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Abstract 

The worked performed by the author relates to identifying the cause and effect of noise within 

musical audio. A large pool of data was recorded by the author, and then analysed using 

current known techniques of audio analysis. Using software applications such as MATLAB 

[1] allowed for the accurate analysis of the data, which in turn allowed for accurate 

conclusions drawn from the data trends.  

Due to the careful designing of the experimental work which allowed for the systematic 

introduction of noise into musical audio samples, the dominant noise sources that affect 

automatic transcription were found. Several major noise sources were identified from human 

error, computational time implications, frequency content, and instrumentation differences. 

Correctly identifying and analysing these sources then allowed for recommendations to the 

current automatic transcription process to be given which should see an improvement in 

overall accuracy (based on the results found in the experimental work). 

These results were found to be significant as there has not been such a detailed and specific 

research project performed (at least publically). This would allow future research into this 

subject to be more guided as how to improve the overall accuracy of the complete automatic 

transcription process. 
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1 PROJECT SUMMARY 
This project deals with the automatic processing of musical audio to determine its musical 

properties, with particular focus on musical chords. 

Current methods for accurately extracting musical properties of a song require human experts 

to apply years of experience, and even then it is prone to errors (albeit minimal depending on 

the expert). With advances in technology allowing even the amateur artist to record 

professional sounding songs within their own home, the number of songs that has emerged 

into the market (also due to the ease at which new artists can enter the market through 

mediums such as Spotify1 or Soundcloud2 ) has increased exponentially over the past few 

years.  

The automatic transcription process is still far from being considered a perfect method, where 

noise sources in the data can often contribute significant errors to the final transcription, and 

therefore is vital to understand where these noise elements originate from. As there is not 

sufficient information on the sources of noise within a musical audio recording, the aim of 

this thesis is to investigate these and apply to the current method of automatic transcription to 

improve its accuracy. After conducting a review on the previous work on this topic to 

understand what methods are being used within the transcription process, an experiment was 

designed to identify the major noise components within a final recording. 

Through the careful introduction of the suspected noise sources by using different 

instruments and recording techniques to obtain data sets of 48 chords, a detailed picture of 

what audio looks like in a data context was found. These were then analysed using a simple 

method of automatic transcription, the noise sources and their effect on the transcription 

accuracy were identified, and the source of these errors identified. To conclude the 

experimental work, a sample full song was recorded and analysed to observe the effects of 

the noise identified in the previous chapters where valid. These finding were then related to 

the current methods of automatic transcription, and suggestions put forth to improve the 

current automatic transcription process. This detailed study can be used by future individuals 

wishing to improve the accuracy of the automatic transcription of music, as sufficient data 

and analysis are present to apply to current methods of automatic music transcription. 
                                                 
1 http://www.spotify.com/  
2 http://soundcloud.com 

http://www.spotify.com/
http://soundcloud.com/
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INTRODUCTION 

1.1 PROBLEM DEFINITION 
Current methods of automatic music transcription see an accuracy level of around 85% 

(achieved by Matthew Mauch [2]), and this is after many years of research into the subject. 

The complex and variability of the data to which the process is designed for causes many 

inaccuracies in the final transcription output. Finding the sources of these inaccuracies, 

namely what aspects of the data are defined as noise in the context of automatic transcription 

would help bring the accuracy of this process to a near perfect level. This means that a 

method of identifying the source and effect of all the relative noise sources would help guide 

future research into this topic into the right direction. 

The study of different instruments and their effect of musical data will also be analysed, with 

particular focus on how the data differs between instruments and how this difference could 

interfere with the standard model of automatic transcription. This is an important aspect in 

the context of this subject, as there is a large mixture with no particular standard to what 

instrumentation is included in songs. This can cause a large amount of noise within the audio 

data which leads to incorrect transcription, but with no real indication as to why the error had 

occurred. 

Due to the number of different aspects that can be studied in the improvement of this 

technology, it is important that an accurate method is found to collect, analyse, and interpret 

the data used within the experiments performed. If an accurate process can be developed in 

the future, many benefits will be seen across many fields of study. These includes benefits to 

social scientists who can identify why different populations listen to different music, other 

scientists who can more closely study the change in music over time, engineers who can 

modify this process to extract data from a large variable data set, and even the amateur artists 

who would gain access to accurate music transcription. There are many more, which is why 

the development of this topic is an important part of human development. 
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1.2 INTENDED AUDIENCE 
The typical audience of this thesis would be individuals with at least an engineering 

background, but not necessarily a musical understanding. Although at least some knowledge 

is  assumed  on  what  constitutes  as  a  ‘song’,  which is the main data considered when applying 

the automatic transcription process. In-depth definition of the musical terms used throughout 

this thesis is outlined in the literature review, and enough information is given to understand 

the thesis as a whole without having to research musical terminology and theories separately. 

This is done such that the reader is not left in the dark, which is a possibility given the small 

likelihood that an in-depth knowledge of music, musical trends, and other aspects are known. 

1.3 LAYOUT OF THESIS 
Chapter 2 of this thesis outlines the previous work on the topic of automatic transcription, and 

identifies the required process which will allow for the  experimental  work  to  use  a  ‘standard’  

method of automatic transcription. This chapter will be broken into several sections relating 

to the most important aspects of an automatic process. 

Chapter 3 and 4 outline the concept and detailed design of the experiment. The main focus is 

on the methods of data collection, how the data samples will be varied, and the overall design 

of the experimentation process. Chapter 4 especially gives a really detailed look into what 

methods were used for recording the audio itself, such that any future reader of this project 

can understand the methods used and the assumptions behind them. 

Chapter 5 shows the experimental work itself, giving samples of the collected data and a 

small analysis on the data trends observed. This is then analysed in detail in chapter 6 which 

is related to the findings and discussions. Here the different noise sources were identified and 

the reason for their existence in the data samples itself. This is then wrapped up in chapter 7 

which gives recommendations to the current methods of automatic transcription. These 

recommendations are based on the data collected which would show an increase in 

transcription accuracy, which is the main focus of this thesis. 
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2 LITERATURE REVIEW 
This literature review will be done in four distinct sections. The first outlines any relevant 

knowledge of musical theory and terminology required to comprehend the remainder of the 

thesis. The second part details how the data is represented throughout the process, which is an 

important concept to understand as the whole project centres around the analysis of this data. 

The third aspect is how the data is extracted from a musical audio file, with particular focus 

on the theoretical aspects as programs such as MATLAB can easily handle the practical 

implementation of this theory. The fourth aspect is how to manipulate the data extracted in 

such a way to obtain the outcome desired, namely the underlying chords in a song as they 

change over time.  

2.1 MUSICAL THEORY BACKGROUND 
To first understand the work done in the field of automatic chord transcription, it is important 

that the music terminology and theories used throughout the process is clearly defined. There 

are several concepts which overarch the entire process, and starts with what the goal of music 

transcription is: identifying a musical chord in time. But to understand this meaning, we must 

first define a chord. And to first define a chord, we must first define a note. And to define a 

note, we must first define pitch class and pitch height. So we start from the beginning. 

Pitch is defined by Anssi Klapuri [3] as: 

Pitch is a perceptual attribute which allows the ordering of sounds on a frequency-

related scale extending from high to low 

To mathematically define all relevant pitch classes (or notes), we first define a reference 

frequency which is usually  ‘A’  above  middle  ‘C’. It should be noted that pitch class and note 

will be used interchangeably throughout this thesis, where later work refers to this simply as 

‘note’. This reference frequency can range from 415 Hz to 445 Hz, but is usually 440 Hz 

when considering the standard pitch tuning in western music. An octave of a specific 

frequency can be simply described as the doubling of that frequency, where the range of 

frequencies that cover a single octave contains  12  distinctive  ‘pitch  classes’. To calculate the 

frequencies of different notes, we can use the following discrete series working from the 

reference frequency: 

𝑓௣ = ൫𝑓௣ିଵ൯ × 2ଵ/ଵଶ 
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Where 𝑓௣ is the frequency of the next pitch class (for example a reference of A=440 Hz, the 

next  frequency  will  be  A#  or  ‘A  sharp’  of  about  466  Hz). 

Pitch height can be defined if we consider a single octave. An octave note is a note with the 

same pitch class, but at a frequency double the non-octave equivalent. In a musical context, 

we can define both frequencies of 440 Hz and 880 Hz as the note of  ‘A’,  but at different pitch 

heights. Each pitch class is defined by the English alphabet as a letter ranging from A to G, 

with some having   the   notation   of   a   ‘sharp’ (denoted by   ‘#’) which in itself defines a new 

note. This gives each of the 12 pitch classes contained within an octave a common method of 

reference, and is adopted as the standard in popular western music. Since it is not intuitive to 

which letters also have a sharp notation, it is simply easier to list them in order starting with 

the  class  ‘A’,  being: 

[A, A#, B, C, C#, D, D#, E, F, F#, G, G#,] 

A naming convention here denotes two subsequent notes as a  ‘semi  tone’  apart,  meaning  that  

an octave consists of 12 semi-tones. This can be represented by the following table which 

also shows the relevant frequencies of each note (with reference of A = 440Hz): 

TABLE 1 - FREQUENCY LIST FOR EACH NOTE WITHIN AN OCTAVE 

Note A A# B C C# D D# E F F# G G# A 

Frequency 

(Hz) 

440 466 494 523 554 587 622 659 698 740 784 830 880 

 
The convention of having an octave note denoted as the same letter makes sense in a musical 

context, as humans often interpret octave notes as equivalent [4], and therefore interpret 

chords regardless of pitch height. Next we must define the most important concept in this 

thesis, namely the chord. 

The Virginia Tech Multimedia Music Dictionary defines a chord as follows [5]: 

Chord: The sounding of two or more notes (usually at least three) simultaneously 

This definition will overlay the quest to define a chord from musical audio as a chord will 

only be considered as two or more notes sounded together. This in contrast to the human 

ability  to  ‘perform  successive  interval  abstraction’ [6], which means that an arrangement of 

notes played separately, but within a musical interval (this depends on the timing signature of 
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the music being played) can still be extrapolated as chords. This is similar to the human 

ability to fill in missing notes from a chord (due to what is known as harmonic memory) 

which means that the human interpretation of a chord could contradict the strict definition of 

a chord. These concepts will not be assessed in this thesis, and only chords as per the 

definition above will be considered (to aid in the possibility of constructing a real time 

analysis system). 

Another important concept to define in the context of this thesis is the notation used to 

describe chords in a text format. There is great variety in how popular music is notated, 

especially after the boom of online music tablature sharing such as Ultimate-Guitar3. A 

review of different ways chord labelling is done was conducted by various authors [7], and 

shows what is common in almost all notations. Typically a chord is described by its root note 

(the lowest note in the set of notes making up the chord) and a chord quality. The root note is 

notated by the equivalent pitch class identifier (example A or B#) then followed by the chord 

quality text equivalent. 

A chord quality is a method of describing how to construct a chord when a root note is given. 

A major chord (denoted by Maj) is   constructed   using   the   ‘root’   note   (simply   the   lowest  

frequency  of  the  three  note  chord),  the  ‘third’  (4  notes  above  the  root  note),  and  the  ‘perfect  

fifth’   (7  notes above the root).  The  definition  of  a   ‘major   third’   is   related   to   the   traditional  

transcription of musical notes on a musical staff, and described the  ‘third’  and  ‘perfect  fifth’  

being three and five staff positions above the root note. Pitch class is the only important 

factor here, and pitch height does not dictate the chord. The following table shows a few 

examples of the types of chord classes used in music, where each type has a standard method 

of constructing the chord given the root note: 

TABLE 2 -DIFFERENT CHORD TYPES AND TEXT EQUIVALENT 

Quality name Major Minor Diminished 

triad 

Augmented 

triad 

Seventh Suspended 

4th 

Text 

equivalent 

Maj Min Dim Aug 7 sus4 

 
This notation can be interpreted by humans and computers alike, and is therefore adopted by 

                                                 
3 www.Ultimate-Guitar.com 
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the ISMIR - The International Society for Music Information Retrieval - as the standard 

notation. The concepts listed above are the building blocks for all following research and 

literature in the subject of automatic chord transcription. With this basic knowledge on music 

terminology and definitions, previous work in the topic of automatic transcription can be 

described. 

2.2 LITERATURE OF PREVIOUS RESEARCH IN THIS SUBJECT 
Due to recent popularity in this subject, and also improvements in hardware ability, there has 

been a lot of advancement made in the field of automatic chord transcription. The first 

extensive research into the subject can be traced back to Takuya Fujishima [8]. His research 

used a Fast Fourier Transform, a 12-vector chord mapping model as its lower level 

processing,  a  “chord  change  sensing”  higher  level  model  to  further  increase  the  usefulness  of  

his method, and allowed the detection of up to 324 chords (considerably more than most 

other research in the area). This research was a substantial starting point for the rest that was 

to follow. 

The process of automatic chord transcription can be broken into several independent 

processes and methods that need to be constructed (with some dependencies) which can then 

perform the task from raw audio to the final transcribed chords. Chapter 2.2.1 deals with how 

to model chords in such a way that a computing algorithm can compare the extracted data to. 

Chapter 2.2.2 deals with how to extract the audio data to a point where it can be evaluated, 

and chapter 2.2.4 deals with how to interpret this data to obtain chord-information. 

2.2.1  CHORD DATA REPRESENTATION 
There are two apparent ways of representing chords in a data format, each with their own 

advantages and disadvantages, but both doing essentially the same task. We will only 

consider the methods applicable (or apply the methods to) the western musical 12 note per 

octave scale. 

The first method was presented by J. W. Ulrich [9] where he represented a chord by 

specifying   the   root   bass   note,   and   the   subsequent   notes   as   ‘distances’   from   the root. An 

example would be the D-major chord which consists of notes [D, F#, A]. In this format it 

would be represented by the notation D (4, 7). Here F# is considered to be 4 semi-tones 

above D, and A is equivalent to 7 semitones above the root note D. This method allowed 

Ulrich to represent what is  known  as  ‘extended  jazz’  chords which contain notes more than 

12 semitones apart. This method uses referenced data, where all relevant notes within a chord 
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needs to be interpreted with respect to the provided root note and should be considered when 

notes within the chord are more than 12 notes apart (which does not strictly comply with our 

definition of chords). This is however not the case in academic approaches to the task of 

automatic  chord  transcription  where  ‘octave  equivalence’  is  assumed. 

The second method was introduced by B. Pardo [10] where he represents a chord based 

solely on pitch classes (discarding pitch height). Here he defined the note C as the number 

‘0’,  and  each  subsequent  semitone  would  be  represented by a single integer higher number. 

This means we  can  represent  the  ‘D-Major’  chord simply as <2, 6, 9> (for [D, F#, A]). This 

method allows for a more standardised approach where extracted information from music can 

be more easily compared to  a  ‘chord  library’,  which  is  a database containing all the chords to 

be considered when trying to match the audio domain to the musical chord representation. 

A more suitable method is representing a chord in the form of a 12-dimensional vector. 

Takuya Fujishima [8] method of chord abstraction left the data in a 12-dimensional vector 

with each dimension representing a semi-tone.  This  means  each  dimension  represents  a  ‘note’  

and can be described in either binary representation (1 or 0) [8] or a decimal [11] (which 

would represent the relative power of that frequency), but in a purely representational format, 

binary is used. The representation of the D-Major chord (consisting of [D, F#, A]) with the 

first dimension of the vector representing the semi-tone of C would be 

[0,0,1,0,0,0,1,0,0,1,0,0]. This method again assumes octave equivalence of notes, and has the 

advantage of simple comparison techniques to other chords through matrix multiplication. 

2.2.2 AUDIO DATA EXTRACTION 
The task of obtaining useable data from real world audio can be quiet complex (especially 

with additional implications brought upon by real world music audio files), and is dealt with 

by using common and well known techniques in signal processing. 

The first method used by T. Fujishima [8] to obtain the featured extraction was through the 

discrete Fourier transform (DFT). Here the spectrum 𝑋௞  is calculated using the following 

formula: 

𝑋௞ = ෍ 𝑥௡𝜔௡𝑒
ିଶగ௜ேಷ

௞௡
ேಷିଵ

௡ୀ଴

,          𝑘 = 0,1,2, … ,𝑁ி − 1 
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Where 𝑁ி  is the number of samples within one frame, 𝜔௡ is a window function that weights 

the samples to reduce unwanted effects such as spectral leakage (which is associated with 

finite observation intervals [12]). 

The next stage was to assign each pitch class (from C to B) to the value 𝑝 = 0,… ,11 which is 

then used to calculate the PCP value. The PCP (which relates to the PCP Characterization 

Theorem) value is calculated through the sum of all power spectrum coefficients closest to an 

instance of that pitch class (this is how octave equivalence is implemented in the practical 

application of his method).  

𝑃𝐶𝑃௣ = ෍ ห|𝑋௠|ห
ଶ

  

ெ(௠)ୀ௣

 

Where  

𝑀(𝑚) = 𝑟𝑜𝑢𝑛𝑑(12 logଶ(
௙ೞ

௙ೝ೐೑
× ௠

ேಷ
)) mod 12, 

Where 𝑓௥௘௙ is the reference frequency of pitch class    𝑝 = 0, and 𝑓௦ is the sample frequency. 

Usually, the spectrum is calculated on overlapping frames over the duration of a piece of 

music in a process called short-time Fourier transform (STFT). This process leaves behind a 

matrix (𝑋௞,௠) in which the 𝑚௧௛ frame occupies the 𝑚௧௛ column and is called a spectrogram. 

In the way a spectrogram describes the spectral content over a sample of time, the 

chromagram matrix (𝑃𝐶𝑃௣,௠)  describes  the  ‘chroma’,  or  note  content  over  a  sample  of  time.  

Here the chroma vector of the 𝑚௧௛ frame occupies the 𝑚௧௛ column (If it a chromagram 

abstraction is performed over time). This 12-dimensional vector describes the power content 

of each relative frequency relating to each semi-tone class over time, and is the base data 

used for all subsequent calculations. Although different methods of abstraction can differ, the 

final product is always this 12-dimensional chromagram. To get an accurate representation of 

the current spectral content can be difficult for several reasons, the first being that a simple 

frequency spectrum does not translate into what is actually present, as an instrument will 

show a high power reading at the frequency being played, but also at related frequencies 

(known as upper partials). This is due to the mechanics of most instruments, especially 

stringed, wind, and bell classed instruments [13]. 
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Other methods adopted by other authors to get around certain problem areas (such as the 

varying or unknown reference frequency to which all relating notes are tuned to in an 

instrument) was done by E. Gomez [14] where she detects spectral peaks first and maps only 

those to the chroma vector, according to their calculated frequency position. 

An alternative strategy to obtaining the chromagram is to perform a log-frequency transform 

first and then assign the different pitch bins to the appropriate pitch class bin (there are 12 

bins per octave in western music). This is because from the equation to calculate successive 

pitch classes, it is obvious that pitch is linear in a logarithmic scale. The most common 

method of this is to apply a constant Q transform [15]. Here a number, 

𝑄 =
𝑓
𝛿𝑓

 

Is the ratio of note frequency and note bandwidth (which defines the range of frequencies a 

note will be defined as, usually less than one Hertz). Now given the desired number of bins 

per octave (𝑛௕௜௡), we can calculate Q such that 

𝑄 =
𝑛௕௜௡
ln 2

 

The calculation of the constant-Q transform in the time domain involves separate windowing 

for every constant-Q bin, but equivalent windowing in the frequency domain can be 

performed simply (which requires a simple matrix multiplication of a kernel matrix with the 

discrete Fourier transform spectrum). Several authors have utilised the constant-Q transform 

in their method of chord extraction [16] [17] [18] [19]. The main downfall of this method is 

that the constant-Q transform requires a very long frame size for low notes, and short 

windows for higher frequencies can result in part of the signal not being considered in the 

extraction process unless the hop-size is set to a very low value. 

For the convenience of the work in this thesis, a MATLAB toolbox will be used which 

performs the above methods leaving behind a 12-vector chromagram that can be used in the 

process. The toolbox was developed by several authors working at the department of music at 

the University of Jyvaskyla [20]. This toolbox contains original functions by the author 

relating the retrieval of information from music, and should prove extremely useful. 
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2.2.3 REAL WORLD SIGNAL PROCESSING IMPLICATIONS 
Since the extraction of music is only a valid task if it is applied to real world signals, certain 

implications can be experienced when trying to build a working real world model. 

