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Abstract 

 

The application of the Image Processing to Autonomous Drive has drawn a significant attention 

in the literature and research. However the demanding nature of the image processing algorithms 

conveys a considerable burden to any conventional real-time implementation. Meanwhile the 

emergence of FPGAs has brought numerous facilities toward fast prototyping and 

implementation of ASICs so that an image processing algorithm can be designed, tested and 

synthesized in a relatively short period of time in comparison to traditional approaches. This 

thesis investigates the best combination of required algorithms to reach an optimum solution to 

the problem of lane detection and tracking while is aiming to fit the design to a minimal system. 

The proposed structure realizes three algorithms namely Steerable Filter, Hough Transform and 

Kalman Filter. For each module the theoretical background is investigated and a detailed 

description of the realization is given followed by an analysis of both achievements and 

shortages of the design.  
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Chapter 1 

Introduction 

 

Nowadays the advent of fast platforms has given a more significant role to image processing. 

There is no wonder any more that there are image processing units embedded in such small 

platforms like cellphones and cameras, however the demanding nature of the image processing 

algorithms is still putting a barrier to realize a wide range of existing advancements in theory into 

the world of real time implementation. On the other hand the great amount of resources available 

on the FPGAs besides the flexibility to test and prototyping an ASIC that it offers, has made 

FPGA an ideal choice for realizing image processing algorithms in the real time and autonomous 

drive is no exception. A brief literature survey agrees that although there are numerous 

advancements in trying to either developing new algorithms or to refining existing ones, only a 

little attention is drawn to the realization.  

1.1 Thesis scope 

This thesis aims to design the required modules of a real-time platform capable of distinguishing 

between desired lane roads and the rest of the peripherals. Indeed there are many issues that have 

to be addressed. Firstly the image must be preprocessed so that all the data irrelevant to the goal 

of the algorithm are distinguished. The level of noise, undesired lanes parallel to the desired ones 

and the light under which the experiment is conducting are all determining factors that must be 

considered into account. The next step is to obtain a formal description of the present lanes. 

Hence it must be decided which algorithm is an optimum choice so that it gives a more accurate 

description while demanding less resources. Finally it comes to the step where the platform must 

come to a decision what to do when the outcome is deviated due to either noise or the lack of 

visual information.  
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1.2 Eyebot M6 

It is desired to tailor the design to fit the resources available on the EyeBot-M6 which is a mobile 

robot designed in the University of Western Australia capable of image processing tasks. There 

is a small sized FPGA of the Xilinx’s Spartan-3E family[1] embedded on the board that is 

intended to be the host platform for this design. One major challenge of this project would be on 

how to cope with limited resources on the Spartan-3E. The image stream is provided by two 

color cameras named OV6630 from OmniVision [2]. The embedded cameras have a maximum 

resolution of 352 * 288 pixels and can reach a maximum frame rate of 50 fps. In order to enforce 

the cameras to generate a 8 bit stream, they are required to be fed a frequency of 18 Mhz. In 

order to save the on-chip resources a 18 Mbit SRAM is interfaced to the FPGA that has the 

capacity to hold 10 frames simultaneously. The FPGA platform is connected to the CPU with an 

asynchronous bus interface called Variable Latency I/O.  The main processor on the EyeBot-M6 

is a PXA-255 [3] running at 400MHz embedded in a Gumstix Board [4] in which there are 

64MB of SDRAM, 16MB of flash and a bluetooth module embedded on the board.  

 

 

 

 

 

Figure  1.1 : An overview of the EyeBot-M6 
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1.3 Thesis outline 

chapter 2  conveys the results of the conducted survey on the conventional approaches already 

practiced by the expert toward implementing lane detection on the FPGA 

chapter 3  expands the theory of the Steerable filter used for edge detection and image 

refinement. Then explains the advantageous and disadvantageous brought to the design by 

applying this approach. Finally the implemented structure on the FPGA is explained, following 

by an analysis of the performance of the implemented hardware.  

chapter 4 investigates two conventional approaches in the literature for a hardware 

implementation of lane detection followed by the theory of both approaches. The theory behind 

the Hough transform and its implementation are given in detail. An analysis of the performance 

of the design follows.  

chapter  5     discusses the need for a tracking module to be added to the design. The theory of 

the Kalman filter and the practiced approach toward transferring the matrix calculations to the 

hardware is given following by a discussion on the difficulties faced in the implementation and 

an analysis on the results.  

chapter 6  summarizes the implemented design and its achievements. Explains both 

achievements and shortages of the design and gives suggestions for a future work.  
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Chapter 2 

Literature Survey  

This thesis aims to implement the consisting modules of a lane detection and tracking system on 

the FPGA. However a survey on the literature proved that this topic is a very active and 

significant area of research and numerous papers are investigating the boarders of knowledge in 

this domain. Since the thesis aims to implement the design on the FPGA platform, firstly a 

survey on the conventional FPGA structures that are related to the topic of this thesis is 

conducted. In the following a brief summary of all the different approaches toward lane detection 

and tracking follows. Furthermore the literature review relevant to the three main topics of this 

thesis namely Steerable Filters, Hough Transform and Kalman Filter will be investigated in the 

corresponding chapters.  

2.1 Literature Survey on the Conventional Design Methodologies on the 

FPGA for Image Processing 

The first paper[5] that was found to be very related to the topic of this thesis is investigating the 

implementation of the lane detection problem on the FPGA. Indeed this paper is proposing a 

solution for two out of the three concerns of this thesis. This paper is applying the Canny filter 

for edge detection and is suggesting the Hough Transform as a solution for lane detection.  

The canny edge detector is implemented on the FPGA using 2D convolution combined with a 

moving window structure. The following steps are taken to detect the edges, the image is 

smoothed by Gaussian convolution, then in order to obtain gradient information the image’s 

derivatives in both directions is calculated using the Prewitt operator. Once the image is edge 

detected, the Hough transform is applied to approximate the present lines in the image.  

Unfortunately the article describes the implementation procedure in a very brief and inadequate 

approach. Actually the focus of the implementation was to apply pipelining as much as possible 

in such way that one output pixel per clock edge is obtained. Cascaded FIFOs are used to 

implement the moving window. A 5 � 5 window structure for smoothing and two 3 � 3 windows 
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for derivation are applied. The result of the canny edge detector on each pixel is presented as a 

one bit structure where  1 represents an edge and 0 represents a none-edge. By applying this 

approach the authors are trying to map the whole image to a considerably smaller space so that 

the whole image is available at once on the FPGA. Calculations of the sine and cosine functions 

are implemented using look up tables. The whole project is synthesized on a Xilinx’s virtexII [1] 

and the exact number of the consumed logic resources is given for each processing block. This 

implementation has achieved a speed of 44MHz. In this project the whole code is written in 

Matlab [13] and is simulated on the MODELSIM  [16] prior to synthesis.   

This paper contributed a lot to the advancement of the thesis. Even though the article is just 

briefing about their applied algorithm and reveals no information about implementation, the 

general idea of possibility of implementing the Hough transform on the FPGA was adopted from 

this paper. On the contrary this paper is applying a very demanding algorithm for edge detection 

i.e. Cany filter that is relatively too much more complex in comparison to the concept of using 

the Steerable Filter applied to this thesis. Finally the idea of implementing ��� and ��� values is 

derived from this paper as will be discussed in chapter 4.  

2.1.2  General Purpose Image Processing System on the FPGA 

Even though it is out the scope of this thesis to implement a general purpose image processing 

system, it is worth to investigate the expert attitude toward satisfying the requirements of such 

design. The following two papers are investigating such generic solution that can fit any image 

processing system. By applying such approaches, the problem of ASIC design reduces to 

implementation of high level languages like C and assembly on the FPGA. 

The second paper[6] that is being discussed here is suggesting a totally different methodology in 

comparison to those of the first paper. This paper is implementing a Sobel Filter as a 2D moving 

window structure. The main idea of this design is to make the modules as generic as possible so 

that the camera and RAM interface modules are independent of the image processor unit’s 

structure.  This design is using the embedded multipliers available on the FPGA. Unfortunately it 

became apparent within this thesis that utilizing the embedded modules is not always possible 

and sometimes it is required to re-implement some existing modules. The image processing 

module on this design is interfaced to the outer world by means of handshaking with both the 

camera and memory interface. It is also remarkable that this design is applying truncation to 
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adjust the numbers. Although this idea is accepted and applied to this thesis but finally it became 

apparent that truncation noise can cause great distortion as will be discussed in the following 

chapter.  

 

The third investigated design[7] is aiming to realize an Embedded Image Processing System on 

the FPGA by utilizing the Microblaze [8] soft processor as the main approach suggested by 

Xilinx. Indeed the importance of this article is that it represents a shortcut towards designing the 

whole embedded system on the FPGA using the automation facilities embedded in the XILINX 

development studio. Microblaze is the soft core processor that can be adjusted to meet the 

design’s requirements. Since this software is professionally designed and tested by the 

manufacturer and since according to the Xilinx it is the best approach towards utilizing the 

Xilinx FPGA’s resources, this article is highlighted here. The Microblaze soft-processor is a 32 

bit Harvard RISC architecture. It originally includes a 3stage pipeline and 32 general purposed 

registers besides an ALU, shift unit, and 2 levels of interrupt. Based on  the requirements of the 

project extra modules like barrel shifter, floating point unit, cashes, exception handling facilities, 

debug logic, and many other blocks can be added to the soft core processor. In this paper 

different kinds of interface between modules on the FPGA as a pretested freeware are explained. 

