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Project Summary 

 

The field of robotics has progressed significantly over the past decade. New robust 

systems can now be used in challenging applications such as military reconnaissance, 

hazardous environment exploration and search and rescue. Current technology is based 

around the teleoperation approach which requires at least one human controller to 

monitor each robot. This approach however cannot be extended to multi-robot control. 

For a single operator to effectively control multiple robots, an increase in robot 

autonomy and an advanced multi-robot interface is required. State of the art robotic 

systems use multiple robots to complete complex and challenging missions that would 

not be possible with single robot systems. This project covers the design, construction 

and testing of a multi-robot user interface.  

The system design was based on modern Real Time Strategy (RTS) video games. A 

large emphasis was placed on creating a user friendly system centred on a user 

experience based design. The system built provided a single user an effective means of 

controlling multiple robots; with high compatibility with ROS (Robot Operating 

System), the current standard robotic operating system used by the majority of research 

institutions. ROS compatibility will allow the product to be easily integrated into other 

robotic systems. 

Evaluation was carried out by user testing and heuristic evaluation. The results show 

that for a single robot users had far superior control using the interface when compared 

to a simple teleoperation system. Effective multiple robot control was demonstrated by 

users for two robots through exploration of an unknown environment. The project 

results were used to develop a set of design guidelines to be used for future multi-robot 

interface design.  
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1. Introduction 

The field of mobile robotics is both a promising and challenging one with potential to 

greatly advance many industries including mining, defence and consumer robotics. 

Current research is focused on developing effective complex multi-robot systems. With 

robots lacking advanced problem solving and reasoning skills, human supervision is 

still required to complete complex tasks. Thus a critical component of such a system is 

the user interface. 

A robotic interface is the mechanism a human uses to interact with the robotic system, 

normally run on a computer and being called the master. Current multi-robot interfaces 

available are predominately designed for experts in robotics, making them near 

impossible to use for an average user. For a multi-robot interface to enter the 

commercial market, more user friendly systems are required. 

The primary objective of this project is to research, design, construct and then evaluate 

a multi-robot user interface. The system created will focus on improving the state of the 

art by creating an interface which is: 

1) User friendly, aiming to create a system that can be used by operators with 

limited robotics experience. 

2) Compatible with current research robotic systems with the final goal to release 

the system to the robotic community.  

3) A single user system.  

4) Easily expandable so that other research intuitions can easily use the system to 

further the HRI field.  

5) Modelled after popular Real Time Strategy Video Games. 

1.1 MAGIC2010 

The University of   Western   Australia’s   (UWA)   robotic   fleet   consists of five robots, 

named WAMbots. Originally developed as an entry to the Multi Autonomous Ground-

robotic International Challenge in 2010 (MAGIC 2010), it earned the team fourth place.  

The main objective of the competition was to develop a robotic system that could 

cooperate autonomously over extended missions.  The challenge required two human 

operators to control three or more robots and to build a map and locate simulated bombs 

(red barrels) and hostile humans (Reid & Braunl, 2011). 
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The WAMbots were based on a Pioneer 3AT outdoor robot platform, with an 

automotive core-2 duo PC under Windows XP, three laser scanners (Sick LMS, Sick 

Ibeo and Hokuyo), a Qstarz GPS, an Xsens IMU, two digital cameras for teleoperation 

and an object identification/tracking system (Reid & Braunl, 2011). The system relied 

on sponsored military and commercial software, which at the completion of the project 

had to be returned and is now unavailable.  The next generation system will implement 

the features of the original system using fully open source software. Future projects 

hope to further develop the foundation laid out by MAGIC2010. 

1.2 ROS 

ROS (Robot Operating System) is an operating system designed specifically for robots.  

Originally developed by Stanford University, the system is now supervised by Willow 

Garage. ROS provides hardware abstraction, device drivers, libraries, visualizers, 

message-passing, package management and more. It is released under the BSD licence 

and is open source, making it free for research use (Willow Garage, 2012). 

 
1.2.1 Node, Topics and Services  

ROS works by running a series of nodes or software modules. A full system can include 

nodes that enable mapping, navigation and communication. Nodes communicate with 

each other via topics, which a node can publish or subscribe too. ROS Messages are the 

data types that are sent along topics. Services can be used as nodal functions and node 

parameters can be set and changed in real time (Willow Garage, 2012). 