The first consideration is speed of processing. This is overcome by the implementing the 

discrete Fourier transform using the fast Fourier transform (FFT) process [21], which 

drastically speeds up the calculation of the frequency transform. This method does impose 

some limitations, being the frame length 𝑁ி  can only be a power of 2. Given a sample 

frequency     𝑓௦ , the larger 𝑁ி  that is used, the better the frequency resolution whilst 

implementing a smaller 𝑁ி would result in a better time resolution. This limitation needs to 

be considered when analysing the lower frequency spectrum of the signal, as it can become 

difficult  to  resolve  simultaneous  sinusoids  at  lower  frequencies.  Let’s  consider  the  following  

example: 

𝑓௦ = 11025  𝐻𝑧, 𝐹ௌ = 2ଵଶ = 4096 

Then   the   distance   between   frequency   ‘bins’   or   range   of   analogue   frequencies   which   is  

considered to be equivalent in the digital domain would be 

𝑓௦
𝐹ௌ

= 2.69  𝐻𝑧 

For the notes of E1 (41.2034 Hz) and F1 (43.6535 Hz) which have a difference of 2.45 Hz, 

this difference is less than the bin size. This could cause a problem when considering 

methods of automatic chord transcription suggested by [2] where he considers the bass and 

treble spectrum separately to increase the accuracy of transcription, and realising the 

importance bass notes play in the classification of chords. This in a musical sense however 

does not cause too much of a problem, since such closely spaced bass notes do not occur 

simultaneously. But it should be noted that the ability to resolve sinusoids depends largely on 

the window function used. 

Window functions are extremely vital to the Fourier analysis of finite signals, as they 

determine both the sinusoidal resolution and noise robustness. Author F. J. Harris [12] 

compares 23 different window functions in terms of their theoretical properties. He noted that 

there is always a trade-off between main lobe width (which should be narrow for higher 

sinusoidal resolution) and side lobe height (which should be low for better noise robustness). 

This trade-off means that no single window function can be claimed as the best choice 
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without considering the data it is to be used with first. This in parallel with the fact that music 

is not monotone in its data characteristics, no single window function can be claimed as the 

best choice for all music. Different authors seem to use different window function without 

giving  much reasoning, whilst others omit that data completely. The most notable authors 

who compared the functionality with different window function were [22] who compared 3 

different window functions, and although the difference between them were minimal, found 

that the Blackman window worked best. Other authors such as [23] used the Blackman-Harris 

window, [24] used the Hamming window. Most noted authors use the Hamming window, but 

this could be due to it being the default window in the MATLAB spectrogram function. 

Other real world considerations are noise (where noise here relates to any data included that 

does not relate to the underlying chord detection). There is no detailed study as to what noise 

is contained within a piece of music, and their effect on automatic transcription. Some 

authors however do note techniques used to reduce certain types of noise such as percussion. 

One such method used to reduce  percussion   interference   is   to   ‘smooth’   the  chromagram   in  

the time direction using a finite impulse response low pass filter [17]. Another method 

involves subtracting the background spectrum (a smooth noise envelope which is calculated 

by  ‘median  smoothing’  of the spectrum) from the spectral representation [25]. But not much 

detail is provided in most literature which details the noise of an audio file relating to 

transcription by an automated process. 

A different approach to obtaining  the  chromagram  is  through  ‘beat  tracking’  which  notes  that  

music  always  plays  in  ‘beats’  or  repeating  time  periods  where  chords  seem  to  change  in  time  

with these [26]. What this method entails is to average out the spectrum over a single music 

beat, and use the subsequent information to calculate the chords. This has a welcome side 

effect of noise reduction as percussion usually has a low spectrum content over time, but high 

power readings at periodic instances (similar to an impulse function). Using this method can 

help diminish the effects of percussion, but has several limitations including the assumption 

that chords do not change over a single music beat (often not an accurate assumption), and 

has the added task of automatic beat recognition which has been proven to be a problem (as 

noted by several authors including [27], and [28]). 

One of the biggest problems in trying to use the data acquired to try and match it to chords 

from  theory  is  that  musical  instruments  often  introduce  what  is  known  as  ‘overtones’,  which  

are harmonic frequencies which are integer multiplications of the fundamental frequency [3]. 
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Methods used to reduce harmonic overtones include a method developed by [14]. Here a 

weighting was given to each 𝑖௧௛ harmonic to emphasise the fundamental harmonic (which all 

subsequent harmonics are integer multiplications). Here the weighting of the harmonics 

decreased exponentially such that each subsequent 𝑖௧௛  harmonic contributes 𝑠௜ିଵ  of its 

energy, where Gomez chose 𝑠 = 0.6 (𝑠  is a manually tunes number) 

The last issue to deal with in real-world application is tuning. Since the tuning of an 

instrument can range depending on the frequency chosen for its reference note (usually A 

above middle C which is tuned to 440 Hz, but can range from 415 Hz to 445 Hz), an 

automated program can assume a specific tuning, pick off the harmonic data based on that 

even though the actual tuning is different resulting in an error over the whole spectrum data. 

For a reliable chord transcription process, this tuning has to be determined by the program 

itself to account for the possible range amongst songs, as a standalone program would not be 

practical to manually enter this information. Methods implemented include using 36 chroma 

bins, 3 per pitch class. The program would then determine which chroma (out of the three) 

has the highest power reading, and estimate this as the tuning of the song [17]. It is fairly 

practical to assume a tuning reference of 440Hz however, as this is used in almost all popular 

songs (and is the standard setting for electronic tuners). 

2.2.4 DATA PROCESSING 
Once the 12-vector chromagram is obtained, how the data is processed is the next important 

step in the automatic transcription of chords. The best aspect of using the 12-vector 

chromagram approach is that simple matrix multiplication can be used, which is easily 

implemented with programs such as MATLAB. 

Since it is possible to build a chord profile manually using the 12-dimensional vector with 

each vector representing a pitch class, the first step is to build a large enough database of pre-

defined chords in this format which all data will be compared to. It would be intuitive to build 

the largest possible pre-defined chord data set, such as T. Fujishima [8] who had 324 chords, 

but this could actually lead to more inaccuracies. Since previously it was mentioned the 

amount  of  ‘noise’  sources  present  in  music  (especially  live  performances  which  doesn’t  have  

the benefit of noise removal that professional studios have), the larger sample set you have, 

smaller difference between two separate chords. As a single note can alter the meaning of a 

chord in the more complex chord identifiers such as Suspended-4th chords, high enough noise 

can push the interpretation away from the true chord. 
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Most methods utilize anything from 24 chords [29] to 204 chords [30], with the average 

being 48 chords [31] which seems to cover the largest range (Major, Minor, Augmented triad, 

and Diminished triad chords) without introducing unnecessary errors (as most music 

compositions do not stray very far from the Major and Minor chord structures – with the 

exception of jazz or other instrumental based genres). This data base is then used to compare 

the real time data in various forms.  

The simplest method was used by T. Fujishima where he simply takes the inner product of 

the instantaneous chromagram with the pre-defined chord database. Simple matrix 

multiplication means the evaluation is quick, and gives the final data in simple to interpret 

form. To show this method of transcription, the chord G-major chord is transcribed below. 

The process would be along the lines of transposing the data-based chord matrix, multiplying 

the two matrices together, evaluating the resulting single-entry matrix (the higher the number, 

the better match to the chord it is), then proceed to do so for each of the pre-defined chords, 

picking whichever results in the highest match. From this it is clear that the more pre-defined 

chords that are given; the longer the process will take. 

Comparing G-Major with several similar chords shows the following results (using 

theoretical binary values): 

TABLE 3 - DIFFERENT CORRELATIONS WITH G MAJOR 

Chord 

Pitch 

Classes Inner Product 

G major B, D, G 3 

C major C, E, G 1 

G minor A#, D, G 2 

G 

Diminished 

triad A#, C#, G 1 

G 

Augmented 

triad B, D#, G 2 

 

This shows that even though the G-Major chord shows similarities with other chord classes, 

the highest inner product is with that of the G-Major of 3. The advantage of this method is 
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that power readings can be substituted for binary values. This means values between 0 and 1 

can be used in the vectors to improve the accuracy. It can be shown (due to overtones and 

other reasons) that the power readings for a chord does not always give the same power 

reading for two pitch classes even though they are played simultaneously. This gives the 

option   to   ‘learn’  what   chords   look   like   [32] from a structured learning exercise, or use the 

theoretical binary values as Fujishima did. 

It has been shown how a single Gaussian can be used to estimate not only chords but the key 

of the song as well, it has not been the best method utilised with a lot of research currently 

going   into   finding   the   best   method   for   ‘profile   matching’   (matching   up   the   data   with   the  

theoretical meanings). Other methods besides Gaussian include using Dirichlet distributions 

[33], Neural networking [34] [11], and learned feature models which were automatically 

taught [35]. It should be noted that most methods learn relatively few chord data profiles 

(usually 24) as it has been noted, especially due to the surprisingly low performance of a 

model which uses many chord types [32] suggest that there is an optimum amount of chords 

to which the data is compared to which allows for the best overall transcription accuracy in a 

global sense. 

2.3 CONCLUSION 
It is obvious that one thing omitted from most literature studies is a detailed analysis on the 

noise content that could be contained in a musical audio sample. Since the overarching goal 

of this thesis is to try and improve the current process in some aspect, it is counterintuitive to 

try and do this without a good knowledge on the data itself. 

Methods for collecting the data, manipulating the data, and finally achieving the goal of 

automatic transcription are possible, but its accuracy is nowhere near a perfect system yet. 

Previous work has been focussed on achieving the actual final result in any form, this has 

been achieved over the past few years. Future focus into the area should be at improving the 

accuracy of transcription beyond the 85% mark, and this can only be done by understanding 

the noise sources and their effect within musical audio. 

This will be the basis of all research in this report, where an experiment will be designed to 

analyse various sources of musical audio, and identifying the sources of noise relating to 

automatic transcription. Having an accurate knowledge on what factors in a song actually 

contribute to less than perfect transcription rates is ideal to give realisable suggestions to the 
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current process of automatic music transcription. With this in mind, an experiment can be 

designed to identify the cause and effect of noise in the context of automatic musical 

transcription. 
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3 CONCEPT DESIGN 
The aim of the experimental work within this thesis is to identify the different sources of 

noise within a piece of musical audio, and also identify their relative effect to the final 

transcription of music. The experiment will be designed such to systematically introduce the 

possible noise sources into a data set. This is then analysed and compared  to demonstrate the 

effects. Several different audio sources will be used to generate the same data set which will 

allow for the precise control of audio spectral content. This concept of recording and 

analysing the different audio data sets can be broken down into the following steps: 

 

FIGURE 1 - CONCEPTUAL METHOD FOR DATA EXTRACTION 

The first block relates to the individual instrument, which will be recorded in isolation. Each 

individual chord (48 different ones covering the Major, Minor, Augmented triad, and 

Diminished triad voicing’s)   will   be   recorded   and   put   through   the   chromagram   algorithm 

which identifies the spectral content in musical notation (depicting notes instead of 

frequency). This will then be put into a database, where each different data set will be 

compared and analysed. This process can be further broken down into their respective details, 

which results in the more complex block diagram: 
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FIGURE 2 –DETAILED DESIGN OF ACQUIRING THE DATA 

For the recording of the audio, there are several different options that can be explored. The 

first is to obtain different sections of pre-existing songs where it has been transcribed by a 

professional, and segment the chords from that. This method does utilise real data which the 

process will be applied to, but if multiple sources of noise is present within the sample, they 

cannot be separated and identified correctly. The best solution here is to record the data 

specifically for this thesis, which will allow for the systematic addition of noise. By this 

concept, it should be possible to introduce noise in such a way that when compared to the 

previous data set (which will contain all the noise content found to that point), the effect of 

the noise being currently analysed can be easily deduced. 

The chords covered in this thesis will be the Major, Minor, Augmented triad, and diminished 

triads as these will cover the all main chord types used within music. More complicated 

chords are not included, as doing so would not bring forth any more clarity to how the noise 

can affect the audio samples. In terms of instruments used, this will start with computer 

generated sound to be used as a control. It will then move into  human played instruments, 

where different instruments and recording techniques will be used to help identify the noise 

content. 
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In conclusion to the data to be analysed, a small sample (including mainly major and minor 

chords) of chords will be analysed from musical audio containing other musical elements 

such as percussion, bass, vocals, and effects. This data set will emulate real world data to 

which the automatic chord transcription process is designed to analyse. It is therefore 

important to this whole thesis that the behaviour of these results can be related to its 

individual components, each of which can be isolated from the progressive introduction of all 

error elements commonly found in the final data set.  

It should be noted that the method of determining if a noise source affects the final 

transcription is where a note is correctly or incorrectly transcribed. Therefore a simple 

maximum likelihood algorithm will be written to actually transcribe the chords recorded. 

This would not be the most efficient method of transcribing the chords (and also providing 

additional information needed for comparison between data sets), but it will represent the 

most common and easiest method of transcription. 
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4 DETAIL DESIGN 
The detailed design of the experiment will outline the more specific aspects of how the 

information is obtained and handled. Working on the conceptual designed depicted in figure 

2, there are several stages in the process, with additional and specific information added to 

each. They are broken down into the subheadings describing each function as dictated in the 

concept design block diagram. 

4.1 INSTRUMENTS 
A final musical recording can contain many different instruments recorded in many different 

fashions. To correctly identify the source and effect of a single noise source, it is important to 

use instruments that not only represent a realistic example of what can be used in a song, but 

also ones which allow the introduction of noise systemically. For this reason several different 

instruments were chosen to record the 48-chord data set, where each one adds a single source 

of noise (such that as you progress through the experiments, the current audio samples 

contain the same errors as previous, but also the new one being identified). The first 

instruments, which will be the control, are computer generated sine waves. This allows for no 

variation in note volume, timing, and instrumentation noise. This will be generated inside a 

digital audio workstation (DAW) which is the method that would be used in actual 

professional recordings. This will identify any errors in the computation techniques as they 

should theoretically represent the zero-noise chords.  

The next instrument to be used is a piano synthesizer. The reason for using this is to introduce 

the effect of a real world instrument without the introduction of human error. Since the piano 

sound is constructed using real sample data recorded from a grand piano, the errors 

introduced by the instrument itself will appear superimposed to the previous errors found 

from the sine waves. Factors such as upper partial harmonics (frequencies present in a 

vibrating note that is not the fundamental frequency of the vibration occurring in the string) 

can introduce errors which would carry over into other stringed instruments such as guitars. 

The next instruments to be used will be an electric and acoustic guitar. The electric guitar will 

be recorded and analysed first for a few important reasons. The recording technique itself is 

the main reason, as an electric guitar can be recorded via direct input. This uses the output of 

the magnetic pickups of the guitar, and feeds this directly into the analogue to digital (A2D) 

converter (which in this case is the sound card on the computing device used to capture the 
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recorded sound data). This reduces other sources of error that can be introduced by the 

acoustic guitars recoding technique of a studio condenser microphone. This method also 

requires no effects commonly used in electric guitars be used to show the effect of a human 

player producing the chords. 

Next will be an acoustic guitar, which brings in additional noise sources such as microphone 

recording. As this is the standard method of musically recording an acoustic guitar, it is 

important that the same standard method is used in recording of the samples. Orientation can 

affect the spectral content of an acoustic guitar (relative to the microphone), so the standard 

method of placing   the  microphone  close   to   the  acoustic  guitar’s  sound  hole  will  be  used   to  

represent a typical setup used in a studio. 

A small side experiment will be performed on the electric guitar, where heavy distortion is 

added. This is a common and popular technique in such genres as heavy metal, punk rock, 

and many other genres. This experiment is primarily performed to prove a hypothesis on the 

effect of heavy distortion to the automatic transcription process. The hypothesis relies on two 

important factors brought upon by heavily distorting an electric guitar. The first is that it will 

bring the power content of each frequency being played by the instrument to the same level 

which would allow for simple binary comparison to the pre-determined chord data base. And 

the second is the limitation heavy distortion implies to the range of chords being played, 

where  only  ‘power  chords’  are  predominantly  played (which consist of 3 notes, but the third 

note is an octave of the root note, so essentially only 2 different notes are contained within 

the chord) as Major/Minor chords either sound unclear when distorted, or they simply do not 

fit the musical styles of the genre. Both these factors would allow easier transcription of the 

final musical file 

The different instruments used will be as follows, with extra detail added to the table for 

clarity: 
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TABLE 4 - DIFFERENT INSTRUMENTS USED WITHIN THE EXPERIMENTAL SETUP 

Instrument Recording source Effects File Output Chords Analyser 

Sine Wave Synthesizer None .WAV 48 Chromagram 

Grand Piano Synthesizer None .WAV 48 Chromagram 

Electric guitar Guitar Amplifier None .WAV 48 Chromagram 

Electric guitar Guitar Amplifier Distortion .WAV 6 Chromagram 

Acoustic Guitar Condenser 

microphone 

None .WAV 48 Chromagram 

 

The full production song data will be recorded using an electric guitar, synthetic percussion 

(again a common method), an electric bass guitar, and a vocalist. Additional effects, such as 

compression and reverberation, will be added and represent another data set to more 

accurately represent a professionally produced song. 

4.2 RECORDING TECHNIQUES 
As previously mentioned, the method of recording the audio data can impart many errors in 

itself, and it is therefore important that not only an accurate method of recording is used for 

each instrument, but that they reflect the standard for the specified instrument (although given 

the wide range of methods that can be used, the method that will produce consistent data will 

be the preferred method). This section gives a more in-depth methodology for recording the 

sound across each instrument, including all the intermediate processes. 

4.2.1 SINE WAVE GENERATOR 
The  particular   generator  used   in   this   experiment   is   the   ‘Nexus’  plugin  produced  by   ‘reFX’ 

[36]. This is a popular tool used by professionals and produces high quality audio samples. 

The sine wave output gives a 44,000 KHz 24 bit generated waveform with no additional 

effects added for data integrity. The sound is generated inside the digital audio workstation 

(Cubase 5.1 [37]) and then exported into a .WAV file. There are no intermediate steps 

between the generated sound and the file output, giving the best representation of a chord 

constructed with 3 sinusoidal frequencies. Each note within the synthesizer will be set to the 

same volume and be played at exactly the same time (to avoid additional power being added 

to the spectrum from having a note being present for a longer period of time within the 

sample). This data set will be used as the control to which other results are compared to. 
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4.2.2 SYNTHETIC PIANO 
This method is fairly similar to the sine wave generator with one distinct difference, which 

relates to how the sound is generated. As mentioned previously, the synthetic grand piano 

sound is achieved by sampling individual grand piano notes and then reproducing them when 

specified by the user. Factors that can be controlled at this stage are the velocity at which the 

piano strings are struck (increasing the amplitude). This is achieved by not only adjusting the 

volume at which the sound is generated by the synthesiser, but by also recording each note at 

different volumes at the source. This is done to reproduce the different qualities introduced 

by striking the strings within the piano at different velocities. This method of producing a 

realistic piano sound that can be used in professional audio recordings allows for the best 

representation of a stringed instruments sound without adding the human source of error into 

it. Again, each note will be set to the same volume and played at the same time. 

4.2.3 ELECTRIC GUITAR 
The method for recording the electric guitar contains several additional intermediate stages 

when compared to the synthetic sound generators used in the previous section of the 

experiments. Here the most common method of recording an electric guitar is used, and the 

details provided here include every stage that is required for recording an electric guitar. 

When the string of an electric guitar is struck, it vibrates the magnetic field (due to the ferrous 

conducting properties of the steel strings) around a coil of wire with a large number of loops. 

This creates an alternating electric signal in direct correlation to the frequency at which the 

string is vibrating [38]. This signal is then passed through the guitars electronics which 

consists of a potentiometer that controls the volume and a potentiometer and capacitor circuit 

that control   the   ‘tone’.   This is simply a low pass filter, where the cut-off frequency is 

controlled by altering the resistor value in the RC circuit. 

For the experiments, the volume control is set to full and the tone control is set to allow the 

maximum range of frequencies through the circuitry as to not deteriorate the sound quality. 

This signal is then passed through a mixer, which is simply an amplifying circuit that 

amplifies the low amplitude signal into a useable audio signal. Additional volume and tone 

controls are available on the mixer, where for the experiment the tone settings are ‘neutral’  

which neither adds nor subtracts additional tonal qualities to the signal, and the volume is set 

such that no clipping is experienced in the next stage. This signal is then fed into a sound card 

which consists of an analogue to digital converter. 
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The  sound  card  used  here  is  an  ‘M-audio Audiophile 2496 [39]’  which  converts  the  analogue  

signal to a 24bit digital signal at a sampling rate of 48 KHz (studio quality recording). Again, 

no effects or tonal modifications are performed on the signal, and this is then exported into a 

‘.WAV’ file. The guitar used for the experiment is a Gibson Les Paul guitar, which is of a 

high quality and is used extensively across many musical genres. 

4.2.4 DISTORTED ELECTRIC GUITAR 
The method for recording this will be done similarly to the electric guitar, except an 

intermediate gain stage will be added before the mixer stage. This will be done with an 

electric  guitar  amplifier,  namely  the  ‘Line  6  Spider  II’  model,  where  the  high  gain  setting  is  

applied. This will result in an effect similar to those found in genres such as heavy metal, 

rock, punk etc. No additional effects will be added. 

4.2.5 ACOUSTIC GUITAR 
The only difference in this method of recording in comparison to the method used for the 

electric guitar is how the audio signal from the instrument is captured. Here a studio 

condenser microphone is used (the standard method for acoustic instruments) to capture the 

sound from the guitar. The orientation of the guitar during recording is such that the  ‘sound  

hole’, or more simply the opening of the body of the guitar where the sound resonates at its 

highest volume, is directly in front of the microphone at close range (within 10cm). 

