
An Analysis of Mobile Robot
Navigation Algorithms in
Unknown Environments

James Ng

This thesis is presented for the degree of

Doctor of Philosophy of Engineering

School of Electrical, Electronic and Computer Engineering

February 2010

1

Abstract

This thesis investigates robot navigation algorithms in unknown 2

dimensional environments with the aim of improving performance. The

algorithms which perform such navigation are called Bug Algorithms

[1,30,62]. Existing algorithms are implemented on a robot simulation

system called EyeSim [7] and their performances are measured and

analyzed.

Similarities and differences in the Bug Family are explored particularly in

relation to the methods used to guarantee termination. Seven methods

used to guarantee termination in the existing literature are noted and form

the basis of the new Bug algorithms: OneBug, MultiBug, LeaveBug,

Bug1+ and SensorBug. A new method is created which restricts the leave

points to vertices of convex obstacles.

SensorBug is a new algorithm designed to use range sensors and with three

performance criteria in mind: data gathering frequency, amount of scanning

and path length. SensorBug reduces the frequency at which data about the

visible environment is gathered and the amount of scanning for each time

data is gathered. It is shown that despite the reductions, correct termination

is still guaranteed for any environment.

Curv1 [19], a robot navigation algorithm, was developed to guide a robot to

the target in an unknown environment with a single non-self intersecting

guide track. Via an intermediate algorithm Curv2, Curv1 is expanded into

a new algorithm, Curv3. Curv3 is capable of pairing multiple start and

targets and coping with self-intersecting track.

2

Acknowledgments
I would like to express my gratitude and thanks to Professor Gary Bundell

for his generous support during his time as Head of School. After your

term expired, there were times when my resolve to finish wavered but I

owe it to you to present what was accomplished during your time.

I would also like to thank Professor Anthony Zaknich and Keith Godfrey

for being mentors to me. Your mentoring was very valuable and I would

like to take this opportunity to express my gratitude for it.

I also acknowledge Chang-Su Lee, my colleague, for the long and

wonderful conversations about our PhD studies, effort in teaching projects

and certain supervisors.

I would also like to thank my family for their support.

I would like to acknowledge all the undergraduate students who I have had

the pleasure of getting to know during my time as a tutor. I loved the job

and I knew that you enjoyed having me as your tutor. Sadly, it could not

continue. I wish you all the best.

I would like to acknowledge all the high school students who have put up

with my maths tuition and stories of life at university, education, PhD

graduations and money. I hope that I have educated you in more ways than

one and that you understand what education is all about. Many thanks also

to the parents.

Finally, thanks also to Professor Brett Nener and the GRS for their PhD

student retention strategies. I understand why it is so successful now.

3

Table of Contents

1.Introduction and overview .. 8
1.1 Background and motivation for the Bug algorithms.............8
1.2 Aims of this thesis... 11
1.3 Assumptions about the Bug model..12
1.4 Bug notation.. 16
1.5 The Bug algorithms...17

1.5.1 Bug1... 17
1.5.2 Bug2... 19
1.5.3 Alg1..22
1.5.4 Alg2..24
1.5.5 DistBug.. 26
1.5.6 TangentBug.. 28

1.5.6.1 The Global Tangent Graph..........................28
1.5.6.2 The Local Tangent Graph............................28
1.5.6.3 Local Minima..31

1.5.7 D*...33
1.5.7.1 Generating an optimal path.........................33
1.5.7.2 Accounting for obstacles.............................35
1.5.7.3 Determining Unreachability........................38

1.5.8 Com..39
1.5.9 Class1... 40
1.5.10 Rev1... 41
1.5.11 Rev2... 43

1.6 Other Bug algorithms..45
1.6.1 HD-I... 45
1.6.2 Ave..45
1.6.3 VisBug-21...45
1.6.4 VisBug-22.. 45
1.6.5 WedgeBug.. 46
1.6.6 CautiousBug...46
1.6.7 3DBug.. 46
1.6.8 Angulus.. 47
1.6.9 Optim-Bug.. 47
1.6.10 UncertainBug... 47
1.6.11 SensBug... 48
1.6.12 K-Bug...48

1.7 Anytime algorithms...49
1.7.1 ABUG...49
1.7.2 T2.. 49

1.8 Structure of this thesis...50

4

2. Performance Comparison of Bug Navigation Algorithms................ 52
2.1 Introduction... 52
2.2 LeaveBug and OneBug... 53
2.3 From Theory to Implementation... 53

2.3.1 Update Frequency.. 54
2.3.2 Recognition of Stored Points................................... 54
2.3.3 Robot Sensor Equipment... 55
2.3.4 Moving Towards Target... 55
2.3.5 Wall following..56
2.3.6 Limited Angular Resolution for the LTG.................58
2.3.7 M-line identification.. 58

2.4 Experiments and Results... 60
2.5 Results Achieved by other Researchers.................................69
2.6 Summary of Results.. 70

3. An Analysis of Bug Algorithm Termination......................................72
3.1 Introduction... 72
3.2 Bug Algorithm Analysis..72
3.3 The Methods..76

3.3.1 The Closest Points Method...................................... 76
3.3.2 The M-line Method.. 76
3.3.3 The Disabling Segments Method.............................77
3.3.4 The Step Method.. 80
3.3.5 The Local Minimum Method...................................81
3.3.6 The Enabling Segments Method.............................. 82
3.3.7 The Q Method.. 85

3.4 Other Methods to keep hit or leave points finite...................86
3.5 Completely Exploring the Blocking Obstacle.......................87

4. Bug Algorithm Performance on Environments with a Single Semi-
Convex Obstacle... 93

4.1 Introduction... 93
4.2 Examined Bug Algorithms..94
4.3 Performance on a single semi-convex obstacle.................... 95
4.4 Simulation Results.. 104
4.5 Two or more obstacles...104

5. Robot Navigation with a Guide Track...107
5.1 Introduction... 107
5.2 Prior Work... 109
5.3 Self-Intersecting Track.. 110
5.4 Is Curv2 Unique?.. 116
5.5 Dynamic Obstacles..117

5

5.6 Multiple Trails...120
5.7 Pairing Start and Targets... 122

6. SensorBug: A local, range-based navigation algorithm for unknown
environments... 127

6.1 Introduction... 127
6.2 The Q Method... 128
6.3 Boundary Following Mode... 132
6.4 Moving to Target Mode...133
6.5 Scenarios... 136
6.6 Multiple Previously Stored Points.. 137
6.7 Examples For Multiple Previously Stored Points................. 141
6.8 Termination Proof... 145
6.9 Suggested Implementation Strategies................................... 154
6.10 Conclusion...156

7. Summary, Significant Findings and Future Research....................... 158
7.1 Summary... 158
7.2 Significant Findings.. 160
7.3 Future Work...161

References... 163

Appendix. Implementing the Bug algorithms on Eyesim..................... 177
A.1 The EyeSim Simulation System...177
A.2 Common Modules.. 177

A.2.1 The timer module.. 178
A.2.2 The helper module...179
A.2.3 The user interface module....................................... 179
A.2.4 The driving module... 180
A.2.5 The smart moving module.......................................181

A.3 Algorithm Implementation... 182
A.3.1 Bug1 Implementation..182
A.3.2 Bug2 Implementation..186
A.3.3 Alg1 Implementation...187
A.3.4 Alg2 Implementation...190
A.3.5 DistBug Implementation... 190
A.3.6 TangentBug Implementation...................................190

A.3.6.1 The data module...191
A.3.6.2 The node module..193
A.3.6.3 The minimum module................................ 194

A.3.7 D* Implementation..198
A.3.7.1 The cell class..199

6

A.3.7.2 The arc-end class..200
A.3.7.3 The open-list class......................................200
A.3.7.4 The grid class... 201
A.3.7.5 The neighbour class................................... 202
A.3.7.6 The discrepancy class.................................202
A.3.7.7 The algorithm class.................................... 202

7

Chapter 1
Introduction and Overview

1.1 Background and Motivation for the Bug
Algorithms

A 2-dimensional robot driving environment contains a starting point and a

target point. A finite number of arbitrarily shaped obstacles, each of finite

area, are then placed in the environment. The robot starts at the start point

and its objective is to find an obstacle-free, continuous path from start to

the target. Figure 1-1 shows sample environments with the green tile

marking the start and the red tile marking the target.

Figure 1-1 Sample navigation environments

The aim of the Bug algorithms is to guide a robot starting at S to the target

T given that the robot has no knowledge of the environment. The robot

should achieve this goal with as little global information as possible. In

practical terms, this means the robot can remember several points of

8

interest but it cannot, say, perform mapping. If no such path exists, the

algorithm is to terminate and report that the target is unreachable. This

objective is called termination [1].

The Bug algorithms can be programmed into any robot with tactile or range

sensors and a localization method such as odometers, landmark recognition

or GPS. Then, the robot is able to autonomously find a path to a desired

target. Lumelsky [76,78,79] also has applied the research to robot arms

which are attempting to reach a desired pose. In these situations, the

movement of the robot arm is very similar to a mobile robot navigating in

an unknown environment except that the robot arm is tied to a fixed base.

Another application is close range inspection [52]. This occurs when the

robot is surveying a particular area for an item of interest. When it finds

such an item it usually needs to get closer to the object to get more details.

For example, a robot might be deployed to find radioactive objects in a

nuclear reactor. If the robot, from afar, detects a suspicious object, it needs

to get closer to determine if that object really is leaking radiation. Thus, it

will require a navigation strategy to get close to the suspicious object in an

environment where there may be many objects.

Given that the environment may continually change and little information

about the environment may be known at any given time, the navigation

strategy must reach the target with as little information as possible,

preferably only the current position and the target. Some well-known path

planning techniques such as A* [39,40,50,53], Dijkstra [54], distance

transformation [18,35,55], potential fields [7,14,44,72,73], sampling based

[56, 57] and the Piano Movers' problem [59,60,61] require additional

information or even a complete map. Others are designed for coverage

9

path planning [95] which has applications in lawn mowing [96], harvesting

[97] and mine hunting [98]. These shortcomings demonstrate a need for

point-to-point navigation in unknown environments.

Laubach and Burdick [10] planned to implement WedgeBug on a sojourner

rover that is to be sent to Mars if tests are successful. They note that for a

motion planner to be useful on Mars, it needs the following characteristics:

assume no prior knowledge of the environment, must be sensor-based,

robust, complete and correct. WedgeBug satisfies most of the requirements

except for a few reported errors on the robustness due to localization errors.

Kim, Russell and Koo designed SensBug for earthwork operations in the

construction industry [71]. They note the need for enhanced intelligence

for robots in hazardous work environments such as underwater, in

chemically or radioactively contaminated areas and in regions with harsh

temperatures.

Langer, Coelho and Oliveira [87] note that there is an increasing need for

path planning algorithms in unknown environments for manufacturing,

transport, goods storage, medicine (remote controlled surgery), military

applications, computer games and spatial exploration [88,89,90, 91,92].

They simulated K-Bug in an office like environment and showed that the

robot produced competitive paths compared with A*.

Pioneering work on this problem was done by Lumelsky

[1,13,16,30,58,62,63,70,74,75,76,77,78,79,80,81,82]. Prior to Lumelsky's

work, robot navigation in unknown environments consisted of maze

searching algorithms such as the pledge algorithm [21] and Tarry's

algorithm [83]. Unfortunately, in the case of the pledge algorithm, a robot

10

cannot travel to a particular point and the path length performance of both

algorithms can be arbitrarily large. There also existed heuristical

[84,85,86] methods but these required knowledge of the robot's

environment in a limited area around it.

To the best of the author's knowledge, the Bug algorithms were the first

non-heuristic algorithms for motion planning in an unknown environment

which guaranteed termination. Further, the robot does not need to build a

map of the environment, it only needs to store one point for termination to

be guaranteed. This makes the Bug algorithms highly suitable for real-time

implementation.

Lumelsky and Skewis later extended this work to include range sensors

[16]. With range sensors, the robot is able to detect points which are

further along the Bug2 path. When the robot can do this, it takes shortcuts

and this reduces path length. Later, Kamon designed DistBug [5] which

assisted the robot in making better leaving decisions and then TangentBug

[6] in which the robot uses the range sensor to gain an omni-directional

view of its immediate surroundings.

1.2 Aims of this Thesis
This thesis aims to improve the performance of mobile robots in unknown

environments. Several algorithms are simulated and investigated using the

EyeSim [7] simulation system. Inferences about performance factors are

made and used to improve algorithm performance. Algorithm performance

is also investigated when a guide track is available and used to create a new

algorithm, Curv3, which is able to perform in environments where there is

self-intersecting track, moving obstacles and multiple trails.

11

1.3 Assumptions of the Bug Model
The Bug model makes three simplifying assumptions about the robot [1,

30]. First, the robot is a point object. This means that the robot has no size

and can fit between any arbitrarily small gap. This assumption overcomes

the problem that a gap may exist on the map but the robot may be too large.

Second, the robot has perfect localization ability. This means that the robot

knows its true position and orientation relative to the origin at any time.

This assumption allows the robot to determine the precise distance and

bearing to the target and this is very important for guaranteeing termination

and for arriving at the target if the target is reachable.

Third, the robot has perfect sensors. In certain algorithms, the robot

requires distance sensors to assist navigation. These algorithms rely on the

sensor data significantly and imperfect sensors may adversely affect

performance.

Obviously, these three assumptions are unrealistic for real robots, and

therefore Bug algorithms cannot be directly applied for navigation tasks of

real robots, but could be considered as a higher-level supervisory

component of a system that incorporates all three assumptions.

In the Bug algorithm publications, some show only theoretical results

[1,3,4,13,16,17,19,30,36,62,70,71] and some show theoretical and

simulation results [2,8,9,11,12,28,32,34,37,38,64,87]. Several attempts

were made at implementing the Bug algorithms on real robots [5,6,41] but

frequent problems occurred and the algorithm results and comparisons

were based on simulations.

12

Laubach [10] implemented a modified version of TangentBug [6] on a

sojourner rover. In future, it is hoped to be sent to Mars so presumably the

algorithm must have worked quite well. However, most of the paper is

devoted to theoretical proofs of convergence and other interesting

properties of WedgeBug and RoverBug but no practical implementation

advice is offered.

Kreichbaum [12] designed Optim-Bug to work with the ideal Bug

assumptions and then attempted to account for error in UncertainBug.

Dead-reckoning error was compensated by using artificial landmarks and

UncertainBug purposely deviates from the Optim-Bug path to use these

landmarks for error compensation. Error was introduced in the simulation

model and experiments were performed to measure performance. Error

compensation was satisfactory but the main drawback was that

UncertainBug is unable to guarantee a path to target if such a path exists.

Lumelsky [13] designed Angulus to specifically exclude the reliance on

dead-reckoning. Instead, the robot relies on compass readings to determine

when to leave the obstacle. However, path length is compromised and may

be much higher than a Bug algorithm. Further, there may still be error in a

real compass reading when put on a real robot.

Kim, Russell and Koo [71] suggested using the Global Positioning System

(GPS) to localize the robot. Although they did not implement the GPS on

a real robot themselves, it was noted that GPS is widely used and able to

accurately localize objects which are outdoors. Obviously, if used indoors,

this approach will not be as successful.

Skewis and Lumelsky [63] implemented Bug2 and VisBug on a

13

LABMATE robot within a laboratory measuring 8 meters by 6 meters.

The robot had the following functionality: mobility, dead-reckoning,

obstacle range sensing, landmark registration and motion planning

strategies. It was found that the robot's ability to navigate successfully was

quite remarkable and included tests on path repeatability, handling local

cycles, tests for target reachability and task sequencing.

The results were encouraging but they did find that dead-reckoning alone

was not enough to provide sufficient accuracy and they needed to use

landmarks to compensate for dead-reckoning error. Landmarks have been

classified as feature-based or cell-based. Feature-based landmark

recognition [65,66,67] uses natural features of the terrain such as obstacle

vertices to localize the robot. The cell-based approach creates a 2D array

occupancy cells to estimate a robot's position [68,69].

The purpose of the experiment was not to replicate the landmark

recognition techniques but rather to use their outcomes. As such, artificial

landmarks were introduced into the environment and the robot was given

information about them relative to the starting position. These landmarks

were distributed throughout the environment, both on obstacles and on the

roof. Once the robot detected a landmark with its IR sensor, it recalibrated

its position based on the information given beforehand. Obviously, in a

natural setting with no artificial landmarks, such experimental success may

be difficult to replicate but this experiment shows that the Bug algorithms

are capable of fulfilling its purpose in practice if error is overcome.

Given the Bug algorithm history, it is the norm that algorithms are

developed theoretically and then sometimes implemented on real robots. In

this thesis, new Bug algorithms are developed and simulated in ideal

14

environments. The few experiments which have been run on real robots

have produced large localization errors which are beyond the scope of this

study to rectify. It is left for future research to compensate for this error

using existing techniques such as probabilistic localization [20], Kalman

Filters [23] and SLAM [24,25].

15

1.4 Bug Notation
The following notation is used in the Bug algorithms:

• Hi – the ith hit point. This is the ith time the robot transitions from

“moving to target” mode to “boundary following” mode.

• Li – the ith leave point. This is the ith time the robot transitions from

“boundary following” mode to “moving to target” mode.

• S – the starting position.

• T – the goal position, also called the target or finish.

• x – the robot’s current position.

• d(a, b) – the Euclidean distance between arbitrary points a and b.

• dpath(a, b) – the robot’s path length between arbitrary points a and b.

• r – the maximum range of the Position Sensitive Device (PSD)

sensors.

•)(θr – the free-space in a given direction θ . This is the distance

between the robot and the first visible obstacle in the direction θ .

• F – the free-space in the target’s direction. It should be noted that F

=)(θr where θ is the target’s direction.

16

1.5 The Bug Algorithms
The following section summarizes the existing Bug algorithms.

1.5.1 Bug1
The Bug1 algorithm was the first algorithm in the bug family [1,30,62]

created by Lumelsky and Stepanov. Bug1 operates as shown in Figure 1-2

and an example is illustrated in Figure 1-3:

Figure 1-2. The Bug1 algorithm

Put simply, the Bug1 algorithm searches each encountered obstacle for the

point which is closest to the target. Once that point is determined, the robot

evaluates whether it can drive towards the target or not. If it cannot, the

17

0) Initialize variable i to 0

1) Increment i and move toward the target until one of the following

occurs:

• The target is reached. Stop

• An obstacle is encountered. Label this point Hi and proceed

to step 2.

2) Keeping the obstacle on the right, follow the obstacle boundary.

Whilst doing so, record the dpath(Hi, x) of point(s) where d(x,T) is minimal

and whether the robot can drive towards the target at x. Label one of

these minimal points Li. When the robot revisits Hi , test whether the

target is reachable by checking if the robot can move towards the target

at Li. If the robot cannot then terminate and conclude that the target is

unreachable. If the robot can, choose the wall-following direction which

minimizes dpath(Hi, Li) and maneuver to Li. At Li , proceed to step 1.

target is unreachable. If it can, the robot knows that by leaving at that

point, it will never re-encounter the obstacle.

Figure 1-3 The Bug1 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.

18

1.5.2 Bug2
The Bug2 algorithm was also created by Lumelsky and Stepanov [1,30,62].

It is less conservative than Bug1 because the robot can leave earlier due to

the M-line. Bug2 operates shown in Figure 1-4 with an example illustrated

in Figure 1-5:

Figure 1-4 The Bug2 Algorithm

There has been some clarification in the literature [3, 8] about the leaving

conditions for Bug2. Recently, Antich and Ortiz suggested Bug2+ [36] and

this algorithm clarified all doubt, but Sankar [3] and Noborio [8] had

already built these clarifications into their respective algorithms which are

similar to Bug2. In this thesis, the name Bug2 is used but when simulated

or drawn, the Bug2+ algorithm (Figure 1-4) shall be used. This is because

the author believes that Lumelsky had originally intended these features to

be part of Bug2 but did not explicitly state them. This is justified below.

19

0) Initially, plot an imaginary line, M, directly from start to target and

initialise i to 0.

1) Increment i and follow the M line towards the target until either:

• The target is reached. Stop

• An obstacle is encountered. Label this point Hi. Go to step 2

2) Keeping the obstacle on the right, follow the obstacle boundary. Do

this until:

• The target is reached. Stop.

• A point along M is found such that d(x, T) < d(Hi, T). If the robot is

able to move towards the target. Label this point Li. Go to step 1.

Otherwise, update d(Hi, T) with d(x,t).

• The robot returns to Hi. The target is unreachable. Stop.

Lumelsky's original leaving condition states “b) M-line is met at a distance

d from T such that d < d(H, T). Define the leave point Lj. Set j = j + 1. Go

to Step 1.” A strict interpretation of this directive allows Bug2 to define a

leave point even though the robot will, upon executing step 1, define a hit

point again without moving. However, it does not make sense that a robot

is allowed to leave if it does not move towards the target immediately after

leaving. Hence, the robot is only allowed to leave if it can drive towards

the target.

Also, if the robot is denied leaving because it cannot move toward the

target, then it should update d(Hi, T) with d(x, T). Obviously, if a robot

denied leaving because it cannot move toward the target then there must

exist a point on the same obstacle and on the M-line which is closer to the

target. In any case, if Lumelsky's original algorithm was strictly followed

the actual path is the same as in Bug2+ since the robot will update d(Hi, T)

when executing step1.

20

Figure 1-5 The Bug2 Algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.

21

1.5.3 Alg1
The Alg1 algorithm is an extension of Bug2 invented by Sankaranarayanan

and Vidyasagar [3]. Bug2’s vulnerability is that it can trace the same path

twice and create long paths. To rectify this, Alg1 remembers previous hit

and leave points and uses them to generate shorter paths. Alg1 operates as

shown in Figure 1-6 with an example in Figure 1-7:

Figure 1-6 The Alg1 Algorithm

22

0) Initially, plot an imaginary line M directly from start to target and

initialize i to 0.

1) Increment i and follow the M line toward the target until either:

• The target is reached. Stop

• An obstacle is hit. Define this point Hi. Go to step 2

2) Keeping the obstacle on the right, follow the obstacle boundary. Do

this until one of the following occurs:

• The target is reached. Stop.

• A point y is found such that

o it is on M

o d(y, T) < d(x, T) for all x ever visited by the robot along M

and

o The robot can move towards the target at y.

Define this point Li and go to step 1.

• A previously defined point Hj or Lj is encountered such that j<i.

Turn around and return to Hi. When Hi is reached, follow the

obstacle boundary keeping the wall on the left. This rule cannot be

applied again until Li is defined.

• The robot returns to Hi. The target is unreachable. Stop

Figure 1-7 The Alg1 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.

23

1.5.4 Alg2
The Alg2 algorithm is an improvement from the Alg1 algorithm invented

by Sankaranarayanan and Vidyasagar [4]. The robot abandons the M-line

concept and a new leaving condition is introduced. Alg2 operates as shown

in Figure 1-8 with an example in Figure 1-9:

Figure 1-8 The Alg2 Algorithm

24

0) Initialise Q = d(S, T) and i to 0.

1) Increment i and proceed in the direction of the target whilst

continuously updating Q to d(x, T) if Q < d(x, T). Q should now

represent the closest point the robot has ever been to the target. Do this

until one of the following occurs:

• The target is reached. Stop

• An obstacle is encountered. Label this point Hi and proceed to step

2.

2) Keeping the obstacle on the right, follow the obstacle boundary whilst

continuously updating Q to d(x, T) if Q < d(x, T) until one of the

following occurs:

• The target is reached. Stop

• A point y is found such

o that d(y,T) < d(Q,T) and

o The robot can move towards the target at y.

Define this point Li and proceed to step 1.

• A previously defined point Hj or Lj is encountered such that j<i.

Return to Hi. When Hi is reached, follow the obstacle boundary

keeping the wall on the left. This rule cannot be applied again until

Li is defined.

• The robot returns to Hi. The target is unreachable. Stop.

Alg2's leaving condition is a great improvement since the robot does not

need to be on the M-line to leave the obstacle. It will be shown in the later

chapters that this improves performance and it is more computationally

efficient. However, such improvements require a method to prevent the

Class1 scenario and this will be discussed in Chapter 3.

Figure 1-9 The Alg2 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.

25

1.5.5 DistBug

The DistBug algorithm was invented by Kamon and Rivlin in [5]. DistBug

uses a distance sensor to detect F and uses it in its leaving condition. The

algorithm is shown in Figure 1-10 and an example is shown in Figure 1-11.

Figure 1-10 The DistBug Algorithm

DistBug will also be shown to improve path length performance in chapter

2 and the reasons for this are investigated in depth in chapter 4. In short, it

is because each time DistBug checks its ranged based leaving condition, it

is actually testing two things. First, whether the robot can use its range

sensor to detect a point which is closer to the target than any previously

26

0) Initialise i=0 and Step to the wall thickness (this is the minimum

thickness of an obstacle in the environment. It must be entered by the

user and is a drawback of this algorithm).

1) Increment i and move toward the target until one of the following

occurs:

• The target is reached. Stop.

• An obstacle is reached. Denote this point Hi. Go to step 2.

2) Turn left and follow the obstacle boundary whilst continuously

updating the minimum value of d(x, T) and denote this value)(min Td .

Keep doing this until one of the following occurs:

• The target is visible: 0),(≤− FTxd . Denote this point Li. Go to

step 1.

• The range based leaving condition holds: StepTdFTxd −≤−)(),(min .

Denote this point Li. Go to step 1.

• The robot completed a loop and reached Hi. The target is

unreachable. Stop.

visited. Second, the STEP criteria is used to prevent the Class1 scenario

(refer to page 40 for a description of this scenario and page 78 for the STEP

criteria).

Figure 1-11 The DistBug Algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.

27

1.5.6 TangentBug

The TangentBug algorithm was developed by Kamon, Rivlin and Rimon

[6]. TangentBug uses distance sensors to build a graph of the robot's

immediate surroundings and uses this to minimize path length. To

understand how the algorithm works, a few path planning concepts are

presented as background.

1.5.6.1 The Global Tangent Graph
Consider the environment depicted in figure 1-12(a). Next, consider the

convex vertices of all the obstacles which are circled orange in figure

1-12(b). Then, join each pair of non-obstructed vertices and include the

start and target. The result is the global tangent graph and this is depicted

in figure 1-12(c). It has been shown that the global tangent graph always

contains the optimal path from start to finish [14,18,35]. As expected,

figure 1-12(d) shows the optimal path for this particular map.

