims to address the road lane detection, it is important to note that no lane above

the horizon is required to be searched. In addition the lanes that has a slope larger than 160
are

not desired and are usually due to either the noise or the other obstacles in the image frame.

According to the fact that the pixel values located at the side bars of the image are always very

likely to be affected by noise and that the steerable filter has had a destructive effect to this area,

this first and last 10 pixels of each row are excluded for lane detection.

Finally it was observed that extremely vertical lanes are never likely to occur due to the

conventional camera angles. Therefore some more clock would be saved by excluding the pixels

corresponding to the vertical lanes. The remained area is indicated in Fig 4.2 By applying the

mentioned hypothesis to all the videos available at hand in the lab, it become clear that this

assumption always holds true as long as the road is not curved, and all the desired lanes are

always located within this area. Therefore all the desired lines for the left window are located in

the range 90 | 	 | 150 and all the desired lanes in the right window are located in the range 30 | 	 | 90.

Figure 4.2: The area required to be searched for road lanes

34

4.6 FPGA implementation of the Hough Transform

According to the complexity of the required logic for the Hough transform, it was concluded that

this module cannot be designed as a concurrent module as the steerable filter and a FSM

structure would better fit the design. Therefore each module i.e. Hough transform for the left and

right windows will be associated two FSMs, one to create the Hough matrix and the second to

extract the desired line describing the major orientation axis of the lane. Figure 4.3 depicts the

top view of the implemented Hough transform module

As mentioned earlier for the ideal case only the indicated area in Figure 4.2 is required to be

searched and updated but in order to make the design quite generic, it was decided to apply the

Hough Transform to all the left and right window areas that can easily be refined in a future

implementation.

Figure 4.3: Top View of the implemented Hough Transform

35

Figure 4.4 depicts the first FSM that was designed to create the Hough transform out of the

image gradient pixels in the SRAM. The FSM stays in the initial state as long as no Done signal

is detected. Actually this signal is generated by the module that writes the edge detected pixels to

the memory. So that once the whole image is written to the SRAM this signal is designated. As

soon as the FSM detects this signal it enters the phase of calculating the address of the first pixel

to be thresholded. Prior to this step it is required to stop the steerable filter from altering the

image residing in the SRAM. Therefore an output disable signal is devised to put the other

modules on hold during the lane detection phase. As the first step of the algorithm, it is required

to calculate the address of the pixels located in the desired area as is indicated in figure 4.5, and

to put the address on the address bus to be read from SRAM. As mentioned earlier it was decided

to combine the thresholding and lane detection together so that a considerable amount of clock is

saved. In the case of an edge the distance n of all the lanes passing from the edge-detected

coordinates corresponding to all the 	 values in the range 90° and 150° for the left window and

all the 	 values in the range 30° and 90° for the right window are incremented by one which

forms the Hough Matrix in the SRAM.

The second FSM is triggered after the last pixel of the window is processed. The second FSM is

following a quite simple logic in comparison to the first FSM. By conducting various

experiments, It became clear that the Hough Matrix must be searched column by column so that

the first local maximum would represent the closest lanes in the right and left side of the vehicle.

According to the fact that each column is representing one single orientation, by searching the

Hough matrix corresponding to the left window from the first column to the last column, the

corresponding orientation is changing from 90° to 150°. Therefore only the first lane next to the

vehicle will be detected. For the right window the search direction is in the opposite way and

columns must be searched from end to fist, hence the range of values will alter from 90° to 20°
and the outer lines will not be detected. This simple role made a huge advancement to the

algorithm by excluding the outer lanes that are always present in the environment. . Figure 4.5

totally describes the applied logic to the second FSM

36

Figure 4.4: Top View of the implemented Hough Transform

37

According to the figure 4.7 there are 12 states implemented in the first FSM, but in order to put

some more safety margins for the memory interface it was decided to include one more dummy

state after each memory access that has increased the number of states to 16. At this stage this

scheme was not required but it was devised to enable the module to work in higher frequencies

when is used on a more robust platform like VirtexII. Indeed it was decided to make all the

designed modules in this thesis as generic as possible so that they can be used as a black box in

all the future projects. Otherwise each time the design must be changed regarding to the applied

clock rate.

Figure 4.5: The implemented logic in the second FSM of the

Hough Transform only searches the indicated area and in the

specified direction in a column by column fashion

38

4.7 Achievements and Analysis of the Results

In order to verify the proposed structure and to emphasize the fact that the implemented

algorithm is quite less demanding when implemented on the FPGA, the proposed Hough

structure is implemented in MATLAB, C and VHDL. Results are presented and discussed in the

following.

Floating point implementation is used as the first step to verify the algorithm itself. Proper

values for thresholding both the edge detected frame and the Hough matrix are obtained through

applying various video streams to the simulation on MATLAB.

Through different experiments it became clear that the Hough transform is very sensitive to this

threshold values and even a very small variation from the proper value will lead to a wrong

detection. This issue makes the design quite sensitive to noise and is regarded as the main

disadvantage of the Hough transform. In addition it became clear that the speed of this algorithm

is a variable of the light, noise and threshold. As presented results in table 4.1 confirm, the speed

of the algorithm is heavily dependent to the determined threshold value. Indeed choosing a

higher threshold will decrease the number of edge points therefore fewer iterations per edge is

required, but this approach usually led to a deviation in the detected lane.