This allows for the capturing of all frequencies produced by the guitar, which in this case is a 

desirable feature in a musical context (often described as richness of the sound). The guitar 

used in this experiment is an Ibanez Art-wood acoustic guitar, again a fairly high quality 

instrument to reduce any noise associated with a lower-grade instruments (which would not 

be used in a professional production song). 

4.2.6 FULL SONG RECORDING 
For the final aspect of the experiment, a series of chords will be extracted from an audio 

sample which can be best described as a full production song. Here many aspects of a 

completed piece of music will be added to the audio. These aspects include synthetic 

percussion provided  by  a  plugin  called  ‘Groove-agent ONE [40]’,  which   is  provided   in   the  

‘Cubase’   DAW   package.   The   same   theory   as   the   synthetic   piano   is   used   to   produce   the 

sound, where samples of a real percussion kit are used to give an accurate representation of a 

studio percussion kit. 
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Another element added is a bass guitar, which will be recorded by the same technique as the 

electric guitar. Also included are the electric guitar and a vocal track. The vocal track will be 

recorded using the condenser microphone with no additional tonal quality added outside the 

recording software. Here two sound samples will be produced for every chord within the 

song. The first sample will be done with no additional effects added to the individual 

elements of the song. This is done as a control to see if adding effects to the elements will 

introduce notable differences in the data. The effects that will be used are as follows: 

Compressor: This effect essentially amplifies lower volume portions of the audio, and 

compresses higher volume elements. This is done to bring the whole sample, to which the 

compressor is applied to, to a more consistent volume level. Here the effect is used in 

moderation such that it does not amplify the background noise of the recording to an audible 

level. 

Reverberation: This effect adds a delayed sound onto the original audio track giving it a 

sound resembling a large hall. If you consider the delayed sound at the same volume of the 

original signal to be 100% effect added, here only 8% is used to add a desirable musical 

quality to the vocal and guitar track. 

Equalization: Tonal modification will be used on the vocal and the guitar track. Here the 

modifications will be performed in such a way to separate the two sound files in terms of 

frequencies. A slight high pass effect will be used on the vocal track, and a slight low pass 

will be used on the guitar track. This is a common technique used which allows for the 

audible separation of different elements within a song, such that all the different aspects of a 

full  production  song  do  not  get   ‘tonally  mixed’. This would result in the listener not being 

able to separate the different sounds within the final mix. 

4.3 FILE OUTPUT 
The file output used is the .WAV file, as this does not use audio compression which 

decreases the size of a file dramatically, but also decreases the audio quality. This is achieved 

by sampling the audio content at 16 bit rather than 24 bit (amplitude definition levels) and 

lowering the bit rate to (usually) 320 Kbit/sec. It is also required for analysis through 

MATLAB. The .WAV format is also utilised here given the wide level of adoption by other 

programs. For example, a default function in the powerful software package MATLAB (the 

main software tool used for analysis) called ‘wavread.m’ can be used which easily transcribes 
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the audio data into matrix form. This data is then used by other functions such as the fast 

Fourier transform (fft.m) which allows for the representation of the data in the frequency and 

power domain. These functions are the basis to which an automatic transcription process is 

built on, as the data obtained through them is what is essentially manipulated into the final 

output. 

4.4 OBTAINING THE CHROMAGRAM 
As stated previously, the MATLAB program ‘mirchromagram.m’ [20] will be extensively 

used to obtain useable and readable data from the audio samples for several reasons. MIR 

stands for Music Information Retrieval, and is a very reliable source in the field of automatic 

chord transcription. The authors are regular attendees and contributors to the ISMIR 

(International Society of Music Information Retrieval) conferences where a majority of 

sources were obtained for the literature review, and a majority of the people who have 

significantly contributed to the field of automatic music transcription attend regularly to 

represent the current advancements in this topic. 

After recording a single chord using a sine wave generator inside a digital audio workstation, 

the single chord was exported as a .WAV file and then analysed using the 

‘mirchromagram.m’ function. The following figure was the output: 

 

FIGURE 3 - C MAJOR CHORD CHROMAGRAM 

It can be observed that 3 notes were present in the chord which matches with the theory (this 

particular sound file was generated using the Sine wave generator as stated previously). Here 

it is seen how the values are normalized such that the highest power value is shown to have a 
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magnitude of 1 and the rest of the notes are scaled according to this note (C in this case, the 

root note). Using   the   ‘data’   cursor   function   within   the   figure display itself (within 

MATLAB), values can be read off and a data table can be constructed. This is the method 

that will be used to more closely analyse the data. 

Since it is never a good methodology to use a program or function without independently 

confirming its output as the correct output, the functionality was verified via several manual 

steps and calculations. Using the knowledge that the frequencies played in the chord were 

generated using an external program used solely for music production (which suggests that 

the qualities present in the audio sample are those desired in a musical context), the generated 

waves should show frequency peaks at the known frequency values played in the frequency 

domain. It should be noted that the software that generated the sine waves was also 

independently verified by using an external hardware tuner, where a single note was 

generated then put through this musical tuner. The exact same note was displayed as the one 

generated and showed a degree  of  accuracy  to  0.5%  (as  stated  on  the  tuner’s manufacturer’s 

specifications) at least. This step merely confirms that the generated notes are as stated by the 

software used to generate them. 

Manually working out the frequencies that should be contained within the signal is as 

follows: 

TABLE 5 - C MAJOR FREQUENCY LISTING 

 

 

Writing a short MATLAB program (see appendix section 10.8) which computes the power 

spectrum of the sine C-major gives the following graph: 

Note Frequency 

(Hz) 

C 216.625 

E 329.627 

G 391.995 
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FIGURE 4 - POWER SPECTRUM OF SINE C-MAJOR CHORD 

Which when zoomed in on the appropriate area gives the following graph: 

 

FIGURE 5 - POWER SPECTRUM OF SINE C-MAJOR CHORD 

Which correspond to the following data: 
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TABLE 6 - EXTRACTED POWER VALUE OF C-MAJOR FREQUENCIES 

Peak Frequency 

(Hz) 

Power 

1 261.6 0.2142 

2 329.6 0.1996 

3 392 0.1684 

 

This shows the correct correlation from frequencies to note value  in  the  ‘mirchromagram.m’  

function. It can also be observed from the spectrum that the power of each peak decreases as 

the frequency increases which also corresponds to the data trend shown in the chromagram. 

The short function written to obtain this graph simply used a fast Fourier transform, where as 

many data points was used that were allowed by MATLAB to ensure its accuracy. This gives 

enough  confidence  to  use  the  ‘mirchromagram.m’  function  in  future  analysis  of  all the audio 

signals. 

4.5 CHORD DATABASE 
The chord database representation will be shown in a simple table format as follows: 

TABLE 7 - SAMPLE CHORD DATABASE FORMAT 

MAJOR C C# D D# E F F# G G# A A# B 

C 1       1     1         

C#   1       1     1       

D     1       1     1     

D#       1       1     1   

 

As evident above, the database has two axes. The left axis shows the chords being 

represented (with 4 major chords, from C to D# being shown here) and each chord type 

(major, minor, augmented, and diminished) set being made up of 12 chords. The top axis 

represents individual notes, again all 12 within the western musical scale. 

The way in which a chord is represented is fairly simple. For each chord located on the left 

side of the table, each contributing note that is used to construct the chord is then represented 

as present (denoted by a 1 in this case) or not present (denoted by a blank, or a zero when 
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transcribed to a vector which can be used by a function). So using an example from above, 

the C major chord is constructed using the notes of C, E, and G. 

By using this format for constructing the chord database for each instrument, additional data 

such as each note’s contributing power level to a chord can also be tabulated and used. In 

cases such as that, a binary 1 or 0 will not be used for a chord being present or not, but rather 

a decimal between 0 and 1 which relates to its relative power level. 

Each chord relates specifically to what combination of notes are contained within it, where 

the major and minor scales see all 12 chords being unique based on the note content. Special 

consideration however needs to be taken for the augmented chords as technically there are 

only 4 different combinations for all 12 chords based on note content alone. For example, the 

D augmented contains the notes in chronological order of [D, F#,A#]. The F# augmented 

chord contains the notes [F#,A#,D] which match the previous chord. In this context, what 

separates these two chords will be the root note, which is the note of lowest frequency.  All 

chords used in the experiments will be triads, which means they are made up of only 3 notes 

with the root note being the lowest frequency and the other notes played the least distance (in 

terms of frequency separation)  required in relation to the root note. 

4.6 TRANSCRIPTION METHOD 
Once all the data has been tabulated with the above methodology, a transcription method is 

needed to observe how well the data in each experiment can be transcribed into useable chord 

information, and to compare accuracy rates between sample sets. The method that will be 

used in these experiments is the Maximum Likelihood algorithm. This method takes 

advantage of the matrix format all the data will be recorded in. A description of the method 

follows below. 

A 12 element vector is formed containing the chromagram data of the audio file. The first 

entry  corresponds  to  the  note  ‘C’,  which  is  the  standard  starting  point  of  all  chord  data  banks.  

This is then pre-multiplied with the transverse of the data matrix containing the pre-defined 

chords. This returns a 12x1 matrix with correlation values. Given there are 3 notes in a single 

chord (assumed for this task), if a sampled chromagram contains these three notes at a power 

level of one, the correlation returned for this chord will be equal to 3. This means that the 

correlation values will range from 0-3, with the highest element giving the most likely 

estimated chord. A worked example for clarification is provided below: 
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FIGURE 6 - SAMPLE IMPLIMENTATION OF THE MLA 

Where the F# Major chord sampled data from the Sine wave data set was used. When this 

matrix multiplication is performed, the following result was obtained: 

 

FIGURE 7 - MLA OUTPUT 

The estimate in this case was the F# Major chord with a correlation of 2.44. This process is 

repeated for all four chord types where the highest value is returned. When the highest 

element is found to be equal for two different chord types (But same root note value, e.g. 

comparing A major to A minor chord), the Major chord is preferred, followed by Minor, 

Augmented, then Diminished in that order (due to the probability of use in music being that 

order in general [41]). The properties to be obtained from this analysis relating to the 

accuracy of transcription and the parameters of the data transcribed is the percentage of 

correct transcriptions, and also the average correlation values for correct transcriptions 

(where the highest correlation is preferred as it shows a higher probability of being a correct 

transcription, rather than a calculated guess). 
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5 EXPERIMENTAL WORK 
In this section, a summary of the results obtained when applying the ‘mirchromagram.m’  

function to each of the isolated chord audio files across each of the instruments can be found. 

A more in-depth analysis of the trends and accuracies observed from the data is found in 

chapter 6. The full set of data for each instrument (showing all the tabulated data obtained 

from the experimental work) can be found in the appendix section 10.2 to section 10.7. First 

the outline of the exact methodology used to obtain the data throughout this experimental 

work is detailed below. 

5.1 METHODOLOGY 
To correctly obtain and analyse the data, the following methodology was followed. Note this 

was developed through practical experimentation by the author of this thesis and then 

summarised in the steps below. 

5.1.1 INSTRUMENTAL CHORD DATA COLLECTION 
1. Record the 48 different chords using the recording techniques outlined in the detailed 

design for a specific instrument using the Cubase DAW. 

2. Export the chords as an individual .WAV file spanning from 2.5 – 3 seconds 

(consistent for each instrument type). 

3. Import the files into the MATLAB directory 

4. Apply  the  ‘mirchromagram.m’  function  to  the  audio  sample. 

5. Manually tabulate the power values from the provided graph. 

6. Complete a data table for each chord type (4 in total) for specific instrument. 

7. Repeat steps 1 to 6 for each additional instrument. 

5.1.2 FULL PRODUCTION SONG DATA COLLECTION 
1. Record a simple song with the chord progression as detailed previously. 

2. Manually separate and export each individual chord as per BAR separation (one bar 

contains one chord, so each bar is exported separately) 

3. Import the files into the MATLAB directory 

4. Apply  the  ‘mirchromagram.m’  function  to  the  audio  sample. 

5. Manually tabulate the power values from the provided graph. 

6. Complete the table as shown in the appendix chapters 10.2-10.7. 
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5.1.3 TRANSCRIPTION 
1. Use the function written by the author which implements the Maximum Likelihood 

algorithm. 

2. For the 48 chord data set, values will be automatically returned as provided in the 

following sections (percentage correct transcription and average correlation). 

3. For the full production song, compare the transcribed chords with the correct ones and 

manually tabulate percentage correct transcriptions. 

So using this method of obtaining and analysing the data, the following experimental results 

were obtained for all the recorded data in this project. 

5.2 SINE WAVE CHORDS 
The audio samples relating the sinusoidal generated chords were analysed, where a typical 

chromagram returned a graph such as the one below: 

 

FIGURE 8 - SINE CHROMAGRAM FOR C-MAJOR 

Not only is the trend of exponentially decreasing power values as you increase the frequency 

of the notes within the chords observed (scaled such that the highest power value is 1), the 

root within the data always contains the highest power value. A summary of the note power 

values (average and standard deviation) can be seen in the table below: 
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TABLE 8 - SINE WAVE POWER SUMMARY 

Chord Type Root Std.Dev 2nd Note Std.Dev 3rd Note Std.Dev 

Major 1 0 0.793667 0.017238 0.666833 0.017808 

Minor 1 0 0.842833 0.017454 0.670417 0.013865 

Augmented triad 1 0 0.794417 0.012665 0.63 0.01 

Diminished triad 1 0 0.8435 0.01607 0.709833 0.01482 

 

Here the low standard deviation for all notes in the series for all chord classes suggests that 

this instrument acts as an acceptable control instrument, as it has extremely predictable and 

reliable data values. The reasons however for the decrease in power values as you increase 

the frequency of a note could be numerous. A more detailed analysis is shown in later 

chapters. A sample of the tabulated results is shown in the table below. This, again, shows the 

predictable nature of the results: 

 

FIGURE 9 - SAMPLE DATA SET FOR GENERATED SINE WAVE CHORDS 

Given the data set found above, it should be trivial to transcribe the results from this into 

chords. A detailed analysis of the transcription rate is found in chapter 6, along with a 

discussion of the trends and meaning of the data obtained.  

5.3 SYNTHETIC PIANO CHORDS 
The following results were slightly more varied than the sinusoidal generated chords. This is 

expected as additional frequencies are present within the audio sample due to instrumental 

overtones, or, more simply, the  ‘instrumentation  noise’. A typical chromagram obtained from 

the analysis can be found in the figure below. 

MAJOR C C# D D# E F F# G G# A A# B
C 1.00 0.81 0.67
C# 1.00 0.76 0.67
D 1.00 0.79 0.66
D# 1.00 0.78 0.65
E 1.00 0.81 0.66
F 0.72 1.00 0.82
F# 0.67 1.00 0.77
G 0.67 1.00 0.79
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FIGURE 10 - SYNTHETIC PIANO D AUGMENTED CHORD 

Here it is apparent how additional frequencies are present in some data samples, where the 

additions of the ‘A’  note within the chord (according to theory, this should not be included) 

shows this effect. When applying a Fast Fourier Transform to the D Major chord, a clearer 

picture can be observed. 

 

FIGURE 11 - FREQUENCY ANALYSIS OF A PIANO D-AUGMENTED CHORD 

Where the overtones are highlighted in the following diagram: 

Frequency  (Hz) 

Po
w
er
  M

ag
ni
tu
de

 



The Automatic Transcription of Music 

 

45 

 

FIGURE 12 - SPECTRAL CONTENT SHOWING OVERTONES OF A D AUGMENTED CHORD 

The first three peaks apply to the root frequencies of the notes [D, F#, A#]. The peaks 

occurring after the three first peaks are those of the instruments overtones, and can alter the 

data  to  some  degree.  Since  the  ‘mirchromagram.m’  function  uses  spectral  wrapping  as  part  of  

its process, the first harmonic overtones will simply be at an octave of the original notes. This 

means that they will just contribute more power to the related note value within the 

chromagram and only alter the power content of the final transcribed data. The third, and 

successive, harmonic overtones however, are at a frequency of 3 times the root. This is not 

considered the same note value (due to the exponential relationships between notes), meaning 

that additional notes not relating to theory could be introduced into the data set. However, as 

observed in the figure above, this often does not introduce high power content and a simple 

threshold introduced into the chromagram function can reduce or remove the effects of 

overtones easily. This is utilised in the ‘mirchromagram.m’ function and, as long as this 

factor is not changed throughout the experiment, an accurate comparison in terms of the 

scope of this thesis can be achieved. 

A sample of this data is found in the table below (full results can be found in appendix 

chapter 10.3). 
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FIGURE 13 - SAMPLE SYNTHETIC PIANO CHORD DATA SET 

Analysing the average data trend gives the following table. 

TABLE 9 - AVERAGE DATA TRENDS OF SYNTEHTIC PIANO CHORDS 

Chord Type Root Std.Dev 2nd Note Std.Dev 3rd Note Std.Dev 

Major 0.9656 0.0824 0.7235 0.1647 0.4972 0.1817 

Minor 0.9345 0.1467 0.7725 0.1451 0.4700 0.1467 

Augmented triad 0.9636 0.0851 0.7183 0.1589 0.412 0.1699 

Diminished triad 0.9300 0.1575 0.775 0.1437 0.5212 0.1344 

 

It can be observed that the standard deviation for each note is roughly 10 times that of the 

generated sine wave chords. Since human errors were removed by producing the sound via a 

musical synthesiser, this variability is solely due to the instrumentation noise of the piano 

itself. A more detailed discussion of the implications of this is found in chapter 6. 

5.4 ELECTRIC GUITAR CHORDS 
After introducing the human element into the data, such that this experimental set contains 

instrumentation and human errors, a typical chromagram obtained from the data set is found 

below. 

MAJOR C C# D D# E F F# G G# A A# B
C 0.72 1.00 0.65 0.02
C# 0.87 1.00 0.88
D 1.00 0.39 0.11
D# 1.00 0.62 0.47
E 1.00 0.54 0.48
F 0.67 1.00 0.86
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FIGURE 14 - ELECTRIC GUITAR D MAJOR CHORD 

Applying a Fast Fourier transform on this chord shows the following diagram. 

 

FIGURE 15 - D MAJOR CHORD SPECTRUM FOR ELECTRIC GUITAR 

Two effects on the frequency content can be seen that differs from the control. The first effect 

is the inclusion of musical overtones which was previously discussed. The second, however, 

is the method of which chords are played. On a guitar, chords are played using the triad 

chords based on note content but notes each within the 3 note set can be played multiple 

times on multiple strings such that two or more notes at octave equivalence are present in the 

sample. This is evident as only 3 different notes are observed in the chromagram but a 

clustering of 5 frequencies in the root note spectrum (before overtones are introduced). This 

could introduce the error of largely varying note power value within the chromagram since 
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octave note powers are simply added in the chromagram, and therefore other notes would be 

scaled accordingly. 

The human element is also clearly observed by noticing the variable note power value for the 

original 5 peaks (which are the root notes actually played). Comparing this with the piano 

frequency transform shows how a human playing the stringed instrument can add large 

variations into the frequency and power content. This could potentially affect transcription 

accuracy. 

A sample data set is also observed which shows how variable the data can be. 

 

FIGURE 16 - SAMPLE ELECTRIC GUITAR SAMPLE SET 

An analysis of the trend of the data across all 4 chord classes is shown in the following table. 

TABLE 10 - DATA TREND OF SYNTHETIC PIANO CHORDS 

Chord Type Root Std.Dev 2nd Note Std.Dev 3rd Note Std.Dev 

Major 0.822417 0.229165 0.433067 0.212191 0.726817 0.36589 

Minor 0.8175 0.231177 0.43295 0.26986 0.70 0.328386 

Augmented triad 0.76 0.282803 0.555742 0.316336 0.58575 0.321604 

Diminished triad 0.754325 0.244663 0.639522 0.294003 0.591083 0.266085 

 

Several major differences in the data are observed when comparing to the last two data sets, 

especially in the Minor chord trend. Previously, the root note showed on average the highest 

power with a decrease of the higher notes in the scale. Here the 3rd note, and therefore the 

highest fundamental frequency, has a power value similar to the root value. Also note the 

standard deviation being roughly 3 times larger than that found in the synthetic piano set and 

30 times larger to the control. 

MAJOR C C# D D# E F F# G G# A A# B
C 1.00 0.70 0.21
C# 1.00 0.41 0.07
D 1.00 0.35 0.10
D# 1.00 0.69 0.61
E 0.72 0.07 1.00
F 1.00 0.66 0.17
F# 1.00 0.46 0.14
G 1.00 0.32 0.48



The Automatic Transcription of Music 

 

49 

This suggests that assuming there will be some form of predictability in the chord profile 

obtained will cause errors to occur in the final transcription product. Although this 

assumption would simplify the process considerably, it is important that not assuming this 

fact and adjusting the process is done to achieve maximum efficiency of the process. 

