A SIMD microprocessor

for image processing

Author: Zhigiang Qiu
Student ID: 20716003
Email: CodyQiu3@gmail.com

Supervisor: Prof. Dr. Thomas Bréunl

Computational Intelligence - Information Processing Systems (CIIPS)
School of Electrical, Electronic and Computer Engineering

The University of Western Australia

(CIPS -

"

. THE UNIVERSITY OF
WESTERN AUSTRALIA

Achieve International Excellence

1 November 2013

A SIMD microprocessor for image processing CIlIPS —

O BE——

"

Abstract

The aim of this project is to design a Single Instruction Multiple Data (SIMD)
microprocessor for image processing. Image processing is an important topic in computer
science. There are many interesting applications based on image processing, such as stereo
matching, 3D object reconstruction and edge detection. The core of image processing is
matrix manipulations on the digital image. A digital image captured by a modern digital
camera is made up of millions of pixels. The common challenge for most of image processing
applications is the amount of data needs to be processed. It will be very slow if each pixel is
processed in a sequential order. In addition, general-purpose microprocessors are highly
inefficient for image processing due to their complicated internal circuit and large instruction
set. One particular solution is to process all pixels simultaneously. A SIMD microprocessor
with a simple instruction set can significantly increase the overall processing speed. This
project focuses on the development of a SIMD image processor using software simulation. It
takes a three step approach. The first step is to improve and further develop our circuit
simulation software, Retro. Retro is a powerful circuit design tool with build-in real time
graphical simulation. A number of improvements have been made to Retro to fulfil our
design requirements. The second step is to design the actual SIMD circuit using Retro
software. Tasks include designing the internal circuit of each Process Element (PE), internal
circuit of the Sequencer CPU, interconnections between PEs and the instruction set of this
SIMD image processor. The final step is to verify the correctness of the design by simulating

the SIMD circuit in Retro using a number of image processing applications.

This has been a successful project. A number of image processing applications demonstrate
the correctness of both Retro software and the SIMD circuit. This project is part of an
ongoing project. It lays down a solid foundation and provides a good direction for future
tasks. We should expect a simple and highly efficient image microprocessor available for

embedded systems in foreseeable future.

11 -

|°C"P — A SIMD microprocessor for image processing
" -7'

Acknowledgement

I would like to acknowledge and express my deep gratitude to the following persons who

made the completion of this project possible:

My project supervisor, Prof. Dr. Thomas Braunl, for his guidance, enthusiastic

encouragement and valuable support.

My project partner, Tim Forrest, for his contribution and valuable support.

All teaching staff at UWA, for their assistance in my academic development.

The Faculty of Engineering, Computing and Mathematics for providing laboratory facilities.

Finally I would like to express my thanks and appreciation to our colleagues and industry

persons for giving me such attention and time.

- 1ii -

A SIMD microprocessor for image processing CIlIPS —

ol

Content
ADSIEACE . cceueiiniiieeiitenstecsnenseecsseesneessesssassssesssnssssesssassssnsssassssessssssssesssassssesssassssssssassssesssnsssansss ii
ACKNOWICAZEIMENTcuueriiiriiisniessnncssricssssicssssscssssssssssesssssesssssesssssosssssssssssosssssossssssssnsssssnssss iii
COMLLNL...ueeiiniiiienteeiticstinisanisteissnesssesssaecssesssassssesssassssesssassssesssassssssssassssessssssssssssassssessassssasssss iv
ADDIEVIATIONS .ecevuviiiueiisneninnisnensniisenssnesssnsssnesssnessansssessssssssessssssssnssssesssssssassssassssesssssssassssasssses vi
Chapter 1 INTrodUCHIONcccveiervueicriricssnnicsssnicsssncssssncsssnsss 1
1.1 DiIgital TMAEZE ..ovveeneieeiiieiie ettt ettt ettt et e st e et e s ateenbeeesbeeseeenaeenne 2
1.2 TMAGE PIOCESSINEeeeuvieniieeiiieiieeieesieeeeteestteeteestteeseessteeseessseenseessseeseessseenseassseeseessseenns 4
1.3 MIICTOPTOCESSOT ...c.vvieivieniieeiieeiteeateesieeeeteensteesseesseeesseesssesnseessseesseessseenseessseenseesssesnseessseenne 6
Chapter 2 BaCK@roUndcueiciveicivnicssnnicssnnicsssnessssncsssscssnssss 8
2.1 MICTOATCRIEECTULE ...ttt ettt ettt ettt st b et s nes 9
2.2 Single Instruction Multiple Data (SIMD)ccccuieiiiiiiiiiieiieeiiee et 11
2.3 INSTIUCTIONS SEL...uviiuiiiiiiieiteeiterteee ettt ettt sttt st ettt et sbe et satesbeenbeas 12
@] 1 F:1 0 5 GG B0 21 (TR 13
3.1 OVEIVIEW OF RELIO...cuiiiiiiiiiiiiiieieeee ettt s 13
3.2 REtrO SOUICE fI1@....uuiiiiiiiiiiiieiieieeete ettt s 15
3.3 Standard LIDTATYooouiieiiieiieeiiee ettt ettt ettt iae e e snaeennee s 18
BiA TOY ULttt ettt ettt ettt e et e st et e eaaeenbeeenaeenneens 18
B IMOAUIE ...ttt sttt 19
3.5.1 Why do we need modules?c.ooiieiiieiiieiieeiiee et 19
3.5.2 SOIULION ..ttt ettt ettt ettt b et sae e e et 19
353 DIESIZN .ttt ettt ettt ettt ettt ettt e et e e teeeabeebeeenbeenteeenteenne 20
306 3.0 Pl ettt sttt st 21
30,1 DIESIZN .ttt ettt ettt ettt ettt e e et e et e e bt e eabeesteenbeenteeenteenne 22
3.7 WOTKSPACE. ... ettt ettt ettt ettt ettt e et e e st eeabeesabeenbeassseenseensseenseansseenseans 22
3.7.1 Why do we need a WOrkSPace?ccceevuiieiieiiieiieieciteee ettt 22
3.7.2 SOIULION ..ttt ettt ettt ettt et sb e bt et sae e b et 23
Chapter 4 SIMD Image MICrOPIrOCESSOTeccerverecsssecssssrcssssrcssssssssssessssssssssessssssssssssssssssssss 25
4.1 REQUITEINENLSvieiiieiiesiieeiieeiieeteesiteeteestteeteesseeesseesseeenseensaeenseeseassseenseesnseenseesssesnseens 25
4.2 TNSTIUCTION SE..eeutiiiiiiiiiiieteeiierte ettt ettt ettt et b et s it e sbeebesatesbeenbeas 26
4.2.1 PE INSIIUCHION SELeeutiiiiiiieieiiiesiteteeite sttt ettt sttt 26
4.2.2 Sequencer CPU INStruCtion Set.........cceeviieriieriiieniieiiieiie e eite e eiee e 29
4.3 Processes Element (PE)c..oooviiiiiiiiie e 31

_iv -

|°C"P — A SIMD microprocessor for image processing
" -7'

4.3.1 Arithmetic LoZIC UNit.....cccooiiiiiiiiiiiieiieeie ettt ettt e bee e e 34
4.3.2 Input / Output (Data Bus & Interconnections)..........c.eeceerveerueenveeseesieeneesveennnns 36
4.3.3 INSLIUCLION BUS ..cuiiiiiiiiiiiiieieceee ettt 37
4.3.4 INtTNAl MEIMOTY ...ouviiiiieiieeiie ettt ettt ettt ettt et e seae et e s saeesaesnbeesseessseenseens 37
4.3.5 StAtUS REZISTET ..cuvvieiiiieiiieiieeie ettt ettt ettt ettt e e bt eseaeebaesnaeesseesaneenseens 37

4.4 SEQUENCET CPU ...ttt ettt ettt et sbe e e seb e e e sabeeenaseeeneee 38
4.4.1 Control Unit (CU) ...ccuieieiieceiie ettt e e e e save e e aveeeaneas 41
B4.2 ALU ..o ettt ettt sttt sae b 42
4.4.3 StatUuS REZISTET ..cuuvieiieeiiieiieeie ettt ettt ettt et sit e et e s b e ebaesnbeesseeseseenseens 42
Y] (551010 OO PP RSTRRP 43
A4S CLOCK .ttt ettt et s h ettt 44
4.4.6 PE NEWOTKcviiiiiiiiieieteeee ettt sttt st st 44
4.4.7 Conditional Statements & LOOPScceiriieriiiiiieiieiiieiieeie ettt 47
Chapter 5 Image ProcCessingccoeiciveicssnicssnnessssncssssncsssncsssssssssssssssssssssesssssssssssssssssssssss 51
5.1 SUMIMATION .ottt ettt ettt st b et esbt e be et e sbe e bt enbesbeenbeeaee e 51
5.2 TRIESNOIAINGveeiiieeiiieieee ettt ettt ettt e eaeebeesaaeesbeessneenseens 54
5.3 NESEEA-IE ..ttt 56
54 WHILE LOOP .ottt ettt ettt e et e et e et essaeebeesaaeenbeessseenseens 58
5.5 Modifying Image Brightnesscccceeriiiiiieriieiiienieeiieeie ettt e sne e 60
5.6 SODEl EAZE DEtECION.eeiuiieiiieiieeiieciie ettt ettt ettt et e ae et e siaeebeeseneenseens 63
Chapter 6 CONCIUSIONcciivueiiriiicnsricssnicsssnissssncssssnessssessssnsssssssssssssssssssssssssssssssssssesssssssssss 66
FULUIE WOTK ...ttt ettt st 66
REFEIEICE wuuccnneeenreeniiiiiitiniiictinnnennieniecsatisaesssecsssicssessssesssessssessssssssssssassssesssassssssssassssessaase 68
APPENAIX A MOAUIE......cciiiueiiiiniinsnicssnricnsnnicssricsssnesssssessssssssssssssssesssssesssssosssssssssssssssssssssssss 71
Source Code (MOAUIE.JAVA) ...c..eiiiiiiiieiieiie ettt et st 71
Source Code (MOAPTOPEItIES. JAVA)ccvieruieeiieeiieeiieeiteeieeeiteetee e eseteeree e eseeseeeenne 89
IMOAUIE ACHION ..ttt ettt sttt ettt et et sbe e b eatesbeeneas 94
APPENAIX B Pill ccccuuiiiiiniiiiniininniinsnicnssncsssicssssicssssssssssssssssssssssssssssosssssosssssssssssssssssssssssssssssss 95
Source Code (PIN.Java)cccueeeieeiieiieeiiesie ettt ettt ettt ettt sae e b e saeeseeenaeenne 95
Source Code (PINProperties.java)cccveeuieeieerieniieiieeie et eieeiee e eeee e esreesereeeens 107

PIN A CHION ..ttt st sttt et st 111
APPENdixX C WOrKSPACE....uuuiiiveiirrricssricssnnicssanicssssicsssnesssssssssssssssssssssssssssssossssssssssssssssssssnss 112
SOUICE COUEC ...ttt et sttt st et st sae b 112

A SIMD microprocessor for image processing

}

|

i
-

Abbreviations

ACC Accumulator

ALU Arithmetic Logic Unit

AWT Abstract Window Toolkit

CU Control Unit

CpPU Central processing Unit

GUI Graphical User Interface

FPGA Field Programmable Gate Array

/O Input/Output

IDE Integrated Development Environment
MSB Most Significant Bit

VHDL VHSIC Hardware Description Language
PC Program Counter

PE Process Element

Retro Register-Transfer Object Hardware Simulation
RISC Reduced Instruction Set Computer
SIMD Single Instruction Multiple Data

SoC System on Chip

- Vi -

|°C"P — A SIMD microprocessor for image processing
" -7'

Chapter 1 Introduction

Image processing is a very important topic in computer science due to the large number of
applications being used in our everyday life. The common challenge for most of the image
processing applications is the large number of operations required. Microprocessors are often
used in image processing. Although tody’s microprocessors are much more powerful than the
ones ten years ago, the amount of data acquired by image sensors has also increased rapidly.
Furthermore, many microprocessors are designed for general purpose with the ability to
process audio, image, video, and network packet data. However, the increased number of
functionalities results in a very complicated internal circuit with a large instructions set. In
terms of image processing, they are inefficient compared to a dedicated image processor.
Therefore, there is a need to design a simple, highly efficient and low power image processor
for embedded systems. After an intensive research, it suggested that Single Instruction
Multiple Data (SIMD) architectures could significantly increase the processing speed. This
will provide an on-board fast image processing solution for real time image processing

applications.

This image processor will not replace any general-purpose microprocessor. It, will however,
enhance the overall system performance by offloading the image processing task from the
general-purpose microprocessor. This can be used in a large number of embedded systems,
such as Raspberry Pi, Arduino, BeagleBone, and more. Figure 1.1 shows the setup of such

system.

Image

I SIMD Image General

Sensor Processor Purpose CPU

Figure 1.1 Image Data Flow in an Embedded System

In this setup, the raw digit image captured by the image sensor is first sent to our image
processor. The image is processed by our SIMD image processor. The final result is then
delivered to the on-board general purpose CPU. This can significantly reduce the work load
of the on-board CPU by shifting the image processing task away from the CPU. Also, it
reduces the bandwidth usage by sending results instead of raw data into the on-board CPU.
The on-board CPU can spend more computational power and allocate more bandwidth to

other tasks, which results in an increase in the performance of the overall system.

A SIMD microprocessor for image processing i CIlIPS —
"

In many image processing applications, multiple pixels can be processed simultaneously.
This project focuses on the development of an image processor using a parallel architecture
called Single Instruction Multiple Data (SIMD). It takes a three step approach:

* Improve and further develop Retro
* Design SIMD circuit
* Verify the correctness by simulating a number of image processing operations

Chapter 2 provides some background information on circuit design. Chapter 3 covers the
design process of Retro software. The result of the software stage is verified by using Retro
software to design our SIMD circuit. The SIMD circuit design process is covered in Chapter
4. The result of both software and circuit design stages are verified in Chapter 5 by
simulating the circuit using a number of different image processing examples. Chapter 6
draws a conclusion on this project and provides some recommendations on what can be done

as the next step of the overall project.

Before we look into the actual design process, let us have a look at some of the background

information in the following sections.

1.1 Digital Image

Images you see on your television and capture by your smartphone are digital images. Unlike
a continuous picture drawn using a pencil, a digital image is a discrete image. It is made up of
many small square elements termed pixel. Each pixel is filled with a colour. [2] A digital
image is represented as a matrix in digital world. Each number in the matrix specifies the

colour of each pixel in the image.

Figure 1.2 Pixel [2]

A SIMD microprocessor for image processing

(QlpS -
Ll 2

There are three types of digital images — binary image, greyscale image and colour image. A
binary image is a 1-bit (monochrome) image. A pixel of a binary (black and white) image has

only 2 possible values - 1 for black and 0 for white. [3]

o000 |0O|0O|O|O
OO0 |0O|0O|0O|O|O
OO0 |0O|O0O|O|O|O
OO0 |0O|0O|O|O|O

o
o
o
o

Figure 1.3 Binary Image

In addition to binary image, a greyscale image use 8-bit of data to represent each pixel. In
other words, a pixel in a greyscale image has 256 possible values. These values represent
different darkness levels ranging from 0 for pure black to 255 for pure white. All other values

give grey colours with different intensities. [1]

256(256|256|256|256|256|256(256(256|256
256(256|256|256|256|256|256(256(256|256
256256 256|256
256256 256|256
256256 256|256
256256 256|256
256256 256|256
256256 256|256
256(256|256|256|256|256|256(256(256|256
256(256|256|256|256|256|256(256(256|256

Figure 1.4 Greyscale Image

Unlike binary and greyscale images, there are a number of colour systems used to represent a
colour image. The most widely used system is called RGB. A colour image is made up of
three separate layers — Red, Green, and Blue. Each colour layer is a greyscale image. A pixel
in a colour image carries three intensity values, and each one corresponds to each colour

component. An artist can create lots of different colours by mixing them differently.

A SIMD microprocessor for image processing |°C"PS =
R

Similarly, the combination of different intensity of red, green and blue results in millions of
different colours.[2] Although there are some other colour systems currently being used (such

as CMYK for printing), we only focus on RGB images in this project.

Figure 1.5 RGB Image|1]

The term colour depth is used to describe the number of possible colours a pixel can choose
from. A binary image is also known as 1-bit monochrome image since each pixel has 21
possible values. As mention before, a greyscale image is an 8-bit image with 28 possible
grey intensity levels. On the other hand, colour image has many different colour depth values.
Some common colour depth values are: 8-bit, 15/16-bit (High Colour), 24-bit (True Colour),
and 30/36/48-bit (Deep Colour). A higher colour depth gives a pixel more colours to choose
from, which gives a vivid image. However, this also generates a much larger amount of data.
For instance, an 8 megapixel 24-bit (8 bits per each RGB component) colour image capture
by a consumer digital camera has the size of [4]:

8 * 10"6 (pixels) * 24 (bits/colour) ~ 24 Mbytes

This is a lot of data for an embedded system to process.

1.2 Image processing

There are millions of image processing applications that have been developed in the past few
decades. These applications are used in every industry, such as quality control systems found
in an assembly line, optical character recognition (OCR) system found in scanners, and

motion detection system found in burglar alarms. They all follow the same procedure —

|°C"P — A SIMD microprocessor for image processing
" -7'

capturing and processing images. The capturing stage is normally done by image sensors,
while the processing stage is done by microprocessors. This project only focuses on the

processing stage.

Image processing can also be separated into two distinguished levels. The lower level
provides hardware infrastructure support. In this level, digital images are treated as a
collection of data. The actual content of the image is meaningless. On the other hand, the
higher level provides methods and algorithms on how to process digital images. This level is
also known as Computer Vision. Starting from a 2D image, computer vision attempts to

extract information of a 3D scene [5] [6].