1.5.6.2 The Local Tangent Graph
The robot does not have global knowledge and TangentBug compensates

by generating the local tangent graph (LTG). A sample LTG graph is

shown in figure 1-13. The LTG is generated by firstly gathering data for

the function)(θr and F.)(θr returns the distance to the first visible

obstacle in a given direction θ . Then,)(θr is processed according to the

following rules:

• If 0),(≤− FTXd , the target is visible. Create a node, called T-node,

on the target.

• If rF ≥ , there are no visible obstacles in the target’s direction.

Create a T-node in the target’s direction. This is illustrated by the T-

28

node in figure 1-13.

• Check the function)(θr for discontinuities. If a discontinuity is

detected, create a node in θ ’s direction. This is illustrated by nodes

1, 2, 3 and 4 in figure 1-13.

• If)(θr = r (the maximum PSD range) and)(θr subsequently

decreases create a node in θ ’s direction. This is illustrated by node 5

in figure 1-13. Similarly, if rr ≠)(θ , and)(θr subsequently increases

such that)(θr = r, create a node in θ ’s direction.

Figure 1-12 (a) Top Left. The environment. (b) Top Right. All convex

vertices are circled. (c) Bottom Left. The global tangent graph. (d)

Bottom Right. The optimal path.

29

Figure 1-13 The local tangent graph

After identifying the nodes, the optimal direction and distance is

determined using the following procedure:

• For each node, evaluate the distance d(Ni, T), where Ni is the ith node.

• The node with the lowest d(Ni, T) is labeled the optimal node, N*.

The robot should proceed to N* whilst continuously updating the local

tangent graph and proceeding to the most recent N*. In figure 1-13, N* is

the T-node since the T-node is closest to the target.

30

1.5.6.3 Local Minima
Figure 1-14 shows that sometimes the robot must travel away from the

target in order to reach it. This is defined as a local minimum. When this

happens, TangentBug goes into wall-following mode. This involves

choosing a wall following direction and following the wall using the LTG.

Whilst following the wall, TangentBug continuously updates two variables:

• dfollowed(T) - This variable records the minimum distance to the target

along the minimum-causing obstacle.

• dreach(T) – Each step, TangentBug scans the visible environment and

for a point P, at which d(P,T) is minimal. dreach(T) is then assigned to

d(P,T) .

The wall-following mode persists until one of the following occurs:

• dreach(T) < dfollowed(T).

• The robot has encircled the minimum-causing obstacle. The target is

unreachable. Stop.

Figure 1-14 The robot in a local minimum

31

The TangentBug algorithm is illustrated in Figure 1-15.

Figure 1-15 The TangentBug Algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.

32

1.5.7 D*
The D* algorithm was invented by Stentz [15] and is very different from

the bug algorithms because it uses mapping. Mapping is prohibited in the

Bug Family but this makes an interesting aside. D* is a brute force

algorithm which has some unique and interesting properties. It segments

the map into discrete areas called cells. Each cell has a backpointer,

representing the optimal traveling direction in the cell’s area, and costs for

traveling to neighbouring cells. The formal low-level algorithm can be

found in the source code and those details can be found in Stentz’s paper

[15]. A more abstract, higher-level example is presented in the following

sections.

1.5.7.1 Generating an Optimal Path
D* is best explained by example. Let the target be cell (5,3) and the robot’s

initial position at (1,3) as depicted in figure 1-16(a). Let the traveling cost

be 1 when traveling horizontally or vertically and 2 when traveling

diagonally.

Then, D* generates table 1-1 for cells surrounding T:

Position

(1)

Nearest cell with

backpointer or target (2)

Cost from

(1) to (2)

Cost from

(2) to T

Total

cost
(5,4) T 1 0 1
(5,2) T 1 0 1
(4,3) T 1 0 1
(4,2) T 1.414 0 1.414
(4,4) T 1.414 0 1.414

Table 1-1 The first table generated in the D* algorithm.

Table 1-1 shows that cells (5,4), (5,2) and (4,3) have the lowest total cost.

Those cells set their backpointers towards the target as depicted in figure

33

1-16(b). Then, the neighbours of T, (5,4), (5,2) and (4,3) are considered for

the total minimum cost to target in table 1-2.

Figure 1-16. (a) Top left. The initial grid. (b) Top right. The grid after

data from table 1-5 is entered. (c) Bottom left. The grid after data from

table 1-1 is entered. (d) Bottom right. The final grid.

Position

(1)

Nearest cell with

backpointer or target (2)

Cost from

(1) to (2)

Cost from

(2) to T

Total

Cost
(4,4) T 1.414 0 1.414
(4,2) T 1.414 0 1.414
(3,3) (4,3) 1 1 2
(5,1) (5,2) 1 1 2
(5,5) (5,4) 1 1 2
(3,2) (4,3) 1.414 1 2.414
(4,5) (5,4) 1.414 1 2.414
(4,1) (5,2) 1.414 1 2.414
(3,4) (4,3) 1.414 1 2.414

Table 1-2 The second table generated by D*

34

Table 1-2 shows that cells (4,4) and (4,2) have the lowest total cost. Those

cells set their backpointers towards the target and the grid is depicted in

figure 1-16(c).

This process keeps repeats itself until the robot’s position contains a

backpointer or the whole grid is filled. If a cell contains a backpointer, it

represents the least cost traveling direction to target. Figure 1-16(d) shows

the 5x5 grid with T and backpointers leading to T. As can be verified,

following any given backpointer trail will produce a path of least cost. This

process is how D* generates optimal paths.

1.5.7.2 Accounting for Obstacles
D* represents obstacles by largely increasing cost to travel to, but not from,

obstacle cells. That is, if an obstacle exists on a cell O, the travel cost from

O’s neighbour cells to O becomes some large predefined value. Figure

1-17(a) shows that an obstacle at (3,3) has been detected. The arcs shown

lead to the obstacle cell and their associated cost becomes very large.

Once travel costs are modified, D* recomputes the cell backpointers to

ensure they are still optimal. D* does this by firstly considering cells

which have a backpointer to cell (3,3). It generates table 1-3.

Position

(1)

Nearest cell with

backpointer or target (2)

Cost from

(1) to (2)

Cost from

(2) to T

Total

Cost
(2,2) (3,2) 1 2.414 3.414
(2,4) (3,4) 1 2.414 3.414
(2,3) (3,4) 1.414 2.414 3.828
Table 1-3. The first table drawn after an obstacle was detected at (3,3).

Table 1-3 shows that cells (2,2) and (2,4) have a new minimum cost and

35

change their backpointers to the cell specified in column 2. The updated

grid is shown in figure 1-17(b). D* repeats this process again and

generates table 1-4.

Figure 1-17. (a) Top left. An obstacle cell is identified in position (3,3).

(b) Top right. The grid after data from table 1-3 is entered. (c) Bottom left.

The grid after data from table 1-4 is entered. (d) Bottom right. The grid

after data from table 1-6 is entered.

Position

(1)

Nearest cell with

backpointer or target (2)

Cost from

(1) to (2)

Cost from

(2) to T

Total

Cost
(2,3) (3,4) 1.414 2.414 3.828
(2,1) (3,2) 1.414 2.414 3.828
(2,5) (3,4) 1.414 2.414 3.828
(1,4) (2,4) 1 3.414 4.414
(1,2) (2,2) 1 3.414 4.414
(1,3) (S) (2,2) 1.414 3.414 4.828
(1,5) (2,4) 1.414 3.414 4.828
(1,1) (2,2) 1.414 3.414 4.828

Table 1-4. The second table drawn after an obstacle was detected at (3,3)

36

Table 1-4 shows that cells (2,3), (2,1) and (2,5) change their backpointers

so that their costs to target are minimised. Hence, the updated grid is

shown in figure 1-17(c).

D* repeats this process until the minimum total cost in the generated table

is greater or equal to the robot’s cost to target following its current

backpointer trail. Once this occurs, it signals that further computation will

not yield less costly paths than the current path. Following the example,

table 1-5 is computed:

Position

(1)

Nearest cell with

backpointer or target (2)

Cost from

(1) to (2)

Cost from

(2) to T

Total

Cost
(1,2) (2,2) 1 3.414 4.414
(1,4) (2,4) 1 3.414 4.414
(1,3) (S) (2,3) 1 3.828 4.828
(1,5) (2,4) 1.414 3.414 4.828
(1,1) (2,2) 1.414 3.414 4.828
Table 1-5. The third table drawn after an obstacle was detected at (3,3)

The terminating condition holds in table 1-6, and figure 1-17(d) shows the

final grid.

Position

(1)

Nearest cell with

backpointer or Goal (2)

Cost from

(1) to (2)

Cost from

(2) to T

Total

Cost
(1,3) (S) (2,3) 1 3.828 4.828
(1,5) (2,4) 1.414 3.414 4.828
(1,1) (2,2) 1.414 3.414 4.828
Table 1-6. The forth table drawn after an obstacle was detected at (3,3)

Note that cell (2,3) does not point backwards towards the start. D*

maintains optimality and avoids getting stuck in local minimums which

have troubled similar techniques [14,18,35]. However, as will be shown

later, this comes at the cost of computation time.

37

In D*, cost modification can be done at any time. This allows the

algorithm to dynamically adapt to unseen obstacles and generate new

optimal paths. D*’s costing mechanism also allows for terrain which is

undesirable, but not necessarily an obstacle. This is far better than the bug

algorithms where the terrain is either traversable or an obstacle.

1.5.7.3 Determining Reachability
Unreachability is determined by comparing the backpointer trail’s cost to

the large threshold value of obstacles. If the backpointer trail’s cost is

greater than the threshold value, it implies that the optimal path crosses an

obstacle and therefore the target is unreachable. Of course, the large

threshold value should be chosen such that the cost of any sequence of

backpointers which do not cross an obstacle will never exceed the large

threshold value. Figure 1-18 illustrates D* on an Environment.

Figure 1-18 D* Algorithm in environment A

38

1.5.8 Com
The Com [4] algorithm is not an official Bug algorithm and does not

guarantee termination. Instead, it is used to illustrate what happens when

the robot is allowed to leave for the target whenever it is able to do so.

Com is used to develop the Bug algorithms and justify why special leaving

rules must exist. It operates as shown in Figure 1-19. In Figure 1-20, the

Com algorithm is depicted on an environment. Note that it will never reach

the target and instead encircle the obstacle indefinitely.

Figure 1-19 The Com Algorithm

Figure 1-20 Com algorithm in environment A

39

1) Move toward the target until one of the following occurs:

• The target is reached. Stop

• An obstacle is encountered. Follow the obstacle boundary.

Go to step 2.

2) Leave if the robot can drive to the target. Go to step 1.

1.5.9 Class1
The Class1 algorithm [8] is not an official Bug algorithm and does not

guarantee finite termination. It is used to illustrate what happens if the

robot is allowed to leave if it is closer to the target than any point

previously visited and it can travel towards the target. Class1 is used to

develop the Bug algorithms and justify why special leaving rules must be

applied. It is shown in Figure 1-21 and an example in Figure 1-22:

Figure 1-21 The Class1 Algorithm

Figure 1-22 Class1 algorithm in environment A

40

1) Move toward the target until one of the following occurs:

• The target is reached. Stop

• An obstacle is encountered. Follow the obstacle boundary.

Go to step 2.

2) Leave if the robot can drive towards the target and the robot is closer to

the target than any point previously visited. Go to step 1.

1.5.10 Rev1
The Rev1 algorithm was invented by Horiuchi and Noborio [8]. It operates

as shown in Figure 1-23 and an example is illustrated in Figure 1-24.

Figure 1-23 The Rev1 Algorithm

As acknowledged by the authors, Rev1 is very similar to Alg1 except that

the robot alternates wall following direction every time it encounters an

obstacle and it has the Hlist and Plist mechanisms for better record keeping

41

1. Move towards the target until the following occurs:
(1a) If a robot arrives at T, exit with success.
(1b) If the robot encounters an uncertain obstacle, set a hit point Hi and
register the details into the Hlist and Plist.
2. The direction is checked at Hi and Hlist, and if both directions were
already checked at Hi, it is immediately eliminated in Hlist. Then, a robot
faithfully traces an obstacle by the direction Dir until the following
occurs:
(2a) If a robot R arrives at T, exit with success.
(2b) If the distance to target is shorter than any distance previously
encountered (the metric condition), the robot is on the M-line (the
segment condition) and the robot can go straight to target (the physical
condition), then record the leaving details in the Plist, change Dir and go
back to step 1.
(2c) If a robot R returns to the last hit point Hi exit with failure. In this
case, T is completely enclosed by obstacle boundary.
(2d) If a robot returns to a past hit point, the former point Hk is memorized
as the same later point Ql into Hlist. Then, the robot returns to the hit
point Hi using the shortest path as determined by the Hlist and Plist. Once
the robot has returned to Hi follow the wall in the opposite direction than
previously.
(2e) If the robot returns to a past leave point, the former point is
memorized as the same later point into Hlist. Then, the robot returns to
the hit point Hi using the shortest path as determined by the Hlist and
Plist. Once the robot has returned to Hi follow the wall in the opposite
direction than previously.

purposes.

Figure 1-24 Rev1 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.

42

1.5.11 Rev2
The Rev2 algorithm was invented by Horiuchi and Noborio [8]. It operates

as shown in Figure 1-25 and an example is illustrated in Figure 1-26:

Figure 1-25 The Rev2 Algorithm

As acknowledged by the authors, Rev2 is very similar to Alg2 except that it

alternates wall following direction. Therefore, the only difference between

Rev2 and Rev1 is that the segment condition has been removed from (2b).

43

1. Move towards the target until the following occurs:
(1a) If a robot arrives at T, exit with success.
(1b) If the robot encounters an uncertain obstacle, set a hit point Hi and
register the details into the Hlist and Plist.
2. The direction is checked at Hi and Hlist, and if both directions were
already checked at Hi, it is immediately eliminated in Hlist. Then, a robot
faithfully traces an obstacle by the direction Dir until the following
occurs:
(2a) If a robot R arrives at T, exit with success.
(2b) If the distance to target is shorter than any distance previously
encountered (the metric condition) and the robot can go straight to target
(the physical condition), then record the leaving details in the Plist,
change Dir and go back to step 1.
(2c) If a robot R returns to the last hit point Hi exit with failure. In this
case, T is completely enclosed by obstacle boundary.
(2d) If a robot returns to a past hit point, the former point Hk is
memorized as the same later point Ql into Hlist. Then, the robot returns
to the hit point Hi using the shortest path as determined by the Hlist and
Plist. Once the robot has returned to Hi follow the wall in the opposite
direction than previously.
(2e) If the robot returns to a past leave point, the former point is
memorized as the same later point into Hlist. Then, the robot returns to
the hit point Hi using the shortest path as determined by the Hlist and
Plist. Once the robot has returned to Hi follow the wall in the opposite
direction than previously.

Figure 1-26 Rev2 algorithm in environment A

For more examples, refer to figure 3-4, 3-6, 3-8 and 3-10.

44

1.6 Other Bug Algorithms
Other Bug algorithms are listed in this section. These algorithms are either

very similar to an algorithm which has been simulated or had not been

published at the time when the simulations were run but have since become

available.

1.6.1 HD-I
Algorithm HD-I is identical to Rev1 except for the selection of wall

following direction which is based on perceived distance to target, target

direction and past following directions. It has been shown [8] that the path

length is reduced on the average.

1.6.2 Ave
The Ave algorithm was invented by Noborio, Nogami and Hirao [8] is an

improvement of HD-I. The algorithm is quite lengthy and can be found in

[8]. The main improvement of Ave was a better mechanism for

determining which wall following direction to take. The decision is based

on all past node data instead of just the current node and perceived distance

to target.

1.6.3 VisBug-21
The VisBug-21 [16] algorithm allows a robot to follow the Bug2 path using

range sensors. The robot uses the range sensors to find shortcuts and takes

them to reduce length.

1.6.4 VisBug-22
The VisBug-22 [16] algorithm takes more risk in respect to finding

45

shortcuts. The path length can be much shorter if the shortcut proves

fruitful, however the path length can also be a lot longer if the shortcut does

not.

1.6.5 WedgeBug
The WedgeBug algorithm was developed by Laubach and Burdick [10]. It

involves scanning in wedges. The first wedge is one which contains the

direction towards the target and if there are no obstacles then the robot

moves towards the target. Otherwise, the robot performs “virtual boundary

following”, in which more wedges are scanned and the robot follows the

wall via its use of range sensors. The advantage of WedgeBug was that it

does not need to generate the full LTG as in TangentBug. It scans in

wedges only when is required, thus saving resources.

1.6.6 CautiousBug
The CautiousBug algorithm was developed by Magid and Rivlin [11]. It

involves spiral searching in which the robot repeatedly changes wall

following direction during the boundary following mode. As such, the

robot is not dependent on a favourable choice of wall following direction

but the trade-off is that a longer path is produced on average.

1.6.7 3DBug
3DBug was developed by Kamon, Rimon and Rivlin [64]. It is an

extension of the TangentBug algorithm and operates in 3 dimensions

instead of the typical 2. There were several problems encountered the

largest being surface exploration of the obstacle instead of simply

following the boundary of an obstacle.

46

1.6.8 Angulus
The Angulus algorithm [13] was developed by Lumelsky and Tiwari.

Based on ideas originally found in the Pledge algorithm [21], the angulus

algorithm bases leaving decisions on two variables: a, the angle between

the lines x (the robot's current position) to T and S to T and b, the angle

between the line S to T and the robot's current velocity vector.

Typically, Bug algorithms require something which measures the robot's

current distance to the target. This is often based on dead-reckoning from

the original start to target positions. However, Angulus does not require

any range measurements and can perform with only a compass. This

makes it more resilient to error.

1.6.9 Optim-Bug
The Optim-Bug algorithm [12] was developed by Kriechbaum. Unlike

other Bug algorithms, Optim-Bug builds a map of its environment as it

senses its surroundings with infrared sensors. With all prior knowledge of

its surroundings, it is able to eliminate the need for a boundary following

mode. Instead, in each navigation cycle, the robot calculates the shortest

path to target taking into account the currently known surroundings and the

map. It follows this path for one cycle and then recomputes the shortest

path to target. The algorithm terminates as soon as the target is reached or

the shortest path is known to cross an obstacle.

1.6.10 UncertainBug
UncertainBug [12] is similar to Optim-Bug except that it takes into account

uncertainty in the robot's path. It always computes the optimal path to

target for each step given the currently available information but it also

47

aims to minimize the uncertainty of the robot's final pose with respect to

the target. To reduce error, UncertainBug directs the robot away from the

optimal path and towards known landmarks which reduce localization

uncertainty. The trade-off is, as Kriechbaum noted, that the robot may not

always reach the target even if such a path exists.

1.6.11 SensBug
SensBug [71] is specially designed for construction environments. In such

environments the obstacles are assumed to be “simple” in that they are all

curves of finite length. Therefore, the leaving requirements are relaxed and

the robot is permitted to leave as in the Com algorithm. In these

environments, obstacles are also able to move and it was shown that

SensBug is still able to navigate successfully. Also, the robot is equipped

with a wireless communication device to assist it in determining which

direction to following the obstacle so that path length can be shortened.

1.6.12 K-Bug
K-Bug [87] was designed by Langer, Coelho and Oliveira. If the path to

target is obstructed, K-Bug evaluates the vertices which surround the robot

and directs the robot to travel to the nearest one. Then, K-Bug's behaviour

is described assuming complete knowledge of the environment and how the

optimal path can be found. This section appears to contradict one of the

fundamental assumptions of the Bug algorithms in that the environment

must be unknown. Otherwise, there are plenty of algorithms which can be

used to find a path in a completely known environment.

48

1.7 Anytime algorithms
These are a special sub-class of the Bug algorithms in which the

environment is known before starting. As a result, they can provide the

optimal path, but they can also produce intermediate, sub-optimal paths as

soon as they are available.

1.7.1 ABUG
The ABUG algorithm was developed by Antich, Ortiz and Minguez [37,

38]. It then divides the environment into discrete cells and combines the

A* [39, 40] algorithm with Bug2 to solve the Bug problem. Each time the

robot encounters an obstacle, the left and right routes are considered parts

of a binary tree. Once the tree is built, the A* algorithm is used to find the

shortest path.

1.7.2 T2

The T2 algorithm was developed by Antich and Ortiz [41]. It is based upon

the principles of the potential field approaches [42, 43, 44]. The problems

with the potential field approaches was that the robot could become stuck

in an environment such as Environment B in chapter 2. T2 overcomes this

by combining it with the Bug boundary following mode. By doing this, T2

forces the robot to move away from the target in an attempt to find other

routes to the target.

T2 can be thought of as an extension of Bug2 with two key differences.

Firstly, the robot is allowed to leave when it notices that it can drive

towards the target. Leaving at such points is only permitted once in the

entire journey and if leaving occurs, the robot redefines the M-line to begin

at the leave point. Secondly, the robot is also permitted to leave under

49

Bug2 rules with redefined M-lines.

1.8 Structure of this Thesis
This thesis aims to improve the bug algorithms in respect to some desired

performance measure. Traditionally, this has been path length but this can

also include reduced computation, processing and scanning.

In the second chapter, a comparison of the simulation results and exploring

implementation issues is presented. EyeSim simulation results are also

presented and the foundation for further performance investigation is laid.

The third chapter presents an analysis of leaving conditions. It is argued

that these conditions are fundamentally very similar and vary only with

respect to how they ensure that the number of leave points or hit points was

kept finite.

The fourth chapter presents results of the Bug algorithms on an

environment with a single semi-convex obstacle. This subclass of obstacle

produces some interesting performance results and these are investigated

mathematically.

The fifth chapter presents Curv2, an improved algorithm for following a

trail. Curv3 is also presented and it is suited to pairing start and targets

when there are multiple trails.

The sixth chapter presents SensorBug. This algorithm uses the Q method

developed in chapter 4 along with range sensors. The range sensor use is

kept to a minimum.

50

The conclusion summarizes the thesis with its key findings. Also, areas of

future research are presented and these are the areas where the most

promising results lie.

In the appendix, implementation details on the EyeSim simulation system

are provided. It will consist of a high level overview of the code structure

and organization as well as some sample code.

51

Chapter 2
Performance Comparison of Bug Navigation

Algorithms

2.1 Introduction
Eleven variations of Bug algorithm have been implemented and compared

against each other on the EyeSim simulation platform [26]. This chapter

discusses their relative performance for a number of different environment

types as well as practical implementation issues.

The robot has to either reach the target position – or terminate if the target

is unreachable – it must not map its environment. Therefore, a particular

navigation algorithm can have a statistically better performance than

another, but may not be better for any possible environment setting. For

example, Alg1 is supposed to improve on Bug2 but is shown later that this

is not always the case.

Since every algorithm in the Bug family has to have the termination

property, subsequently published Bug algorithms try to improve the

algorithm performance, e.g. the path length or time required to either reach

or to detect that the target is unreachable. The aim is to identify the

navigation techniques that work best by conducting unbiased performance

comparisons of various Bug algorithms, based on empirical data from

experiments in different environments.

Section 2.2 introduces two new Bug algorithms which have been

52

implemented. These are new to the Bug family and the introduction here is

necessary as they have been implemented for simulation. The full rationale

is discussed in section 3. Section 2.3 discusses theoretical differences

between Bug algorithms, as well as practical implementation issues.

Section 2.4 presents simulation results from eleven Bug algorithms in four

different environments and also discusses algorithm implementation

complexity. Section 2.5 presents conclusions and also touches on fault

tolerance issues in noisy environments.

2.2 LeaveBug and OneBug
LeaveBug is similar to Bug1, except that instead of circumnavigating the

entire obstacle before evaluating the line segment [Qm,T], the robot

evaluates this condition after completing each path segment that does not

prevent movement towards the target. Full pseudo code is presented in

chapter 3.

OneBug is similar to Alg2, except that no stored points are used. Instead

the robot completely explores a segment along the blocking obstacle that

prevents movement towards the target. Full pseudo code is presented in

chapter 3.

2.3 From Theory to Implementation
Since Bug algorithms are usually published as pseudo code, they do leave

some room for interpretation. Therefore, it is important to specify all

adaptations required to transform them into proper executable algorithms.

The RoBIOS application programmer interface has been used [7], which is

compatible with real SoccorBot mobile robots as well as EyeSim

simulation system. Below is a discussion of some of the issues

53

encountered during the implementation phase:

2.3.1 Update Frequency
In theory, Bug algorithms continuously update their position data and will

automatically detect that any of the navigation conditions are satisfied. For

example, in Bug2 as soon as the robot lies on the M-line, the algorithm will

detect this and act accordingly.

In practice, this will require the robot's position data to be updated and the

navigation conditions to be checked. The robot's position is based on dead

reckoning and for every update wheel encoders must be read and

calculations must be performed. Clearly, this requires computation

resources and updates cannot occur too frequently.

Initially, updating robot position and checking was done as a background

thread. However, with that approach came inherent unpredictability

especially if the robot was moving at high speeds or on an irregular wall

following path. Furthermore, interfacing the thread with the main program

required much programming effort.

It was found through experiments that a distance of 40 mm between

updates achieved the optimal balance between updating too frequently and

too infrequently on the EyeSim simulator. Thus, the robot drives 40mm

either driving towards the target or following the wall and then updates its

position. This implies that any position of significance must include some

margin for error and this is discussed next.

2.3.2 Recognition of Stored Positions

54

In theory, Bug algorithms use infinitesimally small points to represent the

start, target, latest hit point and other significant positions in Alg1, Alg2,

Rev1 and Rev2. This does not work in practice, because of the limited

update frequency and subsequent deviations during wall-following. Hence,

in the implementation, each significant position is represented by a square

of side length 50 mm. A square was chosen because it is computationally

efficient to check if the robot is inside. The size of the square was chosen

such that it is slightly larger than the robot's driving distance during an

update cycle, but not so large that it would lead to frequent false positives.

2.3.3 Robot Sensor Equipment
Some algorithms only require tactile sensors, for example Bug1 and Bug2.

In these algorithms, range sensors are used as substitute tactile sensors.

The range sensors assist only for wall-following and wall-detecting

purposes.

2.3.4 Moving Towards Target
In all Bug algorithms, the ability to check if the robot can move towards the

target at its current location is essential. For instance, Bug1 requires QmT

to be checked in its test of target reachability. Also, Bug2, Alg1, Alg2,

Rev1 and Rev2 all require this check to be made on any prospective leave

points.

In theory, the robot is able to use its tactile sensor to evaluate this check. In

our implementation, this check is performed by obtaining the free-space in

the target's direction and comparing it to a predefined value. Through

experiments, it has been found that a value of 270mm works adequately.

This value allows the robot to rotate on the spot and align itself parallel

55

with the wall. Once parallel, the robot can follow the wall at a safe

distance. Further, 270mm allows the robot to stop in plenty of time in case

the check is delayed.

