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Abstract

This  thesis  investigates  robot  navigation  algorithms  in  unknown  2 

dimensional environments with the aim of improving performance.  The 

algorithms  which  perform  such  navigation  are  called  Bug  Algorithms 

[1,30,62].   Existing  algorithms  are  implemented  on  a  robot  simulation 

system  called  EyeSim  [7]  and  their  performances  are  measured  and 

analyzed.

Similarities and differences in the Bug Family are explored particularly in 

relation  to  the  methods  used  to  guarantee  termination.   Seven  methods 

used to guarantee termination in the existing literature are noted and form 

the  basis  of  the  new  Bug  algorithms:  OneBug,  MultiBug,  LeaveBug, 

Bug1+ and SensorBug.  A new method is created which restricts the leave 

points to vertices of convex obstacles.

SensorBug is a new algorithm designed to use range sensors and with three 

performance criteria in mind: data gathering frequency, amount of scanning 

and path length.  SensorBug reduces the frequency at which data about the 

visible environment is gathered and the amount of scanning for each time 

data is gathered.  It is shown that despite the reductions, correct termination 

is still guaranteed for any environment.

Curv1 [19], a robot navigation algorithm, was developed to guide a robot to 

the target in an unknown environment with a single non-self intersecting 

guide track.   Via an intermediate algorithm Curv2, Curv1 is expanded into 

a new algorithm, Curv3.  Curv3 is capable of pairing multiple start and 

targets and coping with self-intersecting track.
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Chapter 1
Introduction and Overview

1.1 Background and Motivation for the Bug 
Algorithms

A 2-dimensional robot driving environment contains a starting point and a 

target point.  A finite number of arbitrarily shaped obstacles, each of finite 

area, are then placed in the environment.  The robot starts at the start point 

and its objective is to find an obstacle-free, continuous path from start to 

the  target.   Figure  1-1  shows  sample  environments  with  the  green  tile 

marking the start and the red tile marking the target.

Figure 1-1 Sample navigation environments

The aim of the Bug algorithms is to guide a robot starting at S to the target 

T given that the robot has no knowledge of the environment.  The robot 

should achieve this goal with as little global information as possible.  In 

practical  terms,  this  means  the  robot  can  remember  several  points  of 
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interest  but  it  cannot,  say,  perform mapping.  If  no such path exists,  the 

algorithm is  to  terminate  and report  that  the target  is  unreachable.  This 

objective is called termination [1].

The Bug algorithms can be programmed into any robot with tactile or range 

sensors and a localization method such as odometers, landmark recognition 

or GPS.  Then, the robot is able to autonomously find a path to a desired 

target.  Lumelsky [76,78,79] also has applied the research to robot  arms 

which  are  attempting  to  reach  a  desired  pose.   In  these  situations,  the 

movement of the robot arm is very similar to a mobile robot navigating in 

an unknown environment except that the robot arm is tied to a fixed base.

Another application is close range inspection [52].  This occurs when the 

robot is surveying a particular area for an item of interest.  When it finds 

such an item it usually needs to get closer to the object to get more details. 

For example, a robot might be deployed to find radioactive objects in a 

nuclear reactor.  If the robot, from afar, detects a suspicious object, it needs 

to get closer to determine if that object really is leaking radiation.  Thus, it 

will require a navigation strategy to get close to the suspicious object in an 

environment where there may be many objects.

Given that the environment may continually change and little information 

about the environment may be known at any given time, the navigation 

strategy  must  reach  the  target  with  as  little  information  as  possible, 

preferably only the current position and the target.  Some well-known path 

planning  techniques  such  as  A*  [39,40,50,53],  Dijkstra  [54],  distance 

transformation [18,35,55], potential fields [7,14,44,72,73], sampling based 

[56,  57]  and  the  Piano  Movers'  problem  [59,60,61]  require  additional 

information or even a complete map.  Others are designed for coverage 
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path planning [95] which has applications in lawn mowing [96], harvesting 

[97] and mine hunting [98].  These shortcomings demonstrate a need for 

point-to-point navigation in unknown environments.

Laubach and Burdick [10] planned to implement WedgeBug on a sojourner 

rover that is to be sent to Mars if tests are successful.  They note that for a 

motion planner to be useful on Mars, it needs the following characteristics: 

assume  no  prior  knowledge  of  the  environment,  must  be  sensor-based, 

robust, complete and correct.  WedgeBug satisfies most of the requirements 

except for a few reported errors on the robustness due to localization errors.

Kim, Russell and Koo designed SensBug for earthwork operations in the 

construction industry [71].  They note the need for enhanced intelligence 

for  robots  in  hazardous  work  environments  such  as  underwater,  in 

chemically or radioactively contaminated areas and in regions with harsh 

temperatures.

Langer, Coelho and Oliveira [87] note that there is an increasing need for 

path  planning  algorithms  in  unknown  environments  for  manufacturing, 

transport,  goods  storage,  medicine  (remote  controlled  surgery),  military 

applications,  computer  games  and  spatial  exploration  [88,89,90,  91,92]. 

They simulated K-Bug in an office like environment and showed that the 

robot produced competitive paths compared with A*.

Pioneering  work  on  this  problem  was  done  by  Lumelsky 

[1,13,16,30,58,62,63,70,74,75,76,77,78,79,80,81,82].  Prior to Lumelsky's 

work,  robot  navigation  in  unknown  environments  consisted  of  maze 

searching  algorithms  such  as  the  pledge  algorithm  [21]  and  Tarry's 

algorithm [83].  Unfortunately, in the case of the pledge algorithm, a robot 
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cannot travel to a particular point and the path length performance of both 

algorithms  can  be  arbitrarily  large.   There  also  existed  heuristical 

[84,85,86]  methods  but  these  required  knowledge  of  the  robot's 

environment in a limited area around it.

To the best of the author's knowledge, the Bug algorithms were the first 

non-heuristic algorithms for motion planning in an unknown environment 

which guaranteed termination.  Further, the robot does not need to build a 

map of the environment, it only needs to store one point for termination to 

be guaranteed.  This makes the Bug algorithms highly suitable for real-time 

implementation.

Lumelsky and Skewis later  extended this work to include range sensors 

[16].   With  range  sensors,  the  robot  is  able  to  detect  points  which  are 

further along the Bug2 path.  When the robot can do this, it takes shortcuts 

and this reduces path length.  Later, Kamon designed DistBug [5] which 

assisted the robot in making better leaving decisions and then TangentBug 

[6] in which the robot uses the range sensor to gain an omni-directional 

view of its immediate surroundings.

1.2 Aims of this Thesis
This thesis aims to improve the performance of mobile robots in unknown 

environments.  Several algorithms are simulated and investigated using the 

EyeSim [7] simulation system.  Inferences about performance factors are 

made and used to improve algorithm performance.  Algorithm performance 

is also investigated when a guide track is available and used to create a new 

algorithm, Curv3, which is able to perform in environments where there is 

self-intersecting track, moving obstacles and multiple trails.
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1.3 Assumptions of the Bug Model
The Bug model makes three simplifying assumptions about the robot [1, 

30].  First, the robot is a point object.  This means that the robot has no size 

and can fit between any arbitrarily small gap.  This assumption overcomes 

the problem that a gap may exist on the map but the robot may be too large. 

Second, the robot has perfect localization ability.  This means that the robot 

knows its true position and orientation relative to the origin at any time. 

This  assumption  allows the robot  to  determine  the  precise  distance  and 

bearing to the target and this is very important for guaranteeing termination 

and for arriving at the target if the target is reachable.

Third,  the  robot  has  perfect  sensors.   In  certain  algorithms,  the  robot 

requires distance sensors to assist navigation.  These algorithms rely on the 

sensor  data  significantly  and  imperfect  sensors  may  adversely  affect 

performance.

Obviously,  these  three  assumptions  are  unrealistic  for  real  robots,  and 

therefore Bug algorithms cannot be directly applied for navigation tasks of 

real  robots,  but  could  be  considered  as  a  higher-level  supervisory 

component of a system that incorporates all three assumptions.

In  the  Bug  algorithm  publications,  some  show  only  theoretical  results 

[1,3,4,13,16,17,19,30,36,62,70,71]  and  some  show  theoretical  and 

simulation  results  [2,8,9,11,12,28,32,34,37,38,64,87].   Several  attempts 

were made at implementing the Bug algorithms on real robots [5,6,41] but 

frequent  problems  occurred  and  the  algorithm  results  and  comparisons 

were based on simulations.  
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Laubach  [10]  implemented  a  modified  version  of  TangentBug  [6]  on  a 

sojourner rover.   In future, it is hoped to be sent to Mars so presumably the 

algorithm must  have worked quite  well.  However,  most  of  the paper  is 

devoted  to  theoretical  proofs  of  convergence  and  other  interesting 

properties  of  WedgeBug and RoverBug but  no practical  implementation 

advice is offered.

Kreichbaum  [12]  designed  Optim-Bug  to  work  with  the  ideal  Bug 

assumptions  and  then  attempted  to  account  for  error  in  UncertainBug. 

Dead-reckoning error was compensated by using artificial landmarks and 

UncertainBug purposely deviates from the Optim-Bug path to use these 

landmarks for error compensation.  Error was introduced in the simulation 

model  and experiments were performed to measure performance.   Error 

compensation  was  satisfactory  but  the  main  drawback  was  that 

UncertainBug is unable to guarantee a path to target if such a path exists.

Lumelsky [13] designed Angulus to specifically  exclude the reliance on 

dead-reckoning. Instead, the robot relies on compass readings to determine 

when to leave the obstacle. However, path length is compromised and may 

be much higher than a Bug algorithm. Further, there may still be error in a 

real compass reading when put on a real robot.

Kim, Russell and Koo [71] suggested using the Global Positioning System 

(GPS) to  localize the robot.  Although they did not implement the GPS on 

a real robot themselves, it was noted that GPS is widely used and able to 

accurately localize objects which are outdoors.  Obviously, if used indoors, 

this approach will not be as successful.

Skewis  and  Lumelsky  [63]  implemented  Bug2  and  VisBug  on  a 
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LABMATE robot  within  a  laboratory  measuring  8  meters  by  6  meters. 

The  robot  had  the  following  functionality:  mobility,  dead-reckoning, 

obstacle  range  sensing,  landmark  registration  and  motion  planning 

strategies.  It was found that the robot's ability to navigate successfully was 

quite remarkable and included tests on path repeatability,  handling local 

cycles, tests for target reachability and task sequencing.  

The results were encouraging but they did find that dead-reckoning alone 

was  not  enough  to  provide  sufficient  accuracy  and  they  needed  to  use 

landmarks to compensate for dead-reckoning error.  Landmarks have been 

classified  as  feature-based  or  cell-based.   Feature-based  landmark 

recognition [65,66,67] uses natural features of the terrain such as obstacle 

vertices to localize the robot.  The cell-based approach creates a 2D array 

occupancy cells to estimate a robot's position [68,69].  

The  purpose  of  the  experiment  was  not  to  replicate  the  landmark 

recognition techniques but rather to use their outcomes.  As such, artificial 

landmarks were introduced into the environment and the robot was given 

information about them relative to the starting position.  These landmarks 

were distributed throughout the environment, both on obstacles and on the 

roof.  Once the robot detected a landmark with its IR sensor, it recalibrated 

its position based on the information given beforehand.  Obviously, in a 

natural setting with no artificial landmarks, such experimental success may 

be difficult to replicate but this experiment shows that the Bug algorithms 

are capable of fulfilling its purpose in practice if error is overcome.

Given  the  Bug  algorithm  history,  it  is  the  norm  that  algorithms  are 

developed theoretically and then sometimes implemented on real robots.  In 

this  thesis,  new  Bug  algorithms  are  developed  and  simulated  in  ideal 
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environments.  The few experiments which have been run on real robots 

have produced large localization errors which are beyond the scope of this 

study to rectify.  It is left for future research to compensate for this error 

using existing techniques such as  probabilistic  localization [20], Kalman 

Filters [23] and SLAM [24,25].
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1.4 Bug Notation
The following notation is used in the Bug algorithms:

• Hi  – the ith hit point.  This is the ith time the robot transitions from 

“moving to target” mode to “boundary following” mode.

• Li – the ith leave point.  This is the ith time the robot transitions from 

“boundary following” mode to “moving to target” mode.  

• S – the starting position.

• T – the goal position, also called the target or finish.

• x – the robot’s current position.

• d(a, b) – the Euclidean distance between arbitrary points a and b.

• dpath(a, b) – the robot’s path length between arbitrary points a and b.

• r – the maximum range of the Position Sensitive Device (PSD) 

sensors.

• )(θr  – the free-space in a given direction θ .  This is the distance 

between the robot and the first visible obstacle in the direction θ .

• F – the free-space in the target’s direction.  It should be noted that F 

= )(θr  where θ  is the target’s direction.
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1.5 The Bug Algorithms
The following section summarizes the existing Bug algorithms.

1.5.1  Bug1
The Bug1 algorithm was the first  algorithm in the bug family [1,30,62] 

created by Lumelsky and Stepanov.  Bug1 operates as shown in Figure 1-2 

and an example is illustrated in Figure 1-3:

Figure 1-2.  The Bug1 algorithm

Put simply, the Bug1 algorithm searches each encountered obstacle for the 

point which is closest to the target.  Once that point is determined, the robot 

evaluates whether it can drive towards the target or not.  If it cannot, the 
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0) Initialize variable i to 0

1) Increment i and move toward the target until one of the following 

occurs:

• The target is reached.  Stop

• An obstacle is encountered.  Label this point Hi and proceed 

to step 2.

2) Keeping the obstacle on the right, follow the obstacle boundary. 

Whilst doing so, record the dpath(Hi, x) of point(s) where d(x,T) is minimal 

and whether the robot can drive towards the target at  x.  Label one of 

these minimal points  Li.   When the robot revisits  Hi  ,  test  whether the 

target is reachable by checking if the robot can move towards the target 

at  Li.  If the robot cannot then terminate and conclude that the target is 

unreachable.  If the robot can, choose the wall-following direction which 

minimizes dpath(Hi, Li) and maneuver to Li.  At Li , proceed to step 1.



target  is unreachable.  If it  can,  the robot knows that by leaving at that 

point, it will never re-encounter the obstacle.

Figure 1-3 The Bug1 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.
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1.5.2  Bug2
The Bug2 algorithm was also created by Lumelsky and Stepanov [1,30,62]. 

It is less conservative than Bug1 because the robot can leave earlier due to 

the M-line.  Bug2 operates shown in Figure 1-4 with an example illustrated 

in Figure 1-5:

Figure 1-4 The Bug2 Algorithm

There has been some clarification in the literature [3, 8] about the leaving 

conditions for Bug2.  Recently, Antich and Ortiz suggested Bug2+ [36] and 

this  algorithm clarified  all  doubt,  but  Sankar  [3]  and  Noborio  [8]  had 

already built these clarifications into their respective algorithms which are 

similar to Bug2.  In this thesis, the name Bug2 is used but when simulated 

or drawn, the Bug2+ algorithm (Figure 1-4) shall be used.  This is because 

the author believes that Lumelsky had originally intended these features to 

be part of Bug2 but did not explicitly state them.  This is justified below.
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0) Initially, plot an imaginary line, M, directly from start to target and 

initialise i to 0.

1) Increment i and follow the M line towards the target until either:

• The target is reached.  Stop

• An obstacle is encountered.  Label this point Hi.  Go to step 2

2) Keeping the obstacle on the right, follow the obstacle boundary.  Do 

this until:

• The target is reached.  Stop.

• A point along M is found such that d(x, T) < d(Hi, T).  If the robot is 

able to move towards the target.  Label this point Li.  Go to step 1. 

Otherwise, update d(Hi, T) with d(x,t).

• The robot returns to Hi.  The target is unreachable.  Stop.



Lumelsky's original leaving condition states “b) M-line is met at a distance 

d from T such that d < d(H, T).  Define the leave point Lj. Set j = j + 1. Go 

to Step 1.”  A strict  interpretation of this directive allows Bug2 to define a 

leave point even though the robot will, upon executing step 1, define a hit 

point again without moving.   However, it does not make sense that a robot 

is allowed to leave if it does not move towards the target immediately after 

leaving.  Hence, the robot is only allowed to leave if it can drive towards 

the target.

Also,  if  the  robot  is  denied leaving because it  cannot  move toward the 

target, then it should update  d(Hi,  T)  with  d(x, T).  Obviously, if a robot 

denied leaving because it cannot move toward the target then there must 

exist a point on the same obstacle and on the M-line which is closer to the 

target.  In any case, if Lumelsky's original algorithm was strictly followed 

the actual path is the same as in Bug2+ since the robot will update d(Hi, T) 

when executing step1.
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Figure 1-5 The Bug2 Algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.
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1.5.3  Alg1
The Alg1 algorithm is an extension of Bug2 invented by Sankaranarayanan 

and Vidyasagar [3].  Bug2’s vulnerability is that it can trace the same path 

twice and create long paths.  To rectify this, Alg1 remembers previous hit 

and leave points and uses them to generate shorter paths.  Alg1 operates as 

shown in Figure 1-6 with an example in Figure 1-7:

Figure 1-6 The Alg1 Algorithm
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0) Initially, plot an imaginary line M directly from start to target and 

initialize i to 0.

1) Increment i and follow the M line toward the target until either:

• The target is reached.  Stop

• An obstacle is hit.  Define this point Hi.  Go to step 2

2) Keeping the obstacle on the right, follow the obstacle boundary.  Do 

this until one of the following occurs:

• The target is reached.  Stop.

• A point y is found such that

o  it is on M

o d(y, T) < d(x, T) for all x ever visited by the robot along M 

and 

o The robot can move towards the target at y.  

Define this point Li and go to step 1.

• A previously defined point Hj or Lj is encountered such that j<i. 

Turn around and return to Hi.  When Hi is reached, follow the 

obstacle boundary keeping the wall on the left.  This rule cannot be 

applied again until Li is defined.

• The robot returns to Hi.  The target is unreachable.  Stop



Figure 1-7 The Alg1 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.
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1.5.4  Alg2
The Alg2 algorithm is an improvement from the Alg1 algorithm invented 

by Sankaranarayanan and Vidyasagar [4].  The robot abandons the M-line 

concept and a new leaving condition is introduced.  Alg2 operates as shown 

in Figure 1-8 with an example in Figure 1-9:

Figure 1-8  The Alg2 Algorithm
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0)  Initialise Q = d(S, T) and i to 0.

1)  Increment i and proceed in the direction of the target whilst 

continuously updating Q to d(x, T) if Q < d(x, T).  Q should now 

represent the closest point the robot has ever been to the target.  Do this 

until one of the following occurs:

• The target is reached.  Stop

• An obstacle is encountered.  Label this point Hi and proceed to step 

2.

2)  Keeping the obstacle on the right, follow the obstacle boundary whilst 

continuously updating Q to d(x, T) if Q < d(x, T) until one of the 

following occurs:

• The target is reached.  Stop

• A point y is found such 

o that d(y,T) < d(Q,T) and

o The robot can move towards the target at y. 

Define this point Li and proceed to step 1.

• A previously defined point Hj or Lj is encountered such that j<i. 

Return to Hi.  When Hi is reached, follow the obstacle boundary 

keeping the wall on the left.  This rule cannot be applied again until 

Li is defined.

• The robot returns to Hi.  The target is unreachable.  Stop. 



Alg2's leaving condition is a great improvement since the robot does not 

need to be on the M-line to leave the obstacle.  It will be shown in the later 

chapters  that  this  improves  performance  and it  is  more  computationally 

efficient.   However, such improvements require a method to prevent the 

Class1 scenario and this will be discussed in Chapter 3.

Figure 1-9  The Alg2 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.
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1.5.5  DistBug

The DistBug algorithm was invented by Kamon and Rivlin in [5].  DistBug 

uses a distance sensor to detect F and uses it in its leaving condition.  The 

algorithm is shown in Figure 1-10 and an example is shown in Figure 1-11.

Figure 1-10 The DistBug Algorithm

DistBug will also be shown to improve path length performance in chapter 

2 and the reasons for this are investigated in depth in chapter 4.  In short, it 

is because each time DistBug checks its ranged based leaving condition, it 

is actually testing two things.  First, whether the robot can use its range 

sensor to detect a point which is closer to the target than any previously 
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0)  Initialise i=0 and Step to the wall thickness (this is the minimum 

thickness of an obstacle in the environment.  It must be entered by the 

user and is a drawback of this algorithm).

1)  Increment i and move toward the target until one of the following 

occurs:

• The target is reached.  Stop.

• An obstacle is reached.  Denote this point Hi.  Go to step 2.

2)  Turn left and follow the obstacle boundary whilst continuously 

updating the minimum value of d(x, T) and denote this value )(min Td .

Keep doing this until one of the following occurs:

• The target is visible: 0),( ≤− FTxd .  Denote this point Li.  Go to 

step 1.

• The range based leaving condition holds: StepTdFTxd −≤− )(),( min . 

Denote this point Li.  Go to step 1.

• The  robot  completed  a  loop  and  reached  Hi.   The  target  is 

unreachable.  Stop.



visited.  Second, the STEP criteria is used to prevent the Class1 scenario 

(refer to page 40 for a description of this scenario and page 78 for the STEP 

criteria).

Figure 1-11  The DistBug Algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.
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1.5.6  TangentBug

The TangentBug algorithm was developed by Kamon, Rivlin and Rimon 

[6].   TangentBug  uses  distance  sensors  to  build  a  graph  of  the  robot's 

immediate  surroundings  and  uses  this  to  minimize  path  length.   To 

understand how the algorithm works,  a  few path planning concepts  are 

presented as background.

1.5.6.1 The Global Tangent Graph
Consider the environment depicted in figure 1-12(a).  Next, consider the 

convex  vertices  of  all  the  obstacles  which  are  circled  orange  in  figure 

1-12(b).  Then, join each pair of non-obstructed vertices and include the 

start and target.  The result is the global tangent graph and this is depicted 

in figure 1-12(c).  It has been shown that the global tangent graph always 

contains  the  optimal  path  from start  to  finish  [14,18,35].   As  expected, 

figure 1-12(d) shows the optimal path for this particular map.

1.5.6.2 The Local Tangent Graph
The robot does not have global knowledge and TangentBug compensates 

by  generating  the  local  tangent  graph  (LTG).   A sample  LTG graph  is 

shown in figure 1-13.  The LTG is generated by firstly gathering data for 

the  function  )(θr  and  F.   )(θr  returns  the  distance  to  the  first  visible 

obstacle in a given direction θ .  Then,  )(θr  is processed according to the 

following rules:

• If 0),( ≤− FTXd , the target is visible.  Create a node, called T-node, 

on the target.

• If  rF ≥ ,  there  are  no  visible  obstacles  in  the  target’s  direction. 

Create a T-node in the target’s direction.  This is illustrated by the T-
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node in figure 1-13.

• Check  the  function  )(θr  for  discontinuities.   If  a  discontinuity  is 

detected, create a node in θ ’s direction.  This is illustrated by nodes 

1, 2, 3 and 4 in figure 1-13.

• If  )(θr =  r (the  maximum  PSD  range)  and  )(θr  subsequently 

decreases create a node in θ ’s direction.  This is illustrated by node 5 

in figure 1-13.  Similarly, if rr ≠)(θ , and )(θr subsequently increases 

such that )(θr = r, create a node in θ ’s direction.

Figure 1-12 (a) Top Left.  The environment.  (b) Top Right.  All convex 

vertices are circled.  (c) Bottom Left.  The global tangent graph.  (d) 

Bottom Right.  The optimal path.
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Figure 1-13 The local tangent graph

After  identifying  the  nodes,  the  optimal  direction  and  distance  is 

determined using the following procedure:

• For each node, evaluate the distance d(Ni, T), where Ni is the ith node. 

• The node with the lowest d(Ni, T) is labeled the optimal node, N*.  

The  robot  should  proceed to  N* whilst  continuously  updating  the  local 

tangent graph and proceeding to the most recent N*.  In figure 1-13, N* is 

the T-node since the T-node is closest to the target.
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1.5.6.3 Local Minima
Figure 1-14 shows that  sometimes the robot must  travel  away from the 

target in order to reach it.  This is defined as a local minimum.  When this 

happens,  TangentBug  goes  into  wall-following  mode.   This  involves 

choosing a wall following direction and following the wall using the LTG. 

Whilst following the wall, TangentBug continuously updates two variables: 

• dfollowed(T) - This variable records the minimum distance to the target 

along the minimum-causing obstacle.

• dreach(T) – Each step, TangentBug scans the visible environment and 

for a point P, at which d(P,T) is minimal.  dreach(T) is then assigned to 

d(P,T) .

The wall-following mode persists until one of the following occurs:

• dreach(T) < dfollowed(T).

• The robot has encircled the minimum-causing obstacle. The target is 

unreachable.  Stop.

Figure 1-14  The robot in a local minimum
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The TangentBug algorithm is illustrated in Figure 1-15.

Figure 1-15 The TangentBug Algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.
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1.5.7  D* 
The D* algorithm was invented by Stentz [15] and is very different from 

the bug algorithms because it uses mapping.  Mapping is prohibited in the 

Bug  Family  but  this  makes  an  interesting  aside.   D*  is  a  brute  force 

algorithm which has some unique and interesting properties.  It segments 

the  map  into  discrete  areas  called  cells.   Each  cell  has  a  backpointer, 

representing the optimal traveling direction in the cell’s area, and costs for 

traveling to  neighbouring cells.   The formal  low-level  algorithm can be 

found in the source code and those details can be found in Stentz’s paper 

[15].  A more abstract, higher-level example is presented in the following 

sections.