Microblaze is not only offering a professional interface between modules but also between the 

FPGA and the PC if required. Although this article only introduces the structure itself and does 

not explain how filters are implemented on the Microblaze, the results of implementing Soble 

and Wavelet filters on the image are presented.  

 

2.1.3   Hardware/Software Co-design Approaches for Line, Detection  

 

This paper [9] represents another approach toward designing ASICs on the FPGA. The whole 

procedure is written in ImpulseC[10] which enables one to prototype the hardware as fast as 

possible, since once the algorithm is written in ImpulseC, the compiler automatically generates 

the FPGA’s structure, interface between the FPGA and peripherals and the software operating at 

the host processor. Although ImpulseC has many advantages like automating the hardware 

design procedure and generating parallel structures, it is not a free ware. Instead systemC[11] can 
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be applied that offers the same facilities but a less convenient compiler. In this article the Robert 

kernel is applied in order to derivate the image and then Hough transform is used to detect the 

lines. The most significant contribute of this paper addresses the amplitude of the gradient. 

Although the gradient magnitude must be calculated as    

                                                                   ���� ��� 
� � ��� ��� 
�                                             �1
                  

in practice the following equation is being used as a proper approximation  

                                                                    |�| ! |�"| �  $�%$                                                    �2
 

Equation �2
 was found to be very useful and is applied to this thesis in the steerable module 

 

 

2.1.4   FPGA design using Matlab/Simulink  

This article [12] highlights the roll of high level design by introducing the Matlab/Simulink 

based approaches. Although there are obvious advantages using this technique but the 

throughput of the design is dependent to the sophistication of the libraries at hand, and the cost 

and availability of development tools. Recently both major FPGA vendors i.e. Altera[15] and 

Xilinx, have begun to support Matlab development environment since it is the main platform for 

DSP development. To use the benefits of high level design the free web based version is not 

adequate and the full tool subscription is required to support DSP builder by Altera or System-

Generator by XILINX. This article investigates the efficiency of this approach when applied to a 

Xilinx or an Altera board.  

When compared in size and efficiency there are no advantages in using one library over another 

to choose between Altera or Xilinx. In either case there are enough building blocks to design 

almost any DSP system without generating any custom block. In the following the article 

explains the advantages and disadvantages of using either Xilinx or Altera when compared for 

cost, design flow, Simulink support  and design flow implementation. It is concluded that both 

vendor’s are almost identical except when it comes to porting from Simulink to the physical 
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layer where Altera is significantly superior since all the design procedure must be done once 

again for Xilinx while it can be generated for Altera directly from the Simulink environment.  

 

 

2.2  A Literature Survey on the Lane Detection Problem  

According to the comprehensive survey conducted by Joel C. McCall and Mohan M. Trived [17], 

all the driver assistance system design literature 1984–2006, follow a very similar design flow. 

First a model for the road and vehicle is proposed. This model varies between a simple straight 

line, Clothoid or Spline. Next a set of sensors are used to gather the environmental information 

used for extracting features like motion flow, edge, texture etc. These extracted features in 

combination with the actual road model are used to estimate the lane’s position. Finally a model 

is required for the moving vehicle to refine these estimates. Only a few design have been 

excepted from this methodology. Two cases are cited as an exception, first one is a combinatory 

control strategy used by Taylor et al[18] in which various control strategies are coupled together, 

second is the ALVINN [20], autonomous land vehicle in a neural network, in which the neural 

network “directly incorporates the feature extraction into the control system with no tracking 

feedback”.  

Road Modeling is necessary for “eliminating the false positives via outlier removal”. Parallel 

lines, piecewise constant parallel lines, curvatures like splines and even maps generated by dGPS 

are examples are applied road models. The applied model is determined based on the expected 

degree of sophistication e.g. a spline model is too much complex for a system intended for only 

highways.  

Road marking extraction seems to be the most determining phase. Since the road and lane 

marking vary greatly, applying only a single feature extractor is challenging. Edge based 

techniques work properly with solid and segmented lines. On the contrary if there are many 

extraneous lines this approach is very likely to fail. In this case i.e. extraneous lines, the 

frequency domain methods like what is used in LANA [24]  is more effective. On the other hand 

the frequency based system is limited to the diagonal lanes. In addition there are cases in which 
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the lane position is based on an adaptive road model e.g. RALPH system [25]. This approach can 

fail in case the road texture is not constant.  

In order to improve the extracted features and estimates post processing is mandatory. There are 

various approaches towards post processing namely Hogh Transform [26],[27], attenuation or 

enhancement of features using orientation [23]  or likelihood [21],[24], culling features using 

stereo vision [22], dynamic programming [28], and finally cue scheduling [29]. In all these 

approaches some features are amplified and are chosen to be fed into position tracking module 

while some extraneous features are attenuated or eliminated due the system’s structure. 

The last phase is tracking. There are two common tracking techniques namely Kalman filtering 

[18],[19] and particle filtering [29],[30]. There are combinatory structures with a more complex 

structure like [31] as well. In all these approaches feature extraction and position tracking are 

combined in a closed feedback loop.  

 

 

 

 

 

 

 

 



 

10  

 

Chapter 3 

Edge Detection   

 

3.1 Edge Detection theory 

As a formal definition, any step discontinuity is regarded as an edge. Hence, traditional 

approaches of edge detection are simply a process of finding the local maxima in the first 

derivative or the zero crossings in the second derivative by convolving the image by some form 

of linear filter that approximates either first or second derivatives [1]. While an odd symmetric 

function can approximate the first derivative, the second derivative is approximated by an even 

symmetric function.  

In fact, in the discrete domain, the gradient of the image can be simply calculated by taking the 

difference of the gray values in the image. This procedure is equal to convolving the image by 

the mask&'1,1). The obvious disadvantage of this simplification is that it is not clear which pixel 

the result is associated to. There are various approaches to this issue among which the following 

filter masks offer a first derivative solution     

 �� ���  �� ���  

Robert * 0 1'1 0, *1 00 '1, 

Prewitt -'1 0 1'1 0 1'1 0 1. - 1 1 10 0 0'1 '1 '1. 

Sobel -'1 0 1'2 0 2'1 0 1. - 1 2 10 0 0'1 '1 '1. 

 

Figure  3.1 : First Derivative Filter Masks 
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To point the gradient map of the frame, in each case the magnitude of the gradient map is 

calculated by  

                                                              ���� ��� 
� � ��� ��� 
�                                                  �1
 

The main concern in derivative edge detection is the effect of the noise since the local maxima 

due to the white noise can mask the real gradient maxima due to an edge.  That is why it is 

required to convolve the image with a smoothing function e.g. Gaussian function, so that the 

effect of the white noise is minimized. Both of the mentioned operators namely the gradient and 

the Gaussian are linear and it is computationally more efficient to combine them. Therefore if the 

image and its gradient are indicated by  �  and  � then  

                                                                �� / �
0 ! � / �0                                                    �2
                           

3.2 Steerable Filter Theory  

The input image stream usually contains lanes in various directions which are redundant to the 

problem of autonomous drive. Therefore it is required to apply oriented edge detectors to 

different parts of the image such that the unwanted lanes are suppressed. One approach to do so 

is to apply many versions of an edge detector each of which differing from others in the angle, to 

different parts of the image. This approach obviously consumes huge amount of extra logic and 

is not reasonable to implement, although is quite fast. A more efficient approach is proposed by 

[33],[34] in which required filters of arbitrary orientation can be expressed as a linear 

combination of a set of basis filters. One then only needs to know how many filters are required 

and what interpolation function satisfies the requirements. This class of oriented filters is referred 

to as Steerable Filters. A function 1�� , �
 is steerable if it can be written as a linear sum of 

rotated versions of itself. This constraint can be expressed as 

                                                  23��, �
 !  ∑ 56�	
237869� ��, �
                                               �3
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where  2�� , �
 is an arbitrary isotropic window function, 56�	
 are the interpolation functions 

and M is the number of basis functions required to steer a function 13��, �
.  In order to 

investigate what functions are steerable, function 2�� , �
 is expressed in polar coordinates where : ! ;�� � �� , < ! arg ��, �
.  If  2 is expandable in a Fourier series in polar angle < we have  

                                                     2�:, <
 !  ∑ �@�:
A6@BC@9DC                                                   �4
 

 

The number of the required basis functions and the basis functions themselves are determined as 

a  results of the following theorems [33] 

 

Theorem F: the steering condition �1
 holds for functions expandable in the form of �2
 if and 

only if the interpolation functions  56�	
 are solutions of  

                                 G 1A63HA6C3I ! J 1 1   K    1A63L A63M      K A63NHA6C3L HA6C3M         HK HA6C3N
O J5��	
5��	
H58�	
O                         �5
 

Theorem P : Let  Q  be the number of nonzero coefficients �@�:
   for a function 2�:, <
 

expandable in the form of �5
.  Then, the minimum number of basis functions sufficient to steer  2�:, <
 by �1
 is  Q. 

 

Therefore if a function 2�:, <
 is expandable in Fourier series in polar angle, it is steerable. The 

number of the none zero coefficients determines the minimum number of the required basis 

functions required to steer a function. Finally in order to obtain the basis functions equation �5
 

must be solved.  

For instance the two dimensional symmetric Gaussian function G that is used in edge detection is 

described as 

                                                         ���, �
 ! AD�"MR%M
                                                            �6
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by expressing the first derivative of  ���, �
 in polar coordinates we have 

                                  ��
T�:, <
 !  '2:ADUM cos�<
 ! ':ADUM�A6B � AD6B 
                          �7
 

Obviously  ��
T�:, <
 has two none zero coefficients in its Fourier decomposition in polar angle <, therefore only two basis functions would suffice to synthesize ��3 out of its basis functions. 