To obtain the free-space in the target's direction, the robot points one of its

eight range sensors in the target's direction such that rotation is minimized.

2.3.5 Wall Following
Lumelsky [1] notes that special algorithms beyond the scope of the Bug

algorithms are required to follow a wall [94]. In our implementation, the

robot uses a simple proportional-derivative (PD) controller to follow the

wall. The code is given in Figure 2-1. The current error is the difference

between the distance to the wall and the desired distance. The derivative is

the difference between the new error and the previous error. The amount of

curvature is a proportion of the error and the derivative.

Figure 2-1 The code for following the wall

56

void follow_wall_straight(bool is_on_right){
double dist;
double derivative;
double new_error;

if(is_on_right){
dist = PSDGet(psd_right);
new_error = dist-WALL_DISTANCE;
derivative = new_error – old_error;
curve(STEP, - new_error/KP – derivative/KD);
old_error = new_error;

}
else{

dist = PSDGet(psd_left);
new_error = dist-WALL_DISTANCE;
derivative = new_error – old_error;
curve(STEP, new_error/KP + derivative/KD);
old_error = new_error;

}
}

This works well if the robot is following a “gentle” curve, but an obstacle's

perimeter can be arbitrary. Hence, there are situations where the robot has

to perform special movements. For instance, if there is a wall directly

ahead of the robot and to its right, the robot will rotate counter-clockwise

on the spot until it can drive forwards again. This situation is illustrated in

Figure 2-2, left. If there are no walls surrounding the robot, the robot

drives in a circular pattern until it detects a wall on the right or it detects a

wall ahead of it. This is illustrated in Figure 2-2, right.

Figure 2-2 Left: Robot rotates on the spot Right: Robot drives in a circle

Recently, Charifa and Bikdash [45] proposed a Boundary Following

Algorithm to specifically address this problem. Their algorithm is based a

local-minimum-free potential field. When following the wall, the robot

must keep a safe distance from the obstacles to avoid collision. To achieve

this, elements of generalized Voronoi diagrams [46, 47, 48, 49] are used

since Voronoi diagrams find points which are furthest from all obstacles.

However, the robot must also follow obstacles closely. Hence, elements of

reduced visibility graphs [50, 51] are used since visibility graphs achieve

the shortest path with no clearance. A balance is struck and the result is a

safe Boundary Following Algorithm that can be implemented in future Bug

algorithms.

57

In addition, Lee [99] proposed a Rough-Fuzzy Controller for wall-

following navigation. This controller uses fuzzy logic [102] rough-

membership functions [100,101] to improve its uncertainty reasoning. Lee

tested the boundary following controller on a real robot and the results

show that it exhibited show that it outperformed a bang-bang controller,

PID controller, a conventionally fuzzy controller and an adaptive fuzzy

controller using Genetic Algorithms [103,104]. However, the performance

used to evaluate the controllers does not include path safety so no direct

comparison can be made with Charifa.

2.3.6 Limited Angular Resolution for the LTG
In theory, the Local-Tangent-Graph (LTG) should be continuous. In

practice, range sensors have a finite angular resolution. For our robot

model this resolution is 1 degree between each sample. To identify nodes,

successive values are compared against a discontinuity threshold. If the

difference is larger, a node is identified. This can lead to an error where a

node is mistakenly identified, as illustrated in Figure 2-3. To reduce the

possibility of these errors, the sensor range is restricted and the robot is

programmed to move away from an obstacle if it comes too close.

2.3.7 M-line Identification
Bug2, Alg1 and Rev1 use the concept of the M-line that links start and

target positions. Checking if the robot is positioned on the M-line is

essential. Consider the situation where “S” is at the origin, “T” is a vector

to the target, “P” is a vector to the robot's current location and “a” is a

scalar such that the vectors “P-aT” and “T” are perpendicular. Figure 2-4

illustrates this situation.

58

Figure 2-3: Finite angular resolution causes incorrect node identifications

It follows from the dot product that:

Rearranging for “a” gives:

If 0 ≤ a ≤ 1 and the Euclidean distance between “P” and “aT” is smaller

than a threshold value, the robot is on the M-line.

59

0))(())((=−+− yyyxxx aTPTaTPT

22
yx

yyxx

TT
PTPT

a
+
+

=

Figure 2-4: The vectors “P-aT” and “T” are perpendicular

2.4 Experiments and Results
For these experiments, a simulation setting without sensor or actuator noise

has been selected. Figure 2-5 illustrates the Bug algorithms on

environment B, featuring a local minimum. Several early navigation

techniques such as the potential field method [14] had difficulties

overcoming local minimums. In theory, no Bug algorithm should have

difficulty overcoming a local minimum and this is verified in our

implementation.

60

Figure 2-5: Paths for Bug algorithms in environment B

61

Figure 2-6: Path lengths for environment B

Bug1 has the longest path length, followed by LeaveBug, while all other

algorithms have a similar small path length. This is due to the fact that

Bug1 does not check for target reachability until it re-encounters the first

hit point (collision point) with the U-shaped obstacle. This unnecessarily

makes the robot circumnavigate the complete obstacle, while other

algorithms depart towards the target much earlier. (Figure 2-6)

Figure 2-7 illustrates the algorithms on a terrain originally created by

Sankar [3]. The beauty of this terrain is that it is complicated enough to

reveal the unique characteristics of each algorithm but not so complicated

as to be overwhelming. For instance, the M-line is clearly visible in Bug2,

Alg1 and Rev1 as is the stored points concept in Alg1 and Alg2. DistBug’s

leaving condition allows it to leave slightly earlier than Alg2 and Rev2,

resulting in a shorter path length. The overall shortest path was reached by

Rev2 followed by Rev1. This can be attributed to the alternative wall

following.

62

Bug1
Bug2

Alg1
Alg2

DistBug
TangentBug

OneBug
LeaveBug

Rev1
Rev2

Class1

0

2

4

6

8

10

12

14

Path Length for Each Algorithm

Algorithm

Le
ng

th
(m

)

Figure 2-7: Paths for Bug algorithms in environment A

63

Figure 2-8: Path lengths for environment A

Some interesting issues arise when comparing Alg1 against Bug2 and Alg2

against DistBug. Recall that Alg1 is very similar to Bug2 except that Alg1

uses stored points and Alg2 is very similar to DistBug except for stored

points and the inclusion of the range-based leaving condition. Interestingly,

Bug2 and DistBug produce shorter paths than their stored point

counterparts. (Figure 2-8)

Figure 2-9 illustrates the algorithms on a terrain featuring only a single

semi-convex obstacle. Consider the convex hull associated with any

obstacle. If all differences between the obstacle and the convex hull are

convex, then the obstacle is called semi-convex.

In this environment the shortest path is produced by TangentBug. This is

because TangentBug can use the LTG (local tangent graph) to sweep all

areas of a discrepancy between the convex hull and the semi-convex

obstacle, since the discrepancy must be convex. Hence, it can travel along

the convex hull. Second best after TangentBug is DistBug. Clearly, its use

of range sensors allow it to leave the obstacle earlier than Alg2 and this

results in a shorter path. Rev1 and Rev2 did not perform well for this

environment, since they conducted unnecessary circumnavigation due to a

boundary following direction decision.

64

Bug1
Bug2

Alg1
Alg2

DistBug
TangentBug

OneBug
LeaveBug

Rev1
Rev2

Class1

0

5

10

15

20

25

30
Path lengths for each Algorithm

Algorithm

Pa
th

 L
en

gt
h

(m
)

Figure 2-9: Paths for Bug algorithms in environment C

65

Figure 2-10: Path lengths for environment C

Some interesting questions arise as to whether particular algorithms will

always perform better than others on semi-convex obstacles. For instance,

it is foreseeable that TangentBug will always produce the shortest path

since it always travels on the convex hull. Also, does DistBug always

produce the next shortest path because of its range-based leaving

condition? (Figure 2-10)

Figure 2-11 illustrates the Bug algorithms on an environment where the

target is unreachable (here the target is inside the obstacle). An

unreachable target implies that at least one obstacle must be fully

circumnavigated. TangentBug produces the shortest path because its range

sensors allow it to scan along the surface of the obstacle without the robot

needing to actually travel there. Amongst the tactile sensor algorithms,

Bug1 and LeaveBug are tied for shortest path because Bug1 requires the

entire obstacle to be circumnavigated before leaving and LeaveBug

requires the entire enabling segment to be explored. On this particular

environment LeaveBug's path is identical to Bug1. As expected, stored

points, alternative wall-following methods and other path-shortening

measures are useless on an obstacle which renders the target unreachable.

66

Bug1
Bug2

Alg1
Alg2

DistBug
TangentBug

OneBug
LeaveBug

Rev1
Rev2

Class1

0
5

10
15
20
25
30
35
40
45
50

Path Length for each Algorithm

Algorithm

Le
ng

th
 (m

)

Figure 2-11: Paths for Bug Algorithms in environment D

67

Figure 2-12: Path lengths for environment D

Algorithms with the fewest states were the easiest to implement, i.e. simple

leaving condition and storing only the current hit point for

circumnavigation detection. These include Bug2 and Class1, which require

the least amount of code for implementation. They did not fail in any of

the test environments and used the least amount of memory.

Then, there are slightly harder to implement algorithms such as Bug1,

which requires Qm to be continuously updated as well as information on

whether or not the robot can drive towards the target. OneBug and

LeaveBug require several states to operate and DistBug requires a range-

based leaving condition. Neither of these algorithms failed in any of the

test environments, but they required slightly more memory and some more

lines of code for implementation.

Algorithms that require stored points are more difficult to implement.

Alg1, Alg2, Rev1 and Rev2 all require management of multiple stored

points and therefore also more memory. Generally, these algorithms are

reliable but a few failures were recorded due to the robot falsely classifying

68

Bug1
Bug2

Alg1
Alg2

DistBug
TangentBug

OneBug
LeaveBug

Rev1
Rev2

Class1

0

5

10

15

20

25

30

35

Path length for each Algorithm

Algorithm

P
at

h
Le

ng
th

 (m
)

a protruding obstacle point as a previously encountered stored point. Also,

additional debugging and testing was needed for the stored points scheme

to ensure correct functionality.

Finally, TangentBug was the most difficult to implement. The requirements

of detecting local minima, “corner smoothing” with finite angular

resolution and processing nodes were quite complicated in comparison to

other Bug algorithms. These requirements also required a lot of

computation resources and were a frequent source of failure. Also, the

robot has to drive slightly away from the focus node to avoid a collision.

One advantage of TangentBug is that there is no need for wall-following

since the robot only turns on the spot and travels in straight lines.

TangentBug shows what can be theoretically achieved using an omni-

direction, always up-to-date LTG.

2.5 Results Achieved by other Researchers
This comparison of the Bug algorithms was the first which compared 11

algorithms. Since then there have been other comparisons by other

researchers in the area. Yufka and Parlaktuna [28] used the MobileSim [29]

simulation system to simulate Bug1, Bug2 and DistBug. Their findings

concur with the author's results. According to them:

“The results show that Bug1 is the worst one whose path length is

approximately 3.37 times longer than the path length of the Bird-eye’s view

and DistBug is the best one whose path length 1.49 times longer than the

path length of the Bird-eye’s view.”

Chiang, Liu and Chou [32] compared Bug1 and Bug2 against the Fast

69

Marching Method [33, 93] and their refined version called Boundary

Following Fast Marching Method [34]. The Fast Marching Method relies

on a completely known environment and hence can produce the shortest

path. However, the Boundary Following Fast Marching Method partially

explores the environment before plotting a path to the target. Their

findings concur with the author's results for Bug1 and Bug2. It was also

noted that the BFFMM produces a path length between Bug1 and Bug2.

According to them:

“BFFMM builds the partial map by contouring the boundary curves of

obstacles, so the path length in exploring mode would approach the limit of

Bug1.The total path length of BFFMM is close to that of Bug1, but the path

length of the path planning phase is even shorter than that of Bug2.”

Noborio, Maeda and Urakawa compared Class1, Bug2, Alg1, Alg2 and

HD-I on two large mazes [31] with four random start and target points.

These mazes are quite large and do not resemble any “normal”

environment. Not considering Class1, the results show that Bug2 always

produces a longer path than Alg1, Alg2 generally outperforms Alg1 and

HD-I almost always outperforms Alg2. This concurs with the author's

findings concerning Bug2, Alg1 and Alg2. HD-I is able to perform well

because it “learns” which direction is likely to produce short paths based on

previous encounters and the direction of the target. However, these results

have only been shown to work on large mazes.

2.6 Summary of Results
Table 2-1 summarizes the algorithms against path length and different

criteria enumerated through sections 2.3.1 to 2.3.7.

70

Algorithm
Name

Total Path
Length

(m)

Wall
Following
Algorithm

Sensors Check if
robot can
move to T

LTG M-line
detection
required?

Bug1 107 PD Tactile Yes No No
Bug2 74.3 PD Tactile Yes No Yes
Alg1 83.3 PD Tactile Yes No Yes
Alg2 76 PD Tactile Yes No No
DistBug 64.5 PD Infrared No No No
TangentBug 46.5 N/A Infrared No Yes No
OneBug 68.5 PD Tactile No No No
LeaveBug 65 PD Tactile No No No
Rev1 64.8 PD Tactile Yes No Yes
Rev2 62 PD Tactile Yes No No
Class1 67.5 PD Tactile No No No

Table 2-1 Summary of the Bug algorithms. Note that Total path length is

the sum of path lengths over 4 Environments.

71

Chapter 3
An Analysis of Bug Algorithm Termination

3.1 Introduction
In this chapter, similarities and differences in the Bug Algorithms are

explored particularly in relation to the methods used to guarantee

termination. All the Bug algorithms are very similar fundamentally but

differ in how they are modified to guarantee termination. The author has

observed that all published Bug algorithms possess one of five distinct

methods which allow it to guarantee termination. Two new methods are

created and form the basis for the new Bug algorithms OneBug, LeaveBug,

MultiBug and SensorBug.

The aim of examining the methods used to guarantee termination is in line

with the goals of the thesis which is to reduce resources consumed in

guaranteeing termination. In this case, the more specific aim is to

determine which of the methods can be used to reduce path length or

algorithm complexity whilst guaranteeing termination.

3.2 Bug Algorithm Analysis
There are two striking similarities which occur in all the examined

algorithms. Firstly, all Bug algorithms use at least two modes of operation

– “moving to target” and “boundary following”. Secondly, the leaving

rules almost always compare the potential leave point (this may be different

from the robot’s actual position in the case of range sensors) with the

closest point ever visited (or scanned by range sensors) by the robot or they

72

seek to prohibit the robot from leaving at points it has left from before. It

should be asked if these are fundamental and essential properties for any

algorithm which attempts to solve the Bug problem or if there is another

way.

The “moving to target” mode where the robot drives directly to the target is

the only logical course of action given that the robot knows nothing of the

environment. The path length of these segments must be finite since the

distance from any point on the 2D plane to target is finite. However,

obstacles may be encountered during “moving to target” and hence the

necessity for “boundary following” mode.

The maximum path length of any “boundary following” segment is the

perimeter of the obstacle which is being followed. Once the robot has fully

followed that perimeter and its leaving condition has not held, then it

should conclude that the target is unreachable and terminate since it is only

going to get old data by more circumnavigation. Given that the lengths of

both the “moving to target” and “boundary following” modes are finite then

the only thing which could cause path length to go to infinite is if there is

an infinite amount of “moving to target” and “boundary following”

segments. When the robot is “moving to target”, the transition to

“boundary following” mode is straightforward. Hence, the only thing

which can cause infinite length is the leaving condition and thus their

importance in the Bug algorithms.

Leaving rules are best explained by Sankar [4] in his development of Alg2.

A brief synopsis is given here. For termination to be guaranteed, the set of

obstacles which the robot can possibly encounter in its journey from S to T

must be finite and never allow new obstacles to be added. It is necessary to

73

ensure that the set is finite and non-admitting because if this does not hold

then the robot can encounter an infinite number of obstacles and never

terminate. An example of such a set illustrated in Figure 3-1. As the robot

performs “moving to target” the radius shrinks and no new obstacles can

join. As the robot performs “boundary following” it must ensure that no

new obstacles can join when it leaves – hence the necessity to leave only

when the robot is closer to the target than any point previously visited P.

Figure 3-1: Number of obstacles inside the disc is finite.

To satisfy this requirement, the only method is to compare d(x,T) against

d(x,T). If d(x,T) < d(P,T), then the robot can leave and the set remains non-

admitting. This effectively checks if the robot is inside the disc centered at

T with radius d(P,T). Clearly, there is no other enclosure which can satisfy

this requirement. Any enclosure which is larger may allow the robot to

admit obstacles into the set. Any enclosure which is smaller may result in

the robot circumnavigating an obstacle and incorrectly concluding that the

target is unreachable.

The algorithms Class1 and Com (which are not a Bug algorithms but

something used in the development of workable Bug algorithms [4]) were

74

used to illustrate the above arguments. Some interesting properties emerge

from the Class1 algorithm:

Theorem 1: A robot can never leave twice from the same position.

Proof: The robot updates P to X and if X is revisited then d(X,T) < d(P,T)

is false. ■

Theorem 2: A robot can never register a hit point an obstacle along a

previously visited boundary segment.

Proof: The robot leaves at a point that is closer to the target than any

previously visited. During “moving to target” that distance monotonically

decreases. If an obstacle is encountered then the hit point will be closer to

the target than any point previously visited and therefore cannot be along a

previously visited boundary segment. ■

Class1 has the disadvantage that the path length can be made arbitrarily

long. Consider Class1 in the environment depicted on Figure 3-2.

Decreasing W can make the path length arbitrarily long. Fundamentally,

the problem is that there are an infinite number of points within the

“shrinking-disc” and an environment can be constructed such that the robot

always leaves at a point which only very marginally shrinks the disc.

Figure 3-2: Decreasing W produces an arbitrarily long path under Class1.

75

3.3 The Methods
To overcome this problem, the “shrinking-disc” needs to be supplemented

with another rule that guarantees the number of leave points is finite. The

author has observed five methods are currently used to solve this problem.

3.3.1 The Closest Points Method
Each obstacle has a minimum distance to the target and all points which

satisfy that are in set C. The robot can only leave at points in C.

This method works by noting that if the robot leaves at a point in C, the

robot can never encounter that obstacle again in the remainder of its

journey. Hence, there can only be at most one leave point associated with

all obstacles in the finite set of obstacles intersecting the “shrinking-disc”.

The downside is that to identify C for a particular obstacle O, the robot

must fully circumnavigate O and this can lead to unnecessarily long path

lengths. Bug1 is the only algorithm to utilize the closest points method.

3.3.2 The M-line Method
Create a line from S to T called the M-line. The robot leaves on the M-line.

This method creates a line within the “shrinking-disc” since all points on

the M-line are also points with the “shrinking-disc”. The intersection of the

line with an obstacle produces a distinct and unique point. Given the

assumption that there can only be a finite number of intersections with the

M-line, then there can only be a finite number of leave points in the entire

journey. The downside is that many cycles can be created if there are many

intersections with the M-line. VisBug-21, VisBug-22, Bug2, Alg1, Rev1,

HD-1/w, Ave and ABUG use the M-line method.

76

3.3.3 The Disabling Segments Method
Keep the number of hit points that occur along disabling segments finite.

For any given obstacle, it has been shown [6] that there are a finite and

non-zero number of disabling segments. Similarly, there will be a finite

number, possibly zero, of enabling segments. A disabling segment occurs

when the robot cannot travel towards the target for all points in the

segment. An enabling segment occurs when the robot can travel towards

the target for all points in the segment. Figure 3-3 top illustrates disabling

segments and Figure 3-3 bottom illustrates enabling segments. The robot

can only encounter an obstacle on a disabling segment and if these

encounters can be restricted using Theorem 2 then the number of hit points

can be kept finite.

Figure 3-3 Top: Disabling segments. Bottom: Enabling segments

There are many different ways to implement this method. For example,

Alg2 implements it by forcing the robot to return to the last defined hit

point and exploring the remaining counter-clockwise wall following

direction when a previously stored point is met. Similarly, Rev2 forces the

robot to return to the closest hit point on H-list and to explore the alternate

77

direction. These rules ensure that there can only be a finite number of hit

points per disabling segment.

Obviously, there can be many other ways of implementing this method.

Consider a new and simplistic Bug algorithm, OneBug, in which the robot

must explore the entire disabling segment before it can begin the

exploration of a neighboring enabling segment. Figure 3-4 shows the

pseudo-code of OneBug:

Figure 3-4 Pseudo code of OneBug

OneBug is so named because there can be at the most one hit point per

disabling segment. OneBug can be described as Alg2 without the stored

78

1) Drive directly to the target until one of the following occurs:

a) Target is reached. OneBug stops.

b) An obstacle is encountered. Go to step 2.

2) Perform clockwise circumnavigation until one of the following occurs:

a) Target is reached. OneBug stops.

b) The robot is able to drive towards the target. Go to step 3.

c) The robot completes circumnavigation around the blocking

obstacle. The target is unreachable and OneBug stops.

3) Perform counter-clockwise circumnavigation until one of the following

occurs:

a) Target is reached. OneBug stops.

b) The robot is at a point which is closer to the target than any

previously visited and it is able to drive towards the target. Go to

step 1.

c) The robot completes circumnavigation around the blocking

obstacle. The target is unreachable and OneBug stops.

points and Class1 without the arbitrarily long path length. Figure 3-5

shows OneBug’s simulation [7] results on two environments.

Figure 3-5: OneBug algorithm in two different environments

The stored points used to implement this method on Alg2 also serve

another purpose, to reduce path length. However, chapter 2 illustrated a

situation where the path length of Alg2 was greater than DistBug despite

Alg2 using stored points (Figure 2-7).

The reason for this is that Alg2 does not allow the robot to resume

searching from the pathwise closest unexplored region but chooses the last

defined hit point. Now consider a new Bug algorithm MultiBug which

allows the robot to choose clockwise or counter-clockwise

circumnavigation to explore the closest unexplored disabling region.

MultiBug is described in Figure 3-6.

79

The number of hit points per disabling segment is kept finite because upon

returning to a previously stored point H in step 3, the robot must choose to

follow the wall in a counter clockwise direction. This necessarily means

that the disabling segment associated with H must be fully explored using

at most two encounters. Figure 3-7 illustrates MultiBug.

Figure 3-6 Pseudo code for MultiBug

3.3.4 The Step Method
Leave only after the robot is a predefined distance, STEP, inside the

“shrinking-disc”.

80

1) Drive directly to the target until one of the following occurs:

a) Target is reached. MultiBug stops.

b) An obstacle is encountered. Record a hit point Hi. Go to step 2.

2) Perform clockwise circumnavigation until one of the following occurs:

a) The robot is at a point closer to the target than any previously

visited and is able to move towards the target. Go to step 1.

b) The robot encounters a previously recorded hit point. Go to step

3.

c) The robot encounters Hi. Terminate with failure.

3) Decide upon which wall following direction would take the robot to the

nearest hit point H which only has the clockwise direction explored.

Return to H. At H, perform counterclockwise wall following until one of

the following occurs:

a) The robot is at a point closer to the target than any previously

visited and is able to move towards the target. Go to step 1.

b) The robot returns to H. Terminate with failure.

Figure 3-7 MultiBug algorithm in two different environments

Using this method, the robot can leave at most STEPTSd /),(times in its

entire journey. Unfortunately, this method requires knowledge of the

environment since STEP must be chosen such that during

circumnavigation, a point on every encountered obstacle will fall in an

enabling segment that is STEP closer to the target. If this doesn’t hold then

it would be possible for the robot to circumnavigate an obstacle and

incorrectly conclude that the target was unreachable. The step method is

used in DistBug for both tactile and range sensors.

3.3.5 The Local Minimum Method
Restrict hit points to local minimums that occur on encountered obstacles.

Using the local minimum method, the robot can only define hit points if it

detects that it is in a local minimum on the encountered obstacle with

respect to the target. It has been shown [6] that the number of local

81

minimums on any obstacle is finite. Figure 3-8 shows the local minimums

on two environments with respect to the target.

TangentBug, CautiousBug, RoverBug, 3DBug and WedgeBug all use the

local minimums method.

Figure 3-8: Two environments with local minima

3.3.6 The Enabling Segments Method
Keep the number of leave points that can occur along enabling segments

an obstacle finite.

The enabling segments method uses the fact that there are only a finite

number of leaving segments for any given obstacle. Consider a new Bug

algorithm LeaveBug which implements the enabling segments method.

LeaveBug pseudo code is illustrated in Figure 3-9. Examples of LeaveBug

are presented in Figure 3-10.

82

Figure 3-9 Pseudo code for LeaveBug

The T2 algorithm [41] utilizes the enabling segments method by permitting

only two leave points per enabling segment. The first one is at the

transition from a disabling to enabling segment and the second one is from

the current M-line. There are only a finite amount of type one leaving

points and the robot is only permitted to leave at each of them once.

Therefore, there can only be a finite number of M-line redefinitions and

each of the redefinitions can only pass through an enabling segment once.

83

1) Drive directly to the target until one of the following occurs.

a) Target is reached. LeaveBug stops.

b) An obstacle is encountered. Go to step 2.

2) Perform clockwise circumnavigation until one of the following occurs:

a) Target is reached. LeaveBug stops.

b) The robot is able to move towards the target. Go to step 3.

c) The robot completes circumnavigation around the obstacle. The

target is unreachable and LeaveBug stops.

3) Perform clockwise circumnavigation whilst updating a point P to X if

the robot is currently closer to the target than any point previously visited.

Do this until one of the following occurs:

a) Target is reached. LeaveBug stops.

b) The robot is unable to move towards the target. If P contains a

position, go to step 4. Else, go to step 2.

c) The robot completes circumnavigation around the obstacle. The

target is unreachable and LeaveBug stops.

4) If dpath(X,P) is 0, reset P to null and go to step 2. Else, perform

counter-clockwise circumnavigation until the robot returns to P. At P,

reset P to null and go to step 1.

Hence, the number of leave points is finite. The robot will always find the

target, if reachable, because even in the absence of type one leaving points

it will always have an M-line and that has been shown to guarantee

termination previously.

Figure 3-10: LeaveBug algorithm in two different environments

Angulus [13] allows the robot to leave when “it is physically possible to

walk straight toward T, the current velocity vector v points towards T and

both “a” (the robot's position vector with respect to the ST line) and “b”

(the robot's velocity vector with respect to the ST line) are in the range of 0

to 360 degrees, proceed straight to T”. Such a position corresponds to a

transition between disabling segments and enabling segments. Technically,

the leave point would be on the edge of the enabling segment and the

number of these points is finite. The second leaving condition of Angulus

where “if a = b = -360 leave towards T” is vague because that can only

occur in rare situations and does not fit any of the methods.