1.5.7.1  Generating an Optimal Path
D* is best explained by example.  Let the target be cell (5,3) and the robot’s 

initial position at (1,3) as depicted in figure 1-16(a).  Let the traveling cost 

be  1  when  traveling  horizontally  or  vertically  and  2 when  traveling 

diagonally.

Then, D* generates table 1-1 for cells surrounding T:

Position

(1)

Nearest cell with 

backpointer or target (2)

Cost from 

(1) to (2)

Cost from 

(2) to T

Total 

cost
(5,4) T 1 0 1
(5,2) T 1 0 1
(4,3) T 1 0 1
(4,2) T 1.414 0 1.414
(4,4) T 1.414 0 1.414

Table 1-1  The first table generated in the D* algorithm.

Table 1-1 shows that cells (5,4), (5,2)  and (4,3) have the lowest total cost. 

Those cells set their backpointers towards the target as depicted in figure 
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1-16(b).  Then, the neighbours of T, (5,4), (5,2) and (4,3) are considered for 

the total minimum cost to target in table 1-2.

Figure 1-16.  (a) Top left.  The initial grid.  (b) Top right.  The grid after 

data from table 1-5 is entered.  (c)  Bottom left.  The grid after data from 

table 1-1 is entered.  (d)  Bottom right.  The final grid.

Position 

(1)

Nearest cell with 

backpointer or target (2)

Cost from 

(1) to (2)

Cost from 

(2) to T

Total 

Cost
(4,4) T 1.414 0 1.414
(4,2) T 1.414 0 1.414
(3,3) (4,3) 1 1 2
(5,1) (5,2) 1 1 2
(5,5) (5,4) 1 1 2
(3,2) (4,3) 1.414 1 2.414
(4,5) (5,4) 1.414 1 2.414
(4,1) (5,2) 1.414 1 2.414
(3,4) (4,3) 1.414 1 2.414

Table 1-2  The second table generated by D*
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Table 1-2 shows that cells (4,4) and (4,2) have the lowest total cost.  Those 

cells set their backpointers towards the target and the grid is depicted in 

figure 1-16(c).  

This  process  keeps  repeats  itself  until  the  robot’s  position  contains  a 

backpointer or the whole grid is filled.  If a cell contains a backpointer, it 

represents the least cost traveling direction to target.  Figure 1-16(d) shows 

the 5x5 grid with T and backpointers leading to T.  As can be verified, 

following any given backpointer trail will produce a path of least cost.  This 

process is how D* generates optimal paths.

1.5.7.2 Accounting for Obstacles
D* represents obstacles by largely increasing cost to travel to, but not from, 

obstacle cells.  That is, if an obstacle exists on a cell O, the travel cost from 

O’s neighbour cells to O becomes some large predefined value.   Figure 

1-17(a) shows that an obstacle at (3,3) has been detected.  The arcs shown 

lead to the obstacle cell and their associated cost becomes very large.

Once travel  costs  are  modified,  D* recomputes  the  cell  backpointers  to 

ensure  they  are  still  optimal.   D*  does  this  by  firstly  considering  cells 

which have a backpointer to cell (3,3).  It generates table 1-3.

Position 

(1)

Nearest cell with 

backpointer or target (2)

Cost from 

(1) to (2)

Cost from 

(2) to T

Total 

Cost
(2,2) (3,2) 1 2.414 3.414
(2,4) (3,4) 1 2.414 3.414
(2,3) (3,4) 1.414 2.414 3.828
Table 1-3.  The first table drawn after an obstacle was detected at (3,3).

Table 1-3 shows that cells (2,2) and (2,4) have a new minimum cost and 
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change their backpointers to the cell specified in column 2.  The updated 

grid  is  shown  in  figure  1-17(b).   D*  repeats  this  process  again  and 

generates table 1-4.

Figure 1-17.  (a) Top left.  An obstacle cell is identified in position (3,3). 

(b) Top right.  The grid after data from table 1-3 is entered.  (c) Bottom left. 

The grid after data from table 1-4 is entered.  (d) Bottom right.  The grid 

after data from table 1-6 is entered.

Position 

(1)

Nearest cell with 

backpointer or target (2)

Cost from 

(1) to (2)

Cost from 

(2) to T

Total 

Cost
(2,3) (3,4) 1.414 2.414 3.828
(2,1) (3,2) 1.414 2.414 3.828
(2,5) (3,4) 1.414 2.414 3.828
(1,4) (2,4) 1 3.414 4.414
(1,2) (2,2) 1 3.414 4.414
(1,3) (S) (2,2) 1.414 3.414 4.828
(1,5) (2,4) 1.414 3.414 4.828
(1,1) (2,2) 1.414 3.414 4.828

Table 1-4.  The second table drawn after an obstacle was detected at (3,3)
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Table 1-4 shows that cells (2,3), (2,1) and (2,5) change their backpointers 

so that their costs to target are minimised.  Hence, the updated grid is 

shown in figure 1-17(c).

D* repeats this process until the minimum total cost in the generated table 

is  greater  or  equal  to  the  robot’s  cost  to  target  following  its  current 

backpointer trail.  Once this occurs, it signals that further computation will 

not yield less costly paths than the current path.  Following the example, 

table 1-5 is computed:

Position 

(1)

Nearest cell with 

backpointer or target (2)

Cost from 

(1) to (2)

Cost from 

(2) to T

Total 

Cost
(1,2) (2,2) 1 3.414 4.414
(1,4) (2,4) 1 3.414 4.414
(1,3) (S) (2,3) 1 3.828 4.828
(1,5) (2,4) 1.414 3.414 4.828
(1,1) (2,2) 1.414 3.414 4.828
Table 1-5.  The third table drawn after an obstacle was detected at (3,3)

The terminating condition holds in table 1-6, and figure 1-17(d) shows the 

final grid.

Position 

(1)

Nearest cell with 

backpointer or Goal (2)

Cost from 

(1) to (2)

Cost from 

(2) to T

Total 

Cost
(1,3) (S) (2,3) 1 3.828 4.828
(1,5) (2,4) 1.414 3.414 4.828
(1,1) (2,2) 1.414 3.414 4.828
Table 1-6.  The forth table drawn after an obstacle was detected at (3,3)

Note  that  cell  (2,3)  does  not  point  backwards  towards  the  start.   D* 

maintains optimality  and avoids getting stuck in  local  minimums which 

have troubled similar techniques [14,18,35].  However, as will be shown 

later, this comes at the cost of computation time.

37



In  D*,  cost  modification  can  be  done  at  any  time.   This  allows  the 

algorithm  to  dynamically  adapt  to  unseen  obstacles  and  generate  new 

optimal paths.  D*’s costing mechanism also allows for terrain which is 

undesirable, but not necessarily an obstacle.  This is far better than the bug 

algorithms where the terrain is either traversable or an obstacle.

1.5.7.3 Determining Reachability
Unreachability is determined by comparing the backpointer trail’s cost to 

the large  threshold  value of  obstacles.   If  the  backpointer  trail’s  cost  is 

greater than the threshold value, it implies that the optimal path crosses an 

obstacle  and  therefore  the  target  is  unreachable.   Of  course,  the  large 

threshold value should be chosen such that the cost  of any sequence of 

backpointers which do not cross an obstacle will never exceed the large 

threshold value.  Figure 1-18 illustrates D* on an Environment.

Figure 1-18 D* Algorithm in environment A
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1.5.8  Com
The  Com [4]  algorithm is  not  an  official  Bug  algorithm and  does  not 

guarantee termination.  Instead, it is used to illustrate what happens when 

the robot is allowed to leave for the target whenever it is able to do so. 

Com is used to develop the Bug algorithms and justify why special leaving 

rules must exist.  It operates as shown in Figure 1-19.  In Figure 1-20, the 

Com algorithm is depicted on an environment.  Note that it will never reach 

the target and instead encircle the obstacle indefinitely.

Figure 1-19 The Com Algorithm

Figure 1-20 Com algorithm in environment A
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1) Move toward the target until one of the following occurs:

• The target is reached.  Stop

• An obstacle  is  encountered.  Follow the  obstacle  boundary. 

Go to step 2.

2) Leave if the robot can drive to the target. Go to step 1.



1.5.9  Class1
The Class1 algorithm [8] is  not  an official  Bug algorithm and does not 

guarantee finite termination.  It  is  used to illustrate what happens if  the 

robot  is  allowed  to  leave  if  it  is  closer  to  the  target  than  any  point 

previously visited and it can travel towards the target.  Class1 is used to 

develop the Bug algorithms and justify why special leaving rules must be 

applied.  It is shown in Figure 1-21 and an example in Figure 1-22:

Figure 1-21 The Class1 Algorithm

Figure 1-22 Class1 algorithm in environment A
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1) Move toward the target until one of the following occurs:

• The target is reached.  Stop

• An obstacle is  encountered.  Follow the obstacle boundary. 

Go to step 2.

2) Leave if the robot can drive towards the target and the robot is closer to 

the target than any point previously visited.  Go to step 1.



1.5.10  Rev1
The Rev1 algorithm was invented by Horiuchi and Noborio [8].  It operates 

as shown in Figure 1-23 and an example is illustrated in Figure 1-24.

Figure 1-23  The Rev1 Algorithm

As acknowledged by the authors, Rev1 is very similar to Alg1 except that 

the robot alternates wall  following direction every time it  encounters an 

obstacle and it has the Hlist and Plist mechanisms for better record keeping 
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1.  Move towards the target until the following occurs:
(1a) If a robot arrives at T, exit with success.
(1b) If the robot encounters an uncertain obstacle, set a hit point  Hi and 
register the details into the Hlist and Plist.
2.  The direction is checked at  Hi and Hlist, and if both directions were 
already checked at Hi, it is immediately eliminated in Hlist.  Then, a robot 
faithfully  traces  an  obstacle  by  the  direction  Dir  until  the  following 
occurs:
(2a) If a robot R arrives at T, exit with success.
(2b)  If  the  distance  to  target  is  shorter  than  any  distance  previously 
encountered  (the  metric  condition),  the  robot  is  on  the  M-line  (the 
segment condition) and the robot can go straight to target (the physical 
condition), then record the leaving details in the Plist, change Dir and go 
back to step 1.
(2c)  If a robot R returns to the last hit point Hi  exit with failure.  In this 
case, T is completely enclosed by obstacle boundary.
(2d) If a robot returns to a past hit point, the former point Hk is memorized 
as the same later point  Ql into Hlist.  Then, the robot returns to the hit 
point Hi using the shortest path as determined by the Hlist and Plist.  Once 
the robot has returned to Hi  follow the wall in the opposite direction than 
previously.
(2e)  If  the  robot  returns  to  a  past  leave  point,  the  former  point  is 
memorized as the same later point into Hlist.  Then, the robot returns to 
the hit  point  Hi using the shortest path as determined by the Hlist  and 
Plist.  Once the robot has returned to  Hi  follow the wall in the opposite 
direction than previously.



purposes.

Figure 1-24 Rev1 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.
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1.5.11  Rev2
The Rev2 algorithm was invented by Horiuchi and Noborio [8].  It operates 

as shown in Figure 1-25 and an example is illustrated in Figure 1-26:

Figure 1-25 The Rev2 Algorithm

As acknowledged by the authors, Rev2 is very similar to Alg2 except that it 

alternates wall following direction.  Therefore, the only difference between 

Rev2 and Rev1 is that the segment condition has been removed from (2b).
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1.  Move towards the target until the following occurs:
(1a) If a robot arrives at T, exit with success.
(1b) If the robot encounters an uncertain obstacle, set a hit point  Hi and 
register the details into the Hlist and Plist.
2.  The direction is checked at  Hi and Hlist, and if both directions were 
already checked at Hi, it is immediately eliminated in Hlist.  Then, a robot 
faithfully  traces  an  obstacle  by  the  direction  Dir  until  the  following 
occurs:
(2a) If a robot R arrives at T, exit with success.
(2b)  If  the  distance  to  target  is  shorter  than  any  distance  previously 
encountered (the metric condition) and the robot can go straight to target 
(the  physical  condition),  then  record  the  leaving  details  in  the  Plist, 
change Dir and go back to step 1.
(2c)  If a robot R returns to the last hit point Hi  exit with failure.  In this 
case, T is completely enclosed by obstacle boundary.
(2d)  If  a  robot  returns  to  a  past  hit  point,  the  former  point  Hk is 
memorized as the same later point Ql into Hlist.  Then, the robot returns 
to the hit point Hi  using the shortest path as determined by the Hlist and 
Plist.  Once the robot has returned to  Hi  follow the wall in the opposite 
direction than previously.
(2e)  If  the  robot  returns  to  a  past  leave  point,  the  former  point  is 
memorized as the same later point into Hlist.  Then, the robot returns to 
the hit point  Hi using the shortest path as determined by the Hlist and 
Plist.  Once the robot has returned to  Hi  follow the wall in the opposite 
direction than previously.



Figure 1-26 Rev2 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.
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1.6 Other Bug Algorithms
Other Bug algorithms are listed in this section.  These algorithms are either 

very similar  to an algorithm which has been simulated or  had not  been 

published at the time when the simulations were run but have since become 

available.

1.6.1 HD-I
Algorithm  HD-I  is  identical  to  Rev1  except  for  the  selection  of  wall 

following direction which is based on perceived distance to target, target 

direction and past following directions.  It has been shown [8] that the path 

length is reduced on the average.  

1.6.2 Ave
The Ave algorithm was invented by Noborio, Nogami and Hirao [8] is an 

improvement of HD-I.  The algorithm is quite lengthy and can be found in 

[8].   The  main  improvement  of  Ave  was  a  better  mechanism  for 

determining which wall following direction to take.  The decision is based 

on all past node data instead of just the current node and perceived distance 

to target.

1.6.3 VisBug-21
The VisBug-21 [16] algorithm allows a robot to follow the Bug2 path using 

range sensors.  The robot uses the range sensors to find shortcuts and takes 

them to reduce length.

1.6.4 VisBug-22
The  VisBug-22  [16]  algorithm  takes  more  risk  in  respect  to  finding 
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shortcuts.   The  path  length  can  be  much  shorter  if  the  shortcut  proves 

fruitful, however the path length can also be a lot longer if the shortcut does 

not.

1.6.5 WedgeBug
The WedgeBug algorithm was developed by Laubach and Burdick [10].  It 

involves scanning in wedges.  The first wedge is one which contains the 

direction towards the target  and if  there are no obstacles then the robot 

moves towards the target.  Otherwise, the robot performs “virtual boundary 

following”, in which more wedges are scanned and the robot follows the 

wall via its use of range sensors.  The advantage of WedgeBug was that it 

does  not  need to  generate  the  full  LTG as  in  TangentBug.   It  scans  in 

wedges only when is required, thus saving resources.

1.6.6 CautiousBug
The CautiousBug algorithm was developed by Magid and Rivlin [11].  It 

involves  spiral  searching  in  which  the  robot  repeatedly  changes  wall 

following direction during the  boundary  following mode.   As such,  the 

robot is not dependent on a favourable choice of wall following direction 

but the trade-off is that a longer path is produced on average.

1.6.7 3DBug
3DBug  was  developed  by  Kamon,  Rimon  and  Rivlin  [64].   It  is  an 

extension  of  the  TangentBug  algorithm  and  operates  in  3  dimensions 

instead  of  the  typical  2.   There  were  several  problems encountered  the 

largest  being  surface  exploration  of  the  obstacle  instead  of  simply 

following the boundary of an obstacle.
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1.6.8 Angulus
The  Angulus  algorithm  [13]  was  developed  by  Lumelsky  and  Tiwari. 

Based on ideas originally found in the Pledge algorithm [21], the angulus 

algorithm bases leaving decisions on two variables: a, the angle between 

the lines x (the robot's current position) to T and S to T and b, the angle 

between the line S to T and the robot's current velocity vector.

Typically, Bug algorithms require something which measures the robot's 

current distance to the target.  This is often based on dead-reckoning from 

the original start to target positions.  However, Angulus does not require 

any  range  measurements  and  can  perform with  only  a  compass.   This 

makes it more resilient to error.

1.6.9 Optim-Bug
The Optim-Bug algorithm [12]  was  developed by Kriechbaum.   Unlike 

other  Bug algorithms,  Optim-Bug builds a map of its  environment as it 

senses its surroundings with infrared sensors.  With all prior knowledge of 

its surroundings, it is able to eliminate the need for a boundary following 

mode.  Instead, in each navigation cycle, the robot calculates the shortest 

path to target taking into account the currently known surroundings and the 

map.  It follows this path for one cycle and then recomputes the shortest 

path to target.  The algorithm terminates as soon as the target is reached or 

the shortest path is known to cross an obstacle.

1.6.10 UncertainBug
UncertainBug [12] is similar to Optim-Bug except that it takes into account 

uncertainty in the robot's  path.   It  always computes the optimal  path to 

target for each step given the currently available information but it  also 
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aims to minimize the uncertainty of the robot's final pose with respect to 

the target.  To reduce error, UncertainBug directs the robot away from the 

optimal  path  and  towards  known  landmarks  which  reduce  localization 

uncertainty.  The trade-off is, as Kriechbaum noted, that the robot may not 

always reach the target even if such a path exists.

1.6.11 SensBug
SensBug [71] is specially designed for construction environments.  In such 

environments the obstacles are assumed to be “simple” in that they are all 

curves of finite length.  Therefore, the leaving requirements are relaxed and 

the  robot  is  permitted  to  leave  as  in  the  Com  algorithm.   In  these 

environments,  obstacles  are  also  able  to  move  and  it  was  shown  that 

SensBug is still able to navigate successfully.  Also, the robot is equipped 

with a  wireless  communication device  to  assist  it  in  determining which 

direction to following the obstacle so that path length can be shortened.

1.6.12 K-Bug
K-Bug [87] was designed by Langer, Coelho and Oliveira.  If the path to 

target is obstructed, K-Bug evaluates the vertices which surround the robot 

and directs the robot to travel to the nearest one.  Then, K-Bug's behaviour 

is described assuming complete knowledge of the environment and how the 

optimal path can be found.  This section appears to contradict one of the 

fundamental  assumptions of the Bug algorithms in that the environment 

must be unknown.  Otherwise, there are plenty of algorithms which can be 

used to find a path in a completely known environment.
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1.7 Anytime algorithms
These  are  a  special  sub-class  of  the  Bug  algorithms  in  which  the 

environment is known before starting.  As a result, they can provide the 

optimal path, but they can also produce intermediate, sub-optimal paths as 

soon as they are available.

1.7.1 ABUG
The ABUG algorithm was developed by  Antich, Ortiz and Minguez [37, 

38].  It then divides the environment into discrete cells and combines the 

A* [39, 40] algorithm with Bug2 to solve the Bug problem.  Each time the 

robot encounters an obstacle, the left and right routes are considered parts 

of a binary tree.  Once the tree is built, the A* algorithm is used to find the 

shortest path.

1.7.2 T2

The T2 algorithm was developed by Antich and Ortiz [41].  It is based upon 

the principles of the potential field approaches [42, 43, 44].  The problems 

with the potential field approaches was that the robot could become stuck 

in an environment such as Environment B in chapter 2.  T2 overcomes this 

by combining it with the Bug boundary following mode.  By doing this,  T2 

forces the robot to move away from the target in an attempt to find other 

routes to the target.

T2 can be thought of as an extension of Bug2 with two key differences. 

Firstly,  the  robot  is  allowed  to  leave  when  it  notices  that  it  can  drive 

towards the target.  Leaving at such points is only permitted once in the 

entire journey and if leaving occurs, the robot redefines the M-line to begin 

at the leave point.   Secondly, the robot is also permitted to leave under 
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Bug2 rules with redefined M-lines.

1.8 Structure of this Thesis
This thesis aims to improve the bug algorithms in respect to some desired 

performance measure.  Traditionally, this has been path length but this can 

also include reduced computation, processing and scanning.

In the second chapter, a comparison of the simulation results and exploring 

implementation  issues  is  presented.   EyeSim simulation  results  are  also 

presented and the foundation for further performance investigation is laid.

The third chapter presents an analysis of leaving conditions.  It is argued 

that  these conditions are fundamentally  very similar  and vary only with 

respect to how they ensure that the number of leave points or hit points was 

kept finite.  

The  fourth  chapter  presents  results  of  the  Bug  algorithms  on  an 

environment with a single semi-convex obstacle.  This subclass of obstacle 

produces some interesting performance results and these are investigated 

mathematically.

The fifth chapter presents Curv2, an improved algorithm for following a 

trail.  Curv3 is also presented and it is suited to pairing start and targets 

when there are multiple trails.

The sixth chapter presents SensorBug.  This algorithm uses the Q method 

developed in chapter 4 along with range sensors.  The range sensor use is 

kept to a minimum.
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The conclusion summarizes the thesis with its key findings.  Also, areas of 

future  research  are  presented  and  these  are  the  areas  where  the  most 

promising results lie.

In the appendix, implementation details on the EyeSim simulation system 

are provided.  It will consist of a high level overview of the code structure 

and organization as well as some sample code.
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Chapter 2
Performance Comparison of Bug Navigation 

Algorithms

2.1 Introduction
Eleven variations of Bug algorithm have been implemented and compared 

against each other on the EyeSim simulation platform [26].  This chapter 

discusses their relative performance for a number of different environment 

types as well as practical implementation issues.

The robot has to either reach the target position – or terminate if the target 

is unreachable – it must not map its environment.  Therefore, a particular 

navigation  algorithm  can  have  a  statistically  better  performance  than 

another, but may not be better for any possible environment setting.  For 

example, Alg1 is supposed to improve on Bug2 but is shown later that this 

is not always the case.

Since  every  algorithm  in  the  Bug  family  has  to  have  the  termination 

property,  subsequently  published  Bug  algorithms  try  to  improve  the 

algorithm performance, e.g. the path length or time required to either reach 

or  to  detect  that  the  target  is  unreachable.   The  aim is  to  identify  the 

navigation techniques that work best by conducting unbiased performance 

comparisons  of  various  Bug  algorithms,  based  on  empirical  data  from 

experiments in different environments.

Section  2.2  introduces  two  new  Bug  algorithms  which  have  been 
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implemented.  These are new to the Bug family and the introduction here is 

necessary as they have been implemented for simulation.  The full rationale 

is  discussed  in  section  3.  Section  2.3  discusses  theoretical  differences 

between  Bug  algorithms,  as  well  as  practical  implementation  issues. 

Section 2.4 presents simulation results from eleven Bug algorithms in four 

different  environments  and  also  discusses  algorithm  implementation 

complexity.  Section  2.5  presents  conclusions  and  also  touches  on  fault 

tolerance issues in noisy environments.

2.2 LeaveBug and OneBug
LeaveBug is similar to Bug1, except that instead of circumnavigating the 

entire  obstacle  before  evaluating  the  line  segment  [Qm,T],  the  robot 

evaluates this condition after completing each path segment that does not 

prevent  movement towards the target.   Full  pseudo code is presented in 

chapter 3.

OneBug is similar to Alg2, except that no stored points are used.  Instead 

the robot completely explores a segment along the blocking obstacle that 

prevents movement towards the target.  Full pseudo code is presented in 

chapter 3.

2.3 From Theory to Implementation
Since Bug algorithms are usually published as pseudo code, they do leave 

some  room for  interpretation.   Therefore,  it  is  important  to  specify  all 

adaptations required to transform them into proper executable algorithms. 

The RoBIOS application programmer interface has been used [7], which is 

compatible  with  real  SoccorBot  mobile  robots  as  well  as  EyeSim 

simulation  system.   Below  is  a  discussion  of  some  of  the  issues 
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encountered during the implementation phase:

2.3.1 Update Frequency
In theory, Bug algorithms continuously update their position data and will 

automatically detect that any of the navigation conditions are satisfied.  For 

example, in Bug2 as soon as the robot lies on the M-line, the algorithm will 

detect this and act accordingly.  

In practice, this will require the robot's position data to be updated and the 

navigation conditions to be checked.  The robot's position is based on dead 

reckoning  and  for  every  update  wheel  encoders  must  be  read  and 

calculations  must  be  performed.   Clearly,  this  requires  computation 

resources and updates cannot occur too frequently.

Initially, updating robot position and checking was done as a background 

thread.   However,  with  that  approach  came  inherent  unpredictability 

especially if the robot was moving at high speeds or on an irregular wall 

following path.  Furthermore, interfacing the thread with the main program 

required much programming effort.

It  was  found  through  experiments  that  a  distance  of  40  mm  between 

updates achieved the optimal balance between updating too frequently and 

too infrequently on the EyeSim simulator.  Thus, the robot drives 40mm 

either driving towards the target or following the wall and then updates its 

position.  This implies that any position of significance must include some 

margin for error and this is discussed next.

2.3.2 Recognition of Stored Positions
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In theory, Bug algorithms use infinitesimally small points to represent the 

start, target, latest hit point and other significant positions in Alg1, Alg2, 

Rev1 and Rev2.  This does not work in practice, because of the limited 

update frequency and subsequent deviations during wall-following.  Hence, 

in the implementation, each significant position is represented by a square 

of side length 50 mm.  A square was chosen because it is computationally 

efficient to check if the robot is inside.  The size of the square was chosen 

such that it  is  slightly larger  than the robot's  driving distance during an 

update cycle, but not so large that it would lead to frequent false positives.

2.3.3 Robot Sensor Equipment
Some algorithms only require tactile sensors, for example Bug1 and Bug2. 

In  these algorithms,  range sensors  are  used as  substitute  tactile  sensors. 