Now, one needs to obtain the interpolation functions by solving the equation �5
 for two basis 

functions that results to   

                                                    ZA63[ !  �A63L A63M
 \5��	
5��	
]                                               �8
 

Solving equation �6
  is straight forward and if we pick 	� ! 0°  and  	� ! 90°  then the 

interpolation functions are obtained as  

                                                               5��	
 ! cos�	
                                                           �9
 

                                                                5��	
 ! sin�	
                                                          �10
 

And finally the first derivative of the two dimensional symmetric Gaussian function G that is 

widely used in image processing is expressed in terms of its basis functions as  

                                        ��3 ! ∑ 5a�	
��3b�a9� ! cos�	
 ��
° � sin�	
 ���
°                          �11
 

 

Now it comes to the point to combine the concept of a separable and steerable filter. Let the cth 

derivative of a Gaussian in the x direction to be written as �@ and let �… 
3 represent the rotation 

operator. The first � derivative of a Gaussian is  

                                                ��
° ! ee" AD�"MR%M
 ! '2�AD�"MR%M
                                        �12
 

The same function when rotated 90° is  

                                                 ���
° ! ee% ADZ"MR%M[ ! '2�ADZ"MR%M[                                      �13
 

and  ���
°  are separable and can be described as  
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                                                                 ��
° ! 2���
 · 2���
                                                      �14
 

                                                               ���
° ! 2���
 · 2���
                                                    �15
 

                                                   2���
 !  '2�AD"M
 ,  2���
 ! AD"M

                               �16
, �17
   

 

Freeman[33] suggests a sample spacing of  0.67 in the range which leads to the sampled 9 taps 

of  table 1. 

tap#          f1 f2 

0 0.0 1 

1 -0.5445         0.6383 

2 -0.2833        0.1660 

3 -0.0450       0.0176 

4 -0.0026        0.0008 

 

 

 filter in x      filter in y ���
 f1 f2 ��
 f2 f1 

 

 

 

 

 

 

 

 

Table 3.1 : Filter taps corresponding to the basis functions of the  Separable Gaussian filter 

Table 3.2  basis functions of the Separable Gaussian filter in each direction 



 

15  

3.3  FPGA implementation of the Steerable Filter 

Prior to combining the filter with the rest of the image processing modules it is required to 

implement the filter structure itself. According to the fact that filter coefficients are none integers 

and all have a fraction part, it was required to apply fixed point arithmetic. Indeed a more precise 

design needed a floating point module to take care of the fractions but in order to keep the design 

concise it was decided to apply the Fixed Point logic.  

 

 

3.3.1 Fraction Length 

In order to implement a 7 � 7 filter it was required to differentiate between filter taps 2 and 3, 

that is equivalent to realizing fixed point numbers with a precision that can differentiate a 

decimal value of  0.01  i.e. the third tap  of  2�.  Hence, considering the fact that  2Dh � 2Di  j 0.01,  at least 8 bits are required to be considered for the fraction part. According to the fact that 

there are 11 signed bits considered to keep the gradient value of the edge detected pixels, it was 

required to implement multipliers with a word length of  8 � 11 � 1 ! 20   bits, such 

implementation enforced pipelining and more strict timing constraints. Therefore it was decided 

to realize the steerable filter as  a 5 � 5 window and to realize a larger window only if the 

precision of design were not satisfying enough. However, the results of the physical 

implementation proved that no more precision was required. Moreover, after analyzing the 

truncation error, as is depicted in table 3.3, it became apparent that by the current constants taps, 

there is no difference between implementing a fraction length of 5 or 6. That is why a fraction 

length of 5 is adopted for the filter taps. 
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tap#         

f�   

required 

Fraction 

length 

f�   

Binary 

implementation 

f� 

Truncation 

error  

error 

% 

f� 

required 

f� 

Binary 

implementation 

f� 

Truncation 

error 

error 

% 

0 0.0 5 .00000               0 0 1 .11111 .03125 3 

1 0.5445        5 .10001               .01325 2.43 0.6383 .10100 .0133 2 

2 0.2833       5 .01001               .00205 0.72 0.1660 .00101   .00975 5 

0 0.0 6 .000000 0 0 1 .111111 .0156 1.5 

1 0.5445        6 .100010 .01325 2.43 0.6383 .101000 .0133 2 

2 0.2833       6 .010010 .002050 0.72 0.1660 .001010 .00975 5 

0 0.0 7 .0000000 0 0 1 .1111111 .0079 0.7 

1 0.5445        7 .1000101 .00543 0.99 0.6383 .1010001 .00175 2 

2 0.2833       7 .0100100 .00205 0.72 0.1660 .0010101 .0019 1 

0 0.0 8 .00000000 0 0 1 .11111111 .0039 0.3 

1 0.5445        8 .10001011 .00153 0.28 0.6383 .10100011 .0015 2 

2 0.2833       8 .01001000 .00205 0.72 0.1660 .00101010 .0019 1 

 

 

3.3.2 Implementing the Filter Structure 

In order to implement the steerable filter, equation �11
 must be realized. There are various  

remarkable points regarding to realizing this equation that will be addressed in the following. 

Firstly it is required to access the values of  ��
° and ���
°  for each pixel. There are two possible 

approaches to address this issue. First one is to implement a two dimensional moving window 

that is moving across the five rows. The second approach is to decompose ��
° and ���
°  to their 

basis filters. So that a two dimensional convolution is decomposed to two one dimensional 

convolutions. Indeed both approaches are equivalent in terms of time requirements, but the 

second approach demands smaller number of logic gates. The importance of this approach might 

not be obvious for smaller filters like the Sobel filter, but for a larger filter with a large number 

of none zero taps such conversion means huge amount of savings in terms of logic gates. It is 

worth to note that in Soble filter, the process of multiplying each tap involves a single shift, 

while in a filter whose taps are none integer values it is a must to separate basis functions, 

otherwise unreasonable amount of multipliers are required to implement the Fixed Point 

Table  3.3 : A comparison between different values of truncation noise 
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multiplications.  A comparison between the separable and non-separable moving windows 

depicted in figures 3.2 and 3.3 gives a clear perception of the need for designing a moving filter 

as a separable structure if applicable. 

 

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

 

 
Figure  3.2 : 2D structure for the non-separable moving window 
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The second issue addresses the demand for a structure able of keeping the value of 5 rows. 

Obviously the number 5 is related to the window size of the implemented steerable filter. Hence 

if it was opted to implement a 6 � 6 window, it was required to simultaneously access the values 

of the 6 rows. This adds one more reason to the previous discussion on the size of the filter, 

justifying why only 5 taps out of 9 are implemented i.e. if another 2 taps were applied, it was 

required to keep another two rows on the FPGA that would waste a lot of resources. Since there 

are negative filter taps, it is required to convert the unsigned bit stream coming out of the camera 

interface to signed values. Therefore prior to any further calculation, the input data stream 

coming from camera interface is extended to 9 signed bits. 

The proper structure for realizing time delay is a FIFO. Each FIFO must be of the length of 352 � 9 ��l� so that it can hold the value of the whole row. Although it is straight forward to 

implement a FIFO as a large shift register, Xilinx strongly suggests the use of the IP cores for 

Figure  3.3 : 2D structure for the separable moving window 
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implementing such large FIFO structures on its FPGAs. These FIFOs are generated using the 

internal Block RAMs available on the FPGA. The number of words in each FIFO is an integer 

multiplicand of 2. Therefore in order to implement a FIFO of the length of  352 it is required to 

choose a FIFO of the length of 512. The logic of these FIFOs is programmable so that after  352  

pixels the first output is generated. However an area equivalent to 160 � 9 ��l�  will be wasted.  

 

There is another remarkable issue regarding to the borders of the frame. As mentioned earlier, it 

is a requirement for a window structure to access all the pixel values within a window. Otherwise 

an irrelevant value is obtained that is useless. Hence it is required to exclude the borders. This 

issue is very easily handled by implementing counters for tracking the number of pixels. 

Therefore the filtering process only starts after 4 rows and 3 pixels are entered the steerable 

filter.  Figure 3.4 depicts this issue. Once end of the frame is reached the remainder of the data 

residing within the FIFOs is redundant and must be cleared. This problem is easily solved by 

keeping the track of the filtered pixels by updating the row and column indexes.  Furthermore a 

comparison between figures 3.4 and 3.7 confirms that the boundary rows and columns of the 

figure 3.7  are distorted as in confirmation with the area indicated in figure 3.4. 

 

  

 

 

Figure  3.4  Dealing with the boarder pixels  



 

20  

 

3.3.3 Applying Orientations and Calculating Trigonometric Values 

Now that the separable moving window structure is implemented, one more step is required to 

generate the output. Indeed at this stage it is required to alter the orientation of the filtered 

window by applying the proper basis functions. In fact if the design was tailored to reach the best 

possible efficiency for the autonomous drive problem, it is recommended that processing half of 

the image is always redundant since it contains no relevant information about the road lanes. 

However in order to keep the design as generic as possible, as is the goal of this thesis while 

emphasizing the autonomous drive problem, the whole pixels of the frame are processed. Figure 

3.4 depicts the desired orientations that are applied to different districts of the image. 

 

 

By altering the orientation of the edge filters to the directions depicted in figure 3.5, one makes 

sure that the edges in the desired directions are strengthened while the others are weakened. The 

need for this practice becomes more clear when noticing the fact that in a non ideal environment 

too many edges are present due to the adjacent vehicles, multi parallel lanes in a highway or the 

obstacles around the road,  that are all redundant to the problem of autonomous drive. As 

Figure  3.5 :  applied orientations to the Steerable Filter 
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discussed earlier in the chapter the main goal of implementing steerable filters was to address 

this problem since the main advantage of the steerable filter is just to steer the filter to the desired 

orientation.  