84

SensBug [71] and K-Bug [87] direct the robot to leave at positions where

the robot can travel towards the target. This is in effect directing the robot

to leave at transition points between disabling and enabling segments.

3.3.7 The Q Method
There is a unique set of points Q which is finite for any polygonal obstacle

O. Q is the set of points at which the robot must stop to gather data to

continue circumnavigating O both in the clockwise and counter-clockwise

directions. Clockwise and counter-clockwise circumnavigation must begin

from a vertex on O for the purposes of determining members of O.

Figure 3-11: Points in Q are circled

In Figure 3-11, the circled points represent members of Q assuming a robot

has infinite sensor range.

The Q method is to be used in the development of SensorBug in Chapter 6.

Some of the issues which arise are how to implement it. For instance, how

to ensure that the robot will always leave at a point in Q? What about the

case where Q is empty, for instance if the robot starts enclosed in a box?

85

How to guarantee that the robot will always leave an obstacle which does

not encircle the target?

The Q method has a significant drawback in that it requires a polygonal

obstacle so that the number of vertices is finite. Otherwise, Q could be

infinite on a curved section of O. Also, the robot must have range sensors.

If tactile sensors are used then Q will be infinite.

There are two main foreseeable advantages of the Q method. Firstly, it

should be easy to implement for robots using range sensors compared to

TangentBug and VisBug. Secondly, the robot does not have to continuously

poll the external environment whilst traveling between members of Q.

Instead, the robot is free to devote computing resources to other tasks.

3.4 Other Methods to keep hit or leave points finite
There are infinite ways in which methods can be combined with each other

to produce new Bug algorithms. Further, any new Bug algorithm can

incorporate special features of other algorithms. For instance, it would be

easy to add the reverse wall following procedure from Ave, or the cautious

wall-following procedure in CautiousBug, or the LTG from TangentBug or

the stored points concept from Alg1. But for any new Bug algorithm to be

truly unique, it needs to find a new way of analyzing obstacles to determine

the positions of leave or hit points in such a way that any obstacle will have

a finite number. From there, a leaving condition can be created to

implement the analysis. In other words, a new method needs to be created

for any future Bug algorithm to be considered truly unique. The creation of

new methods is beyond the scope of this thesis and is left for future

research. However, the task is going to require much imagination and

creativity.

86

3.5 Completely Exploring the Blocking Obstacle
When Lumelsky published Bug1 and Bug2 [1], Lucas commented on them

shortly afterwards [58]. Lucas acknowledged that one of Bug1's purposes

was to completely explore the blocking obstacle. However, Lucas

recommended that Bug1 and Bug2 be combined so that the benefits of both

algorithms can be used simultaneously to reduce path length whilst

preserving the complete exploration of the blocking obstacle. He named

his algorithm (2) and it is quoted in Figure 3-12.

Figure 3-12 Lucas's (2) algorithm which combines Bug1 and Bug2

87

Initially, j = 1; Lo = starting point.

1) From point Lj-1 move toward the target along the M-line until one of the

following occurs:

a) Target is reached. The procedure stops.

b) An obstacle is encountered and a hit point Hj is defined. Go to step 2.

2) Using the accepted local direction (left), follow the obstacle boundary.

If the target is reached, stop. Use R1 to store the coordinates of the

intersection with the M-line Qm having the least distance from the target

point, R2 to integrate the length of the boundary starting at Hj and R3 to

integrate the length of the boundary starting at Qm. (In case of many

choices for Qm take any.) After having traversed the whole boundary and

having returned at Hj define a new leave point as Lj = Qm. Go to step 3.

3) Using the contents of R2 and R3 determine the shorter way along the

boundary to Lj and use it to go to Lj. If the straight line from L, to target

crosses the obstacle, then the target cannot be reached. Otherwise, set j = j

+1. Go to step 1.

Lumelsky's reply [58] was that this defeats the motivation behind Bug1

which was to allow the robot to deviate as far as one wishes from the

desired path (the M-line). By this, the author assumes that Lumelsky

means Bug1's purpose was to attempt to find other routes to the target and

that this is necessary to fulfilling its higher level objectives. If this

assumption is correct then Lumelsky is correct in rejecting the

modification.

However, if the objective of the Bug algorithms is to minimize path length

to the target then the modification holds weight. Consider the environment

shown in Figure 3-13. In this environment, (2) clearly outperforms Bug1.

Further, (2) has the advantage of reverting to the Bug1 leave point if the M-

line leave point proves disadvantageous. Therefore, it will always have a

shorter path than Bug1.

Figure 3-13 Left. The Bug1 Algorithm Right. Lucas's (2) algorithm

88

It is true that Bug1 can choose either clockwise or counter-clockwise

boundary following when it returns to the original hit point depending on

which requires less travel. However, the right side of the obstacle can be

arbitrarily modified so that the counter-clockwise route requires extensive

travel.

If the objective is to minimize path length whilst exploring all of the

blocking obstacle then improvements can be made. Consider an algorithm,

Bug1+, which directs the robot to return to either end of the enabling

segment which contains Qm depending on which required less travel. Once

there, the robot leaves. Formally, Bug1+ can be written as shown in Figure

3-14. Bug1+ is shown in Figure 3-15 and it can clearly be seen that its path

length is shorter than Bug1 and (2).

Furthermore, Bug1+ allows the robot to deviate from the M-line and find

alternate routes to the target. Clearly, this satisfies Lumelsky's motivation

for Bug1 and there should now be no reason for rejection.

Bug1+ raises an important question. Suppose that as soon as the robot

encounters an obstacle that it somehow knows the entire geometry of the

obstacle, when is it best for the robot to leave? Obviously, the Bug1+

algorithm does not cover all possibilities. For example, there may be other

transition points which are not associated with Qm. These other transition

points require less travel and allow the robot to travel directly to the target.

89

Figure 3-14: The Bug1+ Algorithm

90

Initially, j = 1; Lo = starting point.

1) From point Lj-1 move toward the target along the M-line until one of the

following occurs:

● Target is reached. The procedure stops.

● An obstacle is encountered and a hit point Hj is defined. Go to step

2.

2) Following the obstacle boundary in a clockwise manner. Record the

following data until the robot returns to Hj. Go to step 3.

● A transition point t, where t is such that the robot transitions from a

disabling to enabling segment or from an enabling to disabling

segment. Record dpath(t, Hj) for all such points.

● A point Qm, where Qm is a point which is closer to the target than any

previously visited. Record dpath(Qm, Hj) and whether or not it is on a

disabling segment.

3) When the robot returns to Hj, determine the following:

● If Qm lies on a disabling segment, the target is unreachable. Stop.

● The two transition points associated with Qm in the clockwise and

counter-clockwise directions.

● The path lengths to travel to the two transition points from Hj. Go to

step 4.

4) Following the boundary to the transition point which requires the least

amount of travel. Leave at that point. Go to step 1.

Figure 3-15: The Bug1+ Algorithm on an Environment

Figure 3-16 Left illustrates one environment as an example. Suppose that

the robot completes circumnavigation and leaves at point A. If it does so,

then it will produce a shorter path than at point B, since at point A it moves

directly to the target without encountering the obstacle again. This would

be the best result possible.

Secondly, consider Figure 3-16 right where leaving at A would cause the

robot to re-encounter the obstacle. Clearly, this is not desirable since the

algorithm would need to be more complicated to take the scenario into

account. The ideal solution would be for the robot to travel from the

original hit point, to A, directly to B and then directly to the target.

However, designing an algorithm to do that will be challenging, but

possible since the obstacle is completely known. This is left for future

research.

91

Figure 3-16 Left: Leaving at A produces the shortest path

Right: The optimal path is requires the robot to travel from A to B to T

A possible criticism that could be made against Bug1+ on Figure 3-15 is

that once Bug1+ leaves the obstacle it has a longer path to target than Bug1.

Since it has a longer path, it is more likely to encounter another obstacle

and be forced to circumnavigate it thereby increasing path length.

However, if the simplest and most logical assumption holds that there are

no more obstacles then Bug1+ will always produce a shorter path than

Bug1.

92

Chapter 4
Bug Algorithm Performance on Environments

with a Single Semi-Convex Obstacle

4.1 Introduction
Lumelsky [1] noted two classes of environment in his original work. The

in-obstacle class were those environments which had either S or T inside

the convex hull of an obstacle. The out-obstacle class were those

environments which were not in-obstacle. These were important because

the performance of Bug2 was significantly better on out-obstacles since no

local cycles could be made. In this chapter, this idea of obstacle classes is

extended and investigated with more algorithms and a new semi-convex

obstacle.

The performance of Bug algorithms Bug1, Bug2, Alg2, DistBug and

TangentBug are investigated on environments which can only contain a

single semi-convex obstacle with a reachable target and are out-obstacle.

Semi-convex obstacles are a new class of obstacle defined in section 4.3.

Proofs are developed based on the algorithm and obstacle properties and it

is shown that for any such environment TangentBug will always produce

the shortest path followed by DistBug, Alg2, Bug2 and then Bug1.

Theoretical proofs are reinforced by simulations results.

Given that the environment is unknown prior to commencement it is

obvious that path length minimizing navigation decisions will depend on

luck. For instance, when the robot is driving straight towards the target and

93

encounters an obstacle, the decision to turn left or right is based on an

arbitrary guess. However, if some restrictions are placed on the obstacles

in the environment it will be shown that some algorithms will always

outperform other algorithms. Firstly, the algorithms are compared on

environments that can only contain one convex obstacle with a reachable

target. Then, the results are generalized to environments that can only

contain one semi-convex obstacle with a reachable target. Finally,

simulations are conducted using EyeSim to reinforce theoretical findings.

4.2 Examined Bug Algorithms
Bug [1], Bug2 [1], Alg2 [4], DistBug [5] and TangentBug [6] are selected

for examination. Other algorithms were not included in the examination

mainly because they are fundamentally similar to each other with respect to

their leaving rules. For example, CautiousBug is similar to TangentBug

except that wall-following direction changes whilst following a given

obstacle. Also, Rev1 is similar to Bug2 except that Rev1 introduces

alternate wall-following and the reverse procedure. Alg1 is similar to Bug2

except that it uses multiple stored points. Rev2 is similar to Alg2 except

that it has alternate wall-following and the reverse procedure. HD-1 is also

similar to Alg2 except that that the robot can alter boundary following

direction during a “boundary following” segment without needing to find a

previous stored point.

Some algorithms were also implementations of other algorithms for

example WedgeBug implements TangentBug except that it uses wedges and

conglomerates them as necessary. RoverBug removes the assumption of a

point robot and sensors which do not necessarily detect obstacles. But

nothing changes in with respect to the leaving rule.

94

For effective comparison, restrictions must be placed on the wall-following

direction. Otherwise, a particular algorithm could generate a short path by a

lucky guess in respect to the wall-following direction. Therefore

algorithms must follow Bug convention and perform clockwise boundary

following upon defining a hit point. Changing wall-following direction

during “boundary following” is also prohibited. In practical terms, this

means TangentBug must choose left as its boundary following direction

and Alg2 cannot use stored points to reverse its boundary following

direction upon meeting a previously stored point. As will be shown later,

stored points are not of any benefit on semi-convex obstacles in any case.

4.3 Performance on a Single Semi-Convex Obstacle
Consider an environment which features only a single convex obstacle O.

O lies on the M-line and T is reachable. Let M be the point where the M-

line intersects O closer to S, M’ the point where the M-line intersects O

closer to T, VT the point on O which is tangent to T and VS the point on O

which is tangent to S. Figure 4-1 illustrates these points.

Theorem 1: Given an encounter with a convex obstacle O, once leaving

occurs the robot can never reencounter O.

Proof: If the robot left O at point P1 and reencountered O at point P2, then

P1 and P2 are points on O and there exists a path in freespace between P1

and P2. If that path exists, then by definition O cannot be convex. ■

Theorem 2: If a robot is following O, an algorithm that leaves earlier on

O will produce a shorter path than an algorithm that leaves later.

Proof: Traveling directly to T is always shorter than an indirect path along

VT to M’ and then directly to T. ■

95

Figure 4-1 Left: P=VT. Top Right: P is in the segment M to VT. Bottom
Right: P=M

Theorem 3: Any point P from M to VT when connected to T via the direct

line segment [P,T] will always intersect the segment from VT to M’ at a

point P’ such that d(P,T) > d(P’,T).

Proof: The points M, VT and T can be thought to form an infinite sector K

centered on T with the tangents to VT and M forming the two straight lines.

O necessarily connects M and VT and in that segment any point P will form

a line segment [P,T] which is within K. Within K, there also exists another

connection from VT to M’ which does not intersect the connection from VT

to M. Since d(M,T) > d(M’,T), it follows that all P from VT to M

necessarily intersect the connection from VT to M’ at P’ such that d(P,T) >

d(P’,T). Figure 4-2 illustrates this concept. ■

Theorem 4: Assuming infinite sensor range, the algorithm that always

produces the shortest path for an environment with reachable T and a

single convex obstacle is TangentBug, followed by DistBug, Alg2, Bug2

and finally Bug1.

96

Figure 4-2: Any point P along M to VT have a corresponding point P’ along

VT to M’ such that d(P,T) > d(P’,T).

Proof: Consider the optimal path associated with traveling to the left of O.

The optimal path starts from S to VS. From VS the optimal path passes

through each successive vertex V1…VN until it reaches VT. From VT the

optimal path goes directly to T. Figure 4-1 left illustrates the optimal path

where the optimal path is S, VS, V1, VT, T. Figure 4-1 top right and bottom

right both have optimal paths of S, VS, VT, T.

TangentBug can use the LTG to detect VS allowing it to drive directly to it.

Once VS is reached, the robot uses the drives to each successive vertex and

when it reaches VT, it leaves because T is visible. Therefore, TangentBug

always generates the optimal path.

DistBug can detect when the robot is at VT since it continuously updates F.

Also, it follows O’s boundary from V1…VN like all the other algorithms.

However, from S to VS, the robot does not necessarily follow the optimal

path because it drives straight towards the target and then follows the

97

boundary to VS. This means that TangentBug will always produce a shorter

or equal length path to DistBug.

Next, consider Alg2 and DistBug. With no PSD sensor, Figure 4-1 left

shows that it is still possible for Alg2 to leave at VT but Figure 4-1 top right

and bottom right show that it is also possible that the robot will continue

following O and this produces a longer path than DistBug according to

Theorem 2.

Next, consider Alg2 against Bug2. There exists a point P where P is the

closest point to the target in the segment M to VT. Hence, there are three

possibilities: P=VT, P is inside M to VT or P=M.

Figure 4-1 left shows the case where P=VT. When this occurs, the robot

leaves at VT and will always produce a shorter path than Bug2 according to

Theorem 2.

Figure 4-1 top right illustrates the case where P is in the segment M to VT.

Theorem 3 shows that there will always exist P’ inside VT to M’ such that

d(P,T) > d(P’,T). Under Alg2, the robot will always leave at or before P’

since d(P,T) > d(P’,T). Since P’ is necessarily visited before M’, Alg2

always produces a shorter path than Bug2.

The final case is demonstrated in Figure 4-1 bottom right where the P=M.

In that case, the robot will always leave at or before M’ since d(P,T) >

d(P’,T) and the robot can travel directly to T from M’. If the robot leaves at

M’, the Alg2’s path length will be the same as Bug2. Hence, Alg2’s path

length at very best is equal to DistBug and at very worst is equal to Bug2.

98

Finally, Bug1 will always produce the longest path length because it

requires the robot to circumnavigate the obstacle first. ■

Placing a restriction that the obstacles must be convex is restrictive.

Fortunately, there is another class of obstacle which is more general than a

convex obstacle for which Theorem 4 holds. Consider the convex hull for

any obstacle O. Any discrepancies between O and its convex hull are

assigned an area AX for X = 1, 2, 3.... If all AX are convex, then the

obstacle is said to be semi-convex. Figure 4-3 left illustrates a semi-convex

obstacle because A1 and A2 are convex, but Figure 4-3 right is not a semi-

convex obstacle because A2 is non-convex.

For each area AX, there are two vertices where the AX, O and O’s convex

hull intersect. These vertices are labeled VX and VX’ such that VX will

always be visited before VX’ for a robot which circumnavigates O in a

clockwise manner. Figure 4-3 left shows VX and VX’ for the semi-convex

obstacle.

Figure 4-3 Left: A semi-convex obstacle. Right: A non semi-convex

obstacle due to A2

99

Each AX is partitioned into segments according to whether or not the robot

can drive towards T. If the robot is able, label that an enabling segment,

otherwise label it a disabling segment. Let QX represent the beginning of

the disabling segment in the clockwise direction and QX’ the end of the

disabling segment for a particular AX. Let GX be the enabling segment from

VX to QX, GX’ represent the disabling segment from QX to QX’, and GX” the

enabling segment from QX’ to VX’. Figure 4-4 left illustrates these

notations for A1. Note that GX, and GX” do not necessarily have to exist as

illustrated by A2.

Figure 4-4 Left: Notations for semi-convex obstacles

Right: Any point along G1” intersects G1’

Theorem 5: A “moving to target” segment can never intersect another

“moving to target” segment.

Proof: In all the algorithms, the robot can only transit to “moving to

target” at a point that is closer to the target than any previously visited.

During “moving to target” the distance to target monotonically decreases.

Hence, the robot will never pass over any previously visited point during a

“moving to target” segment. ■

100

Theorem 6: A robot can never encounter an obstacle along a previously

visited boundary segment.

Proof: The robot leaves at a point that is closer to the target than any

previously visited. During “moving to target” that distance monotonically

decreases. If an obstacle is encountered then the hit point will be closer to

the target than any point previously visited and therefore cannot be along a

previously visited boundary segment. ■

Theorem 7: Under the Alg2 and DistBug leaving rules, if the robot leaves

at any point along O associated with AX, it cannot leave again until it

reaches VX’.

Proof: In an AX, the robot can leave at VX or along GX at a leave point LX.

If this happens, AX’s convex property ensures an encounter along GX’ at

point HX. The robot turns left and proceeds to QX’ and finally to VX’. The

robot cannot leave when it is on GX’ because it is a disabling segment. The

only other place it can possibly leave is when traveling on GX”. It follows

that the robot cannot leave on GX” since AX’s convex property guarantees

an encounter along GX’ thereby violating either Theorem 5 or Theorem 6.

Consider that a “moving to target” segment which encounters GX’ along

[HX,QX’] violates Theorem 6. Alternatively, if a “moving to target”

segment encounters GX’ along [QX,HX] then Theorem 5 is violated since the

robot must pass through [LX,HX] during “moving to target” mode. ■

Theorem 8: Under the Bug2 leaving rule, if the robot leaves at LX and

reencounters O at HX within an AX, it cannot leave again until it reaches

VX’.

Proof: If the robot left twice within AX’, this implies that the M-line

intersects AX more than two times. However, the convex property of AX

ensures that this cannot happen. ■

101

Corollary 1: There can be at most one hit and leave point associated with

any given AX.

Theorem 9: If an additional restriction that S is outside O’s convex hull is

introduced then the robot cannot revisit a previously visited point on a

semi-convex obstacle.

Proof: The robot can only be in one of three states at any given time after

encountering O and before leaving it. It can be traveling along O’s convex

hull towards VT in which case, it can never leave because the direct path to

T is immediately obstructed by O. Alternatively, it can be past VT and

along O’s convex hull, thus if the robot leaves it will reach T. Finally, it

can be inside any given AX. Given Corollary 1 and a fixed wall-following

direction, the robot will necessarily reach VX’ without revisiting any part of

O associated with AX.

An additional restriction that S must be outside O’s convex hull is

introduced to prevent the robot leaving along GX”. This may be possible if

S causes HX to be positioned such that leaving along GX” does not violate

Theorem 5 or Theorem 6. Figure 4-5 illustrates one such situation. ■

Figure 4-5: Alg2 revisits a previously visited point because S is inside the

convex hull

102

Theorem 10: In an environment featuring a single semi-convex obstacle

O, reachable T and S outside O’s convex hull, the shortest algorithm is

TangentBug, followed by DistBug, Alg2, Bug2 and Bug1.

Proof: The optimal path is from S to VS to VT to T where the robot travels

along the convex hull of O from VS to VT.

Consider TangentBug traversing a semi-convex obstacle. Along its path, it

may encounter a VX. At any given VX, AX’s convex property ensures that

TangentBug can scan along every surface of O associated with AX and

hence drive directly to VX’. Since both VX and VX’ are on O’s convex hull,

the line segment [VX, VX’] is on the convex hull of O, hence TangentBug’s

path from VS to VT is optimal. Further, its path from S to VS and VT to T is

optimal, and hence TangentBug will always travel on the optimal path for

any given semi-convex obstacle.

Next consider Alg2 against Bug2. If the M-line does not intersect an area

AX then Bug2 must travel across the entire O associated with AX. However,

it may be possible for Alg2 to leave earlier and hence produce a shorter

path.

Alternatively, consider AX intersected by the M-line at MX and MX’. If the

robot encounters P within [MX-1’,VX], then there necessarily exists P’ within

the segment [VX,MX] such that d(P,T) > d(P’,T) according to Theorem 3.

Under Alg2, the robot leaves at or before P’ which is always at or before

MX and hence a shorter or equal path length is always obtained for any AX.

Figure 4-6 illustrates a sample scenario and the robot can be made to leave

at P’ by arbitrarily narrowing W. Finally, Bug1 produces the longest path

because it circumnavigates the obstacle without leaving. ■

103

4.4 Simulation Results
Simulations on Eyesim [7] were performed on two environments. Figure

4-7 and 4-8 show Bug1 (top left), Bug2 (top center), Alg2 (bottom left),

DistBug (bottom center) and TangentBug (bottom right). By visual

inspection, it is clear that Theorem 10 holds.

Figure 4-6: Alg2 always leaves before Bug1 and Alg2 because there always

exists P’ within VX and MX.

4.5 Two or More Obstacles
The possibility of extending Theorem 10 to environments featuring two or

more semi-convex obstacles was investigated. However, it is possible to

manipulate path length performance using two obstacles. Consider Figure

4-9 which features two convex obstacles. Alg2, DistBug and TangentBug

are disadvantaged because they encounter the top obstacle whereas Bug1,

Bug2 does not. Further, the width of the top obstacle can be made

arbitrarily wide. Clearly, if Theorem 10 is to be extended, there would

have to be a restriction such that all algorithms encountered the same

obstacles.

104

Figure 4-7: Bug algorithm paths. Top left: Bug1, top center: Bug2, bottom

left: Alg1, bottom center: Alg2, bottom right: TangentBug

Figure 4-8: Bug algorithm paths. Top left: Bug1, top center: Bug2, bottom

left: Alg1, bottom center: Alg2, bottom right: TangentBug

105

Figure 4-9: Performance on environments with more than one semi-convex

obstacle can be manipulated. Top left: Bug1, top center: Bug2, bottom left:

Alg1, bottom center: Alg2, bottom right: TangentBug

106

Chapter 5
Robot Navigation with a Guide Track

5.1 Introduction
This chapter examines a novel idea that there exists a guide track between

the start and target [27]. Apart from that, everything is as before with the

Bug algorithms.

Curv1 [19], a robot navigation algorithm, was developed to guide a robot to

the target in an unknown environment with a single non-self intersecting

guide track. Curv1 is expanded in four different ways. Firstly, self-

intersecting track is explored and a new algorithm Curv2 is developed to

guarantee termination. Secondly, the question of whether or not Curv1 is

the only algorithm capable of guiding the robot is addressed. Thirdly,

dynamic obstacles are considered. These obstacles can come and go during

the robot’s journey. Lastly, multiple start/target pairs and multiple trails are

considered. A new algorithm Curv3 is developed to uniquely match

start/targets.

We consider the problem of path planning for a robot in an unknown two-

dimensional environment. Originating from a starting position, the robot is

required to move to the target. There exists a trail from the start to the

target. Also, there are finitely many obstacles each with finite perimeter.

These obstacles may or may not lie on the trail. The robot is able to

determine the direction of the guide track which it must follow to reach the

target.

107

The motivation for this problem is in industry where it is common practice

for a mobile robot follow a trail to navigate from one position to another

[22]. The advantage of a trail is very similar to the advantage of roads

which humans use – it allows the user to reach the destination with little

autonomous navigation ability. There is no need for localization and thus

error compensation techniques like probabilistic localization [20], Kalman

Filters [23] and SLAM [24,25]. The disadvantage is that a trail must be

created before navigation can proceed.

In an industrial setting, it is also foreseeable that objects may fall onto the

floor and obstruct the trail. This is incorporated into the problem by

allowing obstacles to lie on the trail. It is assumed that path planners know

the trail before the robot commences its journey. On the other hand,

obstacles are assumed random and dynamic and are always unknown. At

no point does the robot possess knowledge of the trail, any obstacles or its

own position. It simply follows the preprogrammed algorithm.

Prior work on this problem is presented. Then, four additional issues are

explored. Firstly, self-intersections within the trail are permitted and

necessary changes to Curv1 are implemented to guarantee termination.

Previously, the trail cannot contain such intersections.

Secondly, the question of whether or not Curv1 is the only algorithm

capable of solving the problem is explored. Thirdly, the problem of

dynamic obstacles is explored. Dynamic obstacles are a new class of

obstacle which can appear and disappear during the robot’s movement to

the target. Lastly, environments with multiple trails are considered. In

such environments, each start is uniquely paired with a target. Curv1 is

extended to guide a robot to a user-specified target.

108

5.2 Prior Work
Prior work was done by Sankar [3] in which the environment was restricted

to static obstacles and a single non-intersecting trail. Based on the Pledge

Algorithm [21] and the Bug algorithms [1,30,62] Curv1 was developed and

it is repeated in Figure 5-2 with an example in Figure 5-1:

Figure 5-1: An example of the Curv1 algorithm

Curv1 assumes that the target is always reachable. Recall that in all the

Bug algorithms, the robot always had to store at least one point to detect

circumnavigation. If circumnavigation was detected, the robot would

usually conclude that the target is unreachable. Since Curv1 assumes no

localization ability, there is no way to detect that circumnavigation occurred

and hence that the target is unreachable.

109

Figure 5-2 The Curv1 Algorithm

5.3 Self-Intersecting Track
In this section, we explore whether Curv1 can be modified to accommodate

a track which self-intersects at finitely many places and preserves Curv1’s

advantage that it does not require localization. It turns out that self-

110

1. Set Counter C to zero. Start from point S and move towards T. Go to

step 2.