5.5 DISTORTED ELECTRIC GUITAR CHORDS 
In this sub-experiment, only 3 chords were recorded and analysed to simply confirm the 

suspected effect that heavy distortion would have on an electric guitar’s signal spectral 

content.  The  following  chromagram  was  observed  when  analysing  a  ‘Power  chord’: 

 

FIGURE 17 - DISTORTED GUITAR A POWER CHORD 

Observing the frequency and power spectrum gives the following graph. 



The Automatic Transcription of Music 

 

50 

 

FIGURE 18 - DISTORTED POWER CHORD A SPECTRUM 

The spectrum shows a periodic pattern in the peaks, where a large amount of harmonics are 

present due to the high distortion. This does add some additional noise content, but still gives 

a relatively clear chromagram which is the most important aspect when considering 

automatic transcription efficiency. 

The full list of results is shown below. These results  clearly outline the close correlation 

between the theory and practical data. The first table contains the theoretical values and the 

second table contains the obtained data. 

 

FIGURE 19 - DISTORTED GUITAR SAMPLE DATA SET THEORY 

The practical results from experiments show the following (here outliers with value less than 

0.05 relative power content were removed for clarity). 

 

FIGURE 20 - DISTORTED GUITAR SAMPLE DATA SET FROM SAMPLE 

A short discussion on the implications of these results can be found in chapter 6.4. 

Theory C C# D D# E F F# G G# A A# B
Power chord E 1.00 1.00
Power chord G 1.00 1.00
Power chord A 1.00 1.00

Data C C# D D# E F F# G G# A A# B
Power chord E 0.99 1.00
Power chord G 1.00 0.99
Power chord A 1.00 0.97
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5.6 ACOUSTIC GUITAR CHORDS 
This experiment yielded similar results to the electric guitar but with some extra noise 

introduced from the recording techniques needed to capture the acoustic guitars sound. A 

sample of a chromagram can be seen in the figure below. 

 

FIGURE 21 - D MAJOR ACOUSTIC CHORD CHROMAGRAM 

It is noted that the power values observed for a chord can vary a large amount across the data 

set due to the combinations of noise. Comparing the chromagram for the D-major chord 

performed on the electric guitar, it is observed that the two additional notes played do not 

contribute the same relative power level (within a degree of accuracy). The frequency 

response also shows some of the noise content. 
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FIGURE 22 - D MAJOR ACOUSTIC FREQUENCY SPECTRUM 

The  ‘flaring’  seen  at  the  base  of  the  peaks in the lower spectrum suggests more noise when 

compared to the electric guitar samples.  Since a highly sensitive sound recording device was 

used for this (standard method in professional studios), sound proofing was used to reduce 

any background noise in the audio samples. Regardless of the steps taken, unwanted noise is 

still present. 

A sample of the data obtained is seen in the table below. 

 

FIGURE 23 - SAMPLE DATA SET FOR ACOUSTIC GUITAR CHORDS 

Observing the data trend across all 4 chord classes gives the following table. 

 

 

MAJOR C C# D D# E F F# G G# A A# B
C 1.00 0.48 0.19
C# 1.00 0.56 0.08
D 1.00 0.15 0.06
D# 0.46 1.00 0.54
E 0.56 0.09 1.00
F 1.00 0.33
F# 1.00 0.31

Frequency  (Hz) 
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TABLE 11 - DATA TREND OF ACOUSTIC GUITAR CHORDS 

Chord Type Root Std.Dev 2nd Note Std.Dev 3rd Note Std.Dev 

Major 0.744333 0.27736 0.404725 0.3663 0.652917 0.362922 

Minor 0.69425 0.33393 0.310167 0.347301 0.66 0.315588 

Augmented triad 0.790917 0.1527 0.426167 0.305719 0.438833 0.302367 

Diminished triad 0.36225 0.359398 0.388833 0.371258 0.353833 0.332129 

 

The most important thing to note from these results is that firstly, some chords (when played 

in the same way as the electric guitar) omit some notes from the chromagram altogether. This 

is most obvious in the Diminished data set where 30% of the theoretical notes were not 

present in the collected data set (11 notes across the 12 chords in total). 

Also from the average data trends, a larger variability in the notes can be found. A large 

standard deviation was seen across the whole data trend, where in some cases the standard 

deviation matched the average power value (giving a standard deviation of almost 100%). 

From the spectral content seen in figure 16 above, it is obvious how dominant the bass 

frequencies are compared to previous results. This may be the reason for the omission of 

some notes. More details on this phenomenon are found in chapter 6. 

5.7 FULL PRODUCTION CHORD SAMPLES 
There are two sub-categories to this experiment. The first is without post-production effects 

and the second is with such musical effects which could potentially alter the data. The song 

was recorded as per the methodology set out at the start of the experimental work. The song 

was written to try and emulate real-world song’s musical qualities. These exact qualities will 

not be included in this thesis due to the wide variability and non-systematic method of 

producing  a  ‘standard  song’  (also  realising  there  is  no  such  thing  as  a  ‘standard  song’). This 

experiment was performed to detail the effects of additional musical qualities such as 

percussion, bass and vocals. The purpose of the second part of the experiment is to see how 

audio effects alter these results. 

The song was written in the key of C Major, where the following chord progression was 

used: 
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Verse            |    Chorus 
C-Major, E-Minor, A-Minor, F-Major      | C-Major, G-Major, F-Major, G-Major 

 

5.7.1 NO-EFFECT FULL PRODUCTION SONG 
After recording a song and then separating each chord manually so that individual analysis 

can be performed, a sample of a typical chromagram is provided below. 

 

FIGURE 24-NO EFFECT E-MINOR CHORD WITHIN FULL PRODUCTION SONG 

The most obvious observation that can be made is the fact that every note class has at least 

some spectral content in the chromagram. This is most likely a result of the wide-spectrum 

percussion  sounds  adding  additional  ‘noise’  (where  noise  in  this  context  is  any  notes that do 

not relate to the underlying chord being played). The peaks of the graph above still show 

dominance in the desired note-values   to   allow   accurate   transcription   via   the   ‘highest  

likelihood’  comparative  technique. 

Having a look at the spectral content via a fast Fourier transform gives the following graph. 
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FIGURE 25 - FREQUENCY TRANSFORM OF FULL PRODUCTION SONG SEGMENT 6 

The additional noise can be clearly observed but with several distinct peaks being shown. The 

highest value should also be noted to be in the low frequency spectrum (0-100Hz) suggesting 

it is from the bass instrument. 

Tabulating the data does require some modification to the methods used previously, with 

several columns and rows being added to display all relevant information. A sample of the 

collected data is found below. 

 

FIGURE 26 - SAMPLE DATA SET FROM FULL PRODUCTION SONG NO EFFECTS 

The bass note followed the root of the chord, which is commonly the case (it can and often 

does differ from the root but will still be included in the underlying chord being played). 

Transcription accuracy will be observed in the next chapter. 

5.7.2 EFFECT-ADDED FULL PRODUCTION SONG 
After adding effects to the individual tracks above, the same analysis was performed on the 

same segments. A quick summary on the effects applied to each track is given below. 

Segment Percussion Electric Guitar Bass Vocal Chord C C# D D# E F F# G G# A A# B
1 x x C Major 1.00 0.33 0.19 0.06 0.02
2 x x E Minor 0.08 0.79 0.06 0.09 0.06 1.00
3 x x A Minor 1.00 0.05 0.07 0.04 1.00 0.14 0.14 1.00 0.04
4 x x F Major 1.00 0.03 0.69 0.02 0.04 0.19
5 x x x C Major 1.00 0.25 0.10 0.08
6 x x x E Minor 0.14 0.08 0.09 0.74 0.07 0.19 0.20 0.12 1.00
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FIGURE 27 - DETAILS OF EFFECTS SETTING USED IN FULL PRODUCTION SONG WITH EFFECTS 

For the compression mix, 10% maximum volume means that a compression is applied to the 

mix if the volume is below or above 10% maximum volume of the track (where 101% full 

volume is where clipping occurs). The amount the volume is adjusted is a dynamic and 

complex process and is not required to be fully known in this context. The reverberation 

effect assumes that the reverb effect is completed in two stages. The first stage applies the 

reverb effect to alter the sound according to the simulated reverb environment. The second 

stage then mixes this sound in to the original sound. 15% raw mix means that the reverb 

alters the sound and then adds it to the original track at 15% reverb sound and 85% unaltered 

sound.10% reverb was chosen for the vocals where these values were used based on several 

years of personal experience in music production and recording. 

The same chord as the no-effect song is  analysed  using  the  ‘chromagram’  spectrum  with  the  

following output. 

 

FIGURE 28 - CHROMAGRAM FOR FULL PRODUCTION SONG WITH EFFECTS E MINOR CHORDS 

A few changes can be observed in comparison to the previous sample, where the major 

difference is slight power variations from the previous results.  

The spectral content also shows some variation. 

Track Effect 1 Effect 1 value Effect 2 Effect 2 value
Percussion Compression 10% max volume
Electric guitar Compression 10% max volume Reverberation 15% raw mix
Bass Compression 10% max volume
Vocals Compression 10% max volume Reverberation 10% raw mix
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FIGURE 29 - FREQUENCY TRANSFORM OF SEGMENT 6 FULL EFFECTS SONG 

The compression effect can be immediately noted by the maximum peak having a power of 

approximately 25% less than the previous results. A sample data set is shown below. 

 

FIGURE 30 - SAMPLE DATA SET OF FULL EFFECTS SONG 

The next section will compare the results based on the effect the noise content has on 

transcription accuracy. This is the most important property of the automatic transcription 

property. 

5.8 CONCLUSION 
After recordings and analysing several different instruments in isolation, along with a final 

production song, several key issues were identified within the music. The design of the 

experiments performed has given enough data to study the trends of introducing noise into 

musical audio. This means it can be deduced the source and effect of these noise elements, 

and how they can be reduced to improve the overall accuracy of music transcription. 

The large amount of data collected from several different instruments under different 

conditions highlights the key aspects of noise within the audio. This can be further analysed 

Segment Percussion Electric Guitar Bass Vocal Chord C C# D D# E F F# G G# A A# B
1 x x C Major 1.00 0.35 0.18 0.01
2 x x E Minor 0.11 0.77 0.08 0.12 0.07 1.00
3 x x A Minor 0.80 0.63 0.08 1.00
4 x x F Major 1.00 0.74 0.04 0.19
5 x x x C Major 1.00 0.22 0.23 0.05
6 x x x E Minor 0.30 0.09 0.05 0.54 0.14 0.17 1.00
7 x x x A Minor 0.24 0.66 0.26 1.00

Frequency  (Hz) 
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in the context of how it relates to the actual transcription of the data, this will be the focus of 

the next chapter. It is understood that even though it is impossible to design an experiment 

that will encapsulate the variability of data in the real world, the results here provide a good 

overview on the possible noise elements that are currently contained within music. The data 

collected in these experiments therefore should not be considered as an accurate description 

of what a final piece of music will look like, but rather a means to accurately and consistently 

correlate the effects of noise between samples. 

The use of a control (the generated sinusoidal chords) allowed for future experiments that use 

more music-central methods of recording sound to be compared with a degree high enough to 

draw accurate conclusions about the noise within music. This chapter focused on identifying 

if noise is present within the audio, the next chapter will focus on why it is present, and a 

method of reducing its effect. This will then lead to the final chapter which gives suggestions 

to the current automatic transcription of music such that the accuracy can be increased (where 

the inaccuracy is due to the noise sources identified). 
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6 FINDINGS AND DISCUSSION 
To correctly identify the noise sources within data which an automatic transcription process 

will be applied to, each experimental setup is again analysed in isolation to allow for not only 

what effect a specific noise source has on the audio data, the extent of its effect, but also how 

this might affect the automatic transcription process.  Using  a  ‘highest  likelihood  probability’  

algorithm, each data set is compared to the binary data set corresponding to the theory. 

Applying the basic transcription method for each of the isolated chord data sets that were 

gathered, a few outputs will be given, including the transcription accuracy, correlation with 

the theoretical chords and which chord class produced the best results. Discussing each result 

set in order in which errors are introduced, first an analysis of the control set (the generated 

sine wave chords) will be conducted. 

6.1 SINE WAVE GENERATED CHORDS 
With all the data collected, the first and most obvious observation as seen in the chromagram 

in figure 5 is the exponential decrease in note power values as the frequency is increased. 

This behaviour is observed in all the subsequent data obtained which suggests it is a global 

effect and not isolated to the generated waveforms. To identify exactly what relationship this 

decrease is (to aid in the identification of this phenomenon), the data points for the Major 

chords were graphed and a line of best fit was applied. The following table summarises the 

results and trends relating to the data obtained. 

TABLE 12- EQUATIONS OF BEST FIT FOR THE DATA POINTS GENERATED SINE CHORDS 

Chord Type Line Of Fit Equation 𝑅ଶ 

MAJOR Linear −0.1666𝑥 + 1.1533 0.9712 

 Exponential 1.2132𝑒ି଴.ଶ଴ଷ௫ 0.9801 

 Power 1.0059𝑥ି଴.ଷ଺ହ 0.9819 

MINOR Linear −0.1648𝑥 + 1.1673 0.9902 

 Exponential 1.2332𝑒ି଴.ଶ 0.9827 

 Power 1.0197𝑥ି଴.ଷହଶ 0.9367 

ALL 

COMBINED 

Linear −0.1657𝑥 + 1.1604 0.9633 

 Exponential 1.224eି଴.ଶ଴ଶ୶ 0.9569 

 Power 1.013𝑥ି଴.ଷହଽ 0.9347 



The Automatic Transcription of Music 

 

60 

These results show that this decrease is in fact not randomly produced and therefore is 

superimposed onto the data from, most likely, a single source within the process from 

generation to analysis. The suspected sources for this are either the sound generator (which 

was developed for musical use) imparting this behaviour into the sound, or an implication 

brought upon via using a fast Fourier transform. It could also simply be attributed to the three 

sine waves interacting together thus resulting in higher frequency sounds not containing as 

much power. Investigating this phenomenon requires several steps which focus on the 

software used to analyse the sound file. 

To observe if it is the analysis software or the generated sound, a simple MATLAB function 

was written to construct a wave containing three sine waves at musical frequencies. The 

program simply generated three sinusoidal waves in a vector at the same sampling frequency 

as the audio used throughout the experiment. These three waves were then simply added and 

then  exported   into  a   .WAV  file  using   the   inbuilt  MATLAB  ‘wavwrite.m’   function  (the  full  

function can be found in the appendix chapter 10.8).  This audio file (which was confirmed to 

be the same as the generated sound file by listening to the sound) was then analysed using the 

‘mirchromagram.m’  function  yielding  the  following  results. 

 

FIGURE 31- CHROMAGRAM OF A TYPICAL CHORD SHOWING DECREASE IN POWER 

This means that this error was not introduced by the generated sound, but most likely within 

the  ‘mirspectrum.m’  function  used  within  the  chromagram  process.  A  look  at  the  spectrum  

from this function shows the following. 
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FIGURE 32 - FREQUENCY TRASNFORM OF SINUSOIDAL GENERATED CHORDS 

Observing the program itself showed many variables set within the function and the ones that 

relate to the fast Fourier transform were identified and altered. The spectrum found here is a 

result of increasing the resolution of the transform calculations by a factor of 16: 

 

FIGURE 33 - IMPROVED VARIABLES FREQUENCY TRANSFORM 

This figure shows a much more accurate transform. Here 16 was chosen as the multiplier, as 

this was the lowest power of 2 (a required parameter for FFT) where a true representation of 
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the waveform was seen. This did however increase the computation time from 0.188 seconds 

to 0.776 seconds, an increase of 312%. This time was calculated using a high performance 

computer and therefore  would  only  increase  when  lowering  the  ‘power’  of  the  machine  used  

to process the audio. This means there is a trade-off between speed and accuracy. Given this 

sacrifice in time only yield an 8% increase in power value accuracy of the highest error sine-

wave, this is not a reasonable trade-off. 

Altering  the  necessary  parameters  in  the  ‘mirchromagram.m’  function  also  increases  the  

computational time by roughly 800%, where along with the 312% increase in the spectrum 

analyser, shows that the variables used within the functions used in the analysis of this thesis 

have  been  optimised  for  ‘speed  vs.  accuracy’.  Also  considering  the  implication  of  a  real-time 

use of the complete final process, this is a vital trade-off that needs to be considered in future 

projects. 

When applying the maximum likelihood algorithm to the data obtained in this experiment, a 

100% transcription rate was obtained for all of the 48 chords. This shows that a reliable 

transcription method can still be performed using the non-optimised (relating to accuracy) 

function. The following table summarises the transcription outputs. 

TABLE 13 - TRANSCRIPTION ACCURACY OF GENERATED SINE CHORDS 

Chord Type Accuracy Average correlation 

Major 100% 2.2492 

Minor 100% 2.3058 

Augmented 100% 2.4217 

Diminished 100% 2.3442 

 

This gives a baseline for the following analysis of alternative instrumentation and recording 

parameters. An average correlation of approximately 2.3 was observed across all chords, this 

being due to the exponential decrease in power values discovered earlier. This control 

experiment not only validates the transcription method used here, but also that a perfect 

accuracy can be achieved when all the noise is minimised. Next we move onto the synthetic 

piano which contains instrumental noise.  

 

 



The Automatic Transcription of Music 

 

63 

6.2 SYNTHETIC PIANO CHORDS 
In this experiment, the effect of instrumental noise was observed due to the implications of 

sound waves created from a vibrating string. However, the implication of this should have 

minimal effect on the data to allow for further accurate development of an automatic 

transcription process. As observed in chapter 5.3, a frequency analysis of the sound file 

shows the additional frequencies due to upper partials. A few additional analyses can be 

performed to justify that these do not interfere with the transcription process. 

The same C-major chord was used from the audio samples as the control as it showed the 

most additional frequencies in the spectrum. First a rough estimate of the power of these 

upper partials (which occur at integer multiples of the fundamental frequency, which would 

not necessarily correspond   to   the   same   ‘note’   value)   was   done   by   observation   and   then   a  

similar function was written similar to the Sine wave analysis section to investigate the fast 

Fourier transform. In this case however, additional upper partials were also added into the 

final signal to apply the chromagram function to. The difference between these two will show 

the effect of these upper partials. The following addition to the code used previously was 

made (see appendix chapter 10.8 for code used). This code will generate the sine waves to 

emulate the effect of upper partials. However, the analysis will first be done using the 

fundamental frequencies only. The following spectrum was found. 

 

FIGURE 34- BEFORE ADDING SYNTHETIC UPPER PARTIALS 

This is the expected result. When adding the additional frequencies, the following spectrum 

was found. 



The Automatic Transcription of Music 

 

64 

 

FIGURE 35 - AFTER ADDING UPPER PARTIALS 

When compared to the equivalent spectrum found from the piano chords generated with real 

piano samples, the following spectrum was obtained. 

 

FIGURE 36 - FREQEUNCY TRANSFORM OF ACTUAL PIANO CHORD 

This shows comparable features (where the real piano recording contained more noise, as 

expected when recording the instrument samples using a microphone). When comparing 

these results in terms of the chromagram data that can be extracted, the following table is 

constructed. 
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TABLE 14 - EFFECTS OFUPPER PARTIAL ON CORRELATION 

Sample type C E G correlation 

No upper 

partials 

1 0.775 0.63 2.405 

With upper 

partials 

1 0.675 0.548 2.223 

Real piano 

sample 

1 0.721 0.650 2.371 

 

In this table, the three audio samples are listed followed by the three notes that are contained 

within them (the fundamental notes for the cases where upper partials are present). The 

power values are recorded in the appropriate entries and then finally the correlation value 

used by the highest likelihood algorithm is shown to observe the strength of the transcription. 

The first thing to notice is that adding the upper partials into the sound does decrease the 

correlation with theoretical binary values by around 7%. This could cause a problem in the 

automatic transcription in some rare cases where the difference between correlation of a 

correct and incorrect chord is less than this. Thus causing incorrect transcription, but this is 

an unlikely case and therefore this effect is seen to be present but insignificant at this time. 

Since this is purely a noise source that is added to the sound at the time of production, there is 

nothing that can be done to reduce this besides frequency filtering. This however is not a 

viable option in the case where other musical features or instruments are contained within the 

audio at these upper frequencies.  

When actually transcribing the data obtained from the synthetic piano chord samples, the 

following table is constructed. 

TABLE 15 - TRANSCRIPTION ACCURACY OF SYNTHETIC PIANO CHORDS 

Chord 

Type 

Accuracy Average 

correlation 

Major 100% 1.9750 

Minor 100% 1.9750 

Augmented 100% 2.0950 

Diminished 100% 2.0158 
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When comparing these values to the ones found in the sine wave data set, a lower average 

correlation is seen across all chord types. A transcription rate of 100% is still seen, but if the 

correlation average drops too low it would be more likely to produce an incorrect 

transcription due to other noise sources decreasing the difference between correlations of a 

chord set. To see if this is the case as more noise is introduced into the audio samples, we 

continue with the experimental analysis where the electric guitar is analysed next. 