The core of image processing is matrix manipulation. As mentioned previously, a digital
image is nothing more than a colour intensity matrix. Operations in both space domain and
frequency domain produce various visual effects on the image. We can also generate lots of
different images by combining a number of operations differently. Here is a list of some basic
matrix operations and their corresponding effects:

* Transpose — rotation

* Amplification — changing the brightness and contrast

* Addition — Colour offset

* Finding the standard arithmetic mean of RGB component — convert into greyscale
image

* Convolution/filtering — blurring, sharpening, edge detection
Etc

Most of the image processing applications require a lot of processing power. For instance, if
we blur an eight megapixel example using a 15 x 15 Gaussian Filter, the number of
operations required roughly equals:

8 x 1076 (pixels) x 15 x 15 ~ 5.4 billion operations
General purpose microprocessors used in many embedded systems are inefficient when
performing such tasks. For instance, a Cortex A8 microprocessor takes roughly 3 seconds to
process the entire image [7]. This can be critical for a lot of real time image processing

applications.

A SIMD microprocessor for image processing CIlIPS —

O BE——

"

1.3 Microprocessor

Computer vision provides the algorithms on how to manipulate a digital image, but this will
not be possible without the support from its underlying hardware. Microprocessors are
commonly used for image processing. In fact, because today’s microprocessors are so cheap
and capable of performing any sort of task, they have occupied every corner of your digital

life.

Since the release of the first microprocessor, Intel 4004, in 1971, the performance of
microprocessors has grown rapidly over the past four decades. New generations of
microprocessors are faster and smaller by improving fabrication techniques, increasing wafer
diameters, and reducing the size of transistors. [8] In 1975, the co-founder of Intel, Gorgon
Moore, stated the following [9]:

""The number of transistors incorporated in a chip will

approximately double every 24 months."’

This is known as Moore's Law, which has be proven to be incredibly accurate and become

the main driving force of the development of microprocessors.

There are two widely used computer architecture: Harvard Architecture and von Neumann
Architecture. Both architectures consist of following four components [10, 11]:

¢ Control Unit (CU)

¢ Arithmetic Logic Unit (ALU)
* Memory

* Input/ Output

The main difference between these two architectures is the way instructions and data are
stored in the memory. In von Neumann Architecture, both instruction and data are stored in
the same memory and hence the microprocessor cannot fetch both during the same cycle.
This bottleneck restricts the throughput of the data bus between microprocessor and memory.
In order to overcome this performance bottleneck, Harvard Architecture implies two
memories, one for instructions and the other for data. Hence the microprocessor can obtain

both instruction and data via two separate buses within the same clock cycle [10, 11].

(P

A PS — A SIMD microprocessor for image processing
- -7'
Memory Memory Memory
(Instructions) (Data) (Instructions + Data)
Microprocessor Microprocessor
Control Arithmetic Control Arithmetic
Unit Logic Unit Unit Logic Unit
Input / Output Input / Output
Harvard Architecture von Neumann Architecture

Figure 1.6 Computer Architectures

The first two components, Control Unit and Arithmetic Logic Unit, together form a
microprocessor, or Central processing Unit (CPU). Control Unit is the command centre of the
entire system. It directs other parts of the system according to the instructions stored in the
memory. It does not perform any arithmetic operations on the data. The Arithmetic Logic
Unit, on the other hand, performs either arithmetic or logic operations on data according to
the instructions received from the Control Unit. Arithmetic operations are mathematical
calculations, these include [12]:

* Additions
* Subtraction
* Multiplication
* Division
* Bit shifting
Logical operations are basically comparisons. These include:

* Equalto
e Less than
e QGreater than

e AND

* OR

e NOT

e XOR

* NAND
* NOR

Our design is going to be based on von Neumann architecture. Chapter 4 covers the design

process of the image microprocessor.

A SIMD microprocessor for image processing CIlIPS —

O BEE——

"

Chapter 2 Background

SIMD architectures have been around since the ILLIAC IV project in 1964[13-15]. This
project perhaps the most infamous for it failure as a supercomputer project. The estimate cost
increased significantly from $8 million in 1966 to $3 1million in 1972. There was only a
quarter of the planned multiprocessors was constructed and the actual performance of 15
MFLOPS was a lot less than the initial predictions of 1000 MFLOPS[16]. Despite it was
delivered to NASA Ames Research in 1972, the machine required another three years of
engineering before it was functional. The following decade saw a slow development of SIMD
architecture. Fortunately, Danny Hillis brought SIMD back to life with his Connection
Machine.[17] However, after being resurrected in 1980s, the failure of Thinking Machines
and MasPar slowed the investigation of SIMD once again. In the early 2000s, SIMD has
managed to survive once again after being included in various ISA multimedia extensions,
such as Intel’s MMX/SSE[18, 19], Nvidia’s CUDA[20], and AMD’s 3D-Now[21]. The

development of SIMD finally starts to pick up momentum in recent years.

As stated in Chapter 1, a digital image contains a large amount of information and it requires
a lot of operations to process the entire image pixel by pixel. A lot of embedded systems

running on SoC struggle in terms of image processing. Developing an image microprocessor
using SIMD architecture could significantly improve the overall processing speed. Before we

look at the actual design process, it is important to understand some of the basics.

(QlpS -
Ll 2

A SIMD microprocessor for image processing

2.1 Microarchitecture

According to Flynn’s taxonomy, microarchitectures can be divided into four classifications

[22, 23]:

* Single instruction, single data (SISD)

* Single instruction, multiple data (SIMD)

* Multiple instruction, single data (MISD)

e Multiple instruction, multiple data (MIMD)

Instruction

SISD

Single processor Computer
Data

SIMD

Vector/Array Computer

MISD

Pipeline Computer

MIMD

Multiprocessor Distributed Computer System

Table 2.1 Microarchitecture Classifications

> =

=]

DL,

| — o
[11 :

72654 32zd0]
q =4

ACTU

14—

] | |
| L m
]

@

o
i
H
3
4
5
£

IT|
Arithmetic Logic Unit Control Unit
(ALU) (CuU)

Figure 2.1 Single Instruction Single Data (SISD)

A SISD microprocessor is the most basic architecture [5]. It is made up of one control unit

(CU) and one arithmetic logic unit (ALU). A single instruction is executed for every clock

cycle, and since there is one ALU, it can store and process only one piece of data. This is

very slow for processing a large amount of data because the data has to be queued and

processed one by one. A digital image contains a large number of pixels (eg 8 megapixel

-9.

A SIMD microprocessor for image processing 1CIPS —
el "y

image contains 8 million pixel). It is a big challenge to process all the pixels in a split second,
especially for real time image processing applications. It is clear that SISD architecture is not

suitable for image processing. A parallel architecture should be considered as the next option.

Before we talk about circuits, let us have a look at an analogy. Imagine there is a one-lane
street. Cars travelling down the street have to stay in the same lane, one after another.
Congestion occurs as the number of cars increases. The common solution is to widen the
street with additional lanes. Cars can now travel in different lanes. More cars can pass
through for the same time period, or in other words, it takes less time for the same number of
cars to go from one end to the other. Also, in both cases, only one traffic light is used to

control the traffic flow, regardless the number of lanes.

Figure 2.3 Multi Lane Traffic

Similarly, in many image processing applications, the same operations apply to all pixels, and
different pixels may have different values. We therefore would like to have a system, which
can send the instruction once and process multiple pixels at the same time. There is only one
architecture suitable for this design idea — Single Instruction Multiple Data (SIMD)
architecture. “Single Instruction” means there is only one CU in the microprocessor and

“Multiple Data” means there are multiple ALUs used for multiple data.

-10 -

|°C"P — A SIMD microprocessor for image processing
" -7'

2.2 Single Instruction Multiple Data (SIMD)

Unlike a SISD architecture, a SIMD microprocessor is made up of one CU and multiple
ALUs (also known as Process Element, PE). In a microprocessor, the CU provides both data
and instructions to ALU. The ALU then processes the data according to the instruction. These

two parts are connected via two buses — a data bus and an instruction bus.

The following figure shows the overall layout of our SIMD design.