2. Move along curve ST until one of the following occurs:

(a) The target T is reached. Stop

(b) An obstacle is met. Follow the obstacle boundary in the local

direction left. Go to step 3.

3. Follow the obstacle boundary until one of the following occurs:

(a) The target T is reached. Stop

(b) The curve ST is met at point P. One of the following steps is

executed:

i. The counter C reads zero and, at P, MA can move along curve ST

towards T. Leave the obstacle and follow the curve ST. Go to step

2.

ii. The counter C is non-zero and, at P, MA can move along curve

ST towards T. Decrement counter C by one. Continue moving

along the obstacle boundary. Go to step 3

iii. At P, MA cannot move along curve ST towards T. Increment

counter C by one. Continue moving along the obstacle boundary.

Go to step 3.

intersections can be treated in exactly the same way as obstacles. That is,

when the robot encounters a self-intersection, it can treat it like an obstacle

except that it does not have to perform wall following. The ideas behind

this are explained in more detail in this section.

The following notation is introduced for self-intersections. Let portions of

the trail which enter the self-intersection be called inflows and denoted Ij

where j represents the jth inflow. Let portions of the trail which exit the

self-intersection be called outflows and denoted Oj where j represents the jth

outflow. The inflows and outflows can be labeled arbitrarily. Let A

represent the clockwise angle measured with respect to the inflow where

robot enters the self-intersection, In. In can change if the robot revisits the

same self-intersection. Figure 5-3 illustrates the notation.

Figure 5-3: Ij represent inflows and Oj represent outflows and A is the

clockwise angle measured with respect to the entry inflow In

Curv2 is shown in Figure 5-4.

111

Figure 5-4 The Curv2 Algorithm

112

1. Set Counter C to zero. Start from point S. Go to step 2.

2. Move along curve ST until one of the following occurs:

(a) The target T is reached. Stop

(b) An obstacle is met. Follow the obstacle boundary. Go to step 3.

(c) A self-intersection is met. Initialize A=0. Go to step 4.

3. Follow the obstacle boundary until one of the following occurs:

(a) The target T is reached. Stop

(b) The curve ST is met at point P. One of the following steps is

executed:

i. The counter C reads zero and, at P, MA can move along ST

towards T. Leave and follow the curve ST. Go to step 2.

ii. The counter C is non-zero and, at P, MA can move along curve

ST towards T. Decrement counter C by one. Continue moving

along the obstacle boundary. Go to step 3.

iii. At P, MA cannot move along curve ST towards T. Increment

counter C by one. Continue moving along the obstacle boundary.

Go to step 3.

4. Increase A until one of the following occurs:

i. An outflow Oj is encountered and the counter C reads zero.

Leave the self-intersection via outflow Oj. Go to step 2

ii. An outflow Oj is encountered and the counter C is non-zero.

Decrement counter C by one. Go to step 4.

iii. An inflow Ij is encountered. Increment counter C by one. Go to

step 4.

Figure 5-5 illustrates two examples of Curv2.

Figure 5-5: Two examples of Curv2

Obstacles can be thought of as “black boxes” which obstruct parts of the

trail. It does not matter what the obstructed parts are since the robot cannot

visit them. Imagine placing a very small obstacle over each self-

intersection such that the self-intersection is concealed but nothing else. It

follows that Curv1 could then be applied to those small obstacles to

guarantee that the target will be reached.

The above reasoning is an intuitive proof as to why Curv2 can always

guarantee that the target will be reached. However, a more rigorous and

thorough proof is desired. Three elements of the proof have already been

shown in [19] and it is trivial to adapt them to self-intersections. Firstly,

Theorem 1 guarantees that a type one infinite loop [19] cannot occur.

Hence, the robot will always leave a self-intersection. Secondly, Lemma 1

guarantees that the number of inflows must equal the number of outflows

for any intersection. Thirdly, Lemma 4 guarantees that Curv2 generates a

unique pairing between inflows and outflows for a self-intersection.

113

It remains to be shown that the second kind of infinite loop – where the

robot leaves from the same outflow more than once – cannot occur in an

environment with self-intersections. Sankar’s proof may not necessarily

hold because self-intersections allow the robot to reach portions of the track

which make it impossible for Curv2 to reach the target. It will be shown

that a robot can never visit those portions of the track.

The trail can be classified into two parts – “reachable” and “unreachable”.

A portion which is “reachable” is where a robot with can reach the target

using Curv2. A portion which is “unreachable” is where the robot cannot

reach the target using Curv2. Consider the trail depicted in Figure 5-6. On

the left, the dashed trail is “unreachable” since a robot starting on the

dashed trail would not be able to reach the target. It would circle the

“unreachable” section indefinitely since it would turn left at the

intersection. On the right, the entire trail is “reachable” since the robot can

reach the target from any point on the trail using Curv2.

Figure 5-6 Left: Dashed track is “unreachable”. Right: The whole track is

“reachable”

Theorem 1: If the robot is following the trail in an “unreachable” section

then it will be in an infinite loop.

114

Proof: By definition, the robot can never reach the target on an

“unreachable” section. Since the robot keeps moving and the trail is of

finite length, it must repeat its movements – thus causing an infinite loop.

■

Theorem 2: The start must always lie in a “target reachable” portion of

the trail.

Proof: Suppose that start lies in an “unreachable” section. Theorem 1

implies that it must be part of an infinite loop. However, this cannot be so

because it implies that the trail extends beyond start. ■

Theorem 3: If a robot is on a “reachable” section, it can never begin

following an “unreachable” portion.

Proof: Suppose that Theorem 3 occurred and let the outflow associated

with the “unreachable” portion be denoted OU and its uniquely paired

“reachable” inflow be denoted IU. According to Theorem 1, OU must be

part of an infinite loop and therefore IU must be part of that infinite loop

too. Hence, IU must be “unreachable” otherwise the infinite loop wouldn’t

exist – thus proving the theorem. ■

Corollary: The robot can never follow a “target unreachable” trail.

Proof: Theorem 2 guarantees that the robot will always start in a

“reachable” portion of the trail. Theorem 3 guarantees that it if the robot

enters a self-intersection or an obstacle in a “reachable” portion, then it will

never end up in an “unreachable” portion. ■

115

5.4 Is Curv2 Unique?
It may be interesting to determine whether or not Curv2 is the only way to

guarantee termination. For termination, there is essentially just one

requirement on an algorithm. It must ensure that each inflow is associated

with one and only one outflow. This requirement ensures that the robot is

always able to leave the self-intersection, avoiding the first type of infinite

loop, and that the second type of infinite loop cannot occur.

Theorem 4: After entering via inflow Ij if the robot next encounters an

outflow Ok a unique pairing must be formed with Ok.

Proof: Consider if the robot did not pair with Ok. If this happens, it risks

circumnavigating the obstacle if Ij and Ok are the only inflows and

outflows. If circumnavigation occurs, the robot would not be able to

determine this since localization is not permitted and hence a type one

infinite loop is created. ■

Theorem 5: If, the robot encounters an inflow In, it must not leave at In’s

Theorem1 associated outflow.

Proof: If this occurs, then the robot would be associating an outflow with

two inflows and this would violate the unique association requirement. ■

Clearly, Theorem 1 and Theorem 2 must hold for any algorithm to

guarantee termination. Theorem 1 can also be thought of as the base case

and Theorem 2 as the recursive component. Hence an algorithm could be

structured to incorporate Theorem 1 and Theorem 2 as shown in Figure 5-7:

116

Figure 5-7 An algorithm which incorporates Theorem 1 and Theorem 2

Given this reasoning, it appears that Curv2’s strategy is the only strategy

which would satisfy Theorem 1 and Theorem 2. Any modifications like

switching wall-following direction would be superficial. If Curv2 is the

only strategy which works, it would be interesting to know if it can still

guarantee termination where there are dynamic obstacles and multiple

trails.

5.5 Dynamic Obstacles
In this section, we consider modifying the problem so that obstacles can be

added or removed from the environment whilst the robot is on the trail.

Initially, each obstacle can be in one of two states, “on” or “off”. If an

obstacle is “on”, then it is in the environment and the robot can detect and

follow its boundary as in the static case. If an obstacle is “off”, then it is

not in the environment.

117

Global nextFlow = initial inflow

int getOutflow(int inflowID)

update nextFlow to next clockwise flow

while(nextFlow.type = Inflow)

getOutflow(nextFlow.ID)

update nextFlow to next clockwise flow

end while

return nextFlow.ID

end subroutine

If the robot is following an obstacle’s boundary, the obstacle cannot return

to the “off” state. An obstacle cannot transition to the “on” state if the

robot is inside the space occupied by its outer perimeter. Note that this

includes cavities which may reside inside an obstacle. A robot must not

become trapped inside a cavity of an obstacle thereby preventing it from

reaching the target.

These assumptions are realistic for an industrial setting. In an industrial

setting, objects could fall onto the trail and this is represented by the “off”

to “on” transition. It is assumed that no obstacles will be dropped onto the

robot. An obstacle can be removed from the environment during the

robot’s movement towards the target. This is represented from the

transition from “on” to “off”.

We have concluded that obstacles cannot be dynamic for Curv2 to

guarantee termination. Consider the trail in Figure 5-8 left. On that trail, a

robot at I1 would move to O2 and a robot at point I2 would move to O1.

Now consider an obstacle transitioning to the “on” state in the position

shown in Figure 5-8 right. Now, inflow I1 is paired with outflow O1 and

inflow I2 is paired with outflow O2.

Figure 5-8 Left: With no obstacle, I1/O2 and I2/O1 are pairs

Right: With an obstacle, I1/O1 and I2/O2 are pairs

118

If the obstacle was “off” a robot at I1 would move to O2. At, I2, it expects to

move to O1. However, if the obstacle becomes “on” whilst it is moving

from O2 to I2, it moves back to O2. The robot will then become stuck in an

“unreachable” portion formed by O2 and I2 and can never move to O1 until

the obstacle is “off” state when the robot reaches I2.

The opposite case, where the robot requires an obstacle to escape from an

“unreachable” portion, can also occur. Consider the trail with the obstacle

initially in the “on” state as depicted in Figure 5-9 left. The robot

encounters the obstacle at I1 and moves to O2. Then, it follows the trail

choosing to take the outflow associated with I2 at the self-intersection.

Figure 5-9 right illustrates the environment when the obstacle is “off”. If

this occurs, when the robot reaches I2, it travels to O2 and is now part of an

“unreachable” portion of the trail. The robot can only escape if the obstacle

is “on” when it is at I2.

Given these scenarios, it is apparent that restrictions must be placed on

dynamic obstacles so that Curv2 still guarantees termination. Any such

restrictions must, in combination, ensure that if the robot is following an

“unreachable” portion of the trail, the obstacle must change its state such

that the robot can get back on the “reachable” portions.

A simple restriction would require each obstacle to not change its state once

the robot comes into contact with any of the inflows associated with the

obstacle. “Unreachable” portions of the trail form when an obstacle

transition causes a change in the unique inflow/outflow pairing and by

preventing a transition, no change can occur. This restriction works by

preventing changes which cause sections of the trail to become

“unreachable”.

119

Figure 5-9 Left: With no obstacle, I1/O2 and I2/O1 are pairs

Right: With an obstacle, I1/O1 and I2/O2 are pairs

This simple restriction needs to be applied when the robot visits an inflow

associated with the obstacle. At other times, the obstacle’s state can

fluctuate with no impact on termination. This restriction is quite imposing

since it requires the obstacle’s state to be fixed at certain times.

5.6 Multiple Trails
In this section, the problem of multiple trails is considered. Obstacles are

assumed to be static and do not transition between states. Consider a robot

using Curv2 which starts at Si. The robot will travel along the trail and

reach Ti if there are no intersections or obstacles. This is a trivial scenario.

For a non-trivial scenario, each trail will intersect with another at least

once. Figure 5-10 illustrates several non-trivial environments featuring

multiple trails.

120

Figure 5-10: Examples of Curv2 in multi-trail environments

A robot starts at Si. Then it encounters an inflow Ii. When it leaves via the

Curv2 associated outflow Oi, it can reach either a target or an inflow to

another obstacle. If it leads to Ti, then Ti is uniquely associated with Oi and

therefore Ii and therefore Si. If it leads to another obstacle at inflow Ij, it

will uniquely leave via outflow Oj. If Oj leads to target Ti, then the unique

associations will be Si, Ii, Oi, Ij, Oj, Tj. This can be repeated for any finite

number of intermediate inflow/outflow combinations. Since Curv2 pairs

the equal number of inflow and outflows at each intersection uniquely,

there must be a unique pairing between Si and Tj.

121

5.7 Pairing Start and Targets
It may be desirable to allow the user to identify which target is associated

with the start instead of always traveling to the Curv2 default. Presumably,

this will require extra complexity but the aim is to minimize the additional

complexity. To achieve this, all that needs to be done is to introduce a user-

controlled mechanism which uniquely pairs the inflows and outflows of

each intersection. For instance, Curv2 allows only the pairing S1 to T1 and

S2 to T2 in Figure 5-11 left. However, what if we desired the pairing in

Figure 5-11 right?

Figure 5-11 Left: S1/T1 and S2/T2 are paired under Curv2

Right: S1/T1 and S2/T2 are desired

This can be accomplished by associating a finite non-negative integer, Z,

with each inflow to an intersection. Z represents the number of inflows

which the robot must count before it is eligible to leave the self-

intersection. Hence, a new algorithm, Curv3 can be written to

accommodate for Z and is shown in Figure 5-12.

As an example, in Figure 5-11 right, associate Z=1 with both the inflows.

Then, a robot starting at S1 enters the intersection with Z=1. S2 will be the

next inflow encountered. Z is decremented to 0 and Curv3 moves into step

5. In step 5, part i will cause the robot to leave at T1.

122

Figure 5-12 The Curv3 Algorithm

123

1. Set Counter C to zero. Start from point S. Go to step 2.

2. Move along curve ST until one of the following occurs:

(a) The target T is reached. Stop

(b) An obstacle is met. Follow the obstacle boundary in the local

direction left. Go to step 3.

(c) A self-intersection is met. Initialize A=0 and Z to the value

associated with the inflow. If Z=0, go to step 5, else go to step 4.

3. Follow the obstacle boundary until one of the following occurs:

(a) The target T is reached. Stop

(b) The curve ST is met at point P. One of the following steps is

executed:

i. The counter C reads zero and, at P, MA can move along curve ST

towards T. Leave and follow the curve ST. Go to step 2.

ii. The counter C is non-zero and, at P, MA can move along curve

ST towards T. Decrement counter C by one. Continue moving

along the obstacle boundary. Go to step 3.

iii. At P, MA cannot move along curve ST towards T. Increment

counter C by one. Continue moving along the obstacle boundary.

Go to step 3.

4. Increase A until an inflow In is encountered. Decrement Z. If Z=0,

then go to step 5. Otherwise, repeat step 4.

5. Increase A until one of the following occurs:

i. An outflow On is encountered and the counter C reads zero.

Leave the self-intersection via outflow On. Go to step 2.

ii. An outflow On is encountered and the counter C is non-zero.

Decrement counter C by one. Go to step 4.

iii. An inflow In is encountered. Increment counter C. Go to step 5.

A robot starting at S2 enters the intersection with Z=1. It encounters, and

ignores, T1 and T2 before reaching S1. At S1, Z is decremented to 0 and

Curv3 moves into step 5. S2 is the next inflow encountered and C is

incremented to 1. At T1, C is decremented to 0 and this causes the robot to

leave at T2.

Theorem 6: Under Curv3, a type one infinite loop can never occur.

Proof: Z is a finite quantity and, according to Curv3, can only decrease.

Given that there must be at least one inflow to the intersection, it follows

that Z must reach 0 eventually. At the inflow Ij where Z reaches 0, the

robot will behave as if it entered the intersection at Ij under Curv2. Curv2

guarantees that the robot will leave the intersection. ■

Given control of the outflow associated with each inflow, it may be

tempting to allow a target to be associated with more than one start. Figure

5-13 left illustrates the case where S1 and S2 lead to T1T2. The only way to

achieve this would be for multiple inflows to lead to a single inflow for at

least one intersection in the environment. If permitted, then termination

can no longer be guaranteed. For instance, consider the environment in

Figure 5-13 right below. In that environment, an infinite loop is created

around the center.

Although it is possible for termination to be guaranteed by choosing Z

carefully, it is outside the scope of this thesis. In this thesis, Z is always

chosen such that a unique pairing between inflows and outflows exists at

each intersection. Therefore, each start must be uniquely paired with a

unique target. This means that the robot will never leave via the same

outflow twice – a requirement necessary for guaranteeing termination.

124

Figure 5-13 Left: S1 and S2 lead to the same target T1T2

Right: An infinite loop is created in the center

Note that if there is an obstacle along the guide tracks, then there is no

guarantee that the robot will terminate at the desired target. However, it

should still uniquely terminate at one of the targets because the obstacle’s

inflows and outflows are uniquely paired. Consider the situation depicted in

Figure 5-14. On the left, the targets are uniquely paired but the unique

pairing changes on the right. This is because, according to the assumptions,

obstacles are “dynamic” and are not planned for, whereas tracks are “static”

and hence Z can be changed when the robot enters via an inflow. Hence, Z

is always 0 when it encounters an obstacle.

125

Figure 5-14 Left: Curv3 achieves a S1/T1 and S2/T2 pairing

Right: An obstacle changes the pairing.

126

Chapter 6
SensorBug: A Local, Range-Based Navigation

Algorithm for Unknown Environments

6.1 Introduction
This chapter presents a new navigation algorithm developed by the author

called SensorBug. It builds on the implementation experience in Chapter 2

and attempts to find an algorithm similar to TangentBug but without the

LTG requirement. SensorBug is a new algorithm designed to use range

sensors and with three performance criteria in mind: data gathering

frequency, amount of scanning and path length. SensorBug reduces the

frequency at which data about the visible environment is gathered and the

amount of scanning for each time data is gathered. It is shown that despite

the reductions, correct termination is still guaranteed for any environment.

The disadvantage is that SensorBug only works when each obstacle is

polygonal.

SensorBug is designed to achieve a fair balance between three competing

criterion: path length, data gathering frequency and amount of scanning.

Previously, data gathering frequency and amount of scanning has not been

given much consideration in any previous Bug algorithm. These include

Bug1 [1,62], Bug2 [1,62], Alg1[3], Alg2 [4], DistBug [5], Class1 [2], Rev1

[8], Rev2 [8], TangentBug [6], VisBug [16], HD-1 [9], Ave [17], and

CautiousBug [11]. SensorBug achieves this balance by implementing the

Q method which guarantees a finite number of leave points and a new

127

“moving to target” mode which ensures a smooth transition from the

“boundary following” mode.

6.2 The Q Method
In Chapter 3, it was suggested that for any Bug algorithm to guarantee

termination it necessarily has to use the “shrinking disc”. The “shrinking

disc” has a center at T and a radius equal to d(P,T) where P is the closest

point to the target ever detected. When a Bug algorithm transitions from

“boundary following” to “moving to target” mode, it must ensure that

obstacles which do not intersect or are not contained within the “shrinking

disc” will never be encountered. If not, then it is possible for an infinite

number of obstacles to be encountered and termination is not guaranteed.

Further, a Bug algorithm must supplement the “shrinking disc” a method to

keep the number of possible leave or hit points finite and ensure that the

robot can leave on at least one of those points if the target is reachable. If

the first criterion is not satisfied, the algorithm could have an arbitrarily

long path length as manifested in Class1. If the second criterion is not

satisfied, then the robot can circumnavigate O and conclude that a

reachable target is unreachable.

Q-Bug implements the Q method which assumes that each obstacle is

polygonal. Then, it generates a finite set of points, Q, for each polygonal

obstacle O. The procedure shown in Figure 6-1 shows how Q is generated:

128

Figure 6-1 A method for determining the set Q

Using this style of moving, there are only three possible transitions between

points where the robot has to stop. The first is called a vertex transition

because it is caused by a vertex on the followed obstacle. A vertex

transition is illustrated in Figure 6-2A for a robot at X moving to NC. The

second type of transition is called an occlusion transition because it is

caused by a perceived or actual separate obstacle obstructing boundary

following. An occlusion transition is illustrated in Figure 6-2B for a robot

at X moving to NC. The last visible point on the followed obstacle is

129

For each vertex V on an obstacle which intersects or is inside the

“shrinking disc”:

1) Place the robot at V and admit V into Q if not already in Q.

2) Without moving, use range sensors to follow O’s boundary in the

clockwise direction until either:

a) V is visible. Go to step 3.

b) O leaves the robot’s visible range. If caused by a vertex, drive to

that vertex. Otherwise drive to the last visible point. When the

robot stops, if that point is not in Q, admit that point into Q. Repeat

step 2.

3) Place the robot at V.

4) Without moving, use range sensors to follow O’s boundary in the

counter-clockwise direction until either:

a) V is visible. Choose another V and repeat.

b) O leaves the robot’s visible range. If caused by a vertex, drive to

that vertex. Otherwise drive to the last visible point. When the

robot stops, if that point is not in Q, admit that point into Q. Repeat

Step 4.

labeled NC*. Finally, an out-of range transition occurs when the followed

obstacle leaves the robot’s visible range as illustrated in Figure 6-2C. This

type of transition is impossible when the robot's sensor range, R, is infinite.

Figure 6-2: The three possible types of transition

Figure 6-3 illustrates finding Q for one particular V of one particular O. In

Figure 6-3A, the robot begins at V and proceeds to the next point in Q. In

Figure 6-3B, the robot travels to a vertex which is not on O. However, that

vertex is still considered part of Q. Clockwise circumnavigation continues

until V is visible in Figure 6-3E. The robot is placed at V and counter-

clockwise circumnavigation begins in Figure 6-3F. Finally, the additions to

Q are presented in Figure 6-3L.

Note that there are instances where Q is null because there are no vertices.

This could occur if the robot is trapped inside an obstacle as depicted in

Figure 6-4. Theorem 2 will show that SensorBug guarantees correct

termination for such environments.

The Q method must satisfy the second criteria. That is, if the target is

reachable then the robot will always leave on a point in Q. Theorems 10,

11, 12 and 13 will show that the Q method satisfies the second criteria if the

robot retrieves the closest point to the target in the visible environment PENV

130

and compares d(PENV,T) < d(P,T) for all points in Q visited during

circumnavigation. This effectively checks if PENV is inside the “shrinking-

disc”. The robot’s position X is considered a point in the visible

environment and hence d(PENV,T) ≤ d(X,T) must always hold.

Figure 6-3: Determining Q for a particular vertex

Figure 6-4: An instance where Q is null

131

6.3 Boundary Following Mode
To implement the Q method, SensorBug must ensure that the robot can

only leave at points within Q. If this did not occur, then the number of

leave points could be infinite and termination cannot be guaranteed. This

can be achieved by requiring the robot to travel to at least one vertex before

leaving.

Given the “shrinking-disc”, the leaving rule and implementation of the Q

method, the “boundary following” mode of SensorBug can be designed. It

can be assumed that at least one point PENV on O is visible when “boundary

following” begins. Hence, the following pseudo-code for boundary

following is shown in Figure 6-5.

Figure 6-5 Boundary following mode for SensorBug

132

1) Perform clockwise boundary following on the obstacle on which PENV

lies whilst updating P until either:

a) the robot reaches a vertex V on O. Go to step 2.

b) the robot completes circumnavigation around O. Target is

unreachable and SensorBug terminates.

2) Retrieve PENV. Locate the next clockwise point NC in Q associated with

V. Update P.

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, V is visible and it is in the clockwise direction,

the target is unreachable and SensorBug terminates.

Else,

drive to NC and repeat step 2.

To implement step 1a, a vertex can be detected before the robot has reached

it because a vertex will produce a sudden discontinuity in the range sensor

readings when attempting to follow O with range sensors. The only

eligible replacements of P are points that are on O’s boundary. To replace

P, an eligible point POBS must satisfy d(POBS,T) < d(P,T). In any case, if PENV

can replace P, the leaving condition should hold and the robot should

switch to “moving to target”.

Note that when driving to NC in step 2, the SensorBug algorithm thread can

sleep. That is, the robot does not have to continuously generate an LTG

[6], update F [5], check the M-line [1,3] or any other continuous task. An

implementation strategy to retrieve PENV is suggested in section 6.10. PENV

is retrieved using least amount of range scanning possible. Also, in Section

6.6, the use of multiple previously stored points [3] is discussed and a more

complicated “boundary following” mode is derived to use them.

6.4 Moving to Target Mode
Having established a “boundary following” mode, a compatible “moving to

target” needs to be designed. Amongst the tactile sensor algorithms, this

transition is straight-forward because the robot would already be inside the

“shrinking disc”. However, with range sensors, it is more complicated

because although the robot has located a point inside the “shrinking disc”

using range sensors, its actual position X may not be inside the “shrinking

disc”. Hence, care must be taken to ensure that no obstacles can be

admitted to the finite set in the “moving to target” segment when the robot

is outside the “shrinking disc”.

133

Other Bug algorithms with range sensors have overcome this problem in

different ways. In DistBug [5], only F is evaluated to generate PENV which

is inside the “shrinking disc”. If the leaving condition is satisfied, then the

robot travels directly to the target thereby guaranteeing that PENV will be

visited. In TangentBug [6], there is a transition phase where the robot

heads towards the node which caused leaving if the robot is outside the

“shrinking disc”. This terminates when the robot is inside the “shrinking

disc”. Whilst these solutions suit their respective algorithms, they would be

incompatible with SensorBug “boundary following”.

The pseudo-code in Figure 6-6 describes SensorBug’s “moving to target”

mode assuming a line-of-sight to PENV retrieved by a previous “boundary

following” segment or during SensorBug’s initialization:

Figure 6-6 SensorBug's “moving to target” mode

Clearly, this “moving to target” mode ensures that obstacles outside the

“shrinking disc” cannot be admitted since P must be visible in the

environment where a new PENV is retrieved. This implies that PENV must fall

134

Update P = PENV.

If P = T,

drive to the target and SensorBug terminates.

Else if P is on an obstacle,

perform “boundary following” on the obstacle which P is on

Else,

drive to P, retrieve a new PENV and repeat.

inside the “shrinking-disc” and therefore any obstacle which PENV should lie

on must also be inside the “shrinking-disc”.

Once again, it should be noted that whilst driving to PENV, the SensorBug

thread can sleep. However, this strategy may not achieve a desirable

balance between environment scanning frequency and path length. If the

user desires shorter path length at the expense of increased environment

scanning frequency, then the following strategy can be employed.