The  range  sensors  assist  only  for  wall-following  and  wall-detecting 

purposes.

2.3.4 Moving Towards Target
In all Bug algorithms, the ability to check if the robot can move towards the 

target at its current location is essential.  For instance, Bug1 requires QmT 

to be checked in its test  of target reachability.  Also, Bug2, Alg1, Alg2, 

Rev1 and Rev2 all require this check to be made on any prospective leave 

points.

In theory, the robot is able to use its tactile sensor to evaluate this check.  In 

our implementation, this check is performed by obtaining the free-space in 

the  target's  direction  and comparing  it  to  a  predefined  value.   Through 

experiments, it has been found that a value of 270mm works adequately. 

This value allows the robot to rotate on the spot and align itself parallel 
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with  the  wall.   Once  parallel,  the  robot  can  follow  the  wall  at  a  safe 

distance.  Further, 270mm allows the robot to stop in plenty of time in case 

the check is delayed.

To obtain the free-space in the target's direction, the robot points one of its 

eight range sensors in the target's direction such that rotation is minimized.

2.3.5 Wall Following
Lumelsky [1] notes that special algorithms beyond the scope of the Bug 

algorithms are required to follow a wall [94].  In our implementation, the 

robot uses a simple proportional-derivative (PD) controller to follow the 

wall.   The code is given in Figure 2-1.  The current error is the difference 

between the distance to the wall and the desired distance.  The derivative is 

the difference between the new error and the previous error.  The amount of 

curvature is a proportion of the error and the derivative.

Figure 2-1  The code for following the wall
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void follow_wall_straight(bool is_on_right){
double dist;
double derivative;
double new_error;

if(is_on_right){
dist = PSDGet(psd_right);
new_error = dist-WALL_DISTANCE;
derivative = new_error – old_error;
curve(STEP, - new_error/KP – derivative/KD);
old_error = new_error;

}
else{

dist = PSDGet(psd_left);
new_error = dist-WALL_DISTANCE;
derivative = new_error – old_error;
curve(STEP, new_error/KP + derivative/KD);
old_error = new_error;

}
}



This works well if the robot is following a “gentle” curve, but an obstacle's 

perimeter can be arbitrary.  Hence, there are situations where the robot has 

to perform special  movements.   For instance,  if  there  is  a  wall  directly 

ahead of the robot and to its right, the robot will rotate counter-clockwise 

on the spot until it can drive forwards again.  This situation is illustrated in 

Figure 2-2,  left.   If  there  are  no walls  surrounding the  robot,  the  robot 

drives in a circular pattern until it detects a wall on the right or it detects a 

wall ahead of it.  This is illustrated in Figure 2-2, right.

Figure 2-2 Left:  Robot rotates on the spot  Right:  Robot drives in a circle

Recently,  Charifa  and  Bikdash  [45]  proposed  a  Boundary  Following 

Algorithm to specifically address this problem.  Their algorithm is based a 

local-minimum-free potential  field.   When following the wall,  the  robot 

must keep a safe distance from the obstacles to avoid collision.  To achieve 

this, elements of generalized Voronoi diagrams [46, 47, 48, 49] are used 

since Voronoi diagrams find points which are furthest from all obstacles. 

However, the robot must also follow obstacles closely.  Hence, elements of 

reduced visibility graphs [50, 51] are used since visibility graphs achieve 

the shortest path with no clearance.  A balance is struck and the result is a 

safe Boundary Following Algorithm that can be implemented in future Bug 

algorithms.
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In  addition,  Lee  [99]  proposed  a  Rough-Fuzzy  Controller  for  wall-

following  navigation.   This  controller  uses  fuzzy  logic  [102]  rough-

membership functions [100,101] to improve its uncertainty reasoning.  Lee 

tested  the boundary  following controller  on a  real  robot  and the results 

show that it exhibited show that it  outperformed a bang-bang controller, 

PID controller,  a  conventionally  fuzzy  controller  and an  adaptive  fuzzy 

controller using Genetic Algorithms [103,104].  However, the performance 

used to evaluate the controllers does not include path safety so no direct 

comparison can be made with Charifa.

2.3.6 Limited Angular Resolution for the LTG
In  theory,  the  Local-Tangent-Graph  (LTG)  should  be  continuous.   In 

practice,  range  sensors  have  a  finite  angular  resolution.   For  our  robot 

model this resolution is 1 degree between each sample.  To identify nodes, 

successive values are compared against a discontinuity threshold.  If the 

difference is larger, a node is identified.  This can lead to an error where a 

node is mistakenly identified, as illustrated in Figure 2-3.  To reduce the 

possibility of these errors, the sensor range is restricted and the robot is 

programmed to move away from an obstacle if it comes too close.

2.3.7 M-line Identification
Bug2, Alg1 and Rev1 use the concept of the M-line that links start  and 

target  positions.   Checking  if  the  robot  is  positioned  on  the  M-line  is 

essential.  Consider the situation where “S” is at the origin, “T” is a vector 

to the target,  “P” is a vector to the robot's current location and “a” is a 

scalar such that the vectors “P-aT” and “T” are perpendicular.  Figure 2-4 

illustrates this situation.
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Figure 2-3: Finite angular resolution causes incorrect node identifications

It follows from the dot product that:

Rearranging for “a” gives:

If 0 ≤ a ≤ 1 and the Euclidean distance between “P” and “aT” is smaller 

than a threshold value, the robot is on the M-line.
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Figure 2-4:  The vectors “P-aT” and “T” are perpendicular

2.4 Experiments and Results
For these experiments, a simulation setting without sensor or actuator noise 

has  been  selected.   Figure  2-5  illustrates  the  Bug  algorithms  on 

environment  B,  featuring  a  local  minimum.   Several  early  navigation 

techniques  such  as  the  potential  field  method  [14]  had  difficulties 

overcoming local  minimums.   In theory,  no Bug algorithm should have 

difficulty  overcoming  a  local  minimum  and  this  is  verified  in  our 

implementation.
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Figure 2-5:  Paths for Bug algorithms in environment B
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Figure 2-6:  Path lengths for environment B

Bug1 has the longest path length, followed by LeaveBug, while all other 

algorithms have a similar small path length.  This is due to the fact that 

Bug1 does not check for target reachability until it re-encounters the first 

hit point (collision point) with the U-shaped obstacle.  This unnecessarily 

makes  the  robot  circumnavigate  the  complete  obstacle,  while  other 

algorithms depart towards the target much earlier. (Figure 2-6)

Figure  2-7  illustrates  the  algorithms  on  a  terrain  originally  created  by 

Sankar [3].  The beauty of this terrain is that it is complicated enough to 

reveal the unique characteristics of each algorithm but not so complicated 

as to be overwhelming.  For instance, the M-line is clearly visible in Bug2, 

Alg1 and Rev1 as is the stored points concept in Alg1 and Alg2.  DistBug’s 

leaving condition allows it  to leave slightly earlier than Alg2 and Rev2, 

resulting in a shorter path length.  The overall shortest path was reached by 

Rev2  followed  by  Rev1.  This  can  be  attributed  to  the  alternative  wall 

following.
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Figure 2-7:  Paths for Bug algorithms in environment A
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Figure 2-8:  Path lengths for environment A

Some interesting issues arise when comparing Alg1 against Bug2 and Alg2 

against DistBug.  Recall that Alg1 is very similar to Bug2 except that Alg1 

uses stored points and Alg2 is very similar to DistBug except for stored 

points and the inclusion of the range-based leaving condition.  Interestingly, 

Bug2  and  DistBug  produce  shorter  paths  than  their  stored  point 

counterparts.  (Figure 2-8)

Figure 2-9 illustrates  the algorithms on a terrain featuring only a single 

semi-convex  obstacle.   Consider  the  convex  hull  associated  with  any 

obstacle.  If all differences between the obstacle and the convex hull are 

convex, then the obstacle is called semi-convex.

In this environment the shortest path is produced by TangentBug.  This is 

because TangentBug can use the LTG (local tangent graph) to sweep all 

areas  of  a  discrepancy  between  the  convex  hull  and  the  semi-convex 

obstacle, since the discrepancy must be convex.  Hence, it can travel along 

the convex hull.  Second best after TangentBug is DistBug.  Clearly, its use 

of range sensors allow it to leave the obstacle earlier than Alg2 and this 

results in a shorter  path.  Rev1 and Rev2 did not perform well for  this 

environment, since they conducted unnecessary circumnavigation due to a 

boundary following direction decision.
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Figure 2-9:  Paths for Bug algorithms in environment C
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Figure 2-10:  Path lengths for environment C

Some interesting questions arise as to whether particular algorithms will 

always perform better than others on semi-convex obstacles.  For instance, 

it  is  foreseeable  that  TangentBug  will  always  produce  the  shortest  path 

since it  always  travels  on the convex hull.   Also,  does  DistBug always 

produce  the  next  shortest  path  because  of  its  range-based  leaving 

condition?  (Figure 2-10)

Figure 2-11 illustrates the Bug algorithms on an environment where the 

target  is  unreachable  (here  the  target  is  inside  the  obstacle).   An 

unreachable  target  implies  that  at  least  one  obstacle  must  be  fully 

circumnavigated.  TangentBug produces the shortest path because its range 

sensors allow it to scan along the surface of the obstacle without the robot 

needing to actually  travel  there.   Amongst  the tactile  sensor algorithms, 

Bug1 and LeaveBug are tied for shortest path because Bug1 requires the 

entire  obstacle  to  be  circumnavigated  before  leaving  and  LeaveBug 

requires  the entire  enabling segment  to  be explored.   On this  particular 

environment LeaveBug's path is  identical to Bug1.  As expected,  stored 

points,  alternative  wall-following  methods  and  other  path-shortening 

measures are useless on an obstacle which renders the target unreachable.
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Figure 2-11:  Paths for Bug Algorithms in environment D
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Figure 2-12:  Path lengths for environment D

Algorithms with the fewest states were the easiest to implement, i.e. simple 

leaving  condition  and  storing  only  the  current  hit  point  for 

circumnavigation detection.  These include Bug2 and Class1, which require 

the least amount of code for implementation.  They did not fail in any of 

the test environments and used the least amount of memory.

Then,  there  are  slightly  harder  to  implement  algorithms  such  as  Bug1, 

which requires Qm to be continuously updated as well as information on 

whether  or  not  the  robot  can  drive  towards  the  target.   OneBug  and 

LeaveBug require several states to operate and DistBug requires a range-

based leaving condition.  Neither of these algorithms failed in any of the 

test environments, but they required slightly more memory and some more 

lines of code for implementation.  

Algorithms  that  require  stored  points  are  more  difficult  to  implement. 

Alg1,  Alg2,  Rev1  and  Rev2  all  require  management  of  multiple  stored 

points and therefore also more memory.  Generally, these algorithms are 

reliable but a few failures were recorded due to the robot falsely classifying 
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a protruding obstacle point as a previously encountered stored point.  Also, 

additional debugging and testing was needed for the stored points scheme 

to ensure correct functionality.

Finally, TangentBug was the most difficult to implement.  The requirements 

of  detecting  local  minima,  “corner  smoothing”  with  finite  angular 

resolution and processing nodes were quite complicated in comparison to 

other  Bug  algorithms.   These  requirements  also  required  a  lot  of 

computation resources and were a frequent  source of  failure.   Also,  the 

robot has to drive slightly away from the focus node to avoid a collision. 

One advantage of TangentBug is that there is no need for wall-following 

since  the  robot  only  turns  on  the  spot  and  travels  in  straight  lines. 

TangentBug  shows  what  can  be  theoretically  achieved  using  an  omni-

direction, always up-to-date LTG.

2.5  Results Achieved by other Researchers
This comparison of the Bug algorithms was the first which compared 11 

algorithms.   Since  then  there  have  been  other  comparisons  by  other 

researchers in the area.  Yufka and Parlaktuna [28] used the MobileSim [29] 

simulation system to simulate Bug1, Bug2 and DistBug.  Their findings 

concur with the author's results.  According to them:

“The  results  show  that  Bug1  is  the  worst  one  whose  path  length  is  

approximately 3.37 times longer than the path length of the Bird-eye’s view 

and DistBug is the best one whose path length 1.49 times longer than the  

path length of the Bird-eye’s view.”

Chiang,  Liu  and Chou  [32]  compared Bug1  and  Bug2 against  the  Fast 
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Marching  Method  [33,  93]  and  their  refined  version  called  Boundary 

Following Fast Marching Method [34].  The Fast Marching Method relies 

on a completely known environment and hence can produce the shortest 

path.  However, the Boundary Following Fast Marching Method partially 

explores  the  environment  before  plotting  a  path  to  the  target.   Their 

findings concur with the author's results for Bug1 and Bug2.  It was also 

noted that the BFFMM produces a path length between Bug1 and Bug2. 

According to them:

“BFFMM builds the  partial  map by contouring the boundary curves of  

obstacles, so the path length in exploring mode would approach the limit of  

Bug1.The total path length of BFFMM is close to that of Bug1, but the path  

length of the path planning phase is even shorter than that of Bug2.”

Noborio,  Maeda  and Urakawa compared Class1,  Bug2,  Alg1,  Alg2 and 

HD-I on two large mazes [31] with four random start  and target points. 

These  mazes  are  quite  large  and  do  not  resemble  any  “normal” 

environment.  Not considering Class1, the results show that Bug2 always 

produces a longer path than Alg1, Alg2 generally outperforms Alg1 and 

HD-I  almost  always  outperforms  Alg2.   This  concurs  with  the  author's 

findings concerning Bug2, Alg1 and Alg2.  HD-I is able to perform well 

because it “learns” which direction is likely to produce short paths based on 

previous encounters and the direction of the target.  However, these results 

have only been shown to work on large mazes.

2.6  Summary of Results
Table  2-1  summarizes  the  algorithms  against  path  length  and  different 

criteria enumerated through sections 2.3.1 to 2.3.7.
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Algorithm
Name

Total Path 
Length 

(m)

Wall 
Following 
Algorithm

Sensors Check if 
robot can 
move to T

LTG M-line 
detection 
required?

Bug1 107 PD Tactile Yes No No
Bug2 74.3 PD Tactile Yes No Yes
Alg1 83.3 PD Tactile Yes No Yes
Alg2 76 PD Tactile Yes No No
DistBug 64.5 PD Infrared No No No
TangentBug 46.5 N/A Infrared No Yes No
OneBug 68.5 PD Tactile No No No
LeaveBug 65 PD Tactile No No No
Rev1 64.8 PD Tactile Yes No Yes
Rev2 62 PD Tactile Yes No No
Class1 67.5 PD Tactile No No No

Table 2-1 Summary of the Bug algorithms.  Note that Total path length is 

the sum of path lengths over 4 Environments.
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Chapter 3
An Analysis of Bug Algorithm Termination

3.1 Introduction
In  this  chapter,  similarities  and  differences  in  the  Bug  Algorithms  are 

explored  particularly  in  relation  to  the  methods  used  to  guarantee 

termination.   All the Bug algorithms are very similar fundamentally  but 

differ in how they are modified to guarantee termination.  The author has 

observed  that  all  published  Bug  algorithms  possess  one  of  five  distinct 

methods which allow it to guarantee termination.   Two new methods are 

created and form the basis for the new Bug algorithms OneBug, LeaveBug, 

MultiBug and SensorBug.

The aim of examining the methods used to guarantee termination is in line 

with  the  goals  of  the  thesis  which  is  to  reduce  resources  consumed in 

guaranteeing  termination.   In  this  case,  the  more  specific  aim  is  to 

determine  which  of  the  methods  can  be  used  to  reduce  path  length  or 

algorithm complexity whilst guaranteeing termination.

3.2 Bug Algorithm Analysis
There  are  two  striking  similarities  which  occur  in  all  the  examined 

algorithms.  Firstly, all Bug algorithms use at least two modes of operation 

–  “moving to  target”  and “boundary  following”.   Secondly,  the leaving 

rules almost always compare the potential leave point (this may be different 

from the  robot’s  actual  position  in  the  case  of  range  sensors)  with  the 

closest point ever visited (or scanned by range sensors) by the robot or they 
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seek to prohibit the robot from leaving at points it has left from before.  It 

should be asked if these are fundamental and essential properties for any 

algorithm which attempts to solve the Bug problem or if there is another 

way.

The “moving to target” mode where the robot drives directly to the target is 

the only logical course of action given that the robot knows nothing of the 

environment.  The path length of these segments must be finite since the 

distance  from any  point  on  the  2D plane  to  target  is  finite.   However, 

obstacles  may  be  encountered  during  “moving to  target”  and hence  the 

necessity for “boundary following” mode.

The maximum path length of  any “boundary following”  segment  is  the 

perimeter of the obstacle which is being followed.  Once the robot has fully 

followed  that  perimeter  and  its  leaving  condition  has  not  held,  then  it 

should conclude that the target is unreachable and terminate since it is only 

going to get old data by more circumnavigation.  Given that the lengths of 

both the “moving to target” and “boundary following” modes are finite then 

the only thing which could cause path length to go to infinite is if there is 

an  infinite  amount  of  “moving  to  target”  and  “boundary  following” 

segments.   When  the  robot  is  “moving  to  target”,  the  transition  to 

“boundary  following”  mode  is  straightforward.   Hence,  the  only  thing 

which  can  cause  infinite  length  is  the  leaving  condition  and  thus  their 

importance in the Bug algorithms.

Leaving rules are best explained by Sankar [4] in his development of Alg2. 

A brief synopsis is given here.  For termination to be guaranteed, the set of 

obstacles which the robot can possibly encounter in its journey from S to T 

must be finite and never allow new obstacles to be added.  It is necessary to 
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ensure that the set is finite and non-admitting because if this does not hold 

then the robot  can encounter  an infinite  number  of  obstacles  and never 

terminate. An example of such a set illustrated in Figure 3-1.  As the robot 

performs “moving to target” the radius shrinks and no new obstacles can 

join.  As the robot performs “boundary following” it must ensure that no 

new obstacles can join when it leaves – hence the necessity to leave only 

when the robot is closer to the target than any point previously visited P.

Figure 3-1:  Number of obstacles inside the disc is finite.

To satisfy this requirement, the only method is to compare d(x,T) against 

d(x,T).  If d(x,T) < d(P,T), then the robot can leave and the set remains non-

admitting.  This effectively checks if the robot is inside the disc centered at 

T with radius d(P,T).  Clearly, there is no other enclosure which can satisfy 

this requirement.  Any enclosure which is larger may allow the robot to 

admit obstacles into the set.  Any enclosure which is smaller may result in 

the robot circumnavigating an obstacle and incorrectly concluding that the 

target is unreachable.

The  algorithms  Class1  and  Com (which  are  not  a  Bug  algorithms  but 

something used in the development of workable Bug algorithms [4]) were 
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used to illustrate the above arguments.  Some interesting properties emerge 

from the Class1 algorithm:

Theorem 1:  A robot can never leave twice from the same position.

Proof:  The robot updates P to X and if X is revisited then d(X,T) < d(P,T) 

is false. ■

Theorem 2:  A robot can never register a hit point an obstacle along a  

previously visited boundary segment.

Proof:  The robot leaves at a point that is closer to the target than any 

previously visited.  During “moving to target” that distance monotonically 

decreases.  If an obstacle is encountered then the hit point will be closer to 

the target than any point previously visited and therefore cannot be along a 

previously visited boundary segment. ■

Class1 has the disadvantage that the path length can be made arbitrarily 

long.   Consider  Class1  in  the  environment  depicted  on  Figure  3-2. 

Decreasing W can make the path length arbitrarily long.  Fundamentally, 

the  problem  is  that  there  are  an  infinite  number  of  points  within  the 

“shrinking-disc” and an environment can be constructed such that the robot 

always leaves at a point which only very marginally shrinks the disc.

Figure 3-2:  Decreasing W produces an arbitrarily long path under Class1.
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3.3 The Methods
To overcome this problem, the “shrinking-disc” needs to be supplemented 

with another rule that guarantees the number of leave points is finite.  The 

author has observed five  methods are currently used to solve this problem.

3.3.1 The Closest Points Method
Each obstacle has a minimum distance to the target and all points which 

satisfy that are in set C.  The robot can only leave at points in C.

This method works by noting that if the robot leaves at a point in C, the 

robot  can  never  encounter  that  obstacle  again  in  the  remainder  of  its 

journey.  Hence, there can only be at most one leave point associated with 

all obstacles in the finite set of obstacles intersecting the “shrinking-disc”. 

The downside is that to identify C for a particular obstacle O, the robot 

must fully circumnavigate O and this can lead to unnecessarily long path 

lengths.  Bug1 is the only algorithm to utilize the closest points method.

3.3.2 The M-line Method
Create a line from S to T called the M-line.  The robot leaves on the M-line.

This method creates a line within the “shrinking-disc” since all points on 

the M-line are also points with the “shrinking-disc”.  The intersection of the 

line  with  an  obstacle  produces  a  distinct  and  unique  point.   Given  the 

assumption that there can only be a finite number of intersections with the 

M-line, then there can only be a finite number of leave points in the entire 

journey.  The downside is that many cycles can be created if there are many 

intersections with the M-line.  VisBug-21, VisBug-22, Bug2, Alg1, Rev1, 

HD-1/w, Ave and ABUG use the M-line method.
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3.3.3 The Disabling Segments Method
Keep the number of hit points that occur along disabling segments finite.

For any given obstacle, it has been shown [6] that there are a finite and 

non-zero number of disabling segments.  Similarly, there will be a finite 

number, possibly zero, of enabling segments.  A disabling segment occurs 

when  the  robot  cannot  travel  towards  the  target  for  all  points  in  the 

segment.  An enabling segment occurs when the robot can travel towards 

the target for all points in the segment.  Figure 3-3 top illustrates disabling 

segments and Figure 3-3 bottom illustrates enabling segments.  The robot 

can  only  encounter  an  obstacle  on  a  disabling  segment  and  if  these 

encounters can be restricted using Theorem 2 then the number of hit points 

can be kept finite.

Figure 3-3 Top: Disabling segments. Bottom: Enabling segments

There are many different ways to implement this method.  For example, 

Alg2 implements it by forcing the robot to return to the last defined hit 

point  and  exploring  the  remaining  counter-clockwise  wall  following 

direction when a previously stored point is met.  Similarly, Rev2 forces the 

robot to return to the closest hit point on H-list and to explore the alternate 
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direction.  These rules ensure that there can only be a finite number of hit 

points per disabling segment.

Obviously, there can be many other ways of implementing this method. 

Consider a new and simplistic Bug algorithm, OneBug, in which the robot 

must  explore  the  entire  disabling  segment  before  it  can  begin  the 

exploration  of  a  neighboring  enabling  segment.   Figure  3-4  shows  the 

pseudo-code of OneBug:

Figure 3-4 Pseudo code of OneBug

OneBug is so named because there can be at the most one hit point per 

disabling segment.  OneBug can be described as Alg2 without the stored 

78

1) Drive directly to the target until one of the following occurs:

a) Target is reached.  OneBug stops.

b) An obstacle is encountered.  Go to step 2.

2) Perform clockwise circumnavigation until one of the following occurs:

a) Target is reached.  OneBug stops.

b) The robot is able to drive towards the target.  Go to step 3.

c)  The  robot  completes  circumnavigation  around  the  blocking  

obstacle.  The target is unreachable and OneBug stops.

3) Perform counter-clockwise circumnavigation until one of the following 

occurs:

a) Target is reached.  OneBug stops.

b) The robot is at a point which is closer to the target than any  

previously visited and it is able to drive towards the target.  Go to 

step 1.

c)  The  robot  completes  circumnavigation  around  the  blocking  

obstacle.  The target is unreachable and OneBug stops.



points  and  Class1  without  the  arbitrarily  long  path  length.   Figure  3-5 

shows OneBug’s simulation [7] results on two environments.

Figure 3-5:  OneBug algorithm in two different environments

The  stored  points  used  to  implement  this  method  on  Alg2  also  serve 

another purpose, to reduce path length.  However, chapter 2 illustrated a 

situation where the path length of Alg2 was greater than DistBug despite 

Alg2 using stored points (Figure 2-7).

The  reason  for  this  is  that  Alg2  does  not  allow  the  robot  to  resume 

searching from the pathwise closest unexplored region but chooses the last 

defined hit  point.   Now consider a new Bug algorithm MultiBug which 

allows  the  robot  to  choose  clockwise  or  counter-clockwise 

circumnavigation  to  explore  the  closest  unexplored  disabling  region. 

MultiBug is described in Figure 3-6.
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The number of hit points per disabling segment is kept finite because upon 

returning to a previously stored point H in step 3, the robot must choose to 

follow the wall in a counter clockwise direction.  This necessarily means 

that the disabling segment associated with H must be fully explored using 

at most two encounters.  Figure 3-7 illustrates MultiBug.

Figure 3-6  Pseudo code for MultiBug

3.3.4 The Step Method
Leave  only  after  the  robot  is  a  predefined  distance,  STEP,  inside  the  

“shrinking-disc”.
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1) Drive directly to the target until one of the following occurs:

a) Target is reached.  MultiBug stops.

b) An obstacle is encountered.  Record a hit point Hi.  Go to step 2.

2) Perform clockwise circumnavigation until one of the following occurs:

a) The robot is at a point closer to the target than any previously  

visited and is able to move towards the target.  Go to step 1.

b) The robot encounters a previously recorded hit point. Go to step 

3.

c) The robot encounters  Hi.  Terminate with failure.

3) Decide upon which wall following direction would take the robot to the 

nearest  hit  point  H  which  only  has  the  clockwise  direction  explored. 