When a node subscribes to a topic, the topic will begin sending data to that node.  When 

a node publishes to a topic, every other node subscribed to the topic will now receive 

the incoming data.  The advantage of such a system is that nodes can run independently 

of each other meaning a node can be stopped or changed without affecting the overall 

system.  This is of importance when dealing with a robotic system that is made up of 

many sensors that can possibly fail. A distributed system such as ROS will allow the 

system as a whole to continue if one node crashes.  

1.2.2 ROS Packages  

ROS has a large community and provides many free open source packages that can be 

easily integrating into a robotic system.  The standard package execution recommended 

by ROS is through the use of ROS launch files (Willow Garage, 2012). 
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1.3 Human Robot Interaction  

Human Robotic Interaction (HRI) deals with the science of studying how humans, the 

user, interact with robotic systems. Current robotic technology is not yet advanced 

enough to operate without human intervention. Robots have their advantages; they  don’t  

grow tired, can perform boring and mundane tasks at high levels of consistency and can 

operate in hazardous environments. However, they lack advanced decision making and 

reasoning, skills at which humans excel at. Thus an optimal system will involve the 

cooperation of robots and humans working together. To facilitate efficient and optimal 

communication between the two, advanced robot interfaces are required.  

Most current robotic systems rely on the teleoperation approach, in which a user 

controls the robot via a video feed and a controller. As humans can only process a finite 

amount of data at one time, effective control of multi robots using a pure teleopoeration 

approach is near impossible. The phenomenon of computational overloading explains 

how a user can only process a limited amount of information at one time; to focus on 

more than a single video feed will very quickly overload a user (Olson, et al., 2012). 

The limitations of control via a video feed are discussed in (Chen, et al., 2006).  To 

implement a non-teleoperation-based system an increase in robot autonomy is required, 

providing a system that can be controlled with less user concentration.  

The computational load on a user is higher when using teleporting compared with 

controlling an autonomous system (Dixon, et al., 2003) and (Schipani, 2003). However 

this is dependent on the reliability of the autonomous system; an unreliable system can 

possibly produce a higher cognitive load on a user compared with a teleoperation 

system (Dixon & Wickens, 2004).  

1.3.1 Situational Awareness  

Situation awareness (SA) can be defined as “the perception of environmental elements 

within a volume of time and space, the comprehension of their meaning, and the 

projection  of   their  status   in   the  near  future”   (Endsley, 1988). From this, five forms of 

situation awareness can be further defined: location awareness is the knowledge where 

the robot is located within an environment; activity awareness it the understanding of 

the progress the robot is making towards completing its mission; surroundings 

awareness pertains to obstacle avoidance, namely, the understanding of potential 

obstacles surrounding the robot; status awareness refers to the understanding of the 

status of the robot including; battery level, hardware status and the current mode of the 
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robot; and overall mission awareness is defined   as   the   understanding   of the progress 

towards the overall mission objective (Gomez, 2010). An effective robot user interface 

must maximise all forms of SA. 

1.3.2 Measuring Situational Awareness  

Due its complex nature, measuring   and   quantifying   a   user’s   SA   is   difficult.  Various 

methods have been proposed in the literature. Objective measures compare user 

perceptions of a feature to some constant real feature within an environment. Subjective 

measures ask users to rate their own SA, while performance and behavioural measures 

infer SA from task outcome (Endsley & Garland, 2000). The LASSO technique 

(Location Activity Surroundings Status Overall Awareness) involves getting users to 

“think aloud”.  This technique does not require users to rate themselves and thus is less 

subjective and is not based on task performance (Drury, et al., 2007). 

1.3.3 Scalability  

System scalability refers to an interfaces ability to still remain effective for an 

increasing number of robots. B. Trouvain and H.L. Wolf (2003) used a simulation of a 

multi- robot scenario invloving mapping and video feeds with a goal setting control 

structure. User testing showed eight robots were the optimal number; more than this 

resulted  in  a  decrease  in  a  user’s  situational  awareness.  

1.3.4 Human Computer Interaction  

Human Computer Interaction (HCI) is a well-developed field of computer science that 

deals with the interactions of a human (user) and computers. HCI provides theories to 

help with interface development that explain cognitive aspects such as attention, 

memory, perception and recognition. 

The human mind is limited to only focusing on one distinct point at a time; to monitor 

multiple points the mind will jump from one to the other. To  aid   in  a  user’s  attention  

management, information should be ordered and structured. This can be achieved using 

perceptual boundaries such as windows and tables, adding colour when an item needs to 

be drawn attention to and using sound and flashing lights to confirm user actions and to 

help divert attention. Keeping the visual design crisp, clean and free of clutter and the 

interface will help with user attention management (Sharp, et al., 2011).  