Assume that the only obstacles in the entire environment are the ones

within the current visible environment and that the currently visible

obstacles are thin walls. These assumptions were previously used in

TangentBug for the expected nodal distance to target calculations [6].

Draw a line from X to P. Then, identify all all vertex transitions. For each

vertex, draw a line from the vertex to the target and intersect it with the line

from X to P. In Figure 6-7 Left, Y1 and Y2 are stop points whereas in

Figure 6-7 Right, Y1 is not a stop point since the intersection is closer to the

target than the endpoint.

Figure 6-7: Illustration of stop points on two obstacles

135

The “moving to target” mode can be rewritten to accommodate stop points

as shown in Figure 6-8:

Figure 6-8 “Moving to target” mode with stop points

6.5 Scenarios
In this section, two examples of SensorBug are illustrated. In both cases,

the robot has infinite range sensors and stop points are used. In Figure

6-9A, the robot is identifies PENV along with Y1 and Y2 as stop points and

then drives to Y1. In Figure 6-9B, the robot retrieves PENV but since PENV

did not move, it drives to stop point Y2. In Figure 6-9C, PENV moves closer

to the target and the robot drives to stop point Y1. In Figure 6-9D, the

target is visible and the robot drives directly to it.

136

1) Update P = PENV. Evaluate stop points on the direct line segment

starting at X and ending at PENV.

If PENV = T,

drive to the target and SensorBug terminates.

Else If a stop point exists,

drive to the stop point. At the stop point, retrieve PENV and

repeat step 1.

 Else,

go to step 2.

2) If PENV is on an obstacle,

begin “boundary following” on the PENV’s obstacle.

Else,

drive to PENV. At PENV, retrieve PENV and go to step 1.

In Figure 6-10A, the robot identifies PENV and drives to stop point Y1. In

Figure 6-10B, PENV moves closer to the target and the robot drives to a new

stop point Y1. In Figure 6-10C, PENV moves closer to the target but this

time, there are no stop points and PENV lies on an obstacle. Therefore, the

robot transitions to “boundary following” mode. All points on O’s

boundary from PENV to V are eligible to replace P and P moves to PENV since

that is closest to T. The robot drives to V and since it has traveled to a

vertex, step 2 of “boundary following” is executed. In Figure 6-10D, PENV

has moved but d(P,T) < d(PENV,T) holds and the robot cannot leave. So, the

robot locates NC in Q and drives directly to it. In Figure 6-10E, PENV has

moved but once again the leaving condition does not hold and the robot

drives to NC in Q. In Figure 6-10F, PENV = T and hence the leaving

condition holds. Then Step 1 of “moving to target” drives the robot directly

to T where it terminates.

Figure 6-9: SensorBug example

6.6 Multiple Previously Stored Points
The “boundary following” mode presented in section 6.4 required only one

stored point to be maintained so that circumnavigation can be detected.

However, other Bug algorithms [3,4] have used multiple previously stored

points to simultaneously guarantee termination and reduce path length. If

137

the user wishes to tradeoff additional complexity and memory requirements

for lower path length then such a scheme is desired for SensorBug. In

SensorBug, termination is already guaranteed using one stored point so the

only purpose is to reduce path length. The new “boundary following”

mode with multiple stored points is presented.

Figure 6-10: SensorBug example

At a higher level of abstraction, the stored points scheme keeps track of

sections of O’s boundary which have already been explored by storing two

points NC and NCC. NC represents the furthest clockwise point on which the

leaving condition has been evaluated, likewise for NCC except that it

represents the counter-clockwise point. The scheme directs the robot to the

closest unexplored region along O should it find itself in a previously

explored region. The remaining details are necessary to guarantee that

SensorBug terminates correctly and to minimize memory requirements.

1) Perform clockwise boundary following on the obstacle on which PENV

lies whilst updating P until:

a) the robot reaches a vertex V on O. Go to step 2.

138

b) the robot completes circumnavigation around O. Target

is unreachable and SensorBug terminates.

c) a previously stored NCC point is visible. Drive to that point and go

to step 4.

2) Store NC = X and NCC = X along with dPATH(NC, NCC). Locate the next

clockwise point NC in Q associated with V. Update P. Retrieve PENV.

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, a previously stored NCC point is visible,

Drive to the previously stored NCC point and go to step 4.

Else,

Drive to NC and go to step 3.

3) Update NC = X. Locate the next clockwise NC in Q associated with V.

Update P and the distance dPATH(NC, NCC). Retrieve PENV.

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, V is visible and it is in the clockwise direction,

the target is unreachable and SensorBug terminates.

Else If, a previously stored NCC point is visible.

Drive to the previously stored NCC point and go to step 4.

Else,

Drive to NC and repeat step 3.

4) If the current dPATH(NC, NCC) is less than the stored dPATH(NC, NCC),

Delete all stored points data associated with the current O except for

the previous NC. Go to step 5.

Else,

139

Delete all stored points data associated with the current O except for

the current NCC. Go to step 6.

5) Update NCC = X. Locate the next counter-clockwise point NCC in Q

associated with V. Update P and the distance dPATH(NC, NCC). Retrieve PENV.

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, NC is visible and it is in the counter-clockwise direction,

terminate with no success.

Else,

Drive to NCC and repeat step 5.

6) Update NC = X. Locate the next clockwise point NC in Q associated

with V. Update P, and the distance dPATH(NC, NCC). Retrieve PENV.

If d(PENV,T) < d(P,T),

go to “moving to target” mode.

Else If, NCC is visible and it is in the clockwise direction,

terminate with no success.

Else,

Drive to NC and repeat step 6.

It should be shown that NCC will always be the first visible previously

stored point as assumed in steps 1, 2 and 3 of multiple previously stored

points. Using Theorem 1 and the fact that clockwise boundary following is

always chosen, it follows that NCC will always be the first visible previously

stored point.

Theorem 1: The PENV which lies on O and initiates “boundary following”

must always reside on a previously unexplored region of O.

140

Proof: When a robot leaves an obstacle, this indicates that there exists PENV

which is closer to the target than any explored point on the currently

followed O. During the subsequent “moving to target” phase, P will always

be replaced with PENV closer to the target than its predecessor. When PENV

lies on an obstacle at the end of the “moving to target” segment, it is closer

to the target than any previously explored point and hence could not have

been explored previously. ■

6.7 Examples for Multiple Previously Stored Points
The following examples illustrate SensorBug with multiple previously

stored points. Figure 6-11 illustrates the first environment which was first

used by Sankar [3] in demonstrating Alg2. The beauty of this terrain is that

it is complicated enough to demonstrate multiple stored points but is not

overwhelming.

In part A, the robot detects that there are no stop points on the segment

from S to PENV and that PENV lies on an obstacle. The robot switches to

“boundary following” mode and drives to V. In part B, the robot stores NC

and NCC at X and determines that PENV is closer than P, consequently

leaving. In part C, the robot locates stop points Y1 and Y2 driving to Y1.

In part D, the robot attempts to find PENV closer than P but is unsuccessful

so it drives to Y2. In part E, PENV closer than P is detected and PENV is on an

obstacle with no stop points. The robot switches to “boundary following”

mode and drives to V. In part F, the robot stores NC and NCC at X and drives

to NC. In part T, the robot follows O’s boundary. In part H, the robot firstly

checks the leaving condition at X and then it detects a previously stored

NCC point is visible and drives to it. In part I, the robot evaluates the

141

clockwise and counter-clockwise directions and decides that the clockwise

direction is shortest and deletes all stored points associated with O except

for the current NCC. In part J, the robot follows O’s boundary not leaving as

in part B because P is closer to the target and hence the leaving rule does

not hold. In part K, NC lies on a perceived separate obstacle. Obviously,

NC cannot be stored alone. Instead, the point NC* is also stored and

associated with NC such that if NC* becomes visible in any future

“boundary following” mode, the robot will drive to NC if it is visible,

otherwise, it will drive to NC* and then to NC. In part L, the robot firstly

updates NC = X and its associated NC* point. Then it evaluates the leaving

condition which holds and it switches to “moving to target” mode. In part

M, the robot drives to stop point Y1. In part N, the target is visible and the

robot drives directly to it. Part O displays the final SensorBug path.

The second example is very similar to the first except for a modification

which makes the target unreachable. The robot proceeds as per parts A-L

of Figure 6-11. In Figure 6-12 part A, the robot drives to stop point Y1. In

part B, the robot finds that PENV lies on O and no stop points exist. It

switches to “boundary following”. In parts C, D, and E, the robot the robot

follows O’s boundary clockwise. In part F, a previously stored NCC point is

visible and the robot drives to it. In part T, the robot evaluates the path

lengths of the clockwise and counter-clockwise directions as illustrated. It

concludes that the counter-clockwise direction is shortest. In parts H, I, J,

K and L, the robot continues counter-clockwise boundary following. In

part M, NC* is visible. This is to be differentiated against NC* being visible

in part L since in part L NC* is not in the boundary following direction but

on a perceived separate obstacle. This implies that the target is

unreachable. Part N illustrates the final path.

142

Figure 6-11 SensorBug example

143

Figure 6-12: SensorBug example

144

6.8 Termination Proof
All Bug algorithms have proven, using reasoned arguments, their ability to

meet the termination requirements with finite path length. There are two

parts to SensorBug's proof. The first part shows SensorBug always

terminates. The second part shows that the robot will always terminate

correctly.

For this first part, the proof’s structure is illustrated in Figure 6-13. In the

center is the statement which is to be proved, that is, SensorBug always

terminates with finite path length. Path length is the sum of path lengths of

each “boundary following” and “moving to target” segment. Hence, there

are three sub-theorems which are used: 1) the number of “boundary

following” and moving to target” segments are finite, 2) the path length of

each “boundary following” segment is finite and 3) the path length of each

“moving to target” segment is finite. Each sub-theorem in turn has its own

sub-theorems which can be found on Figure 6-13. Firstly, however, it

should be shown that SensorBug always terminates when Q is null as

illustrated in Figure 6-4.

Theorem 2: If Q is null, SensorBug will always terminate correctly.

Proof: If no vertices exist, the robot must be completely surrounded by O.

Otherwise, an aperture would exist on which a vertex can be found. The

target can either be inside the enclosure or outside the enclosure. If the

target is outside the enclosure, the robot is never able define a leave point

because there are no convex points within the enclosure. Therefore, it will

circumnavigate the enclosure and correctly conclude that the target is

unreachable.

145

If the target is inside the enclosure, the line [S,T] should not intersect any

part of O. If the straight line [S,T] is intersected by O, then a vertex must

be formed to ensure a path to T is still available. Given that the straight

line [S,T] is not intersected by O, then the robot remains in “moving to

target” mode until T is reached with PENV never residing on O. ■

Figure 6-13: Proof structure for first proof section

Theorem 3: The number of obstacles which the robot can perform

“boundary following” on is finite

Proof: In “moving to target” mode, d(PENV,T) ≤ d(X,T) must hold since X

is considered a member of the visible environment. Hence, d(P,T) can only

decrease or remain constant in “moving to target” mode. In “boundary

following” mode, P can only be replaced if another point along O’s

boundary is closer to the target than P. Therefore, d(P,T) can only decrease

during SensorBug’s execution.

146

Consider the “shrinking-disc” centered at T with radius d(P,T). Hit points

(and therefore their corresponding “boundary following” segments) can

only begin on obstacles which intersect or are contained in that circle

because PENV must be inside the “shrinking” disc. According to the initial

assumptions, there can only be a finite number of obstacles intersecting or

contained within the “shrinking-disc”. As SensorBug is executed, the

radius decreases and no new obstacles can be added. ■

Theorem 4: The number of points in Q associated with V on a particular

O is finite.

Proof: Consider the three types of transitions which can occur to travel

from one point in Q to the next as illustrated in Figure 6-2. In one

complete circumnavigation, the number of vertex transitions is less than or

equal to the number of vertexes on O. There should be a finite number of

vertices since O is assumed to be polygonal. The number of occlusion

transitions is less than or equal to the number of vertices inside O’s convex

hull. The convex hull is of finite area and hence this quantity should be

finite. The number of out-of-range transitions can be determined by

where Li represents the length of the ith side on polygonal O.

Since the number of transitions is finite, it follows that the number of points

which the robot stops to retrieve PENV is also finite and hence the number of

points on which leaving can occur is also finite. ■

Given Theorem 4, it is imperative that the robot only leaves at points in Q.

With multiple stored points, the driving to the NCC point must be conducted

such that in the subsequent clockwise or counter-clockwise segment, only

147

 ∑ i iLR /

points in Q can evaluate the leaving condition. Hence, the reason why the

robot must visit NCC, which will always be a vertex, before making the

decision.

Theorem 5: The leaving rule can only hold once per point in Q.

Proof: If the leaving rule holds at a particular X in Q, then during the

subsequent “moving to target” segment, P is updated to the PENV which

caused the leaving rule to hold. Therefore, if the robot visits X again and

retrieves PENV, d(PENV,T) ≥ d(P,T) will necessarily hold and the leaving

condition can never hold. ■

Corollary 1: The number of “boundary following” and “moving to

target” segments is finite because leaving can occur only finitely many

times.

Theorem 6: There are a finite number of transitions involved in one

“boundary following” segment.

Proof: If the robot has visited V to align itself with Q, then Theorem 4 can

be used to prove finite transitions for the circumnavigation which follows.

When the robot has just begun “boundary following”, consider the finite

area A formed by the straight lines [X,PENV], [X,V] and along O’s boundary

from PENV to V as illustrated in Figure 6-14. A finite area contains finitely

many obstacles, and each obstacle contains a finite number of vertices, so

there can only be a finite number of vertices associated with A.

Whilst driving to V, the robot can only drive inside A. This can best be

observed by considering two cases. First, consider if V is visible at X.

Then, the robot will drive straight towards V. Second, consider if only PENV

is visible. In that case, the robot will drive straight to PENV and then follow

148

O’s boundary to V. Anything in the middle will involve the robot traveling

inside A.

Figure 6-14: Illustration of A and the robot’s subsequent maneuvers to V

Since the number of vertices is finite and the robot can only drive inside A,

then the number of vertex and occlusion transitions is bounded by the

number of vertices in A. The number of out-of-range transitions is bounded

by),(/ VPdR ENVPATH ■

Theorem 7: Each transition is of finite length.

Proof: For a robot with finite R, a transition cannot occur if it is not

visible. Hence, the length of each transition is bounded by R. For a robot

with infinite R, each transition is bounded by the length to the vertex

causing either the vertex or occlusion transition. This length is finite

because O’s perimeter is finite. ■

Corollary 2: The path length of each “boundary following” segment is

finite because it is composed of a finite number of transitions, each of

which have finite length.

Theorem 8: During any “moving to target” segment there is a finite

number of times for which PENV can change.

149

Proof: At any given X, if the line segment [X,T] is free of obstacles, then

there can be at most),(/ TXdR number of PENV changes. If R is infinite

then T is visible and no changes are needed.

However, if an obstacle obstructs [X,T], then for PENV to not lie on O, a

deviation is necessary. Consider the vertex V associated with such a

deviation as illustrated in Figure 6-15. PENV is always associated with V

because that association will always yield a PENV which is closer to the

target than any other PENV’ which is not associated with V. Such a situation

is illustrated in Figure 6-15.

Figure 6-15: PENV must always be associated with a vertex V if deviation

from [X,T] has occurred and PENV does not lie on O

Since PENV represents the minimal point in the environment and PENV is not

on an obstacle, it follows that d(V,T) > d(PENV,T) must always hold. P is

assigned to PENV and this means that the “shrinking-disc” will exclude V.

Any future PENV retrieved must fall inside the “shrinking-disc” because the

current PENV is always visible at the point where P was reassigned to PENV.

This argument implies that each V can be associated with a PENV at most

once. Given that the number of polygonal obstacles which intersect or are

150

inside the “shrinking-disc” is finite, the number of vertices is finite and

therefore the number of times which PENV can change is also finite. ■

Theorem 9: Each change of PENV produces a path of finite length.

Proof: For a robot with infinite range sensors and PENV the maximum path

length from X to PENV is 22),(),(TPdTXd INF− where PINF is the point on the

infinitely extended line starting from X to PENV which is closest to the

target. The lines [X,PINF] and [PINF,T] should always be perpendicular.

Hence a right-angled triangle can be formed between the line segments

[X,PINF] and [PINF,T]. Then Pythagoras Theorem can be applied to achieve

the final result. This is illustrated in Figure 6-15 where PINF = PENV.

For a robot with finite range sensors, each segment’s path length cannot

exceed R. ■

Corollary 3: The path length of each “moving to target” segment is finite

because it is composed of a finite number of PENV changes, each of which

have finite length.

Corollary 4: Given corollary 1, 2 and 3, it follows that the path length of

SensorBug is finite because there are a finite number of “boundary

following” and “moving to target” segments each of which have finite

length.

This next part of the proof involves showing that SensorBug always

terminates with the correct result. Whilst corollary 4 implies that a result

will always be achieved, this part shows the correct result will always be

achieved. There can only be two results, the target is unreachable or the

151

target is reached. If the target is unreachable then the robot cannot reach it.

However, if the target is reachable then it could incorrectly conclude that

the target is unreachable if it circumnavigates O. The following theorems

prove that it should never occur with SensorBug.

Proposition 1: For every obstacle, there is always a non-empty and finite

set of points C for which the distance to target is minimal compared to the

rest of the obstacle. Figure 6-16 illustrates some examples.

Figure 6-16: C illustrated for two obstacles

Proposition 2: The line segment from any Ci to T does not intersect O.

Proposition 3: Any point in the line segment from Ci to T (excluding Ci

itself) is closer to the target than any point on O.

Theorem 10: During “boundary following” of a particular O, the

minimum value of d(P,T) is d(Ci,T) for a Ci on O.

Proof: Firstly, for the robot to perform “boundary following” on O, PENV

must have resided on some point on O. Hence, initially d(P,T) ≥ d(Ci,T)

must hold. Since only points on O are eligible to replace P, the minimum

value which d(P,T) can achieve is d(Ci,T) on that particular O. ■

152

Theorem 11: All the line segments from Ci to T are at least partially

visible from at least one point in the subset of Q associated with the

starting vertex V.

Proof: For a vertex transition, consider the robot’s visible environment at

both X and NC. Any line originating from a point on O within X to NC

inclusive will fall inside the combined visible environment. Similarly, for

an occlusion transition, the any line originating from X to NC* will be

visible from the combined visible environment at X and NC. This also

holds for an out-of-range transition. ■

Theorem 12: If the robot acquires PENV at X where d(X,T) < d(Ci,T), the

leaving condition will always hold at X.

Proof: At any point where PENV is retrieved, X is considered part of the

visible environment, hence the relationship d(PENV,T) ≤ d(X,T) always

holds. Given the assumption d(X,T) < d(Ci,T), it follows that d(PENV,T) <

d(Ci,T). Theorem 10 suggests that d(P,T) ≥ d(Ci,T). Hence, d(PENV,T) ≤

d(P,T), the leaving condition, must be hold at X. ■

Theorem 13: If a Ci to T line segment is partially visible, the leaving

condition will always hold.

Proof: Assume that all points in Q are such that d(Qi,T) ≥ d(Ci,T). If one

point in Q does not satisfy that criterion, then Theorem 12 applies and the

robot leaves O as required. Theorem 11 shows that at least one point in Q

will have a Ci to T line segment partially visible. At that point, Ci is visible

and d(X,T) ≥ d(Ci,T) holds. Furthermore, proposition 3 implies that if a Ci

to T line segment is visible then there exists a point Ci* on the line Ci to T

such that d(Ci,T) > d(Ci*,T). Hence, the relationship

d(X,T) ≥ d(Ci,T) > d(Ci*,T) holds. Since Ci* is visible and

d(X,T) > d(Ci*,T) holds, it follows that d(PENV,T) ≤ d(Ci*,T). Theorem 10

153

suggests that d(P,T) ≥ d(Ci,T) and consequently d(P,T) > d(Ci*,T). Hence,

d(PENV,T) ≤ d(P,T), the leaving condition, must be hold at X. ■

Given Theorems 10, 11, 12 and 13, it is imperative that any line originating

from O is visible from at least one of the members of Q associated with

every V on O. “Boundary following” with multiple stored points has been

designed specifically to ensure that this holds. If an NCC point is visible, the

robot would have tested the leaving condition at X before driving to NCC.

Similarly, if the robot is executing step 5 or step 6 then it tests the leaving

condition at X before concluding that T is unreachable. These measures

ensure that the Ci to T line is visible for an obstacle which does not prevent

termination.

6.9 Suggested Implementation Strategies
It is desirable to minimize the range sensor usage at each point in Q.

Whilst, the boundary following part must be performed, a sub-algorithm

“getPenv()” can be devised to minimize the scanning required to retrieve

PENV. At a higher level of abstraction, “getPenv()” firstly checks to see

robot is capable of scanning inside the “shrinking-disc” given its current

position and R. If incapable, then no attempt is made. If it is capable, then

scanning should begin directly at T. If d(X, PENV) = R and PENV lies on

[X,T] then obviously that is the minimum point in the environment and no

further scanning should occur. Otherwise, scanning should “fan out” until

scanning inside the “shrinking-disc” is no longer possible.

“getPenv()” assumes an angular resolution of AngleRes and that

subroutines “isInsideDisc()” and “getMinPOnLine” are available. These

154

will be explored later. Pseudo code for “getPenv()” is shown in Figure

6-17.

Figure 6-17 Suggested code for getPenv

Subroutine “getMinPOnLine(scanAngle)” returns the closest point to the

target, PLINE, on the left and right scan lines specified by “scanAngle”.

“scanAngle” is always non-negative and measured with respect to the line

[X,T]. For instance, Figure 6-18 part A shows that if “scanAngle” is 0 then

PLINE is the intersection of the line [X,T] with O. Figure 6-18 part B shows

that as “angle” increases then PLINE is the point where either the left or right

line intersects the obstacle since they are equidistant. Figure 6-18 part C

155

Subroutine getPenv(X, R, T, P)

scanAngle = 0

PENV = X

If d(X,T) > R+d(P,T)

return PENV

Else

While isInsideDisc(scanAngle, PENV, P, X, R, T)

PLINE = getMinPOnLine(scanAngle)

if d(PLINE,T) < d(PENV,T)

PENV = PLINE

end if

scanAngle = scanAngle + AngleRes

end while

return PNEW

 end if-else

shows that PLINE occurs on the right where the lines [X, PLINE] and [PLINE, T]

are perpendicular.

Subroutine “isInsideDisc(scanAngle, PENV, P, X, R, T)” checks if any point

on the scan line parameterized by scanAngle, X and R is inside the disc

centered at T with a radius the smaller of d(PENV,T) and d(P,T). In other

words, the subroutine checks if a PLINE along the scan line could possibly

replace the smaller of PENV and P. To implement this, perform

getMinPOnLine(scanAngle) on the scanline assuming that no obstacles are

visible and therefore without actually taking a scan. Then, if d(PLINE,T) <

d(min(PENV,P),T), a potential replacement for PENV or P is possible.

Figure 6-18: The robot calls “getMinPOnLine” with varying “angle” and

obtains PLINE at different locations

6.10 Conclusion
This thesis presented SensorBug which solves the Bug problem for an

environment of polygonal obstacles. To allow the robot to gather data only

at fixed intervals necessarily requires that the environment be made of

156

polygonal obstacles. Otherwise, a curve on the convex hull will always

require continuous data gathering for the robot to follow its boundary.

Another solution, which could be further investigated, is to allow the robot

to follow the obstacle’s boundary from a distance. This may allow non-

polygonal obstacles to be included.

It may be tempting to compare SensorBug’s path length with other Bug

algorithms but recall that a fundamental property of Bug algorithms is

making arbitrary decisions in spite of the uncertainty. For example, when

the robot needs to follow an obstacle, it does not know whether to do so in

a clockwise or counter-clockwise fashion. A lucky guess could reduce path

length. Therefore, it is quite meaningless to compare algorithm path

lengths when an environment could be constructed to favor one algorithm

over another. This was quite well observed in [1,62] where if the

environment had many intersections with the M-line, Bug2 fared much

worse than Bug 1.

One of the features of SensorBug is that only vertexes, occlusions and out-

of-range transitions are required except when a previously stored NCC point

is observed. These are all essential to boundary following. It was decided

that detecting vertices, occlusions and out-of-range transitions which are

not associated with the V would be too complicated and not worth the

potential benefits. These benefits include a simpler model of Q where the

obstacle is effectively delimited by vertices and a shorter path length when

a previously stored NCC point is observed.

157

Chapter 7
Summary and Significant Findings

7.1 Summary
Bug algorithm performance varies greatly depending on the environment.

TangentBug produces the shortest path in environments with wider spaces

that allow it to make use of its range sensors. Here, TangentBug can drive

directly towards a vertex whereas other algorithms have to rely on wall

following. The second shortest path in environment A (Figure 2-4) was

achieved by DistBug, because it uses range sensors to immediately detect

that the target is visible. In environment B (Figure 2-6), Rev2 produced the

shortest path, because the alternative wall following strategy minimized

wall-following paths globally. In environment C (Figure 2-8), DistBug

produced the second shortest path because its range sensor allows the robot

to leave an obstacle earlier. In environment D (Figure 2-10), LeaveBug and

Bug1 tied for the second shortest path, as the environment required one

continuous circumnavigation.

As for implementation complexity, we subjectively ranked the Bug

algorithms from simple to complex as: Class1, Bug2, Bug1, OneBug,

LeaveBug, DistBug, Alg2, Rev2, Alg1, Rev1 and finally TangentBug.

Simulations were conducted both in a perfect, noise-free world, as well as

under more realistic noise settings with small errors in sensor reading and

localization. In simulation runs with noise, we encountered situations

where algorithms did not terminate, terminated incorrectly or terminated at

158

an inadequately large distance from the target. Although performance

comparisons under noise were not the main focus, it needs to be noted that

Bug algorithms in general do not exhibit fault-tolerance properties, which

are the advantage of probabilistic navigation techniques [20, 24, 25].

It was established that “moving to target” and “boundary following” were

essential to any Bug algorithm. Further, a Bug algorithm needs a method to

ensure that its path will not be arbitrarily long. Five methods were

identified and various Bug algorithms were classified into them. The

disabling segments method was used to create a new Bug algorithm

OneBug which guarantees only one hit point per disabling segment. Then,

two more methods were created. The finite leave points was used to create

the new Bug algorithm LeaveBug which guarantees only one leave point

per enabling segment. Finally, the Q method is to be used as a basis for a

new Bug algorithm SensorBug which will use range sensors in a simple

fashion to guarantee termination.