Figure 4.6.a depicts the Hough Transform as is present on the SRAM. There are some points

remarkable here. Firstly as was desired the Hough space is not complete in each case and only is

updated for half of the possible orientations. Secondly it is obvious that the obtained

transformation is not as smooth as a floating point transformation. Indeed the Hough space

seems to be jagged that is a direct effect of the truncation. As mentioned earlier, truncation has

been applied to the design very often and in a next implementation it is suggested that truncation

must be replaced by rounding. Figure 4.6.b depicts the Hough space on the SRAM after being

thresholded in which the depicted point is corresponding to the detected lane.

39

 Fig.4.6 �a
Hough Matrix on the SRAM�b
 Thresholded Hough Matrix on the SRAM�c
 the

 left lane as detected on the FPGA

In order to get a measure of the efficiency of the hardware design the proposed algorithm is

implemented and tested on both C and VHDL. The lane detector module is tested and verified by

applying the edge detected frames out of both Sobel and Steerable filters and is simulated offline.

Various experiments confirmed that the module has a very high accuracy unless the threshold

value is not chosen properly. Indeed it was required to alter the threshold value even in different

times of the day due to the variation of the light.

Edge

detection

Freq Lane

detection

Algorithm

SPEED

WHEN A

LANE IS

DETECTED

SPEED

WHEN NO

LANE IS

DETECTED

Thresh

Value

for

Image

Thresh

Value

for

Hough

Sobel

FPGA

50

MHz

Hough

C

2.1 fps 6.8 fps 130 80

Steerable

FPGA

30

MHz

Hough

C

1.3 fps 5.6 fps 130 80

Sobel A

FPGA

50

MHz

Hough

Day

3.8 fps 8.2 fps 140 100

Steerable

FPGA

30

MHz

Hough

Day

1.3 fps 5.6 fps 140 80

Steerable

FPGA

50

MHz

Hough

Night

3.3 4.4 140 60

Steerable

C

50

MHz

Zeisl

 C

2.1 fps 2.1 fps X X

table 4.1: An empirical comparison between the speed of the lane detection algorithms in different

light conditions

40

Figure 4.7 depicts the utilized logic per Hough Transform Module. In the case of a real time

implementation where two cameras are running simultaneously and lane detection must be done prior to

writing the frame to the SRAM, two Hough modules are required per camera. The limiting factor here is

the number of utilized multipliers that can be manually implemented to fit Spartan 3E or preferably be

ported to a larger FPGA where embedded fast multipliers will speed up the design.

Figure 4.7: summary of the utilized resources on the FPGA

41

Chapter 5

 Tracking and Kalman Filter

There are strong reasons behind the need to apply a proper tracking module to any image

processing system. First of all most of the image processing operations are time demanding

which can cause uncertainty due to the miss identification. Second of all it reduces the

computational cost by reducing the search area and hence the corresponding pixel operations.

Finally it heavily cancels out the noise by discarding other parts of the image therefore the

accumulative effect of the noise is reduced [41].

5.1 Literature Survey

According to the conducted literature survey the Kalman filter is broadly applied to the lane

tracking problem. All of the considered papers in this field have implemented the Kalman filter

in software [43],[17]. There are a few papers that address the hardware implementation of

Kalman filter but each of which is considering the implementation of a specialized Kalman filter

[44],[45]. Unfortunately all the considered hardware implementations are using a high level

implementation by applying the Xilinx’s code generator to the Simulink, hence lack a detailed

realization. Therefore the whole design for this module is devised and implemented from scratch.

Another fact is that almost all the related papers keep silent about the initialization phase and

there are only two papers addressing this issue [42],[43].

5.2 Kalman Filter Theory and Initialization

Kalman filter provides “a recursive solution to the linear optimal filtering problem”[42]. There

are many advantageous associated with the Kalman filter. It is applicable to both stationary and

nonstationary systems on the contrary to the Wiener Filter which only fits stationary systems,

42

besides the fact that each updated state is computable from the previous estimate and the new

measurement so that applying this approach dramatically eliminates the need for data storage as

required in some other approaches[42].

A linear, discrete time dynamical system can be described by the process equation

 ��R� ! ��R�,��� � �� (1)

 �&�@���) ! ��� 2�: � ! 50 2�: � � 5 � (2)

Where � indicates the state of the process and ��R�,� is the transition matrix of the system that

transfers state �� to ��R�. �� represents the process noise that is assumed to be additive, white

,Gaussian and zero mean[41],[42],[43]. The measurement equation can be described by

 �� ! ���� � �� �3

 �&�@���) ! � �� 2�: � ! 50 2�: � � 5 � �4

where �� represents the observable at time 5 and �� is the measurement matrix. �� represents

the measurement noise and holds similar specifications as �� where the covariance matrix of ��

is described by (4). It is assumed that �� and �� are uncorrelated[41]. Goal of the Kalman

filtering is to gain the unknown posteriori state �� from the already known priori state ��D́ and

the new measurement. Derivation of the Kalman filter equations is straight forward and can be

found in[41],[42]. Equations �5
 to �6) summarize the Kalman filter’s behavior.