 

 

In order to steer the filters, it was required to implement sin�	
 and cos�	
 functions. According 

to the figure 3.5 there are only 8 angles for which the values of sin�	
 and cos�	
 are required to 

be implemented so that a generic function is redundant to the design. Thereby the values of the 

required functions are pre-calculated and saved into a look up table as is summarized in table 3.4. 

In fact for the Hough transform module implemented in the next chapter another look up table 

for trigonometric functions were required, but in order to make the modules generic and 

independent it was decided to opt for redundancy. Once again it is easy to refer to the required sin and cos values for a certain range of pixels by applying the proper control logic to check the 

row and column indexes.  

 

  degree cos�	
 sin�	
 

80 0.1736 00101 0.9848 11111 

75 0.2588 01000 0.9659 11110 

55 0.5736 10010 0.8192 11010 

25 0.9063 11101 0.4226 01101 

65 0.4226 01101 0.9063 11101 

35 0.8192 11010 0.5736 10010 

10 0.9848 11111 .01736 00101 

50 0.6428 10100 0.7660 11000 

 

 

In order to implement the required multiplication in cos�	
  �   ��
°
   and  sin�	
 � ���
°

 , three 

approaches were investigated. The best approach suggested by Xilinx is to apply the embedded 

fast multipliers on the chip itself. This approach is applied to the Hough module in the next 

Table 3.4  a fixed point representation of the required trigonometric values  
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chapter. However it became apparent that due to the small size of the Spartan 3E, the adjacent 

Block RAMs and multipliers are accessible only through the same predefined fixed route on the 

chip. According to the fact that there are only 20 multipliers available on the chip among which 2  are used for other components on the chip, and considering the fact that there are 18 

multiplications required per steerable filter and that none of the remainder multipliers adjacent to 

one of the used Block RAMs for implementing the required FIFOs can be used, it became 

apparent that fixed point multiplications must be implemented manually. 

 

There are two approaches investigated towards implementing the fixed point multiplications. 

Firstly it was decided to implement a fully pipelined multiplier by applying the shift and sign 

extension structure. Once the final value is obtained the fraction part is truncated. The reason is 

that it was decided to limit the steerable filter to the integer numbers. This simplification proved 

quite efficient for image processing purposes where truncation noise is only affecting the 

numerator. In case the truncation is applied to the denominator, as is the case in the Kalman 

Filter design in chapter 5, a small amount of truncation would make a huge error in the result. 

That is why there is a very large fixed point representation i.e. 19bits, chosen for the Kalman 

filter registers to decrease the truncation noise as much as possible. The fixed point multiplier is 

tested with a wide range of positive and negative numbers and it proved to operate accurately. 

However after more investigation it became apparent that it is possible to drop the multipliers by 

applying simple shifts. The reason behind that is the fact that firstly the filter taps are fixed, and 

secondly there are only a few none zero bits present in each filter tap, otherwise this approach 

would dramatically decrease the efficiency. Having calculated the values of   cos�	
��
°
    and  sin�	
���
°

 there is only one more step left to generate the gradient value of the pixel by adding 

these two values.  
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3.3.4 Determining the Register Sizes 

The final remark is about the need to determine the proper word lengths. Indeed there are two 

approaches in a more comprehensive design toward designating the proper word length to the 

applied registers when the design is larger than to be measured and estimated manually. The 

more professional solution advised by Xilinx is to apply the design to the AccelDSP[35] in order 

to calculate the required bit length of each register present in the design by considering the range 

of applied data input and the operation that the register is involved in. Unfortunately this 

software is not a freeware and must be purchased. This solution requires the whole design to be 

ported and simulated in MATLAB. This approach would be a perfect solution for any design if 

the scheme is originally designed in SIMULINK. Since in this thesis all the modules are 

developed straight away out of the scratch, it did not worth to redesign the whole procedure in 

MATLAB due to the time constraints.  

Hence it was required to intake extra bits to make sure that no overflow is occurring. First of all, 

all  the unsigned 8-bit input data stream coming from camera interface is casted to 9-bit signed 

values so that the pixel values are capable of keeping a sign without loosing a bit. Furthermore it 

was opted to extend the data length to 11-bits prior to multiplying by filter taps. The reason is 

that after multiplying by either 4 taps of 2� or 5 taps of 2� , all the 4 or 5 resultants are summed 

together to form the required input to the next stage. Indeed all these filter taps are less than 1, 

but  there is a probability that their sum can exceed the 10 bits. When it comes to fixed point 

multiplications at the steering part, the 11 -bit integer operand is multiplied by a number 

consisted of only a fraction of length 5 bits. The fixed point result is truncated afterwards to fit 

the 11-bit as an integer number. At the final stage when all the calculations are done, the values 

corresponding to  cos�	
 ��
°
 and sin�	
 ���
°

are each 11-bit long, therefore it is required to 

truncate the values to 8 bits. It was observed that there are some negative values present as the 

output of either  cos�	
��
°
 or sin�	
 ���
°

, therefore in try to scale back the pixel values to the 

gray scale it was required to add a positive value so that all the negative values are shifted to the 

range of gray scale. Finally it is unavoidable to truncate the extra 2 least significant bits. Figure 

3.7 depicts the diagram summarizing the overall  implemented structure for steerable filter. 
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Figure  3.7 : The block diagram of the implemented steerable filter 
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3.4  Results and Analysis of the Design 

The designed steerable filter is fully synthesized and routed on the FPGA Spartan 3E present on 

the Eyebot-M6 and proved to work properly. The following figures are obtained by simulating  

the proposed structure for steerable filter on the eyebotM6. 

 

 

               

 

There are both advantageous and disadvantageous regarding to the implemented structure. The 

implemented design satisfies the requirement to have the lanes in the undesired directions 

suppressed.  It is apparent that the peripheral lanes in the other bands of the highway are not 

detected any more. In addition lanes due to the other obstacles i.e. other vehicles and other 

Figure  3.8 a) the original image  b) image representing the cos�	
 ��
° component  c) image 

representing the sin�	
 ���
°  component 

a) 

b) c) 
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obstacles are dramatically suppressed. On the other hand the lane in the desired direction is 

heavily empowered.  

On the other hand it was observed that some distortion is introduced to the boundaries of the 

image. Although the road lane detection is the beneficiary of this issue, since all the distortion 

occurs at boundaries where no lane is expected, but it is not acceptable for a generic design. 

After further investigation it is suggested that the introduced distortion is related to the truncation 

noise due to the short size of the fraction length. Such issue did not occur in designing the other 

two modules since a relatively large fraction length were introduced to the design.  

 

 

 

 

Figure  3.9:  Steerable Filter Module  

Figure  3.10:  summary of the utilized resources on the FPGA 
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Chapter 4 

Lane  Detection 

 

 

4.1 Literature Survey 

There are four approaches widely used in the literature to identify lines in the image. Hough 

Transform[36],[37] has been used for a long time and is applied to a wide variety of applications. 

In fact, the Hough Transform is a very demanding algorithm in terms of computational 

requirements and in most of the cases either search space is limited to certain parts of the image 

or is combined with some heuristic approaches to reduce the calculations. In the second approach 

[38] the image is divided to certain number of tiles and each tile is searched for the lane passing 

the center of mass in that tile. Even though this approach is not used widely in the literature and 

is applied to a few number of problems, the implementation of the algorithm in C language on 

the Eyebot-M6 proved that it is a more proper choice for a Floating Point implementation. 

However as will be discussed after later in the chapter, this thesis recognized the Hough 

transform as a better choice for hardware implementation. The third approach that is widely used 

in the literature aims to find the present lanes in the image by interpolating a variety of different  

Splines to the interest points in the image. Among all the investigated Splines B-snakes [39] 

found to be more accurate and popular. Finally the statistical approaches [40] have drawn a lot of 

attention among the literature. The last two approaches have gained a lot more in comparison to 

the first two, but obviously are very expensive in terms of computational demands and have 

never been the subject of a hardware implementation.  
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4.2 Hough Transform Theory  

An object in the image can be described by various number of mathematical functions describing 

its boundary. Although applying complex functions is theoretically possible, the demanding 

computational requirements make the physical implementation impossible. The original Hough 

transform is patented after Paul Hough in 1962 and suggests an efficient approach to describe the 

boundaries of the object of interest. In this approach much of the information present in the 

image is not used since the edge image is firstly converted to a bi-valued space by applying a 

threshold value to the pixel gradients. Therefore a pixel is regarded as a potential boundary pixel 

only if its associated gradient is higher than a certain value. In fact the need for determining such 

threshold values is the main disadvantage of the Hough transform as will be addressed in the 

analysis of the implemented structure. A single lane in the Cartesian space is formulated by  

                                                                 � ' m� ' � ! 0                                                          �1
 

where  m  and �  are corresponding to the slope and intercept of the lane. One single point in the 

Cartesian space can be considered to belong to a whole family of lines with different  m  and �  

values. A single line in the m - �  space can represents all the possible m   and �   values 

corresponding to all the lines that can pass that point. Therefore a set of points in the Cartesian 

space can be mapped to a set of lines in the m-� space and that forms the main idea behind the 

Hough approach towards extracting the present lines in the image. Figure 4.1   depicts the 

concept of the Hough Transform.   