Memory in the human mind involves two main processes: encoding followed by 

retrieval of knowledge. Studies have shown humans are much better at recognising 
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things versus recalling things. Research has also shown the human mind is much better 

at remembering images rather than words (Sharp, et al., 2011).  The design implications 

of such findings imply recognition should always be used over recall. An example of 

this would be when a user is required to selection an action. Where possible always 

show a list of possible actions should always be shown as opposed to having the user 

remember the name of the action.  

Icons are used in interface design to condense information and help define a overall 

visual design.  The use of hints, such as text overlays which appear when the user 

hovers over the icon can help a user comprehend icons they do not immediately 

recognise (Sharp, et al., 2011).  User frustration will make a user inefficient and reduce 

their responsiveness to the interface. Common causes of user frustration include the 

interface crashing, the system not doing what the user expects, not providing sufficient 

information to enable the user to know what to do next, having vague or condemning 

error messages, requiring users to carry out too many steps to achieve a simple task and 

a noisy, gimmicky or patronizing visual appearance (Sharp, et al., 2011). 

Usability in the context of HCI refers to how user friendly a program is or how easily a 

user can effectively use the system (Bevana, et al., 1991).  The techniques of increasing 

a   system’s   usability   are   centred   on   using   continuous evaluation methods throughout 

project development. The standard evaluation method recommends using a combination 

of user testing and heuristic evaluation (Sharp, et al., 2011). User testing involves 

getting future users to trial the system and heuristic evaluation attempts to produce 

empirical data by ranking the interface against a standard set of evaluation criteria, such 

as Nielsen’s  heuristics  (Nielsen & Molich, 1990).  

1.3.5 Evaluation  

System evaluation is a critical part of the software design process. HCI recommends 

evaluating a user interface with a combination of heuristics, metrics, user testing and 

expert involvement (Sharp, et al., 2011). Interface designers from ROS recommend 

using usability heuristics as outlined in Nielsen (1995). For example Steffi (2013) 

provides a set of usability heuristics specially tailored to robotic interface design. 

Design metrics can also be used to help guide development and conduct evaluation. 

Goodrich and Olsen, Jr (2003) provide principles for efficient human robot interaction. 

While Steinfeld, et al (2006) produced a comprehensive set of metrics defined in five 
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categories: navigation, perception, management, manipulation and social. Design and 

evaluation of a multi-robot interface is discussed by Trouvain and Wolf (2003).  

1.4 Real Time Strategy Games 

This project will attempt to use a Real Time Strategy (RTS) video game paradigm to aid 

in the design process. RTS games are a genre of video games in which a player 

commands units and structures to compete objectives in real time.  The fit to a robot 

interface is apparent: both an RTS game and a multi-robot system require users to 

control multiple units to complete a mission. The genre has been around for almost two 

decades, which has given it time to mature and develop a highly refined control style.  

Researchers at Stanford University developed a robot interface based on the RTS 

interface paradigm (Jones & Snyder, 2001).  The system was developed as a proof of 

concept and still requires considerable work to become an effective control system.    

Key RTS game features were determined by analysing popular games.  Units are moved 

by first selecting the unit followed by giving the unit a goal, called a waypoint. When a 

unit is selected, the units relevant status and other important information is displayed in 

a control panel.  The  camera  is  positioned  in  a  bird’s  eye  view  of  the  world with features 

allowing easy navigation. Data is displayed in a highly efficient manner with extensive 

user of colour, icons and structured visual layouts.  

1.5 Current Systems 

Rviz is a 3D visualization tool developed for ROS and is capable of displaying maps, 

robot positions, cost maps and other common ROS topics (Spaepcke, 2013).  Rviz is 

capable of displaying the output from multiple robots; this makes it an effective data 

visualisation tool. However the control system has low usability and as it lacks adequate 

control mechanisms and robot feedback, control of multiple robots is not possible.  

Figure 1.1 shows a screenshot of Rviz.  
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Figure 1.1 A screenshot from Rviz showing the localised position of a single robot 

within a map (Fraunhofer IPA, 2011). 

The literature provides a few notable examples of state of the art multi-robotic user 

interfaces and four examples of such systems were analysed. All these interfaces can be 

classified as map-centric systems meaning the central control structure is implemented 

using map and not teleoperation through a video feed.  