 �
́ ! �&�
) �5

 �
 ! �&��
 ' �&�
)
��
 ' �&�
)�
) �6

 ��D́ ! ��,�D� ��D�́ �7

 ��D ! ��,�D���D���,�D�� � �� �8

 �� ! ��������������R�� �9

 ��̂ ! ��D � ����� ' ����̂D
 �10

 �� ! �� ' ����
��D �11

43

Equation �5
 determines the initial state while the initial covariance matrix is estimated by

equation �6
 . Equations �7
 and �8
 estimate the priori state and its corresponding error

covariance matrix. Gain of the filter is represented by �� while � indicates the error covariance

matrix. If the displacement of the object under consideration can be modeled as a uniform linear

movement, then the state vector, process equation and the measurement equation can be

described by equations �11
,�12
.
 � ��R���R�∆��R�∆��R�

� = �1 0 1 00 1 0 10 0 1 00 0 0 1� � ����∆��∆��
� � �� �11

 ��m��m�� ! �1 0 0 00 1 0 0� � ����∆��∆��
� �12

Otherwise a more sophisticated model i.e. Extended Kalman Filter [41] is required. Initialization

is the most significant step in order to stabilizing the filter without which the filter response will

fluctuate dramatically. The covariance matrix of the measurement error is indicated by

 �� = � ¡,"� 00 ¡,%� ¢ �13

where £ denotes the standard deviation and can be estimated by measuring the probability of

displacement between the actual position of the object and the measured position of the object. It

is assumed that the random variables � and � are uncorrelated indicating that the error in

measuring � has no effect on �. For instance if a system requires a measurement accuracy below

one pixel, the standard deviation for each coordinate is determined by �¤ Z3��'1
� � �0
� �
 �1
�
[! 2/3 ,[42]. Therefore the error measurement covariance matrix of the described system

is presented by

 � = \2/3 00 2/3] (14)

44

Covariance Matrix of the Estimation Error is denoted by �
D and is described by

 �
D = � ¦,¦� ¦,§� ¦,§� §,§� ¢ (15)

where � represents the position vector and � indicates the velocity vector. The summarized

values in table 5 . 1 are obtained according to the research conducted by [42] and properly

describe the initial values of the elements of �
D i.e. the initial values of the covariance matrix of

the estimation error which are corresponding to a translational motion in two dimension with

time-varying acceleration as the additive white noise

 �
D = 1/16 *�� 00 ��, (16)

In the current design a safe value of 10 2:�mA/�A� is chosen since it generated a more robust

estimation among the three in the simulation phase on MATLAB. Finally it comes to initiating

the covariance matrix of the white noise (acceleration). A robust model is generated in [42] to

describe any translational system with a constant velocity and random acceleration as

 Q© ! ��∆t/6 \2��∆l
� 3�∆l3�∆l 6�] , � j 1225 ª��/�� �17

Even though all the values suggested by[42] were tested in simulation, applying the mentioned

model caused dramatic overshoots in the simulation phase. Therefore the following simpler

model is adopted from [43] which proved to generate a more stable behavior as is depicted in

fig2.

 � !
«¬
­���0
 � .2
2 0 0 00 ���0
 � .2
2 0 00 0 ���0
 � .2
2 00 0 0 ���0
 � .2
2®̄

°
 �18

Table 5.1. Initial values for the covariance matrix of estimation error corresponding to two dimensional motion

S 25 pixel at 5 frame /sec

S 6 pixel at 10 frame /sec

S 3 pixel at 15 frame /sec

V 49 pixel/frame at 5 frame /sec

V 12 pixel/frame at 10 frame /sec

V 5 pixel/frame at 15 frame /sec

45

5.3 Floating Point Implementation

In order to verify the accuracy of the initialized model the filter is first simulated in MATLAB.

Since each detected lane by the Hough transform is expressed in the polar coordinates and hence

the state vector under observation, it was firstly opted to transform the Kalman filter’s equations

in the polar coordinates. However it became clear that not only the complexity and the required

hardware resources present on the FPGA would increase dramatically due to the introduction of

trigonometric functions but also the required truncation for the trigonometric functions for a

Fixed Point implementation would contribute to more inaccuracy to the design. Although there

are different approaches in the literature towards choosing proper coordinates associated with a

lane in a tracking system, a new solution is proposed in this thesis to be measured for efficiency.

It was decided to track the intersection of the orthogonal to the lane from the origin as the state

vector of the dynamic system under tracking. The coordinates of the intersection are imaged to

the Cartesian plane prior to feeding to the Kalman filter by equations �19
, �20
. Equations �21
, �22
 determine the inverse transform from Cartesian to Polar as must be applied to the

results of the tracked point after tracking to represent the current position of the lane.

 �0 ! n cos�	 ' 90
 ! n sin �	
 �19

 �0 ! ' ncos �	
 �20

Fig 5.1 image of the tracked point on to the Cartesian coordinate

46

 n ! � �� � ��
�/� �21

 	 ! z ' tanD�� � ��
 �22

In Equation �20
 the negative sign is added to enforce the positive coordinate to keep the later

hardware implementation as simple as possible. This sign modification is not required when the

right window is being processed. As mentioned earlier initialization plays a significant role in

stability of the filter. According to the several observations on the driving sequences, the left and

the right lanes in different frames are usually located in a specific vicinity of the middle of the

image hence the state vectors are initialized as

 n±° ! 70 , 	±° ! 150° j �±° ! 35 , �±° ! 60, (23

 n�° ! 5 , 	�° ! 42° j ��° ! 3.71 , ��° ! 3.71, (24

The equations �5
. . �11
 are not handling a proper representation for the hardware

implementation. Therefore the mentioned equations were decided to be spread into a linear

representation as is represented in ²³³´cµ¶· ². In simulating the Floating point design it was

chosen to apply the achieved spread form of the equations so that a measure of the efficiency of

the approach would be achieved. In consistence to the general concept of the Kalman filter,

module is staying in the initial state as long as no object i.e. lane, is detected. Once a lane is

detected the Kalman filter firstly enters the project-ahead phase to estimates the values of vectors �° i.e. state vector and �° i.e. covariance matrix of estimation error. In the next phase the

estimated value of �° contributes to calculation of the filter gain ¸. Finally in the last phase all

the four values of �°, �°, the current measured vector and the calculated gain i.e. ¸ are feed to

 Fig 5.2 initialization for the kalman filter in the left and right windows

47

the correction equations to form the requirements for the next estimation. At the end the Kalman

filter awaits until the next measurement is achieved and this loop goes on as long as a reset signal

is designated.