 

Figure 4.1:  Map between Cartesian and Hough space 
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At this point all the edge points located on a single straight line in the �-� space will intersect on 

a single point in the m-� space. Therefore the problem of finding the straight lines in the �-� 

space reduces to finding a single point in the m-� space. The presented formulation of a straight 

line does not satisfy computational requirements since the values of m can tend to infinity. A line 

can be represented by its shortest distance and its orientation by  

θ

ρ

 

                                                            n ! � ����	
 '  �����	
                                              �2
 

Hence for each single edge point whose gradient is above the threshold a procedure is invoked in 

which firstly the corresponding shortest distance i.e. n@ associated which each orientation 	@ is 

found, secondly the index number representing the calculated distance is obtained and finally the  n-	  space associated with n@  and  	@ is incremented by one. Substituting the values of n and 	  

in �2
 indicates that a line in the �-� space is mapped to a sinusoid in the n-	  space.  

 

                         ��6, �6
 o   p !  ;�6� � �6� M  , cos�<
 !  �6 p� , sin�<
 !  �6 p�                    �3
 

                             n ! p����<
 cos�	
 '  p sin�<
 sin�	
 !  p cos �< ' 	
                        �4
 

 

In practice, there are numerous number of lines passing each point, hence the n-	  space is 

divided to discrete points each representing a range of points in its neighborhood. For instance if 100  points are determined to represented the orientation, each represents a vicinity of 3.6° 
degrees. Once all the edge points in the �-� space are mapped to their corresponding sinusoids in 
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the n-	  space, the problem of the lane detection is equivalent to finding the local maximums in 

the n-	  space. 

 

 

4.3 Lane Detection: Second Approach 

In this approach the present lines in the image are obtained by calculating the first and second 

moments of the image [37],[38]. In fact this approach is looking for the minor and major 

principal axis of an object. That is why in this approach it is required to isolate the objects prior 

to lane detection otherwise the moments of different object will affect each other. It is easy to 

deal with this problem in a high level language like C by preprocessing and segmenting the 

objects. But for an embedded realization such preprocessing is not reasonable and usually the 

image is segmented to equally distributed tiles. Finally a clustering method is required to 

combine all the locally found coordinates. The algorithm can be summarized as follows.  Firstly 

Area of the object i.e. the whole tile in practice, is obtained by the 0�� moment of the object as  

                                                                    q !  ∑ ∑ ���, �
                                                      �5
 

where ���, �
 equals to ��A for pixels whose gradient is above threshold. The center of mass, 

denoted by ��r, �s
 represents the center of the desired object e.g. line and is calculated by 

                                                         �r !  ∑ ∑ "t�",%
∑ ∑ t�",%
                                                         �6
 

                                                         �s !  ∑ ∑ %t�",%
∑ ∑ t�",%
                                                         �7
 

At this step the axis of minimum inertia of the object passing from the center of mass is required 

to indicate the orientation. This is the axis of least 2@umoment [37]. This aim is satisfied by 

finding a line for which the following integral is a minimum  

                                                                   � !  ∑ ∑ :� ���, �
                                                    �8
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where : is the perpendicular distance from ��, �
 to the desired line, but prior to this step it is 

needed to confirm a proper representation to parameterize a straight line. For the same reasons 

discussed in the previous entry, the line is represented by equation �2
. The equation �8
 is 

solved in &37) in detail and the orientation corresponding to the major principal axis i.e. 	� and 

minor principal axis i.e.  	� are obtained by 

 

                                             	� ! ��  �l��2� t;tMR�vDw
M   , vDw;tMR�vDw
M  
                                          �9
 

                                             	� ! ��  �l��2� Dt;tMR�vDw
M   , wDv;tMR�vDw
M  
                                       �10
 

                                                                    � !  ∑ ∑ �́����́ , �́
                                                �11
 

                                                                    � !  2 ∑ ∑ �́�́���́, �́
                                             �12
 

                                                                    � !  ∑ ∑ ��y ���́, �́
                                                �13
 

                                                                           �́ !   � ' �r                                                     �14
 

                                                                           �́ !   � ' �s                                                     �15
 

the constants � , � , � are called the second moments and  	� represents the direction of the line 

that we are looking for. Both approaches are implemented by C language on the Eyebot-M6 and 

the results will be compared together at the end of the chapter.  

 

4.4 Comparison between two algorithms 

In this part it is justified why Hough Transform is opted as a better choice for hardware 

implementation by giving three reasons against the second approach. The first limitation for a 

fixed point implementation is due to the truncation error. It is easy to count that there are four 

divisions involved in the second approach. According to the fact that divisions are more sensitive 

to small modifications, a small amount of truncation error in the denominator introduces a 

considerable amount of truncation noise that will propagate to the next stages. The second reason 
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is that although Hough Transform is a very demanding algorithm in terms of computational 

demands, the second approach is more demanding. In case parallelism is properly applied to the 

problem, equations �6
, �7
 can be calculated in one trace and equations �11
, �12
, �13
 can be 

calculated in the second trace. Therefore in case the Hough Transform is implemented properly 

so that it searches only certain parts of the image, Hough Transform is expected to perform 

faster.  The third reason is related to the need for calculating  l��D�. Indeed there is no fixed 

point solution toward obtaining trigonometric calculations unless expanding them to their 

equivalent series that makes the design so complex for a fixed point realization.  

  

4.5  Proposed methodology  

The standard Hough Transform is a demanding algorithm in terms of both time and search space. 

However by restricting the range of the lanes for which the algorithm is either updating the 

Hough Matrix or is searching for a lane, the algorithm could be fitted to the real time 

implementation requirements. A line is parameterized by equation �2
. There are two choices for 

the range of possible orientations. First choice is to have  z { 	 | 0  and  n can hold both 

positive and negative values. It is also possible to limit n  to the positive values but the 

orientations vary in the range  0 { 	 | 2z. Here it was opted to choose the first approach. for a 

certain reason that will be justified by following the fixed point implementation of the Hough 

Transform in the next part.  

Two FSMs are implemented for each window to realize the Hough Transform in order to detect 

the road lanes. Once the whole image is edge detected by the steerable filter and is written to the 

SRAM, the lane detector module is triggered by a signal to detect the local lanes corresponding 

to the bottom left and bottom right windows of the image. The first FSM in each module fetches 

the values corresponding to the gradient of each pixel by putting the address of each pixel on the 

address bus. On the current design, each word in the  

SRAM simultaneously holds the values of  cos�	
 ��
°and  sin�	
 ���
° .  Once a word is read to 

the Hough module sum of the  ����	
 ��
°and  ����	
 ���
°is compared to a threshold value in 

order to distinguish between an edge and a non edge. Indeed by comparing the pixel values with 
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a threshold only when it is required, there is no need to pre-threshold the image. by applying the 

Hough Transform to various video streams it became clear that the distribution of the road lanes 

in the left and right windows are not identical and two different threshold values are required to 

be applied to the design.  Overall, a value of 50  for distracted lines and a value of 80  for 

continuous lanes were obtained. For the rest of the rest of the cases the proper value seems to 

always sit somewhere in this range.   

Since the design aims to address the road lane detection, it is important to note that no lane above 

the horizon is required to be searched. In addition the lanes that has a slope larger than 160
are 

not desired and are usually due to either the noise or the other obstacles in the image frame. 

According to the fact that the pixel values located at the side bars of the image are always very 

likely to be affected by noise and that the steerable filter has had a destructive effect to this area, 

this first and last 10 pixels of each row are excluded for lane detection.  

Finally it was observed that extremely vertical lanes are never likely to occur due to the 

conventional camera angles. Therefore some more clock would be saved by excluding the pixels 

corresponding to the vertical lanes.  The remained area is indicated in Fig 4.2 By applying the 

mentioned hypothesis to all the videos available at hand in the lab, it become clear that this 

assumption always holds true as long as the road is not curved, and all the desired lanes are 

always located within this area. Therefore all the desired lines for the left window are located in 

the range 90 | 	 | 150 and all the desired lanes in the right window are located in the range 30 | 	 | 90.                                    

 

 

 

Figure 4.2:  The area required to be searched  for road lanes  
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4.6 FPGA implementation of the Hough Transform 

According to the complexity of the required logic for the Hough transform, it was concluded that 

this module cannot be designed as a concurrent module as the steerable filter and a FSM 

structure would better fit the design. Therefore each module i.e. Hough transform for the left and 

right windows will be associated two FSMs, one to create the Hough matrix and the second to 

extract the desired line describing the major orientation axis of the lane. Figure 4.3 depicts the 

top view of the implemented Hough transform module 

 

 

 

As mentioned earlier for the ideal case only the indicated area in Figure 4.2 is required to be 

searched and updated but in order to make the design quite generic, it was decided to apply the 

Hough Transform to all the left and right window areas that can easily be refined in a future 

implementation.  

 

 

Figure 4.3:  Top View of the implemented Hough Transform 
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Figure 4.4 depicts the first FSM that was designed to create the Hough transform out of the 

image gradient pixels in the SRAM. The FSM stays in the initial state as long as no Done signal 

is detected. Actually this signal is generated by the module that writes the edge detected pixels to 

the memory. So that once the whole image is written to the SRAM this signal is designated. As 

soon as the FSM detects this signal it enters the phase of calculating the address of the first pixel 

to be thresholded. Prior to this step it is required to stop the steerable filter from altering the 

image residing in the SRAM. Therefore an output disable signal is devised to put the other 

modules on hold during the lane detection phase. As the first step of the algorithm, it is required 

to calculate  the address of the pixels located in the desired area as is indicated in figure 4.5, and 

to put the address on the address bus to be read from SRAM. As mentioned earlier it was decided 

to combine the thresholding and lane detection together so that a considerable amount of clock is 

saved. In the case of an edge the distance n of all the lanes passing from the edge-detected 

coordinates corresponding to all the  	 values in the range  90° and 150° for the left window and 

all the  	 values in the range  30° and 90° for the right window are incremented by one which 

forms the Hough Matrix in the SRAM.  