Figure 1.2 shows a system developed by the University of Pittsburgh and Carnegie 

Mellon University (Wang, et al., 2008). Developed and tested on simulated robot data 

the system is capable of controlling multiple robots. Control is facilitated through the 

setting of waypoints on a map with a video camera feed present for each robot. No robot 

status feedback is given and the visual design poorly structured. As the system was only 

tested on simulated data, no conclusions can be drawn on whether it will work in a real 

world scenario.  

A state of the art multi-user, multi-robot interface was developed in 2010 by the 

University of Rome La Sapienza  (Gomez, 2010), shown in Figure 1.3.The interface 

built was capable of controlling four robots and was developed for search and rescue 

applications. Although it is working and has been tested, the system is limited to control 

of four robots, lacks adequate feedback mechanisms and refined visual design, and has 

deficiencies in usability features.   
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Figure 1.2 A multi-robot interface developed by the University of Pittsburgh and 

Carnegie Mellon University. Four camera feeds are shown and two maps. The system 

was developed and tested using simulated robot data. (Wang, et al., 2008). 

 

Figure 1.3 A multi user, multi robot interface developed in 2010 by the University of 

Rome La Sapienza. Demonstrated in the screenshot is a user controlling a single robot 

by setting multiple waypoints (Gomez, 2010). 
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The MAGIC2010 completion produced many state of the art multi-robot systems each 

having an advanced user interface. Notable interfaces were produced by Team 

Michigan (Olson, et al., 2012) and RASR (Lacaze, et al., 2012). It should be noted that 

all the interfaces used were designed to be used by two operators over multiple screens.  

The RASR team placed third in the completion. The user interface drew design ideas 

from RTS games with a design philosophy of providing operators with high level 

system controls. The interface was distributed over two screens: the main map-centric 

display allowed users to set waypoints and displayed basic robot status information, 

shown in Figure 1.4, while the second screen was used to show the robot video feed 

(Lacaze, et al., 2012).  

 

Figure 1.4 A screenshot from the system developed by the RASR team for 

MAGIC2010.  Shown on the right hand side is the robot status feedback mechanism. 

The central display shows the robots exploring the environment with overlayed robot 

position (Lacaze, et al., 2012). 
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Team Michigan placed first in MAGIC2010. Their user interface consisted of four 

screens each displayed on a separated computer monitor requiring two users for control. 

The four screens were defined as: a sensor operator console which was used for object 

identification and to display sensor information; a task operator console, used to send 

waypoint to the robots; a status dashboard which displays the status of each robot and a 

Situation, Actions, Goals, Environment (SAGE) Display used to display the overall 

status of the mission (Olson, et al., 2012). Although this is a state of the art the system it 

still requires two operators for effective control.  The team commented that further work 

was required to optimise human operators into the system (Crossman, et al., 2012).  The 

system was tailored for users with high robotic experience and thus will be unsuitable 

for a single inexperienced user to achieve effective control. The Team Michigan 

interface will be considered the most state of the art of all systems analysed. Figure 1.5 

shows a set of screenshots of the Team Michigan system. 
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Figure 1.5 A set of screenshots showing the full user interface developed by Team 

Michigan a) Sensor Operator console, b) Task Operator console c) SAGE Display d) 

Status Dashboard (Olson, et al., 2012). 

a) 

b) 

c) 

d) 
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2. Process 

2.1 Design Constraints   

2.1.1 Hardware 

The robotic fleet for the project was based off the existing the MAGIC2010 hardware; 

with the fleet consisting of five robots .The setup, as shown in Figure 2.1, was built on a 

Pioneer 3AT four wheel differential base.  Each robot had an automotive core-2 duo PC 

running Ubuntu with Wi-Fi connectivity.  Two laser ranger finders where included, the 

primary laser being a SICK100 with a range of 20 m, a 270 degree field of view and a 

scanning frequency of 50Hz. The secondary laser was a Hokuyo URG, with a range of 

4m and a field of view of 240 degrees, angled down ward to detect low lying objects.  

Each robot was also equipped with an Xsens MTi Inertial Measurement Unit (IMU), a 

set of speakers and a webcam used for teleoperation and object detection.   

 

Figure 2.1  A image illustrating the hardware components of each robot.  