s N
Image Processor
~~~~~~~~~ Inter-connections
— |nstruction Bus
PE :_ PE :_ PE a — Data Bus
Sequencer
PE PE PE CPU
PE i PE n PE
%
—>

Figure 2.4 SIMD Design Concept
There are two regions in our design — Sequencer CPU and PE network. The Sequencer CPU
is based on von Neumann architecture — both data and instructions are stored in the same
memory. The role of the sequencer CPU is to provide input data and instructions to all PEs,
and collect results from PEs. On the other hand, the role of a PE is much simpler. It is in fact
an ALU (sometimes with a small local memory). It processes data according to the

instructions received from the sequencer CPU.

There are two buses coming out from the sequencer CPU. All PEs are connected to the data
bus in series. This data bus is a two way bus. Data coming from the sequencer CPU can be
fed into each PE one by one. Data can also be sent to all the PEs in parallel using the
instruction bus. This instruction bus is a one way bus and all PEs receive the same

instructions and operand from the sequencer CPU at the same time. PEs are also

-11 -



A SIMD microprocessor for image processing oC"PS =
R

interconnected with their neighbours to form a network grid of PEs. These interconnects are
two way buses and they allow PEs to exchange information with their neighbours without

going back to the Sequencer CPU.

2.3 Instructions Set

Microprocessor architectures can also be classified by their instruction set. Some widely used
architectures are X86, ARM (RISC) and SPARC. Each has its own territory: X86
microprocessors are used in every personal computer; ARM (based of RISC)
microprocessors dominate the embedded world; and finally SPARC microprocessors play an

important role in many supercomputers.

Over the past few decades, the size of the instruction sets of theses microprocessors has
grown rapidly. This can be quite challenge for developers to use. In this project, we have
decided to create our own instruction set. It is significantly smaller compared to those big
names. Simple circuit design and small instruction set are the key features of this image

processor.

-12-



|°C"P — A SIMD microprocessor for image processing
" -7'

Chapter 3 Retro

A traditional approach for circuit design is to use VHDL (VHSIC Hardware Description
Language). It is a programming language largely adapted by the industries. However,
designing circuits using VHDL is not straightforward and sometimes can be challenging. The
lack of Graphical User Interface (GUI) means designers cannot build a circuit by simple drag
and drop. It can also be hard to observe and verify the outputs easily without a real-time
graphical simulation. Designing the circuit using a graphical interface with real time

simulation can provide a better overview of the design and simplify the debugging process.

Software simulation has proven to be essential and powerful over the past few decades.
“A software simulation is worth a thousand wires”

— Professor John Lions [24]

There are four paradigms of science have been in human history [25]:

* Experimentation

* Theory

¢ Computation and Simulation
¢ Data Mining

The third paradigm was stated by Nobel Prize winner Ken Wilson in late 20" century. Since
the introduction of first computer in late 20" century, computers and software simulations
have played a key role in all scientific research. It has the abilities to produce results in a
massive scale, which could not be achievable by theoretical analysis. This ability enables

scientists to explore into a new territory [25].

3.1 Overview of Retro

It is extremely important to choose the right tool for the right task. Good design software can
significantly increase the overall productivity. There are many circuit design products in the
market, such as Cadence PSpice and CircuitLab[26, 27]. However, many of them are either
used to design PCB circuits or simple memoryless circuits, in other words, these software
products are powerful but not suitable for our design needs. Moreover, a lot of them are

proprietary and it is impossible for to be customised.

- 13-



A SIMD microprocessor for image processing 1CIIPS —

O BE——

"

A suitable development tool for this project should fulfil the following criteria:

* Open source

* Reliable and robust

* Meaningful Graphical User Interface (GUI) with simple drag and drop
* Powerful circuit design and simulation environment

* FEasy to learn and use

* Scalable

After all, Retro stands out as the best candidate for this project. Retro stands for “Register-
Transfer-Object Hardware Simulation”. It was originally developed by B. “Toy” Chansavat
in 1999 as part of his final year project at The University of Western Australia. Retro is an
open source circuit design software with built-in real-time simulation. Anyone with basic
circuit knowledge can build their own circuit with simple mouse drag and drop. This erases
the requirement of knowing a circuit design language such as VHDL. By showing the circuit
graphically instead of lines of VHDL source code, it allows us to have a better overview of

the design and helps us more easily tackle issues during debugging.

Developed by: B. Toy Chansavat

Ewan MacLeod, Gavin Hangchi

Tim Forrest, Cody (Zhgiang) Qiu
Supervised by: ‘Prof. Dr. Thomas'Braunl|
19982013 CIIPS, The University of Western Australia

— Version 4.2

Figure 3.1 Retro Splash Screen

Figure 3.2 shows the main user interface. On the top of the window is a menu bar and a
toolbar. This toolbar consists of icons for frequently used actions. On the left of the widow is
the component panel, which consists of buses and a list of all standard library components.
Users can choose a wide variety of electronic components from this toolbox. The main
drawing canvas sits in the centre of the Retro window. Users can create different circuits by

placing different electronic components onto the canvas.

- 14 -



|°C"P — A SIMD microprocessor for image processing
" -7'

ReTrO V4.2 - C:\Users\Cody\Documents\Untitle.toy = o u
File Edit Grid Run Control Center Help
aEHE X O/ e [l @OOR®
o v a
] {ﬁ
B
Standard Library v
Do D D-D-De
Do O W
EE £ 7 -€ [
S ELPH
o (5 i e
B
Ed £9 B B9 G
G103 CA G G
ke (31 G (31 (51
B & @ ®
M
Edit mode

Figure 3.2 Retro Main User Interface

Retro may sound like a perfect environment for this project, but we still could not use the
existing version straight out of the box due to a number of restrictions. Firstly, Retro was
originally designed for simple circuits. It provides basic functionalities which makes it a good
educational software for people learning circuit design, but not for production design.
Additionally, there are a number of electronic components missing from its standard library,
such as encoder and decoder. These components are crucial for many electronic circuit

designs.

Fortunately, the open source Retro can be easily modified which allows it going from a
learning tool to production software. It is the first and necessary step of this project. Section
3.5 ~3.7 describe some of the modifications and improvements have been made to Retro in

order to fulfil our design requirements.

3.2 Retro source file

Retro is written in the Java programming language. Java is procedural, strongly typed,

explicitly typed, case sensitive and object-orientated. It is developed and maintained by Sun

-15-



A SIMD microprocessor for image processing CIlIPS —

O BEE——

"

Microsystem and later Oracle Corporation. Unlike C programming language, Java
applications cannot access lower level hardware directly; the entire runtime is governed by
and performed on top of a Java Virtual Machine. This makes the development of Java
applications much easier and more robust. By abstracting the hardware layer, Java
applications can be compiled once only and executable on all supported platforms. This

feature makes Retro very portable and distributable.

Java also comes with two GUI libraries — Abstract Window Toolkit (AWT) Framework and
Java Swing Framework. AWT Framework is the first GUI framework to provide a basic
abstraction over its native user interface. It was first released along with the first version of
Java in 1995[28]. In the following year, Sun Microsystems, the company develop Java,
introduced the second GUI framework, Java Swing [29]. Although Java Swing is built on top
of AWT, it has been proven to be easier-to-use, more powerful and more robust compares to
its ancestor. Due to the long history, Retro is developed using AWT framework instead of
Swing framework. In this project, we primarily used AWT framework while some of the new
add-ons are based on Swing framework. We have also chosen Netbeans and Eclipse as our

integrated development environment (IDE) for the development of Retro software.

The object-orientated features and scalability are another two advantages of Java. This is a
big step forward compared to its predecessor — C programming language. A number of Java
objects are created when a Java application is executed. Each object belongs to a class, and
each class can generate as many objects as you want. These object have the same attributes
and actions, which specified by the class. And finally, multiple classes together form a bigger

group called package.

In terms of an electronic circuit, each component is an object and belongs to a specific type.
For instance, there might be many OR gate objects in a circuit, although each one is an
individual, they all belong to the same OR gate class. This class specifies the attributes of all
OR gates and all the actions they can perform (logical OR operation). All OR gate objects
share the same attributes and actions regardless the location and the orientation of each
individual OR gate. This matches perfectly with the object-orientated idea of Java mentioned

above. Figure 3.3 illustrates this relationship and a real world analogy.

- 16 -



(QlpS -
Ll 2

A SIMD microprocessor for image processing

Java Retro Analogy
sim.lib.gates Mammal
o /\ /\
GateOR java GateNOT.java .... Dog Cat ...
Class /\ /\
o ORGatel ORGate2 NOTGatel NOTGate2  Husky Labrador Cypus Mist
ject

Figure 3.3 Java Hierarchy

Figure 3.4 is a screenshot of some of the source files of Retro. These file are grouped into

different packets.

-1 & Retro

-} | {5 Source Packages

+
+
+
+
+
+
+
+
+
+

[] <default package>
B qit

£ gjt.image

5 sim

[ sim.credit

[::j sim.engine

[ sim.images

[ sim.images.old
£ sim.lib

5 sim.lib.functions

2[5 sim.lib.gates

=
@
B
&

AndIcon.gif
GateAND.java
GateNAND.java
GateNOR.java
GateNOT.java

Figure 3.4 Retro Source File Hierarchy

-17 -



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

3.3 Standard Library

Retro comes with a build-in standard library. It is a list of most commonly used electronic
components. Each component is specified by its class file, which describes the attribute and
behaviour of the component. The component can then be added into the standard library by
adding an entry into the list. Using a standard library makes it very easy to add or remove any

components.

3.4 Toy file

Similar to VHDL, components placed on the Retro canvas are described by a number of
parameters. When the user hits the save button, Retro translates the entire circuit schematic
into a plain text file and stores it onto user’s hard drive. This circuit file is called Toy file. It is
a long continuous string, which can be decomposed into multiple strings segments. One
string segment specifies a component and multiple segments are separated by the symbol “#”.
A string segment specifies the following properties:

* the name of the component class

* parameters (the number of parameters may vary for different component)
* X,y coordinate of the component

* orientation of the component

Each field is separated by the symbol “|”.

For example, an OR gate in Retro is saved as following:
sim.lib.gates.GateOR|null|6|4|7|3|0|false|1.0|2|false|00]#

Every time Retro opens up a toy file, it initialises the entire circuit using the following

procedure:

1) Extract string segments from the toy file.

2) Look at the first field and locate the class of the component.

3) Generate a component from its class with the specified parameters.

4) Places the newly created component onto the canvas and displays it visually.
5) Repeat step 1 to 4 for all string segments.

This generates a complete circuit after the procedure.

- 18 -



|°C"P — A SIMD microprocessor for image processing
" -7'

3.5 Module

Module is the most crucial component we have added into Retro. It is the first step for Retro
to transform from educational software into industrial designing tool. It gives Retro the
ability to modularise an arbitrary circuit and reuse it in another circuit like any other

electronic components.

3.5.1 Why do we need modules?

The current version of Retro is only capable of simple circuit design. Each schematic is a
stand-alone, completed, and self-contained circuit. It did not have the ability to create a
partial circuit and bind different circuits together. It is almost impossible to have a large and
complicated circuit on a single canvas. In real production circuit design, it is common to find
the same part of the circuit occurring in multiple places. The designer has to place the same
set of components repeatedly. This is not only time consuming, but also prone to mistakes.
Being able to modularise and reuse an arbitrary circuit can significantly reduce the amount of

workload and increase the productivity.

3.5.2 Solution
The design idea of a module is based on Black Box Theory. A black box is a system which

can be represented by a fictional function and it produces some outputs for some given inputs
[30]. A module can take an arbitrary circuit, memory or memoryless, and turn it into a
standard library component. It can then be placed into another circuit as if you are placing an
ordinary component. A circuit can have many modules, and each module is an individual

which can have different internal circuits (of course they can also be the same internal circuit).
The module component acts as a bridge connecting different circuits. It has a number of input

and output (I/O) port for the communications between two circuits. Data and instructions can

be transfer in and out of a module through these 1/O ports.

-19 -



A SIMD microprocessor for image processing CIlIPS —

—

| T =
YT Y [T »
%Lf Ew_ |H;JJ,“J:J4#TL'_‘ WEST o EAST

Circuit > Module

Figure 3.5 Modularise a Circuit

T Circuit 2
Module 1
L I o
Circuit 1 Module 2
: N Circuit 3
~
N

Figure 3.6 Circuit Relationship

The initialisation procedure of a module is similar to the initialisation procedure of a circuit.
Every time the user places a module in the external circuit, it will open up the given toy file
and generate all the components of the internal circuit. Unlike a normal circuit, Retro will

keep the complete internal circuit running at the background, and will not display them onto

the user screen. The user can only see the external circuit and the modules connected to it.

Same as designing other Java objects, there are two aspects — attributes and actions — we need

to design for the module. A complete Java source code can be found in Appendix A.

3.5.3 Design

M

Figure 3.7 Module

A module has five different visual appearances depending on the number of I/O pins of the
internal circuit (the details of pin will be covered latter in this chapter). The following figure

shows all six appearances.

-20 -



(P

A _L: A SIMD microprocessor for image processing
| |
£ £ £ £ £
o o o o o
O O| O| O| O
z z z z z
WEST| WEST| WEST| EAST WEST| EAST WEST| EAST WEST| EAST
M M M M M M

SOUT“(
SOUT“(
SOUT“(

Figure 3.8 Six Appearances of a Module

Some people might be wondering why we did not group all I/O connections into one single
bus. This is because it gives a clean and tide layout especially when designing a grid of

modules if these I/O ports are spread on all sides of the module.

Every module component has a viewing window in the centre to display useful information to
the users. In circuit design mode, this window shows the label of the module. Same as other
components, this label is editable to allow users to give it a customised name. In simulation
mode, we have decided to utilise this window and use it to display the real-time value of a
designated register from the internal circuit (it will be empty if the internal circuit does not

contain any register). This provides direct visual feedback to the user.

3.6 3.6 Pin

Pin is another important component we added to Retro. It works alongside the module. It
creates access points for modules. It is essential for successful communication between two
circuits. Every pin maps to an I/O port on the module. Data from external world arriving at
the input port of the module will be passed onto the corresponding pin of the internal circuit.
Similarly, internal data arriving at the pin will be passed onto the mounted output port of the
module. A circuit without any pins is a self-contained environment and is restricted to public
access. Attaching pins to a circuit allows the circuit to exchange data with external world and

vice versa (require module).

Same as designing other Java objects, there are two aspects — attributes and actions — we need

to design for the pin. A complete Java source code can be found in Appendix B.

-21 -



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

3.6.1 Design

Figure 3.9 Pin

Each pin has a unique ID to distinguish between each other. This is required when mapping a
pin to a port on the module. Each pin also has an editable text label. Users can give names to

different pins.

3.7 Workspace

3.7.1 Why do we need a workspace?

Workspace is another very useful feature we have added into Retro. It is also a requirement
for module to work properly across multiple computers. Earlier in this chapter we have
discussed how a component is saved in a toy file — a string of parameters. This is absolutely
fine for most of components since they use intrinsic parameters. These parameters does not
depend on the operating system. However what if a component needs to read and write a file
outside Retro? Take a look at the following examples:

e ROM:

sim.lib.memory.Rom|null|10|7]63|31|C: \FYP\Design\mainrom.mem|8|256|10.0|5.0[#
e RAM:

sim.lib.memory.Ram|null|10|7|63|31|C: \FYP\Design\maincpu.mem|8|256/12.0|12.0[#
*  Module:

sim.lib.others.Modulenull|6|7|100/18|C:\FYP\Design\Draft\PE02.toy|null|PEO2|#

Notice all three components need to access a file from external source. They record the file