θ θ

ρ

ρ

5.3.2 Analysis of the Results of Floating point implementation

Figures 5.4, 5.5 clearly emphasize the efficiency and importance of the applied Kalman filter.

Firstly it is apparent that there are numerous overshoots present in the amplitude of the measured

state vector i.e. � and �. This issue plays a significant role in the stability of the system if it is

eventually applied to a real driving system. By considering the results of the output of the

Kalman filter it is apparent that all the overshoots are suppressed and are not present any more.

By considering frames 14 till 19 of figure 5.6 the second achievement of the implemented

Kalman filter becomes clear. It is apparent that for various reasons like improper threshoding of

the image and most importantly the lack of edge pixels due to the size of the road lane, no lane

is recognizable by the Hough transform within a certain range of frames. This issue is observable

in figure 5.6. where during frames 1. .8 and 14. .20 no lane in the left boundary is detectable. It

can be seen that the first lane is detected at frame 8 and then after the Kalman filter is correcting

the wrong measurement in frame 13 in which the measurement is obviously wrong. The most

significant advantage of applying the Kalman filter is observable during frames 14. .20 where

no lane is detected but the kalman filter still can predict the position of the lane correctly.

Fig 5.3 proposed structure of tracking the intersection of the prependicular

48

0

10

20

30

40

50

60

70

1 4 7 101316192225283134374043464952555861646770737679828588

X
 a

n
d

 Y
 v

a
lu

e
s

frames

MEASURED X

tracked X

MEASURED Y

tracked Y

0

20

40

60

80

100

120

140

160

180

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

R
 a

n
d

 T
H

E
TA

 V
A

LU
E

S

frames

THETA

R

TRACKED THETA

TRACKED R

Fig 5.4 the efficiency of the implemented Floating point Kalman Filter to track the measured values in terms of the image of the

observable

Fig 5.5 the efficiency of the implemented Floating point Kalman Filter to track the measured values in terms of the position of

the lane

49

Fig 5.6: lane tracking in the left window, red lanes represent detected lane while the green lane represents the tracked lane

50

5.4 Fixed Point Implementation and Behavioral Modeling

As was mentioned earlier Kalman filter consists of three phases namely prediction, gain

calculation and correction. Hence the hardware design is divided into three blocks to perform

each task. The following structure in figure 5.7 is implemented in VHDL to meet the

requirements of the Kalman filter.

According to the various experiments conducted on the Kalman filter in the simulation phase it

became clear that it is quite sensitive to error propagation. On the other hand a fixed point

implementation will always enforce part of the data to be lost. It was observed that at least four

digits in the fraction part of a decimal radix representation are required to handle a stable

tracking system. Otherwise dramatic overshoots were introduced to the response of the Kalman

filter. A precision of four digits in a decimal radix required 10 bits in a binary implementation.

Meanwhile 8 bits are reserved for the integer part and 1 bit is required to represent the sign.

Therefore a total number of 19 bits are required to represent the signals that interface the three

modules of the Kalman filter. The following table is cited from [46] and summarizes only the

fixed point sizing rules that are applied to the current design. In the adopted notation a fixed

Fig 5.7 consisting modules of the Kalman filter

51

point number is represented by &�, �) where there are � � � � � 1
 bits present in the number

among which � bits represent the integer part, � bits represent the fraction part and 1 bit is

reserved for representing the sign.

�ªA:�l��� :A�¹ºl :��1A A � B , A – B Max�A¿left, B¿left
 � 1 ÁÂÃÄÅÂ Min�A¿right, B¿right
 A � B A¿left � B¿left � 1 ÁÂÃÄÅÂ A¿right � B¿right Signed /, divide A¿left – B¿right � 1 ÁÂÃÄÅÂ A¿right – B¿left Signed �–A
 A’left � 1 ÁÂÃÄÅÂ A’right

Once all the modules are tested individually it is required to put them together. Since the Kalman

filter is implying a feedback to the design, it was required to meet the timing requirements of the

feedback loop. Two solutions were investigated to address this issue. The more sophisticated

implementation required the exact amount of delays for all the logic gates through the forward

critical path be calculated, so that a feedback path with a proper delay could be designed to meet

the timing constraints of the forward path. The mentioned approach would better fit an ASIC

rather than a FPGA and requires special tools. However a second solution was devised and

implemented by applying a finite state machine. The implemented FSM simply passes the

signals through and between modules and isolates them when it is required so that all the timing

constraints are met. Figure 5.8 depicts the logic enforced by the finite state machine. There are

additional signals implemented to latch and hold the input and output to each module and these

signals are assigned by the FSM. Otherwise all the critical paths and timing constraints must be

considered into design.

 Table 5.2 Fixed Point sizing rules that are applied to the current design

Fig 5.8 Kalman Filter’s FSM

52

The implemented logic will enforce the FSM to stay in the Predict state as long as no object is

detected. Only for the first iteration the Predict module is fed by the initial values of state vector

and the covariance matrix of estimation error i.e. �
° , �
°, while within the next iterations the

corrected outputs of the Correct module are forming the �° and �°. The implemented logic in

will generate an accurate estimate of the current expected position of the object. By comparing

the values of the covariance matrix of error obtained from fixed point and floating point, it was

verified that this module is precise up to three significant decimal figures in the fraction part. On

the second clock after the pulse indicating the object detection the FSM will feed the outputs of

the Predict module to the Gain module. In fact this module is the main source of the error

propagation since there is a fixed point division required to be implemented within this module.