6.3 ELECTRIC GUITAR CHORDS 
In this   data   set,   the   additional   noise   of   the   ‘human   element’   is   added   into   the   sound   files. 

Three main sources of error are expected from this data set. The first source is the method of 

playing chords which differs from the method of playing piano chords. Since the manner of 

which a guitar (or similar instruments) is constructed, six strings at tension are located side by 

side. There are thin metal bars or ‘frets’   located   normally to these strings at intervals 

conforming to the logarithmic scale of frequencies. The six strings are then tuned to conform 

to  the  ‘standard  tuning’  model  which  consists  of  the  following  notes  in  order  of  the  highest  

frequency to the lowest: [E, B, G, D, A, E]. A player can use their fingers to press the strings 

against the metal frets, altering their wavelength and hence its frequency. This method of 

controlling the notes contained within the instrument means that up to six strings (or notes) 

can be played simultaneously. Often these contain only three different notes with one or more 

octaves of the same note being present in the audio sample. This implication, along with the 

observed behaviour that increasing the power content of a specific note can also decrease the 

other notes within the chromagram, can cause inaccurate transcriptions. This means that the 

data collected here would show more variability. 

The second source is brought by the fact that strings need to be physically struck to produce 

sound, where the resulting sound waves amplitude is directly related to how hard  the string is 

struck. Since the exact same amplitude cannot be imparted to all the sound waves, there will 

be large variability in the power content of each frequency within the chromagram which 

could reduce the transcription coefficient. 

The final source is the analogue to digital (A2D) converter that is used to record the sound. 

However, when considering that this data is recorded at 48000 Hz which is actually at a 

higher sampling rate than the sound file (which is sampled at 44000 Hz), this should mean 

that no loss of information should occur at this stage of the signal chain. 
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The following scatter graph, showing the data distribution of each set, makes apparent the 

variable nature of the data.: 

 

FIGURE 37 - ELECTRIC GUITAR DATA DISTRIBUTION 

In the diagram above, the axis on the bottom represents the three notes contained within a 

chord, with the root note being the zero entry. This shows that for the root note, the power 

distribution is extremely varied, ranging at approximately an equal distribution from 0 to 1. 

The second and third note in the chords shows groupings at certain power values. Although it 

is not obvious from the graph, there is a large portion of root notes with a power value of 1. 

This means an equation of best fit can still be applied to the clusters, but since the data is so 

varied, this is no longer an accurate method of predicting power values as it was with the 

generated sine wave chords. This highlights the effect of human sourced noise and that 

predicting power values in a chord as a method of chord transcription is not a viable method 

to focus on. 

To be able to successfully transcribe this data however, it can be observed that even though 

the distribution is more varied that previously, there are no outliers in terms of notes present 

in the chromagram that are not contained within the chord actually being played (as was the 

case with the synthetic piano chords). This can be attributed to the fact that playing multiple 

notes of the same value superimposes their power values which decreases the upper partials 

contributions when all the power values are scaled. This is the effect of a frequency (or three 

in  this  case)  dominating  the  power  spectrum  which  essentially  filters  out  the  other  ‘noisy’  

frequencies. This suggests that accurate transcription should still be possible. 
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However when observing the data set as a whole, there are a few chords where only two note 

values were recorded. A sample of this can be seen in the figure below. 

 

FIGURE 38 - SAMPLE DATA TO OBSERVE EXCLUSION OF NTOES 

This can be attributed to several reasons. Either it was not played in this specific chord (many 

variations of the same chord exist on a guitar) or that the other two frequencies dominated so 

much that the chromagram filtered it out. This could cause concern for chords within the 

Diminished or Augmented set, as the Major and Minor transcription would be favoured over 

these if the two notes actually present in the data sample are shared amongst two chord types. 

When actually transcribing the data set using the MLA, the following results were obtained. 

TABLE 16 – TRANSCRIPTION ACCURACY OF ELECTRIC GUITAR CHORDS 

Chord 

Type 

Accuracy Average 

correlation 

Major 100% 1.8300 

Minor 100% 1.8292 

Augmented 100% 1.9025 

Diminished 100% 1.8250 

 

This is a positive result as 100% of the chords were correctly transcribed. It can be observed 

that the average correlation value is slightly lower than the equivalent results using the piano 

data set. This suggests a pattern where the more noise introduced into the audio sample, the 

lower this correlation value is, which is the main problem with incorrect transcription. 

Ideally, it is desired that the correlation with the correct chord to not only be high, but to be 

substantially higher when compared to other chords. Both of these effects have seen 

reduction as more noise is introduced, thus the analysis is continued to see if this trend is 

maintained. 
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6.4 DISTORTED GUITAR CHORDS 
This experiment is an accompaniment, or sub-set, to the other data. The implications of 

analysing a distorted electric guitar sample are substantially different from other audio 

samples for two main reasons. 

The  first  reason  is  the  ‘genre’  implication.  Generally  genres  where  a  heavily  distorted  guitar  

is used as its main instrument (such genres as heavy metal, punk, and various types of rock) 

do not use the full chord range which was used in the other experiments. This is due to the 

distortion effect where if you try and distort more than two sinusoidal waves simultaneously, 

the   resulting   sound   is   ‘muddy’   or   ‘dirty’.   This   translates   into   the   inability   for   humans   to  

perceive the three frequencies individually which a requirement to successfully identify the 

chords.  As  a  result,  the  main  types  of  chords  used  here  are  what  are  known  as  ‘power  chords’,  

these only use the root note, the 7th note above the root and the octave of the root (12 notes 

above, or essentially the same note at double the frequency). This means only two different 

note values are included in each chord. 

The second reason is the actual effects of distortion. The expected behaviour is that since the 

distortion amplifies a signal to be above the clipping point of the amplifier, all the clipped 

waveforms will contribute the same power level. When applying the chromagram function to 

a smaller set of data using a heavily distorted electric guitar, it is clear from the results that 

this is the case. An example of a chromagram is as follows. 

 

FIGURE 39 - DISTORTED GUITAR CHROMAGRAM 
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This clearly shows this effect to be an accurate assumption. This implication brings about an 

idea to be explored in the future development of this subject, wherein the information 

embedded in a song file (through  the  use  of  a  digital  data  tag  known  as  the  ‘ID3  tag’)  can  be  

used to adjust certain parameters of automatic transcription process. This will be discussed in 

more detail in chapter 7 of this report. First we perform further investigation with noise 

associated with an acoustic guitar and a microphone. 

6.5 ACOUSTIC GUITAR CHORDS 
This experiment adds two more notable noise elements into the data samples, both of which 

add to the pre-existing noise elements found to be a factor in the previous experiments. These 

include the acoustic properties of an acoustic guitar and the recording technique used which 

utilises a studio microphone instead of direct input. 

The method at which sound is amplified with an acoustic guitar differs from an electric 

guitar. As the names suggests, electric guitars use magnetic pickups to convert the motion of 

the metal strings into a useable signal. Acoustic guitars, however, use the body of the guitar, 

which is hollow and specifically designed to amplify the sound acoustically. This method of 

amplification can impart, and often does, its own sound qualities. Usually these are in the 

order of amplifying the low frequency spectrum more so than the high frequency spectrum. 

This effectively amplifies the feature where a dominant note in the chromagram reduces the 

normalised power values of other notes. 

The second source is the use of a condenser microphone. This type of microphone is most 

commonly used when recording an acoustic guitar as it is considerably more sensitive than 

other microphones used with live musical performances. This could possibly have two effects 

to the final audio file, with the first being additional noise being picked up and the second is 

the microphone itself producing a filtering effect. Since the microphone would have internal 

capacitance and inductance etc. the final signal could be altered by a high-pass or low-pass 

filter. All these additional noise sources suggest that the final data values would be even more 

varied than the previous data sets and the graph below shows how the distribution of power 

values shows this: 
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FIGURE 40 - ACOUSTIC GUITAR DATA DISTRIBUTION 

As previously found, each successive note above has a cluster of values in a similar position 

as the previous experiments showed, but, in this case, much more variance is observed. 

Another effect observed in the data set is the exclusion of notes. This was also the case in the 

electric guitar data set but at a much more notable level.  

A sample of this can be seen in the data set below. 

 

FIGURE 41 - ACOUSTIC CHORDS DATA SAMPLE 

When calculated, the whole data set of 48 chords showed that 18% of the chords contained a 

note missing from the theoretical values. When the transcription process was performed on 

the data, the following results were found. 
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TABLE 17 - TRANSCRIPTION ACCURACY FOR ACOUSTIC GUITAR CHORDS 

Chord 

Type 

Accuracy Average 

correlation 

Major 100% 1.5817 

Minor 100% 1.5175 

Augmented 58% 1.6558 

Diminished 66% 1.6955 

 

These results show the first inaccurate transcription. A few examples of these incorrect 

transcriptions are as follows. 

TABLE 18 - INCORRECT TRANSCRIPTION ANALYSIS 

Chord Transcription Correlation with 

actual chord 

Correlation with 

transcription 

C# Augmented C# Major 1.36 1.36 

E Augmented E Major 1.80 1.80 

D Diminished F Minor 1.21 1.21 

 

From these results, it is apparent that the incorrect transcriptions simply have their chord 

classes (major/augments/diminished etc.) incorrect. This is a result of favouring the Major 

and Minor chords over Augmented and Diminished in the cases where a note is omitted from 

the data. This means that the sample shows equal correlation between the two chord classes. 

In the  case  of  the  ‘D  Diminished’  chord  being  transcribed  to  the  ‘F  Minor’  chords, this is due 

to the omitted note being the root note (where the D Diminished should contain [D, F, G#] 

but the data here only contained [F, G#] ).This means that  the  chord  ‘F  Minor’  was  a  better  

match  than  the  ‘D  Minor’  chord.  

Thus the reason for incorrect transcription between chord classes (still having the same root 

note description) can be contributed to the omission of a non-root note from the data. 

Similarly an incorrect transcription between chord classes can be attributed to where the root 

note was omitted. Both cases would be considered an error to the transcription, but it does 

show reasoning to use musical theory for error detection and correction. The following 

regards the case of a non-root note being omitted from the data set. 
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Music theory has proven that songs often are written in a single key, where this key dictates 

the  types  of  chords  being  played.  For  example  a  song  written  in  the  key  of  ‘C’  will  contain  

chords  such  as  ‘C  major’,  ‘E  Minor’,  ‘F  Major’,  ‘G  Major’,  and ‘A  Minor’  and others. So it 

should be theoretically possible to determine the key of a song if enough chords have been 

played, thus allowing the automatic transcription algorithm to use this information to correct 

any errors. If a chord is played where the data extracted contains the correct root note within 

the chromagram, but a non-root note is excluded, an incorrect chord class association will 

occur for that chord. If we take the augmented scale for example, if the root note and the 

second note are included in the data, but not the third note, the incorrect transcription will be 

a Major chord with the correct root note association. If the root and third notes are included 

but not the second, the transcribed chord will be a minor chord with a root note association 

five semi-tones above the actual root. Information like this (which would be different for 

varying situations) can then be used to correct the chord based on the key of the song and 

which notes are omitted from the data. 

If a root note is omitted from the data, the correction techniques become slightly more 

complicated (in terms of what the possible transcriptions could be and how to correct this 

given the key of the song), however it should still be theoretically possible. It should be noted 

here that these error correction processes would take up additional computation time and 

further investigation should be done to see if the trade-offs between time and accuracy are 

justifiable to use if a real-time system is to be developed. 

6.6 TIME SCALING 
Thus far we have identified some of the potential errors that could occur in the type of data 

that would essentially be analysed with the automatic transcription software. However, up to 

this point, everything has been recorded and analysed in isolation. Although those 

experiments were important in identifying some root causes of error, it still does not fully 

encapsulate all the potential errors that could result in a completed piece of music. Parameters 

used in other aspects of the transcription process could also impart some error and more 

importantly the time scale at which you analyse the chromagram. In all the above 

experiments, equal time scales (roughly 4 seconds per chord) were used which means that it 

does not matter if the data is used for detecting the noise and difference between the sets. 

However in a real song, the time scale, used to analyse the chords over, could show 

differences in the chromagram.  
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The song written specifically for this part of the experiment used a simple chord progression 

in the key of C, where each bar of the song (a musical time scale which consists of 4 beats in 

this case per bar, where the time of each beat depends on the  ‘beats  per  minute’  over  which  

the song is played) contains a single chord. This was then separated manually and analysed in 

sections. This task of separating the chords can be done using other computational methods 

with  a   few  functions  available   in  MATLAB  by   the  same  author  of   the   ‘mirchromagram.m’  

function used in this thesis. As doing this task automatically was not part of the error 

investigation in this thesis, all segmentation was done manually. 

Practically, the desired time scale that should be used when analysing the audio is the 

maximum time where each different chord is being played. This is to try and minimise the 

short time noise elements (such as percussion) or other notes that do not relate to the chord. 

Thus to minimise the contribution of these noise elements, different time scales of a chord 

will be analysed to see if this effect is the case. 

Below, a table showing the results from such an analysis is shown. The chord being played 

here is ‘A-Minor’. 

 

FIGURE 42 - TIME SCALE EFFECTS ON TRANSCRIPTION 

All time scales resulted in the correct transcription but did affect the noise content. The two 

ways to analyse this is observing how much additional content is included in the chromagram 

as the time frame is decreased which shows how the short-time noise elements is filtered out 

with a longer time scale. This is a major concern for transcription accuracy as you do not 

want aspects such as drums to add any considerable content to the chromagram, which is the 

case in the full bar sample where only two additional notes are included compared to seven 

additional notes in the quarter sample. 

The second method of observing the effect of time scaling is the correlation between the 

transcribed chord and the correlation between the second in line (the second highest 

probability) transcribed chord. As you decrease the time scale, the difference between these 

two decreases, which means the probability of incorrectly transcribing the chord increases. 

This is most evident for the time scale of an eighth bar, where the difference between the 
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correlation of A minor and A major is only 0.045, an extremely small distance. This shows 

how averaging the analysis over the full length of the chord can increase the accuracy of 

transcription. This can be achieved through a reliable segmentation algorithm within the full 

automatic transcription process. 

6.7 FULL PRODUCTION SONG WITHOUT EFFECTS 
For this experiment, a completed song without any additional effects was recorded, manually 

segmented into full-bar time scales and then analysed using the same methods used 

previously. The no-effect song was first analysed to have a  control analysis as jumping from 

isolated chords to a final song with effects could be too much of a leap to correctly observe 

the sources of error. 

Given the song used for this experiment had four distinct sections, each systematically 

introducing more musical noise into the song, each section will be analysed separately. 

Starting with the first four bars where only percussion and electric guitar were used, the 

following data is extracted from the transcription process: 

TABLE 19 - FIRST 4 CHORD TRANSCRIPTION ANALYSES 

Chord Transcription Correlation 

C Major C Major 1.523 

E Minor E Minor 1.880 

A Minor A Minor 2.495 

F Major F Major 1.886 

 

Here a 100% transcription was achieved, which suggests that percussion based noise can be 

minimised by using a large time scale as previously suggested. It is also noted that the range 

of correlation values are between, approximately, 1.5 and 2.5. This will be compared to 

future correlation values as noise is introduced into the sound file. Even though there are only 

four samples used here, useful information can still be extracted when comparing them due to 

the played chords being kept constant over them.  

The next section of the song is analysed. This section includes the exact same chord sequence 

but with a bass guitar playing along with the root note of each chord. 
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TABLE 20 - SECOND SET OF 4 CHORD TRANSCRIPTION ANALYSES 

Chord Transcription Correlation Correlation with correct 

chord 

C Major C Major 1.345  

E Minor E Major 1.936 1.928 

A Minor A Minor 2.684  

F Major F Major 2.105  

 

Here an incorrect transcription was found, where the difference in the correlations has a 

difference of 0.01. This shows the danger of having additional musical content within the 

chromagram, where in this case the power value for note G=0.191 and G#=0.199 causes the 

incorrect transcription. In this case, musical theory could correct this error easily given the 

previous four chords have set the key. 

The next four bars of the song introduce the vocal element which brings the implication that 

the vocals do not follow the root notes as often as the bass does. This means that a more 

dominant power spectrum will be added to notes which could change the transcription. 

Although the vocals will follow the key of the song, it does not have to be included in the 

three notes that construct a chord, and therefore is still considered noise to the chord 

transcription process. The data obtained from this is summarised below. 

TABLE 21 - THIRD SET OF 4 CHORD TRANSCRIPTION ANALYSES 

Chord Transcription Correlation Correlation with correct 

chord 

C Major C Major 1.494  

E Minor E Major 1.298 1.238 

A Minor A Minor 1.589  

F Major F Major 1.503  

 

Here the same error was observed, with the difference between the correct and incorrect 

transcription being very minor. The power values were also lowered due to the additional 

power content from the vocal track which again suggests that the more noise added into the 

signal, the lower the correlation becomes.  



The Automatic Transcription of Music 

 

77 

The final section, again, had all the musical elements from the last section but with a different 

chord progression to ensure that the above samples give a realistic reflection of the noise. The 

following table was found when analysing this section. 

TABLE 22 - FOURTH SET OF 4 CHORD TRANSCRIPTION ANALYSIS 

Chord Transcription Correlation Correlation with correct 

chord 

C Major C Augmented 1.836 1.742 

G Major G Major 1.514  

F Major F Major 1.081  

G Major G Major 1.085  

 

This sample displays the same behaviour as previously, suggesting that it was an accurate, yet 

limited, example of a full song. Above an incorrect transcription was observed with the same 

problem as previously mentioned. Namely other effects of the song added a component to a 

note that caused a slightly higher correlation with the equivalent chord within a different 

chord class. Music theory could be used here to correct this again. 

From all the samples, it is observed that the rough correlation is approximately half the 

maximum that an exact matching chord should be to theory which is the problem that should 

be focused on through various methods in improving the current process of automatic 

transcription. Various methods which could possible decrease the effects of this noise will be 

discussed in the final chapter. 

6.8 FULL PRODUCTION SONG WITH EFFECTS 
To observe the implications of using musical effects to alter a songs audio qualities has on the 

final transcription, the same song as above was then adjusted to be more accurate to the 

industry standard of a final musical song. These samples will give the most accurate 

representation of the final audio product that would typically be used in the automatic 

transcription process. 

Running the results for the transcription gives the following table. Here all 16 chords are 

included in the same table, with the corresponding transcription from the previous, ‘no 

effects’ samples for contrast on the right. 
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TABLE 23 - FULL EFFECTS TRANSCRIPTION RESULTS 

Chord Transcription Correlation Transcription  

(No effect) 

Correlation 

C Major C Major 1.532 C Major 1.523 

E Minor E Minor 1.895 E Minor 1.880 

A Minor A Minor 2.508 A Minor 2.495 

F Major F Major 1.939 F Major 1.886 

C Major C Major 1.458 C Major 1.345 

E Minor E Major 1.715 E Major 1.936 

A Minor A Minor 1.904 A Minor 2.684 

F Major F Major 2.188 F Major 2.105 

C Major C Major 1.405 C Major 1.494 

E Minor E Minor 1.251 E Major 1.298 

A Minor A Minor 1.635 A Minor 1.589 

F Major F Major 1.464 F Major 1.503 

C Major C Major 1.888 C Augmented 1.836 

G Major G Major 1.702 G Major 1.514 

F Major F Minor 1.146 F Major 1.081 

G Major C Major 1.165 C Major 1.085 

 

This data set yields interesting results which show that ideally adding effects into songs will 

improve the overall accuracy of the transcription. The red in the data table marks the 

incorrect transcriptions. However, in the effects laced song, only three incorrect transcriptions 

are found,  one less than the ‘no effects’ song samples. The green above shows where the 

correlation with the chord transcribed increased from the ‘no effects’ data set. It is a desirable 

trait to improve the correlation as previously mentioned, where this increase can be attributed 

through the use of compression which effectively improves the power values of non-

dominant notes which are inclusive in the chord and therefore increase the relationship 

between the data set and theory. 

Again music theory could be used to correct two-thirds of the incorrect chords above (the E 

major and F minor, as they are not chords that are found within the scale used above), where 

the C major chord which cannot be fixed with theory due to its inclusion in the scale. There 

are possible methods for this error correction however and these will be discussed in chapter 
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7. This data set concludes the experimental data sets and shows the closest data set to the real 

world application of this song. 

Since the design of the experiments throughout the project were designed to isolate and 

identify the noise sources that contribute to the incorrect transcription in an automatic process 

and, therefore, a brief overview of the noise content within a final piece of music is described 

in the next section. 

6.9 SOURCES OF NOISE 
A summary of the errors observed throughout this project are found in the following. The 

systematic introduction of noise into the audio files being transcribed gives the opportunity to 

correctly isolate and identify the sources of these noise elements. The first table simply states 

what noise sources are contained within the audio samples. The second table below shows an 

overview of the noise content within each data set and a loose rating from 1-3 given based on 

their effect on the data.  