Bug1+ was also developed to shorten the path lengths produced by Bug1.

This raised a question for future research as to what the Bug algorithms

should do when an obstacle is completely circumnavigated. Clearly, if the

robot is given full information about an obstacle then there are much better

ways in which it can leave.

TangentBug produces the shortest path because of the LTG to assist it in

finding shortcuts during the “boundary following” segment and to travel to

VS. DistBug has an advantage over Alg2 since it can use the PSD sensor to

scan for points inside the disc centered at T with radius dmin(T). Alg2

produces shorter paths than Bug2 because the robot is not constrained to

159

leave on the M-line. Bug1 produces the longest path because it must

circumnavigate O.

Four new aspects of guide track following extending the Curv1 algorithm

were explored. Firstly, self-intersections were permitted and Curv2 was

developed to ensure termination. Curv2 works on the idea that a small

obstacle can be placed on the intersection and this allows Curv1 to

guarantee termination. Secondly, we explored whether Curv1 was the only

algorithm which could guarantee termination without localization. It was

shown that it is the only such algorithm. Thirdly, dynamic obstacles were

introduced. These obstacles can change status during the robot’s journey.

It was found that without significant restrictions, termination cannot be

guaranteed. Lastly, environments which contain multiple trails were

explored. It was shown that a unique pairing between start and targets was

always achieved and hence termination is guaranteed. If a particular

start/target pair is desired, a non-negative Z value can be associated with

particular inflows to intersections. Then, Curv3 can be applied to achieve

the desired pairing. However, it was observed that the desired pairing may

not be achieved if an obstacle does not allow the robot to reach the

intersection.

7.2 Significant Additions to the Bug Family
Foremost, the development of SensorBug is a significant improvement

because it reduces the amount of range sensor data which needs to be

gathered. In SensorBug, data only needs to be gathered on the blocking

obstacle and on the closest point to the target at the current location. It also

reduces the frequency at which sensor data needs to be gathered, restricting

it to three types of transition points. SensorBug also incorporates the

160

previously stored points concept which was first suggested in Alg1 and

Alg2.

The analysis of Bug algorithm termination is also important because it

allows consideration of the “crux” of the Bug algorithm, independent of all

the other nice features which an algorithm may possess. It was found that

there are currently six methods which exist in current algorithm. Further

analysis of these methods produced OneBug, MultiBug and LeaveBug.

These algorithms incorporate the methods outlined and contain no frills or

extra features. A seventh method was found, but it relies on the obstacles

being polygonal and it was used in the formation of SensorBug. Future

Bug algorithms will utilize one of the methods but for a truly unique new

Bug algorithm, a new method must firstly be created.

A theoretical analysis was performed on Bug algorithms on semi-convex

obstacles and this revealed that algorithms which could quickly leave were

always going to outperform algorithms which were more conservative. This

analysis has implications for the Bug algorithms on real robots since

unknown environments may be offices, homes or outdoors where the vast

majority of obstacles are semi-convex. Of the examined algorithms, the

order was TangentBug, DistBug, Alg2, Alg1, Bug2 and Bug1.

7.3 Future Work
Future work can involve implementing and simulating all the Bug

algorithms contained in Chapter 1. The results can be added to those in

Chapter 2 and a more detailed study will be the result. Another area an

improvement to the Bug1+ algorithm which will minimize the distance to

target when full circumnavigation has been performed. Investigations on

161

Environments with multiple semi-convex obstacles can also be performed

with many more Bug algorithms. Subsequent analysis is likely to yield a

better understanding of Bug algorithm behaviour on this special class of

obstacle. An upper bounds on SensorBug's path length can also be found.

Although it has been shown that SensorBug's path length is finite, an upper

bounds on path length would be preferable since it allows comparison to

other Bug algorithms.

Bug algorithms can also be tested in simulation environments where

localization error is introduced to see which are more robust. The Bug

algorithms can be combined with Simultaneous Localization and Mapping

or landmark recognition techniques to compensate for the introduced error.

162

References

[1] V. Lumelsky and A. Stepanov. Path planning strategies for a point

mobile automaton moving amidst unknown obstacles of arbitrary shape.

Algorithmica, vol. 2, pp. 403-430, 1987.

[2] H. Noborio. A path-planning algorithm for generation of an

intuitively reasonable path in an uncertain 2-D workspace. Proc. of the

Japan-USA Symposium on Flexible Automation, Pages 477-480, July 1990

[3] A. Sankaranarayanan and M. Vidyasagar. A New Path Planning

Algorithm For Moving A Point Object Amidst Unknown Obstacles In A

Plane. IEEE Conference on Robotics and Automation, Pages 1930-1936,

1990

[4] A. Sankaranarayanan and M. Vidyasagar. Path Planning for Moving

a Point Object Amidst Unknown Obstacles in a Plane: A New Algorithm

and a General Theory for Algorithm Development. Proc. of the IEEE Int.

Conf. on Decision and Control, Pages 1111-1119, 1991.

[5] I. Kamon and E. Rivlin. Sensory-Based Motion Planning with

Global Proofs. IEEE Transaction on Robotics and Automation, Vol. 13,

Pages 814-822, December 1997.

[6] I. Kamon, E. Rivlin and E. Rimon. TangentBug: A range-sensor

based navigation algorithm. Journal of Robotics Research, vol. 17, no. 9,

Pages 934-953, 1998.

163

[7] T Bräunl. Embedded Robotics. 2nd Edition, Springer, Berlin, 2006

[8] Y. Horiuchi and H. Noborio. Evaluation of Path Length Made in

Sensor-Based Path-Planning with the Alternative Following. Proc. of the

2001 IEEE International Conference on Robotics and Automation, Pages

1728-1735, May 2001.

[9] H. Noborio, Y. Maeda and K. Urakawa. Three or More Dimensional

Sensor-Based Path-Planning Algorithm HD-1. Proc. of the 1999 IEEE/RSJ

International Conference on Intelligent Robotics and Systems, 1999.

[10] S. L. Laubach and J. W. Burdick. An Autonomous Sensor-Based

Path-Planner for Planetary Microrovers. Proc. of the IEEE Int. Conf. on

Robotics and Automation, Pages 347-354, 1999

[11] E. Magid and E. Rivlin. CautiousBug: A Competitive Algorithm for

Sensor-Based Robot Navigation. Proc. of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Pages 2757-2762, 2004

[12] K. Kreichbaum. Tools and Algorithms for Mobile Robot Navigation

with Uncertain Localization. Ph.D thesis, California Institute of

Technology, 2006

[13] V. Lumelsky and S. Tiwari. An Algorithm for Maze Searching with

Azimuth Input. Proc. of the 1994 IEEE Int. Conf. On Robotics and

Automation, pp. 111-116, 1994

[14] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers,

1991

164

[15] A. Stentz. Optimal and Efficient Path Planning for Partially-Known

Environments. Proc. of IEEE Conference on Robotic Automation, pages

3311-3317,1994.

[16] V. J. Lumelsky and T. Skewis. Incorporating range sensing in the

robot navigation function. IEEE Transactions on Systems, Man and

Cybernetics, Vol. 20, Pages 1058-1068, 1990

[17] H. Noborio, R. Nogami and S. Hirao. A New Sensor-Based Path-

Planning Algorithm whose Path Length is Shorter on the Average. Proc. of

the 2004 Int. Conf. on Robotics and Automation, Pages 2832-2839, 2004

[18] H. Choset, K. Lynch, K. Hutchinson, G. Kantor, W. Burgard, L.

Kavarki and S. Thrun. Principles of Robot Motion: Theory, Algorithms and

Implementations. MIT, Cambridge, MA, 2005

[19] A. Sankaranarayanan and M. Vidyasagar. A New Algorithm for Robot

Curve-Following Amidst Unknown Obstacles, And a Generalization of

Maze-Searching. IEEE International Conference on Robotics and

Automation, Pages 2487-2494, May 1992

[20] S. Thrun et al. Probabilistic Algorithms and the Interactive Museum

Tour-Guide Robot Minerva. The International Journal of Robotics

Research, Pages 972-999, 2000

[21] H. Abelson and E. DiSessa. The Turtle Geometry. MIT Press,

Cambridge, Pages 176-199, 1980.

165

[22] T. Tsumura. Survey of Automated Guided Vehicle in Japanese

Factory. IEEE Conference on Robotics and Automation, 1986

[23] Kalman R. E, A New Approach to Linear Filtering and Prediction

Problems. Transactions of the ASME – Journal of Basic Engineering. Vol.

82: Pages 35-45, 1960

[24] G. Dissanayake et al. A Computationally Efficient Solution to the

Simultaneous Localization and Map Building (SLAM) Problem. IEEE

International Conference on Robotics and Automation, Pages 1009-1014,

April 2000

[25] T. Bailey. Constrained Initialization for Bearing-Only SLAM. IEEE

International Conference on Robotics and Automation, Pages 1966-1971,

September 2003

[26] J. Ng and T. Bräunl. Performance Comparison of Bug Navigation

Algorithms. Journal of Intelligent Robotic Systems, Pages 73-84, April

2007

[27] J. Ng and T. Bräunl. Robot Navigation with a Guide Track. Fourth

International Conference on Computational Intelligence, Robotics and

Autonomous Systems, Pages 37-43, November 2007

[28] A. Yufka and O. Parlaktuna. Performance Comparison of Bug

Algorithms for Mobile Robots. 5th International Advanced Technologies

Symposium, May 2009.

166

[29] Mobile Robots Inc, ActivMedia Robotics, LLC,

http://www.mobilerobots.com/, 2008.

[30] V. Lumelsky and P. Stepanov. Effect of Uncertainty on Continuous

Path Planning for an Autonomous Vehicle. Proceedings of the 23rd

Conference on Decision and Control, pp. 1616-1621, December 1984.

[31] H. Noborio, Y. Maeda and K. Urakawa. A comparative study of

sensor-based path-planning algorithms in an unknown maze. Proc. of the

IEEE/RSI Int. Conf. on Intelligent Robots and Systems 2, pp. 909–916,

2000.

[32] C.H. Chiang, J.S. Liu and Y.S. Chou. Comparing Path Length by

Boundary Following Fast Matching Method and Bug Algorithms for Path

Planning. Opportunities and Challenges for Next-Generation Artificial

Intelligence, Springer, pp. 303-309, 2009

[33] J. Sethian. Level Set Methods. Evolving interfaces in geometry, fluid

mechanics, computer vision, and materials science. Cambridge University

Press, Cambridge, 1999

[34] C.H. Chiang and J.S. Liu. Boundary Following in Unknown Polygonal

Environment Based on Fast Marching Method. IEEE International

Conference on Advanced Robotics and its Social Impacts, 2008

[35] S LaValle. Planning Algorithms. University of Illinois Press, 2003

[36] J. Antich and A. Ortiz. Bug2+: Details and formal proofs. Technical

Report A-1-2009, University of the Balearic Islands, 2009. The paper can

167

be downloaded from http://dmi.uib.es/ ~ jantich/Bug2+.pdf

[37] J. Antich, A. Ortiz and J. Minguez. ABUG: A Fast Bug-derivative

Anytime Path Planner with Provable Suboptimality Bounds. The 14th

International Conference on Advanced Robotics. ICAR'09, Munich

(Germany), 2009

[38] J. Antich, A. Ortiz and J. Minguez. A Bug-Inspired Algorithm for

Efficient Anytime Path Planning. International Conference on Intelligent

Robots and Systems. IROS'09 St. Louis (USA), 2009

[39] J. Pearl. Heuristics. Addison-Wesley, 1984.

[40] R. Zhou and E. Hansen. Multiple sequence alignment using A*. Proc.

of the National Conference on Artificial Intelligence, 2002.

[41] J. Antich and A. Oritz. Bug-based T2: A New Globally Convergent

Potential Field Approach to Obstacle Avoidance. Proceedings of the 2006

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.

430-435, October 2006.

[42] J. Antich and A. Ortiz. Extending the potential fields approach to

avoid trapping situations. Proceedings of the Intl. Conference on Intelligent

Robots and Systems, pp. 1379–1384, 2005.

[43] Y. Koren and J. Borenstein. Potential field methods and their inherent

limitations for mobile robot navigation. Proceedings of the Intl. Conference

on Robotics and Automation, pp. 1398–1404, 1991.

168

http://dmi.uib.es/~jantich/Bug2+.pdf
http://dmi.uib.es/~jantich/Bug2+.pdf
http://dmi.uib.es/~jantich/Bug2+.pdf

[44] O. Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. Intl. Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[45] S. Charifa and M. Bikdash. Adaptive Boundary-Following Algorithm

Guided by Artificial Potential Field for Robot Navigation. IEEE Workshop

on Robotic Intelligence in Informationally Structured Space, pp. 38-45,

March 2009.

[46] C. O'Dunlaing and C. K. Yap. A retraction method for planning the

motion of a disc. Journal of Algorithms, vol. 6, pp. 104-111, 1985.

[47] D. T. Lee and R. L. Drysdale. Generalization of Voronoi diagrams in

the plane. SIAM Journal on Computing, vol. 10, pp. 73-87, 1981.

[48] D. Leven and M. Sharir. Planning a purely translational motion for a

convex object in two-dimensional space using generalized Voronoi

diagrams. Discrete and Computational Geometry, vol. 2, pp. 9-31, 1987.

[49] M. Sharir. Algorithmic motion planning. Handbook of Discrete and

Computational Geometry, 2nd Ed., J. E. Goodman and 1. O'Rourke, Ed.

New York: Chapman and Hall/CRC Press, pp. 1037-1064, 2004.

[50] N. J. Nilsson. A mobile automaton: An application of artificial

intelligence techniques. International Joint Conference on Artificial

Intelligence, Washington, DC., pp. 509-520, May 1969.

[51] J. S. B. Mitchell. Shortest paths and networks. Handbook of Discrete

and Computational Geometry, 2nd Ed., J. E. Goodman and J. O'Rourke,

Ed. New York: Chapman and Hall/CRC Press, pp. 607-641, 2004.

169

[52] M. Mikson and A. Russell. Close Range Inspection Using Novelty

Detection Results. Intelligent Robotics and Applications, Springer, pp.

947-956, 2009.

[53] W. Ko, L. Senevieatne, S. Earles. Space representation and map

building-A triangulation model to pathplanning with obstacle avoidance.

Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent

Robots and Systems, vol. 3, pp. 2222–2227 (1993)

[54] G. Foux, M. Heymann, A. Bruckstein. Two-dimensional robot

navigation among unknown stationary polygonal obstacles. IEEE

Transactions on Robotics and Automation 9, 96–102 (1993)

[55] R. Jarvis. Collision-Free Trajectory Planning Using the Distance

Transforms. Mechanical Engineering Trans. of the Institution of Engineers

Australia, September 1985

[56] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars Probabilistic

roadmaps for fast path planning in high dimensional configuration spaces.

IEEE Trans. on Robotics and Automation, vol. 12, pp. 566-580, 1996.

[57] R. Geraerts and M. H. Overmars. A Comparative Study of

Probabilistic Roadmap Planners. Workshop on the Algorithmic

Foundations of Robotics, pp. 43-57, 2002.

[58] C. Lucas, V. Lumelsky and A. Stepanov. Comments on “Dynamic

Path Planning for a Mobile Automaton with Limited Information on the

Environment”. IEEE. Transactions on Robotics and Automation, pp.

511-512, 1988.

170

[59] C. Yap. Algorithmic Motion Planning. Advances in Robotics, Vol. 1:

Algorithmic and Geometric Aspects (J. T. Schwartz and C. IC. Yap Eds.),

1987.

[60] J. Schwartz and M. Sharir. On the "Piano Movers" Problem: The Case

o f a Two-dimensional Rigid Polygonal Body Moving Amidst Polygonal

Barriers. Comm. Pure Appl. Math., 36, 1983.

[61] T. Lozano-Perez. Spatial Planning: A Configuration Space Approach.

IEEE Transactions on Computers, Vol. C-32, No. 2, 1983.

[62] V. Lumelsky and A. Stepanov. Dynamic Path Planning For A Mobile

Automaton With Limited Information On The Environment. IEEE

Transactions On Automatic Control, Vol. AC.31, No. 11, Nov. 1986.

[63] T. Skewis and V. Lumelsky. Experiments with a Mobile Robot

Operating in a Cluttered Unknown Environment. International Conference

on Robotics and Automation, pp. 1482-1487, 1992.

[64] I. Kamon, E. Rimon and E. Rivlin. Range-Sensor Based Navigation

in Three Dimensions. International Conference on Robotics and

Automation, pp. 163-169, 1999.

[65] J. Crowley. Navigation for an intelligent mobile robot. IEEE Journal

of Robotics and Automation, pp. 31-41, 1985.

[66] M. Drumheller. Mobile robot localization using sonar. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 325-332,

1987

171

[67] J. Leonard. Directed sonar sensing for mobile robot navigation. Ph.D

thesis, University of Oxford, 1990.

[68] A. Alfes. Sonar-based real-world mapping and navigation. IEEE

Journal of Robotics and Automation, 1987.

[69] H. Moravec and A. Alfes. High resolution maps from wide angle

sonar. International Conference on Robotics and Automation, March 1985.

[70] V. Lumelsky. A Comparative Study on the Path Length Performance

of Maze-Searching and Robot Motion Planning Algorithms. IEEE

Transactions on Robotics and Automation, pp. 57-66, 1991.

[71] S. Kim, J. Russell and K. Koo. Construction Robot Path-Planning for

Earthwork Operations. Journal of Computing in Civil Engineering, pp.

97-104, 2003.

[72] M. Trevisan, M. A. P. Idiart, E. Prestes and P. M. Engel. Exploratory

Navigation Based on Dynamical Boundary Value Problems. Journal of

Intelligent and Robotic Systems, vol. 45, no. 2, pp. 101-114, Feb. 2006.

[73] A. Masoud and S. Masoud. Motion planning in the presence of

directional and regional avoidance constraints using nonlinear,

anisotropic, harmonic potential fields: a physical metaphor. IEEE

Transactions on Systems Man and Cybernetics pp. 705 - 723, Nov. 2002.

[74] V. Lumelsky. Continuous Robot Motion Planning in Unknown

Environment. In Adaptive and earning Systems: Theory and Applications.

(ed. K. Narendra), Premium-Press, 1986.

172

[75] V. Lumelsky. Effect of Robot Kinematics on Motion Planning in

Unknown Environment. Proceedings of the 24th IEEE Conj. on Decision

and Control. December 1985.

[76] V. Lumelsky. Continuous Motion Planning in Unknown Environment

for a 3D Cartesian Robot Arm. IEEE International Conference on Robotics

and Automation, San Francisco, April 1986.

[77] K. Sun and V. Lumelsky. Computer Simulation of Sensor-Based Robot

Collision Avoidance in an Unknown Environment. Robotica. 1987.

[78] V. Lumelsky. Dynamic Path Planning for a Planar Articulated Robot

Arm Moving Amidst Unknown Obstacles. Automatica, Vol.23 No.5, pp.

551-570, September 1987.

[79] V. Lumelsky. Effect of Kinematics on Dynamic Path Planning for

Planar Robot Arms Moving Amidst Unknown Obstacles. IEEE Journal of

Robotics and Automation. June 1987.

[80] V. Lumelsky and K. Sun. Gross Motion Planning for a Simple 3D

Articulated Robot Arm Moving Amidst Unknown Arbitrarily Shaped

Obstacles. Proc. IEEE International Conf. on Robotics and Automation.

April 1987.

[81] V. Lumelsky. On the Connection Between Maze-Searching and Robot

Motion Planning Algorithms. Proc. of the 24th Conference on Decision and

Control, pp. 2270-2275, December 1988.

[82] V. Lumelsky and T. Skewis. A paradigm for incorporating vision in

173

the robot navigation function. IEEE Conference on Robotics and

Automation, April 1988.

[83] O. Ore. Theory of Graphs. Providence, RI: American Mathematics

Society, 1962.

[84] B. Bullock, D. Keirsey, J. Mitchell, T. Nussmeier. and D. Tseng.

Autonomous vehicle control: An overview of the Hughes project.

Proceedings of the IEEE Computing Society Conference on Trends and

Applications, 1983.

[85] A. Thompson. The navigation system of the JPL robot. Proceedings of

the 5th Joint International Conference on Artificial Intelligence, August

1977.

[86] H. Moravec. The Stanford cart and the CMU rover. IEEE Conference

on Robotics and Automation, 1993.

[87] R. Langer, L. Coelho and G. Oliveira. K-Bug, a new bug approach for

mobile robot's path planning. IEEE International Conference on Control

Applications, pp. 403-408, October 2007.

[88] L. Sciavicco and B. Siciliano. Modelling and Control of Robot

Manipulators. Springer, 2000.

[89] Y. Takahashi, T. Komeda, and H. Koyama. Development of assistive

mobile robot system: Amos. Advanced Robotics, vol. 18, no. 5, 2004.

[90] J. Mclurkin. Using cooperative robots for explosive ordnance disposal.

174

Massachussets Institute of Technology. Artificial Intelligence Laboratory,

1995.

[91] M. Littman, T. Dean, and L. Kaelbling. Markov games as a framework

for multi-agent reinforcement learning. Eleventh International Conference

on Machine Learning. San Francisco, pp. 157-163, 1994.

[92] NASA. Mars pathfinder project. California Institute of Technology, Jet

Propulsion Laboratory. Pasadena, CA, Tech. Rep., 1997.

[93] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, D. Lane. Path

Planning for Autonomous Underwater Vehicles. IEEE Trans. Robotics, vol.

23, no. 2, pp. 331-341, Apr. 2007.

[94] S. Ge, X. Lai, A. Mamun. Boundary Following and Globally

Convergent Path Planning Using Instant Goals. IEEE Trans. on Systems,

Man, and Cybernetics, Part B: Cybernetics, Vol. 35, No. 2, April 2005.

[95] Choset, H. Coverage for robotics – A survey of recent results. Annals

of Mathematics and Artificial Intelligence 31, pp. 113–126, 2001.

[96] Y. Huang, Z. Cao and E. Hall. Region filling operations for mobile

robot using computer graphics. Proceedings of the IEEE Conference on

Robotics and Automation, pp. 1607–1614, 1986.

[97] M. Ollis and A. Stentz: First results in vision-based crop line tracking.

IEEE International Conference on Robotics and Automation, 1996.

[98] S. Land and H. Choset. Coverage path planning for landmine location.

175

Third International Symposium on Technology and the Mine Problem,

Monterey, CA (1998)

[99] C. Lee. A framework of Adaptive T-S type Rough-Fuzzy Inference

Systems (AFRIS). PhD Thesis, The University of Western Australia, 2009.

[100] M. Sarkar and B. Yegnanarayana. Rough-Fuzzy Membership

Functions. IEEE International Conference on Fuzzy Systems in WCCI

1998, pp. 796-801, May 1998.

[101] M. Sarkar. Rough-fuzzy functions in classification. Journal of Fuzzy

Sets and Systems, vol. 132, pp. 353-360, 2002.

[102] L. Zadeh. Fuzzy Sets. Information and Control, pp. 338-353, 1965.

[103] P. Kouchakpour. Population Variation in Canonical Tree-Based

Genetic Programming. PhD Thesis, The University of Western Australia,

2008.

[104] L. Fogel, A. Owens and M. Walsh. Artificial Intelligence through a

simulation of evolution. Biophysics and Cybernetics Systems, pp. 131-156,

1965.

176

Appendix
Implementing the Bug Algorithms on EyeSim

A.1 The EyeSim Simulation System
The EyeSim [7] simulation system allows code for robots to be written and

simulated on a computer system. The programming language is C and the

RoBios library allows the programmer to work with a high level interface.

Once the code is written, it is compiled and loaded onto a robot in an

artificial environment. When started, the robot in the simulator will behave

according to the programmed code.

A.2 Common Modules
An algorithm is implemented in the navigation class and calls the common

modules. Common modules are used for consistency between simulations

and modularity. For instance, all navigation algorithms require completion

time to be measured and the timer module provides methods specifically

for that purpose. Figure A-1 shows the common modules and the

navigation module which can be altered for implementing a specific

algorithm.

177

Figure A-1 The class diagram of the common modules

A.2.1 The Timer Module
This module’s function is to measure the algorithm’s time performance. In

particular, it measures computation and driving time and returns these times

upon request. Although driving time is not measured in this study, it may

be needed in future applications.

The timer module fulfills its role by providing an abstract interface to the C

function clock(). The clock() function returns the time (in milliseconds)

spent in the processor of the calling process since execution began. Note

that the clock() does not include the time which the thread is sleeping.

The driving module handles all the functions associated with driving the

robot and reporting the total distance moved and total angle rotated. The

timer module records time taken processing navigation algorithms and time

spent driving. The user interface module handles all user interfacing

178

Smart Moving

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
face_target()
face_original()
orientate_to_wall(PositionType* coords)
drive_to_point(float distance, float direction)

User Interface
targ_dire : Integer
targ_dist : Double
g_r : Integer
g_c : Integer

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer
deg_to_rad() : Double
generate_targ_coords()

Helper
pos : PositionType
targ : PositionType
targ_dire : float
targ_dist : float

get_dist(PositionType* a, PositionType* b) : float
deg_to_rad(int degrees) : float
rad_range(float x) : float
pol_to_rect(float r, int theta, PositionType* ans) : PositionType
get_targ_dist() : float
get_targ_dire() : float
get_rel_targ_dire() : float
get_rel_dire(PositionType* p) : float

Driving
total_dist : float
total_turn : float

initialize_driving()
get_total_dist() : float
get_total_turn() : float
turn(float rads, bool record)
drive(float distance)
curve(float rads, float distance)

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

Navigation

main()

including setup of screens and reporting of statistics.

A.2.2 The Helper Module
The helper module provides low-level support to other modules. In

particular, the robot can get the target’s distance and direction by calling

methods found in the helper module. Currently, the helper module relies on

dead-reckoning to generate answers. In a future version, if landmark

recognition or sensor networks are used, these functions can be changed

and the rest of the system need not know.

A.2.3 The User Interface Module
The user interface module’s role is to interface between the program and

the user. When the program starts, it allows the user to edit the desired

direction and distance of the target. Figure A-2(a) shows the screen which

allows the user to edit the distance to target and Figure A-2(b) shows the

screen which allows the user to edit the direction to target.

Figure A-2 (a) Left. The user can edit the distance to target. (b) Right.

The user can edit the direction to target

The user interface module also displays the navigation results to the user.

Figure A-3 shows the screens which appear when convergence is achieved.