Therefore even a small amount of truncation error is propagated to the Kalman Gain. However

the most significant feature of the Kalman filter is the noise cancelation itself and it cancels the

mentioned noise in the next iteration so that the system follows the object as precise as a floating

point implementation.

 Fig 5.9 Top view of the implemented Kalman Filter

53

After the third clock FSM enters the Correct state in which both � and � vectors of the filter are

altered. In the next clock the FSM enters the predict state and remains in that state until a new

pulse indicates a new object is detected. Obviously filter only enters the Init state when a reset

signal is issued that will enforce the filter to the initial state. As discussed in the previous

chapter, in some frames the detected edges associated with a lane are not sufficient for a lane to

be detected. In order to solve this issue it was decided to keep the last measurement as the

current position of the detected lane and the achieved results approves that this solution is precise

enough for conventional frame rates. Despite the accuracy of the implemented approach, it is

suggested that for extreme cases where either the velocity of the observer or the frame rate is

very high there might be overshoots in the response of the filter that must be handled.

5.4.2 Analysis of the Results of the Fixed point implementation

The module in a higher level of abstraction only needs to know the current postion of the object

and the inerr state of the filter is not required to be public. Therefore the inputs to the filter only

include the current measurement, a pulse indicating the next object is detected besides CLK and

RESET. For the same reason the state vector · is the only output signal. Figure 7 depicts the

input and output signals to the Kalman filter and their corresponding values when simulated on

Modelsim. It is important to note that the estimated values have converged to the actual position

of the lane and that is a representative of the efficiency of the filter.

Fig 5.13 inputs and outputs to the Kalman Filter during the four phases of object detection

54

In order to verify the design a series off the empirical values representing the coordinates of the

lane detected by the Hough module are fed to the design and the outputs are compared against

each other. Table 5.3 represents three sets of data representing the measured coordinates of the

detected lane and the corresponding tracked points calculated by fixed point and floating point

implementations. According to the results there is a maximum of 0.4 difference between two

implementations in the worst case that will not cause to an error more than one pixel.

Although introducing longer word length could enhance the precision, the corresponding

implementation will require pipelining. The current implementation satisfies the requirements of

lane tracking but for a more precise applications like channel tracking in a telecommunication

system both longer word length and pipelining are unavoidable. On the other hand the current

design is using numerous number of multipliers that needs to be dealt with in a physical

realization. Indeed there are two solutions to handle this issue. The fastest approach

recommended by the industry is to applying a larger FPGA which contains enough number of

fast multipliers. Porting the design to the platform Xilinx Virtex II rather than the current Spartan

3E would solve this issue. Second possible solution is to implement and embed all the multipliers

individually by logic gates that do not seem to be a good solution on a FPGA with a limited

Tracked in

Floating Point,MATLAB

frame X Y

1 40.1628 59.5751

2 41.0332 59.5034

3 41.0764 59.4999

4 39.5470 57.3548

5 38.7779 56.3419

6 38.3653 55.8447

7 38.1386 55.6112

8 37.2232 56.0497

9 36.6380 56.0497

10 36.2788 56.4051

Tracked in

 Fixed Point,MODELSIM

frame X Y

1 40.0527 59.5752

2 40.9971 59.4961

3 41.0693 59.4902

4 39.5391 57.3125

5 38.7930 56.3125

6 38.3916 55.8281

7 38.1699 55.6055

8 37.2500 56.0566

9 36.6631 56.4180

10 36.3018 56.7100

DIFFERENCE

frame X Y

1 0.1101 0.0001

2 0.0361 0.0073

3 0.0071 0.0097

4 0.0079 0.0423

5 0.0151 0.0294

6 0.0263 0.0166

7 0.0313 0.0057

8 0.0268 0.0069

9 0.0251 0.3683

10 0.0230 0.3049

Table 5.3 empirical comparison between the Floating point and Fixed Point implementations of the Kalman FIlter

55

number of gates. Although the implemented structure satisfies the requirements of lane detection,

one solution to make the design more accurate is to apply rounding rather than truncation. Since

the implemented design is larger than to fit any small FPGA and that rounding will introduce

some extra logic for each multiplier, this solution is postponed to a future time.

56

Chapter 6

Conclusion

This thesis aimed to design and implement a lane detection and tracking system on the FPGA. It

was shown that all the three modules meet the required functionalities. The Steerable Filter

module satisfies the requirements of the edge detection problem so that not only the frame is

edge detected but also all the redundant lanes in the undesired directions are suppressed.

However there is some distortion in the edge detected frame due to the short length of the

fraction and the applied truncation policy introduced to the design. Furthermore the need to

implement the multipliers contributed to a considerable drop in the operation frequency and it

became clear that either using a larger platform or implementing the fast multipliers is

unavoidable in a future work.

Although the implemented Hough transform performs precisely with adjusted threshold values, it

is required to be calibrated regularly. It was observed that this implementation is heavily

depended to the light conditions in an environment. The second disadvantage of the implemented

logic is that the speed of frame processing is not fixed and depends to the light conditions as

well, that makes the analysis troublesome. However the detected lane shows no difference to the

results of a floating point implementation on C.

So far the implemented Kalman filter was the best achievement of this thesis. According to

various experiments with noisy data the accuracy of the module was verified. In fact it was

observed that this module not only cancels out the dramatic measurement noise in some of the

frames but also gives a very good estimation for the following frames so that in some frames that

no lane was detected the Kalman module estimated the exact location of the lane precisely.