The second FSM is triggered after the last pixel of the window is processed. The second FSM is 

following a quite simple logic in comparison to the first FSM. By conducting various 

experiments, It became clear that the Hough Matrix must be searched column by column so that 

the first local maximum would represent the closest lanes in the right and left side of the vehicle. 

According to the fact that each column is representing one single orientation, by searching the 

Hough matrix corresponding to the left window from the first column to the last column, the 

corresponding orientation is changing from  90° to 150°. Therefore only the first lane next to the 

vehicle will be detected. For the right window the search direction is in the opposite way and 

columns must be searched from end to fist, hence the range of values will alter from 90° to 20° 
and the outer lines will not be detected. This simple role made a huge advancement to the 

algorithm by excluding the outer lanes that are always present in the environment. . Figure 4.5 

totally describes the applied logic to the second FSM 
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Figure 4.4:  Top View of the implemented Hough Transform 



 

37  

According to the figure 4.7 there are 12 states implemented in the first FSM, but in order to put 

some more safety margins for the memory interface it was decided to include one more dummy 

state after each memory access that has increased the number of states to 16. At this stage this 

scheme was not required but it was devised to enable the module to work in higher frequencies 

when is used on a more robust platform like VirtexII. Indeed it was decided to make all the 

designed modules in this thesis as generic as possible so that they can be used as a black box in 

all the future projects. Otherwise each time the design must be changed regarding to the applied 

clock rate.  

 

 

 

 

 

 

Figure 4.5:  The implemented logic in the second FSM of the 

Hough Transform only searches the indicated area and in the 

specified direction in a column by column fashion 



 

38  

 

4.7  Achievements and Analysis of the Results 

In order to verify the proposed structure and to emphasize the fact that the implemented 

algorithm is quite less demanding when implemented on the FPGA, the proposed Hough 

structure is implemented in MATLAB, C and VHDL. Results are presented and discussed in the 

following.  

Floating point implementation is used as the first step to verify the algorithm itself.  Proper 

values for thresholding both the edge detected frame and the Hough matrix are obtained through 

applying various video streams to the simulation on MATLAB.  

Through different experiments it became clear that the Hough transform is very sensitive to this 

threshold values and even a very small variation from the proper value will lead to a wrong 

detection. This issue makes the design quite sensitive to noise and is regarded as the main 

disadvantage of the Hough transform. In addition it became clear that the speed of this algorithm 

is a variable of the light, noise and threshold. As presented results in table 4.1 confirm, the speed 

of the algorithm is heavily dependent to the determined threshold value. Indeed choosing a 

higher threshold will decrease the number of edge points therefore fewer iterations per edge is 

required, but this approach usually led to a deviation in the detected lane. 

Figure 4.6.a depicts the Hough Transform as is present on the SRAM. There are some points 

remarkable here. Firstly as was desired the Hough space is not complete in each case and only is 

updated for half of the possible orientations. Secondly it is obvious that the obtained 

transformation is not as smooth as a floating point transformation. Indeed the Hough space 

seems to be jagged that is a direct effect of the truncation. As mentioned earlier, truncation has 

been applied to the design very often and in a next implementation it is suggested that truncation 

must be replaced by rounding.  Figure 4.6.b  depicts the Hough space on the SRAM after being 

thresholded in which the depicted point is corresponding to the detected lane. 
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     Fig.4.6 �a
Hough Matrix on the SRAM�b
 Thresholded Hough Matrix on the SRAM�c
 the   

                  left lane as detected on the FPGA  

In order to get a measure of the efficiency of the hardware design the proposed algorithm is 

implemented and tested on both C and VHDL. The lane detector module is tested and verified by 

applying the edge detected frames out of both Sobel and Steerable filters and is simulated offline. 

Various experiments confirmed that the module has a very high accuracy unless the threshold 

value is not chosen properly. Indeed it was required to alter the threshold value even in different 

times of the day due to the variation of the light.   

Edge 

detection  

Freq Lane 

detection 

Algorithm 

SPEED 

WHEN A 

LANE IS 

DETECTED 

SPEED 

WHEN NO 

LANE IS 

DETECTED 

Thresh  

Value 

for  

Image 

Thresh 

Value  

for 

Hough 

Sobel    

FPGA 

50 

MHz 

Hough 

C 

2.1  fps          6.8  fps 130 80 

Steerable 

FPGA 

30 

MHz 

Hough 

C 

1.3  fps           5.6  fps 130 80 

Sobel   A 

FPGA 

50 

MHz 

Hough 

Day 

3.8   fps          8.2  fps 140 100 

Steerable 

FPGA 

30 

MHz 

Hough 

Day 

1.3  fps            5.6  fps 140 80 

Steerable 

FPGA 

50 

MHz 

Hough 

Night   

3.3 4.4 140 60 

Steerable 

C 

50 

MHz 

Zeisl 

 C 

2.1 fps 2.1 fps X X 

 

 

table 4.1:  An empirical comparison between the speed of the lane detection algorithms  in different 

light conditions 
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Figure 4.7 depicts the utilized logic per Hough Transform Module. In the case of a real time 

implementation where two cameras are running simultaneously and lane detection must be done prior to 

writing the frame to the SRAM, two Hough modules are required per camera. The limiting factor here is 

the number of utilized multipliers that can be manually implemented to fit Spartan 3E or preferably be 

ported to a larger FPGA where embedded fast multipliers will speed up the design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7:  summary of the utilized resources on the FPGA 
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Chapter 5 

 Tracking and Kalman Filter                                                       

There are strong reasons behind the need to apply a proper tracking module to any image 

processing system. First of all most of the image processing operations are time demanding 

which can cause uncertainty due to the miss identification. Second of all it reduces the 

computational cost by reducing the search area and hence the corresponding pixel operations. 

Finally it heavily cancels out the noise by discarding other parts of the image therefore the 

accumulative effect of the noise is reduced [41].   

5.1  Literature Survey 

According to the conducted literature survey the Kalman filter is broadly applied to the lane 

tracking problem. All of the considered papers in this field have implemented the Kalman filter 

in software [43],[17]. There are a few papers that address the hardware implementation of   

Kalman filter but each of which is considering the implementation of a specialized Kalman filter 

[44],[45]. Unfortunately all the considered hardware implementations are using a high level 

implementation by applying the Xilinx’s code generator to the Simulink, hence lack a detailed 

realization. Therefore the whole design for this module is devised and implemented from scratch. 

Another fact is that almost all the related papers keep silent about the initialization phase and 

there are only two papers addressing this issue [42],[43].  

 

5.2 Kalman Filter Theory and Initialization 

Kalman filter provides “a recursive solution to the linear optimal filtering problem”[42].  There 

are many advantageous associated with the Kalman filter. It is applicable to both stationary and 

nonstationary systems on the contrary to the Wiener Filter which only fits stationary systems, 
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besides the fact that each updated state is computable from the previous estimate and the new 

measurement so that applying this approach dramatically eliminates the need for data storage as 

required in some other approaches[42]. 

 

A linear, discrete time dynamical system can be described by the process equation 

                                                            ��R� ! ��R�,��� � ��                                                     (1) 

                                                                                  �&�@���  ) ! ��� 2�:  � ! 50    2�:  � � 5 �                                                                     (2) 

Where  �  indicates the state of the process and ��R�,� is the transition matrix of the system that 

transfers state  �� to ��R�. ��  represents the process noise that is assumed to be additive, white  

,Gaussian and zero mean[41],[42],[43]. The measurement equation can be described by 

                                                                �� ! ���� � ��                                                          �3
          

                                                                                 �&�@��� ) ! � ��  2�:  � ! 50    2�:  � � 5 �                                                                        �4
          

where �� represents the observable at time 5  and �� is the measurement matrix. ��  represents 

the measurement noise and holds similar specifications as �� where the covariance matrix of  �� 

is described by (4). It is assumed that ��  and ��  are uncorrelated[41]. Goal of the Kalman 

filtering is to gain the unknown posteriori state  �� from the already known priori state  ��D́ and 

the new measurement. Derivation of the Kalman filter equations is straight forward and can be 

found in[41],[42]. Equations  �5
 to �6) summarize the Kalman filter’s behavior. 