Return to H.  At H, perform counterclockwise wall following until one of 

the following occurs:

a) The robot is at a point closer to the target than any previously  

visited and is able to move towards the target.  Go to step 1.

b) The robot returns to H.   Terminate with failure.



Figure 3-7  MultiBug algorithm in two different environments

Using this method,  the robot can leave at most   STEPTSd /),(  times in its 

entire  journey.  Unfortunately,  this  method  requires  knowledge  of  the 

environment  since  STEP  must  be  chosen  such  that  during 

circumnavigation,  a  point  on  every  encountered  obstacle  will  fall  in  an 

enabling segment that is STEP closer to the target.  If this doesn’t hold then 

it  would  be  possible  for  the  robot  to  circumnavigate  an  obstacle  and 

incorrectly conclude that the target was unreachable.  The step method is 

used in DistBug for both tactile and range sensors.

3.3.5 The Local Minimum Method
Restrict hit points to local minimums that occur on encountered obstacles.

Using the local minimum method, the robot can only define hit points if it 

detects  that  it  is  in  a  local  minimum on the  encountered  obstacle  with 

respect  to  the  target.   It  has  been  shown  [6]  that  the  number  of  local 
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minimums on any obstacle is finite.  Figure 3-8 shows the local minimums 

on two environments with respect to the target.

TangentBug, CautiousBug, RoverBug, 3DBug and WedgeBug all use the 

local minimums method.

Figure 3-8:  Two environments with local minima

3.3.6 The Enabling Segments Method
Keep the number of leave points that can occur along enabling segments 

an obstacle finite.

The enabling segments method uses the fact  that there are only a finite 

number of leaving segments for any given obstacle.  Consider a new Bug 

algorithm  LeaveBug  which  implements  the  enabling  segments  method. 

LeaveBug pseudo code is illustrated in Figure 3-9.  Examples of LeaveBug 

are presented in Figure 3-10.
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Figure 3-9  Pseudo code for LeaveBug

The T2 algorithm [41] utilizes the enabling segments method by permitting 

only  two  leave  points  per  enabling  segment.   The  first  one  is  at  the 

transition from a disabling to enabling segment and the second one is from 

the current  M-line.   There are only a finite amount of type one leaving 

points  and  the  robot  is  only  permitted  to  leave  at  each  of  them once. 

Therefore, there can only be a finite number of M-line redefinitions and 

each of the redefinitions can only pass through an enabling segment once. 
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1) Drive directly to the target until one of the following occurs.

a) Target is reached.  LeaveBug stops.

b) An obstacle is encountered.  Go to step 2.

2) Perform clockwise circumnavigation until one of the following occurs:

a) Target is reached.  LeaveBug stops.

b) The robot is able to move towards the target.  Go to step 3.

c) The robot completes circumnavigation around the obstacle.  The 

target is unreachable and LeaveBug stops.

3) Perform clockwise circumnavigation whilst updating a point P to X if 

the robot is currently closer to the target than any point previously visited. 

Do this until one of the following occurs:

a) Target is reached.  LeaveBug stops.

b) The robot is unable to move towards the target.  If P contains a 

position, go to step 4.  Else, go to step 2.

c) The robot completes circumnavigation around the obstacle.  The 

target is unreachable and LeaveBug stops.

4)   If  dpath(X,P)  is  0,  reset  P to  null  and go to  step 2.   Else,  perform 

counter-clockwise circumnavigation until  the robot returns to P.   At P, 

reset P to null and go to step 1.



Hence, the number of leave points is finite.  The robot will always find the 

target, if reachable, because even in the absence of type one leaving points 

it  will  always  have  an  M-line  and  that  has  been  shown  to  guarantee 

termination previously.

Figure 3-10:  LeaveBug algorithm in two different environments

Angulus [13] allows the robot to leave when “it is physically possible to 

walk straight toward T, the current velocity vector v points towards T and 

both “a” (the robot's position vector with respect to the ST line) and “b” 

(the robot's velocity vector with respect to the ST line) are in the range of 0 

to 360 degrees, proceed straight to T”. Such a position corresponds to a 

transition between disabling segments and enabling segments.  Technically, 

the  leave  point  would be on the edge  of  the enabling  segment  and the 

number of these points is finite.  The second leaving condition of Angulus 

where “if a = b = -360 leave towards T” is vague because that can only 

occur in rare situations and does not fit any of the methods.

84



SensBug [71] and K-Bug [87] direct the robot to leave at positions where 

the robot can travel towards the target.  This is in effect directing the robot 

to leave at transition points between disabling and enabling segments.

3.3.7 The Q Method
There is a unique set of points Q which is finite for any polygonal obstacle  

O.  Q is the set of points at which the robot must stop to gather data to 

continue circumnavigating O both in the clockwise and counter-clockwise  

directions.  Clockwise and counter-clockwise circumnavigation must begin 

from a vertex on O for the purposes of determining members of O.

Figure 3-11:  Points in Q are circled

In Figure 3-11, the circled points represent members of Q assuming a robot 

has infinite sensor range.

The Q method is to be used in the development of SensorBug in Chapter 6. 

Some of the issues which arise are how to implement it.  For instance, how 

to ensure that the robot will always leave at a point in Q?  What about the 

case where Q is empty, for instance if the robot starts enclosed in a box? 
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How to guarantee that the robot will always leave an obstacle which does 

not encircle the target?

The Q method has a significant drawback in that it requires a polygonal 

obstacle so that the number of vertices is finite.  Otherwise, Q could be 

infinite on a curved section of O. Also, the robot must have range sensors. 

If tactile sensors are used then Q will be infinite.

There are two main foreseeable advantages of the Q method.  Firstly, it 

should be easy to implement for robots using range sensors compared to 

TangentBug and VisBug. Secondly, the robot does not have to continuously 

poll  the  external  environment  whilst  traveling  between  members  of  Q. 

Instead, the robot is free to devote computing resources to other tasks.

3.4 Other Methods to keep hit or leave points finite
There are infinite ways in which methods can be combined with each other 

to  produce  new Bug  algorithms.   Further,  any  new Bug  algorithm can 

incorporate special features of other algorithms.  For instance, it would be 

easy to add the reverse wall following procedure from Ave, or the cautious 

wall-following procedure in CautiousBug, or the LTG from TangentBug or 

the stored points concept from Alg1.  But for any new Bug algorithm to be 

truly unique, it needs to find a new way of analyzing obstacles to determine 

the positions of leave or hit points in such a way that any obstacle will have 

a  finite  number.   From  there,  a  leaving  condition  can  be  created  to 

implement the analysis.  In other words, a new method needs to be created 

for any future Bug algorithm to be considered truly unique.  The creation of 

new  methods  is  beyond  the  scope  of  this  thesis  and  is  left  for  future 

research.   However,  the  task  is  going to  require  much  imagination  and 

creativity.
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3.5 Completely Exploring the Blocking Obstacle
When Lumelsky published Bug1 and Bug2 [1], Lucas commented on them 

shortly afterwards [58].  Lucas acknowledged that one of Bug1's purposes 

was  to  completely  explore  the  blocking  obstacle.   However,  Lucas 

recommended that Bug1 and Bug2 be combined so that the benefits of both 

algorithms  can  be  used  simultaneously  to  reduce  path  length  whilst 

preserving the complete exploration of the blocking obstacle.  He named 

his algorithm (2) and it is quoted in Figure 3-12.

Figure 3-12 Lucas's (2) algorithm which combines Bug1 and Bug2
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Initially, j = 1; Lo = starting point.

1) From point Lj-1 move toward the target along the M-line until one of the 

following occurs:

a) Target is reached. The procedure stops.

b) An obstacle is encountered and a hit point Hj is defined. Go to step 2.

2) Using the accepted local direction (left), follow the obstacle boundary. 

If  the  target  is  reached,  stop.  Use  R1 to  store  the  coordinates  of  the 

intersection with the M-line  Qm having the least distance from the target 

point, R2 to integrate the length of the boundary starting at Hj and R3 to 

integrate  the  length  of  the  boundary  starting  at  Qm. (In  case  of  many 

choices for  Qm take any.) After having traversed the whole boundary and 

having returned at Hj define a new leave point as Lj = Qm. Go to step 3.

3) Using the contents of R2 and R3 determine the shorter way along the 

boundary to Lj and use it to go to Lj.  If the straight line from L, to target 

crosses the obstacle, then the target cannot be reached. Otherwise, set j = j 

+1. Go to step 1.



Lumelsky's reply [58] was that this defeats the motivation behind Bug1 

which was to  allow the robot  to  deviate  as  far  as  one wishes from the 

desired  path  (the  M-line).   By  this,  the  author  assumes  that  Lumelsky 

means Bug1's purpose was to attempt to find other routes to the target and 

that  this  is  necessary  to  fulfilling  its  higher  level  objectives.  If  this 

assumption  is  correct  then  Lumelsky  is  correct  in  rejecting  the 

modification.

However, if the objective of the Bug algorithms is to minimize path length 

to the target then the modification holds weight.  Consider the environment 

shown in Figure 3-13.  In this environment, (2) clearly outperforms Bug1. 

Further, (2) has the advantage of reverting to the Bug1 leave point if the M-

line leave point proves disadvantageous. Therefore, it will always have a 

shorter path than Bug1.

Figure 3-13 Left. The Bug1 Algorithm  Right. Lucas's (2) algorithm
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It  is  true  that  Bug1  can  choose  either  clockwise  or  counter-clockwise 

boundary following when it returns to the original hit point depending on 

which requires less travel.  However, the right side of the obstacle can be 

arbitrarily modified so that the counter-clockwise route requires extensive 

travel.

If  the  objective  is  to  minimize  path  length  whilst  exploring  all  of  the 

blocking obstacle then improvements can be made.  Consider an algorithm, 

Bug1+,  which  directs  the  robot  to  return  to  either  end  of  the  enabling 

segment which contains Qm depending on which required less travel.  Once 

there, the robot leaves.  Formally, Bug1+ can be written as shown in Figure 

3-14.  Bug1+ is shown in Figure 3-15 and it can clearly be seen that its path 

length is shorter than Bug1 and (2). 

Furthermore, Bug1+ allows the robot to deviate from the M-line and find 

alternate routes to the target.  Clearly, this satisfies Lumelsky's motivation 

for Bug1 and there should now be no reason for rejection.

Bug1+ raises an important  question.   Suppose that  as soon as the robot 

encounters an obstacle that it somehow knows the entire geometry of the 

obstacle,  when is it  best  for  the robot to leave?  Obviously,  the Bug1+ 

algorithm does not cover all possibilities.  For example, there may be other 

transition points which are not associated with Qm.  These other transition 

points require less travel and allow the robot to travel directly to the target.
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Figure 3-14: The Bug1+ Algorithm
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Initially, j = 1; Lo = starting point.

1) From point Lj-1 move toward the target along the M-line until one of the 

following occurs:

● Target is reached. The procedure stops.

● An obstacle is encountered and a hit point Hj is defined. Go to step 

2.

2) Following the obstacle boundary in a clockwise manner.  Record the 

following data until the robot returns to Hj.  Go to step 3.

● A transition point t, where t is such that the robot transitions from a 

disabling  to  enabling  segment  or  from  an  enabling  to  disabling 

segment.  Record dpath(t, Hj) for all such points.

● A point Qm,  where Qm is a point which is closer to the target than any 

previously visited.  Record dpath(Qm, Hj) and whether or not it is on a 

disabling segment.

3) When the robot returns to Hj, determine the following:

● If Qm lies on a disabling segment, the target is unreachable.  Stop.

● The two transition points associated with Qm in the clockwise and 

counter-clockwise directions.

● The path lengths to travel to the two transition points from Hj.  Go to 

step 4.

4) Following the boundary to the transition point which requires the least 

amount of travel.  Leave at that point.  Go to step 1.



Figure 3-15: The Bug1+ Algorithm on an Environment

Figure 3-16 Left illustrates one environment as an example.  Suppose that 

the robot completes circumnavigation and leaves at point A.  If it does so, 

then it will produce a shorter path than at point B, since at point A it moves 

directly to the target without encountering the obstacle again.  This would 

be the best result possible.

Secondly, consider Figure 3-16 right where leaving at A would cause the 

robot to re-encounter the obstacle.  Clearly, this is not desirable since the 

algorithm would need to be more complicated to  take the scenario into 

account.   The  ideal  solution  would  be  for  the  robot  to  travel  from the 

original  hit  point,  to  A,  directly  to  B  and  then  directly  to  the  target. 

However,  designing  an  algorithm  to  do  that  will  be  challenging,  but 

possible since the obstacle is  completely known.  This is left  for future 

research.
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Figure 3-16 Left: Leaving at A produces the shortest path

Right: The optimal path is requires the robot to travel from A to B to T

A possible criticism that could be made against Bug1+ on Figure 3-15 is 

that once Bug1+ leaves the obstacle it has a longer path to target than Bug1. 

Since it has a longer path, it is more likely to encounter another obstacle 

and  be  forced  to  circumnavigate  it  thereby  increasing  path  length. 

However, if the simplest and most logical assumption holds that there are 

no more obstacles  then Bug1+ will  always produce  a  shorter  path than 

Bug1.
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Chapter 4
Bug Algorithm Performance on Environments 

with a Single Semi-Convex Obstacle

4.1 Introduction
Lumelsky [1] noted two classes of environment in his original work.  The 

in-obstacle class were those environments which had either S or T inside 

the  convex  hull  of  an  obstacle.   The  out-obstacle class  were  those 

environments which were not  in-obstacle.  These were important because 

the performance of Bug2 was significantly better on out-obstacles since no 

local cycles could be made.  In this chapter, this idea of obstacle classes is 

extended and investigated with more algorithms and a new semi-convex 

obstacle.

The  performance  of  Bug  algorithms  Bug1,  Bug2,  Alg2,  DistBug  and 

TangentBug are  investigated on environments  which can only contain a 

single semi-convex obstacle with a reachable target and are  out-obstacle. 

Semi-convex obstacles are a new class of obstacle defined in section 4.3. 

Proofs are developed based on the algorithm and obstacle properties and it 

is shown that for any such environment TangentBug will always produce 

the  shortest  path  followed  by  DistBug,  Alg2,  Bug2  and  then  Bug1. 

Theoretical proofs are reinforced by simulations results.

Given  that  the  environment  is  unknown  prior  to  commencement  it  is 

obvious that path length minimizing navigation decisions will depend on 

luck.  For instance, when the robot is driving straight towards the target and 
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encounters  an obstacle,  the decision to turn left  or  right  is  based on an 

arbitrary guess.  However, if some restrictions are placed on the obstacles 

in  the  environment  it  will  be  shown  that  some  algorithms  will  always 

outperform  other  algorithms.   Firstly,  the  algorithms  are  compared  on 

environments that can only contain one convex obstacle with a reachable 

target.   Then,  the results  are  generalized  to  environments  that  can only 

contain  one  semi-convex  obstacle  with  a  reachable  target.   Finally, 

simulations are conducted using EyeSim to reinforce theoretical findings.

4.2 Examined Bug Algorithms
Bug [1], Bug2 [1], Alg2 [4], DistBug [5] and TangentBug [6] are selected 

for examination.  Other algorithms were not included in the examination 

mainly because they are fundamentally similar to each other with respect to 

their leaving rules.  For example, CautiousBug is similar to TangentBug 

except  that  wall-following  direction  changes  whilst  following  a  given 

obstacle.   Also,  Rev1  is  similar  to  Bug2  except  that  Rev1  introduces 

alternate wall-following and the reverse procedure. Alg1 is similar to Bug2 

except that it uses multiple stored points.  Rev2 is similar to Alg2 except 

that it has alternate wall-following and the reverse procedure.  HD-1 is also 

similar  to  Alg2 except  that  that  the  robot  can  alter  boundary  following 

direction during a “boundary following” segment without needing to find a 

previous stored point.

Some  algorithms  were  also  implementations  of  other  algorithms  for 

example WedgeBug implements TangentBug except that it uses wedges and 

conglomerates them as necessary.  RoverBug removes the assumption of a 

point  robot  and sensors  which do not  necessarily  detect  obstacles.   But 

nothing changes in with respect to the leaving rule.
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For effective comparison, restrictions must be placed on the wall-following 

direction. Otherwise, a particular algorithm could generate a short path by a 

lucky  guess  in  respect  to  the  wall-following  direction.   Therefore 

algorithms must follow Bug convention and perform clockwise boundary 

following  upon  defining  a  hit  point.  Changing  wall-following  direction 

during “boundary following” is  also prohibited.   In practical  terms,  this 

means TangentBug must  choose left  as  its  boundary following direction 

and  Alg2  cannot  use  stored  points  to  reverse  its  boundary  following 

direction upon meeting a previously stored point.  As will be shown later, 

stored points are not of any benefit on semi-convex obstacles in any case.

4.3 Performance on a Single Semi-Convex Obstacle
Consider an environment which features only a single convex obstacle O. 

O lies on the M-line and T is reachable.  Let M be the point where the M-

line intersects O closer to S, M’ the point where the M-line intersects O 

closer to T, VT the point on O which is tangent to T and VS the point on O 

which is tangent to S.  Figure 4-1 illustrates these points.

Theorem 1:  Given an encounter with a convex obstacle O, once leaving 

occurs the robot can never reencounter O.

Proof:  If the robot left O at point P1 and reencountered O at point P2, then 

P1 and P2 are points on O and there exists a path in freespace between P1 

and P2.  If that path exists, then by definition O cannot be convex. ■

Theorem 2:  If a robot is following O, an algorithm that leaves earlier on 

O will produce a shorter path than an algorithm that leaves later.

Proof:  Traveling directly to T is always shorter than an indirect path along 

VT to M’ and then directly to T. ■
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Figure 4-1 Left:  P=VT.  Top Right:  P is in the segment M to VT. Bottom 
Right:  P=M

Theorem 3:  Any point P from M to VT when connected to T via the direct  

line segment [P,T] will always intersect the segment from VT to M’ at a  

point P’ such that d(P,T) > d(P’,T).

Proof:  The points M, VT and T can be thought to form an infinite sector K 

centered on T with the tangents to VT and M forming the two straight lines. 

O necessarily connects M and VT and in that segment any point P will form 

a line segment [P,T] which is within K.  Within K, there also exists another 

connection from VT to M’ which does not intersect the connection from VT 

to  M.   Since  d(M,T)  >  d(M’,T),  it  follows  that  all  P  from  VT to  M 

necessarily intersect the connection from VT to M’ at P’ such that d(P,T) > 

d(P’,T).  Figure 4-2 illustrates this concept. ■

Theorem 4:  Assuming  infinite  sensor  range,  the  algorithm that  always  

produces  the  shortest  path  for  an  environment  with  reachable  T and a  

single  convex obstacle is  TangentBug, followed by DistBug, Alg2,  Bug2 

and finally Bug1.
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Figure 4-2:  Any point P along M to VT have a corresponding point P’ along 

VT to M’ such that d(P,T) > d(P’,T).

Proof:  Consider the optimal path associated with traveling to the left of O. 

The optimal path starts from S to VS.   From VS the optimal path passes 

through each successive vertex V1…VN until it reaches VT.  From VT the 

optimal path goes directly to T.  Figure 4-1 left illustrates the optimal path 

where the optimal path is S, VS, V1, VT, T.  Figure 4-1 top right and bottom 

right both have optimal paths of S, VS, VT, T.

TangentBug can use the LTG to detect VS allowing it to drive directly to it. 

Once VS is reached, the robot uses the drives to each successive vertex and 

when it reaches VT, it leaves because T is visible.  Therefore, TangentBug 

always generates the optimal path.

DistBug can detect when the robot is at VT since it continuously updates F. 

Also, it follows O’s boundary from V1…VN like all the other algorithms. 

However, from S to  VS, the robot does not necessarily follow the optimal 

path  because  it  drives  straight  towards  the  target  and  then  follows  the 
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boundary to VS.  This means that TangentBug will always produce a shorter 

or equal length path to DistBug.

Next,  consider Alg2 and DistBug.  With no PSD sensor,  Figure 4-1 left 

shows that it is still possible for Alg2 to leave at VT but Figure 4-1 top right 

and bottom right show that it is also possible that the robot will continue 

following O and this produces a longer path than DistBug according to 

Theorem 2.

Next, consider Alg2 against Bug2.  There exists a point P where P is the 

closest point to the target in the segment M to VT.  Hence, there are three 

possibilities: P=VT, P is inside M to VT or P=M.  

Figure 4-1 left shows the case where P=VT.  When this occurs, the robot 

leaves at VT and will always produce a shorter path than Bug2 according to 

Theorem 2.

Figure 4-1 top right illustrates the case where P is in the segment M to VT. 

Theorem 3 shows that there will always exist P’ inside VT to M’ such that 

d(P,T) > d(P’,T).  Under Alg2, the robot will always leave at or before P’ 

since d(P,T) > d(P’,T).   Since P’ is  necessarily  visited before  M’,  Alg2 

always produces a shorter path than Bug2.

The final case is demonstrated in Figure 4-1 bottom right where the P=M. 

In that case,  the robot will  always leave at or before M’ since d(P,T) > 

d(P’,T) and the robot can travel directly to T from M’.  If the robot leaves at 

M’, the Alg2’s path length will be the same as Bug2.  Hence, Alg2’s path 

length at very best is equal to DistBug and at very worst is equal to Bug2.
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Finally,  Bug1  will  always  produce  the  longest  path  length  because  it 

requires the robot to circumnavigate the obstacle first.  ■

Placing  a  restriction  that  the  obstacles  must  be  convex  is  restrictive. 

Fortunately, there is another class of obstacle which is more general than a 

convex obstacle for which Theorem 4 holds.  Consider the convex hull for 

any obstacle  O.   Any discrepancies  between O and its  convex hull  are 

assigned an area AX for  X = 1,  2,  3....   If  all  AX are  convex,  then the 

obstacle is said to be semi-convex.  Figure 4-3 left illustrates a semi-convex 

obstacle because A1 and A2 are convex, but Figure 4-3 right is not a semi-

convex obstacle because A2 is non-convex.

For each area AX, there are two vertices where the AX, O and O’s convex 

hull  intersect.   These vertices are labeled VX and VX’ such that  VX will 

always  be visited before  VX’ for  a  robot  which circumnavigates  O in  a 

clockwise manner.  Figure 4-3 left shows VX and VX’ for the semi-convex 

obstacle.

Figure 4-3 Left: A semi-convex obstacle.    Right:  A non semi-convex 

obstacle due to A2
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Each AX is partitioned into segments according to whether or not the robot 

can drive towards T.  If the robot is able, label that an enabling segment, 

otherwise label it a disabling segment.  Let QX represent the beginning of 

the disabling segment in the clockwise direction and QX’ the end of the 

disabling segment for a particular AX.  Let GX be the enabling segment from 

VX to QX, GX’ represent the disabling segment from QX to QX’, and GX” the 

enabling  segment  from  QX’  to  VX’.   Figure  4-4  left  illustrates  these 

notations for A1.  Note that GX, and GX” do not necessarily have to exist as 

illustrated by A2.

Figure 4-4 Left:  Notations for semi-convex obstacles

Right:  Any point along G1” intersects G1’

Theorem 5:  A “moving to target” segment can never intersect another 

“moving to target” segment.

Proof:  In  all  the  algorithms,  the  robot  can  only  transit  to  “moving to 

target” at a point that is closer to the target than any previously visited. 

During “moving to target” the distance to target monotonically decreases. 

Hence, the robot will never pass over any previously visited point during a 

“moving to target” segment.  ■
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Theorem 6:  A robot can never encounter an obstacle along a previously  

visited boundary segment.

Proof:  The robot leaves at a point that is closer to the target than any 

previously visited.  During “moving to target” that distance monotonically 

decreases.  If an obstacle is encountered then the hit point will be closer to 

the target than any point previously visited and therefore cannot be along a 

previously visited boundary segment. ■

Theorem 7:  Under the Alg2 and DistBug leaving rules, if the robot leaves  

at  any point  along O associated with AX,  it  cannot leave again until  it  

reaches VX’.

Proof:  In an AX, the robot can leave at VX or along GX at a leave point LX. 

If this happens, AX’s convex property ensures an encounter along GX’ at 

point HX.  The robot turns left and proceeds to QX’ and finally to VX’.  The 

robot cannot leave when it is on GX’ because it is a disabling segment.  The 

only other place it can possibly leave is when traveling on GX”.  It follows 

that the robot cannot leave on GX” since AX’s convex property guarantees 

an encounter along GX’ thereby violating either Theorem 5 or Theorem 6. 

Consider that a “moving to target” segment which encounters GX’ along 

[HX,QX’]  violates  Theorem  6.   Alternatively,  if  a  “moving  to  target” 

segment encounters GX’ along [QX,HX] then Theorem 5 is violated since the 

robot must pass through [LX,HX] during “moving to target” mode.  ■

Theorem 8:  Under the Bug2 leaving rule, if the robot leaves at LX and 

reencounters O at HX within an AX, it cannot leave again until it reaches  

VX’.

Proof:  If  the  robot  left  twice  within  AX’,  this  implies  that  the  M-line 

intersects AX more than two times.  However, the convex property of AX 

ensures that this cannot happen. ■
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Corollary 1:  There can be at most one hit and leave point associated with  

any given AX.

Theorem 9:  If an additional restriction that S is outside O’s convex hull is  

introduced then the robot  cannot  revisit  a  previously  visited  point  on a 

semi-convex obstacle.