path as one of their parameters. This file path is also called an absolute path. Consider the
following scenario: a user has designed a circuit and save it into a toy file as usual. The toy
file contains one of those components. All of the sudden, the user decide continue his/her
work using a different computer. An error message appears as soon as the user tries to open
the toy file using Retro. This is because Retro is trying to access a file using the old file path
(eg “C:\FYP\Design\Draft\PE02.toy”), but this file does not exist in the new computer.
Moreover, different operating systems have different file system. File path representation
used in Windows is different to the representation used in UNIX/Linux, which also causes a
problem when a user is trying to open a toy file saved in different operating system. This file
path is an extrinsic parameter for a component and it depends on the external user

environment.

-22 -



|°C"P — A SIMD microprocessor for image processing
" -7'

3.7.2 Solution

This problem can be solved by replacing the absolute path with a relative path. This is where

we introduced the idea of workspace.
| %] ReTrO V4.2 - Please choose a workspace - O ESE

Please choose a workspace.

Retro stores your project files in your workspace

Workspace: C:".FYP".Design"] v Browse

’ Clear all recent history ‘

ok | [_cancel |

Figure 3.10 Workspace Chooser

A workspace is a directory where all project files are storing at. The path of workspace can be
set by the user before the Retro main window, or by Retro every time it opens up a toy file. A
special string “<WORKSPACE>" is used to replace the workspace directory when a circuit is
saved. A toy file will no longer contain any absolute paths, instead, it stores the relative path
of a file using one of the following format:

¢ <WORKSPACE>filename
e <WORKSPACE>subdirectory\...\filename

The previous example now becomes the following (workspace is set to “C:\FYP\Design\”):

e ROM:
sim.lib.memory.Rom|null|10|7|63|31|<WORKSPACE>mainrom.mem|8|256/10.0|5.0#

e RAM:
sim.lib.memory.Ram|null|10|7|63|31|<WORKSPACE>maincpu.mem|8|256|12.0[12.0
#

*  Module:
sim.lib.others.Module|null|6|7|100|18|<WORKSPACE>Draft\PE02.toy|null| PE02|#

Since the workspace is dynamically set at runtime, as long as the user saves all the files in the
workspace, the absolute path can be recovered correctly. This allows the user to work on the

same circuit using different workstations.
There is now an extra step for both saving and loading a toy file. Before saving the circuit

into the toy file, Retro scans all path and replace the prefix workspace path with the string
“<WORKSPACE>". For loading, Retro opens up the given toy file and processes every

_23 .



A SIMD microprocessor for image processing oC"PS =
el "y

string segments. Every time it sees the keyword “<WORKSPACE>", Retro replaces it with
the current workspace path. Retro also replaces all slashes with the one used in the current

operating system. After these two string substitutions, the rest follows the same procedure as

stated earlier in Section 3.2 .

The complete source code is provided in Appendix C.

-4 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Chapter 4 SIMD Image Microprocessor

As described in Chapter 2, SIMD picks up a lot of popularities in recent years. This chapter
covers the actual SIMD implementations. There are three parts we have designed in this stage:
the instruction set used by the image microprocessor, the internal circuit of a Process Element
(PE), and the internal circuit of a Sequencer CPU. Various functions of Retro have also been

verified by using it to design the circuits.

4.1 Requirements

A number of factors need to be considered when designing a SIMD microprocessor[31]:

* Choice of Process Element (PE)
e Communications/network topology
* Instruction Issue

There is always a trade-off in simplicity and functionality for any circuit design. A decision
need be made based on the specifications and the purpose of the design. SIMD PEs are
normally interconnected to form a network grid. The network topology also needs to be
defined before the circuit design process. Last but not least, we also need to develop a method
by which the instructions coming from Sequencer CPU can be delivered to the PEs without

CITors.

Since this SIMD microprocessor is designed for image processing applications, it should
have the following features:

* Simple, sufficient and highly efficient 2 minimum waste on transistors

* Interconnected to form a 2D network, and ideally, every PE receives one pixel value
from the image sensor

* PEs are connected the same instruction bus and clock signal in order to achieve a
synchronous system

Keeping these criteria in mind, we can start implementing the actual SIMD circuits step by

step.

_25.-



A SIMD microprocessor for image processing CIlIPS —

4.2 Instruction Set

The first step of designing a circuit is to construct its instruction set. As described in Chapter
2, the instruction sets used by the common architectures are often very large. This is partly
because of many of them are designed for general purpose. This SIMD microprocessor is
designed solely for image processing applications, and hence the instruction set can be

trimmed down to a very small table. A small instruction set also makes developers’ life easier.

An assembly instruction consists of two parts. The first part is called Op-Code, and the
second part is called Operand. Operand can be either a numerical value, or an address
location. Different semiconductor companies have different methods to identify the data type.
Atmel microprocessors use separate Op-Code for address and numerical value[32]. Motorola
microprocessors, on the other hand, use the same Op-Code for both data and address value. A
single selection bit is used to differentiate between address and numerical value[33]. The later
has a cleaner structure and smaller instruction set with less confusion. We have therefore

adapted Motorola’s method in our design.

There are two different circuits used in the SIMD microprocessor — one for the PE and the

other one for the Sequencer CPU.

4.2.1 PE Instruction Set

Each instruction is 15 bit long. It has the following format:

MSB LSB
4bit 2bit 8bit
Op-Code Type: 00 Constant (Seq + PE) Data

01 Memory (Seq + PE)
10 Neighbour (PE only)
11 Neighbour + Seq (PE only)

Table 4.1 PE Instruction Format

-26 -



(QlpS -
Ll 2

A SIMD microprocessor for image processing

The following table is a list of available Op-Codes for PE:

PE OPCODES
OPCODE INSTRUCTION INPUT DESCRIPTION | OPERATION
0 NOP - - -
1 LOAD imm, addr or | Load constant ACCU <-
PE from memory RAM(imm)
address into
ACCU
2 ADD imm, addr or | ADD to ACCU | ACCU <- ACCU
PE (without Carry + <data>
in)
3 AND imm, addr or | Invert ACCU ACCU <- ACCU
PE
4 NOT - AND with ACCU <- ACCU
ACCU - <data>
5 OR imm, addr or | OR with ACCU | ACCU <- ACCU
PE + <data>
6 ADDC imm, addr or | ADD to ACCU | ACCU <-ACCU
PE (with Carry) + <data> + 1
7 - - - -
8 STORE imm Store ACCU at | RAM(imm) <-
input address ACCU
11 LESSTHAN imm, addr or | Compare <data> | ACTIV(0) <-
PE to ACCU, result | ACCU < <data>
stored in
Activity register
12 EQUAL imm, addr or | Compare <data> | ACTIV(0) <-
PE to ACCU, result | ACCU ==
stored in <data>
Activity register
13 ACTIV_INVERT - Invert the LSB ACTIV(0) <-
of the Activity ACTIV(0)
register

_27 -




A SIMD microprocessor for image processing

(PS -

i
14 ACTIV_CARRY - If Carry set LSB | ACTIV(0) <-C
of Activity
register to 1
15 - - Currently unused
16 ACTIV_ZERO - If Zero set LSB | ACTIV(0) <-Z
of Activity
register to 1
17 ACTIV_NEGATIVE | - If Negative set ACTIV(0) <-N
LSB of Activity
register to 1
18 STATUS SHIFTLEFT | - Bit-shift Activity | ACTIV(i) <-
(STATUS) register one ACTIV(i-1)
place to the left,
bringing in a 1
from the left
19 SHIFT RIGHT - Bit-shift Activity | ACTIV(i) <-
(STATUS) register one ACTIV(i+1)

place to the
right, bringing in
a 1 from the

right

Table 4.2 PE Opcodes

-28 -




|°C"P — A SIMD microprocessor for image processing
" -7'

4.2.2 Sequencer CPU Instruction Set

The Sequencer CPU also has its own instruction set. Previously we have looked at the
instruction set used by PE. A PE does not have CU and it has to obtain instructions from the
Sequencer CPU. Therefore the sequencer CPU stores two sets of instructions — instructions
for PEs and instructions for Sequencer CPU. To differentiate between these two, a number of

flag bits are used in front of each Op-Code. The following table show the format of the

instruction.
Op-Code Data
7
Op-Code
Bit 7 Sequencer/PE Switch

0 Sequencer

1 PE

Bit6-5 Input type
00  Constant (Seq + PE)
01  Memory (Seq + PE)
10 Neighbour (PE only)
11 Neighbour + Seq (PE only)

Bit4-0 Op-Code
Sequencer: 4 bit Op-Code (3-0), bit 4 is unused

PE: Bit4
0 ACCU
1 STATUS/Logic
Bit3-0

3 bit Op-Code

Table 4.3 Sequencer CPU Instruction Format

For the Op-Code part of the instruction:
Bit 7 indicates whether this instruction is for Sequencer CPU or PE.
Bit 6 — 5 indicates the input data type and where the data is from. This is same as Bit 9 — 8

used in PE’s instruction.

-29.



A SIMD microprocessor for image processing

(QiPs -
allas

Bit 4 — 0 is the “actual” Op-Code. If this instruction is for Sequencer CPU, then only Bit 3 — 0
are used. If this instruction is for PE, then all 5 bits are used with Bit 4 being a flag. This is

same as Bit 14 — 10 used in PE’s instruction.

The following table is the instruction set used by the Sequencer CPU.

SEQUENCER CPU OPCODES
OPCODE | INSTRUCTION | INPUT DESCRIPTION OPERATION
0 NOP - No Operation -
1 STORE imm Store ACCU at input | RAM(imm) <- ACCU
address
2 LOAD imm Load constant from | ACCU <- RAM(imm)
memory address into
ACCU
3 ADD imm or addr | ADD to ACCU ACCU <- ACCU +
(without Carry in) <data>
4 NOT - Invert ACCU ACCU <- ACCU
5 AND imm or addr | AND with ACCU ACCU <- ACCU -
<data>
6 OR imm or addr | OR with ACCU ACCU <- ACCU +
<data>
7 BRA imm Branch Ahead pc<-pc+K
8 - - - -
9 - - - -
A - - - -
B BRR imm Branch on Ready IF (rdy==1)
pc <-K
C BRC imm Branch on Carry IF (C==1)
pc <-K
E BRZ imm Branch on zero IF (Z==1)
pc <-K
F BRN imm Branch on negative | IF (N==1)
pc<-K

Table 4.4 Sequencer CPU Opcodes
=30 -




|°C"P — A SIMD microprocessor for image processing
" -7'

4.3 Processes Element (PE)

Each PE is an execution unit and corresponds to each pixel of the image. Multiple PEs are
connected to form a PE network and they are controlled by a single sequencer CPU. The
same PE internal circuit is repeated multiple times. In reality, a silicon chip has a finite
number of transistors, and we would like to fit as many PEs into the chip as possible. It is

therefore important to have a simple but highly efficient circuit design.

Figure 4.1 the schematic of the PE internal circuit. It is made up of five regions — ALU, Input
/ Output, Instruction Bus, Internal Memory, and Status Register. A PE does not have a CU. It
relies on the sequencer CPU to provide both instruction and data. The following section

covers each of these five regions.

-31 -



A SIMD microprocessor for image processing

52
3

|

i
o

SNIYLS

W = o
=

/ULZEWVQBL\
||
|

]
A

<
Pl Jaysifisy wus

FB—
Do /
|
—Rl | E
HIRE
[

Figure 4.1 PE Internal Circuit

-32-



A SIMD microprocessor for image processing

r— —

ATOUIA] I— _

I9)SISIY SNye)S

o
Pl saysibey wus

()

9z

sng uonodn.asuj

F

Figure 4.2 PE Internal Circuit

-33 .



A SIMD microprocessor for image processing

4.3.1 Arithmetic Logic Unit

Data Bus

T |
’7 o E”]r ~ AF Instructions Bus

a 4 Cl |
(Op-Code) -

Id 4/_ CLKI
N

00 RDY

- |

CLK2

4 567
]

<<

._/ —iL

Shift Register |4

==

—oL 00
]

iR
oR —

=]

Figure 4.3 PE - ALU

The ALU is the heart of a PE and it is made up of two multiplexers, an accumulator and a

shift register. The select lines of the both multiplexers are connected to the instruction bus.

-34 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Data coming from both external world and accumulator passes through different function
units, which then feeds into the multiplexer. It has six most basic function units:

e Full Adder

* AND

* NOT

* OR

* Less Than
* Equal

Unlike a general-purpose microprocessor, this PE does not have some complicated function
units such as multiplications. There are three major reasons behind this. First of all, these
complicated function units take up a large amount of transistors, which results in less PEs
fitting on a single silicon chip. Additionally, this microprocessor is built for image processing,
and it does not require these complicated function units. Finally, a lot of functions can be

achieved by combining these basic functions. Here are some examples.

4.3.1.1 Example 1: Negate
A negative decimal number is represented by the minus sign attached to the left of the
number. However numbers are stored in binary inside a computer and there is no such thing
as a minus symbol. The way to indicate a binary number being negative is by setting the most
significant bit (MSB). A signed binary starts with MSB equal to 0 represents a positive
number while MSB equal to 1 represents a negative number.

011 010 001 000 111 110 101 100

3 2 1 0 -1 ) -3 -4

Two’s complement is used to convert from positive to negative or vice versa. The following

assembly code shows the steps to perform this using this PE. (X is the data)

NOT X
ADD 01

The value stored in the accumulator after these operations will be the negative value of X.

-35-



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

4.3.1.2 Example 2: Subtraction

Same as decimal number, subtracting a number can be treated as adding a negative number.

The following assembly code shows the steps to perform this using this PE.

NOT X
ADD 01
ADDY

4.3.2 Input / Output (Data Bus & Interconnections)

L
el
|

= g
M
> 2

Data Bus

NORTH SOUTH WEST EAST

Figure 4.4 PE - Input / Output

The 1/0 control is important for data shifting. Every PE has two way communications with its
four surrounding neighbours. In the horizontal direction, a PE exchanges data with its
neighbour using the data bus. In the vertical direction, PE transfers data between its
neighbours using the interconnection bus. The data flow direction of each bus is controlled by
the combined action of tri-state gates, a decoder, AND gates and a multiplexer. In SIMD, a
data shifting command causes all PEs to shift data into their neighbours. For example, if we
want to shift data to the right (east), then all PEs enable their “east” tri-state gate. Data can
flow out of PEs via “east” bus to their east neighbours. At the same time, every PE’s

multiplexer is switched to the “west” bus, which can now accept data coming from their west

neighbours.

PEI PE2

\ 4

\ 4

PE3

Figure 4.5 PE - Data Propagation from Left to Right

-36 -



|°C"P — A SIMD microprocessor for image processing
" -7'

4.3.3 Instruction Bus

oP TYPE DATA

Figure 4.6 PE - Instruction Bus
All PEs are connected to the same instruction bus in parallel. PEs do not hold any instructions
internally. They receive instructions from the external world via the instructions bus. As
shown in figure 3.8, there are three pins connected to the Sequencer CPU. The “OP” pin is
used for receiving Op-Code. The “TYPE” pin gets a 2-bit value, which indicates the type of

the data and where the data is from — either from its neighbour or from Sequencer CPU. And

finally the “DATA” pin accepts the data from the Sequencer CPU.

4.3.4 Internal Memory

A7-0  RAM o

.
B gy
[—=]

Figure 4.7 PE - Internal Memory

E

Each PE has a small memory space for temporary data storage. This memory can be used to
store intermediate results, address pointers, as well as various data structures such as queue

and stack.

4.3.5 Status Register

STATUS

00
|

Figure 4.8 PE - Status Register
-37-




A SIMD microprocessor for image processing oC"PS =
R

Status Register is another important component of a PE. This is an 8-bit status register, which
can hold up to eight status flags. The definition of each status bit is stated in Table 4.5.
Currently there are only 3 flags are used — Negative, Zero, and Carry bit.

Bit 7 6 5 4 3 2 1 0
Flag - - - - N V4 v C
C Carry bit

v Overflow (Currently not implemented)

Z Zero

N Negative

Table 4.5 PE - Flags

Having a dedicated status register for each PE is very important in SIMD design. A PE can

now record and determine its state by setting and checking its status flags.

4.4 Sequencer CPU

The sequencer CPU is the command centre of all PEs. It provides input data and instructions
to the PEs. It also collects results from PEs at the end of the process. Figure 4.9 is the

schematic of the Sequencer CPU.
Unlike the internal circuit of a PE, a Sequencer CPU is made up of five regions — CU, ALU,

status register, memory, and clock. We are going to look at each region in the following

sections.

-38 -



(P

O BE—

PS — A SIMD microprocessor for image processing
el ™y

|

T

[oeod
&,
&,
i J
k

Figure 4.9 Sequencer CPU

-39



A SIMD microprocessor for image processing

r T -1

- = "

ALU Control Unit Memory

7="
\

PE Network

SF

=/

2
[

\
&l
\
\
B

Clock U

—— =L O

Figure 4.10 Sequencer CPU

- 40 -



|°C"P — A SIMD microprocessor for image processing
" -7'

4.4.1 Control Unit (CU)

- 1 1
Code Register Address |
Id — -
K 55

=7
I 1
_D ﬂ DM
. W, >
3
[
1
§ Y S0 1
' ), "
5
? pe Id
3 L
00

Figure 4.11 Sequencer CPU - Control Unit

The CU is the main difference between a PE and the sequencer CPU. This CU controls both
the sequencer CPU and all PEs. In normal mode, for every rising clock pulse, it increments
its program counter by one and reads the next instruction store in the memory. We have also
added two branching operations to our design — conditional branching and unconditional
branching. In conditional branching, PC moves to a given memory address only when a
certain logic condition is satisfied. In unconditional branching, PC moves to a given memory

address regardless of any conditions.

-4] -



2

|

}

A SIMD microprocessor for image processing

i
-

4.4.2 ALU

or _lrand not —F° + €l
|
[ 7 0-2
\7654M3210/ T

accu y /_404—BK
55 — :: z:
—

Figure 4.12 Sequencer CPU - ALU

The ALU used in sequencer CPU is much simpler than the one used in PE. This ALU is
mainly used for logical operations since the sequencer CPU does not process any pixels —

only the PEs are used to process an image.

4.4.3 Status Register

Status Register
Id

0
|

Figure 4.13 Sequencer CPU - Status Register

-4 -



|°C"P — A SIMD microprocessor for image processing
" -7'

A 4bit status register is also used to record the current state of the sequencer CPU. Only three