TABLE 24 - NOISE ELEMTNS INCLUDED IN EACH DATA SET 
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Sine Wave Generator X         

Synthetic Piano X X        

Electric Guitar X X X X      

Distorted Electric 

Guitar 
X X X X      

Acoustic Guitar X X X X X     

Full Song (Without 

Effect) 
X X X X X X X X  

Full Song (With Effect) X X X X X X X X X 
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TABLE 25 - EFFECTS OF NOISE CONTENT ON TRANCRIPTION ACCURACY 
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Sine Wave Generator 1 
        

Synthetic Piano 1 1 
       

Electric Guitar 1 2 1 3 
     

Distorted Electric 

Guitar 
1 2 1 1 

     

Acoustic Guitar 1 3 1 3 2 3 
   

Full Song (Without 

Effect) 
1 2 1 2 1 3 2 2 

 

Full Song (With Effect) 1 2 1 2 1 3 1 2 1 

 

In the next few sections, a discussion of the implications of the different noise sources, their 

effect on the audio and possible means for decreasing their presence in the samples is found. 

6.9.1 COMPUTATION TIME 
As found in section 7.1, minor inaccuracies were introduced by the fast Fourier transform and 

chromagram function. The desire to translate the process of automatic transcription into a real 

time system means that the computational time is an extremely important factor to consider. 

Given the implications of having to process the audio, run the chromagram function, use the 

MLA and then display the transcription in a way that is readable and useable, reducing time it 

takes for each function can one day see the implementation into a portable consumer product. 

Here the accuracy versus speed argument, commonly discussed in many computation 

processes, is the main factor and is therefore dependant largely on the hardware able to be 

accessed. The best accuracy achieved by Dr M. Mauch utilised a super computer for its 

computations. This still required a time roughly equal to the song it was analysing (which is 

the maximum length of time for a real time system to be viable). 

Means for reducing the effect of this noise source is to simply increase the number of 

sampling points the Fourier transform uses as previously discussed. Also increasing the 
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hardware specifications of the machine you are using to analyse the song can contribute to a 

higher efficiency and allow for the optimum variable parameters to be used. This however is 

subject to future advancements in computing technology and not an issue that can be 

overcome in the near future, especially considering that any other methods for increasing 

accuracy would most likely result in increasing the computation requirements. 

6.9.2 HUMAN ERROR 
This source of noise should not be labelled as human error in the literal sense. There are 

several facets to this source and are related largely to the difference between the human brain 

and a computational device. It was clearly seen that when a human plays an instrument, the 

first occurrence of inaccuracy was observed in the isolated chords (Acoustic Guitar).This 

relates to the phenomenon where a listener can identify the same chord even though it is 

being played in different methods. 

This however is not the case with a computer, as it can only analyse the data observed, and if 

a chord is played differently (which there are too many variations across all instruments to 

practically learn them to allow a computational device to recognise it as the same chord) the 

computer will take it as a different result. This large variability in the data means that there is 

no real method to overcome this issue unless a standard method of playing chords is enforced 

in recorded music. this would change the definition of music from being art to merely a 

means to become popular and commercialise off this fact (a trend not completely void in 

modern music). Its effect can be reduced however by assumptions made in other aspects of 

the complete process which means this source of noise will not become a dominant reason for 

incorrect transcriptions. Therefore focus should be given to the other sources found in this 

project. 

6.9.3 INSTRUMENTATION NOISE 
Instrumentation noise relates specifically to acoustic instruments but more generally to any 

source of musical audio. Ideally the spectrum qualities will match between the same 

instrument types which are rarely the case. This means that two instruments of the same type 

can have different frequency responses. This along with the changing of its frequency content 

in the post production stage of audio recordings means that little assumptions can be made to 

what frequency content will be in a song even if the instruments are known. 

The more accurate assumptions that can be made to specific types of music (mainly different 

genres) will allow for the increase in overall transcription accuracy when solutions are 
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discovered to overcome these. This means that if we can make an assumption as to the power 

values of frequencies within an audio sample, particularly focusing on removing the 

dominating effects a high powered frequency can have on the chromagram, an improvement 

in accuracy might be observed. 

If a threshold is set to say 60%, the maximum peak value within the frequency spectrum, and 

all the frequencies above this is brought down to the same power level, some of these 

acoustic effects could be reduced. This will especially help in the cases where the bass-

frequencies dominate the signal which reduces the other contributions of chord-related notes 

within the chromagram. An example of this is found in the diagram below, which is a 

frequency transform of the full production song with effects. 

 

FIGURE 43 - THRESHOLD FREQUENCY ALTERATION EXAMPLE 

Where with the threshold applied gives you the following graph. 
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FIGURE 44 - RESULTING FREQUENCY SPECTRUM AFTER THRESHOLD IS APPLIED 

Although further experimentation is needed to see if this would in fact increase the accuracy, 

or simply make non-chord related notes dominate the signal even more than previously. 

If a standard and accurate method of reducing this source of noise can be found, a large 

increase in transcription accuracy should be observed due to the effect seen throughout the 

experiments where a non-chord note dominates the signal, all the other notes are scaled down 

due to the normalisation effect of the chromagram and errors are introduced. This should be 

the focus for future work. 

6.9.4 BASS FREQUENCIES 
This is possibly the largest source of error within the whole process and slightly relates the 

acoustic errors above but should be considered differently due to its importance. As bass 

frequencies will naturally dominate the signal due to the computational time error discovered 

previously, having a high powered bass signal in a music piece can greatly decrease the 

correlation between the data and the theoretical chords. 

This domination effect can be overcome by applying a method proposed by Dr Mauch (and 

utilised in his system), where you separate the audio data into two frequency ranges. This 

automated process will split the bass content from the treble content, and the separately 

analyse them. This also compliments musical theory and practical data where the bass 

spectrum often plays a vital role in identifying not only the key, but the chords. This was the 

bases for the improvements to the process Dr Mauch investigated, and showed a large 

increase in accuracy with his system [2]. 
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This knowledge can again be used if additional information can be extracted from the song 

which relates to its genre, where certain assumptions can be made as to what instruments are 

more likely to feature within a song. This means that the audio data can be split in terms of 

frequency content even further into multiple ranges which correspond to the more likely 

instrumental classes (where it is known that what frequency range an electric bass covers 

compared to that of a double bass, compared to that of a cello etc.). This method should be 

easily implemented into a full process, but can add additional computation time if multiple 

frequency ranges are analysed. This is again subject to future advancements in hardware. 

6.9.5 MUSICAL NOISE 
Musical noise is classified as audio content within a song that interferes with the underlying 

chords being currently played. This is in comparison to non-musical noise such as 

background noise which will be filtered out by the chromagram function. Vocals, guitar 

solos, or simply multiple instruments being played simultaneously can add enough spectral 

content to a segment of audio to cause the correlation between multiple chords to become 

equal or incorrect and therefore an accurate transcription cannot be made. 

This can be overcome again by frequency segmentation and separate analysis, with the final 

data being used to more accurately predict the chords. This will increase the accuracy if the 

correct musical theory is taken into consideration as to which frequency range will carry the 

dominant chord data (often the mid frequency which guitars and pianos are often constricted 

to in popular music). Upper partials also come in to play, where segmentation can remove a 

lot of this effect and if one frequency range carries a different chord profile than a lower one, 

assumptions can be made about the upper partials and a more likely chance of extracting the 

right chords can be achieved. This however is subject to experimental findings on this topic, 

where a whole project should be dedicated to this to correctly find the optimal method of 

segmentation to achieve an improved transcription rate. 

6.10 CONCLUSION 
Through careful analysis of the data found through the experimental procedures, the source 

and effect of different noise components that can typically be found in music was observed 

and analysed. Although the identification of all possible noise sources was not achieved, the 

major components which are typically found in all musical recordings (to some degree) were 

found. It should be noted that any automatic process will never be perfect since the variability 

of data that can be found in music is far too substantial to accurately work around all of them. 
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This report focuses on finding and analysing those noise sources which would be present in 

the largest possible pool of songs, and from these assumptions can be made relating to an 

automatic transcription process. But it is obvious that simply identifying the noise sources 

and their effect is only one aspect required to make use of the details of this report thus far. 

Suggestions of how the different noise sources can be reduced can also be given, but again 

this is only part of the final implementation of the results. Recommendations to the current 

automatic transcription process is therefore given in the next chapter, which takes all the 

results obtained in this report and applies it to realistically implementation in a final 

automatic transcription process which would see an increase in output accuracy. 
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7 RECOMMENDATIONS TO THE CURRENT AUTOMATIC 
TRANSCRIPTION PROCESS/FUTURE WORK 

Understanding where the noise sources within music originate from can allow us to modify 

the current methods, or add additional steps to the overall process that will help improve the 

overall accuracy of automatic music transcription. Since the most dominant noise elements 

have been identified in the previous chapter, this chapter will outline suggestions to the 

current process that would reduce those noise sources which can be controlled. In general, 

noise within the audio cannot be removed or altered, but rather steps taken in the process to 

reduce their effect or bypass them altogether. Several modifications or additions the 

processes are outlined below. 

7.1 EXTRACTING ADDITIONAL INFORMATION 
As previously mentioned, additional data can be extracted from audio files which, if used 

correctly, can increase the accuracy of an automatic process. This information is found within 

what is called  the  ‘ID3  tag’  which  is  associated  to  the  ‘.mp3’ file formats (the dominant file 

format of music today). Information that can be found in a typical tag (with example) is 

summarised in the table below: 

TABLE 26 - INFORMATION INCLUDED IN ID3 TAG 

Tag Example 

Title The Thesis song 

Artist Anton Gouws 

Album Experimental work 

Track Number 7 

Year 2012 

Genre pop 

 

This information is included in each song and is mainly used by software applications to sort 

and identify the tracks. This information is hard coded into the track at the time of final audio 

mix down and therefore cannot be edited after release. This is important when it comes to the 

initial assumptions made by the automatic transcription software, as this information can be 

used to adjust the overall process. 
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An example of this is using the genre to deduce the expected chords within the song. As 

previously   stated   genres   such   as   ‘rock’   and   ‘metal’   generally use power chords as their 

dominant chord structures and will most likely include distortion of some kind. Genres such 

as   ‘pop’   or   ‘electronic’   will typically use more synthetically generated sounds and also a 

more predicable chord progression can be expected. Assumptions to the tonal qualities can 

also be deduced from the genre and also year of recording (since older recordings tend to see 

an increase in background noise). Finding the optimal parameters for the variables within the 

automatic transcription process based on the genre would take trial and error (but should be 

based on the typical implications of the instruments usually used within that genre). If this 

information is not available, either user interaction is required to give a rough estimate of the 

genre, or simply left blank where default values are used. If this information is used correctly, 

and the correct alterations to the program are made based on those assumptions an increase in 

accuracy should be observed in the final product. This however will require a large amount of 

research put into what variables are optimised for a genre in general, and the main focus for 

doing this should be an automated learning process which identifies the important qualities 

within a large pool of songs and predicts the optimum variables that way. However, this is up 

to future work on this topic. 

This however would be a good source of information about the song, as typical methods do 

not have any pre-made assumptions about songs which are a major factor to why inaccuracies 

are so hard to overcome. It would be uncommon to find a musical file that would typically be 

analysed using this process that does not include this information tag due to the extreme 

popularity   of   online   media,   where   applications   such   as   ‘iTunes’   and   ‘Spotify’   would   not  

allow a song to be included in their database without this information as it is used for 

automatic sorting of the media. Therefore it would be an extremely valuable aspect which 

should be utilised if 100% accuracy is to be achieved in the future. 

7.2 PRE-DEFINED CHORD DATABASE 
Any process of automatic transcription will use a pre-defined chord database in some fashion 

to match the data seen with the theoretical chord values. This not only allows easy use of 

theory but also sets the number of different chords which the software can analyse. Usually 

this database is constructed using theoretical values and is recorded in binary (1 for note 

inclusion, and 0 for note exclusion). However as found in the experimental work, it is rare 
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that a chord played using non computer generated sounds will not exhibit a perfect 

correlation to theory. 

This means that modifying the pre-defined chord data base such that it does not include 

purely  binary  values  might  increase  the  accuracy  where  a  ‘learning’  approach  can  be used to 

obtain better base chord data entries to which the sampled data is compared to. This again can 

be incorporated in to the previous suggestion of extracting genre information and a pre-

defined chord database for each genre can be used instead. This can be taken even further by 

applying a global learning approach where the chord database is learned as more and more 

music is analysed using the software. If enough songs are correctly analysed, the data is then 

used to adjust the current chord data base with a maximum likelihood algorithm, over time 

the accuracy of transcription should increase. This should however be confined to each genre 

as a global chord model will not yield the optimum results. 

The only implication of altering the database to not include purely binary values is that 

simple matrix multiplication (as used in this thesis) cannot be used and a more complex MLA 

needs to be used which would likely see an increase in computational time needed which 

brings  it  back  to  the  ‘computational  time  vs.  accuracy’  argument. 

7.3 FILTERING 
Two approaches are suggested here relating to the word  ‘filtering’,  where  either  filtering  out  

unwanted elements can be used or filtering the sample into multiple frequency ranges which 

can then be analysed separately. 

The first suggestion is to reduce (or remove) certain frequency ranges which might interfere 

with the desired chord related information. Removing the higher spectrum which is less likely 

to contain musical instrumentation but rather upper partials from the musical instrumentation 

in the lower spectral range should see some improvement in the correlation between the data 

and the theory. Alternatively, removing some of the bass content could reduce the effect 

witnessed in the experiments where the bass frequencies dominate the chromagram. This 

reduces contributions from other musical notes and could also be done to not completely 

remove the bass qualities but simply reduce them in a way to negate the effects of the Fourier 

transform which has been shown to reduce the correlation with theory. 

The second method suggested previously is segmenting the frequency content and then 

analysing them separately. The information obtained from both can then be compared and 
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then used to show a more accurate representation of the musical chords. This method can be 

achieved by simply analysing the music with a band-pass filter ranging the frequencies that 

you want to analyse separately and then re-analysing the audio by shifting the cut-off 

frequencies higher values. Although as previously stated this will essentially multiply the 

amount of computational time needed to complete the transcription by the number of 

frequency ranges you are individually analysing. This means this is not a justifiable real time 

approach as this time and should only be seriously developed (in an individual user-based 

software package at least) when technology has allowed for computational time to reduce by 

several orders. 

7.4 APPLYING MUSIC THEORY 
The last section essentially overlays all the above suggestions, and should be a major focus 

for future work. The complex nature of music is the reason why reliable and accurate 

transcriptions have not been achieved yet as it is a difficult task to correctly input all the 

available musical theory into a software application such that it can be used efficiently. But 

regardless this would be an important aspect to focus on in terms of error detection and 

correction. 

Predicting the chords of a song given the key would be a much simpler task as it would not 

improve the quality of the data obtained but rather reduce the number of possible chords to 

which it is being compared to. It was found that when a full song was analysed with the 

MLA, the correlation between an incorrect chord and the correct one was very small, to the 

order of 0.05 (which is a percentage difference of 1.6%). But if the key was known, the 

incorrect transcription would not be included in the data set to which the sample was 

compared to, and a correct transcription would have been achieved. 

This however means that the key needs to be determined and can only be done by learning it 

as more and more chords are transcribed. Information such as genre (and also artists as the 

process is developed further) can also be used to limit the possible keys of the song. The song 

being analysed could have its key determined within the first few chord changes in a song, 

and then the song can be re-analysed or just corrections made automatically. This would see a 

large increase in accuracy if done correctly, and would allow an automatic process to be used 

on the more complex musical genres such as jazz which uses considerably more complicated 

chords, chord progressions, time signatures, and technicality when compared to more recent 

‘popular’  music.  Even  if  no  other  method  for  noise  reduction  or  improvements  to  the  current  
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process is applied, using music theory for error correction would improve the overall 

accuracy of a working system by the largest degree.  

8 CONCLUSION 
Through the systematic introduction of noise which could potentially negatively affect the 

process of automatic transcription of music, the identification of multiple noise sources and 

their relative effect was achieved. The  common  dilemma  of  ‘Time  vs.  Accuracy’  was  found  

to be an important contribution to noise, where advancements in computational power will be 

the only real solution. The human elements which can be found in most songs also contribute 

to incorrect transcriptions of chords, where there is no real solution to reducing this source of 

error. 

Other errors identified include acoustic based frequency altering qualities introduced when 

using different instruments or microphones when recording the music, but these do not have a 

large effect on the data and therefore would take relatively little effort to reduce, or more 

commonly just ignored. Dominating bass frequencies show a large source of error which 

reduces the influence of other musical notes in the chromagram. This can be corrected by 

either filtering it out completely, or more appropriately analysing the song in more than one 

part, where the frequency of each part is divided into bass and treble (or more segments 

reducing the frequency range of a particular segment) which would not only reduce this 

effect, but allow more accurate transcriptions when applying musical theory. 

However, the most important factor found throughout the experiments was the need to apply 

musical theory to the data to detect and correct errors in the transcription. Automatically 

determining the key in which the song is played in, and then using this information to correct 

transcriptions would potentially yield the best results in correct transcription rate, and 

therefore should be the focus of future work on this topic. 
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10 APPENDIX 

10.1 THEORETICAL CHORD DATABASE 

 

FIGURE 45 - MAJOR CHORDS THEORY 

 

FIGURE 46 - MINOR CHORDS THEORY 

MAJOR C C# D D# E F F# G G# A A# B
C 1 1 1
C# 1 1 1
D 1 1 1
D# 1 1 1
E 1 1 1
F 1 1 1
F# 1 1 1
G 1 1 1
G# 1 1 1
A 1 1 1
A# 1 1 1
B 1 1 1

MINOR C C# D D# E F F# G G# A A# B
C 1 1 1
C# 1 1 1
D 1 1 1
D# 1 1 1
E 1 1 1
F 1 1 1
F# 1 1 1
G 1 1 1
G# 1 1 1
A 1 1 1
A# 1 1 1
B 1 1 1
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FIGURE 47 - AUGMENTED TRIAD CHORDS THEORY 

 

FIGURE 48 - DIMINISHED TRIAD CHORDS THEORY 

 

AUGMENTED C C# D D# E F F# G G# A A# B
C 1 1 1
C# 1 1 1
D 1 1 1
D# 1 1 1
E 1 1 1
F 1 1 1
F# 1 1 1
G 1 1 1
G# 1 1 1
A 1 1 1
A# 1 1 1
B 1 1 1

DIMINISHED C C# D D# E F F# G G# A A# B
C 1 1 1
C# 1 1 1
D 1 1 1
D# 1 1 1
E 1 1 1
F 1 1 1
F# 1 1 1
G 1 1 1
G# 1 1 1
A 1 1 1
A# 1 1 1
B 1 1 1
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10.2 SINE WAVES 

 

FIGURE 49 - MAJOR CHORDS WITH SYNTHETIC SINE WAVES 

 

FIGURE 50 - MINOR CHORDS WITH SYNTHETIC SINE WAVES 

MAJOR C C# D D# E F F# G G# A A# B
C 1.00 0.81 0.67
C# 1.00 0.76 0.67
D 1.00 0.79 0.66
D# 1.00 0.78 0.65
E 1.00 0.81 0.66
F 0.72 1.00 0.82
F# 0.67 1.00 0.77
G 0.67 1.00 0.79
G# 0.81 0.64 1.00
A 0.79 0.66 1.00
A# 0.80 0.67 1.00
B 0.79 0.67 1.00

MINOR C C# D D# E F F# G G# A A# B
C 1.00 0.85 0.68
C# 1.00 0.83 0.68
D 1.00 0.85 0.67
D# 1.00 0.84 0.70
E 1.00 0.88 0.68
F 0.67 1.00 0.84
F# 0.67 1.00 0.84
G 0.65 1.00 0.85
G# 0.66 1.00 0.82
A 0.87 0.69 1.00
A# 0.81 0.65 1.00
B 0.84 0.66 1.00
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FIGURE 51 - AUGMENTED TRIAD CHORDS WITH SYNTHETIC SINE WAVES 

 

FIGURE 52 - DIMINISHED TRIAD CHORDS WITH SYNHETIC SINE WAVES 

AUGMENTED C C# D D# E F F# G G# A A# B
C 1.00 0.81 0.65
C# 1.00 0.78 0.63
D 1.00 0.79 0.63
D# 1.00 0.79 0.61
E 0.66 1.00 0.81
F 0.63 1.00 0.80
F# 0.62 1.00 0.80
G 0.62 1.00 0.78
G# 0.81 0.62 1.00
A 0.79 0.62 1.00
A# 0.77 0.61 1.00
B 0.80 0.63 1.00

DIMINISHED C C# D D# E F F# G G# A A# B
C 1.00 0.86 0.72
C# 1.00 0.84 0.73
D 1.00 0.86 0.72
D# 1.00 0.83 0.70
E 1.00 0.86 0.74
F 1.00 0.84 0.70
F# 0.73 1.00 0.84
G 0.69 1.00 0.85
G# 0.70 1.00 0.83
A 0.87 0.71 1.00
A# 0.81 0.69 1.00
B 0.84 0.71 1.00
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10.3 PIANO SYNTHESIZER 