Proof:  The robot can only be in one of three states at any given time after 

encountering O and before leaving it.  It can be traveling along O’s convex 

hull towards VT in which case, it can never leave because the direct path to 

T is immediately obstructed by O.  Alternatively,  it  can be past  VT and 

along O’s convex hull, thus if the robot leaves it will reach T.  Finally, it 

can be inside any given AX.  Given Corollary 1 and a fixed wall-following 

direction, the robot will necessarily reach VX’ without revisiting any part of 

O associated with AX. 

An  additional  restriction  that  S  must  be  outside  O’s  convex  hull  is 

introduced to prevent the robot leaving along GX”.  This may be possible if 

S causes HX to be positioned such that leaving along GX” does not violate 

Theorem 5 or Theorem 6.  Figure 4-5 illustrates one such situation.  ■

Figure 4-5: Alg2 revisits a previously visited point because S is inside the 

convex hull
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Theorem 10:  In an environment featuring a single semi-convex obstacle 

O, reachable T and S outside O’s convex hull,  the shortest  algorithm is 

TangentBug, followed by DistBug, Alg2, Bug2 and Bug1.

Proof:  The optimal path is from S to VS to VT to T where the robot travels 

along the convex hull of O from VS to VT.

Consider TangentBug traversing a semi-convex obstacle.  Along its path, it 

may encounter a VX.  At any given VX, AX’s convex property ensures that 

TangentBug can scan  along every  surface  of  O associated  with  AX and 

hence drive directly to VX’.  Since both VX and VX’ are on O’s convex hull, 

the line segment [VX, VX’] is on the convex hull of O, hence TangentBug’s 

path from VS to VT is optimal. Further, its path from S to VS and VT to T is 

optimal, and hence TangentBug will always travel on the optimal path for 

any given semi-convex obstacle.

Next consider Alg2 against Bug2.  If the M-line does not intersect an area 

AX then Bug2 must travel across the entire O associated with AX.  However, 

it may be possible for Alg2 to leave earlier and hence produce a shorter 

path.  

Alternatively, consider AX intersected by the M-line at MX and MX’.  If the 

robot encounters P within [MX-1’,VX], then there necessarily exists P’ within 

the segment [VX,MX] such that d(P,T) > d(P’,T) according to Theorem 3. 

Under Alg2, the robot leaves at or before P’ which is always at or before 

MX and hence a shorter or equal path length is always obtained for any AX. 

Figure 4-6 illustrates a sample scenario and the robot can be made to leave 

at P’ by arbitrarily narrowing W.  Finally, Bug1 produces the longest path 

because it circumnavigates the obstacle without leaving.  ■
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4.4 Simulation Results
Simulations on Eyesim [7] were performed on two environments.  Figure 

4-7 and 4-8 show Bug1 (top left), Bug2 (top center), Alg2 (bottom left), 

DistBug  (bottom  center)  and  TangentBug  (bottom  right).   By  visual 

inspection, it is clear that Theorem 10 holds.

Figure 4-6: Alg2 always leaves before Bug1 and Alg2 because there always 

exists P’ within VX and MX.

4.5 Two or More Obstacles
The possibility of extending Theorem 10 to environments featuring two or 

more semi-convex obstacles was investigated.  However, it is possible to 

manipulate path length performance using two obstacles.  Consider Figure 

4-9 which features two convex obstacles.  Alg2, DistBug and TangentBug 

are disadvantaged because they encounter the top obstacle whereas Bug1, 

Bug2  does  not.   Further,  the  width  of  the  top  obstacle  can  be  made 

arbitrarily wide.  Clearly, if  Theorem 10 is to be extended,  there would 

have  to  be  a  restriction  such  that  all  algorithms  encountered  the  same 

obstacles.
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Figure 4-7: Bug algorithm paths.  Top left: Bug1, top center: Bug2, bottom 

left: Alg1, bottom center: Alg2, bottom right: TangentBug

Figure 4-8:  Bug algorithm paths.  Top left: Bug1, top center: Bug2, bottom 

left: Alg1, bottom center: Alg2, bottom right: TangentBug
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Figure 4-9:  Performance on environments with more than one semi-convex 

obstacle can be manipulated.  Top left: Bug1, top center: Bug2, bottom left: 

Alg1, bottom center: Alg2, bottom right: TangentBug
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Chapter 5
Robot Navigation with a Guide Track

5.1 Introduction
This chapter examines a novel idea that there exists a guide track between 

the start and target [27].  Apart from that, everything is as before with the 

Bug algorithms.

Curv1 [19], a robot navigation algorithm, was developed to guide a robot to 

the target in an unknown environment with a single non-self intersecting 

guide  track.   Curv1  is  expanded  in  four  different  ways.   Firstly,  self-

intersecting track is explored and a new algorithm Curv2 is developed to 

guarantee termination.  Secondly, the question of whether or not Curv1 is 

the  only  algorithm capable  of  guiding  the  robot  is  addressed.   Thirdly, 

dynamic obstacles are considered.  These obstacles can come and go during 

the robot’s journey.  Lastly, multiple start/target pairs and multiple trails are 

considered.   A new  algorithm  Curv3  is  developed  to  uniquely  match 

start/targets.

We consider the problem of path planning for a robot in an unknown two-

dimensional environment.  Originating from a starting position, the robot is 

required to move to the target.  There exists a trail from the start to the 

target.  Also, there are finitely many obstacles each with finite perimeter. 

These  obstacles  may  or  may  not  lie  on the  trail.   The  robot  is  able  to 

determine the direction of the guide track which it must follow to reach the 

target.
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The motivation for this problem is in industry where it is common practice 

for a mobile robot follow a trail to navigate from one position to another 

[22].  The advantage of a trail is very similar to the advantage of roads 

which humans use – it allows the user to reach the destination with little 

autonomous navigation ability.  There is no need for localization and thus 

error compensation techniques like probabilistic localization [20], Kalman 

Filters [23] and SLAM [24,25].  The disadvantage is that a trail must be 

created before navigation can proceed.

In an industrial setting, it is also foreseeable that objects may fall onto the 

floor  and  obstruct  the  trail.   This  is  incorporated  into  the  problem by 

allowing obstacles to lie on the trail.  It is assumed that path planners know 

the  trail  before  the  robot  commences  its  journey.   On  the  other  hand, 

obstacles are assumed random and dynamic and are always unknown.  At 

no point does the robot possess knowledge of the trail, any obstacles or its 

own position.  It simply follows the preprogrammed algorithm.

Prior work on this problem is presented.  Then, four additional issues are 

explored.   Firstly,  self-intersections  within  the  trail  are  permitted  and 

necessary  changes  to  Curv1  are  implemented  to  guarantee  termination. 

Previously, the trail cannot contain such intersections.

Secondly,  the  question  of  whether  or  not  Curv1  is  the  only  algorithm 

capable  of  solving  the  problem  is  explored.   Thirdly,  the  problem  of 

dynamic  obstacles  is  explored.  Dynamic  obstacles  are  a  new  class  of 

obstacle which can appear and disappear during the robot’s movement to 

the target.   Lastly,  environments  with multiple trails  are considered.   In 

such environments, each start is uniquely paired with a target.  Curv1 is 

extended to guide a robot to a user-specified target.
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5.2 Prior Work
Prior work was done by Sankar [3] in which the environment was restricted 

to static obstacles and a single non-intersecting trail.  Based on the Pledge 

Algorithm [21] and the Bug algorithms [1,30,62] Curv1 was developed and 

it is repeated in Figure 5-2 with an example in Figure 5-1:

Figure 5-1:  An example of the Curv1 algorithm

Curv1 assumes that the target is always reachable.  Recall that in all the 

Bug algorithms, the robot always had to store at least one point to detect 

circumnavigation.  If  circumnavigation  was  detected,  the  robot  would 

usually conclude that the target is unreachable.  Since Curv1 assumes no 

localization ability, there is no way to detect that circumnavigation occurred 

and hence that the target is unreachable.
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Figure 5-2  The Curv1 Algorithm

5.3 Self-Intersecting Track
In this section, we explore whether Curv1 can be modified to accommodate 

a track which self-intersects at finitely many places and preserves Curv1’s 

advantage  that  it  does  not  require  localization.   It  turns  out  that  self-
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1.  Set Counter C to zero.  Start from point S and move towards T.  Go to 

step 2.

2.  Move along curve ST until one of the following occurs:

(a) The target T is reached.  Stop

(b) An obstacle is met.  Follow the obstacle boundary in the local 

direction left. Go to step 3.

3. Follow the obstacle boundary until one of the following occurs:

(a) The target T is reached.  Stop

(b) The curve ST is met at point P.  One of the following steps is 

executed:

i. The counter C reads zero and, at P, MA can move along curve ST 

towards T. Leave the obstacle and follow the curve ST. Go to step 

2.

ii. The counter C is non-zero and, at P, MA can move along curve 

ST towards T.  Decrement counter C by one.  Continue moving  

along the obstacle boundary.  Go to step 3

iii. At P, MA cannot move along curve ST towards T.  Increment 

counter C by one. Continue moving along the obstacle boundary.  

Go to step 3.



intersections can be treated in exactly the same way as obstacles.  That is, 

when the robot encounters a self-intersection, it can treat it like an obstacle 

except that it does not have to perform wall following.  The ideas behind 

this are explained in more detail in this section.  

The following notation is introduced for self-intersections.  Let portions of 

the trail which enter the self-intersection be called inflows and denoted Ij 

where j represents the jth inflow.  Let portions of the trail which exit the 

self-intersection be called outflows and denoted Oj where j represents the jth 

outflow.   The  inflows  and  outflows  can  be  labeled  arbitrarily.   Let  A 

represent the clockwise angle measured with respect to the inflow where 

robot enters the self-intersection, In.  In can change if the robot revisits the 

same self-intersection.  Figure 5-3 illustrates the notation.

Figure 5-3:  Ij represent inflows and Oj represent outflows and A is the 

clockwise angle measured with respect to the entry inflow In

Curv2 is shown in Figure 5-4.
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Figure 5-4  The Curv2 Algorithm
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1.  Set Counter C to zero.  Start from point S.  Go to step 2.

2.  Move along curve ST until one of the following occurs:

(a) The target T is reached.  Stop 

(b) An obstacle is met.  Follow the obstacle boundary.  Go to step 3.

(c) A self-intersection is met.  Initialize A=0.  Go to step 4.

3.  Follow the obstacle boundary until one of the following occurs:

(a) The target T is reached.  Stop

(b) The curve ST is met at point P.  One of the following steps is  

executed:

i. The counter C reads zero and, at P, MA can move along ST  

towards T.  Leave and follow the curve ST. Go to step 2.

ii. The counter C is non-zero and, at P, MA can move along curve 

ST towards T. Decrement counter C by one.  Continue moving  

along the obstacle boundary.  Go to step 3.

iii. At P, MA cannot move along curve ST towards T.  Increment 

counter C by one. Continue moving along the obstacle boundary.  

Go to step 3.

4.  Increase A until one of the following occurs:

i.  An outflow Oj is encountered and the counter C reads zero.  

Leave the self-intersection via outflow Oj. Go to step 2

ii. An outflow Oj is encountered and the counter C is non-zero.  

Decrement counter C by one.  Go to step 4.

iii. An inflow Ij is encountered.  Increment counter C by one.  Go to 

step 4.



Figure 5-5 illustrates two examples of Curv2.

Figure 5-5:  Two examples of Curv2

Obstacles can be thought of as “black boxes” which obstruct parts of the 

trail.  It does not matter what the obstructed parts are since the robot cannot 

visit  them.   Imagine  placing  a  very  small  obstacle  over  each  self-

intersection such that the self-intersection is concealed but nothing else.  It 

follows  that  Curv1  could  then  be  applied  to  those  small  obstacles  to 

guarantee that the target will be reached.

The above reasoning is  an intuitive proof  as  to  why Curv2 can always 

guarantee that the target will be reached.  However, a more rigorous and 

thorough proof is desired. Three elements of the proof have already been 

shown in [19] and it is trivial to adapt them to self-intersections.  Firstly, 

Theorem 1  guarantees  that  a  type  one  infinite  loop  [19]  cannot  occur. 

Hence, the robot will always leave a self-intersection.  Secondly, Lemma 1 

guarantees that the number of inflows must equal the number of outflows 

for any intersection.  Thirdly, Lemma 4 guarantees that Curv2 generates a 

unique pairing between inflows and outflows for a self-intersection.
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It remains to be shown that the second kind of infinite loop – where the 

robot leaves from the same outflow more than once – cannot occur in an 

environment with self-intersections.  Sankar’s proof may not necessarily 

hold because self-intersections allow the robot to reach portions of the track 

which make it impossible for Curv2 to reach the target.  It will be shown 

that a robot can never visit those portions of the track.

The trail can be classified into two parts – “reachable” and “unreachable”. 

A portion which is “reachable” is where a robot with can reach the target 

using Curv2.  A portion which is “unreachable” is where the robot cannot 

reach the target using Curv2.  Consider the trail depicted in Figure 5-6.  On 

the  left,  the  dashed  trail  is  “unreachable”  since  a  robot  starting  on  the 

dashed trail  would not  be able  to  reach the  target.   It  would circle  the 

“unreachable”  section  indefinitely  since  it  would  turn  left  at  the 

intersection.  On the right, the entire trail is “reachable” since the robot can 

reach the target from any point on the trail using Curv2.

Figure 5-6 Left:  Dashed track is “unreachable”.  Right:  The whole track is 

“reachable”

Theorem 1: If the robot is following the trail in an “unreachable” section 

then it will be in an infinite loop.
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Proof:   By  definition,  the  robot  can  never  reach  the  target  on  an 

“unreachable” section.  Since the robot keeps moving and the trail is of 

finite length, it must repeat its movements – thus causing an infinite loop. 

■

Theorem 2:  The start must always lie in a “target reachable” portion of  

the trail.

Proof:   Suppose that  start  lies in an “unreachable” section.   Theorem 1 

implies that it must be part of an infinite loop.  However, this cannot be so 

because it implies that the trail extends beyond start.  ■

Theorem 3:   If a robot is on a “reachable” section, it  can never begin 

following an “unreachable” portion.

Proof:  Suppose that Theorem 3 occurred and let the outflow associated 

with  the  “unreachable”  portion  be  denoted  OU and  its  uniquely  paired 

“reachable” inflow be denoted IU.  According to Theorem 1, OU must be 

part of an infinite loop and therefore IU must be part of that infinite loop 

too.  Hence, IU must be “unreachable” otherwise the infinite loop wouldn’t 

exist – thus proving the theorem. ■

Corollary: The robot can never follow a “target unreachable” trail.

Proof:   Theorem  2  guarantees  that  the  robot  will  always  start  in  a 

“reachable” portion of the trail.  Theorem 3 guarantees that it if the robot 

enters a self-intersection or an obstacle in a “reachable” portion, then it will 

never end up in an “unreachable” portion. ■
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5.4 Is Curv2 Unique?
It may be interesting to determine whether or not Curv2 is the only way to 

guarantee  termination.   For  termination,  there  is  essentially  just  one 

requirement on an algorithm. It must ensure that each inflow is associated 

with one and only one outflow.  This requirement ensures that the robot is 

always able to leave the self-intersection, avoiding the first type of infinite 

loop, and that the second type of infinite loop cannot occur.

Theorem 4: After entering via inflow Ij if  the robot next  encounters an 

outflow Ok a unique pairing must be formed with Ok.

Proof:  Consider if the robot did not pair with Ok.  If this happens, it risks 

circumnavigating  the  obstacle  if  Ij and  Ok are  the  only  inflows  and 

outflows.   If  circumnavigation  occurs,  the  robot  would  not  be  able  to 

determine  this  since  localization is  not  permitted  and hence  a  type  one 

infinite loop is created.  ■

Theorem 5: If, the robot encounters an inflow In, it must not leave at In’s 

Theorem1 associated outflow.

Proof:  If this occurs, then the robot would be associating an outflow with 

two inflows and this would violate the unique association requirement.  ■

Clearly,  Theorem  1  and  Theorem  2  must  hold  for  any  algorithm  to 

guarantee termination.  Theorem 1 can also be thought of as the base case 

and Theorem 2 as the recursive component.  Hence an algorithm could be 

structured to incorporate Theorem 1 and Theorem 2 as shown in Figure 5-7:
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Figure 5-7  An algorithm which incorporates Theorem 1 and Theorem 2

Given this reasoning, it appears that Curv2’s strategy is the only strategy 

which would satisfy Theorem 1 and Theorem 2.  Any modifications like 

switching wall-following direction would be superficial.  If Curv2 is the 

only strategy which works, it would be interesting to know if it can still 

guarantee  termination  where  there  are  dynamic  obstacles  and  multiple 

trails.

5.5 Dynamic Obstacles
In this section, we consider modifying the problem so that obstacles can be 

added or removed from the environment whilst  the robot is on the trail. 

Initially, each obstacle can be in one of two states, “on” or “off”.  If an 

obstacle is “on”, then it is in the environment and the robot can detect and 

follow its boundary as in the static case.  If an obstacle is “off”, then it is 

not in the environment.  
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Global nextFlow = initial inflow

int getOutflow(int inflowID)

update nextFlow to next clockwise flow

while(nextFlow.type = Inflow)

getOutflow(nextFlow.ID)

update nextFlow to next clockwise flow

end while

return nextFlow.ID

end subroutine



If the robot is following an obstacle’s boundary, the obstacle cannot return 

to the “off” state.   An obstacle cannot transition to the “on” state if the 

robot is inside the space occupied by its outer perimeter.  Note that this 

includes cavities which may reside inside an obstacle.  A robot must not 

become trapped inside a cavity of an obstacle thereby preventing it from 

reaching the target.

These assumptions are realistic for an industrial setting.  In an industrial 

setting, objects could fall onto the trail and this is represented by the “off” 

to “on” transition.  It is assumed that no obstacles will be dropped onto the 

robot.   An  obstacle  can  be  removed  from the  environment  during  the 

robot’s  movement  towards  the  target.   This  is  represented  from  the 

transition from “on” to “off”.

We  have  concluded  that  obstacles  cannot  be  dynamic  for  Curv2  to 

guarantee termination.  Consider the trail in Figure 5-8 left.  On that trail, a 

robot at I1 would move to O2 and a robot at point I2 would move to O1. 

Now consider  an obstacle transitioning to the “on” state  in the position 

shown in Figure 5-8 right.  Now, inflow I1 is paired with outflow O1 and 

inflow I2 is paired with outflow O2.

Figure 5-8 Left:  With no obstacle, I1/O2 and I2/O1 are pairs

Right:  With an obstacle, I1/O1 and I2/O2 are pairs
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If the obstacle was “off” a robot at I1 would move to O2.  At, I2, it expects to 

move to O1.  However, if the obstacle becomes “on” whilst  it  is moving 

from O2 to I2, it moves back to O2.  The robot will then become stuck in an 

“unreachable” portion formed by O2 and I2 and can never move to O1 until 

the obstacle is “off” state when the robot reaches I2.

The opposite case, where the robot requires an obstacle to escape from an 

“unreachable” portion, can also occur.  Consider the trail with the obstacle 

initially  in  the  “on”  state  as  depicted  in  Figure  5-9  left.   The  robot 

encounters the obstacle at I1 and moves to O2.  Then, it follows the trail 

choosing  to  take  the  outflow associated  with  I2 at  the  self-intersection. 

Figure 5-9 right illustrates the environment when the obstacle is “off”.   If 

this occurs, when the robot reaches I2, it travels to O2 and is now part of an 

“unreachable” portion of the trail.  The robot can only escape if the obstacle 

is “on” when it is at I2.

Given these scenarios,  it  is  apparent  that  restrictions must  be placed on 

dynamic obstacles so that Curv2 still  guarantees termination.   Any such 

restrictions must, in combination, ensure that if the robot is following an 

“unreachable” portion of the trail, the obstacle must change its state such 

that the robot can get back on the “reachable” portions.  

A simple restriction would require each obstacle to not change its state once 

the robot comes into contact with any of the inflows associated with the 

obstacle.   “Unreachable”  portions  of  the  trail  form  when  an  obstacle 

transition  causes  a  change  in  the  unique  inflow/outflow pairing  and  by 

preventing a transition,  no change can occur.   This restriction works by 

preventing  changes  which  cause  sections  of  the  trail  to  become 

“unreachable”.  
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Figure 5-9 Left:  With no obstacle, I1/O2 and I2/O1 are pairs

Right:  With an obstacle, I1/O1 and I2/O2 are pairs

This simple restriction needs to be applied when the robot visits an inflow 

associated  with  the  obstacle.   At  other  times,  the  obstacle’s  state  can 

fluctuate with no impact on termination.  This restriction is quite imposing 

since it requires the obstacle’s state to be fixed at certain times.

5.6 Multiple Trails
In this section, the problem of multiple trails is considered. Obstacles are 

assumed to be static and do not transition between states.  Consider a robot 

using Curv2 which starts at Si.  The robot will travel along the trail and 

reach Ti if there are no intersections or obstacles.  This is a trivial scenario. 

For  a  non-trivial  scenario,  each  trail  will  intersect  with  another  at  least 

once.   Figure  5-10  illustrates  several  non-trivial  environments  featuring 

multiple trails.
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Figure 5-10:  Examples of Curv2 in multi-trail environments

A robot starts at Si.  Then it encounters an inflow Ii.  When it leaves via the 

Curv2 associated outflow Oi,  it  can reach either a target or an inflow to 

another obstacle.  If it leads to Ti, then Ti is uniquely associated with Oi and 

therefore Ii and therefore Si.  If it leads to another obstacle at inflow Ij, it 

will uniquely leave via outflow Oj.  If Oj leads to target Ti, then the unique 

associations will be Si, Ii, Oi, Ij, Oj, Tj.  This can be repeated for any finite 

number of intermediate inflow/outflow combinations.  Since Curv2 pairs 

the  equal  number  of  inflow and outflows at  each  intersection  uniquely, 

there must be a unique pairing between Si and Tj.  
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5.7 Pairing Start and Targets
It may be desirable to allow the user to identify which target is associated 

with the start instead of always traveling to the Curv2 default.  Presumably, 

this will require extra complexity but the aim is to minimize the additional 

complexity.  To achieve this, all that needs to be done is to introduce a user-

controlled mechanism which uniquely pairs the inflows and outflows of 

each intersection.  For instance, Curv2 allows only the pairing S1 to T1 and 

S2 to T2 in Figure 5-11 left.  However, what if we desired the pairing in 

Figure 5-11 right?

Figure 5-11 Left:  S1/T1 and S2/T2 are paired under Curv2

Right:  S1/T1 and S2/T2 are desired

This can be accomplished by associating a finite non-negative integer, Z, 

with each inflow to an intersection.  Z represents the number of inflows 

which  the  robot  must  count  before  it  is  eligible  to  leave  the  self-

intersection.   Hence,  a  new  algorithm,  Curv3  can  be  written  to 

accommodate for Z and is shown in Figure 5-12.

As an example, in Figure 5-11 right, associate Z=1 with both the inflows. 

Then, a robot starting at S1 enters the intersection with Z=1.  S2 will be the 

next inflow encountered.  Z is decremented to 0 and Curv3 moves into step 

5.  In step 5, part i will cause the robot to leave at T1.
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Figure 5-12 The Curv3 Algorithm
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1.  Set Counter C to zero.  Start from point S.  Go to step 2.

2.  Move along curve ST until one of the following occurs:

(a) The target T is reached.  Stop

(b) An obstacle is met.  Follow the obstacle boundary in the local 

direction left.  Go to step 3.

(c) A self-intersection is met.  Initialize A=0 and Z to the value  

associated with the inflow.  If Z=0, go to step 5, else go to step 4.

3.  Follow the obstacle boundary until one of the following occurs:

(a) The target T is reached.  Stop

(b) The curve ST is met at point P.  One of the following steps is 

executed:

i. The counter C reads zero and, at P, MA can move along curve ST 

towards T.  Leave and follow the curve ST.  Go to step 2.

ii. The counter C is non-zero and, at P, MA can move along curve 

ST towards T.  Decrement counter C by one.  Continue moving  

along the obstacle boundary.  Go to step 3.

iii. At P, MA cannot move along curve ST towards T.  Increment  

counter C by one. Continue moving along the obstacle boundary.  

Go to step 3.

4.  Increase A until an inflow In is encountered.  Decrement Z.  If Z=0, 

then go to step 5.  Otherwise, repeat step 4.

5.  Increase A until one of the following occurs:

i.  An outflow On is encountered and the counter C reads zero.  

Leave the self-intersection via outflow On.  Go to step 2.

ii. An outflow On is encountered and the counter C is non-zero.  

Decrement counter C by one.  Go to step 4.

iii. An inflow In is encountered.  Increment counter C.  Go to step 5.



A robot starting at S2 enters the intersection with Z=1.  It encounters, and 

ignores, T1 and T2 before reaching S1.  At S1, Z is decremented to 0 and 

Curv3  moves  into  step  5.   S2 is  the  next  inflow encountered  and C is 

incremented to 1.  At T1, C is decremented to 0 and this causes the robot to 

leave at T2.

Theorem 6:  Under Curv3, a type one infinite loop can never occur.

Proof:  Z is a finite quantity and, according to Curv3, can only decrease. 

Given that there must be at least one inflow to the intersection, it follows 

that Z must reach 0 eventually.  At the inflow Ij where Z reaches 0, the 

robot will behave as if it entered the intersection at Ij under Curv2.  Curv2 

guarantees that the robot will leave the intersection.  ■

Given  control  of  the  outflow  associated  with  each  inflow,  it  may  be 

tempting to allow a target to be associated with more than one start.  Figure 

5-13 left illustrates the case where S1 and S2 lead to T1T2.  The only way to 

achieve this would be for multiple inflows to lead to a single inflow for at 

least one intersection in the environment.  If permitted, then termination 

can no longer be guaranteed.  For instance, consider the environment in 

Figure 5-13 right below.  In that environment, an infinite loop is created 

around the center.