Overall the combination of three modules proved to be able to accurately distinguish, detect and

track the desired road lanes.

57

Chapter 7

Future Work

This thesis did not utilize any automation tools like AccelDSP or SystemGenerator and all the

modules are designed manually. However it became clear that it is not a proper practice when

dealing with a complex design. There are lots of pitfalls that could be easily treated by using

such facilities. The main concern of the current design is the introduced distortion to the

Steerable Filter’s response besides the ambiguity of determining the required fraction length of

the signals in each frequency. Both of this issues can be addressed automatically by applying a

range of input samples to this tools. In addition these tools offer a fabulous environment for

visual design that not only speeds up the design but also leads to a more robust system.

Implemented Hough transform is the most error prone part of this thesis. As discussed earlier this

module is very dependent to the determined threshold value. Here I would like to suggest two

other approaches that can solve this issue. The easier approach would be to segment the frame

and to apply the transform to each segment manually. Hence the probability of a wrong detection

drops. Although this approach improves the design, it will not generate a robust system. The best

solution is to design an adaptive filter that determines the threshold values due to the level of

light and noise.

However there is no guarantee that this module can operate properly if intended to be used in

high frequencies. This issue can be explained by noticing the fact that the embedded constants

inside the Kalman filter are obtained for conventional speeds of image processing and for other

applications like telecommunication it is required to redefine all the embedded error constants.

The other concern is the huge size of this module that with any modification still cannot fit

Spartan 3E. The easier approach, meanwhile the common practice in the industry and literature,

is to simply port the design to a larger FPGA. This solution has the additional advantage of using

fast multipliers embedded with recent FPGAs. On the hand there is a more sophisticated

approach that demands a multi-rate processing with various frequencies on the board.