flags are currently used — Carry Bit, Zero, Negative. The definition of each flag is shown in

the following table.

Bit 3 2 1 0
Flag N V4 - C
S Negative

Z Zero

C Carry Bit

Table 4.6 Sequencer CPU - Flags

4.4.4 Memory

Figure 4.14 Sequencer CPU - Memory

Our image processor is based on von Neumann architecture. Only one memory unit is used in
the sequencer CPU to store both Op-Code and Data/address. Inside the memory, every odd
memory address is used to store Op-Code and every even address is used for data/address.
The sequencer CPU needs to access the memory twice to obtain both the Op-Code and the
data/address. During the first clock cycle, it reads the Op-Code from the memory and stores it
into a code register. It then increases the Program Counter by one. During the second clock
cycle, the sequencer CPU reads the data/address and stores it in the address register. After
these two clock cycles, the sequencer CPU can now perform an action according to the
instruction. Once the action is completed, the sequencer CPU visits the memory again and

repeats the same process.

-43 -



QR
I

|

A SIMD microprocessor for image processing

i
-

4.4.5 Clock

]

N = W= O

Cl_),

- 0w W ~-N®

1
1

Figure 4.15 Sequencer CPU - Clock

The same clock is used for both Sequencer CPU and PEs. This avoids clock drift due to the
use of multiple clocks. Clock pulse 7 to 10 are used by all PEs. Since SIMD is a synchronised
architecture, it is important to have all PE are connected to the same clock signal in parallel.

All other clock pulses are used by the various components in the Sequencer CPU.

4.4.6 PE Network

All PEs are interconnected to form a network. They are connected to the Sequencer CPU via

two buses — data bus and instruction bus.

PED:

T\
| 1
WEST[Zﬁ EAST
¢

ORT

: :
£sT] ﬁgsr WESTF%ST WESTF%ST D—‘

PEO! PEO!

N
- =
5 5 3

=3

Figure 4.16 PE Network

_44 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Data bus connects all PE in series. This is drawn in red on the figure below. The red arrow
shows the data flow direction along the data bus. Data coming from sequencer CPU enters
the PE network at the bottom right and exits at the top left. Inside the network, data bus is

also used for data transfer between neighbours in horizontal direction.

.
&
o
E
WEST EAST
.)I=

- -

o o

o o

= =
STEED EAST WEST[[___]lEAST

)‘=

wrss‘r||i %ST

Figure 4.17 Data Bus

The instruction bus, which is drawn in green, connects all PEs in parallel. All PEs receive the
same instruction simultaneously. This bus is a one-way bus and it sends the following to the

PE network:
* PE Op-Code
* Data/address switching flag
* Data

* Clock signals

- 45 -



A SIMD microprocessor for image processing CIlIPS —

NORT
NORT

.
&
o
2
EsT] codEAST WESTTE%ST wesT___JEAsT
jig P
=

=
=
o I

Figure 4.18 Instruction Bus

The blue lines are interconnections between PEs. These are two way buses which allows PEs
to exchange data between its neighbours in the vertical direction. The use of interconnections
can significantly increase the overall performance because data can move between PEs

without going back to the Sequencer CPU.

NORT

EST| EAST
P

wesT[[_ ERsT
[

El

m
@
2
=
sqUTH 2 ||
m
b3
@
4
£
m
@
g
o
m
B (0
SOUT)

NORT
o |NORT
2 |
L
b3
&
&
NORT

wesT[___JEAST

Figure 4.19 Interconnection Bus

- 46 -



|°C"P — A SIMD microprocessor for image processing
" -7'

4.4.7 Conditional Statements & Loops

It is a bit tricky to perform conditional statements and loops using SIMD architecture. In a
SISD architecture, only a single piece of data is tested in the boolean statement. Based on the
result, it will only execute one part of the statement. However, in a SIMD architecture,
different PE holds different value, which means different PEs enter different parts of the
statement and behave differently. This ends up with unpredictable and uncontrollable
behaviour. There are two check bits we introduced for the conditional statements and loops.
4.4.7.1 Conditional Statements

The first check bit we introduced is called “SET BIT”. This bit is set to 1 if the conditional

check returns true, otherwise it is set to 0.

Let us have a look at an if-else statement. [f-else statement is the most basic conditional

statement. Other conditional statements and loops are based on if-else statement.

Given an image having the following values:

09 08 07
06 05 04
03 02 01

Rh

If the value is greater than 0x05, set it to OXFF. Otherwise set it to 0x01.

Assembly

LESSTHAN 5
STATUS SET
LOAD FF
STATUS INVERT
LOAD 01
STATUS RESET

Stepl | | |
_| oo [1] o8 [1f 07 ]
If (ACC > 0x05) | | |
ACC = OxFF 1 |
Else 06 05 04 [
ACC = 0x01 1 I l
03 |02 [T] o1 [

-47 -



A SIMD microprocessor for image processing

Step2

9

If (ACC > 0x05)
ACC = OxFF
Else
ACC = 0x01

ON Status = 0x01
OFF Status = 0x00

If (ACC > 0x05)
ACC = OxFF
Else
ACC = 0x01

ON Status = 0x01
OFF Status = 0x00

If (ACC > 0x05)
ACC = OxFF
Else
ACC = 0x01

ON Status = 0x01
OFF Status = 0x00

09

06

7
._/A._

FE (]| FF FF
i I‘ I\
NN

=\ A
| | |
\' 05 04
NN
| | |
03 [ | 02 01

- 48 -



(P

o.L: A SIMD microprocessor for image processing
- -7'
StepS
If (ACC > 0x05) : : !
‘- §- ‘
ACC = 0xFF
X _k o =1 -k
Else 1 1 1
)
NNNHH A
1 1 1
ON Status = 0x01 1
01 o1 |™ 01 [*
‘ OFF Status = 0x00 — B —
A\ T T T
Step6
If (ACC > 0x05) ! ! !
ACC = OXFF — FF N FF il FF =
Else 1 1 1
ACC = OXOI FF ] 01 m 01 =
1 1 1
ON Status = 0x01 1
OFF  Status = 0x00 01 |_j 01 o1 [
\ atus = Ox
S§ 1 1 1
Output
FF FF FF
FF 01 01
01 01 o1

- 49 -



A SIMD microprocessor for image processing CIIPS

4.4.7.2 Loops

There is another check bit called “READY BIT” was introduced for loops statements. This is
used by the Sequencer CPU to determine if all PEs are ready for the next instruction. This is
an important check to when performing loops. It takes different amount of time for different
PEs to complete the same loop instructions. In order to keep the entire system synchronised,
Sequencer CPU needs to wait for every PE to complete the loop before executing next
instruction. The PE sets the signal wire to 0 when it completes a loop. Sequencer CPU knows

all PE are ready for next instruction as soon as the OR value of all signal wires becomes 0.

Figure 4.20 Ready Signal Bus

-50 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Chapter S Image Processing

Image processing is an important topic in computer science with a large number of
applications. Applications such as contrast enhancement, lightening, image blurring, corner
detection and edge detection are the most basic image processing applications. These
applications are the building blocks of other advanced applications, such as artificial

intelligence, 3D object reconstructions, and object recognitions.

The design and development of Retro and the SIMD circuit are now fully completed. It is
extremely important to verify the correctness of a design in any engineering project. Test
results provide evidence to support the whole design idea. This is also part of the reason why
software simulation becomes more and more popular in many research areas. This chapter is
going to simulate our image processor with a number of different image processing
applications using Retro. The images we are going to use in the following examples are 5x5
greyscale images. Recall each pixel is processed by a PE and therefore a PE network with the
size of 5x5 is needed to processes the images. Notice the size of the image can be scaled to

any sizes as long the size of the PE network matches.

To provide a better visual representation, we have also modularised the Sequencer CPU. The

(HEX) value of the current pixel data is displayed on the face of each PE. In some cases, a

PE shows an undefined value “- - as it reads a value from some unconnected wires. In reality,
these wires are connected to ground and it should display “0” rather than “- -*. In the
following examples, we will treat “- -*“ as “0”".

5.1 Summation

In a SISD microprocessor, the sum of all 25 pixel values is found by repeatedly add the
current pixel value to the previous sum 25 times. However, the same operation can be
achieved a lot faster using this SIMD microprocessor. It simply shifts values from right to the
left 4 times and then from bottom to the top 4 times. The total number of operations reduces
to 8. Imagine the given image has a size of MxN, the number of operations required would be
M-+N-2 when using this SIMD microprocessor instead of MxN operations needed on a SISD

architecture.

-51 -



A SIMD microprocessor for image processing CIIPS

Input

01 01 01 01 oO1
01 01 01 01 oO1
01 01 01 01 oO1
01 01 01 01 oO1
01 01 01 01 oO1

Lj}_

narT
narT

westlgy [leest westlgy [leest

Iy

£; 1 et 5]

T
4
S |narT
N
=
\l‘ghom'
v, =
i; N
4

T
\’-lo-lwom'
b, =

N
£

=
L

S [narr
e~

%\_
£

esT)

ij}_

H
4
© [NORT
hg
N
4

=
\r.la|
& |NORT

1 et

Lj}_

aRT
aRT

z z
festpy [leest westfgy [leest

[

Figure 5.1 Sum - Input

Assembly Code

STORE F@

LOAD PE 01 (SHIFT LEFT)
ADD FO

LOAD PE 01 (SHIFT LEFT)
ADD FO

LOAD PE 01 (SHIFT LEFT)
ADD FO

LOAD PE 01 (SHIFT LEFT)
ADD FO

STORE F@
LOAD PE @3 (SHIFT UP)

-52.



(QlpS -
Ll 2

A SIMD microprocessor for image processing

ADD FO

LOAD PE @3 (SHIFT UP)

ADD FO

LOAD PE @3 (SHIFT UP)

ADD FO

LOAD PE @3 (SHIFT UP)

ADD FO

Expected Output

(01)hex = (01)oct
(01)oct * (25)oct = (25)oct = (19)hex

00
00
00
00
00

19 00
19 00
19 00
19 00
19 00

Actual Output

00
00
00
00
00

00
00
00
00
00

Figure 5.2 Sum - Output

-53.-



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

5.2 Thresholding

Greyscale images are often needed to convert into a binary image. The process is a simple if-
else statement. A threshold value needs to be defined first (in this example we set it to 0x80).

Then all values lower than the threshold are set to 0x00 and the others are set to OxFF.

Input

00 00 00 00 00
40 40 40 40 40
80 80 80 80 80
co CoO Cco co co
'FF FF FF FF FF

2]
westlog Jees

=

El

8

4

5

8

gl

H
ti'

S Jnarr
v S

H

4

H

5

S Jnarr

o
gl

40

gl

”LS

£l

H
ﬁb

\

H

El

H

4

LS

£l

El

LS

Y

g|
2|
esfgp [

&l &
ol gl
2| k4
stg0 [Ees westfog Jeest westfog JeesT
E E

s
El
=
okt
™
H

g
2]
esf g e =Tco

I%T

el

H
narr
Iﬁ:

H

4

=
I?T

a

S

el

El

[=)

S

4

&l & & &
gl g ] g
2| 2 2 2
bt east wr:rm:r westl ey Jeast wesT] e
21

Figure 5.3 Thresholding - Input

e

Ihg
,
4
<
4
H
4

Assembly

LESSTHAN 80
LOAD 00
STATUS_INVERT
LOAD FF

-54 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Expected Output

00 00 00 00 o00
00 00 00 00 OO0
FF FF FF FF FF
FF FF FF FF FF
FF FF FF FF FF

Actual Output

Figure 5.4 Thresholding - Output

-55 -



A SIMD microprocessor for image processing 1CIIPS —

O BE——

"

5.3 Nested-If

This SIMD microprocessor is also capable to execute nested-if statements. Here is the

example:
If (ACC < 0x07)
If (ACC < 0x05)
ACC = 0x01
Else
ACC = 0x05
Else
ACC = 0x03
Input

00 00 00 00 00
02 02 02 02 02
05 05 05 05 05
09 09 09 09 09
10 10 10 10 10

z z
westlop [leest westlop [leest

z z z
restlo feesr westlgy [leest westlgy [leest

b
El

& & &
El El El
2 2 2
p esT) 05 BAST W BT 05 3o W esT] 0 B
3 3

o
o —

&
2
wesrlng et

|7 £ |7
g g g
2 2z 2z
eestlyg fleesr westlyg [leest we.
B

Figure 5.5 NestedIf - Input

El
:
El

- 56 -



(P

OL:
i o

A SIMD microprocessor for image processing

Assembly

LESSTHAN @7
STATUS_SHIFTLEFT
LESSTHAN 05

LOAD @1 (CONST)
STATUS_INVERT
LOAD ©2 (CONST)
STATUS_SHIFTRIGHT
STATUS_INVERT
LOAD ©3 (CONST)

Expected Output

Actual Output

a0 RAM. pg
] [

TEWE

01
01
02
03
03

01
01
02
03
03

01
01
02
03
03

01
01
02
03
03

01
01
02
03
03

&
o
k4
westloy [eest
E

0-17

&
l
k4
westlo) Jlesst
=
3
3

tesrloy Jleest

: : :
- -

|4
o
2
brestos Jeast

&
ol
g
esT] Ensr
| 54

&
m#w
B

Figure 5.6 NestedIf - Output

-57-



A SIMD microprocessor for image processing CIlIPS —

Visual Comparison

Input Output

5.4 While Loop

In this example, all pixels increase their value by one for every cycle until hitting OxOF.

Input

00 00 00 00 o00
02 02 02 02 02
05 05 05 05 05
09 09 09 09 09
10 10 10 10 10

k4 4
eeslon st sestlga [east

2| gl
beeslos Teest sestfgs Jeost

& 4
] ol
2 2
estgg [eest westlgg st
3 3
& &
] El
2 2
esT] !A:r wesT] m:r
| 54 E

Figure 5.7 While - Input

-58-



(P

OL:
i o

A SIMD microprocessor for image processing

Assembly
LESSTHAN of

ADD 01
BRR 00

Expected Output

Actual Output

OF
OF
OF
OF
10

OF OF
OF OF
OF OF
OF OF
10 10

OF
OF
OF
OF
10

OF
OF
OF
OF
10

wesT] leasT
OF

wesT] leasT
O0F

z
westloF [eest
=

QRT
pali) %

4
westloF [eest
=

QRT
poali) f I

£ & & £
g g ] g
4 z z z
W esT) m:r westlhg [eest weslhg [leest wesrm:r
21 B

b

Figure 5.8 While - Qutput

-59 -



A SIMD microprocessor for image processing CIlIPS —

Visual Comparison

Input Output

5.5 Modifying Image Brightness

This example increases the brightness of the image. In this example, we are going to double
every pixel value. Notice some of the results may be larger then the maximum value, 255
(FF), of a grayscale pixel. In this case, our image processor can detect this and set it the

maximum.

Input
00 00 00 00 o00
20 20 20 20 20
50 50 50 50 50
90 90 90 90 90
FO FO FO FO FO

- 60 -



A SIMD microprocessor for image processing

]
& & & |7 &
o o g g o
k4 k4 4 k4 k4
westlog [eest westlog [east westlog [esst westfog [eest westlog [east
E E 3 3 E
R

narr

westlog Jeest
E

Figure 5.9 Brightness - Input

Assembly Code

STORE F@
ADD FO (ADDR)
STATUS_CARRY
LOAD FF (CONST)

Expected Output

00 00 00 00 00
40 40 40 40 40
A0 A0 A0 A0 A0
FF FF FF FF FF
FF FF FF FF FF

-61 -



A SIMD microprocessor for image processing

Actual Output

70 RAM

0 ][ oo

fak

&
]
4
westlog [eest
E

£
o
z
westlog esst
E

&

o

z
westfog [leesr

&
g
z
westlog [esst
E

o

restlqp fleest

Jnarr
0y

Jnarr
T

westl4p fleest

westlqn feest

Jnarr
ny

o

narT

westl ap fleest

nakT
ig \
4

o=l a0
E

nakT
ny

H

El

wi‘m

narT
ig N
El

\¥ BST] Au
E

Ia)

o

et py fleest

wespp eest

westlpp [leest

wespp eest

: : : £ :
g : g g 2
oot | westferfoosr | westferfens | wesPerfensr | westerfensr
E 3 E 3
g 5 g g g
=] o =] =] o
s s g = g

westlpp eest

Figure 5.10 Brightness - Output

Visual Comparison

-62 -




|°C"P — A SIMD microprocessor for image processing
" -7'

5.6 Sobel Edge Detection

An edge in an image contains a lot of information. Finding an edge in an image is considered
as one of the most basic image processing operations in computer vision. An edge can be
found by passing an image through a filter, and the edges enhanced in the resultant image.
Sobel operator is one of the most famous and commonly used filters for edge detection. A

Sobel operator has the following form:

-110 (1 11211
21012 01010
1101 127

For vertical edges For horizontal edges

00 00 10 00 OO0
00 00 10 00 OO0
10 10 10 10 10
00 00 10 00 OO0
00 00 10 00 OO0

sforfer | wefpfor | v o | ey fon
-
< f
\
&
2| 2| 2|
e | i | e | e
A ] J
5
-
=
g e I e Sl I ry Al Iy
J A A A
i
=
efor e | wesiE s | wenPreos | e
E E E | &

Figure 5.11 Sobel - Input

-63 -



A SIMD microprocessor for image processing

}

|

i
-

Assembly Code
STORE ff
SHIFT UP
STORE c1
SHIFT LEFT
STORE c2
LOAD ff
SHIFT UP
SHIFT RIGHT
STORE co
LOAD ff
SHIFT DOWN
STORE a1l
SHIFT LEFT
STORE a2
LOAD ff
SHIFT DOWN
SHIFT RIGHT
STORE a0
LOAD ff
SHIFT LEFT
STORE b2
LOAD ff
SHIFT RIGHT
STORE bo

LOAD @0 (CNST)
ADD c©

ADD c1

ADD c1

ADD c2

STORE 10

LOAD @0 (CNST)

- 64 -

ADD a0
ADD al

ADD al

ADD a2

INVERT

ADD_WITHCARRY ADDR 10
STATUS_NEGATIVE
INVERT

ADD @1 (CNST)
STATUS_SHIFTRIGHT
STORE F@

LOAD @@ (CNST)
ADD a0

ADD bo

ADD bo

ADD c©

STORE 20

LOAD @@ (CNST)
ADD a2

ADD b2

ADD b2

ADD c2

INVERT
ADD_WITHCARRY ADDR 10
STATUS_NEGATIVE
INVERT

ADD @1 (CNST)
STATUS_SHIFTRIGHT
STORE f1

ADD fo (ADDR)



(QlpS -
Ll 2

A SIMD microprocessor for image processing

Expected Output

Actual Output

60
20
60

20
00
20

60
20
60

40
20
40

k4
westleg [east

El
g
esT least
20
3

1

iled

o

&
El
2
es| m least

# m#m

| o1

Figure 5.12 Sobel - Output

Visual Comparison

- 65 -




A SIMD microprocessor for image processing CIlIPS —

O BE——

"

Chapter 6 Conclusion

The aim of this project was to design a SIMD microprocessor for image processing. Using
Retro software, a complete circuit has been developed and simulated using a number of

image processing applications.

In the first stage of the project, we have improved and added a number of features into the
Retro software. The entire design process is closely matched to the project requirement. A
number of issues were discovered during the design process and the solutions were developed.
Being able to use it to design and simulate our SIMD circuit confirms the working state of
Retro. The newly added features give Retro the ability to handle a much more complicated
circuit. Retro software is more powerful than ever before, and it is now one step closer to

become an industrial circuit design tool.

Using Retro software, we have successfully developed a SIMD microprocessor for image
processing. This included a simple and easy-to-understand instruction set, a simple and
highly efficient SIMD circuits. A list of criteria has been considered and decisions were made
at the planning stage. During the design process, we have overcome a number of challenges,

such as conditional statements and loops.

Finally, we simulated our circuit using various image processing applications in Retro
software. The outputs from the simulation are consistent with our expected outcome. This
verifies the correctness of our design concept. This also suggests our SIMD circuit can be

turn into a real product in a foreseeable future.

Future Work

This project is part of an ongoing project. This project lays down a solid foundation and

provides guidance to all future work. There are three tasks need to be done in the future.
First of all, more features need to be added into Retro. The most important feature is the

ability to convert a circuit schematic into VHDL source code. This functionality makes Retro

even one step closer to become an industrial design tool.

- 66 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Secondly, implementing the circuit in VHDL is the next step. VHDL is still the on of the
most popular hardware programming language. Having the circuit in VHDL form enable us

to test the circuit in more platforms.
Finally, we also need a hardware implementation of the circuit design. This can be done

using a FPGA development kit such as Xilinx Vertex 5. A number f image processing

applications can be run on the actual hardware.

- 67 -



A SIMD microprocessor for image processing CIlIPS —

Reference

[1]
[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

(2013, 22/04/2013). Grayscale. Available: http://en.wikipedia.org/wiki/Grayscale