Although it  is  possible  for  termination  to  be guaranteed by choosing Z 

carefully, it is outside the scope of this thesis.  In this thesis, Z is always 

chosen such that a unique pairing between inflows and outflows exists at 

each intersection.   Therefore,  each start  must  be uniquely paired with a 

unique target.   This means that  the robot will  never leave via the same 

outflow twice – a requirement necessary for guaranteeing termination.
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Figure 5-13 Left:  S1 and S2 lead to the same target T1T2

Right:  An infinite loop is created in the center

Note that if there is an obstacle along the guide tracks, then there is no 

guarantee that the robot will terminate at the desired target.  However, it 

should still uniquely terminate at one of the targets because the obstacle’s 

inflows and outflows are uniquely paired. Consider the situation depicted in 

Figure 5-14.  On the left, the targets are uniquely paired but the unique 

pairing changes on the right.  This is because, according to the assumptions, 

obstacles are “dynamic” and are not planned for, whereas tracks are “static” 

and hence Z can be changed when the robot enters via an inflow.  Hence, Z 

is always 0 when it encounters an obstacle.
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Figure 5-14 Left:  Curv3 achieves a S1/T1 and S2/T2 pairing

Right:  An obstacle changes the pairing.
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Chapter 6
SensorBug: A Local, Range-Based Navigation 

Algorithm for Unknown Environments

6.1 Introduction
This chapter presents a new navigation algorithm developed by the author 

called SensorBug.  It builds on the implementation experience in Chapter 2 

and attempts to find an algorithm similar to TangentBug but without the 

LTG requirement.  SensorBug is a new algorithm designed to use range 

sensors  and  with  three  performance  criteria  in  mind:  data  gathering 

frequency, amount of scanning and path length.  SensorBug reduces the 

frequency at which data about the visible environment is gathered and the 

amount of scanning for each time data is gathered.  It is shown that despite 

the reductions, correct termination is still guaranteed for any environment. 

The  disadvantage  is  that  SensorBug  only  works  when  each  obstacle  is 

polygonal.

SensorBug is designed to achieve a fair balance between three competing 

criterion:  path length, data gathering frequency and amount of scanning. 

Previously, data gathering frequency and amount of scanning has not been 

given much consideration in any previous Bug algorithm.  These include 

Bug1 [1,62], Bug2 [1,62], Alg1[3], Alg2 [4], DistBug [5], Class1 [2], Rev1 

[8],  Rev2  [8],  TangentBug  [6],  VisBug  [16],  HD-1  [9],  Ave  [17],  and 

CautiousBug [11].  SensorBug achieves this balance by implementing the 

Q method which guarantees  a  finite  number  of  leave points  and a  new 
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“moving  to  target”  mode  which  ensures  a  smooth  transition  from  the 

“boundary following” mode.

6.2  The Q Method
In Chapter  3,  it  was suggested that  for  any Bug algorithm to guarantee 

termination it necessarily has to use the “shrinking disc”.  The “shrinking 

disc” has a center at T and a radius equal to d(P,T) where P is the closest 

point to the target ever detected.  When a Bug algorithm transitions from 

“boundary  following”  to  “moving  to  target”  mode,  it  must  ensure  that 

obstacles which do not intersect or are not contained within the “shrinking 

disc” will never be encountered.  If not, then it is possible for an infinite 

number of obstacles to be encountered and termination is not guaranteed.

Further, a Bug algorithm must supplement the “shrinking disc” a method to 

keep the number of possible leave or hit points finite and ensure that the 

robot can leave on at least one of those points if the target is reachable.  If 

the first  criterion is not satisfied, the algorithm could have an arbitrarily 

long path length as manifested in Class1.   If the second criterion is not 

satisfied,  then  the  robot  can  circumnavigate  O  and  conclude  that  a 

reachable target is unreachable.

Q-Bug  implements  the  Q  method  which  assumes  that  each  obstacle  is 

polygonal.  Then, it generates a finite set of points, Q, for each polygonal 

obstacle O.  The procedure shown in Figure 6-1 shows how Q is generated:
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Figure 6-1  A method for determining the set Q

Using this style of moving, there are only three possible transitions between 

points where the robot has to stop.  The first is called a vertex transition 

because  it  is  caused  by  a  vertex  on  the  followed  obstacle.   A vertex 

transition is illustrated in Figure 6-2A for a robot at X moving to NC.  The 

second  type  of  transition  is  called  an  occlusion  transition  because  it  is 

caused  by  a  perceived  or  actual  separate  obstacle  obstructing  boundary 

following.  An occlusion transition is illustrated in Figure 6-2B for a robot 

at  X moving to  NC.   The last  visible  point  on the followed obstacle  is 
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For  each  vertex  V  on  an  obstacle  which  intersects  or  is  inside  the 

“shrinking disc”:

1)  Place the robot at V and admit V into Q if not already in Q.

2)  Without  moving,  use  range  sensors  to  follow  O’s  boundary  in  the 

clockwise direction until either:

a) V is visible.  Go to step 3.

b) O leaves the robot’s visible range.  If caused by a vertex, drive to 

that vertex. Otherwise drive to the last visible point.  When the 

robot stops, if that point is not in Q, admit that point into Q.  Repeat 

step 2.

3) Place the robot at V.

4)  Without  moving,  use  range  sensors  to  follow  O’s  boundary  in  the 

counter-clockwise direction until either:

a) V is visible.  Choose another V and repeat.

b) O leaves the robot’s visible range.  If caused by a vertex, drive to 

that vertex. Otherwise drive to the last visible point.  When the 

robot stops, if that point is not in Q, admit that point into Q.  Repeat 

Step 4.



labeled NC*.  Finally, an out-of range transition occurs when the followed 

obstacle leaves the robot’s visible range as illustrated in Figure 6-2C.  This 

type of transition is impossible when the robot's sensor range, R, is infinite.

Figure 6-2:  The three possible types of transition

Figure 6-3 illustrates finding Q for one particular V of one particular O.  In 

Figure 6-3A, the robot begins at V and proceeds to the next point in Q.  In 

Figure 6-3B, the robot travels to a vertex which is not on O.  However, that 

vertex is still considered part of Q. Clockwise circumnavigation continues 

until V is visible in Figure 6-3E.  The robot is placed at V and counter-

clockwise circumnavigation begins in Figure 6-3F.  Finally, the additions to 

Q are presented in Figure 6-3L.

Note that there are instances where Q is null because there are no vertices. 

This could occur if the robot is trapped inside an obstacle as depicted in 

Figure  6-4.   Theorem  2  will  show  that  SensorBug  guarantees  correct 

termination for such environments.

The Q method must  satisfy the second criteria.   That  is,  if  the target  is 

reachable then the robot will always leave on a point in Q.  Theorems 10, 

11, 12 and 13 will show that the Q method satisfies the second criteria if the 

robot retrieves the closest point to the target in the visible environment PENV 
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and  compares  d(PENV,T)  <  d(P,T)  for  all  points  in  Q  visited  during 

circumnavigation.  This effectively checks if PENV is inside the “shrinking-

disc”.   The  robot’s  position  X  is  considered  a  point  in  the  visible 

environment and hence d(PENV,T) ≤ d(X,T) must always hold.

Figure 6-3:  Determining Q for a particular vertex

Figure 6-4:  An instance where Q is null
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6.3 Boundary Following Mode
To implement the Q method,  SensorBug must  ensure that  the robot can 

only leave at points within Q.  If this did not occur, then the number of 

leave points could be infinite and termination cannot be guaranteed.  This 

can be achieved by requiring the robot to travel to at least one vertex before 

leaving.

Given the “shrinking-disc”, the leaving rule and implementation of the Q 

method, the “boundary following” mode of SensorBug can be designed.  It 

can be assumed that at least one point PENV on O is visible when “boundary 

following”  begins.   Hence,  the  following  pseudo-code  for  boundary 

following is shown in Figure 6-5.

Figure 6-5  Boundary following mode for SensorBug
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1) Perform clockwise boundary following on the obstacle on which PENV 

lies whilst updating P until either:

a)  the robot reaches a vertex V on O.  Go to step 2.

b)  the robot completes circumnavigation around O.  Target is 

unreachable and SensorBug terminates.

2)  Retrieve PENV.  Locate the next clockwise point NC in Q associated with 

V.  Update P.

If d(PENV,T) < d(P,T), 

go to “moving to target” mode.  

Else If, V is visible and it is in the clockwise direction, 

the target is unreachable and SensorBug terminates.

Else, 

drive to NC and repeat step 2.



To implement step 1a, a vertex can be detected before the robot has reached 

it because a vertex will produce a sudden discontinuity in the range sensor 

readings  when  attempting  to  follow  O  with  range  sensors.   The  only 

eligible replacements of P are points that are on O’s boundary.  To replace 

P, an eligible point POBS must satisfy d(POBS,T) < d(P,T).  In any case, if PENV 

can  replace  P,  the  leaving  condition  should  hold  and  the  robot  should 

switch to “moving to target”.

Note that when driving to NC in step 2, the SensorBug algorithm thread can 

sleep.  That is, the robot does not have to continuously generate an LTG 

[6], update F [5], check the M-line [1,3] or any other continuous task.  An 

implementation strategy to retrieve PENV is suggested in section 6.10.  PENV 

is retrieved using least amount of range scanning possible. Also, in Section 

6.6, the use of multiple previously stored points [3] is discussed and a more 

complicated “boundary following” mode is derived to use them.

6.4 Moving to Target Mode
Having established a “boundary following” mode, a compatible “moving to 

target” needs to be designed.  Amongst the tactile sensor algorithms, this 

transition is straight-forward because the robot would already be inside the 

“shrinking disc”.   However,  with  range  sensors,  it  is  more  complicated 

because although the robot has located a point inside the “shrinking disc” 

using range sensors, its actual position X may not be inside the “shrinking 

disc”.   Hence,  care  must  be  taken  to  ensure  that  no  obstacles  can  be 

admitted to the finite set in the “moving to target” segment when the robot 

is outside the “shrinking disc”.
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Other Bug algorithms with range sensors have overcome this problem in 

different ways.  In DistBug [5], only F is evaluated to generate PENV which 

is inside the “shrinking disc”.  If the leaving condition is satisfied, then the 

robot travels directly to the target thereby guaranteeing that PENV will be 

visited.   In  TangentBug [6],  there  is  a  transition  phase where  the robot 

heads towards the node which caused leaving if the robot is outside the 

“shrinking disc”.  This terminates when the robot is inside the “shrinking 

disc”.  Whilst these solutions suit their respective algorithms, they would be 

incompatible with SensorBug “boundary following”.

The pseudo-code in Figure 6-6 describes SensorBug’s “moving to target” 

mode assuming a line-of-sight to PENV retrieved by a previous “boundary 

following” segment or during SensorBug’s initialization:

Figure 6-6  SensorBug's “moving to target” mode

Clearly,  this  “moving to target” mode ensures that  obstacles outside the 

“shrinking  disc”  cannot  be  admitted  since  P  must  be  visible  in  the 

environment where a new PENV is retrieved.  This implies that PENV must fall 
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Update P = PENV.  

If P = T, 

drive to the target and SensorBug terminates. 

Else if P is on an obstacle, 

perform “boundary following” on the obstacle which P is on  

Else,

drive to P, retrieve a new PENV and repeat.



inside the “shrinking-disc” and therefore any obstacle which PENV should lie 

on must also be inside the “shrinking-disc”.

Once again, it should be noted that whilst driving to PENV, the SensorBug 

thread  can  sleep.  However,  this  strategy  may  not  achieve  a  desirable 

balance between environment scanning frequency and path length.  If the 

user desires shorter path length at the expense of increased environment 

scanning frequency, then the following strategy can be employed.

Assume  that  the  only  obstacles  in  the  entire  environment  are  the  ones 

within  the  current  visible  environment  and  that  the  currently  visible 

obstacles  are  thin  walls.   These  assumptions  were  previously  used  in 

TangentBug  for  the  expected  nodal  distance  to  target  calculations  [6]. 

Draw a line from X to P.  Then, identify all all vertex transitions.  For each 

vertex, draw a line from the vertex to the target and intersect it with the line 

from X to P.   In Figure 6-7 Left,  Y1 and Y2 are stop points whereas in 

Figure 6-7 Right, Y1 is not a stop point since the intersection is closer to the 

target than the endpoint.  

Figure 6-7:  Illustration of stop points on two obstacles
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The “moving to target” mode can be rewritten to accommodate stop points 

as shown in Figure 6-8:

Figure 6-8  “Moving to target” mode with stop points

6.5 Scenarios
In this section, two examples of SensorBug are illustrated.  In both cases, 

the robot has infinite range sensors and stop points are used.  In Figure 

6-9A, the robot is identifies PENV along with Y1 and Y2 as stop points and 

then drives to Y1.  In Figure 6-9B, the robot retrieves PENV but since PENV 

did not move, it drives to stop point Y2.  In Figure 6-9C, PENV moves closer 

to the target and the robot drives to stop point Y1.   In Figure 6-9D, the 

target is visible and the robot drives directly to it.
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1)  Update  P =  PENV.   Evaluate  stop  points  on  the  direct  line  segment 

starting at X and ending at PENV.

If PENV = T, 

drive to the target and SensorBug terminates.

Else If a stop point exists, 

drive to the stop point.  At the stop point, retrieve PENV and 

repeat step 1.  

 Else, 

go to step 2.

2) If PENV is on an obstacle, 

begin “boundary following” on the PENV’s obstacle.  

Else, 

drive to PENV.  At PENV, retrieve PENV and go to step 1.



In Figure 6-10A, the robot identifies PENV and drives to stop point Y1.  In 

Figure 6-10B, PENV moves closer to the target and the robot drives to a new 

stop point Y1.  In Figure 6-10C, PENV moves closer to the target but this 

time, there are no stop points and PENV lies on an obstacle.  Therefore, the 

robot  transitions  to  “boundary  following”  mode.   All  points  on  O’s 

boundary from PENV to V are eligible to replace P and P moves to PENV since 

that is closest to T.  The robot drives to V and since it has traveled to a 

vertex, step 2 of “boundary following” is executed.  In Figure 6-10D, PENV 

has moved but d(P,T) < d(PENV,T) holds and the robot cannot leave.  So, the 

robot locates NC in Q and drives directly to it.  In Figure 6-10E, PENV has 

moved but once again the leaving condition does not hold and the robot 

drives  to  NC in  Q.   In  Figure  6-10F,  PENV =  T and  hence  the  leaving 

condition holds.  Then Step 1 of “moving to target” drives the robot directly 

to T where it terminates.

Figure 6-9:  SensorBug example

6.6 Multiple Previously Stored Points
The “boundary following” mode presented in section 6.4 required only one 

stored point  to be maintained so that  circumnavigation can be detected. 

However, other Bug algorithms [3,4] have used multiple previously stored 

points to simultaneously guarantee termination and reduce path length.  If 
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the user wishes to tradeoff additional complexity and memory requirements 

for lower path length then such a scheme is desired for SensorBug.  In 

SensorBug, termination is already guaranteed using one stored point so the 

only  purpose  is  to  reduce  path  length.   The  new “boundary  following” 

mode with multiple stored points is presented.

Figure 6-10:  SensorBug example

At a higher level of abstraction, the stored points scheme keeps track of 

sections of O’s boundary which have already been explored by storing two 

points NC and NCC.  NC represents the furthest clockwise point on which the 

leaving  condition  has  been  evaluated,  likewise  for  NCC except  that  it 

represents the counter-clockwise point. The scheme directs the robot to the 

closest  unexplored  region  along  O  should  it  find  itself  in  a  previously 

explored  region.   The  remaining details  are  necessary  to  guarantee that 

SensorBug terminates correctly and to minimize memory requirements.

1) Perform clockwise boundary following on the obstacle on which PENV 

lies whilst updating P until:

a)  the robot reaches a vertex V on O.  Go to step 2.
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b)  the robot completes circumnavigation around O.  Target 

is unreachable and SensorBug terminates.

c)  a previously stored NCC point is visible.  Drive to that point and go 

to step 4.

2) Store NC = X and NCC = X along with dPATH(NC, NCC).  Locate the next 

clockwise point NC in Q associated with V.  Update P.  Retrieve PENV.  

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, a previously stored NCC point is visible,

Drive to the previously stored NCC point and go to step 4.

Else,

Drive to NC and go to step 3.

3)  Update NC = X.  Locate the next clockwise NC in Q associated with V. 

Update P and the distance dPATH(NC, NCC).  Retrieve PENV.

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, V is visible and it is in the clockwise direction,

the target is unreachable and SensorBug terminates.  

Else If, a previously stored NCC point is visible.  

Drive to the previously stored NCC point and go to step 4.

Else,

Drive to NC and repeat step 3.

4) If the current dPATH(NC, NCC) is less than the stored dPATH(NC, NCC),

Delete all stored points data associated with the current O except for 

the previous NC.  Go to step 5.

Else,
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Delete all stored points data associated with the current O except for 

the current NCC. Go to step 6.

5) Update NCC = X.  Locate the next  counter-clockwise point NCC in Q 

associated with V.  Update P and the distance dPATH(NC, NCC).  Retrieve PENV.

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, NC is visible and it is in the counter-clockwise direction,

terminate with no success.

Else,

Drive to NCC and repeat step 5.

6)  Update NC = X.  Locate the next clockwise point NC in Q associated 

with V.  Update P, and the distance dPATH(NC, NCC).  Retrieve PENV.

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, NCC is visible and it is in the clockwise direction,

terminate with no success.

Else,

Drive to NC and repeat step 6.

It  should  be  shown that  NCC will  always  be  the  first  visible  previously 

stored point as assumed in steps 1, 2 and 3 of multiple previously stored 

points.  Using Theorem 1 and the fact that clockwise boundary following is 

always chosen, it follows that NCC will always be the first visible previously 

stored point.

Theorem 1:  The PENV which lies on O and initiates “boundary following” 

must always reside on a previously unexplored region of O.
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Proof:  When a robot leaves an obstacle, this indicates that there exists PENV 

which  is  closer  to  the  target  than  any  explored  point  on  the  currently 

followed O.  During the subsequent “moving to target” phase, P will always 

be replaced with PENV closer to the target than its predecessor.  When PENV 

lies on an obstacle at the end of the “moving to target” segment, it is closer 

to the target than any previously explored point and hence could not have 

been explored previously.  ■

6.7 Examples for Multiple Previously Stored Points
The  following  examples  illustrate  SensorBug  with  multiple  previously 

stored points. Figure 6-11 illustrates the first environment which was first 

used by Sankar [3] in demonstrating Alg2.  The beauty of this terrain is that 

it is complicated enough to demonstrate multiple stored points but is not 

overwhelming.

In part A, the robot detects that there are no stop points on the segment 

from S to PENV and that PENV lies on an obstacle.  The robot switches to 

“boundary following” mode and drives to V.  In part B, the robot stores NC 

and  NCC at  X  and  determines  that  PENV is  closer  than  P,  consequently 

leaving.  In part C, the robot locates stop points Y1 and Y2 driving to Y1.

In part D, the robot attempts to find PENV closer than P but is unsuccessful 

so it drives to Y2.  In part E, PENV closer than P is detected and PENV is on an 

obstacle with no stop points.  The robot switches to “boundary following” 

mode and drives to V.  In part F, the robot stores NC and NCC at X and drives 

to NC.  In part T, the robot follows O’s boundary.  In part H, the robot firstly 

checks the leaving condition at X and then it detects a previously stored 

NCC point  is  visible  and drives to  it.   In  part  I,  the  robot  evaluates  the 
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clockwise and counter-clockwise directions and decides that the clockwise 

direction is shortest and deletes all stored points associated with O except 

for the current NCC.  In part J, the robot follows O’s boundary not leaving as 

in part B because P is closer to the target and hence the leaving rule does 

not hold.  In part K, NC lies on a  perceived separate obstacle.  Obviously, 

NC cannot  be  stored  alone.   Instead,  the  point  NC*  is  also  stored  and 

associated  with  NC such  that  if  NC*  becomes  visible  in  any  future 

“boundary  following”  mode,  the  robot  will  drive  to  NC if  it  is  visible, 

otherwise, it will drive to NC* and then to NC.  In part L, the robot firstly 

updates NC = X and its associated NC* point.  Then it evaluates the leaving 

condition which holds and it switches to “moving to target” mode.  In part 

M, the robot drives to stop point Y1.  In part N, the target is visible and the 

robot drives directly to it.  Part O displays the final SensorBug path.

The second example is very similar to the first except for a modification 

which makes the target unreachable.  The robot proceeds as per parts A-L 

of Figure 6-11.  In Figure 6-12 part A, the robot drives to stop point Y1.  In 

part  B,  the robot finds that  PENV lies on O and no stop points exist.   It 

switches to “boundary following”.  In parts C, D, and E, the robot the robot 

follows O’s boundary clockwise.  In part F, a previously stored NCC point is 

visible and the robot drives to it.  In part T, the robot evaluates the path 

lengths of the clockwise and counter-clockwise directions as illustrated.  It 

concludes that the counter-clockwise direction is shortest.  In parts H, I, J, 

K and L, the robot continues counter-clockwise boundary following.  In 

part M, NC* is visible.  This is to be differentiated against NC* being visible 

in part L since in part L NC* is not in the boundary following direction but 

on  a  perceived  separate  obstacle.   This  implies  that  the  target  is 

unreachable.  Part N illustrates the final path.
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Figure 6-11  SensorBug example
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Figure 6-12:  SensorBug example
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6.8 Termination Proof
All Bug algorithms have proven, using reasoned arguments, their ability to 

meet the termination requirements with finite path length.  There are two 

parts  to  SensorBug's  proof.   The  first  part  shows  SensorBug  always 

terminates.   The second part shows that the robot will  always terminate 

correctly.

For this first part, the proof’s structure is illustrated in Figure 6-13.  In the 

center is the statement which is to be proved, that is, SensorBug always 

terminates with finite path length.  Path length is the sum of path lengths of 

each “boundary following” and “moving to target” segment.  Hence, there 

are  three  sub-theorems  which  are  used:   1)  the  number  of  “boundary 

following” and moving to target” segments are finite, 2) the path length of 

each “boundary following” segment is finite and 3) the path length of each 

“moving to target” segment is finite.  Each sub-theorem in turn has its own 

sub-theorems  which  can  be  found  on  Figure  6-13.   Firstly,  however,  it 

should  be  shown  that  SensorBug  always  terminates  when  Q is  null  as 

illustrated in Figure 6-4.

Theorem 2:  If Q is null, SensorBug will always terminate correctly.

Proof:  If no vertices exist, the robot must be completely surrounded by O. 

Otherwise, an aperture would exist on which a vertex can be found.  The 

target can either be inside the enclosure or outside the enclosure.  If the 

target is outside the enclosure, the robot is never able define a leave point 

because there are no convex points within the enclosure. Therefore, it will 

circumnavigate  the  enclosure  and  correctly  conclude  that  the  target  is 

unreachable.
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If the target is inside the enclosure, the line [S,T] should not intersect any 

part of O.  If the straight line [S,T] is intersected by O, then a vertex must 

be formed to ensure a path to T is still available.  Given that the straight 

line [S,T] is not intersected by O, then the robot remains in “moving to 

target” mode until T is reached with PENV never residing on O.  ■

Figure 6-13:  Proof structure for first proof section

Theorem  3:  The  number  of  obstacles  which  the  robot  can  perform 

“boundary following” on is finite

Proof:  In “moving to target” mode, d(PENV,T) ≤ d(X,T) must hold since X 

is considered a member of the visible environment.  Hence, d(P,T) can only 

decrease or remain constant  in “moving to target” mode.   In “boundary 

following”  mode,  P  can  only  be  replaced  if  another  point  along  O’s 

boundary is closer to the target than P.  Therefore, d(P,T) can only decrease 

during SensorBug’s execution.
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Consider the “shrinking-disc” centered at T with radius d(P,T).  Hit points 

(and  therefore  their  corresponding  “boundary  following”  segments)  can 

only  begin  on  obstacles  which  intersect  or  are  contained  in  that  circle 

because PENV must be inside the “shrinking” disc.  According to the initial 

assumptions, there can only be a finite number of obstacles intersecting or 

contained  within  the  “shrinking-disc”.   As  SensorBug  is  executed,  the 

radius decreases and no new obstacles can be added.  ■

Theorem 4:  The number of points in Q associated with V on a particular 

O is finite.

Proof:  Consider the three types of transitions which can occur to travel 

from one  point  in  Q  to  the  next  as  illustrated  in  Figure  6-2.   In  one 

complete circumnavigation, the number of vertex transitions is less than or 

equal to the number of vertexes on O.  There should be a finite number of 

vertices since O is assumed to be polygonal.   The number of occlusion 

transitions is less than or equal to the number of vertices inside O’s convex 

hull.  The convex hull is of finite area and hence this quantity should be 

finite.  The number of out-of-range transitions can be determined by

where Li represents the length of the ith side on polygonal O.

Since the number of transitions is finite, it follows that the number of points 

which the robot stops to retrieve PENV is also finite and hence the number of 

points on which leaving can occur is also finite.  ■

Given Theorem 4, it is imperative that the robot only leaves at points in Q. 

With multiple stored points, the driving to the NCC point must be conducted 

such that in the subsequent clockwise or counter-clockwise segment, only 
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points in Q can evaluate the leaving condition.  Hence, the reason why the 

robot must  visit  NCC,  which will  always be a vertex, before making the 

decision.