58

Appendix A. Required Equations to Port the Kalman Filter to Hardware

Prediction Phase

State Correction

�� ! �� � �¤

�� ! �� � �Ê

�¤ ! �¤

�Ê ! �Ê

ª��0 ! ª�� � ª�¤ � ª¤� � ª¤¤ � ���

ª��0 ! ª�� � ª�Ê � ª¤� � ª¤Ê � ���

ª�¤0 ! ª�¤ � ª¤¤ � ��¤

ª�Ê0 ! ª�Ê � ª¤Ê � ��Ê

ª��0 ! ª�� � ª�¤ � ªÊ� � ªÊ¤ � ���

ª��0 ! ª�� � ª�Ê � ªÊ� � ªÊÊ � ���

ª�¤0 ! ª�¤ � ªÊ¤ � ��¤

ª�Ê0 ! ª�Ê � ªÊÊ � ��Ê

ª¤,�0 ! ª¤� � ª¤¤ � �¤�

ª¤,�0 ! ª¤� � ª¤Ê � �¤�

ª¤,¤0 ! ª¤¤ � �¤¤

ª¤,Ê0 ! ª¤Ê � �¤Ê

ªÊ,�0 ! ªÊ� � ªÊ¤ � �Ê�

ªÊ,�0 ! ªÊ� � ªÊÊ � �Ê�

ªÊ,¤0 ! ªÊ¤ � �Ê¤

ªÊ,Ê0 ! ªÊÊ � �ÊÊ

∆ ! � ª��0 � ���
 � � ª��0 � ���
 ' � ª��0 � ���
 � � ª��0 � ���

5�� ! 1∆ � ª��0 � � ª��0 � ���
 ' ª��0 � � ª��0 � ���

5�� ! 1∆ �'ª��0 � � ª��0 � ���
 � ª��0 � � ª��0 � ���

5�� ! 1∆ � ª��0 � � ª��0 � ���
 ' ª��0 � � ª��0 � ���

5�� ! 1∆ �'ª��0 � � ª��0 � ���
 � ª��0 � � ª��0 � ���

5¤� ! 1∆ � ª¤�0 � � ª��0 � ���
 ' ª¤�0 � � ª��0 � ���

5¤� ! 1∆ �'ª¤�0 � � ª��0 � ���
 � ª¤�0 � � ª��0 � ���

5Ê� ! 1∆ � ªÊ�0 � � ª��0 � ���
 ' ªÊ�0 � � ª��0 � ���

5Ê� ! 1∆ �'ªÊ�0 � � ª��0 � ���
 � ªÊ�0 � � ª��0 � ���

Blending Factor Calculations

59

Error Estimation Correction

��0 ! �� � � 5�� � ��Ë¡v¦ÌU¡u ' ��
 � 5�� � � �Ë¡v¦ÌU¡u ' ��

��0 ! �� � � 5�� � ��Ë¡v¦ÌU¡u ' ��
 � 5�� � � �Ë¡v¦ÌU¡u ' ��

�¤0 ! �¤ � � 5¤� � ��Ë¡v¦ÌU¡u ' ��
 � 5¤� � � �Ë¡v¦ÌU¡u ' ��

�Ê0 ! �Ê � � 5Ê� � ��Ë¡v¦ÌU¡u ' ��
 � 5Ê� � � �Ë¡v¦ÌU¡u ' ��

ª��0 ! ª�� ' � 5�� � ª��
 ' � 5�� � ª��

ª��0 ! ª�� ' � 5�� � ª��
 ' � 5�� � ª��

ª�¤0 ! ª�¤ ' � 5�� � ª�¤
 ' � 5�� � ª�¤

ª�Ê0 ! ª�Ê ' � 5�� � ª�Ê
 ' � 5�� � ª�Ê

ª��0 ! ª�� ' � 5�� � ª��
 ' � 5�� � ª��

ª��0 ! ª�� ' � 5�� � ª��
 ' � 5�� � ª��

ª�¤0 ! ª�¤ ' � 5�� � ª�¤
 ' � 5�� � ª�¤

ª�Ê0 ! ª�Ê ' � 5�� � ª�Ê
 ' � 5�� � ª�Ê

ª¤�0 ! ª¤� ' � 5¤� � ª��
 ' � 5¤� � ª��

ª¤�0 ! ª¤� ' � 5¤� � ª��
 ' � 5¤� � ª��

ª¤¤0 ! ª¤¤ ' � 5¤� � ª�¤
 ' � 5¤� � ª�¤

ª¤Ê0 ! ª¤Ê ' � 5¤� � ª�Ê
 ' � 5¤� � ª�Ê

ªÊ�0 ! ªÊ� ' � 5Ê� � ª��
 ' � 5Ê� � ª��

ªÊ�0 ! ªÊ� ' � 5Ê� � ª��
 ' � 5Ê� � ª��

ªÊ¤0 ! ªÊ¤ ' � 5Ê� � ª�¤
 ' � 5Ê� � ª�¤

ªÊÊ0 ! ªÊÊ ' � 5Ê� � ª�Ê
 ' � 5Ê� � ª�Ê

60

Appendix B

Computer Listings

1. VHDL Code for

 Steerable Filter

 Hough Transform

 Kalman Filter

2. Matlab Code for simulating

 Steerable Filter

 Hough Transform

 Kalman Filter

3. C/C++ Code for

 Hough Transform on the EyBot M6

 Steerable Edge detection on the Eyebot

61

References

[1] Xilinx, “FPGA & CPLD Solutions from Xilinx”, [Online] Available: http://www.xilinx.com,

[Accessed: Nov, 2009]

[2] OmniVision ”OmniVision”. [Online] Available: http://www.ovt.com/ [Accessed: Feb, 2010]

[3] Intel “Intel Processor PXA270processor for Embedded Computing”, [Online], Available:

http://www.intel.com/design/embeddedpca/applicationsprocessors/302302.htm, [Accessed: Oct,

2009]

[4] Gumstix Inc. “Gumstix” [Online] Available: http://www.gumstix.com/ [Accessed: Nov,

2009]

[5] PANKIEWICZ, W. POWIERTOWSKI, G. ROSZAK ,” Implementation of the Lane

Detection Algorithm”, 15
th

 International Conference IEEE, 2008, Poland.

[6] Mahmoodi A, Kraut J, Jahns M, Mahmood S, “Hardware Edge Detection using an Altera Stratix

Nios2 Development Kit”, Digital ASIC Design Dec 2005, available online at

http://www.ualberta.ca/~mahmoodi/Thesis/Edgedetection.pdf

[7] Vo Ky Chau and Truong Quang Vinh ,“EMBEDDED IMAGE PROCESSING SYSTEM ON

FPGA”, Available: http://gralib.hcmuns.edu.vn/gsdl/collect/hnkhbk/index/assoc/HASH6088.dir/

doc.pdf [Accessed: Jan, 2010]

[8] Xilinx, “Microblaze: Soft Processor Core”. [Online], Available:

http://www.xilinx.com/tools/microblaze.htm [Accessed: Jan,2010]

 [9] W. Kayankit W. Suntiamorntut ,“Hardware/Software Co-design for Line, Detection Algorithm

on FPGA”, 6th International Conference on Electrical Engineering/Electronics, Computer,

62

Telecommunications and Information

[10] ImpulseC, ”Impulse Accelerated Technologies”, [Online]. Available:

http://www.impulseaccelerated.com/ , [Accessed: Mar, 2010]

[11] SystemC,,”Open SystemC Initiave” [Online] Available: http://www.systemc.org/home/

[Accessed: Jan 2010]

[12] Discrete Wavelet Transform FPGA Design using MatLab/Simulink, Uwe Meyer-Baese, A.

Vera, A. Meyer-Baese, M. Pattichis, R. Perry,University of New Mexico,

[13] Matlab, “MathWork” [Online] Available: http://www.mathworks.com/. [Accessed: Nov,

2009]

[14] Matlab, “Simulink - Simulation and Model-Based Design” [Online]. Available:

http://www.mathworks.com/products/simulink/ [Accessed: Nov, 2009]

[15] Altera.”FPGA CPLD & ASIC” [Online], Available: http://www.altera.com/, [Accessed: Jan

2010]

[16] Mentor Graphics, “ModelSim: “Adavanced Simulation & Debugging” [Online],

Available: http://model.com/ [Accessed: Mar, 2010].

 [17] Video-Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and

Evaluation, Joel C Mc.Call and M. Trived, IEEE TRANSACTIONS ON INTELLIGENT

TRANSPORTATION SYSTEMS, VOL. 7, NO. 1, MARCH 2006

[18] C. Taylor, J. Košecká, R. Blasi, and J. Malik, “A comparative study of vision-based lateral

control strategies for autonomous highway driving,” Int. J. Robot. Res., vol. 18, no. 5, pp. 442–

453, May 1999.

63

[19] E. D. Dickmanns and B. D. Mysliwetz, “Recursive 3-D road and relative ego-state

recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14,no. 2, pp. 199–213, Feb. 1992.

[20] D. Pomerleau, “Neural network vision for robot driving,” in The Handbook of Brain Theory

and Neural Networks, M. Arbib, Ed. Cambridge, MA: MIT Press, 1995.