B. Atkins. (2003, 25 Spetember 2013). Digital Cameras - A beginner's guide.

Available: http://photo.net/equipment/digital/basics/

R. Owens. (1997, 22/04/2013). Binary Images. Available:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT2/lect2.

html
W. Fulton. (2010, 06/05/2013). Color Bit-Depth, & Memory Cost of Images.

Available: http://www.scantips.com/basics1d.html

T. B. W. R. S. F. M. Reinhardt, Parallel Image Processing. Germany: Springer, 2000.
D. Huynh, "CITS4402 Computer Vision," The University of Western Australia, 2013.
A. L. Shimpi. (2011, 21 Spetember 2013). ARM's Cortex A7: Bringing Cheaper Dual-
Core & More Power Efficient High-End Devices. Available:

http://www.anandtech.com/show/499 1/arms-cortex-a7-bringing-cheaper-dualcore-

more-power-efficient-highend-devices

E. Harding. (16 Apr 2013). The History of Microprocessors. Available:

http://jupiter.plymouth.edu/~harding/historymicro.html

I. Corporation. (2013, 02 Apr 2013). Moore's Law and Intel Innovation. Available:

http://www.intel.com/content/www/us/en/history/museum-gordon-moore-law.html

R. Traylor, "A brief view of computer architecture," presented at the ECE 112 -
Introduction to Electrical and Computer Engineering Oregon State University, 2002.
A. S. O'Fallon, "Week 2 Unit 3: Computer Architecture Overview," presented at the
Microprocessor Systems, Washington State University, 2013.

V. Fay-Wolfe. (2005, 17 May 2013). How Computers Work: The CPU and Memory.

Available: http://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading04.htm

- 68 -



|°C"P — A SIMD microprocessor for image processing
" -7'

[13] W.J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Randall, A. H. Sameh, and
D. L. Slotnick, "The Illiac IV system," Proceedings of the IEEE, vol. 60, pp. 369-388,
1972.

[14] G. Wilson. (1993, 12 March 2013). History of Supercomputing (1993-08-20).

Auvailable: http://wotug.ukc.ac.uk/parallel/documents/misc/timeline/timeline.txt

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A
Quantitative Approach: Morgan Kaufmann Publishers Inc., 2011.

[16] R.M. Hord, The Illiac IV, the First Supercomputer: Computer Science Press, 1982.

[17] W.D. Hillis, The Connection Machine: Cambridge, 1989.

[18] S. Siewert. (14 Mar 2013). Using Intel® Streaming SIMD Extensions and Intel®
Integrated Performance Primitives to Accelerate Algorithms. Available:

http://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-

intel-integrated-performance-primitives-to-accelerate-algorithms

[19] "PENTIUM® PROCESSOR WITH MMX™ TECHNOLOGY," I. Corporation, Ed.,
ed. Mt. Prospec: Intel Corporation, 1997.

[20]  N. Corporation. (2013, 14 Mar 2013). Parallel Programming and Computing
Platform | CUDA | NVIDIA | NVIDIA. Available:

http://www.nvidia.com/object/cuda_home new.html

[21] I Advanced Micro Devices. (2013, 14 Mar 2013). 3DNow!™ Technology. Available:

http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/3DNOW/Pages/3dnow.asp

X

[22] R. Duncan, "A survey of parallel computer architectures," Computer, vol. 23, pp. 5-16,
1990.

[23] M. Flynn, "Some Computer Organizations and Their Effectiveness," Computers,

IEEE Transactions on, vol. C-21, pp. 948-960, 1972.

-69 -



A SIMD microprocessor for image processing 1CIPS —

i o

[24] C. McDonald, "CITS3230 Computer Network," presented at the Lecture 4, The
University of Western Australia, 2013.
[25] T. Hey. (2010, 9/5/2013). The Big Idea: The Next Scientific Revolution. Available:

http://hbr.org/2010/11/the-big-idea-the-next-scientific-revolution/ar/1

[26] 1. Cadence Design Systems. (2013, 18 May 2013). PSpice A/D and Advanced
Analysis. Available:

http://www.cadence.com/products/orcad/pspice_simulation/pages/default.aspx

[27] L CircuitLab. (2013, 18 May 2013). CircuitLab - online schematic editor and

simulator. Available: https://http://www.circuitlab.com/

[28] O. Corporation. (2011, 19 Jul 2013). Abstract Window Toolkit (AWT). Available:

http://docs.oracle.com/javase/6/docs/technotes/guides/awt/

[29] O. Corporation. (2013, 18 May 2013). JDK 6 Swing (Java Foundation Classes
(JFC))-related APIs and Developer Guides. Available:

http://docs.oracle.com/javase/6/docs/technotes/guides/swing/index.html

[30] M. Bunge, "A General Black Box Theory," Philosophy of Science, vol. 30, pp. 346-
358, 1963.

[31] M. Sung, "SIMD Parallel Processing," Massachusetts Institute of Technology,
Cambridge2000.

[32] "8-bit AVR Instruction Set," ed. San Jose: Atmel Corporation, 2010, p. 160.

[33] "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL," ed. Denver:

Motorola Inc, 1992, p. 646.

-70 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Appendix A Module

Source Code (Module.java)

package sim.lib.others;

import java.awt.*;

import java.awt.geom.AffineTransform;
import java.io.*;

//import java.nio.file.*;

import java.util.Arrays;

import javax.swing.*;

import sim.*;

import sim.lib.*;

import sim.engine.*;

import sim.lib.outputs.BuslLed;
import sim.lib.wires.Junction;
import sim.lib.wires.SplitterModule;
import sim.lib.wires.Wire;

public class Module extends WrapperPainted implements EngineModule {

private static Image ICON =
GuiFilelLink.getImage("sim/lib/others/Module.gif");

public Image getIcon() {
return Module.ICON;
}

public Wrapper createWrapper() {
return this.getCopy();
}

public Wrapper createWrapper(Point gridPosition) {
Module result = this.getCopy();
result.setGridLocation(gridPosition);
return result;

}

public String getBubbleHelp() {
return "Module";
}

-71 -



A SIMD microprocessor for image processing CIlIPS —

ol
/*
GUI part
private String value = null;
private int busSize;
private int valuelenght;
private String modpath = null;
private int numPin;
private boolean pin99 = false;
private String[] labels = new String[100];
private String modLabel = null;

public static String lastPath;
//private static String errorPath;

private
private
private
private
private
private

static boolean loadError;

int[] busSizes = new int[160];

static loadedModule[] loaded = new loadedModule[50];
String regName;

sim.lib.memory.Register regOut = null;

String[] reglList = new String[50];

public Module() {
super();

this.setBusSize(8);

//this.setPath(lastPath);

}

public Module getCopy() {
Module result = new Module();
result.setPath(lastPath);
result.setRName(this.regName);
result.defaultLabel();

//result.setBusSize(this.busSize);

return result;

}

public void defaultlLabel() {
if (this.modpath != null) {

String parts[] = this.modpath.split("\\\\");
String name = parts[parts.length - 1];

name = name.substring(®, name.length() - 4);
this.modLabel = name;

-T2 -



(P

O BE—

-

PS —
"

A SIMD microprocessor for image processing

public String getLabel() {

}

return this.modLabel;

public void setLabel(String label) {

}

this.modLabel = label;

public void setRName(String reg) {

}

this.regName = reg;

public void setRegOut(sim.lib.memory.Register r) {

}

this.reglOut = r;

public String getPath() {

}

return this.modpath;

public void setPath(String file) {

this.modpath = file;

//LOAD numPin = number of pin components from file
//get names for pins into string array

this.numPin = 0;

Grid g = new Grid();

String[] basics, specifics;

String className, componentName, readln;
BufferedReader inStream;

Wrapper created;

int z = 0;

try {
inStream = new BufferedReader(new FileReader(file));

readIn =

SavelLoadShortcut.GUI_FILE_LINK.extractParameter(inStream);

SavelLoadShortcut.GUI_FILE_LINK.readBlank(inStream);

SavelLoadShortcut.GUI_FILE_LINK.extractParameters(g.getNumberof
Parameters(), inStream);

SavelLoadShortcut.GUI_FILE_LINK.readBlank(inStream);
int size =

Integer.valueOf(SaveLoadShortcut.GUI_FILE_LINK.extractParameter(inSt
ream)).intValue();

for (int index = ©9; index < size; index++) {

SavelLoadShortcut.GUI_FILE_LINK.readBlank(inStream);

-73 -



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

className =
SavelLoadShortcut.GUI_FILE_LINK.extractParameter(inStream);

componentName =
SavelLoadShortcut.GUI_FILE_LINK.extractParameter(inStream);

created =
SavelLoadShortcut.GUI_FILE_LINK.getWrapper(className);

basics =
SavelLoadShortcut.GUI_FILE_LINK.extractParameters(created.getNumberoOf
BasicParameters(), inStream);
specifics =
SavelLoadShortcut.GUI_FILE_LINK.extractParameters(created.getNumberof
SpecificParameters(), inStream);
if (className.equals("sim.lib.outputs.Pin")) {
if(Integer.valueOf(specifics[1]) == 99)
this.pin99 = true;
else
this.numPin++;

this.busSizes[Integer.valueOf(specifics[1]) - 1] =
Integer.valueOf(specifics[@]); //get bus size for each pin
this.labels[Integer.valueOf(specifics[1])
- 1] = specifics[2]; //get label string for each pin

} else if
(className.equals("sim.lib.memory.Register")) {
this.reglist[z] = specifics[2];
Z++;
}
}
lastPath = file;

} catch (Exception e) {
if (!loadError) {
JOptionPane.showMessageDialog(null, "Error
loading module file, please correct file paths in Control Center",
"ERROR", JOptionPane.ERROR_MESSAGE);
loadError = true;

}

}

public String[] getRegList() {
return this.reglist;
}

public void initializeGridSize() {

-74 -



(P

OL:
i o

A SIMD microprocessor for image processing

this.setGridSize(6, 7);
}

public void setBusSize(int size) {
this.busSize = size;

String max = Integer.toHexString((int) Math.pow(2,
this.busSize) - 1).toUpperCase();

FontMetrics fm = this.getFontMetrics(new
Font(Wrapper.FONT_NAME, Font.PLAIN, 3 * Grid.SIZE / 4));

//this.setGridSize(fm.stringWidth(max) / Grid.SIZE + 4,
4);

//this.setGridSize(6,6);

this.valuelenght = max.length();

}

public int getBusSize() {
return this.busSize;
}

public void paintValue(Graphics g) {
if (this.isVisible()) {
int gridGap =
CentralPanel .ACTIVE_GRID.getCurrentGridGap();
int increment = gridGap / 4;
String val = "";
if (this.regOut != null) {
val = this.regOut.getValue();
g.setFont(new Font(Wrapper.FONT_NAME,
Font.BOLD, gridGap));
}
g.drawString(val, 2 * gridGap + increment + 1,
gridGap * 2 + 5 * increment);

}
}
public void paint(Graphics g) {
// draw if visible
if (this.isVisible()) {
int gridGap =

CentralPanel .ACTIVE_GRID.getCurrentGridGap();
int increment = gridGap / 4;

//g.setColor(this.brush);
int offset = 2 * gridGap;

g.setColor(Color.WHITE);

=75 -



A SIMD microprocessor for image processing |°C"PS =
el "y

g.fillRect(2 * gridGap + increment / 2, 2 * gridGap
+ increment / 2, offset - increment, offset - increment);
g.setColor(this.brush);

g.drawRect(2 * gridGap, 2 * gridGap, offset, offset);
g.drawRect(2 * gridGap + increment / 2, 2 * gridGap
+ increment / 2, offset - increment, offset - increment);

//g.drawRect(gridGap + gridGap / 5, 2 * increment +
gridGap / 5, offset - 2*gridGap/5, offset -2*gridGap/5);

int start = 3 * gridGap;
int end = 5 * gridGap;
offset = 2 * gridGap;
g.setFont(new Font(Wrapper.FONT_NAME, Font.BOLD,
gridGap * 2 / 3));
Font f = new Font(Wrapper.FONT_NAME, Font.PLAIN, 3 *
increment);
String name;
if (modLabel == null) {
String parts[] = this.modpath.split("\\\\");
name = parts[parts.length - 1];
name = name.substring(©, name.length() - 4);
this.modLabel = name;
} else {
name = modLabel;
}

if (this.regOut != null) {
name = this.regOut.getValue();
g.setFont(new Font(Wrapper.FONT_NAME,
Font.BOLD, gridGap));
}
g.drawString(name, 2 * gridGap + increment + 1,
gridGap * 2 + 5 * increment);
//g.drawString(this.modpath, 0,0);

offset = offset + gridGap;

[ [ ¥¥FEXXXEEXDPqw ports based on number of pins in
input -File**********
g.setFont(new Font(Wrapper.FONT_NAME, Font.PLAIN,
gridGap * 2 / 3));
if(this.pin99){
g.drawLine(4 *gridGap, 2 * gridGap, 5 *
gridGap, 1 * gridGap); //portF (DIAGONAL)
}
if (this.numPin > @) {
g.drawString(this.labels[0].substring(o,
Math.min(5, this.labels[©].length())), gridGap / 8, gridGap * 5 / 2

-76 -



|°C"P — A SIMD microprocessor for image processing
" -7'

+ increment); //GET PIN NAMES FROM INPUT FILE
g.fillRect(®, 3 * gridGap - 1, 2 * gridGap, 3);
//portA (LEFT)
}
if (this.numPin > 1) {
AffineTransform tmp = f.getTransform();
AffineTransform at = new AffineTransform();
at.rotate(-90 * java.lang.Math.PI / 180);
Font tf = f.deriveFont(at);
g.setFont(tf.deriveFont((float) (gridGap * 2 /
3)));
g.drawString(this.labels[1].substring(o,
Math.min(5, this.labels[1].1length())), gridGap * 11 / 4, gridGap * 2
- gridGap / 8);

g.fillRect(3 * gridGap - 1, 0, 3, 2 * gridGap);
//portB (TOP)
/*for(int 1 = @; i < this.labels[1].length();
i++){
if (1 > 10){
break;
}
g.drawString(this.labels[1].charAt(i)+"",
gridGap*3/2, gridGap*2/3+i*gridGap/2);
y*/
}

if (this.numPin > 2) {
g.setFont(new Font(Wrapper.FONT_NAME,
Font.PLAIN, gridGap * 2 / 3));
g.drawString(this.labels[2].substring(o,
Math.min(5, this.labels[2].length())), gridGap * 4 + gridGap / 8,
gridGap * 5 / 2 + increment);
g.fillRect(4 * gridGap, 3 * gridGap - 1, 2 *
gridGap, 3); //portC (RIGHT)
}
if (this.numPin > 3) {
AffineTransform tmp = f.getTransform();
AffineTransform at = new AffineTransform();
at.rotate(-90 * java.lang.Math.PI / 180);
Font tf = f.deriveFont(at);
g.setFont(tf.deriveFont((float) (gridGap * 2 /
3)));
g.drawString(this.labels[3].substring(o,
Math.min(5, this.labels[3].length())), gridGap * 7 / 2 + gridGap / 8,
gridGap * 6 - gridGap / 8);

g.fillRect(3 * gridGap - 1, 4 * gridGap, 3, 2

* gridGap); //portD (BOTTOM)
}

=77 -



A SIMD microprocessor for image processing CIlIPS —

if (this.numPin > 4) {
g.drawLine(gridGap, 5 * gridGap, 2 * gridGap,
4 * gridGap); //portE (DIAGONAL)
g.drawLine(gridGap, 5 * gridGap - 1, 2 *
gridGap, 4 * gridGap - 1); //portE (DIAGONAL)
g.drawLine(gridGap, 5 * gridGap + 1, 2 *
gridGap, 4 * gridGap + 1); //portE (DIAGONAL)
}

private Junction portA = null; //IN //LEFT

private Junction portB = null; //TOP

private Junction portC = null; //OUT //RIGHT

private Junction portD = null; //BOTTOM

private Junction portE = null; //DIAGONAL LEFTBOTTOM OUT (Any

other bits combined into single bus - except pin 99 (special))
private Junction portF = null; //DIAGONAL TOPRIGHT OUT single
special bit
//private Junction portO = null; //LCD OUT

public boolean canDrop() {
boolean result = false;
if (this.numPin > @) {
result = Wrapper.canDropJuncion(this.gridLocation.x,
this.gridlLocation.y + 3, this.busSizes[©]); //PORTA
}
if (this.numPin > 1) {
result = result &&
Wrapper.canDropJuncion(this.gridLocation.x + 3, this.gridlLocation.y,
this.busSizes[1]); //PORTB
}
if (this.numPin > 2) {
result = result &&
Wrapper.canDropJuncion(this.gridLocation.x + 6, this.gridlLocation.y
+ 3, this.busSizes[2]); //PORTC
}
if (this.numPin > 3) {
result = result &&
Wrapper.canDropJuncion(this.gridLocation.x + 3, this.gridLocation.y
+ 6, this.busSizes[3]); //PORTD

}
if (this.numPin > 4) {

-78 -



(P

OL:
i o

A SIMD microprocessor for image processing

int totalbus = 9;
for (int 1 = 4; i < this.busSizes.length - 10; i++)

totalbus = totalbus + busSizes[i];
}
result = result &&
Wrapper.canDropJuncion(this.gridLocation.x + 1, this.gridLocation.y
+ 5, totalbus); //PORTE
}
if(this.pin99){
result = result &&
Wrapper.canDropJuncion(this.gridLocation.x + 5, this.gridLocation.y
+ 1, 1); //PORTF
}

return result;

}

public void droped() {
if (this.numPin > 0) {
this.portA = Wrapper.setPinAt(this.gridLocation.x,
this.gridlLocation.y + 3, this.busSizes[©0]);
}
if (this.numPin > 1) {
this.portB = Wrapper.setPinAt(this.gridLocation.x +
3, this.gridlLocation.y, this.busSizes[1]);
}
if (this.numPin > 2) {
this.portC = Wrapper.setPinAt(this.gridlLocation.x +
6, this.gridLocation.y + 3, this.busSizes[2]);
}
if (this.numPin > 3) {
this.portD = Wrapper.setPinAt(this.gridLocation.x +
3, this.gridLocation.y + 6, this.busSizes[3]);
}
if (this.numPin > 4) {
int totalbus = 9;
for (int 1 = 4; i < this.busSizes.length - 5; i++) {
totalbus = totalbus + busSizes[i];
}

this.portE = Wrapper.setPinAt(this.gridlLocation.x +
1, this.gridLocation.y + 5, totalbus);

}
if(this.pin99){
this.portF = Wrapper.setPinAt(this.gridlLocation.x +
5, this.gridLocation.y + 1, 1); //PORTF

}

this.changeColor(Color.black);

-79 -



}

|

A SIMD microprocessor for image processing

i
-

public void selected() {
if (this.numPin > @) {
this.portA.removePin();
}

if (this.numPin > 1) {
this.portB.removePin();
}

if (this.numPin > 2) {
this.portC.removePin();
}

if (this.numPin > 3) {
this.portD.removePin();
}

if (this.numPin > 4) {
this.portE.removePin();
}

if (this.pin99) {
this.portF.removePin();
}

this.changeColor(Color.green);

}

public void checkAfterSelected() {
if (this.numPin > @) {
Wrapper.checkPin(this.portA);
}

if (this.numPin > 1) {
Wrapper.checkPin(this.portB);
}

if (this.numPin > 2) {
Wrapper.checkPin(this.portD);
}

if (this.numPin > 3) {
Wrapper.checkPin(this.portC);
}

if (this.numPin > 4) {
Wrapper.checkPin(this.portE);
}

if (this.pin99) {
Wrapper.checkPin(this.portF);

- 80 -



(P

OL:
i o

A SIMD microprocessor for image processing

public void evaluateOutput(double currentTime, Datal[]
currentInputs, EnginePeer peer) {
CentralPanel .ACTIVE_GRID.paintComponent(this);
}

public void createEnginePeer(EnginePeerlList epl) {

}

private Object[] loadModule(String fname) {
String inFile = fname;
Reader inStream;

MainWindow.CENTRAL_PANEL.createGrid("");
CentralPanel.ACTIVE_GRID = new Grid();

try {
MainWindow.CENTRAL_PANEL.createGrid("MODULE");

MainWindow.CENTRAL_PANEL.setVisible(false);
inStream = new BufferedReader(new
FileReader(inFile));
SavelLoadShortcut.GUI_FILE_LINK.loadMod(inStream,
CentralPanel .ACTIVE_GRID);
//loaded[next] = new
loadedModule(fname, g,SaveLoadShortcut.GUI_FILE LINK.getComp(inStream,
CentralPanel.ACTIVE_GRID));
inStream.close();
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SimException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}

//Get EnginePeers from file
//insert into input EnginePeerlList
//connect relevant nodes

Grid g = CentralPanel.ACTIVE_GRID;

[/ *FF*EEX] OAD COMPONENTS FROM FILE******
int loop;

int wires = g.getNumberOfWires();

int junctions = g.getNumberOfJunctions();
int splitters = g.getNumberOfSplitters();
int components = g.getNumberOfComponents();

- 81 -



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

int total;

NodeList tempnl = new NodelList();
EnginePeerList tempepl = new EnginePeerList();

for (loop = 0; loop < junctions; loop++) {
((NodeModule)
g.getComponent(loop)).createNode(tempnl);

}

total = junctions + wires + splitters;
for (loop = junctions + wires; loop < total; loop++) {
((SplitterModule)
g.getComponent(loop)).mergeNodes(tempnl);

}

total = total + components;
for (loop = junctions + wires + splitters; loop < total;
loop++) {
((EngineModule)
g.getComponent(loop)).createEnginePeer(tempepl);

}
Object[] out = new Object[2];

out[0@]
out[1]

tempepl;
tempnl;

return out;

}