2.1.2  Safety 

Safety is an important consideration when dealing with any robotic system. Even with 

the inclusion of a robust and well tested collision avoidance system precautions were 

taken to ensure no bystander was ever hurt during system testing. All preliminary 

testing was conducted within a controlled environment, room 3.13 of the Electrical 

Engineering Building. For tests that required inexperienced users or a larger 

WEBCAM 

SICK100 

HOKUYO 
URG 

SPEAKERS 

BASE 

WIFI 

IMU 

CPU 
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environment the robot speed was reduced. In situations were safe operation could not be 

irrefutably confirmed an experienced operator followed the robots and had the ability to 

disable the system if a problem arose. 

2.2 Tools 

2.2.1 Ubuntu 

All code for the project was developed for the Ubuntu operating system.  Although 

ROS is supported for Windows and OS X the builds are experimental and it is highly 

recommended by the ROS team to develop on Ubuntu (Willow Garage, 2012).  

2.2.2 Qt 

Qt is a cross platform application framework used to develop user interface layouts (Qt 

Project, 2013). Many open source interface frameworks are available but Qt was chosen 

due to its high compatibility with ROS (Willow Garage, 2012), large community and 

the long list of released programs developed including Skype, Mathematica and 

Autodesk Maya (Qt Project, 2013). 

2.2.3 Programing Language 

Development of ROS systems can be done in either Python or C++. For this project the 

majority of the programing was written in Python. Python is a general purpose high 

level programming language that comes highly recommended by the creators of ROS 

for user interface development (Thomas, et al., 2013). Python is well suited to 

prototyping projects, is highly readable and the growing trend in the ROS community is 

leaning towards systems written in the language.  Where speed is absolutely essential 

components were written in C++.  

2.2.4 Photoshop 

 All icon design and visual features were created in Adobe Photoshop CS6.   

2.3 Design Guidelines 

Modern HCI development procedures recommend developing a set of design guide 

lines when designing complex systems (Sharp, et al., 2011). This helps keep the product 

on course during development and can be used for system evaluation.  The following 

nine guidelines were created for the project.  
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2.3.1 Agile Development  

An agile design process was applied, by developing the project thought iterative design 

cycles. At the end of each cycle the product was evaluated and appropriate changes 

were made. 

2.3.2 User Experience Centred Design  

To create highly usable systems, users much be involved in all stages of development 

(Sharp, et al., 2011). The target user group was defined to be users with low levels of 

robotic experience with relatively high levels of computer competency. To enable 

frequent user interaction a user base was created containing four users with varying 

levels of robotic experience. Feedback was gathered from these four users at frequent 

intervals and was taken into account in all development phases. The users included: 

1) Thomas Bräunl, the project supervisor who is highly experienced in robotics and 

whose role was to ensure the project stays within the outline of the project 

requirements. 

2) Chris Parkin, a computer game developer and graduate mechanical engineer. 

3) Prawi Woods an experienced StarCraft player and a student civil engineer. 

4) Calum Meiklejoh, an experienced ROS user and graduate robotics engineer 

2.3.3 Video Game Inspired Design  

The interface was inspired by modern RTS computer games. Critical features were 

constructed to be similar to modern popular computer games including replication of 

the mouse and keyboard control structure, and the visual layout. Two RTS games were 

used for analysis, StarCraft 2 and Company of Heroes. 

2.3.4 Modular Design  

Modular software construction principles were applied using an object orientated 

paradigm and the use of the ROS node architecture.  

2.3.5 ROS Compatible  

The system will use ROS components where possible. The final system will be made 

open source and released to the ROS community upon completion.   

2.3.6 Scalable 

A user should be able to control five robots with the same relative ease and 

effectiveness as controlling one robot. 
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2.3.7 Reduce Cognitive Load  

The cognitive load on the user was minimised wherever possible. The aesthetic design 

of the interface was kept clean and simple.  

2.3.8 Enhance Situational Awareness 

The interface prioritised increasing all forms of situational awareness. 

2.4 Development Cycles 

The project development plan had four main cycles.   

1) Research - develop a firm understanding of state of the art multi-robot 

interfaces, the theories needed to develop one and learn the necessary tools 

required to construct such a system.  

2) Design - create a well thought out state of the art system design through the use 

of low fidelity prototyping. Undertake feasibility studies to identify if the 

proposed system is possible and if it can be constructed within the allocated time 

frame.  

3) Construction - build the system complying with the design constraints and 

conduct frequent user testing to ensure a stable and usable design is being 

produced. 

4) Evaluation – conduct testing to determine the systems stability and usability.  