 

FIGURE 53 - PIANO MAJOR CHORDS 

 

FIGURE 54 - PAINO MINOR CHORDS 

MAJOR C C# D D# E F F# G G# A A# B
C 0.72 1.00 0.65 0.02
C# 0.87 1.00 0.88
D 1.00 0.65 0.55
D# 1.00 0.62 0.47
E 1.00 0.54 0.48
F 0.67 1.00 0.86
F# 0.58 1.00 0.75
G 0.42 1.00 0.80
G# 0.77 0.45 1.00
A 0.68 0.39 1.00
A# 0.52 0.23 1.00
B 0.49 0.19 1.00

MINOR C C# D D# E F F# G G# A A# B
C 0.63 1.00 0.69 0.02
C# 0.58 1.00 0.53 0.02
D 1.00 0.59 0.57
D# 1.00 0.65 0.48
E 1.00 0.61 0.48
F 0.60 1.00 0.78
F# 0.59 1.00 0.88
G 0.43 1.00 0.79
G# 0.43 1.00 0.89
A 0.78 0.38 1.00
A# 0.76 0.22 1.00
B 0.55 0.19 1.00
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FIGURE 55 - PIANO AUGMENTED TRIAD CHORDS 

 

FIGURE 56 - PIANO DIMINISHED TRIAD CHORDS 

AUGMENTED C C# D D# E F F# G G# A A# B
C 0.72 1.00 0.04 0.55
C# 0.84 1.00 0.05 0.79
D 1.00 0.68 0.03 0.46
D# 1.00 0.63 0.03 0.48
E 0.42 1.00 0.55
F 0.52 1.00 0.75
F# 0.42 1.00 0.76
G 0.40 1.00 0.79
G# 0.78 0.37 1.00
A 0.68 0.19 1.00
A# 0.51 0.22 1.00
B 0.50 0.13 1.00

DIMINISHED C C# D D# E F F# G G# A A# B
C 0.63 1.00 0.56
C# 0.53 1.00 0.60 0.03 0.02
D 1.00 0.62 0.55 0.03
D# 1.00 0.64 0.54
E 1.00 0.60 0.45
F 1.00 0.80 0.73
F# 0.69 1.00 0.87
G 0.61 1.00 0.80
G# 0.48 1.00 0.88
A 0.78 0.43 1.00
A# 0.76 0.42 1.00
B 0.55 0.20 1.00



The Automatic Transcription of Music 

 

100 

10.4 ELECTRIC GUITAR CLEAN 

 

FIGURE 57 - ELECTRIC GUITAR MAJOR CHORD 

 

FIGURE 58 - ELECTRIC GUITAR CLEAN MINOR CHORDS 

MAJOR C C# D D# E F F# G G# A A# B
C 1.00 0.70 0.21
C# 1.00 0.41 0.07
D 1.00 0.35 0.10
D# 1.00 0.69 0.61
E 0.72 0.07 1.00
F 1.00 0.66 0.17
F# 1.00 0.46 0.14
G 1.00 0.32 0.48
G# 0.75 0.92 1.00
A 0.55 1.00 0.79
A# 0.43 0.81 1.00
B 0.45 1.00 0.93

MINOR C C# D D# E F F# G G# A A# B
C 1.00 0.70 0.55
C# 0.67 1.00 0.04
D 1.00 0.46 0.32
D# 1.00 0.68 0.42
E 0.76 1.00
F 1.00 0.47 0.05
F# 1.00 0.50 0.20
G 1.00 0.42 0.19
G# 0.98 1.00 0.30
A 0.45 0.83 1.00
A# 0.73 0.92 1.00
B 0.46 0.37 1.00
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FIGURE 59 - ELECTRIC GUITAR CLEAN AUGMENTED TRIAD CHORDS 

 

FIGURE 60 - ELECTRIC GUITAR CLEAN DIMINISHED TRIAD CHORDS 

AUGMENTED C C# D D# E F F# G G# A A# B
C 0.91 1.00 0.57
C# 1.00 0.07 0.19
D 1.00 0.33 0.24
D# 0.48 0.37 1.00
E 0.92 1.00 0.27
F 0.44 1.00 0.29
F# 1.00 0.81
G 0.75 1.00 0.61
G# 1.00 1.00 0.12
A 0.62 0.77 1.00
A# 1.00 0.61
B 0.31 0.15 1.00

DIMINISHED C C# D D# E F F# G G# A A# B
C 0.78 1.00 0.51
C# 0.80 1.00 0.50
D 1.00 0.51 0.35
D# 1.00 0.85 0.33
E 0.38 1.00 0.50
F 0.53 0.36 1.00
F# 1.00 0.60 0.23
G 0.43 1.00
G# 1.00 0.33 0.86
A 0.53 0.63 1.00
A# 1.00 0.65 0.63
B 0.32 0.18 1.00
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10.5 ACOUSTIC GUITAR 

 

FIGURE 61 - ACOUSTIC GUITAR MAJOR CHORDS 

 

FIGURE 62 - ACOUSTIC GUITAR MINOR CHORDS 

MAJOR C C# D D# E F F# G G# A A# B
C 1.00 0.48 0.19
C# 1.00 0.56 0.08
D 1.00 0.15 0.06
D# 0.46 1.00 0.54
E 0.56 0.09 1.00
F 1.00 0.33 0.16
F# 1.00 0.31 0.22
G 1.00 0.49 1.00
G# 1.00 0.76 0.77
A 0.28 1.00 1.00
A# 0.19 0.75 1.00
B 0.11 0.46 1.00

MINOR C C# D D# E F F# G G# A A# B
C 1.00 0.65 0.44
C# 0.39 1.00 0.20
D 1.00 0.06 0.14
D# 0.26 1.00 0.50
E 0.54 0.17 1.00
F 1.00 0.70 0.05
F# 1.00 0.33 0.02
G 1.00 0.11 0.02
G# 1.00 1.00 0.22
A 0.17 0.62 1.00
A# 0.21 0.51 1.00
B 0.16 0.49 1.00
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FIGURE 63 - ACOUSTIC GUITAR AUGMENTED TRIAD CHORDS 

 

FIGURE 64 - ACOUSTIC GUITAR DIMINISHED TRIAD CHORDS 

AUGMENTED C C# D D# E F F# G G# A A# B
C 1.00 0.38 0.04
C# 1.00 0.36
D 1.00 0.08 0.26
D# 0.49 0.60 1.00
E 0.80 1.00
F 0.42 1.00 0.11
F# 1.00 0.12 0.92
G 0.38 1.00
G# 1.00 0.53
A 0.29 0.53 1.00
A# 0.93 1.00
B 0.56 0.30 1.00

DIMINISHED C C# D D# E F F# G G# A A# B
C 0.21 1.00 0.17
C# 0.31 1.00 0.11
D 1.00 0.21
D# 1.00 0.17
E 1.00 0.11 0.66
F 1.00 0.21 0.58
F# 0.21 0.17
G 0.31 1.00 0.66
G# 0.21 0.68 1.00
A 0.21 1.00
A# 0.31 1.00 0.66
B 0.23 1.00 0.13
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10.6 ELECTRIC GUITAR DISTORTED 

 

FIGURE 65 - DISTORED ELECTRIC GUITAR THEORY 

 

FIGURE 66 - DISTORTED ELECTRIC GUITAR 

Theory C C# D D# E F F# G G# A A# B
Power chord E 1.00 1.00
Power chord G 1.00 1.00
Power chord A 1.00 1.00

Data C C# D D# E F F# G G# A A# B
Power chord E 0.99 1.00
Power chord G 1.00 0.99
Power chord A 1.00 0.97
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10.7 FULL PRODUCTION SONG 

 
FIGURE 67 - FULL PRODUCTION WITH NO EFFECTS DATA SET 

 
FIGURE 68 - FULL PRODUCTION SONG WITH EFFECTS 

Segment Percussion Electric Guitar Bass Vocal Chord C C# D D# E F F# G G# A A# B
1 x x C Major 1.00 0.33 0.19 0.06 0.02
2 x x E Minor 0.08 0.79 0.06 0.09 0.06 1.00
3 x x A Minor 0.88 0.05 0.07 0.04 0.62 0.14 0.14 1.00 0.04
4 x x F Major 1.00 0.03 0.69 0.02 0.04 0.19
5 x x x C Major 1.00 0.25 0.10 0.08
6 x x x E Minor 0.14 0.08 0.09 0.74 0.07 0.19 0.20 0.12 1.00
7 x x x A Minor 0.72 0.08 1.00 0.15 0.26 0.96 0.10
8 x x x F Major 1.00 0.90 0.05 0.18 0.21 0.08
9 x x x x C Major 1.00 0.26 0.30 0.19 0.12 0.11 0.12 0.45

10 x x x x E Minor 0.10 0.24 0.06 1.00
11 x x x x A Minor 0.23 0.36 0.29 0.33 1.00
12 x x x x F Major 1.00 0.31 0.11 0.19 0.16
13 x x x x C Major 0.62 1.00 0.12 0.21 0.16
14 x x x x G Major 0.06 1.00 0.99 0.12 0.11 0.15 0.39
15 x x x x F Major 1.00 0.08
16 x x x x G Major 1.00 0.18 0.26 0.08 0.15 0.46

Segment Percussion Electric Guitar Bass Vocal Chord C C# D D# E F F# G G# A A# B
1 x x C Major 1.00 0.35 0.18 0.01
2 x x E Minor 0.11 0.77 0.08 0.12 0.07 1.00
3 x x A Minor 0.80 0.63 0.08 1.00
4 x x F Major 1.00 0.74 0.04 0.19
5 x x x C Major 1.00 0.22 0.23 0.05
6 x x x E Minor 0.30 0.09 0.05 0.54 0.14 0.17 1.00
7 x x x A Minor 0.24 0.66 0.26 1.00
8 x x x F Major 0.99 1.00 0.18 0.09 0.19
9 x x x x C Major 1.00 0.22 0.18 0.12

10 x x x x E Minor 0.06 0.25 1.00
11 x x x x A Minor 0.20 0.43 0.18 1.00
12 x x x x F Major 1.00 0.30 0.16
13 x x x x C Major 1.00 0.70 0.18 0.06 0.09
14 x x x x G Major 1.00 0.75 0.21 0.08 0.49
15 x x x x F Major 1.00 0.14
16 x x x x G Major 1.00 0.09 0.45 0.16 0.37
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10.8 MATLAB CODE USED 
Program that transcribes chords from the data presented in the tables above. Uses the MLA 
for transcription in MATLAB written by Anton Gouws. Sine wave data entered into this 
program, where the variables are simply changed to reflect the data of the required data set to 
be analysed 
% Sine_waves shows relavent transcriptions of the collected data relating 
% to generated sinusoidal musical chords. 
% There is no input, as all data which is analysed is found within the 
% program itself, in matrix form denoted by the variable Maj, Min, Aug, and 
Dim. 
% 
% Written by Anton Gouws 2012 
 
 
function [Maj_acc,Maj_ave,Min_acc,Min_ave,Aug_acc,Aug_ave]=Sine_Waves() 
  
Maj = 
[1,0,0,0,0.810000000000000,0,0,0.670000000000000,0,0,0,0;0,1,0,0,0,0.760000
000000000,0,0,0.670000000000000,0,0,0;0,0,1,0,0,0,0.790000000000000,0,0,0.6
60000000000000,0,0;0,0,0,1,0,0,0,0.780000000000000,0,0,0.650000000000000,0;
0,0,0,0,1,0,0,0,0.810000000000000,0,0,0.660000000000000;0.720000000000000,0
,0,0,0,1,0,0,0,0.820000000000000,0,0;0,0.670000000000000,0,0,0,0,1,0,0,0,0.
770000000000000,0;0,0,0.670000000000000,0,0,0,0,1,0,0,0,0.790000000000000;0
.810000000000000,0,0,0.640000000000000,0,0,0,0,1,0,0,0;0,0.790000000000000,
0,0,0.660000000000000,0,0,0,0,1,0,0;0,0,0.800000000000000,0,0,0.67000000000
0000,0,0,0,0,1,0;0,0,0,0.790000000000000,0,0,0.670000000000000,0,0,0,0,1;]; 
Min = 
[1,0,0,0.850000000000000,0,0,0,0.680000000000000,0,0,0,0;0,1,0,0,0.83000000
0000000,0,0,0,0.680000000000000,0,0,0;0,0,1,0,0,0.850000000000000,0,0,0,0.6
70000000000000,0,0;0,0,0,1,0,0,0.840000000000000,0,0,0,0.700000000000000,0;
0,0,0,0,1,0,0,0.880000000000000,0,0,0,0.680000000000000;0.670000000000000,0
,0,0,0,1,0,0,0.840000000000000,0,0,0;0,0.670000000000000,0,0,0,0,1,0,0,0.84
0000000000000,0,0;0,0,0.650000000000000,0,0,0,0,1,0,0,0.850000000000000,0;0
,0,0,0.660000000000000,0,0,0,0,1,0,0,0.820000000000000;0.870000000000000,0,
0,0,0.690000000000000,0,0,0,0,1,0,0;0,0.810000000000000,0,0,0,0.65000000000
0000,0,0,0,0,1,0;0,0,0.840000000000000,0,0,0,0.660000000000000,0,0,0,0,1;]; 
Aug = 
[1,0,0,0,0.810000000000000,0,0,0,0.650000000000000,0,0,0;0,1,0,0,0,0.780000
000000000,0,0,0,0.630000000000000,0,0;0,0,1,0,0,0,0.790000000000000,0,0,0,0
.630000000000000,0;0,0,0,1,0,0,0,0.790000000000000,0,0,0,0.610000000000000;
0.660000000000000,0,0,0,1,0,0,0,0.810000000000000,0,0,0;0,0.630000000000000
,0,0,0,1,0,0,0,0.800000000000000,0,0;0,0,0.620000000000000,0,0,0,1,0,0,0,0.
800000000000000,0;0,0,0,0.620000000000000,0,0,0,1,0,0,0,0.780000000000000;0
.810000000000000,0,0,0,0.620000000000000,0,0,0,1,0,0,0;0,0.790000000000000,
0,0,0,0.620000000000000,0,0,0,1,0,0;0,0,0.770000000000000,0,0,0,0.610000000
000000,0,0,0,1,0;0,0,0,0.800000000000000,0,0,0,0.630000000000000,0,0,0,1;]; 
Dim = 
[1,0,0,0.860000000000000,0,0,0.720000000000000,0,0,0,0,0;0,1,0,0,0.84000000
0000000,0,0,0.730000000000000,0,0,0,0;0,0,1,0,0,0.860000000000000,0,0,0.720
000000000000,0,0,0;0,0,0,1,0,0,0.830000000000000,0,0,0.700000000000000,0,0;
0,0,0,0,1,0,0,0.860000000000000,0,0,0.740000000000000,0;0,0,0,0,0,1,0,0,0.8
40000000000000,0,0,0.700000000000000;0.730000000000000,0,0,0,0,0,1,0,0,0.84
0000000000000,0,0;0,0.690000000000000,0,0,0,0,0,1,0,0,0.850000000000000,0;0
,0,0.700000000000000,0,0,0,0,0,1,0,0,0.830000000000000;0.870000000000000,0,
0,0.710000000000000,0,0,0,0,0,1,0,0;0,0.810000000000000,0,0,0.6900000000000
00,0,0,0,0,0,1,0;0,0,0.840000000000000,0,0,0.710000000000000,0,0,0,0,0,1;]; 
  
CMaj=zeros(1,12);CsMaj=zeros(1,12);DMaj=zeros(1,12);DsMaj=zeros(1,12);EMaj=
zeros(1,12);FMaj=zeros(1,12);FsMaj=zeros(1,12);GMaj=zeros(1,12);GsMaj=zeros
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(1,12);AMaj=zeros(1,12);AsMaj=zeros(1,12);BMaj=zeros(1,12); 
CMin=zeros(1,12);CsMin=zeros(1,12);DMin=zeros(1,12);DsMin=zeros(1,12);EMin=
zeros(1,12);FMin=zeros(1,12);FsMin=zeros(1,12);GMin=zeros(1,12);GsMin=zeros
(1,12);AMin=zeros(1,12);AsMin=zeros(1,12);BMin=zeros(1,12); 
CAug=zeros(1,12);CsAug=zeros(1,12);DAug=zeros(1,12);DsAug=zeros(1,12);EAug=
zeros(1,12);FAug=zeros(1,12);FsAug=zeros(1,12);GAug=zeros(1,12);GsAug=zeros
(1,12);AAug=zeros(1,12);AsAug=zeros(1,12);BAug=zeros(1,12); 
CDim=zeros(1,12);CsDim=zeros(1,12);DDim=zeros(1,12);DsDim=zeros(1,12);EDim=
zeros(1,12);FDim=zeros(1,12);FsDim=zeros(1,12);GDim=zeros(1,12);GsDim=zeros
(1,12);ADim=zeros(1,12);AsDim=zeros(1,12);BDim=zeros(1,12); 
  
Maj_accuracy_maj=0; 
Maj_out_ave=0; 
Min_accuracy_Min=0; 
Min_out_ave=0; 
Aug_accuracy_Aug=0; 
Aug_out_ave=0; 
Dim_accuracy_Dim=0; 
Dim_out_ave=0; 
  
M = 0; 
N = 0; 
O = 0; 
P = 0; 
  
for i = 1:12 
    CAug(1,i)=Aug(1,i); 
    CsAug(1,i)=Aug(2,i); 
    DAug(1,i)=Aug(3,i); 
    DsAug(1,i)=Aug(4,i); 
    EAug(1,i)=Aug(5,i); 
    FAug(1,i)=Aug(6,i); 
    FsAug(1,i)=Aug(7,i); 
    GAug(1,i)=Aug(8,i); 
    GsAug(1,i)=Aug(9,i); 
    AAug(1,i)=Aug(10,i); 
    AsAug(1,i)=Aug(11,i); 
    BAug(1,i)=Aug(12,i); 
end 
for i = 1:12 
    CDim(1,i)=Dim(1,i); 
    CsDim(1,i)=Dim(2,i); 
    DDim(1,i)=Dim(3,i); 
    DsDim(1,i)=Dim(4,i); 
    EDim(1,i)=Dim(5,i); 
    FDim(1,i)=Dim(6,i); 
    FsDim(1,i)=Dim(7,i); 
    GDim(1,i)=Dim(8,i); 
    GsDim(1,i)=Dim(9,i); 
    ADim(1,i)=Dim(10,i); 
    AsDim(1,i)=Dim(11,i); 
    BDim(1,i)=Dim(12,i); 
end 
for i = 1:12 
    CMaj(1,i)=Maj(1,i); 
    CsMaj(1,i)=Maj(2,i); 
    DMaj(1,i)=Maj(3,i); 
    DsMaj(1,i)=Maj(4,i); 
    EMaj(1,i)=Maj(5,i); 
    FMaj(1,i)=Maj(6,i); 
    FsMaj(1,i)=Maj(7,i); 
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    GMaj(1,i)=Maj(8,i); 
    GsMaj(1,i)=Maj(9,i); 
    AMaj(1,i)=Maj(10,i); 
    AsMaj(1,i)=Maj(11,i); 
    BMaj(1,i)=Maj(12,i); 
end 
for i = 1:12 
    CMin(1,i)=Min(1,i); 
    CsMin(1,i)=Min(2,i); 
    DMin(1,i)=Min(3,i); 
    DsMin(1,i)=Min(4,i); 
    EMin(1,i)=Min(5,i); 
    FMin(1,i)=Min(6,i); 
    FsMin(1,i)=Min(7,i); 
    GMin(1,i)=Min(8,i); 
    GsMin(1,i)=Min(9,i); 
    AMin(1,i)=Min(10,i); 
    AsMin(1,i)=Min(11,i); 
    BMin(1,i)=Min(12,i); 
end 
  