                                                                                         �
́ ! �&�
)                                                                            �5
          

                                                                       �
 ! �&��
 ' �&�
)
��
 ' �&�
)�
)                                                            �6
          

                                                                                        ��D́ ! ��,�D� ��D�́                                                                              �7
          

                                                                              ��D ! ��,�D���D���,�D�� � ��                                                                   �8
          

                                                                                   �� ! ��������������R��                                                                         �9
          

                                                                             ��̂ !  ��D � ����� ' ����̂D
                                                                   �10
          

                                                                                      �� ! �� ' ����
��D                                                           �11
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Equation �5
  determines the initial state while the initial covariance matrix is estimated by 

equation �6
 . Equations �7
  and �8
  estimate the priori state and its corresponding error 

covariance matrix. Gain of the filter is represented by �� while � indicates the error covariance 

matrix. If the displacement of the object under consideration can be modeled as a uniform linear 

movement, then the state vector, process equation and the measurement equation can be 

described by equations �11
,�12
.  
                                                                 � ��R���R�∆��R�∆��R�

�  =  �1 0 1 00 1 0 10 0 1 00 0 0 1� � ����∆��∆��
� � ��                                                �11
 

                                                                   ��m��m��  !  �1 0 0 00 1 0 0� � ����∆��∆��
�                                                          �12
 

Otherwise a more sophisticated model i.e. Extended Kalman Filter [41] is required. Initialization 

is the most significant step in order to stabilizing the filter without which the filter response will 

fluctuate dramatically. The covariance matrix of the measurement error is indicated by 

                                                                          �� =  � ¡,"� 00  ¡,%� ¢                                                                        �13
 
where £ denotes the standard deviation and can be estimated by measuring the probability of  

displacement between the actual position of the object and the measured position of the object. It 

is assumed that the random variables �  and �  are uncorrelated indicating that the error in 

measuring � has no effect on  �. For instance if a system requires a measurement accuracy below 

one pixel, the standard deviation for each coordinate is determined by  �¤  Z3��'1
� � �0
� �
 �1
� 
[ ! 2/3 ,[42]. Therefore the error measurement covariance matrix of the described system 

is presented by 

                                                                          � =  \2/3 00 2/3]                                                                          (14) 
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Covariance Matrix of the Estimation Error is denoted by �
D and is described by 

                                                                           �
D =  � ¦,¦�  ¦,§� ¦,§�  §,§� ¢                                                                         (15) 

where  � represents the position vector and  � indicates the velocity vector. The summarized 

values in table 5 . 1  are obtained according to the research conducted by [42] and properly 

describe the initial values of the elements of  �
D  i.e. the initial values of the covariance matrix of 

the estimation error which are corresponding to a translational motion in two dimension with 

time-varying acceleration as the additive white noise 

                                                                         �
D = 1/16 *�� 00 ��,                                                                       (16) 

 

 

 

 

 

In the current design a safe value of  10 2:�mA/�A� is chosen since it generated a more robust 

estimation among the three in the simulation phase on MATLAB. Finally it comes to initiating 

the covariance matrix of the white noise (acceleration). A robust model is generated in [42] to 

describe any translational system with a constant velocity and random acceleration as 

                                                             Q© ! ��∆t/6 \2��∆l
� 3�∆l3�∆l 6� ] ,  � j 1225 ª��/��                                �17
   

Even though all the values suggested by[42] were tested in simulation, applying the mentioned 

model caused dramatic overshoots in the simulation phase. Therefore the following simpler 

model is adopted from [43] which proved to generate a more stable behavior as is depicted in 

fig2. 

                                                           � ! 
«¬
­���0
 � .2
2 0 0 00 ���0
 � .2
2 0 00 0 ���0
 � .2
2 00 0 0 ���0
 � .2
2®̄

°
                                                     �18
   

Table 5.1. Initial values for the covariance matrix of estimation error corresponding to two dimensional motion 

S 25              pixel at  5 frame /sec 

S 6                pixel at  10 frame /sec 

S 3                pixel at  15 frame /sec 

V 49             pixel/frame at  5 frame /sec 

V 12             pixel/frame at  10 frame /sec 

V 5               pixel/frame at  15 frame /sec 
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5.3 Floating Point Implementation 

In order to verify the accuracy of the initialized model the filter is first simulated in MATLAB. 

Since each detected lane by the Hough transform is expressed in the polar coordinates and hence 

the state vector under observation, it was firstly opted to transform the  Kalman filter’s equations 

in the polar coordinates. However it became clear that not only the complexity and the required 

hardware resources present on the FPGA would increase dramatically due to the introduction of 

trigonometric functions but also the required truncation for the trigonometric functions for a 

Fixed Point implementation would contribute to more inaccuracy to the design. Although there 

are different approaches in the literature towards choosing proper coordinates associated with a 

lane in a tracking system, a new solution is proposed in this thesis to be measured for efficiency. 

It was decided to track the intersection of the orthogonal to the lane from the origin as the state 

vector of the dynamic system under tracking. The coordinates of the intersection are imaged to 

the Cartesian plane prior to feeding to the Kalman filter by equations �19
, �20
. Equations  �21
, �22
 determine the inverse transform from Cartesian to Polar as must be applied to the 

results of the tracked point after tracking to represent the current position of the lane.  

 

                   

                                                       �0 !  n cos�	 ' 90
 !  n sin �	
                                        �19
  

                                                                      �0 ! ' ncos �	
                                                             �20
   

Fig 5.1  image of the tracked point on to the Cartesian coordinate 
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                                                                n ! � �� � �� 
�/�                                                    �21
 
                                                               	 !  z '  tanD�� � �� 
                                               �22
   

In Equation  �20
   the negative sign is added to enforce the positive coordinate to keep the later 

hardware implementation as simple as possible. This sign modification is not required when the 

right window is being processed. As mentioned earlier initialization plays a significant role in 

stability of the filter. According to the several observations on the driving sequences, the left and 

the right lanes in different frames are usually located in a specific vicinity of the middle of the 

image hence the state vectors are initialized as   

 

 

 

 

 

 

                                           n±° ! 70  ,   	±° ! 150°   j   �±° ! 35 , �±° !  60,                             (23
   

                                           n�° !  5 ,     	�° ! 42°   j   ��° ! 3.71 , ��° !  3.71,                         (24
   

The equations �5
. . �11
  are not handling a proper representation for the hardware 

implementation. Therefore the mentioned equations were decided to be spread into a linear 

representation as is represented in ²³³´cµ¶· ². In simulating the Floating point design it was 

chosen to apply the achieved spread form of the equations so that a measure of the efficiency of 

the approach would be achieved. In consistence to the general concept of the Kalman filter, 

module is staying in the initial state as long as no object i.e. lane, is detected. Once a lane is 

detected the Kalman filter firstly enters the project-ahead phase to estimates the values of vectors �°  i.e. state vector and �°  i.e. covariance matrix of estimation error. In the next phase the 

estimated value of �° contributes to calculation of the filter gain ¸. Finally in the last phase all 

the four values of �°, �°, the current measured vector and the calculated gain i.e. ¸ are feed to 

 Fig 5.2    initialization for the kalman filter in the left and right windows 
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the correction equations to form the requirements for the next estimation. At the end the Kalman 

filter awaits until the next measurement is achieved and this loop goes on as long as a reset signal 

is designated. 

θ θ

ρ

ρ

 

 

5.3.2 Analysis of the Results of Floating point implementation 

Figures  5.4, 5.5  clearly emphasize the efficiency and importance of the applied Kalman filter. 

Firstly it is apparent that there are numerous overshoots present in the amplitude of the measured 

state vector i.e. � and �. This issue plays a significant role in the stability of the system if it is 

eventually applied to a real driving system.  By considering the results of the output of the 

Kalman filter it is apparent that all the overshoots are suppressed and are not present any more. 

By considering  frames 14  till 19 of figure 5.6 the second achievement of the implemented 

Kalman filter becomes clear. It is apparent that for various reasons like improper threshoding  of 

the image and most importantly  the lack of edge pixels due to the size of the road lane, no lane 

is recognizable by the Hough transform within a certain range of frames. This issue is observable 

in figure 5.6. where during frames 1. .8  and  14. .20 no lane in the left boundary is detectable. It 

can be seen that the first lane is detected at frame 8 and then after the Kalman filter is correcting 

the wrong measurement in frame 13 in which the measurement is obviously wrong. The most 

significant advantage of applying the Kalman filter is observable during frames  14. .20 where 

no lane is detected but the kalman filter still can predict the position of the lane correctly. 

 

 

Fig 5.3  proposed  structure of  tracking the intersection of the prependicular 
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Fig 5.4  the efficiency of the implemented Floating point Kalman Filter to track the measured values in terms of the image of the 

observable 

Fig 5.5 the efficiency of the implemented Floating point Kalman Filter to track the measured values in terms of the position of 

the lane 
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Fig 5.6: lane tracking  in the left window,  red lanes represent detected lane while the green lane represents the tracked lane 
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5.4 Fixed Point Implementation and Behavioral Modeling 

As was mentioned earlier Kalman filter consists of three phases namely prediction, gain 

calculation and correction. Hence the hardware design is divided into three blocks to perform 

each task. The following structure in figure 5.7  is implemented in VHDL to meet the 

requirements of the Kalman filter. 

 

 

According to the various experiments conducted on the Kalman filter in the simulation phase it 

became clear that it is quite sensitive to error propagation. On the other hand a fixed point 

implementation will always enforce part of the data to be lost. It was observed that at least four 

digits in the fraction part of a decimal radix representation are required to handle a stable 

tracking system. Otherwise dramatic overshoots were introduced to the response of the Kalman 

filter. A precision of four digits in a decimal radix required 10 bits in a binary implementation. 

Meanwhile 8 bits are reserved for the integer part and 1 bit is required to represent the sign. 

Therefore a total number of 19 bits are required to represent the signals that interface the three 

modules of the Kalman filter. The following table is cited from [46] and summarizes only the 

fixed point sizing rules that are applied to the current design. In the adopted notation a fixed 

Fig 5.7  consisting modules of the Kalman filter 
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point number is represented by &�, �) where there are � � � � � 1 
 bits present in the number 

among which �  bits represent the integer part, �  bits represent the fraction part and 1 bit is 

reserved for representing the sign.  