public void createEnginePeer(EnginePeerList epl, NodelList nl)

//ENGINE PEER FOR MODULE
this.busSize = 8;

Object[] tmp = loadModule(this.modpath); //load EPL and
NL from file

EnginePeerList tempepl = (EnginePeerList) tmp[@];

NodeList tempnl = (NodelList) tmp[1];

int[] pinpos = new int[this.busSizes.length]; //array to
hold current bit position of each pin

for (Object o : tempepl) {
EnginePeer ept = (EnginePeer) o;
if
('ept.getParent().getClass().toString().equals("class
sim.lib.outputs.Pin")) {
for (int k = 05 k <

-8 -



|°C"P — A SIMD microprocessor for image processing
" -7'

ept.getInputPins().getSize(); k++) {
for (int 1 = 0; i <
ept.getInputPins().getItemAt(k).getConnection().getSize(); i++) {
EnginePeer eptt =
ept.getInputPins().getItemAt(k).getConnection().getItemAt(i);
if
(eptt.getParent().getClass().toString().equals("class
sim.lib.outputs.Pin")) { //component connected to a pin
int n = ((sim.lib.outputs.Pin)
eptt.getParent()).getNumber();
if(pinpos[n-1] »>=
eptt.getInputPins().size()){
pinpos[n-1] = 0;
}
if
('ept.getInputPins().getItemAt(k).equals(eptt.getInputPins().getItem
At(pinpos[n - 1]1))) { //find correct bit position of pin
pinpos[n - 1] = ©@;
while
('ept.getInputPins().getItemAt(k).equals(eptt.getInputPins().getItem
At(pinpos[n - 1]))) {
pinpos[n - 1]++;

}

switch (n) //connect pins from
loaded file to ports on module component
{
case 1:
ept.setInputPin(k,
this.portA.getNodes().getItemAt(pinpos[n

110);
pinpos[n - 1]++;
break;

case 2:
ept.setInputPin(k,

this.portB.getNodes().getItemAt(pinpos[n - 1]));
pinpos[n - 1]++;
break;

case 3:

ept.setInputPin(k,

this.portC.getNodes().getItemAt(pinpos[n - 1]));
pinpos[n - 1]++;
break;

case 4:
ept.setInputPin(k,

this.portD.getNodes().getItemAt(pinpos[n

110);
pinpos[n - 1]++;
break;

case 99:

-83 -



A SIMD microprocessor for image processing oC"PS =
R

ept.setInputPin(k,
this.portF.getNodes().getItemAt(pinpos[n - 1]));
pinpos[n - 1]++;
break;
default:

int base = 0;
//n =n - 1;
for (int j = 4; j
<= (n - 2); j++) { //get correct starting bit position for portE
base = base +
this.busSizes[j];

}
int a = base +
pinpos[n - 1];

System.out.println(k + "," + a);
ept.setInputPin(k,
this.portE.getNodes().getItemAt(base + pinpos[n - 1]));
pinpos[n - 1]++;

}

break;

}
}
Arrays.fill(pinpos, ©); //reset array to hold
current bit position of each pin
if (ept.getOutputPins() != null) {
for (int k = 05 k <
ept.getOutputPins().getSize(); k++) {
for (int 1 = 0; i <
ept.getOutputPins().getItemAt(k).getConnection().getSize(); i++) {
EnginePeer eptt =
ept.getOutputPins().getItemAt(k).getConnection().getItemAt(i);
if
(eptt.getParent().getClass().toString().equals("class
sim.lib.outputs.Pin")) {
int n =
((sim.lib.outputs.Pin) eptt.getParent()).getNumber();
if(pinpos[n-1] »>=
eptt.getInputPins().getSize()){
pinpos[n-1] = 0;
}
if
('ept.getOutputPins().getItemAt(k).equals(eptt.getInputPins().getIte
mAt(pinpos[n - 1]))) { //find correct bit position of pin
pinpos[n - 1] = ©@;
while

-84 -



|°C"P — A SIMD microprocessor for image processing
" -7'

('ept.getOutputPins().getItemAt(k).equals(eptt.getInputPins().getIte
mAt(pinpos[n - 1]))) {

pinpos[n -
1]++;
}
}
switch (n) {
case 1:

ept.setOutputPin(k, this.portA.getNodes().getItemAt(pinpos[n -
115
pinpos[n -
1]++;
break;
case 2:

ept.setOutputPin(k, this.portB.getNodes().getItemAt(pinpos[n -
115
pinpos[n -
1]++;
break;
case 3:

ept.setOutputPin(k, this.portC.getNodes().getItemAt(pinpos[n -
115
pinpos[n -
1]++;
break;
case 4:

ept.setOutputPin(k, this.portD.getNodes().getItemAt(pinpos[n -
115
pinpos[n -
1]++;
break;
case 99:

ept.setOutputPin(k, this.portF.getNodes().getItemAt(pinpos[n
115

pinpos[n -
1]++;
break;
default:
int base = 0;
for (int j =

4; j <= (n - 2); j++) { //get correct starting bit position for
portE
base

base + this.busSizes[j];

-85-



A SIMD microprocessor for image processing 1CIIPS —

O BE——

"

}

ept.setOutputPin(k, this.portE.getNodes().getItemAt(base +
pinpos[n - 1]));
pinpos[n -
1]++;

break;

}

epl.insertItem(ept);

if (ept.getParent() instanceof
sim.lib.memory.Register) {
if (((sim.lib.memory.Register)
ept.getParent()).getRegName().equals(this.regName)) {
//this.regout =
((sim.lib.memory.Register) ept.getParent());
this.regOut =
((sim.lib.memory.Register) ept.getParent());
//this.reglist[z] =
((sim.lib.memory.Register) ept.getParent());
//z++;
}

}

EnginePeer ep = new EnginePeer(9, 0, this);
epl.insertItem(ep);

for (Object n : tempnl) {

for (Object j : ((Node) n).getJunctiions()) {
//((Junction)j).setlLocation(-100,-100);
//((Junction)j).setEnabled(false);

}

for (Object w : ((Node) n).getWires()) {
((Wire) w).setVisible(false);

}

EnginePeerList epltemp = ((Node) n).getConnection();

for (Object c : epltemp) {
((EnginePeer)

c).getParent().getParentiWrapper().setVisible(false);

}

- 86 -



(P

A PS — A SIMD microprocessor for image processing
" -7'
nl.insertItem((Node) n);
}
//this.regOut = this.reglList[reglndex];
}

public void reset() {
}

public Wrapper getParentWrapper() {
return this;

public String getSpecificParameters() {
return (this.modpath + Wrapper.SEPARATOR + this.regName +
Wrapper.SEPARATOR + this.modLabel + Wrapper.SEPARATOR);

}

public void loadWrapper(String[] specificParameters) throws
SimException {
if (specificParameters.length ==
this.getNumberOfSpecificParameters()) {

try {

//this.setBusSize(Integer.valueOf(specificParameters[0]).intVa
lue());
this.setPath(specificParameters[9]);
this.regName = specificParameters[1];
this.modLabel = specificParameters[2];
} catch (NumberFormatException e) {
throw (new SimException("incorrect parameter
type"));
}
} else {
throw (new SimException("incorrect number of
parameters"));

}
}

public int getNumberOfSpecificParameters() {
return 3;

}

-87 -



A SIMD microprocessor for image processing CIlIPS —

protected void adjustToChanges() {
}
/*

Popup Part

public boolean hasProperties() {
return true;
}

public Component getPropertyWindow() {
return (new ModProperties(new String[5], this.reglList,
this.regName, this.modLabel));

}

public void respondToChanges(Component property) {
CentralPanel .ACTIVE_GRID.eraseComponent(this, false);
ModProperties mp = (ModProperties) property;
this.regName = mp.getRegName();
this.modLabel = mp.getLabel();
CentralPanel .ACTIVE_GRID.paintComponent(this);

}

public void restoreOriginalProperties() {
if (this.oldBusSize != 0) {
this.setBusSize(this.oldBusSize);
this.oldBusSize = 0;

- 88 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Source Code (ModProperties.java)

package sim.lib.others;

import java.awt.*;
import java.awt.event.*;

import sim.util.SimSeparator;

public class ModProperties extends Container implements ItemListener,
ActionListener, FocuslListener {

//private TextField editRDI = new TextField(5);
//private TextField editSelectSize = new TextField(5);
private TextField editlLabel = new TextField(10);
private Choice displayReg = new Choice();

//private double oldDelay;

//private int o0ldRDI;

//private int oldSize;

//private int oldRegIndex;

private String oldRegName;

private String oldLabel;

private Label pins = new Label("Pins");

//private Label simulation = new Label("Simulation");

public ModProperties(String[] pins, String[] reglList, String
regName, String modLabel) {

super();

this.setlLayout(new BorderLayout(9, 15));

int z = 0;

while (reglList[z] != null && z < 50) {
this.displayReg.add(reglList[z]);
Z++;

}

this.displayReg.select(regName);
this.displayReg.addItemListener(this);

this.oldLabel = modLabel;
this.editlLabel.addActionListener(this);
this.editlLabel.addFocusListener(this);
this.editlLabel.setText(modLabel);

//this.oldRegName = regName;

/*this.oldDelay = delay;
this.editDelay.addActionListener(this);
this.editDelay.addFocusListener(this);

-89 -



A SIMD microprocessor for image processing CIlIPS —

this.editDelay.setText(Double.toString(delay));

this.oldSize = size;
this.editSelectSize.addActionListener(this);
this.editSelectSize.addFocusListener(this);
this.editSelectSize.setText(Integer.toString(size));*/

// pins

Panel big = new Panel(new BorderLayout(9, 15));
Panel p = new Panel(new BorderLayout());
GridBagConstraints c¢ = new GridBagConstraints();

p.add(this.pins, BorderlLayout.WEST);

p.add(new SimSeparator(), BorderLayout.CENTER);
big.add(p, BorderLayout.NORTH);

p = new Panel(new GridBagLayout());

c.fill = GridBagConstraints.NONE;
c.insets = new Insets(9, 0, 0, 9);

c.gridy = 0;

c.gridx = 0;

p.add(new Label("Display Register"), c);
c.gridx = 1;

p.add(this.displayReg, c);

c.gridy = 1;

c.gridx = 0;

p.add(new Label("Module Label™), c);
c.gridx = 1;

p.add(this.editlLabel, c);

//c.anchor = GridBagConstraints.EAST;
//c.gridx = 1;

big.add(p, BorderlLayout.CENTER);

c.gridx = 0;

c.gridy = 0;

c.insets = new Insets(9, 0, 15, 0);
c.fill = GridBagConstraints.HORIZONTAL;
this.add(big, BorderLayout.CENTER);

// simulation

/*big = new Panel(new BorderLayout(9, 15));

p = new Panel(new BorderLayout());
p.add(this.simulation, BorderLayout.WEST);
p.add(new SimSeparator(), BorderLayout.CENTER);

-90 -



(P

O BE—
-

PS — A SIMD microprocessor for image processing
"

big.add(p, BorderlLayout.NORTH);

p = new Panel(new FlowLayout(FlowLayout.LEFT, 0, 0));
p.add(new Label("Propagation Delay"));
p.add(this.editDelay);

big.add(p, BorderlLayout.CENTER);

this.add(big, BorderLayout.CENTER);*/
}

public void addNotify() {
super.addNotify();
this.setSize(290, this.getPreferredSize().height * 2 +
this.pins.getPreferredSize().height * 2 + 45);

}

public void itemStateChanged(ItemEvent e) {
//Choice source = (Choice) e.getSource();

//if (source == this.displayReg) {
this.oldRegName = this.displayReg.getSelectedItem();
System.out.println(this.oldRegName);
/1}
}

public void actionPerformed(ActionEvent e) {

if ((TextField) e.getSource() == this.editlLabel) {
this.getLabel();

}

//if(source == this.editDelay)

// this.getDelay();

//else if(source == this.editBus)

//this.getBusSize();

}

public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {

//if(source == this.editDelay)

// this.getDelay();

//else if(source == this.editBus)

// this.getBusSize();

if ((TextField) e.getSource() == this.editlLabel) {
this.getLabel();

}

-91 -



A SIMD microprocessor for image processing CIlIPS —

}

/*public int getBusSize()
{

int newBus;

try

{
newBus = Integer.valueOf(this.editBus.getText()).intValue();

if(newBus > 0)

this.oldBus = newBus;

else
this.editBus.setText(Integer.toString(this.oldBus));
}

catch(NumberFormatException nfe)

{
this.editBus.setText(Integer.toString(this.oldBus));

}

return this.oldBus;
3*/
public void setRegName() {
String newReg = this.displayReg.getSelectedItem();
this.oldRegName = newReg;
this.displayReg.select(this.oldRegName);
}

public String getRegName() {
//this.oldRegName = this.displayReg.getSelectedItem();
/*String newReg = this.displayReg.getSelectedItem();
this.oldRegName = newReg;
this.displayReg.select(this.oldRegName);*/
System.out.println(this.oldRegName);
return this.oldRegName;

}

public String getLabel() {
String newlLabel = this.editlLabel.getText();
this.oldLabel = newlLabel;
return this.oldLabel;

}

/*public int getInputSize() {
int newSize;

try {
newSize =

Integer.valueOf(this.editSelectSize.getText()).intValue();

-9) -



(P

OL:
i o

A SIMD microprocessor for image processing

if ((newSize > @) && (newSize < 7)) {

this.oldSize = newSize;

} else {
this.editSelectSize.setText(Integer.toString(this.oldSize));

}

} catch (NumberFormatException nfe) {
this.editSelectSize.setText(Integer.toString(this.oldSize));

}

return this.oldSize;

y*/

/*public double getDelay()
{

double newDelay;

try

{

newDelay =
Double.valueOf(this.editDelay.getText()).doubleValue();

if(newDelay >= @)

this.oldDelay = newDelay;

else
this.editDelay.setText(Double.toString(this.oldBus));
}

catch(NumberFormatException nfe)

{
this.editDelay.setText(Double.toString(this.oldBus));

}

return this.oldDelay;
y*/
public Dimension getPreferredSize() {
return this.getSize();
}

public Dimension getMinimumSize() {
return this.getSize();
}

public Dimension getMaximumSize() {
return this.getSize();
}

-03 .



A SIMD microprocessor for image processing CIlIPS —

O BEE——

"

Module Action

A number of action occurs in different phases of the lifetime of a module.

a)

b)

d)

Phase 1 — loading

Phase 1 starts soon after the user click the module icon in the standard library. During
this phase, module reads in a toy file provided by the user and initialises itself. It also
generates a mouse tooltip.

Methods called:
public Module();
public void setPath(String File);
public void initializeGridSize();
public void setBusSize(int size);
public void paint(Grphaics g);

Phase 2 — drawing

Phase 2 starts when the user places down a module. During this phase, module checks
to see if the given location is valid and the size of each bus is matched. If all
requirements are valid, it will generate a module object and connect its buses.

Methods called:
public void paint(Grphaics g);
public boolean canDrop();
public void droped();
public void createEnginePeer(EnginePeerList epl, NodeList nl);
private Object[] loadModule(String fname);

Phase 3 — simulation
Phase 3 starts as soon as the user hit the simulation button. During this phase, module
acts like a bridge, which transfers data between different circuits.

Methods called:
public void evaluateOutput(double currentTime, Data[] currentInputs,
EnginePeer peer);

Phase 4 — clean up
Phase 4 starts when the user deletes a module. It clears itself from the canvas and
deletes all related objects.

Methods called:

public void eraseComponent(Component comp, boolean update);
//in BufferedContainer.java

-94 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Appendix B Pin

Source Code (Pin.java)
package sim.lib.outputs;

import java.awt.*;
import java.io.*;

import sim.*;

import sim.engine.*;

import sim.lib.EditBusSize;
import sim.lib.wires.Junction;

public class Pin extends RotatableFlippableWrapperPainted implements
EngineModule

private static Image ICON =
GuiFilelLink.getImage("sim/lib/outputs/pin.gif");

public Image getIcon()

{
return Pin.ICON;
}
public Wrapper createWrapper()
{
return this.getCopy();
}
public Wrapper createWrapper(Point gridPosition)
{
Pin result = this.getCopy();
result.setGridLocation(gridPosition);
return result;
}
public String getBubbleHelp()
{
return "Pin";
}

/*

-95.



A SIMD microprocessor for image processing

private String value = null;
private int busSize = 8;
private int valuelenght;
private int pinNumber;
private String label;
public static int numPins = 1;
public static int nextNum = 1;
public static boolean deleted = false;
public Pin()
{
super();
this.setBusSize(8);
//this.setLabel("PIN"+nextNum);
//this.setLabel("");
this.pinNumber = nextNum;

}

public Pin getCopy()

{
Pin result = new Pin();
result.setBusSize(this.busSize);
result.setLabel("PIN"+nextNum);
result.setNumber(nextNum);

if (deleted){

deleted = false;
}else{

nextNum = numPins;

}

return result;

}

public void setLabel(String 1bl){
this.label = 1bl;

}
public void initializeGridSize()
{
this.setGridSize(4, 4);
}

public String getLabel(){

-906 -



(P

OL:
i o

A SIMD microprocessor for image processing

return this.label;

}

public int getNumber(){
return this.pinNumber;
}

public void setNumber(int n){
this.pinNumber = n;
}

public void setBusSize(int size)

{

this.busSize = size;

String max = Integer.toHexString((int)Math.pow(2,
this.busSize) - 1).toUpperCase();

FontMetrics fm = this.getFontMetrics(new
Font(Wrapper.FONT_NAME, Font.PLAIN, 3 * Grid.SIZE / 4));

//this.setGridSize(fm.stringWidth(max) / Grid.SIZE + 4,

4);
this.valuelenght = max.length();
}
public int getBusSize()
{
return this.busSize;
}
/*

public void selected()

{
this.input.removePin();
nextNum = this.pinNumber;
deleted = true;
numPins--;
this.changeColor(Color.green);

}

public void checkAfterSelected()

{

Wrapper.checkPin(this.input);

-97 -



A SIMD microprocessor for image processing CIlIPS —

public void evaluateOutput(double currentTime, Datal[]
currentInputs, EnginePeer peer)
{
boolean foundUndefined = false;
int hex = 0;
int base = 1;
int loop, index;

for(loop = 9; loop < (this.busSize / 4 + 1); loop++)

{
for(index = loop * 4; (index < 4 * (loop + 1)) &&
(index < this.busSize) &&(!foundUndefined); index++)

{
if(currentInputs[index].isUndefined())
foundUndefined = true;
else if(currentInputs[index].getValue())
hex = hex + base;
base = 2 * base;
}
if(loop == 9)
{
if(foundUndefined)
this.value = "-";
else
this.value = Integer.toHexString(hex);
}

else if(foundUndefined)
this.value = "-" + this.value;
else if(this.value.length() < this.valuelenght)
this.value = Integer.toHexString(hex) +
this.value;

hex = 0;
base = 1;
foundUndefined = false;

}

this.value = this.value.toUppercCase();
CentralPanel .ACTIVE_GRID.paintComponent(this);

- 08 -



(P

OL:
i o

A SIMD microprocessor for image processing

public void createEnginePeer(EnginePeerlList epl)

{

EnginePeer ep = new EnginePeer(this.busSize, this);

for(int index = 0; index < this.busSize; index++)
ep.setInputPin(index,
this.input.getNodes().getItemAt(index));

epl.insertItem(ep);
}

public NodelList getInputPins(){
return this.input.getNodes();

}
public void reset()
{
this.value = null;
CentralPanel .ACTIVE_GRID.paintComponent(this);
}
public Wrapper getParentWrapper()
{
return this;
}

public String getSpecificParameters()

{
return (Integer.toString(this.busSize) +
Wrapper.SEPARATOR + this.getNumber() + Wrapper.SEPARATOR +
this.getlLabel() + Wrapper.SEPARATOR);

}

public void loadWrapper(String[] specificParameters) throws
SimException

{

if(specificParameters.length ==
this.getNumberOfSpecificParameters())

{
try

{

this.setBusSize(Integer.valueOf(specificParameters[0]).intValu

-99 .



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

e());

this.setNumber(Integer.valueOf(specificParameters[1]).intValue

());

this.setlLabel(specificParameters[2]);
//this.flow =
Boolean.valueOf(specificParameters[0]).booleanValue();

}
catch(NumberFormatException e)
{
throw (new SimException("incorrect parameter
type"));
}
}
else

throw (new SimException("incorrect number of
parameters"));

}
public int getNumberOfSpecificParameters()
{
return 3;
}
/*
Rotation abd Flipping Part
=== >k/ ______________________________________________________________

protected void paintNormal ©(Graphics g)

{
int gridGap =
CentralPanel .ACTIVE_GRID.getCurrentGridGap();
int width = this.gridSize.width * gridGap;
int offsetX, offsetYy;

int buswidth = 3;

if (this.busSize < 2){
buswidth = 1;

}

g.setColor(WrapperPainted.BACKGROUND) ;

offsetY = 3 * gridGap / 2;
offsetX = 2 * gridGap;