[21] K. Kluge and S. Lakshmanan, “A deformable template approach to lane detection,” in Proc.

IEEE Intelligent Vehicles Symp., Detroit, MI, 1995, pp. 54–59.

[22] S. Nedevschi, R. Schmidt, T. Graf, R. Danescu, D. Frentiu, T. Marita, F. Oniga, and C.

Pocol, “3D lane detection system based on stereovision,” in Proc. IEEE Intelligent

Transportation Systems Conf., Washington, DC, Oct. 2004, pp. 161–166.

[23] Y. Otsuka, S. Muramatsu, H. Takenaga, Y. Kobayashi, and T. Monj, “Multitype lane

markers recognition using local edge direction,” in Proc. IEEE Intelligent Vehicles Symp.,

Versailles, France, Jun. 2002, vol. 2, pp. 604–609.

[24] C. Kreucher and S. Lakshmanan, “LANA: A lane extraction algorithm that uses frequency

domain features,” IEEE Trans. Robot. Autom., vol. 15, no. 2, pp. 343–350, Apr. 1999.

[25] D. Pomerleau and T. Jochem, “Rapidly adapting machine vision for automated vehicle

steering,” IEEE Expert—Special Issue on Intelligent System and Their Applications, vol. 11, no.

2, pp. 19–27, Apr. 1996.

[26] Q. Li, N. Zheng, and H. Cheng, “Springrobot: A prototype autonomous vehicle and its

algorithms for lane detection,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4, pp. 300–308, Dec.

2004.

[27] J. B. McDonald, “Detecting and tracking road markings using the Hough transform,” in

Proc. Irish Machine Vision and Image Processing Conf., Maynooth, Ireland, 2001, pp. 1–9.

64

[28] D.-J. Kang and M.-H. Jung, “Road lane segmentation using dynamic programming for

active safety vehicles,” Pattern Recognit. Lett., vol. 24, no. 16, pp. 3177–3185, Dec. 2003.

[29] N. Apostoloff and A. Zelinsky, “Robust vision based lane tracking using multiple cues and

particle filtering,” in Proc. IEEE Intelligent Vehicles Symp., Columbus, OH, Jun. 2003, pp. 558–

563.

[30] B. Southall and C. J. Taylor, “Stochastic road shape estimation,” international proceedings

of Computer Vision, Vancouver, BC, Canada, 2001, pp. 205–212.

[31] S. Lee and W. Kwon, “Robust lane keeping from novel sensor fusion,” in Proc. IEEE Int.

Conf. Robotics and Automation, Seoul, Korea, 2001,vol. 4, pp. 3704–3709.

[32] The University of Western Australia; Computer Science & Software Engineering,”Edge

Detection: Classical Method” [Online], Available:

http://undergraduate.csse.uwa.edu.au/units/CITS4240/ [Accessed: Feb 2010]

[33] William T. Freeman and Edward H. Adelson, The Design and Use of Steerable Filters,

IEEE RANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.

13, NO. 9, SEPTEMBER 1991

[34] Yanxia Wang and Quiqi Ruan, “ Palm-line Extraction Using Steerable Filters”, ICSP 2006

proceedings, IEEE

[35] Xilinx, © “AccelDSP Synthesis Tool” [Online], Available:

http://www.xilinx.com/tools/acceldsp.htm [Accessed: March, 2010]

[36] GZ Yang and DF Gillies, “Hough Transform”, Department of Computing, Imperial College

[37] Binary Images, School of Computer Science & Software Engineering, The University of

Western Australia

65

[38] Bernhard Zeisl, Robot Control and Lane Detection with Mobile Phones, Bachelor’s Thesis,

INST I TUTE FOR REAL - TIME COMPUTER SYSTEMS, Technical University of Munchen

[39] Yue Wang, Eam Khwang Teoh, Dinggang Shen, “Lane detection and tracking using B-

Snake”, Image and Vision Computing 22 (2004) 269–280

[40] Yue Wang, Earn Khwang Teo and Dinggang Shen, “A B-Snake Model Using Statistical

and Geometric Information -Applications to Medical Images”, Seventh lnternational Conference

on Control, Automation, Robotics And Vision (ICARCV'O2), Dec 2002, Singapore

[41] Erik Cuevas, Daniel Zaldivar, and Raul Rojas, “Kalman filter for vision tracking”, 10th

August 2005, Technical Report B 05-12

[42] Markus Kohler, Using the Kalman Filter to track Human Interactive Motion , Modelling

and Initialization of the Kalman Filter for Translational Motion, Universitat Dortmund,

Informatik VII, D-44221 Dortmund, Germany

[43] You Feng, Wang Rongben and Zhang Ronghui,”Algorithm on Lane Changing and

Tracking Control Technology for Intelligent Vehicle”, Proceedings of the 2007 IEEE,

International Conference on Robotics and Biomimetics, December 15 -18, 2007, Sanya, China

[44] Saman S. Abeysekera and Charayaphan Charoensak, “Efficient Realization of Sigma-

Delta (Σ-∆) Kalman, Lowpass Filter in Hardware Using FPGA”, EURASIP Journal on Applied

Signal Processing, Volume 2006, Article ID 52736, Pages 1–11,DOI 10.1155/ASP/2006/52736

[45] Ruchi Pasricha1, Sanjay Sharma, “An FPGA-Based Design of Fixed-Point Kalman Filter”,

DSP Journal, Volume 9, Issue 1, June, 2009

66

[46] Jim Lewis, David Bishop, Kodak, “Fixed and Floating Point Packages”, SynthWorks

VHDL Training