�ªA:�l��� :A�¹ºl :��1A A �  B , A –  B Max�A¿left, B¿left
 � 1  ÁÂÃÄÅÂ    Min�A¿right, B¿right
 A �  B A¿left �  B¿left � 1        ÁÂÃÄÅÂ    A¿right �  B¿right Signed /, divide A¿left –  B¿right � 1       ÁÂÃÄÅÂ     A¿right –  B¿left Signed �–A
 A’left �  1                        ÁÂÃÄÅÂ     A’right 
 

Once all the modules are tested individually it is required to put them together. Since the Kalman 

filter is implying a feedback to the design, it was required to meet the timing requirements of the 

feedback loop. Two solutions were investigated to address this issue. The more sophisticated 

implementation required the exact amount of delays for all the logic gates through the forward 

critical path be calculated, so that a feedback path with a proper delay could be designed to meet 

the timing constraints of the forward path. The mentioned approach would better fit an ASIC 

rather than a FPGA and requires special tools. However a second solution was devised and 

implemented by applying a finite state machine. The implemented FSM simply passes the 

signals through and between modules and isolates them when it is required so that all the timing 

constraints are met. Figure 5.8 depicts the logic enforced by the finite state machine. There are 

additional signals implemented to latch and hold the input and output to each module and these 

signals are assigned by the FSM. Otherwise all the critical paths and timing constraints must be 

considered into design. 

 

 

                  Table   5.2  Fixed Point sizing rules that are applied to the current design 

Fig 5.8 Kalman Filter’s FSM 
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The implemented logic will enforce the FSM to stay in the Predict state as long as no object is 

detected. Only for the first iteration the Predict module is fed by the initial values of state vector 

and the covariance matrix of estimation error i.e.  �
°  , �
°, while within the next iterations the 

corrected outputs of the Correct module are forming the  �° and  �°. The implemented logic in 

will generate an accurate estimate of the current expected position of the object. By comparing 

the values of the covariance matrix of error obtained from fixed point and floating point, it was 

verified that this module is precise up to three significant decimal figures in the fraction part. On 

the second clock after the pulse indicating the object detection the FSM will feed the outputs of 

the Predict module to the Gain module. In fact this module is the main source of the error 

propagation since there is a fixed point division required to be implemented within this module.  

Therefore even a small amount of truncation error is propagated to the Kalman Gain. However 

the most significant feature of the Kalman filter is the noise cancelation itself and it cancels the 

mentioned noise in the next iteration so that the system follows the object as precise as a floating 

point implementation.    

 Fig 5.9 Top view of the implemented Kalman Filter 
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After the third clock FSM enters the Correct state in which both � and � vectors of the filter are 

altered. In the next clock the FSM enters the predict state and remains in that state until a new 

pulse indicates a new object is detected. Obviously filter only enters the Init state when a reset 

signal is issued that will enforce the filter to the initial state. As discussed in the previous 

chapter, in some frames the detected edges associated with a lane are not sufficient for a lane to 

be detected. In order to solve this issue it was decided to keep the last measurement as the 

current position of the detected lane and the achieved results approves that this solution is precise 

enough for conventional frame rates. Despite the accuracy of the implemented approach, it is 

suggested that for extreme cases where either the velocity of the observer or the frame rate is 

very high there might be overshoots in the response of the filter that must be handled.  

 

5.4.2 Analysis of the Results of the Fixed point implementation 

The module in a higher level of abstraction only needs to know the current postion of the object 

and the inerr state of the filter is not required to be public. Therefore the inputs to the filter only 

include the current measurement, a pulse indicating the next object is detected besides CLK and 

RESET. For the same reason the state vector  ·  is the only output signal. Figure 7 depicts the 

input and output signals to the Kalman filter and their  corresponding values when simulated on 

Modelsim. It is important to note that the estimated values have converged to the actual position 

of the lane and that is a representative of the efficiency of the filter.       

 

 
Fig 5.13   inputs and outputs to the Kalman Filter during the four phases of object detection 
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In order to verify the design a series off the empirical values representing the coordinates of the 

lane detected by the Hough module are fed to the design and the outputs are compared against 

each other. Table 5.3  represents three sets of data representing the measured coordinates of the 

detected lane and the corresponding tracked points calculated by fixed point and floating point 

implementations. According to the results there is a maximum of  0.4  difference between two 

implementations in the worst case that will not cause to an error more than one pixel. 

 

 

 

 

 

 

 

 

 

 

Although introducing longer word length could enhance the precision, the corresponding 

implementation will require pipelining. The current implementation satisfies the requirements of 

lane tracking but for a more precise applications like channel tracking in a telecommunication  

system both longer word length and pipelining are unavoidable. On the other hand the current 

design is using numerous number of multipliers that needs to be dealt with in a physical 

realization. Indeed there are two solutions to handle this issue. The fastest approach 

recommended by the industry is to applying a larger FPGA which contains enough number of 

fast multipliers. Porting the design to the platform Xilinx Virtex II rather than the current Spartan 

3E would solve this issue. Second possible solution is to implement and embed all the multipliers 

individually by logic gates that do not seem to be a good solution on a FPGA with a limited 

Tracked  in 

Floating Point,MATLAB 

frame X Y 

1 40.1628 59.5751 

2 41.0332 59.5034 

3 41.0764 59.4999 

4 39.5470 57.3548 

5 38.7779 56.3419 

6 38.3653 55.8447 

7 38.1386 55.6112 

8 37.2232 56.0497 

9 36.6380 56.0497 

10 36.2788 56.4051 

 

Tracked in 

 Fixed Point,MODELSIM 

frame X Y 

1 40.0527 59.5752 

2 40.9971 59.4961 

3 41.0693 59.4902 

4 39.5391 57.3125 

5 38.7930 56.3125 

6 38.3916 55.8281 

7 38.1699 55.6055 

8 37.2500 56.0566 

9 36.6631 56.4180 

10 36.3018 56.7100 

 

DIFFERENCE 

 

frame X Y 

1 0.1101 0.0001 

2 0.0361 0.0073 

3 0.0071 0.0097 

4 0.0079 0.0423 

5 0.0151 0.0294 

6 0.0263 0.0166 

7 0.0313 0.0057 

8 0.0268 0.0069 

9 0.0251 0.3683 

10 0.0230 0.3049 

 

Table 5.3 empirical comparison between the Floating point and Fixed Point implementations of the Kalman FIlter 
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number of gates. Although the implemented structure satisfies the requirements of lane detection, 

one solution to make the design more accurate is to apply rounding rather than truncation. Since 

the implemented design is larger than to fit any small FPGA and that rounding will introduce 

some extra logic for each multiplier, this solution is postponed to a future time.   
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Chapter 6 

Conclusion 

This thesis aimed to design and implement a lane detection and tracking system on the FPGA.  It 

was shown that all the three modules meet the required functionalities. The Steerable Filter 

module satisfies the requirements of the edge detection problem so that not only the frame is 

edge detected but also all the redundant lanes in the undesired directions are suppressed. 

However there is some distortion in the edge detected frame due to the short length of the 

fraction and the applied truncation policy introduced to the design. Furthermore the need to 

implement the multipliers contributed to a considerable drop in the operation frequency and it 

became clear that either using a larger platform or implementing the fast multipliers is 

unavoidable in a future work.  

Although the implemented Hough transform performs precisely with adjusted threshold values, it 

is required to be calibrated regularly. It was observed that this implementation is heavily 

depended to the light conditions in an environment. The second disadvantage of the implemented 

logic is that the speed of frame processing is not fixed and depends to the light conditions as 

well, that makes the analysis troublesome. However the detected lane shows no difference to the 

results of a floating point implementation on C.  

So far the implemented Kalman filter was the best achievement of this thesis. According to 

various experiments with noisy data the accuracy of the module was verified. In fact it was 

observed that this module not only cancels out the dramatic measurement noise in some of the 

frames but also gives a very good estimation for the following frames so that in some frames that 

no lane was detected the Kalman module estimated the exact location of the lane precisely. 

Overall the combination of three modules proved to be able to accurately distinguish, detect and 

track the desired road lanes.   
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Chapter 7 

Future Work 

This thesis did not utilize any automation tools like AccelDSP or SystemGenerator and all the 

modules are designed manually. However it became clear that it is not a proper practice when 

dealing with a complex design. There are lots of pitfalls that could be easily treated by using 

such facilities. The main concern of the current design is the introduced distortion to the 

Steerable Filter’s response besides the ambiguity of determining the required fraction length of 

the signals in each frequency. Both of this issues can be addressed automatically by applying a 

range of input samples to this tools.  In addition these tools offer a fabulous environment for 

visual design that not only speeds up the design but also leads to a more robust system. 

Implemented Hough transform is the most error prone part of this thesis. As discussed earlier this 

module is very dependent to the determined threshold value. Here I would like to suggest two 

other approaches that can solve this issue. The easier approach would be to segment the frame 

and to apply the transform to each segment manually. Hence the probability of a wrong detection 

drops. Although this approach improves the design, it will not generate a robust system. The best 

solution is to design an adaptive filter that determines the threshold values due to the level of 

light and noise. 

However there is no guarantee that this module can operate properly if intended to be used in 

high frequencies. This issue can be explained by noticing the fact that the embedded constants 

inside the Kalman filter are obtained for conventional speeds of image processing and for other 

applications like telecommunication it is required to redefine all the embedded error constants. 

The other concern is the huge size of this module that with any modification still cannot fit 

Spartan 3E. The easier approach, meanwhile the common practice in the industry and literature, 

is to simply port the design to a larger FPGA. This solution has the additional advantage of using 

fast multipliers embedded with recent FPGAs. On the hand there is a more sophisticated 

approach that demands a multi-rate processing with various frequencies on the board.    
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Appendix A.  Required Equations to Port the Kalman Filter to Hardware 

Prediction Phase 
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Error Estimation Correction 
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Appendix B 

Computer Listings 

 

1. VHDL Code for   

    Steerable Filter 

    Hough Transform 

    Kalman Filter 

2. Matlab Code for  simulating  

    Steerable Filter 

     Hough Transform 

     Kalman Filter 

3. C/C++  Code for 

    Hough Transform on the EyBot M6 

    Steerable Edge detection on the Eyebot   
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