Theorem 5:  The leaving rule can only hold once per point in Q.

Proof:  If the leaving rule holds at a particular X in Q, then during the 

subsequent  “moving to  target”  segment,  P is  updated to the PENV which 

caused the leaving rule to hold.  Therefore, if the robot visits X again and 

retrieves  PENV,  d(PENV,T)  ≥  d(P,T)  will  necessarily  hold  and  the  leaving 

condition can never hold.  ■

Corollary 1:  The number of “boundary following” and “moving to 

target” segments is finite because leaving can occur only finitely many 

times.

Theorem 6:  There are a finite number of transitions involved in one 

“boundary following” segment.

Proof:  If the robot has visited V to align itself with Q, then Theorem 4 can 

be used to prove finite transitions for the circumnavigation which follows. 

When the robot has just begun “boundary following”, consider the finite 

area A formed by the straight lines [X,PENV], [X,V] and along O’s boundary 

from PENV to V as illustrated in Figure 6-14.  A finite area contains finitely 

many obstacles, and each obstacle contains a finite number of vertices, so 

there can only be a finite number of vertices associated with A.

Whilst driving to V, the robot can only drive inside A.  This can best be 

observed by considering two cases.  First,  consider if V is visible at  X. 

Then, the robot will drive straight towards V.  Second, consider if only PENV 

is visible.  In that case, the robot will drive straight to PENV and then follow 
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O’s boundary to V.  Anything in the middle will involve the robot traveling 

inside A.

Figure 6-14:  Illustration of A and the robot’s subsequent maneuvers to V

Since the number of vertices is finite and the robot can only drive inside A, 

then  the  number  of  vertex  and  occlusion  transitions  is  bounded  by  the 

number of vertices in A. The number of out-of-range transitions is bounded 

by  ),(/ VPdR ENVPATH  ■

Theorem 7:  Each transition is of finite length.

Proof:  For a  robot  with finite  R,  a  transition cannot  occur if  it  is  not 

visible.  Hence, the length of each transition is bounded by R.  For a robot 

with  infinite  R,  each  transition  is  bounded  by  the  length  to  the  vertex 

causing  either  the  vertex  or  occlusion  transition.  This  length  is  finite 

because O’s perimeter is finite.  ■

Corollary 2:  The path length of each “boundary following” segment is  

finite  because it  is  composed of  a  finite  number of  transitions,  each of  

which have finite length.

Theorem 8:  During  any  “moving to  target”  segment  there  is  a  finite  

number of times for which PENV can change.
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Proof:  At any given X, if the line segment [X,T] is free of obstacles, then 

there can be at most   ),(/ TXdR  number of PENV changes.  If R is infinite 

then T is visible and no changes are needed.  

However, if an obstacle obstructs [X,T], then for PENV to not lie on O, a 

deviation  is  necessary.   Consider  the  vertex  V  associated  with  such  a 

deviation as illustrated in Figure 6-15.  PENV is always associated with V 

because that  association will  always yield a  PENV which is closer  to the 

target than any other PENV’ which is not associated with V. Such a situation 

is illustrated in Figure 6-15.

Figure 6-15:  PENV must always be associated with a vertex V if deviation 

from [X,T] has occurred and PENV does not lie on O

Since PENV represents the minimal point in the environment and PENV is not 

on an obstacle, it follows that d(V,T) > d(PENV,T) must always hold.  P is 

assigned to PENV and this means that the “shrinking-disc” will exclude V. 

Any future PENV retrieved must fall inside the “shrinking-disc” because the 

current PENV is always visible at the point where P was reassigned to PENV. 

This argument implies that each V can be associated with a PENV at most 

once.  Given that the number of polygonal obstacles which intersect or are 
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inside the “shrinking-disc” is  finite,  the number of vertices is  finite and 

therefore the number of times which PENV can change is also finite. ■

Theorem 9:  Each change of PENV produces a path of finite length.

Proof:  For a robot with infinite range sensors and PENV the maximum path 

length from X to PENV is 22 ),(),( TPdTXd INF−  where PINF is the point on the 

infinitely  extended line  starting  from X to  PENV which  is  closest  to  the 

target.   The  lines  [X,PINF]  and  [PINF,T]  should  always  be  perpendicular. 

Hence a  right-angled triangle can be formed between the line segments 

[X,PINF] and [PINF,T].  Then Pythagoras Theorem can be applied to achieve 

the final result.  This is illustrated in Figure 6-15 where PINF = PENV.

For a robot with finite range sensors, each segment’s path length cannot 

exceed R.  ■

Corollary 3:  The path length of each “moving to target” segment is finite  

because it is composed of a finite number of PENV changes, each of which 

have finite length.

Corollary 4:  Given corollary 1, 2 and 3, it follows that the path length of  

SensorBug  is  finite  because  there  are  a  finite  number  of  “boundary  

following” and “moving to  target” segments  each of  which  have  finite  

length.

This  next  part  of  the  proof  involves  showing  that  SensorBug  always 

terminates with the correct result.  Whilst corollary 4 implies that a result 

will always be achieved, this part shows the correct result will always be 

achieved.  There can only be two results, the target is unreachable or the 
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target is reached.  If the target is unreachable then the robot cannot reach it. 

However, if the target is reachable then it could incorrectly conclude that 

the target is unreachable if it circumnavigates O.  The following theorems 

prove that it should never occur with SensorBug.

Proposition 1:  For every obstacle, there is always a non-empty and finite  

set of points C for which the distance to target is minimal compared to the  

rest of the obstacle. Figure 6-16 illustrates some examples.

Figure 6-16:  C illustrated for two obstacles

Proposition 2:  The line segment from any Ci to T does not intersect O.

Proposition 3:  Any point in the line segment from Ci to T (excluding Ci 

itself) is closer to the target than any point on O.

Theorem  10:  During  “boundary  following”  of  a  particular  O,  the  

minimum value of d(P,T) is d(Ci,T) for a Ci on O.

Proof:  Firstly, for the robot to perform “boundary following” on O, PENV 

must have resided on some point on O.  Hence, initially d(P,T) ≥ d(Ci,T) 

must hold.  Since only points on O are eligible to replace P, the minimum 

value which d(P,T) can achieve is d(Ci,T) on that particular O.  ■
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Theorem 11:   All  the line segments  from Ci to  T are  at  least  partially  

visible  from  at  least  one  point  in  the  subset  of  Q  associated  with  the  

starting vertex V.

Proof:  For a vertex transition, consider the robot’s visible environment at 

both X and NC.  Any line originating from a point on O within X to NC 

inclusive will fall inside the combined visible environment.  Similarly, for 

an occlusion  transition,  the  any line originating  from X to  NC* will  be 

visible from the combined visible environment at X and NC.    This also 

holds for an out-of-range transition.  ■

Theorem 12:  If the robot acquires PENV at X where d(X,T) < d(Ci,T), the 

leaving condition will always hold at X.

Proof:  At any point where PENV is retrieved, X is considered part of the 

visible  environment,  hence  the  relationship  d(PENV,T)  ≤  d(X,T)  always 

holds.  Given the assumption d(X,T) < d(Ci,T), it follows that d(PENV,T) < 

d(Ci,T).  Theorem 10 suggests that d(P,T) ≥ d(Ci,T).   Hence, d(PENV,T)  ≤ 

d(P,T), the leaving condition, must be hold at X.  ■

Theorem 13:   If  a Ci to T line segment is  partially visible,  the leaving  

condition will always hold.

Proof:  Assume that all points in Q are such that d(Qi,T) ≥ d(Ci,T).  If one 

point in Q does not satisfy that criterion, then Theorem 12 applies and the 

robot leaves O as required.  Theorem 11 shows that at least one point in Q 

will have a Ci to T line segment partially visible.  At that point, Ci is visible 

and d(X,T) ≥ d(Ci,T) holds.  Furthermore, proposition 3 implies that if a Ci 

to T line segment is visible then there exists a point Ci* on the line Ci to T 

such  that  d(Ci,T) > d(Ci*,T).  Hence,  the  relationship 

d(X,T) ≥ d(Ci,T) > d(Ci*,T)  holds.   Since  Ci*  is  visible  and 

d(X,T) > d(Ci*,T) holds, it follows that d(PENV,T) ≤ d(Ci*,T).  Theorem 10 
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suggests that d(P,T) ≥ d(Ci,T) and consequently d(P,T) > d(Ci*,T).  Hence, 

d(PENV,T) ≤ d(P,T), the leaving condition, must be hold at X.  ■

Given Theorems 10, 11, 12 and 13, it is imperative that any line originating 

from O is visible from at least one of the members of Q associated with 

every V on O.  “Boundary following” with multiple stored points has been 

designed specifically to ensure that this holds.  If an NCC point is visible, the 

robot would have tested the leaving condition at X before driving to NCC. 

Similarly, if the robot is executing step 5 or step 6 then it tests the leaving 

condition at X before concluding that T is unreachable.  These measures 

ensure that the Ci to T line is visible for an obstacle which does not prevent 

termination.

6.9 Suggested Implementation Strategies
It  is  desirable  to  minimize  the  range  sensor  usage  at  each  point  in  Q. 

Whilst,  the boundary following part must be performed, a sub-algorithm 

“getPenv()” can be devised to minimize the scanning required to retrieve 

PENV.   At a higher level  of abstraction, “getPenv()” firstly checks to see 

robot is capable of scanning inside the “shrinking-disc” given its current 

position and R.  If incapable, then no attempt is made.  If it is capable, then 

scanning should begin directly at T.  If d(X, PENV) = R and PENV lies on 

[X,T] then obviously that is the minimum point in the environment and no 

further scanning should occur.  Otherwise, scanning should “fan out” until 

scanning inside the “shrinking-disc” is no longer possible.

“getPenv()”  assumes  an  angular  resolution  of  AngleRes  and  that 

subroutines “isInsideDisc()” and “getMinPOnLine” are available.   These 
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will be explored later.   Pseudo code for “getPenv()” is shown in Figure 

6-17.

Figure 6-17  Suggested code for getPenv

Subroutine “getMinPOnLine(scanAngle)” returns the closest  point to the 

target,  PLINE,  on  the  left  and  right  scan  lines  specified  by  “scanAngle”. 

“scanAngle” is always non-negative and measured with respect to the line 

[X,T].  For instance, Figure 6-18 part A shows that if “scanAngle” is 0 then 

PLINE is the intersection of the line [X,T] with O.  Figure 6-18 part B shows 

that as “angle” increases then PLINE is the point where either the left or right 

line intersects the obstacle since they are equidistant.  Figure 6-18 part C 
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Subroutine getPenv(X, R, T, P)

scanAngle = 0

PENV = X

If d(X,T) > R+d(P,T)

return PENV

Else

While isInsideDisc(scanAngle, PENV, P, X, R, T)

PLINE = getMinPOnLine(scanAngle)

if d(PLINE,T) < d(PENV,T)

PENV = PLINE

end if

scanAngle = scanAngle + AngleRes

end while

return PNEW

 end if-else



shows that PLINE occurs on the right where the lines [X, PLINE] and [PLINE, T] 

are perpendicular.

Subroutine “isInsideDisc(scanAngle, PENV, P, X, R, T)” checks if any point 

on the scan line parameterized by scanAngle, X and R is inside the disc 

centered at T with a radius  the smaller of d(PENV,T) and d(P,T).  In other 

words, the subroutine checks if a PLINE along the scan line could possibly 

replace  the  smaller  of  PENV and  P.   To  implement  this,  perform 

getMinPOnLine(scanAngle) on the scanline assuming that no obstacles are 

visible and therefore without actually taking a scan.  Then, if d(PLINE,T) < 

d(min(PENV,P),T), a potential replacement for PENV or P is possible.

Figure 6-18: The robot calls “getMinPOnLine” with varying “angle” and 

obtains PLINE at different locations

6.10  Conclusion
This  thesis  presented  SensorBug  which  solves  the  Bug  problem for  an 

environment of polygonal obstacles.  To allow the robot to gather data only 

at  fixed  intervals  necessarily  requires  that  the  environment  be  made  of 
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polygonal obstacles.  Otherwise, a curve on the convex hull will always 

require  continuous  data  gathering  for  the  robot  to  follow  its  boundary. 

Another solution, which could be further investigated, is to allow the robot 

to follow the obstacle’s boundary from a distance.  This may allow non-

polygonal obstacles to be included.

It  may be tempting to compare SensorBug’s path length with other Bug 

algorithms  but  recall  that  a  fundamental  property  of  Bug  algorithms  is 

making arbitrary decisions in spite of the uncertainty.  For example, when 

the robot needs to follow an obstacle, it does not know whether to do so in 

a clockwise or counter-clockwise fashion.  A lucky guess could reduce path 

length.   Therefore,  it  is  quite  meaningless  to  compare  algorithm  path 

lengths when an environment could be constructed to favor one algorithm 

over  another.   This  was  quite  well  observed  in  [1,62]  where  if  the 

environment  had many  intersections  with  the  M-line,  Bug2 fared  much 

worse than Bug 1.

One of the features of SensorBug is that only vertexes, occlusions and out-

of-range transitions are required except when a previously stored NCC point 

is observed.  These are all essential to boundary following.  It was decided 

that detecting vertices, occlusions and out-of-range transitions which are 

not  associated  with the V would be too complicated  and not  worth the 

potential benefits.  These benefits include a simpler model of Q where the 

obstacle is effectively delimited by vertices and a shorter path length when 

a previously stored NCC point is observed.
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Chapter 7
Summary and Significant Findings

7.1 Summary
Bug algorithm performance varies greatly depending on the environment. 

TangentBug produces the shortest path in environments with wider spaces 

that allow it to make use of its range sensors.  Here, TangentBug can drive 

directly towards a vertex whereas other algorithms have to rely on wall 

following.  The second shortest path in environment A (Figure 2-4) was 

achieved by DistBug, because it uses range sensors to immediately detect 

that the target is visible.  In environment B (Figure 2-6), Rev2 produced the 

shortest  path,  because  the  alternative  wall  following strategy minimized 

wall-following paths  globally.   In  environment  C (Figure  2-8),  DistBug 

produced the second shortest path because its range sensor allows the robot 

to leave an obstacle earlier.  In environment D (Figure 2-10), LeaveBug and 

Bug1 tied for the second shortest path, as the environment required one 

continuous circumnavigation.

As  for  implementation  complexity,  we  subjectively  ranked  the  Bug 

algorithms  from  simple  to  complex  as:  Class1,  Bug2,  Bug1,  OneBug, 

LeaveBug, DistBug, Alg2, Rev2, Alg1, Rev1 and finally TangentBug.

Simulations were conducted both in a perfect, noise-free world, as well as 

under more realistic noise settings with small errors in sensor reading and 

localization.   In  simulation  runs  with  noise,  we  encountered  situations 

where algorithms did not terminate, terminated incorrectly or terminated at 
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an  inadequately  large  distance  from the  target.   Although  performance 

comparisons under noise were not the main focus, it needs to be noted that 

Bug algorithms in general do not exhibit fault-tolerance properties, which 

are the advantage of probabilistic navigation techniques [20, 24, 25].

It was established that “moving to target” and “boundary following” were 

essential to any Bug algorithm.  Further, a Bug algorithm needs a method to 

ensure  that  its  path  will  not  be  arbitrarily  long.   Five  methods  were 

identified  and  various  Bug  algorithms  were  classified  into  them.   The 

disabling  segments  method  was  used  to  create  a  new  Bug  algorithm 

OneBug which guarantees only one hit point per disabling segment.  Then, 

two more methods were created.  The finite leave points was used to create 

the new Bug algorithm LeaveBug which guarantees only one leave point 

per enabling segment.  Finally, the Q method is to be used as a basis for a 

new Bug algorithm SensorBug which will use range sensors in a simple 

fashion to guarantee termination.

Bug1+ was also developed to shorten the path lengths produced by Bug1. 

This raised a question for future research as to what the Bug algorithms 

should do when an obstacle is completely circumnavigated.  Clearly, if the 

robot is given full information about an obstacle then there are much better 

ways in which it can leave.

TangentBug produces the shortest path because of the LTG to assist it in 

finding shortcuts during the “boundary following” segment and to travel to 

VS.  DistBug has an advantage over Alg2 since it can use the PSD sensor to 

scan  for  points  inside  the disc  centered  at  T with  radius  dmin(T).   Alg2 

produces shorter paths than Bug2 because the robot is not constrained to 
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leave  on  the  M-line.   Bug1  produces  the  longest  path  because  it  must 

circumnavigate O.

Four new aspects of guide track following extending the Curv1 algorithm 

were explored.  Firstly, self-intersections were permitted and Curv2 was 

developed to ensure termination.  Curv2 works on the idea that a small 

obstacle  can  be  placed  on  the  intersection  and  this  allows  Curv1  to 

guarantee termination.   Secondly, we explored whether Curv1 was the only 

algorithm which could guarantee termination without localization.  It was 

shown that it is the only such algorithm.  Thirdly, dynamic obstacles were 

introduced.  These obstacles can change status during the robot’s journey. 

It  was  found that  without  significant  restrictions,  termination  cannot  be 

guaranteed.   Lastly,  environments  which  contain  multiple  trails  were 

explored.  It was shown that a unique pairing between start and targets was 

always  achieved  and  hence  termination  is  guaranteed.   If  a  particular 

start/target pair is desired, a non-negative Z value can be associated with 

particular inflows to intersections.  Then, Curv3 can be applied to achieve 

the desired pairing.  However, it was observed that the desired pairing may 

not  be  achieved  if  an  obstacle  does  not  allow  the  robot  to  reach  the 

intersection.

7.2 Significant Additions to the Bug Family
Foremost,  the  development  of  SensorBug  is  a  significant  improvement 

because it   reduces the amount of  range sensor data which needs to be 

gathered.  In SensorBug, data only needs to be gathered on the blocking 

obstacle and on the closest point to the target at the current location.  It also 

reduces the frequency at which sensor data needs to be gathered, restricting 

it  to  three  types  of  transition  points.   SensorBug  also  incorporates  the 
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previously stored points  concept  which was first  suggested in  Alg1 and 

Alg2.

The  analysis  of  Bug  algorithm termination  is  also  important  because  it 

allows consideration of the “crux” of the Bug algorithm, independent of all 

the other nice features which an algorithm may possess.  It was found that 

there are currently six methods which exist in current algorithm.  Further 

analysis  of  these  methods  produced  OneBug,  MultiBug  and  LeaveBug. 

These algorithms incorporate the methods outlined and contain no frills or 

extra features.  A seventh method was found, but it relies on the obstacles 

being polygonal and it was used in the formation of SensorBug.  Future 

Bug algorithms will utilize one of the methods but for a truly unique new 

Bug algorithm, a new method must firstly be created.

A theoretical analysis was performed on Bug algorithms on semi-convex 

obstacles and this revealed that algorithms which could quickly leave were 

always going to outperform algorithms which were more conservative. This 

analysis  has  implications  for  the  Bug  algorithms  on  real  robots  since 

unknown environments may be offices, homes or outdoors where the vast 

majority of obstacles are semi-convex.  Of the examined algorithms, the 

order was TangentBug, DistBug, Alg2, Alg1, Bug2 and Bug1.

7.3 Future Work
Future  work  can  involve  implementing  and  simulating  all  the  Bug 

algorithms contained in Chapter 1.  The results can be added to those in 

Chapter 2 and a more detailed study will be the result.  Another area an 

improvement to the Bug1+ algorithm which will minimize the distance to 

target when full circumnavigation has been performed.  Investigations on 

161



Environments with multiple semi-convex obstacles can also be performed 

with many more Bug algorithms.  Subsequent analysis is likely to yield a 

better understanding of Bug algorithm behaviour on this special class of 

obstacle.  An upper bounds on SensorBug's path length can also be found. 

Although it has been shown that SensorBug's path length is finite, an upper 

bounds on path length would be preferable since it allows comparison to 

other Bug algorithms.  

Bug  algorithms  can  also  be  tested  in  simulation  environments  where 

localization error is  introduced to see which are more robust.   The Bug 

algorithms can be combined with Simultaneous Localization and Mapping 

or landmark recognition techniques to compensate for the introduced error. 
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Appendix
Implementing the Bug Algorithms on EyeSim

A.1 The EyeSim Simulation System
The EyeSim [7] simulation system allows code for robots to be written and 

simulated on a computer system.  The programming language is C and the 

RoBios library allows the programmer to work with a high level interface. 

Once the code  is  written,  it  is  compiled  and loaded onto a  robot  in  an 

artificial environment.  When started, the robot in the simulator will behave 

according to the programmed code.

A.2 Common Modules
An algorithm is implemented in the navigation class and calls the common 

modules.  Common modules are used for consistency between simulations 

and modularity.  For instance, all navigation algorithms require completion 

time to be measured and the timer module provides methods specifically 

for  that  purpose.   Figure  A-1  shows  the  common  modules  and  the 

navigation  module  which  can  be  altered  for  implementing  a  specific 

algorithm.
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Figure A-1 The class diagram of the common modules

A.2.1 The Timer Module
This module’s function is to measure the algorithm’s time performance.  In 

particular, it measures computation and driving time and returns these times 

upon request.  Although driving time is not measured in this study, it may 

be needed in future applications.  

The timer module fulfills its role by providing an abstract interface to the C 

function clock().  The clock() function returns the time (in milliseconds) 

spent in the processor of the calling process since execution began.  Note 

that the clock() does not include the time which the thread is sleeping.

The driving module handles all the functions associated with driving the 

robot and reporting the total distance moved and total angle rotated.  The 

timer module records time taken processing navigation algorithms and time 

spent  driving.   The  user  interface  module  handles  all  user  interfacing 

178

Smart Moving

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
face_target()
face_original()
orientate_to_wall(PositionType* coords)
drive_to_point(float distance, float direction)

User Interface
targ_dire : Integer
targ_dist : Double
g_r : Integer
g_c : Integer

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer
deg_to_rad() : Double
generate_targ_coords()

Helper
pos : PositionType
targ : PositionType
targ_dire : float
targ_dist : float

get_dist(PositionType* a, PositionType* b) : float
deg_to_rad(int degrees) : float
rad_range(float x) : float
pol_to_rect(float r, int theta, PositionType* ans) : PositionType
get_targ_dist() : float
get_targ_dire() : float
get_rel_targ_dire() : float
get_rel_dire(PositionType* p) : float

Driving
total_dist : float
total_turn : float

initialize_driving()
get_total_dist() : float
get_total_turn() : float
turn(float rads, bool record)
drive(float distance)
curve(float rads, float distance)

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

Navigation

main()



including setup of screens and reporting of statistics.   

A.2.2 The Helper Module
The  helper  module  provides  low-level  support  to  other  modules.   In 

particular, the robot can get the target’s distance and direction by calling 

methods found in the helper module.  Currently, the helper module relies on 

dead-reckoning  to  generate  answers.   In  a  future  version,  if  landmark 

recognition or sensor networks are used, these functions can be changed 

and the rest of the system need not know.

A.2.3 The User Interface Module
The user interface module’s role is to interface between the program and 

the user.  When the program starts, it allows the user to edit the desired 

direction and distance of the target.  Figure A-2(a) shows the screen which 

allows the user to edit the distance to target and Figure A-2(b) shows the 

screen which allows the user to edit the direction to target. 

Figure A-2 (a) Left.  The user can edit the distance to target.  (b) Right. 

The user can edit the direction to target

The user interface module also displays the navigation results to the user. 

Figure A-3 shows the screens which appear when convergence is achieved. 

Figure A-3(a) shows computation and driving time, in milliseconds.  Figure 
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A-3(b) shows distance traveled in metres and the rotation in radians. Figure 

A-3(c) shows the number of calls to the math library or process-state() if 

D* is run.

Figure A-3 (a) Left.  Computation and driving times.  (b) Centre.  Total 

distance traveled and total rotation performed.  (c) Right.  Calls to the 

maths library or process-state() in D*.

A.2.4 The Driving Module
The driving module’s purpose is to record the total distance traveled and 

the total rotation performed.  Essentially, it provides a simpler interface to 

the  VW  driving  interface  and  extends  functionality  by  tracking  total 

distance and rotation.

It allows the caller to specify whether it wishes to record a turning request 

in total_turn.  As will be seen later, some turning is not inherently generated 

by  the  algorithm.   Instead,  it  is  hardware-dependent  and  it  may  be 

interesting to remove this component from rotation results.

The driving module calls the timer module so that driving time is properly 

separated from computation time.  Figure A-4 shows the drive function in 

the driving module.  It calls end_think_start_drive() to denote that driving 

has  started  and  then  end_drive_start_think()  to  denote  that  driving  has 

ended.  Note that during driving, VWDriveWait() is not called and a busy 
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loop has replaced it.  This is because VWDriveWait() puts the navigation 

process to sleep and this distorts driving time results.

Figure A-4 The drive method

A.2.5 The Smart Moving Module
The smart driving module’s role is to provide abstract driving functions as 

required by the main navigation algorithm.  The has_goal_been_reached() 

method  determines  if  the  robot  is  currently  at  the  target.   The 

has_wall_been_reached()  method determines if  a  wall  has been reached. 

The face_target() method will rotate the robot such that it faces the target. 

The  face_original()  method  will  rotate  the  robot  such  that  it  faces  the 

origin.  The orientate_to_wall() method will rotate the robot such that it is 

parallel to the wall. The  most complicated method, follow_the_wall(), is 

depicted in Figure A-5 and it drives the robot such that it follows the wall.