Figure A-3(a) shows computation and driving time, in milliseconds. Figure

179

A-3(b) shows distance traveled in metres and the rotation in radians. Figure

A-3(c) shows the number of calls to the math library or process-state() if

D* is run.

Figure A-3 (a) Left. Computation and driving times. (b) Centre. Total

distance traveled and total rotation performed. (c) Right. Calls to the

maths library or process-state() in D*.

A.2.4 The Driving Module
The driving module’s purpose is to record the total distance traveled and

the total rotation performed. Essentially, it provides a simpler interface to

the VW driving interface and extends functionality by tracking total

distance and rotation.

It allows the caller to specify whether it wishes to record a turning request

in total_turn. As will be seen later, some turning is not inherently generated

by the algorithm. Instead, it is hardware-dependent and it may be

interesting to remove this component from rotation results.

The driving module calls the timer module so that driving time is properly

separated from computation time. Figure A-4 shows the drive function in

the driving module. It calls end_think_start_drive() to denote that driving

has started and then end_drive_start_think() to denote that driving has

ended. Note that during driving, VWDriveWait() is not called and a busy

180

loop has replaced it. This is because VWDriveWait() puts the navigation

process to sleep and this distorts driving time results.

Figure A-4 The drive method

A.2.5 The Smart Moving Module
The smart driving module’s role is to provide abstract driving functions as

required by the main navigation algorithm. The has_goal_been_reached()

method determines if the robot is currently at the target. The

has_wall_been_reached() method determines if a wall has been reached.

The face_target() method will rotate the robot such that it faces the target.

The face_original() method will rotate the robot such that it faces the

origin. The orientate_to_wall() method will rotate the robot such that it is

parallel to the wall. The most complicated method, follow_the_wall(), is

depicted in Figure A-5 and it drives the robot such that it follows the wall.

Initially, the method checks if a wall is in front of the robot. If so, the robot

calls turn_not_move() and the robot turns on the spot as shown in Figure

A-6(a). Otherwise, the robot checks if a wall is to the right of the robot. If

so, the robot calls follow_wall_straight() and the robot follows the wall as

shown in Figure A-6(c). If not, the robot calls turn_and_move the robot

turns and moves as shown in Figure A-6(b). After calling the above

181

void drive(float distance){
total_dist = total_dist + distance;
end_think_start_drive();
VWDriveStraight(vw, distance, LINEAR_VELOCITY);
while(VWDriveDone(vw) == 0){

KEYRead();
}
end_drive_start_think();
VWGetPosition(vw, &pos);

}

methods robot aligns to the wall by calling the orientate_to_wall() method

as depicted in Figure A-6(d).

Figure A-5. The follow_the_wall method

A.3 Algorithm Implementation

A.3.1 Bug1 Implementation
The Bug1 algorithm is implemented by calling methods from the common

modules as shown in figure A-7. It shows that Bug1 implements the “drive

to target” and “follow the wall” states using the methods drive_to_target()

and follow_wall_Bug1() respectively.

182

void follow_the_wall(bool is_on_right){
if(is_on_right){

if(has_wall_been_reached()){
turn_not_move(FALSE);

}
else if(PSDGet(psd_right) >

WALL_DISTANCE+THRESHOLD){
turn_and_move(TRUE);

}
else{

follow_wall_straight(TRUE);
}

}
else{

if(has_wall_been_reached()){
turn_not_move(TRUE);

}
else if(PSDGet(psd_left) >

WALL_DISTANCE+THRESHOLD){
turn_and_move(FALSE);

}
else{

follow_wall_straight(FALSE);
}

}
}

Figure A-6. (a) Top left. Turn_not_move(). (b) Top right.

Turn_and_move() (c) Bottom left. Follow_wall_straight() (d) Bottom

right. Orientate_to_wall()

Figure A-7(a) The drive_to_target() function orientates the eyebot to the

target and drives towards it until either the target is reached or a wall is hit.

183

int drive_to_target(){
face_target();
while(TRUE){

if(has_goal_been_reached()){
face_original();
return TARGET_REACHED;

}
else if(has_wall_been_reached()){

return WALL_HIT;
}
drive(STEP);

}
}

Figure A-7(b) This function follows the wall according to Bug1.

184

int follow_wall_Bug1(){

PositionType leave; //closest position to the target
PositionType hit; //the current hit point
float min_dist; //the closest displacement to the target
float dist_to_min=0; //the number of steps to leave
float begin_dist = get_total_dist();

initialize_PD();
VWGetPosition(vw, &leave);
min_dist = get_targ_dist();
VWGetPosition(vw, &hit);

orientate_to_wall(FALSE);
while(TRUE){

if(get_dist(&hit, &pos)<=TARG_ERROR &&
(get_total_dist()-begin_dist)>TARG_ERROR){

break;
}
follow_the_wall(TRUE);
if(get_targ_dist()<min_dist){

min_dist = get_targ_dist();
VWGetPosition(vw, &leave);
dist_to_min = get_total_dist()-begin_dist;

}
}

/*Check the unreachability condition*/
if(get_dist(&leave, &hit)<=TARG_ERROR){

face_original();
return TARGET_UNREACHABLE;

}

/*Determine the shortest route to the min point. Then
follow the wall to the min point minimizing travel*/
if(dist_to_min < (get_total_dist()-begin_dist)/2){

while(get_dist(&leave, &pos)>=TARG_ERROR){
follow_the_wall(TRUE);

}
}
else{

turn(M_PI);
while(get_dist(&leave, &pos)>=TARG_ERROR){

follow_the_wall(FALSE);
}

}
return MIN_REACHED;

}

Figure A-7(c) The Bug1 function drives the robot towards the target using

the Bug1 algorithm

185

void Bug1(){

 int state = STEP1;
 int response;

 initialize_driving();
 initialize_timers();
 init_helper();

 while(TRUE){
 if(state==STEP1){

response = drive_to_target();
if(response==TARGET_REACHED){

end_timers();
print_stats(TRUE, get_time_thinking(),
get_time_driving(), get_total_dist(),
get_total_turn(), num_sqrt, num_pow,
num_geom);
break;

}
else if(response==WALL_HIT){

LCDPrintf("Wall Hit\n");
state = STEP2;
continue;

}
 }
 else if(state==STEP2){

response = follow_wall_Bug1();
if(response==MIN_REACHED){

LCDPrintf("Minimum Point\n");
state=STEP1;
continue;

}
else if(response==TARGET_UNREACHABLE){

end_timers();
print_stats(FALSE, get_time_thinking(),
get_time_driving(), get_total_dist(),
get_total_turn(), num_sqrt, num_pow,
num_geom);
break;

 }
 }

 }
}

A.3.2 Bug2 Implementation

Figure A-8 The extended Smart Moving module for bug2

The Bug2 navigation class calls the common modules in a similar fashion

to Bug1. However, Bug2 requires an extension to the smart moving

module to include a method which determines if it is on the M-line. A new

method has been created in the smart moving module called is_on_M_line

for this purpose. The updated class diagram is displayed in figure A-8. The

rationale behind the is_on_M_line() function is discussed in chapter 3. The

code is presented in Figure A-9:

Figure A-9 The is_on_M_line() method

186

Smart Moving
old_error : Double

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
orientate_to_wall(bool isClock)
turn_not_move(bool isClock)
turn_and_move(bool isClock)
face_target()
face_original()
initialize_PD()
follow_wall_straight(bool isClock)
follow_the_wall(bool isClock)
is_on_M_line() : Boolean

/*function determines whether the given point is on the M line*/
bool is_on_M_line(){

PositionType closest;
float t = (targ.y*pos.y + targ.x*pos.x)/

(pow(targ.x,2.0)+pow(targ.y,2.0));
num_pow = num_pow+2;
if(t<0 || t>1){

return false;
}
else{

closest.x = t*targ.x;
closest.y = t*targ.y;
closest.phi = 0;
return (get_dist(&closest, &pos) <= TARG_ERROR);

}
}

A.3.3 Alg1 Implementation

Alg1 requires two extensions to the smart moving module. It needs to

know if the robot is on the M line and the freespace, F. The is_on_M_line()

method, described in section 2.3.3, is reused. However, a new method,

freespace(), needs to be created to determine F. Figure A-10 shows the

updated Smart Moving module which includes the two new methods.

Figure A-10 The extended Smart Moving module for Alg1

The freespace method returns F. When the method is invoked, the target’s

direction relative to the robot is firstly determined. Then, the PSD

rotationally closest to that direction is identified. Subsequently, the robot

rotates such that the PSD is facing the target and measures F using that

PSD. After that, the robot returns to its original orientation. This method is

implemented in figure A-11:

187

Smart Moving
old_error : Double

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
orientate_to_wall(bool isClock)
turn_not_move(bool isClock)
turn_and_move(bool isClock)
face_target()
face_original()
initialize_PD()
follow_wall_straight(bool isClock)
follow_the_wall(bool isClock)
is_on_M_line() : Boolean
freespace() : Integer

Figure A-11 The freespace method

In this particular robot, there are 8 PSD sensors. Figure A-12 shows that

each PSD covers a 45 degree sector. Hence, the maximum the robot needs

to rotate to find F is 22.5 degrees. As expected, increasing the number of

PSDs lowers the maximum rotation to find F and this must be factored into

cost against performance decisions.

188

/*function returns the freespace in the direction of the
target function assumes that the PSDs are evenly spaced*/

int freespace(){
float direction = get_rel_targ_dire();
int index=0;
int answer;

/*determine the PSD closest to the direction*/
while(direction < -M_PI/NUM_PSD){

direction = direction + 2*M_PI/NUM_PSD;
index--;

}
while(direction > M_PI/NUM_PSD){

direction = direction - 2*M_PI/NUM_PSD;
index++;

}
index = (index + NUM_PSD/2)%NUM_PSD;

/*turn towards the target and get the freespace*/
turn(direction, FALSE);
answer = PSDGet(psd[index]);
turn(-direction, FALSE);

return answer;
}

Figure A-12 Each PSD covers a 45 degree sector. Maximum rotation is

22.5 degrees

The Alg1 algorithm also needs to record all hit and leave points

encountered. It does this by implementing a data-structure module which is

described in figure A-13.

Figure A-13 The Data Structure Module

The data structure is implemented as an array of PositionTypes. The

number of elements is predetermined and a fixed block of memory is

allocated when the program is started. Figure A-14(a) shows the data

structure immediately after initialize_data() is called. When list_enqueue()

is called, a PositionType is stored in the element referenced by position.

Figure A-14(b) shows the data structure after one such call. When

is_at_previous_point() is called, the data structure checks if the robot’s

current position is near any stored points.

189

Data Structure
position : Integer
points : PositionType array

initialize_data()
list_enqueue(PositionType* p)
is_at_previous_point() : Boolean

Figure A-14 (a) Left. The data structure after initialization. (b) Right. The

data structure after list_enqueue() is called

A.3.4 Alg2 Implementation
The Alg2 algorithm is implemented by using the common modules and the

extensions implemented previously. In particular, Alg2 reuses the

freespace() and data structure modules discussed in section 2.3.4. It also

uses the common modules to implement navigation states similar to the

Bug1 implementation in section A.3.1

A.3.5 Distbug Implementation
The distbug algorithm is simpler than the Alg2 algorithm in that it does not

require the data structure module. Apart from that, it is very similar to Alg2

and therefore its implementation is also very similar.

A.3.6 Tangentbug Implementation
The tangentbug algorithm has been modified from the original article. In

the original tangentbug generates the LTG continuously when moving. In

this implementation, tangentbug only generates the LTG when it has

reached node positions. This change is necessary to avoid excessive

rotation and data gathering.

190

The tangentbug algorithm is significantly more complicated than any of the

previous bug algorithms. It has modified the common modules extensively.

A redrawn class diagram is shown in figure A-15.

Figure A-15 The tangentbug class diagram

A.3.6.1 The Data Module
The tangentbug algorithm requires extensive collection of data for)(θr and

freespace toward a particular point. The data module collects PSD data and

stores it for use by the rest of the system.

To achieve this in an optimal and efficient manner, the data module equally

divides the scanning task between the eight PSDs. Therefore, each PSD is

responsible for collecting data about a 45 degree sector. Each colour in

191

Helper
pos : PositionType
targ : PositionType
targ_dire : float
targ_dist : float

get_dist(PositionType* a, PositionType* b) : float
deg_to_rad(int degrees) : float
rad_range(float x) : float
pol_to_rect(float r, int theta, PositionType* ans) : PositionType
get_targ_dist() : float
get_targ_dire() : float
get_rel_targ_dire() : float
get_rel_dire(PositionType* p) : float

User Interface

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer

Minimum
dfollowed

is_in_minimum()
dist_to_targ()
initialize_dfollowed()
check_all_points_on_line()
leaving_condition_holds()

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

Smart Moving

has_goal_been_reached() : Boolean
has_wall_been_reached() : Boolean
face_target()
face_original()
orientate_to_wall(PositionType* coords)
drive_to_point(float distance, float direction)

Node
nodes : node
num_nodes : Integer
optimal_node : Integer
wall_node : Integer

get_node_coordinates(int node_index) : PositionType
create_Tnode(float freespace)
process_nodes()
process_optimal()
wall_was_foreground() : Boolean
identify_nodes()

Navigation

main()

Driving
total_dist : float
total_turn : float

initialize_driving()
get_total_dist() : float
get_total_turn() : float
turn(float rads)
drive(float distance)

Data
r_of_theta : Integer Array

generate_r()
freespace_point(PositionType* p) : float
freespace() : float

figure A-16 shows the division of sectors.

Figure A-16 Each PSD collects data in its sector

Then, this 45 degree sector is sampled according to a user-defined value

DEG_BET_SAMPLES. The default is 3 degrees, but this can be altered

for greater accuracy. Hence, each PSD will sample its sector 15 times,

turning 3 degrees between each sample. Figure A-17 shows the source

code which implements data gathering and figures A-18(a) and A-18(b)

shows the robot actually gathering data.

Figure A-17 The generate_r method

192

void generate_r(){
int reading_index;
int psd_index;
int readings_per_psd = 360/(NUM_PSD*DEG_BET_SAMPLES);

for(reading_index=0; reading_index<readings_per_psd;
reading_index++){

for(psd_index=0; psd_index<NUM_PSD; psd_index++){
r_of_theta[readings_per_psd*psd_index+reading_i
ndex] = PSDGet(psd[psd_index]);

}
turn(deg_to_rad(DEG_BET_SAMPLES), FALSE);

}
turn(-deg_to_rad(360/NUM_PSD), FALSE);

}

Figure A-18 (a) Left. The robot gathers data from all 8 PSD sensors (b)

Right. After a 3 degree rotation, the robot gathers data from 8 PSD sensors

again

The sampled data is stored publicly in an array. The number of elements in

the array depends on DEG_BET_SAMPLES, which is assigned a default

value of 3. If this default is used, there are 120 elements in the array. The

0th element contains the distance straight ahead of the robot and the ith

element contains the distance on a DEG_BET_SAMPLES*i angle

measured counterclockwise from straight ahead.

A.3.6.2 The Node Module
After the data has been collected, it is processed for nodes. The node

module identifies and processes nodes which are subsequently stored in a

public array. In addition, the optimal node, N*, and the wall node are

identified. Due to)(θr ’s discrete nature, discontinuity detection must be

conducted by comparing values of)(θr . A node is identified if:

• the difference between two successive values of)(θr is greater than a

predefined threshold, or

193

• One, and only one, of two successive values of)(θr is equal to r, or

• F > d(x, T), which means the target is visible, or

• F = r, which means there are no visible obstacles in the target’s path.

Once all nodes are identified, each node is processed by calculating d(Ni,T).

Then, the optimal node is identified by finding the node with the lowest

value of d(Ni,T). Subsequently, the wall node is identified by finding the

node with the lowest θ in)(θr . This is because)(θr records measurements

anti-clockwise where 0=θ is straight ahead. Given that nodes are

processed by increasing θ , the wall node is always the first identified node.

This process is summarised in the flow diagram in figure A-19.

Figure A-19 The node processing algorithm

A.3.6.3 The Minimum Module
If the tangentbug algorithm detects that the robot is in a local minimum, it

calls the minimum module. This minimum module’s role is to return

194

whether or not the robot has met the leaving condition, dreach(T) < dfollowed(T).

This evaluation must be done using the least amount of computing

resources possible.

With this in mind, a strategy was created to evaluate dreach(T) and dfollowed(T)

and its source code is shown in figure A-20. Firstly, the minimum module

queries the node module to find the wall node’s index in)(θr . Denote this

index w. The indices from 0 to w represent the minimum causing obstacle

and is used to evaluate dfollowed(T). The remaining indices represent the

sector which must be scanned to evaluate dreach(T).

Figure A-20 The leaving_condition_holds() method

To evaluate dfollowed(T), for each index from 0 to w determine the

distance to target at end-points. In figure 2-21, these indices are indicated

195

bool leaving_condition_holds(){
int num_samples = 360/DEG_BET_SAMPLES;
int wall_index = nodes[wall_node].small_index;
int i;
float test, dreach;

/*update (global) dfollowed, if necessary*/
for(i=0; i<=wall_index; i++){

test = dist_to_targ(i);
if(test<dfollowed){

dfollowed = test;
}

}

/*evaluate dreach*/
dreach = check_all_points_on_line(i);
i++;
for(; i<num_samples-1; i++){

test = dist_to_targ(i);
if(test<dreach){

dreach = test;
}

}
test = check_all_points_on_line(i);
if(test<dreach){

dreach=test;
}

/*evaluate leaving condition*/
return dreach < dfollowed;

}

by the red lines and the points used for distance to target calculations are

indicated by the black squares. The shortest of these distances, since wall-

following mode began, is recorded in dfollowed(T).

To evaluate dreach(T), for the indices w+1 and 360/num_psd, determine the

distance to target at regular intervals. For the remaining indices, determine

the distance to target only at end-points. In figure A-21, these indices are

indicated by the green lines and the points used for distance to target

calculations are indicated by the orange squares. The shortest of these

distances, since the robot last refreshed)(θr , is recorded in dreach(T).

196

Figure A-21. (a) Top left. The scanning performed at its initial position.

(b) Top right. The scanning performed after traveling one node. (c)

Bottom Left. The scanning performed after traveling two nodes. (d)

Bottom Right. Freespace identifies a visible target.

197

A.3.7 D* Algorithm Implementation
The D* algorithm only reuses the timer module because it is fundamentally

different than the other algorithms. The implementation is heavily object-

oriented due to the greatly increased complexity. Figure A-22 shows the

D* class diagram.

Figure A-22 The D* class diagram

198

ArcEnd
cost : float
is_backpointer : Boolean

init_arc_end(float c, bool is_bp)
set_arc_cost(float c)
get_arc_cost() : float
set_arc_backpointer(bool is_bp)
get_arc_backpointer() : Boolean

OpenList
open : Cell
num_cells : Integer

init_list()
put_on_open_list(cell c)
Delete(cell c)
min_state() : Cell
get_kmin() : Double

DiscreteDriving
vw : VWHandle
current_row : Integer
current_column : Integer
current_direction : Integer
total_dist : Double
total_turn : Double

turn_range(int turn) : Integer
get_total_dist() : Double
get_total_turn() : Double
init_driving()
drive(int direction)
face_north()
get_current_row() : Integer
get_current_column() : Integer
get_current_direction() : Integer

Timer
time_driving : Integer
time_thinking : Integer
start : Integer
finish : Integer

initialize_timers()
end_think_start_drive()
end_drive_start_think()
end_timers()
get_time_driving() : Integer
get_time_thinking() : Integer

User Interface
targ_dire : Integer
targ_dist : Double
g_r : Integer
g_c : Integer

setup_screen_distance(float distance)
setup_screen_direction(int direction)
print_stats(bool is_reached, int thinking, int driving, float dist, float turn)
change_settings() : Integer
deg_to_rad() : Double
generate_targ_coords()

Cell
k : float
h : float
tag : Byte
row : Integer
column : Integer
arc_ends : ArcEnd
is_blocked : Boolean

init_cell(int row, int col)
get_row() : Integer
get_column() : Integer
get_k() : float
get_cell_cost(int direction) : float
set_cell_cost(int direction, float new_cost)
set_cell_backpointer(int direction)
is_cell_backpointer(int direction) : Boolean
h() : float
set_h(float h_new)
set_t(int new_tag)
t() : Integer
insert(float h_new)
get_backpointer_direction() : Integer
get_is_blocked() : Boolean
set_is_blocked(bool set)

88

Algorithms

process-state() : Double
modify-cost() : Double
main()

Discrepancy
blocked_row : Integer
blocked_column : Integer

psd_range(int psd_index) : Integer
get_psd_index(int direction) : Integer
get_blocked_coords(int direction, int r)
process_surroundings()

Grid
the_grid : Cell
the_neighbour : Neighbour

get_dest_direction(cell destination, cell origin) : Integer
is_within_bounds(int row, int column) : Boolean
get_default_cost(int direction) : Double
c(cell destination, cell origin) : Double
set_cost(cell destination, cell origin, float new_cost)
b(cell destnation, cell origin)
is_backpointer(cell destination, cell origin) : Boolean
get_neighbours(cell c) : Neighbour
initialize_grid(int goal_row, int goal_column)
get_direction(int row, int column) : Integer
get_tag(int row, int column) : character
get_cell(int row, int column) : Cell

65616561

Neighbour
num_neighbours : Integer
cells : Cell

init_neighbours()
get_num_neighbours() : Integer
enqueue_cell(cell c)
get_enqueued_cell(index) : Cell

A.3.7.1 The Cell Class
A cell represents an area which is treated as a discrete location. Although

this area can be of arbitrary shape, it has been implemented as a square of

length 100mm.

Each cell records:

• its position on the grid. This is purely for identification, cells do not

need to know their position and behave in the same manner

regardless of position.

• its h value, as specified by the original article. This represents the

cost of reaching the target following the cell’s current backpointer

trail.

• its k value, as specified by the original article. This represents the

lowest cost of reaching the target ever recorded by the cell.

• its arc-ends. Each cell possesses 8 arc-end objects to record

transition costs and backpointers.

• if an obstacle exists on its position. If so, blocked will be true.

• its tag, as specified by the original article. This can be one of three

possible values: closed, open and new.

o Closed means that process-state() has been run on that cell.

This implies that the cell has a backpointer and a minimum

cost to target established.

o Open means that the cell is a neighbour of the target cell or a

cell which is closed. Open cells are continually evaluated for

minimum cost to target in the table fashion described in

section 1.5.7. Once an open cell has the minimum cost on the

table, process-state() is called and it becomes a closed cell.

o New is the initial cell state and refers to cells which have not

199

been processed and are not neighbours of closed cells.

The cell class implements three functions required by the original article.

The h() and t() methods return the cell’s h value and tag respectively. The

insert() method updates the tags, k and h values.

A.3.7.2 The Arc-end Class
Each cell possesses 8 arc-end objects, one for each direction: north, north-

east, east, south-east, south, south-west, west and north-west. Each arc-end

object stores the cost of moving from that particular cell in a specified

direction. In addition, arc-end stores whether the specified direction is the

backpointer for the owning cell.

A.3.7.3 The Open-list Class
The open-list class maintains a table of open cells sorted by ascending k

value similar to the tables in section 1.5.7. It is implemented as a large

array of cell pointers with the number of elements equal to the number of

cells on the grid. When a new cell is to be enqueued, it is sorted according

to its k value.

The open-list class implements the min-state() and get_kmin() calls

prescribed by the original article. min_state() returns the state with the

minimum k value and is implemented by returning a pointer to the cell on

top of the list. get_kmin() returns the minimum k value and is implemented

by querying and returning the k value of the cell on top of the list.

The delete(cell x) function is also implemented by this class. Although this

function is supposed to remove any given cell from the open-list, the

implementation disregards the parameter and simply deletes the cell with

200

the minimum k-value, which always the cell at the top of the list. This is

because only process-state() calls this function and the only time when

process-state() calls delete() is when it is deleting the cell with the

minimum k-value.

A.3.7.4 The Grid Class
The Grid class is composed of all cells in a grid-like formation analogous

to the grid diagrams in section 1.5.7. Since each cell is unaware of any

other cell, the grid class serves as an interface when a caller requires

operations conducted between two or more cells. This is particularly

important when interfacing with functions prescribed by the original article.

A function prescribed by the original article is c(cell destination, cell

origin) which returns the travel cost from the target cell to the destination

cell. Figure A-23 shows how the grid class handles the call.

Figure A-23 The sequence diagram for the c call

Another function prescribed by the original article is b(destination, origin)

which sets the origin’s backpointer in the destination’s direction. Figure

201

AlgorithmsAlgorithms GridGrid CellCell ArcEndArcEnd

1: c(destination, origin)

2: get_dest_direction(destination, origin)

3: get_cell_cost(direction)

4: get_arc_cost()

5: return cost

6: return cost

7: return cost

A-24 shows how the grid class handles the call.

Figure A-24 The sequence diagram for the b call

A.3.7.5 The Neighbour Class
The neighbour class is a small data-structure designed to facilitate the

transfer of valid neighbours surrounding a target cell.

A.3.7.6 The Discrepancy Class
The discrepancy class’s role is to use the PSD sensors to detect any

differences between the robot’s map and the actual surroundings. If it

detects a discrepancy, it calculates the cell’s position based on the PSD

reading. Then, it sets the cell’s blocked attribute to TRUE and calls

modify-cost() to generate the new optimal backpointer trail according to the

procedure outlined in section 1.5.7.2.

A.3.7.7 The Algorithm Class
The algorithm class implements process-state() and modify-cost() functions

exactly as specified in Stentz’s article. process-state() and modify-cost()

call functions implemented in the modules discussed previously. The

main() method is also included in the algorithm class and it coordinates

202

AlgorithmsAlgorithms GridGrid CellCell ArcEndArcEnd

1: b(destination, origin)

2: get_dest_direction(destination, origin)

3: set_cell_backpointer(direction)

4: set_arc_backpointer(FALSE)

Reset all backpointers to
false for all arcends

5: set_arc_backpointer(TRUE)

Set the backpointer
specified by direction

navigation as a whole. Figure A-25 shows the main() method.

Figure A-25 the main method

203

num_calls=0;
generate_target_coords();
initialize_timers();
init_driving();
initialize_grid(g_r,g_c);
do{

kmin = process_state();
}
while(get_tag(get_current_row(), get_current_column()) != CLOSED &&
kmin!=NONE);
while(!(get_current_row()==g_r && get_current_column()==g_c)){

process_surroundings();
drive(get_direction(get_current_row(), get_current_column()));

}
face_north();
end_timers();
print_stats(TRUE, get_time_thinking(), get_time_driving(),
get_total_dist(), get_total_turn(), num_calls);