  
[chord_class_string,out] = Full_Analysis_2(CMaj); 
if strcmp(chord_class_string,'C Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(CsMaj); 
if strcmp(chord_class_string,'C# Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(DMaj); 
if strcmp(chord_class_string,'D Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(DsMaj); 
if strcmp(chord_class_string,'D# Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(EMaj); 
if strcmp(chord_class_string,'E Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(FMaj); 
if strcmp(chord_class_string,'F Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(FsMaj); 
if strcmp(chord_class_string,'F# Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
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    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(GMaj); 
if strcmp(chord_class_string,'G Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(GsMaj); 
if strcmp(chord_class_string,'G# Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(AMaj); 
if strcmp(chord_class_string,'A Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(AsMaj); 
if strcmp(chord_class_string,'A# Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(BMaj); 
if strcmp(chord_class_string,'B Major') 
    Maj_accuracy_maj=Maj_accuracy_maj + 1; 
    Maj_out_ave=Maj_out_ave+out; 
    M = M+1; 
end 
[chord_class_string,out] = Full_Analysis_2(CMin); 
if strcmp(chord_class_string,'C Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(CsMin); 
if strcmp(chord_class_string,'C# Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(DMin); 
if strcmp(chord_class_string,'D Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(DsMin); 
if strcmp(chord_class_string,'D# Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(EMin); 
if strcmp(chord_class_string,'E Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
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    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(FMin); 
if strcmp(chord_class_string,'F Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(FsMin); 
if strcmp(chord_class_string,'F# Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(GMin); 
if strcmp(chord_class_string,'G Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(GsMin); 
if strcmp(chord_class_string,'G# Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(AMin); 
if strcmp(chord_class_string,'A Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(AsMin); 
if strcmp(chord_class_string,'A# Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(BMin); 
if strcmp(chord_class_string,'B Minor') 
    Min_accuracy_Min=Min_accuracy_Min + 1; 
    Min_out_ave=Min_out_ave+out; 
    N = N+1; 
end 
[chord_class_string,out] = Full_Analysis_2(CAug); 
if strcmp(chord_class_string,'C Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(CsAug); 
if strcmp(chord_class_string,'C# Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(DAug); 
if strcmp(chord_class_string,'D Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
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end 
[chord_class_string,out] = Full_Analysis_2(DsAug); 
if strcmp(chord_class_string,'D# Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(EAug); 
if strcmp(chord_class_string,'E Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(FAug); 
if strcmp(chord_class_string,'F Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(FsAug); 
if strcmp(chord_class_string,'F# Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(GAug); 
if strcmp(chord_class_string,'G Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(GsAug); 
if strcmp(chord_class_string,'G# Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(AAug); 
if strcmp(chord_class_string,'A Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(AsAug); 
if strcmp(chord_class_string,'A# Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(BAug); 
if strcmp(chord_class_string,'B Augmented') 
    Aug_accuracy_Aug=Aug_accuracy_Aug + 1; 
    Aug_out_ave=Aug_out_ave+out; 
    O = O+1; 
end 
[chord_class_string,out] = Full_Analysis_2(CDim); 
if strcmp(chord_class_string,'C Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 



The Automatic Transcription of Music 

 

112 

[chord_class_string,out] = Full_Analysis_2(CsDim); 
if strcmp(chord_class_string,'C# Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(DDim); 
if strcmp(chord_class_string,'D Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(DsDim); 
if strcmp(chord_class_string,'D# Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(EDim); 
if strcmp(chord_class_string,'E Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(FDim); 
if strcmp(chord_class_string,'F Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(FsDim); 
if strcmp(chord_class_string,'F# Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(GDim); 
if strcmp(chord_class_string,'G Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(GsDim); 
if strcmp(chord_class_string,'G# Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(ADim); 
if strcmp(chord_class_string,'A Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(AsDim); 
if strcmp(chord_class_string,'A# Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
[chord_class_string,out] = Full_Analysis_2(BDim); 
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if strcmp(chord_class_string,'B Diminished') 
    Dim_accuracy_Dim=Dim_accuracy_Dim + 1; 
    Dim_out_ave=Dim_out_ave+out; 
    P = P+1; 
end 
  
  
Maj_ave=Maj_out_ave/M 
Maj_acc=((Maj_accuracy_maj)/12)*100 
Min_ave=Min_out_ave/N 
Min_acc=((Min_accuracy_Min)/12)*100 
Aug_ave=Aug_out_ave/O 
Aug_acc=((Aug_accuracy_Aug)/12)*100 
Dim_ave=Dim_out_ave/P 
Dim_acc=((Dim_accuracy_Dim)/12)*100 
  
end 
 
 

MLA algorithm implemented in MATALB. Written by Anton Gouws 
%This function impliments the Maximum Liklihood Algorhithm that is the 
%backbone to the transcription process. 
  
function [chord_class_string,out] = Full_Analysis_2(chord_to_test) 
%Imports the data to compare to theory 
chord_to_test_a=transpose(chord_to_test); 
%Matrices and vectors containing the chords based on theory (Binary values 
%used) 
Aug = 
[1,0,0,0,1,0,0,0,1,0,0,0;0,1,0,0,0,1,0,0,0,1,0,0;0,0,1,0,0,0,1,0,0,0,1,0;0,
0,0,1,0,0,0,1,0,0,0,1;1,0,0,0,1,0,0,0,1,0,0,0;0,1,0,0,0,1,0,0,0,1,0,0;0,0,1
,0,0,0,1,0,0,0,1,0;0,0,0,1,0,0,0,1,0,0,0,1;1,0,0,0,1,0,0,0,1,0,0,0;0,1,0,0,
0,1,0,0,0,1,0,0;0,0,1,0,0,0,1,0,0,0,1,0;0,0,0,1,0,0,0,1,0,0,0,1;]; 
Dim = 
[1,0,0,1,0,0,1,0,0,0,0,0;0,1,0,0,1,0,0,1,0,0,0,0;0,0,1,0,0,1,0,0,1,0,0,0;0,
0,0,1,0,0,1,0,0,1,0,0;0,0,0,0,1,0,0,1,0,0,1,0;0,0,0,0,0,1,0,0,1,0,0,1;1,0,0
,0,0,0,1,0,0,1,0,0;0,1,0,0,0,0,0,1,0,0,1,0;0,0,1,0,0,0,0,0,1,0,0,1;1,0,0,1,
0,0,0,0,0,1,0,0;0,1,0,0,1,0,0,0,0,0,1,0;0,0,1,0,0,1,0,0,0,0,0,1;]; 
Maj = 
[1,0,0,0,1,0,0,1,0,0,0,0;0,1,0,0,0,1,0,0,1,0,0,0;0,0,1,0,0,0,1,0,0,1,0,0;0,
0,0,1,0,0,0,1,0,0,1,0;0,0,0,0,1,0,0,0,1,0,0,1;1,0,0,0,0,1,0,0,0,1,0,0;0,1,0
,0,0,0,1,0,0,0,1,0;0,0,1,0,0,0,0,1,0,0,0,1;1,0,0,1,0,0,0,0,1,0,0,0;0,1,0,0,
1,0,0,0,0,1,0,0;0,0,1,0,0,1,0,0,0,0,1,0;0,0,0,1,0,0,1,0,0,0,0,1;]; 
Min = 
[1,0,0,1,0,0,0,1,0,0,0,0;0,1,0,0,1,0,0,0,1,0,0,0;0,0,1,0,0,1,0,0,0,1,0,0;0,
0,0,1,0,0,1,0,0,0,1,0;0,0,0,0,1,0,0,1,0,0,0,1;1,0,0,0,0,1,0,0,1,0,0,0;0,1,0
,0,0,0,1,0,0,1,0,0;0,0,1,0,0,0,0,1,0,0,1,0;0,0,0,1,0,0,0,0,1,0,0,1;1,0,0,0,
1,0,0,0,0,1,0,0;0,1,0,0,0,1,0,0,0,0,1,0;0,0,1,0,0,0,1,0,0,0,0,1;]; 
CMaj=zeros(1,12);CsMaj=zeros(1,12);DMaj=zeros(1,12);DsMaj=zeros(1,12);EMaj=
zeros(1,12);FMaj=zeros(1,12);FsMaj=zeros(1,12);GMaj=zeros(1,12);GsMaj=zeros
(1,12);AMaj=zeros(1,12);AsMaj=zeros(1,12);BMaj=zeros(1,12); 
CMin=zeros(1,12);CsMin=zeros(1,12);DMin=zeros(1,12);DsMin=zeros(1,12);EMin=
zeros(1,12);FMin=zeros(1,12);FsMin=zeros(1,12);GMin=zeros(1,12);GsMin=zeros
(1,12);AMin=zeros(1,12);AsMin=zeros(1,12);BMin=zeros(1,12); 
CAug=zeros(1,12);CsAug=zeros(1,12);DAug=zeros(1,12);DsAug=zeros(1,12);EAug=
zeros(1,12);FAug=zeros(1,12);FsAug=zeros(1,12);GAug=zeros(1,12);GsAug=zeros
(1,12);AAug=zeros(1,12);AsAug=zeros(1,12);BAug=zeros(1,12); 
CDim=zeros(1,12);CsDim=zeros(1,12);DDim=zeros(1,12);DsDim=zeros(1,12);EDim=
zeros(1,12);FDim=zeros(1,12);FsDim=zeros(1,12);GDim=zeros(1,12);GsDim=zeros
(1,12);ADim=zeros(1,12);AsDim=zeros(1,12);BDim=zeros(1,12); 
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%Assigns an individual vector for each chord such that matrix 
%multiplication can be used in the MLA 
for i = 1:12 
    CAug(1,i)=Aug(1,i); 
    CsAug(1,i)=Aug(2,i); 
    DAug(1,i)=Aug(3,i); 
    DsAug(1,i)=Aug(4,i); 
    EAug(1,i)=Aug(5,i); 
    FAug(1,i)=Aug(6,i); 
    FsAug(1,i)=Aug(7,i); 
    GAug(1,i)=Aug(8,i); 
    GsAug(1,i)=Aug(9,i); 
    AAug(1,i)=Aug(10,i); 
    AsAug(1,i)=Aug(11,i); 
    BAug(1,i)=Aug(12,i); 
end 
for i = 1:12 
    CDim(1,i)=Dim(1,i); 
    CsDim(1,i)=Dim(2,i); 
    DDim(1,i)=Dim(3,i); 
    DsDim(1,i)=Dim(4,i); 
    EDim(1,i)=Dim(5,i); 
    FDim(1,i)=Dim(6,i); 
    FsDim(1,i)=Dim(7,i); 
    GDim(1,i)=Dim(8,i); 
    GsDim(1,i)=Dim(9,i); 
    ADim(1,i)=Dim(10,i); 
    AsDim(1,i)=Dim(11,i); 
    BDim(1,i)=Dim(12,i); 
end 
for i = 1:12 
    CMaj(1,i)=Maj(1,i); 
    CsMaj(1,i)=Maj(2,i); 
    DMaj(1,i)=Maj(3,i); 
    DsMaj(1,i)=Maj(4,i); 
    EMaj(1,i)=Maj(5,i); 
    FMaj(1,i)=Maj(6,i); 
    FsMaj(1,i)=Maj(7,i); 
    GMaj(1,i)=Maj(8,i); 
    GsMaj(1,i)=Maj(9,i); 
    AMaj(1,i)=Maj(10,i); 
    AsMaj(1,i)=Maj(11,i); 
    BMaj(1,i)=Maj(12,i); 
end 
for i = 1:12 
    CMin(1,i)=Min(1,i); 
    CsMin(1,i)=Min(2,i); 
    DMin(1,i)=Min(3,i); 
    DsMin(1,i)=Min(4,i); 
    EMin(1,i)=Min(5,i); 
    FMin(1,i)=Min(6,i); 
    FsMin(1,i)=Min(7,i); 
    GMin(1,i)=Min(8,i); 
    GsMin(1,i)=Min(9,i); 
    AMin(1,i)=Min(10,i); 
    AsMin(1,i)=Min(11,i); 
    BMin(1,i)=Min(12,i); 
end 
%Multiplies the test vector with the chord database 
m1=CMin*chord_to_test_a; 
m2=CsMin*chord_to_test_a; 
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m3=DMin*chord_to_test_a; 
m4=DsMin*chord_to_test_a; 
m5=EMin*chord_to_test_a; 
m6=FMin*chord_to_test_a; 
m7=FsMin*chord_to_test_a; 
m8=GMin*chord_to_test_a; 
m9=GsMin*chord_to_test_a; 
m10=AMin*chord_to_test_a; 
m11=AsMin*chord_to_test_a; 
m12=BMin*chord_to_test_a; 
n1=CMaj*chord_to_test_a; 
n2=CsMaj*chord_to_test_a; 
n3=DMaj*chord_to_test_a; 
n4=DsMaj*chord_to_test_a; 
n5=EMaj*chord_to_test_a; 
n6=FMaj*chord_to_test_a; 
n7=FsMaj*chord_to_test_a; 
n8=GMaj*chord_to_test_a; 
n9=GsMaj*chord_to_test_a; 
n10=AMaj*chord_to_test_a; 
n11=AsMaj*chord_to_test_a; 
n12=BMaj*chord_to_test_a; 
o1=CAug*chord_to_test_a; 
o2=CsAug*chord_to_test_a; 
o3=DAug*chord_to_test_a; 
o4=DsAug*chord_to_test_a; 
o5=EAug*chord_to_test_a; 
o6=FAug*chord_to_test_a; 
o7=FsAug*chord_to_test_a; 
o8=GAug*chord_to_test_a; 
o9=GsAug*chord_to_test_a; 
o10=AAug*chord_to_test_a; 
o11=AsAug*chord_to_test_a; 
o12=BAug*chord_to_test_a; 
p1=CDim*chord_to_test_a; 
p2=CsDim*chord_to_test_a; 
p3=DDim*chord_to_test_a; 
p4=DsDim*chord_to_test_a; 
p5=EDim*chord_to_test_a; 
p6=FDim*chord_to_test_a; 
p7=FsDim*chord_to_test_a; 
p8=GDim*chord_to_test_a; 
p9=GsDim*chord_to_test_a; 
p10=ADim*chord_to_test_a; 
p11=AsDim*chord_to_test_a; 
p12=BDim*chord_to_test_a; 
%Chooses the maximum correlation number out of these variables 
n=max([n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,m1,m2,m3,m4,m5,m6,m7,m8,m9,m1
0,m11,m12,o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,o11,o12,p1,p2,p3,p4,p5,p6,p7,p8,p9
,p10,p11,p12]); 
%Returns the best guess chord, and the correlation value 
if n==o1 
    disp('Best Guess Chord is C augmented'); 
    out=o1; 
    chord_class_string='C Augmented'; 
elseif n==o2 
    disp('Best Guess Chord is C# augmented'); 
    out=o2; 
    chord_class_string='C# Augmented'; 
elseif n==o3 
    disp('Best Guess Chord is D augmented'); 
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    out=o3; 
    chord_class_string='D Augmented'; 
elseif n==o4 
    disp('Best Guess Chord is D# augmented'); 
    out=o4; 
    chord_class_string='D# Augmented'; 
elseif n==o5 
    disp('Best Guess Chord is E augmented'); 
    out=o5; 
    chord_class_string='E Augmented'; 
elseif n==o6 
    disp('Best Guess Chord is F augmented'); 
    out=o6; 
    chord_class_string='F Augmented'; 
elseif n==o7 
    disp('Best Guess Chord is F# augmented'); 
    out=o7; 
    chord_class_string='F# Augmented'; 
elseif n==o8 
    disp('Best Guess Chord is G augmented'); 
    out=o8; 
    chord_class_string='G Augmented'; 
elseif n==o9 
    disp('Best Guess Chord is G# augmented'); 
    out=o9; 
    chord_class_string='G# Augmented'; 
elseif n==o10 
    disp('Best Guess Chord is A augmented'); 
    out=o10; 
    chord_class_string='A Augmented'; 
elseif n==o11 
    disp('Best Guess Chord is A# augmented'); 
    out=o11; 
    chord_class_string='A# Augmented'; 
elseif n==o12 
    disp('Best Guess Chord is B augmented'); 
    out=o12; 
    chord_class_string='B Augmented'; 
elseif n==p1 
    disp('Best Guess Chord is C diminished'); 
    out=p1; 
    chord_class_string='C Diminished'; 
elseif n==p2 
    disp('Best Guess Chord is C# diminished'); 
    out=p2; 
    chord_class_string='C# Diminished'; 
elseif n==p3 
    disp('Best Guess Chord is D diminished'); 
    out=p3; 
    chord_class_string='D Diminished'; 
elseif n==p4 
    disp('Best Guess Chord is D# diminished'); 
    out=p4; 
    chord_class_string='D# Diminished'; 
elseif n==p5 
    disp('Best Guess Chord is E diminished'); 
    out=p5; 
    chord_class_string='E Diminished'; 
elseif n==p6 
    disp('Best Guess Chord is F diminished'); 
    out=p7; 
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    chord_class_string='F Diminished'; 
elseif n==p7 
    disp('Best Guess Chord is F# diminished'); 
    out=p7; 
    chord_class_string='F# Diminished'; 
elseif n==p8 
    disp('Best Guess Chord is G diminished'); 
    out=p8; 
    chord_class_string='G Diminished'; 
elseif n==p9 
    disp('Best Guess Chord is G# diminished'); 
    out=p9; 
    chord_class_string='G# Diminished'; 
elseif n==p10 
    disp('Best Guess Chord is A diminished'); 
    out=p10; 
    chord_class_string='A Diminished'; 
elseif n==p11 
    disp('Best Guess Chord is A# diminished'); 
    out=p11; 
    chord_class_string='A# Diminished'; 
elseif n==p12 
    disp('Best Guess Chord is B diminished'); 
    out=p12; 
    chord_class_string='B Diminished'; 
elseif n==m1 
    disp('Best Guess Chord is C minor'); 
    out=m1; 
    chord_class_string='C Minor'; 
elseif n==m2 
    disp('Best Guess Chord is C# Minor'); 
    out=m2; 
    chord_class_string='C# Minor'; 
elseif n==m3 
    disp('Best Guess Chord is D Minor'); 
    out=m3; 
    chord_class_string='D Minor'; 
elseif n==m4 
    disp('Best Guess Chord is D# Minor'); 
    out=m4; 
    chord_class_string='D# Minor'; 
elseif n==m5 
    disp('Best Guess Chord is E Minor'); 
    out=m5; 
    chord_class_string='E Minor'; 
elseif n==m6 
    disp('Best Guess Chord is F Minor'); 
    out=m6; 
    chord_class_string='F Minor'; 
elseif n==m7 
    disp('Best Guess Chord is F# Minor'); 
    out=m7; 
    chord_class_string='F# Minor'; 
elseif n==m8 
    disp('Best Guess Chord is G Minor'); 
    out=m8; 
    chord_class_string='G Minor'; 
elseif n==m9 
    disp('Best Guess Chord is G# Minor'); 
    out=m9; 
    chord_class_string='G# Minor'; 
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elseif n==m10 
    disp('Best Guess Chord is A Minor'); 
    out=m10; 
    chord_class_string='A Minor'; 
elseif n==m11 
    disp('Best Guess Chord is A# Minor'); 
    out=m11; 
    chord_class_string='A# Minor'; 
elseif n==m12 
    disp('Best Guess Chord is B Minor'); 
    out=m12; 
    chord_class_string='B Minor'; 
elseif n==n1 
    disp('Best Guess Chord is C major'); 
    out=n1; 
    chord_class_string='C Major'; 
elseif n==n2 
    disp('Best Guess Chord is C# major'); 
    out=n2; 
    chord_class_string='C# Major'; 
elseif n==n3 
    disp('Best Guess Chord is D major'); 
    out=n3; 
    chord_class_string='D Major'; 
elseif n==n4 
    disp('Best Guess Chord is D# major'); 
    out=n4; 
    chord_class_string='D# Major'; 
elseif n==n5 
    disp('Best Guess Chord is E major'); 
    out=n5; 
    chord_class_string='E Major'; 
elseif n==n6 
    disp('Best Guess Chord is F major'); 
    out=n6; 
    chord_class_string='F Major'; 
elseif n==n7 
    disp('Best Guess Chord is F# major'); 
    out=n7; 
    chord_class_string='F# Major'; 
elseif n==n8 
    disp('Best Guess Chord is G major'); 
    out=n8; 
    chord_class_string='G Major'; 
elseif n==n9 
    disp('Best Guess Chord is G# major'); 
    out=n9; 
    chord_class_string='G# Major'; 
elseif n==n10 
    disp('Best Guess Chord is A major'); 
    out=n10; 
    chord_class_string='A Major'; 
elseif n==n11 
    disp('Best Guess Chord is A# major'); 
    out=n11; 
    chord_class_string='A# Major'; 
elseif n==n12 
    disp('Best Guess Chord is B major'); 
    out=n12; 
    chord_class_string='B Major'; 
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end 
end 
 

Program that generates sine wave chords to confirm the ‘mirchromagram.m’ function, 
including upper partial portion added. 
f1=523.251;     %frequency corresponding to C 

f2=659.255;     %frequency corresponding to E 

f3=783.991;     %frequency corresponding to G 

co1=2*pi*f1;    %fundamental frequency coefficients 

co2=2*pi*f2; 

co3=2*pi*f3; 

co1_upper1=2*pi*(2*f1);     %first upper partials 

co2_upper1=2*pi*(2*f2); 

co3_upper1=2*pi*(2*f3); 

co1_upper2=2*pi*(3*f1);     %second upper partials 

co2_upper2=2*pi*(3*f2); 

co3_upper2=2*pi*(3*f3); 

sig1=0.2*sin(co1*x);        %fundamental frequencies 

sig2=0.2*sin(co2*x); 

sig3=0.2*sin(co3*x); 

sig4=0.1*sin(co1_upper1*x); %first upper partial with scaling factor 

sig5=0.05*sin(co2_upper1*x); 

sig6=0.05*sin(co3_upper1*x); 

sig7=0.012*sin(co1_upper2*x);   %second upper partial with scaling factor 

sig8=0.008*sin(co2_upper2*x); 

sig9=0.005*sin(co3_upper2*x); 

sig=sig1+sig2+sig3+sig4+sig5+sig6+sig7+sig8+sig9; 
 