Initially, the method checks if a wall is in front of the robot.  If so, the robot 

calls turn_not_move() and the robot turns on the spot as shown in Figure 

A-6(a).  Otherwise, the robot checks if a wall is to the right of the robot.  If 

so, the robot calls follow_wall_straight() and the robot follows the wall as 

shown in Figure A-6(c).  If not, the robot calls turn_and_move the robot 

turns  and  moves  as  shown  in  Figure  A-6(b).   After  calling  the  above 
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void drive(float distance){
total_dist = total_dist + distance;
end_think_start_drive();
VWDriveStraight(vw, distance, LINEAR_VELOCITY);
while(VWDriveDone(vw) == 0){

KEYRead();
}
end_drive_start_think();
VWGetPosition(vw, &pos);

}



methods robot aligns to the wall by calling the orientate_to_wall() method 

as depicted in Figure A-6(d).

Figure A-5.  The follow_the_wall method

A.3 Algorithm Implementation

A.3.1 Bug1 Implementation
The Bug1 algorithm is implemented by calling methods from the common 

modules as shown in figure A-7.  It shows that Bug1 implements the “drive 

to target” and “follow the wall” states using the methods drive_to_target() 

and follow_wall_Bug1() respectively.
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void follow_the_wall(bool is_on_right){
if(is_on_right){

if(has_wall_been_reached()){
turn_not_move(FALSE);

}
else if(PSDGet(psd_right) > 

WALL_DISTANCE+THRESHOLD){
turn_and_move(TRUE);

}
else{

follow_wall_straight(TRUE);
}

}
else{

if(has_wall_been_reached()){
turn_not_move(TRUE);

}
else if(PSDGet(psd_left) > 

WALL_DISTANCE+THRESHOLD){
turn_and_move(FALSE);

}
else{

follow_wall_straight(FALSE);
}

}
}



Figure A-6.  (a) Top left.  Turn_not_move().  (b) Top right. 

Turn_and_move() (c) Bottom left.  Follow_wall_straight() (d) Bottom 

right.  Orientate_to_wall()

Figure A-7(a) The drive_to_target()  function orientates the eyebot to the 

target and drives towards it until either the target is reached or a wall is hit.
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int drive_to_target(){
face_target();
while(TRUE){

if(has_goal_been_reached()){
face_original();
return TARGET_REACHED;

}
else if(has_wall_been_reached()){

return WALL_HIT;
}
drive(STEP);

}
}



Figure A-7(b) This function follows the wall according to Bug1.
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int follow_wall_Bug1(){

PositionType leave;  //closest position to the target
PositionType hit;  //the current hit point
float min_dist;  //the closest displacement to the target
float dist_to_min=0;   //the number of steps to leave
float begin_dist = get_total_dist();

initialize_PD();
VWGetPosition(vw, &leave);
min_dist = get_targ_dist();
VWGetPosition(vw, &hit);

orientate_to_wall(FALSE);
while(TRUE){

if(get_dist(&hit, &pos)<=TARG_ERROR && 
(get_total_dist()-begin_dist)>TARG_ERROR){

break;
}
follow_the_wall(TRUE);
if(get_targ_dist()<min_dist){

min_dist = get_targ_dist();
VWGetPosition(vw, &leave);
dist_to_min = get_total_dist()-begin_dist;

}
}

/*Check the unreachability condition*/
if(get_dist(&leave, &hit)<=TARG_ERROR){

face_original();
return TARGET_UNREACHABLE;

}

/*Determine the shortest route to the min point.  Then 
follow the wall to the min point minimizing travel*/
if(dist_to_min < (get_total_dist()-begin_dist)/2){

while(get_dist(&leave, &pos)>=TARG_ERROR){
follow_the_wall(TRUE);

}
}
else{

turn(M_PI);
while(get_dist(&leave, &pos)>=TARG_ERROR){

follow_the_wall(FALSE);
}

}
return MIN_REACHED;

}



Figure A-7(c)  The Bug1 function drives the robot towards the target using 

the Bug1 algorithm
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void Bug1(){

     int state = STEP1;
     int response;

     initialize_driving();
     initialize_timers();
     init_helper();

     while(TRUE){
  if(state==STEP1){

response = drive_to_target();
if(response==TARGET_REACHED){

end_timers();
print_stats(TRUE, get_time_thinking(), 
get_time_driving(),  get_total_dist(), 
get_total_turn(), num_sqrt, num_pow, 
num_geom);
break;

}
else if(response==WALL_HIT){

LCDPrintf("Wall Hit\n");
state = STEP2;
continue;

}
  }
  else if(state==STEP2){

response = follow_wall_Bug1();
if(response==MIN_REACHED){

LCDPrintf("Minimum Point\n");
state=STEP1;
continue;

}
else if(response==TARGET_UNREACHABLE){

end_timers();
print_stats(FALSE, get_time_thinking(), 
get_time_driving(), get_total_dist(), 
get_total_turn(), num_sqrt, num_pow, 
num_geom);
break;

 }
   }

     }
}



A.3.2 Bug2 Implementation

Figure A-8 The extended Smart Moving module for bug2

The Bug2 navigation class calls the common modules in a similar fashion 

to  Bug1.   However,  Bug2  requires  an  extension  to  the  smart  moving 

module to include a method which determines if it is on the M-line.  A new 

method has been created in the smart moving module called is_on_M_line 

for this purpose.  The updated class diagram is displayed in figure A-8.  The 

rationale behind the is_on_M_line() function is discussed in chapter 3.  The 

code is presented in Figure A-9:

Figure A-9 The is_on_M_line() method
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Smart Moving
old_error : Double

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
orientate_to_wall(bool isClock)
turn_not_move(bool isClock)
turn_and_move(bool isClock)
face_target()
face_original()
initialize_PD()
follow_wall_straight(bool isClock)
follow_the_wall(bool isClock)
is_on_M_line() : Boolean

/*function determines whether the given point is on the M line*/
bool is_on_M_line(){

PositionType closest;
float t = (targ.y*pos.y + targ.x*pos.x)/

(pow(targ.x,2.0)+pow(targ.y,2.0));
num_pow = num_pow+2;
if(t<0 || t>1){

return false;
}
else{

closest.x = t*targ.x;
closest.y = t*targ.y;
closest.phi = 0;
return (get_dist(&closest, &pos) <= TARG_ERROR);

}
}



A.3.3 Alg1 Implementation

Alg1 requires two extensions to the smart  moving module.   It  needs to 

know if the robot is on the M line and the freespace, F.  The is_on_M_line() 

method,  described in section 2.3.3, is  reused.   However, a new method, 

freespace(),  needs to be created to determine F.  Figure A-10 shows the 

updated Smart Moving module which includes the two new methods.

Figure A-10 The extended Smart Moving module for Alg1

The freespace method returns F.  When the method is invoked, the target’s 

direction  relative  to  the  robot  is  firstly  determined.   Then,  the  PSD 

rotationally closest to that direction is identified.  Subsequently, the robot 

rotates such that the PSD is facing the target and measures  F using that 

PSD.  After that, the robot returns to its original orientation.  This method is 

implemented in figure A-11:
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Smart Moving
old_error : Double

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
orientate_to_wall(bool isClock)
turn_not_move(bool isClock)
turn_and_move(bool isClock)
face_target()
face_original()
initialize_PD()
follow_wall_straight(bool isClock)
follow_the_wall(bool isClock)
is_on_M_line() : Boolean
freespace() : Integer



Figure A-11 The freespace method

In this particular robot, there are 8 PSD sensors.  Figure A-12 shows that 

each PSD covers a 45 degree sector.  Hence, the maximum the robot needs 

to rotate to find F is 22.5 degrees.  As expected, increasing the number of 

PSDs lowers the maximum rotation to find F and this must be factored into 

cost against performance decisions.
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/*function returns the freespace in the direction of the 
target function assumes that the PSDs are evenly spaced*/

int freespace(){
float direction = get_rel_targ_dire();
int index=0;
int answer;

/*determine the PSD closest to the direction*/
while(direction < -M_PI/NUM_PSD){

direction = direction + 2*M_PI/NUM_PSD;
index--;

}
while(direction > M_PI/NUM_PSD){

direction = direction - 2*M_PI/NUM_PSD;
index++;

}
index = (index + NUM_PSD/2)%NUM_PSD;

/*turn towards the target and get the freespace*/
turn(direction, FALSE);
answer = PSDGet(psd[index]);
turn(-direction, FALSE);

return answer;
}



Figure A-12 Each PSD covers a 45 degree sector.   Maximum rotation is 

22.5 degrees

The  Alg1  algorithm  also  needs  to  record  all  hit  and  leave  points 

encountered.  It does this by implementing a data-structure module which is 

described in figure A-13.

Figure A-13 The Data Structure Module

The  data  structure  is  implemented  as  an  array  of  PositionTypes.   The 

number  of  elements  is  predetermined  and  a  fixed  block  of  memory  is 

allocated  when  the  program is  started.   Figure  A-14(a)  shows  the  data 

structure immediately after initialize_data() is called.  When list_enqueue() 

is called, a PositionType is stored in the element referenced by position. 

Figure  A-14(b)  shows  the  data  structure  after  one  such  call.   When 

is_at_previous_point()  is  called,  the  data  structure  checks  if  the  robot’s 

current position is near any stored points. 
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Data Structure
position : Integer
points : PositionType array

initialize_data()
list_enqueue(PositionType* p)
is_at_previous_point() : Boolean



Figure A-14 (a) Left.  The data structure after initialization.  (b) Right.  The 

data structure after list_enqueue() is called

A.3.4 Alg2 Implementation
The Alg2 algorithm is implemented by using the common modules and the 

extensions  implemented  previously.   In  particular,  Alg2  reuses  the 

freespace() and data structure modules discussed in section 2.3.4.  It also 

uses the common modules to implement navigation states similar  to the 

Bug1 implementation in section A.3.1

A.3.5 Distbug Implementation
The distbug algorithm is simpler than the Alg2 algorithm in that it does not 

require the data structure module.  Apart from that, it is very similar to Alg2 

and therefore its implementation is also very similar.

A.3.6 Tangentbug Implementation
The tangentbug algorithm has been modified from the original article.  In 

the original tangentbug generates the LTG continuously when moving.  In 

this  implementation,  tangentbug  only  generates  the  LTG  when  it  has 

reached  node  positions.   This  change  is  necessary  to  avoid  excessive 

rotation  and data gathering.  
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The tangentbug algorithm is significantly more complicated than any of the 

previous bug algorithms.  It has modified the common modules extensively. 

A redrawn class diagram is shown in figure A-15. 

Figure A-15 The tangentbug class diagram

A.3.6.1 The Data Module
The tangentbug algorithm requires extensive collection of data for )(θr  and 

freespace toward a particular point.  The data module collects PSD data and 

stores it for use by the rest of the system.

To achieve this in an optimal and efficient manner, the data module equally 

divides the scanning task between the eight PSDs.  Therefore, each PSD is 

responsible for collecting data about a 45 degree sector.  Each colour in 
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Helper
pos : PositionType
targ : PositionType
targ_dire : float
targ_dist : float

get_dist(PositionType* a, PositionType* b) : float
deg_to_rad(int degrees) : float
rad_range(float x) : float
pol_to_rect(float r, int theta, PositionType* ans) : PositionType
get_targ_dist() : float
get_targ_dire() : float
get_rel_targ_dire() : float
get_rel_dire(PositionType* p) : float

User Interface

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer

Minimum
dfollowed

is_in_minimum()
dist_to_targ()
initialize_dfollowed()
check_all_points_on_line()
leaving_condition_holds()

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

Smart Moving

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
face_target()
face_original()
orientate_to_wall(PositionType* coords)
drive_to_point(float distance, float direction)

Node
nodes : node
num_nodes : Integer
optimal_node : Integer
wall_node : Integer

get_node_coordinates(int node_index) : PositionType
create_Tnode(float freespace)
process_nodes()
process_optimal()
wall_was_foreground() : Boolean
identify_nodes()

Navigation

main()

Driving
total_dist : float
total_turn : float

initialize_driving()
get_total_dist() : float
get_total_turn() : float
turn(float rads)
drive(float distance)

Data
r_of_theta : Integer Array

generate_r()
freespace_point(PositionType* p) : float
freespace() : float



figure A-16 shows the division of sectors.

Figure A-16 Each PSD collects data in its sector

Then, this 45 degree sector is sampled according to a user-defined value 

DEG_BET_SAMPLES.  The default is 3 degrees, but this can be altered 

for greater accuracy.  Hence,  each PSD will  sample its  sector 15 times, 

turning 3 degrees between each sample.   Figure A-17 shows the source 

code which implements  data gathering and figures A-18(a)  and A-18(b) 

shows the robot actually gathering data.

Figure A-17 The generate_r method
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void generate_r(){
int reading_index;
int psd_index;
int readings_per_psd = 360/(NUM_PSD*DEG_BET_SAMPLES);

for(reading_index=0; reading_index<readings_per_psd; 
reading_index++){

for(psd_index=0; psd_index<NUM_PSD; psd_index++){
r_of_theta[readings_per_psd*psd_index+reading_i
ndex] = PSDGet(psd[psd_index]);

}
turn(deg_to_rad(DEG_BET_SAMPLES), FALSE);

}
turn(-deg_to_rad(360/NUM_PSD), FALSE);

}



Figure A-18 (a) Left.  The robot gathers data from all 8 PSD sensors (b) 

Right.  After a 3 degree rotation, the robot gathers data from 8 PSD sensors 

again

The sampled data is stored publicly in an array.  The number of elements in 

the array depends on DEG_BET_SAMPLES, which is assigned a default 

value of 3.  If this default is used, there are 120 elements in the array.  The 

0th element  contains  the  distance  straight  ahead of  the  robot  and the  ith 

element  contains  the  distance  on  a  DEG_BET_SAMPLES*i  angle 

measured counterclockwise from straight ahead.

A.3.6.2 The Node Module
After  the data  has  been collected,  it  is  processed for  nodes.   The node 

module identifies and processes nodes which are subsequently stored in a 

public  array.   In  addition,  the optimal  node,  N*,  and the wall  node are 

identified.  Due to  )(θr ’s discrete nature, discontinuity detection must be 

conducted by comparing values of )(θr .  A node is identified if:

• the difference between two successive values of )(θr  is greater than a 

predefined threshold, or
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• One, and only one, of two successive values of )(θr  is equal to r, or

• F > d(x, T), which means the target is visible, or

• F = r, which means there are no visible obstacles in the target’s path.

Once all nodes are identified, each node is processed by calculating d(Ni,T). 

Then, the optimal node is identified by finding the node with the lowest 

value of  d(Ni,T).  Subsequently, the wall node is identified by finding the 

node with the lowest θ  in )(θr .  This is because )(θr  records measurements 

anti-clockwise  where  0=θ  is  straight  ahead.   Given  that  nodes  are 

processed by increasing θ , the wall node is always the first identified node. 

This process is summarised in the flow diagram in figure A-19.

Figure A-19 The node processing algorithm

A.3.6.3 The Minimum Module
If the tangentbug algorithm detects that the robot is in a local minimum, it 

calls  the  minimum module.   This  minimum module’s  role  is  to  return 
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whether or not the robot has met the leaving condition, dreach(T) < dfollowed(T). 

This  evaluation  must  be  done  using  the  least  amount  of  computing 

resources possible.  

With this in mind, a strategy was created to evaluate dreach(T) and dfollowed(T) 

and its source code is shown in figure A-20.   Firstly, the minimum module 

queries the node module to find the wall node’s index in )(θr .  Denote this 

index w.  The indices from 0 to w represent the minimum causing obstacle 

and is  used  to  evaluate  dfollowed(T).   The  remaining indices  represent  the 

sector which must be scanned to evaluate dreach(T).

Figure A-20 The leaving_condition_holds() method

To  evaluate  dfollowed(T),  for  each  index  from  0  to  w  determine  the 

distance to target at end-points.  In figure 2-21, these indices are indicated 
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bool leaving_condition_holds(){
int num_samples = 360/DEG_BET_SAMPLES;
int wall_index = nodes[wall_node].small_index;
int i;
float test, dreach;

/*update (global) dfollowed, if necessary*/
for(i=0; i<=wall_index; i++){

test = dist_to_targ(i);
if(test<dfollowed){

dfollowed = test;
}

}

/*evaluate dreach*/
dreach = check_all_points_on_line(i);
i++;
for(; i<num_samples-1; i++){

test = dist_to_targ(i);
if(test<dreach){

dreach = test;
}

}
test = check_all_points_on_line(i);
if(test<dreach){

dreach=test;
}

/*evaluate leaving condition*/
return dreach < dfollowed;

}



by the red lines and the points used for distance to target calculations are 

indicated by the black squares.  The shortest of these distances, since wall-

following mode began, is recorded in dfollowed(T).

To evaluate dreach(T), for the indices w+1 and 360/num_psd, determine the 

distance to target at regular intervals.  For the remaining indices, determine 

the distance to target only at end-points.  In figure A-21, these indices are 

indicated  by  the  green  lines  and  the  points  used  for  distance  to  target 

calculations are  indicated by  the orange  squares.   The shortest  of  these 

distances, since the robot last refreshed )(θr , is recorded in dreach(T).
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Figure A-21.  (a) Top left.  The scanning performed at its initial position. 

(b)  Top  right.   The  scanning  performed  after  traveling  one  node.   (c) 

Bottom Left.   The  scanning  performed  after  traveling  two  nodes.   (d) 

Bottom Right.  Freespace identifies a visible target.
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A.3.7 D* Algorithm Implementation
The D* algorithm only reuses the timer module because it is fundamentally 

different than the other algorithms.  The implementation is heavily object-

oriented due to the greatly increased complexity.  Figure A-22 shows the 

D* class diagram.

Figure A-22 The D* class diagram
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ArcEnd
cost : float
is_backpointer : Boolean

init_arc_end(float c, bool is_bp)
set_arc_cost(float c)
get_arc_cost() : float
set_arc_backpointer(bool is_bp)
get_arc_backpointer() : Boolean

OpenList
open : Cell
num_cells : Integer

init_list()
put_on_open_list(cell c)
Delete(cell c)
min_state() : Cell
get_kmin() : Double

DiscreteDriving
vw : VWHandle
current_row : Integer
current_column : Integer
current_direction : Integer
total_dist : Double
total_turn : Double

turn_range(int turn) : Integer
get_total_dist() : Double
get_total_turn() : Double
init_driving()
drive(int direction)
face_north()
get_current_row() : Integer
get_current_column() : Integer
get_current_direction() : Integer

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

User Interface
targ_dire : Integer
targ_dist : Double
g_r : Integer
g_c : Integer

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer
deg_to_rad() : Double
generate_targ_coords()

Cell
k : float
h : float
tag : Byte
row : Integer
column : Integer
arc_ends : ArcEnd
is_blocked : Boolean

init_cell(int row, int col)
get_row() : Integer
get_column() : Integer
get_k() : float
get_cell_cost(int direction) : float
set_cell_cost(int direction, float new_cost)
set_cell_backpointer(int direction)
is_cell_backpointer(int direction) : Boolean
h() : float
set_h(float h_new)
set_t(int new_tag)
t() : Integer
insert(float h_new)
get_backpointer_direction() : Integer
get_is_blocked() : Boolean
set_is_blocked(bool set)
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Algorithms

process-state() : Double
modify-cost() : Double
main()

Discrepancy
blocked_row : Integer
blocked_column : Integer

psd_range(int psd_index) : Integer
get_psd_index(int direction) : Integer
get_blocked_coords(int direction, int r)
process_surroundings()

Grid
the_grid : Cell
the_neighbour : Neighbour

get_dest_direction(cell destination, cell origin) : Integer
is_within_bounds(int row, int column) : Boolean
get_default_cost(int direction) : Double
c(cell destination, cell origin) : Double
set_cost(cell destination, cell origin, float new_cost)
b(cell destnation, cell origin)
is_backpointer(cell destination, cell origin) : Boolean
get_neighbours(cell c) : Neighbour
initialize_grid(int goal_row, int goal_column)
get_direction(int row, int column) : Integer
get_tag(int row, int column) : character
get_cell(int row, int column) : Cell
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Neighbour
num_neighbours : Integer
cells : Cell

init_neighbours()
get_num_neighbours() : Integer
enqueue_cell(cell c)
get_enqueued_cell(index) : Cell



A.3.7.1 The Cell Class
A cell represents an area which is treated as a discrete location.  Although 

this area can be of arbitrary shape, it has been implemented as a square of 

length 100mm.

Each cell records:

• its position on the grid.  This is purely for identification, cells do not 

need  to  know  their  position  and  behave  in  the  same  manner 

regardless of position.

• its h value, as specified by the original article.  This represents the 

cost of reaching the target following the cell’s current backpointer 

trail.

• its k value, as specified by the original article.  This represents the 

lowest cost of reaching the target ever recorded by the cell.

• its  arc-ends.   Each  cell  possesses  8  arc-end  objects  to  record 

transition costs and backpointers.

• if an obstacle exists on its position.  If so, blocked will be true.

• its tag, as specified by the original article.  This can be one of three 

possible values: closed, open and new.  

o Closed means that  process-state() has been run on that cell. 

This implies that the cell has a backpointer and a minimum 

cost to target established.  

o Open means that the cell is a neighbour of the target cell or a 

cell which is closed.  Open cells are continually evaluated for 

minimum  cost  to  target  in  the  table  fashion  described  in 

section 1.5.7.  Once an open cell has the minimum cost on the 

table, process-state() is called and it becomes a closed cell.

o New is the initial cell state and refers to cells which have not 
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been processed and are not neighbours of closed cells.

The cell class implements three functions required by the original article. 

The h() and t() methods return the cell’s h value and tag respectively.  The 

insert() method updates the tags, k and h values.

A.3.7.2 The Arc-end Class
Each cell possesses 8 arc-end objects, one for each direction: north, north-

east, east, south-east, south, south-west, west and north-west.  Each arc-end 

object  stores the cost  of  moving from that  particular  cell  in a  specified 

direction.  In addition, arc-end stores whether the specified direction is the 

backpointer for the owning cell.

A.3.7.3 The Open-list Class
The open-list class maintains a table of open cells sorted by ascending k 

value similar to the tables in section 1.5.7.  It is implemented as a large 

array of cell pointers with the number of elements equal to the number of 

cells on the grid.  When a new cell is to be enqueued, it is sorted according 

to its k value.

The  open-list  class  implements  the  min-state()  and  get_kmin()  calls 

prescribed by the original  article.   min_state()  returns the state with the 

minimum k value and is implemented by returning a pointer to the cell on 

top of the list.  get_kmin() returns the minimum k value and is implemented 

by querying and returning the k value of the cell on top of the list.

The delete(cell x) function is also implemented by this class.  Although this 

function  is  supposed  to  remove  any  given  cell  from the  open-list,  the 

implementation disregards the parameter and simply deletes the cell with 
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the minimum k-value, which always the cell at the top of the list.  This is 

because  only  process-state()  calls  this  function  and the  only  time when 

process-state()  calls  delete()  is  when  it  is  deleting  the  cell  with  the 

minimum k-value.

A.3.7.4 The Grid Class
The Grid class is composed of all cells in a grid-like formation analogous 

to the grid diagrams in section 1.5.7.  Since each cell is unaware of any 

other  cell,  the  grid  class  serves  as  an  interface  when  a  caller  requires 

operations  conducted  between  two  or  more  cells.   This  is  particularly 

important when interfacing with functions prescribed by the original article. 

A function  prescribed  by  the  original  article  is  c(cell  destination,  cell 

origin) which returns the travel cost from the target cell to the destination 

cell.  Figure A-23 shows how the grid class handles the call.

Figure A-23 The sequence diagram for the c call

Another function prescribed by the original article is b(destination, origin) 

which sets the origin’s backpointer in the destination’s direction.  Figure 
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6: return cost
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A-24 shows how the grid class handles the call.

Figure A-24 The sequence diagram for the b call

A.3.7.5 The Neighbour Class
The  neighbour  class  is  a  small  data-structure  designed  to  facilitate  the 

transfer of valid neighbours surrounding a target cell.

A.3.7.6 The Discrepancy Class
The  discrepancy  class’s  role  is  to  use  the  PSD  sensors  to  detect  any 

differences  between  the  robot’s  map  and  the  actual  surroundings.   If  it 

detects a discrepancy,  it  calculates  the cell’s position based on the PSD 

reading.   Then,  it  sets  the  cell’s  blocked  attribute  to  TRUE  and  calls 

modify-cost() to generate the new optimal backpointer trail according to the 

procedure outlined in section 1.5.7.2.

A.3.7.7 The Algorithm Class
The algorithm class implements process-state() and modify-cost() functions 

exactly as specified in Stentz’s article.  process-state() and modify-cost() 

call  functions  implemented  in  the  modules  discussed  previously.   The 

main() method is also included in the algorithm class and it  coordinates 
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3: set_cell_backpointer(direction)

4: set_arc_backpointer(FALSE)
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5: set_arc_backpointer(TRUE)
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specified by direction



navigation as a whole.  Figure A-25 shows the main() method.

Figure A-25 the main method
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num_calls=0;
generate_target_coords();
initialize_timers();
init_driving();
initialize_grid(g_r,g_c);
do{

kmin = process_state();
}
while(get_tag(get_current_row(), get_current_column()) != CLOSED && 
kmin!=NONE);
while(!(get_current_row()==g_r && get_current_column()==g_c)){

process_surroundings();
drive(get_direction(get_current_row(), get_current_column()));

}
face_north();
end_timers();
print_stats(TRUE,  get_time_thinking(),  get_time_driving(), 
get_total_dist(), get_total_turn(), num_calls);