//g.setColor(Color.white);
//g.fillArc(gridGap, offsetY, 5*gridGap/4, 5*gridGap/4, 0O,

- 100 -



|°C"P — A SIMD microprocessor for image processing
" -7'

360);
g.setColor(this.brush);
g.drawArc(gridGap, offsetY, gridGap, gridGap, 9, 360);
g.fillRect(gridGap*2, offsetX - 1, gridGap, buswidth);

g.setFont(new Font(Wrapper.FONT_NAME,Font.PLAIN,3 *

gridGap / 5));
g.drawString(this.label,gridGap,gridGap);

}

protected void paintNormal 90(Graphics g)

{
int gridGap =
CentralPanel .ACTIVE_GRID.getCurrentGridGap();
//this.gridSize.width = this.gridSize.width - gridGap;
int width = this.gridSize.width * gridGap;
int offsetX, offsetYy;

int buswidth = 3;
if (this.busSize < 2){
buswidth = 1;

}

g.setColor(WrapperPainted.BACKGROUND) ;

offsetY
offsetX

3 * gridGap / 2;
2 * gridGap;

g.setColor(this.brush);

g.drawArc(3*gridGap/2, gridGap*2, gridGap, gridGap, 0,
360);

g.fillRect(gridGap*2-1, gridGap, buswidth, gridGap);

g.setFont(new Font(Wrapper.FONT_NAME,Font.PLAIN,3 *

gridGap / 5));
g.drawString(this.label,6*gridGap/4,15*gridGap/4);

}

protected void paintNormal_ 180(Graphics g)
{
int gridGap =
CentralPanel .ACTIVE_GRID.getCurrentGridGap();
int width = this.gridSize.width * gridGap;
int offsetX, offsetYy;

int buswidth = 3;

- 101 -



A SIMD microprocessor for image processing CIlIPS —

if (this.busSize < 2){

buswidth = 1;
}
g.setColor(WrapperPainted.BACKGROUND) ;

offsetY
offsetX

3 * gridGap / 2;
2 * gridGap;

g.setColor(this.brush);
g.drawArc(gridGap*2, offsetY, gridGap, gridGap, 9, 360);
g.fillRect(gridGap, offsetX - 1, gridGap, buswidth);

g.setFont(new Font(Wrapper.FONT_NAME,Font.PLAIN,3 *

gridGap / 5));
g.drawString(this.label,2*gridGap,gridGap);
}

protected void paintNormal 270(Graphics g)

{
int gridGap =
CentralPanel .ACTIVE_GRID.getCurrentGridGap();
int width = this.gridSize.width * gridGap;
int offsetX, offsetYy;

int buswidth = 3;

if (this.busSize < 2){
buswidth = 1;

}

g.setColor(WrapperPainted.BACKGROUND) ;

offsetY
offsetX

3 * gridGap / 2;
2 * gridGap;

g.setColor(this.brush);
g.drawArc(3*gridGap/2, gridGap, gridGap, gridGap, 0, 360);
g.fillRect(gridGap*2-1, gridGap*2, buswidth, gridGap);

g.setFont(new Font(Wrapper.FONT_NAME,Font.PLAIN,3 *
gridGap / 5));
/*String tmp;
if (this.pinNumber < 10){
tmp = "0" + this.pinNumber;
telse{
tmp = Integer.toString(this.pinNumber);
}*/
g.drawString(this.label,6*gridGap/4,3*gridGap/4);

- 102 -



(P

OL:
i o

A SIMD microprocessor for image processing

protected void paintFlipped_©(Graphics g)

{
this.paintNormal 0(g);
}
protected void paintFlipped 90(Graphics g)
{
this.paintNormal_270(g);
}
protected void paintFlipped_180(Graphics g)
{
this.paintNormal_180(g);
}
protected void paintFlipped_270(Graphics g)
{
this.paintNormal_90(g);
}

protected boolean canDropNormal 0()

{

return Wrapper.canDropJuncion(this.gridLocation.x + 3,
this.gridlLocation.y + 2, this.busSize);

}

protected boolean canDropNormal 90()

{

return Wrapper.canDropJuncion(this.gridLocation.x + 2,
this.gridlLocation.y + 1, this.busSize);

}

protected boolean canDropNormal 180()
{

return Wrapper.canDropJuncion(this.gridLocation.x + 1,
this.gridlLocation.y + 2, this.busSize);

}

protected boolean canDropNormal 270()
{

return Wrapper.canDropJuncion(this.gridLocation.x + 2,
this.gridlLocation.y + 3, this.busSize);

}

protected boolean canDropFlipped 0()

- 103 -



QR
I

|

A SIMD microprocessor for image processing

i

{

return this.canDropNormal_0();
}
protected boolean canDropFlipped 90()
{

return this.canDropNormal_270();
}
protected boolean canDropFlipped 180()
{

return this.canDropNormal_180();
}
protected boolean canDropFlipped 270()
{

return this.canDropNormal_90();
}

protected void dropedNormal 0()
{
this.input = Wrapper.setPinAt(this.gridLocation.x + 3,
this.gridlLocation.y + 2, this.busSize);
this.changeColor(Color.black);
this.oldBusSize = 0;
numPins++;
nextNum = numPins;

}

protected void dropedNormal 90()
{
this.input = Wrapper.setPinAt(this.gridLocation.x + 2,
this.gridlLocation.y + 1, this.busSize);
this.changeColor(Color.black);
this.oldBusSize = 0;
numPins++;
nextNum = numPins;

}

protected void dropedNormal_180()
{
this.input = Wrapper.setPinAt(this.gridLocation.x+1,
this.gridlLocation.y + 2, this.busSize);
this.changeColor(Color.black);
this.oldBusSize = 0;
numPins++;

_ 104 -



(P

OL:
i o

A SIMD microprocessor for image processing

nextNum = numPins;

}

protected void dropedNormal 270()
{
this.input = Wrapper.setPinAt(this.gridlLocation.x + 2,
this.gridlLocation.y + 3, this.busSize);
this.changeColor(Color.black);
this.oldBusSize = 0;
numPins++;
nextNum = numPins;

}
protected void dropedFlipped 0()
{
this.dropedNormal _0();
numPins++;
nextNum = numPins;
}
protected void dropedFlipped 90()
{
this.dropedNormal_270();
numPins++;
nextNum = numPins;
}
protected void dropedFlipped_180()
{
this.dropedNormal_180();
numPins++;
nextNum = numPins;
}
protected void dropedFlipped _270()
{
this.dropedNormal 90();
numPins++;
nextNum = numPins;
}

protected void adjustToChanges()

{
}

/*

- 105 -



A SIMD microprocessor for image processing CIlIPS —

public boolean hasProperties()

{
return true;
}
public Component getPropertyWindow()
{
return (new PinProperties(this.busSize,this.label));
}

public void respondToChanges(Component property)
{
this.brush = Color.white;
CentralPanel .ACTIVE_GRID.paintComponent(this); //ERASE
OLD DRAWING
this.brush = Color.black;

this.setBusSize(((PinProperties)property).getPinBusSize());

this.setLabel(((PinProperties)property).getLabel());
CentralPanel .ACTIVE_GRID.paintComponent(this);

public void restoreOriginalProperties()

{
if(this.oldBusSize != 0)
{
this.setBusSize(this.oldBusSize);
this.oldBusSize = 0;
}
}

- 106 -



(QlpS -
Ll 2

A SIMD microprocessor for image processing

Source Code (PinProperties.java)

package sim.lib.outputs;

import java.awt.*;

import java.awt.event.*;

import sim.util.SimSeparator;

public class PinProperties extends Container implements

ActionListener {

private
private
private
private
private

TextField editBus = new TextField(19);
TextField editName = new TextField(10);
Label name = new Label("Name");

Label bus = new Label("Bus Size");

int old;

public PinProperties(int initbus, String initlabel) {

super();
this.setlLayout(new GridBaglLayout());

this.editName.setText(initlabel);
this.editBus.setText(Integer.toString(initbus));

this.editName.addActionListener(this);
this.editBus.addActionListener(this);

//pin name
Panel big = new Panel(new BorderLayout(9, 15));

Panel p = new Panel(new BorderLayout());
p.add(this.name, BorderlLayout.WEST);

p.add(new SimSeparator(), BorderLayout.CENTER);
big.add(p, BorderLayout.NORTH);

p = new Panel(new GridBagLayout());

GridBagConstraints c¢ = new GridBagConstraints();
c.gridy = 0;

c.gridwidth = 1;

c.gridheight = 1;

c.anchor = GridBagConstraints.WEST;

c.weighty = 0;

c.fill = GridBagConstraints.HORIZONTAL;

c.weightx = 1;
c.gridx = 0;

- 107 -



A SIMD microprocessor for image processing

QR
I

|

i
-

}

p.add(this.editName, c);
big.add(p, BorderlLayout.CENTER);

c.gridx = 0;

c.insets = new Insets(9, 0, 0, 9);
c.weightx = 1;

c.fill = GridBagConstraints.HORIZONTAL;

this.add(big, c);

// bus
big = new Panel(new BorderLayout(©, 15));

p = new Panel(new BorderLayout());
p.add(this.bus, BorderLayout.WEST);

p.add(new SimSeparator(), BorderLayout.CENTER);
big.add(p, BorderLayout.NORTH);

new Panel(new GridBaglLayout());

p

= new GridBagConstraints();
.gridy = 1;

.gridwidth = 2;

.gridheight = 1;

.anchor = GridBagConstraints.WEST;
.weighty = 0;

0o 00 o000

c.fill = GridBagConstraints.HORIZONTAL;
.weightx = 1;
c.gridx = 0;

@]

p.add(this.editBus, c);
big.add(p, BorderlLayout.CENTER);

.gridx = 0;

.insets = new Insets(9, 0, 0, 9);
.weightx = 1;

.fill = GridBagConstraints.HORIZONTAL;

0 N0 0N N

this.add(big, c);

public void addNotify() {

super.addNotify();
this.setSize(290, 7 *

this.name.getPreferredSize().height);

}

- 108 -



(P

O_P-;_
i o

A SIMD microprocessor for image processing

public void actionPerformed(ActionEvent e) {
int newBus;

try {
newBus =

Integer.valueOf(this.editBus.getText()).intValue();
if (newBus < 2) {

this.editBus.setText(Integer.toString(this.old));
} else {
this.old = newBus;
}

} catch (NumberFormatException nfe) {
this.editBus.setText(Integer.toString(this.old));
}

}

public int getBusSize() {
int newBus;

try {
newBus =

Integer.valueOf(this.editBus.getText()).intValue();

if (newBus >= 2) {
this.old = newBus;
}

} catch (NumberFormatException nfe) {
}

return this.old;

}

public int getPinBusSize() {
int newBus;

try {
newBus =

Integer.valueOf(this.editBus.getText()).intValue();

if (newBus >= 1) {
this.old = newBus;

}
} catch (NumberFormatException nfe) {

}

- 109 -



A SIMD microprocessor for image processing

}

|

i
-

return this.old;

}

public String getLabel() {

return this.editName.getText();
}

public Dimension getPreferredSize() {
return this.getSize();

}

public Dimension getMinimumSize() {
return this.getSize();

}

public Dimension getMaximumSize() {
return this.getSize();

}

- 110 -



|°C"P — A SIMD microprocessor for image processing
" -7'

Pin Action

A number of action occurs in different phases of the lifetime of a pin.

a)

b)

d)

Phase 1 — loading
Phase 1 starts soon after the user click the pin icon in the standard library. During this
phase, it initialises itself and generates a mouse tooltip.

Methods called:
public Pin();
public void initializeGridSize();
public void setBusSize(int size);
public void paint(Grphaics g);

Phase 2 — drawing

Phase 2 starts when the user places down a pin. During this phase, pin checks to see if
the given location is valid and the size of each bus is matched. If all requirements are
valid, it will generate a pin object and connect itself to the bus.

Methods called:
public void paint(Grphaics g);
public boolean canDrop();
public void droped();
public void createEnginePeer(EnginePeerList epl);

Phase 3 — simulation

Phase 3 starts as soon as the user hit the simulation button. During this phase, pin
receives data from input port of a module and sends data to the output port of a
module.

Methods called:
public void evaluateOutput(double currentTime, Data[] currentInputs,
EnginePeer peer);

Phase 4 — clean up
Phase 4 starts when the user deletes a pin. It clears itself from the canvas and deletes
all related objects.

Methods called:
public void eraseComponent(Component comp, boolean update);
//in BufferedContainer.java

- 111 -



A SIMD microprocessor for image processing

QR
I

|

i
-

Appendix C Workspace

Source Code

//using Java Swing
package sim;

import
import
import
import
import
import
import
import
import
import

public

java.awt.*;
java.awt.event.ActionEvent;
java.awt.event.ActionListener;
java.awt.event.ItemEvent;
java.awt.event.ItemListener;
java.io.*;

javax.swing.*;

java.util.*;
java.util.logging.Level;
java.util.logging.Logger;

class Workspace extends JPanel implements ActionListener,

ItemListener {

private JFrame frame;

private JComboBox droplList;

private JFileChooser chooser;

private Vector<String> recent;

JCheckBox defaultButton;

private int defaultIndex = -1;

private String newPath = null;

private final String DEFAULT_PATH_HEADER = "[Default
Workspace]";

private final String RECENT_PATH_HEADER = "[Recent
Workspaces]";

public Workspace() {

//GUI

readConfig();

//normal case

if (defaultIndex == -1) {
initialiseGui();

} //default check box is set

else if (defaultIndex == 0) {
MainWindow.WAIT_BLOCK.countDown();

} //invalid

else {
MainWindow.setWorkspace(null, null);
MainWindow.WAIT_BLOCK.countDown();

-112 -



(P

OL:
i o

A SIMD microprocessor for image processing

private void initialiseGui() {
frame = new JFrame(MainWindow.PROGRAM_NAME + " " +
MainWindow.VERSION + " - Please choose a workspace");

frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
frame.setResizable(false);
frame.pack();
frame.setSize (600, 300);
frame.setlLocation(MainWindow.getMiddleOfScreen(frame));

JPanel panel = (JPanel) frame.getContentPane();
panel.setlLayout(new BorderLayout());

//description label
JTextArea description = new JTextArea();
description.setEditable(false);

InputStream input = null;
String str = "";
try {
input =
Workspace.class.getResourceAsStream("workspace.txt");
Scanner sc = new Scanner(input);
while (sc.hasNextLine()) {

str += sc.nextLine() + "\n";
}

} catch (NullPointerException e) {
System.out.println("Can't find 'workspace.txt'");
}

description.setFont(new Font("Arial", Font.PLAIN, 13));
description.setText(str);

panel.add(description, BorderLayout.NORTH);

//textfield label

JPanel p = new JPanel(new GridBagLayout());
GridBagConstraints c¢ = new GridBagConstraints();
//p.setSize (600, 50);

c.gridx = 0;

c.gridy = 0;

JLabel text = new JLabel("Workspace: ");
p.add(text, c);

//droplList

c.gridx = 1;

dropList = new JComboBox(recent);
dropList.setEditable(true);

-113 -



QR
I

|

A SIMD microprocessor for image processing

i
-

dropList.addActionListener(this);
dropList.setPreferredSize(new Dimension(400, 30));
p.add(dropList, c);

//Browse

c.gridx = 2;

JButton browse = new JButton("Browse");
browse.setActionCommand("browse");
browse.addActionListener(this);
p.add(browse, c);

panel.add(p);

//set as default checkbox

c.gridy = 1;

c.gridx = 1;

defaultButton = new JCheckBox("Set as default and do not
ask again");

defaultButton.setSelected(false);

defaultButton.addItemListener(this);

//p.add(defaultButton, c);

//Clear

c.gridy = 2;

c.gridx = 1;

JButton clear = new JButton("Clear all recent history");
clear.setActionCommand("“clear");
clear.addActionListener(this);

p.add(clear, c);

panel.add(p);

//0K and Cencel
p = new JPanel(new FlowLayout());

JButton ok = new JButton("OK");
ok.setActionCommand("ok");
ok.addActionListener(this);
p.add(ok);

JButton cancel = new JButton("Cancel");
cancel.setActionCommand("cancel™);
cancel.addActionListener(this);
p.add(cancel);

panel.add(p, BorderLayout.SOUTH);

//file chooser
chooser = new JFileChooser();

_114-



(P

O BE—
-

PS — A SIMD microprocessor for image processing
"

chooser.setDialogTitle("Please choose a workspace");

chooser.setFileSelectionMode(JFileChooser .DIRECTORIES_ONLY);

// try {
//

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassNa
me());
//
// } catch (Exception e) {
// System.err.println("Error: " + e.getMessage());
// }

frame.setVisible(true);
}

private void readConfig() {

recent = new Vector<String>();

try {
File file = new File("config.ini");
// config file doesn't exist, return
if (!file.exists()) {

return;

}

FileReader fr = new
FileReader(file.getAbsoluteFile());
BufferedReader br = new BufferedReader(fr);
//default path
String str = br.readlLine();
//default path - incorrect format
if (!DEFAULT_PATH_HEADER.equals(str)) {
writeConfig();
br.close();
return;
}
str = br.readlLine();
if (str == null) {
writeConfig();
br.close();
return;
}
defaultIndex = Integer.parseInt(str);
if (defaultIndex != 0 && defaultIndex != -1) {
defaultIndex = -1;
writeConfig();
br.close();
return;

}

//recent path
str = br.readlLine();

- 115 -



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

//recent path - incorrect format
if (!'RECENT_PATH_HEADER.equals(str)) {
writeConfig();
br.close();
return;
}
//read first line
str = br.readlLine();
if (str == null) {
writeConfig();
br.close();
return;
}
//set as default - WORKSPACE PATH is found
if (defaultIndex == 0) {
File dir = new File(str);
str = trim(str);
if
(!(str.equals(dir.getAbsoluteFile().toString()))) {
JOptionPane.showMessageDialog(frame,
"Please enter a valid path",

3

JOptionPane.WARNING MESSAGE);
defaultIndex = -1;
} else {
//exist given folder
if (dir.exists()) {
MainWindow.setWorkspace(str, null);
br.close();
return;
}
//doesn't exist
//can create
if (dir.mkdir()) {
MainWindow.setWorkspace(str, null);
br.close();
return;
} //can't create
else {
JOptionPane.showMessageDialog(frame,
"Fail to open workspace",

3

JOptionPane.WARNING MESSAGE);

}

defaultIndex = -1;

}

}

while (str != null) {
recent.add(str);

-116 -



(P

A PS — A SIMD microprocessor for image processing
.
str = br.readlLine();
}
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}

private void writeConfig() {
try {
File file = new File("config.ini");
if (file.exists()) {
file.delete();
}

file.createNewFile();

FileWriter fw = new
FileWriter(file.getAbsoluteFile());

BufferedWriter bw = new BufferedWriter(fw);

bw.write(DEFAULT PATH_HEADER + "\n");

bw.write(defaultIndex + "\n");

bw.write(RECENT_PATH_HEADER + "\n");

if (newPath != null) {

bw.write(newPath + "\n");
}

for (int i = recent.size() - 1; i >= 0; i--) {
if (recent.get(i).equals(newPath)) {
continue;
}

bw.write(recent.get(i) + "\n");
}
bw.close();
} catch (IOException e) {
e.printStackTrace();

}
}

private void clearConfig() {
recent = new Vector<String>();
defaultIndex = -1;
dropList.removeAllItems();
writeConfig();

}

private String trim(String str) {
if (str.charAt(str.length() - 1) == File.separatorChar) {
return str.substring(@, str.length() - 1);
} else {
return str;

- 117 -



A SIMD microprocessor for image processing CIlIPS —

O BE——

"

}

@Override
public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals("ok")) {
newPath = dropList.getEditor().getItem().toString();
//empty path
if (newPath.equals("")) {
JOptionPane.showMessageDialog(frame,
"Please enter a valid path",
"", JOptionPane.WARNING_MESSAGE);
return;
}
//incorrect path format
File dir = new File(newPath);
newPath = trim(newPath);
if
(!(newPath.equals(dir.getAbsoluteFile().toString()))) {
JOptionPane.showMessageDialog(frame,
"Please enter a valid path",
"", JOptionPane.WARNING_MESSAGE);
return;
}
//directory doesn't exist and can't create
successfully
if (!dir.exists() && !dir.mkdir()) {
JOptionPane.showMessageDialog(frame,
"Please enter a valid path",
"", JOptionPane.WARNING _MESSAGE);
return;
}
MainWindow.setWorkspace(newPath, null);
writeConfig();
frame.dispose();
MainWindow.WAIT BLOCK.countDown();
}
if (e.getActionCommand().equals("cancel™)) {
frame.dispose();
MainWindow.WAIT BLOCK.countDown();
}
if (e.getActionCommand().equals("browse")) {
if (chooser.showOpenDialog(this) ==
JFileChooser .APPROVE_OPTION) {

dropList.getEditor().setItem(chooser.getSelectedFile().toStrin

g0));
}

- 118 -



(P

A PS — A SIMD microprocessor for image processing
" -7'
if (e.getActionCommand().equals("clear")) {
clearConfig();
}
}
@Override

public void itemStateChanged(ItemEvent e) {
Object source = e.getItemSelectable();
if (source == defaultButton) {
if (e.getStateChange() == e.SELECTED) {
defaultIndex = 9;
}

if (e.getStateChange() == e.DESELECTED) {
defaultIndex = -1;
}

-119 -