2.5 Requirement Analysis 

Project requirements were defined as the high level system critical components and the 

low level feature requirements that would follow the design guidelines. The 

requirements for the system were keep flexible to ensure an agile development. The 

program was developed in cycles with continuous evaluation used to further refine the 

system. If testing uncovered new requirements or found current requirements to be 

obsolete the system would be changed. The process emphasised keeping the 

development dynamic.  

A base set of core requirements were defined in an early production cycle through 

research into HCI, HRI, RTS games and current robotic systems.  This coupled with 

early prototype systems and user involvement, particularly involvement from Professor 

Bräunl, produced a base set of requirements as outlined below.   
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2.5.1 System Critical Components  

1) Selection Method - a simple method to select a robot. 

2) Simple Control System - a simple method to control the robots with limited 

human interaction.  

3) Full World Overview, increased location awareness by having a clear view of 

the world positioned from a bird’s eye view.   

4) Full System Overview - users should know at all times the status of all robots, 

increasing the users overall mission awareness.  

5) Status Identification - users need to be able to identify the exact status of a robot, 

increasing status awareness. The solution should require limited cognitive load.  

2.5.2 System Feature Requirements    

1) Display the robot generated maps and allows users to easily navigate them. 

2) Stream video from robots.  

3) Multiple control methods; waypoint, command buttons and a controller.  

4) Display status of each robot.  

5) High level of robot autonomy.  

6) An Object detection system.  

7) Feedback mechanisms.  

8) A robot monitoring system to increase system robustness. 

9) Robust communication protocol.  

2.6 Evaluation 

2.6.1 Agile Evaluation  

In keeping with the agile development mentality, evaluation methods were continuously 

applied throughout the design and construction phases. Frequent testing was used to 

both improve the initial requirement list and refine the system. At regular intervals 

evaluation sessions were conducted in which the current system will be compared 

against the design guidelines, changes made were noted. User tests were also conducted 

at regular intervals using the user base.  Tests were performed in an informal setting and 

involved showing the users the system to get feedback.  

2.6.2 Final System Evaluation  

Final system evaluation was done in two parts, system stability testing and system 

usability testing.  Stability testing involved creating test cases and simulating extreme 
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cases for the system to complete. Usability was tested by user tests, which involved 

users completing tasks with the system. Results from all tests were then used to 

complete a heuristic evaluation of the whole system. 

2.6.3 Stability Testing  

Stability testing of the system was performed to ensure both stability and robustness. 

Test cases were designed to test all system features and components in both general and 

extreme cases. Tests had a pass/fail outcome with notable results being recorded. All 

bugs found were recorded in a bug tracker and prioritised depending on their severity.  

2.6.4 Usability Tests  

The final user tests were centred on evaluating the systems usability. The main goal was 

to prove the interface is an effective means for a single user to control a robotic fleet. 

Users were chosen to have varying backgrounds in robotics and pilot tests were 

conducted prior to the main testing to ensure the testing procedure was adequate. The 

format of each test can be summarised as follows: 

1) Introduction and User Background identification.  

2) Task Identification. 

3) Single Robot Test. 

4) Questioning. 

5) Multi Robot Test. 

6) Questioning. 

An introduction was used to gather information about the user’s background and 

identify the users experience level in both robotic and real time strategy gaming. A rank 

between zero and ten was assigned to each user, with ten implying an expert level of 

experience. The task identification test involved users completing simple system tasks 

as listed below, with users given no instruction on how to use the system only being 

told it was based off an RTS game. The time taken to complete the task as well as the 

number of wrong actions taken where recorded. An action was defined as issuing a 

command that could influence the system.  If a user asked for assistance it was given 

and recorded.  The tasks were; 

1) Move the camera. 

2) Zoom the camera in and out. 

3) Select a robot. 
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4) Rotate a robot. 

5) Determine the battery level of robot one. 

6) Determine the status of the camera of robot two. 

7) Determine out the error in robot one. 

8) Send robot two a goal. 

9) Stop robot one. 

10) Determine he real time obstacles surrounding robot one.  

The funcation of task identification tests were to investigate how well users can figure 

out the appropriate actions needed to perform a task given they have a limited 

understanding of the system. A recording of two robots was used to implement the test 

to ensure the test conditions were kept constant. The test had a secondary purpose of 

determining if a user was skilled enough to control the system safely.  

Following the task identification users were given control of a single robot to complete 

a task completion test. An instructional brief was given to ensure the user completely 

understood how to control the system. Users were then asked to drive the robot to a 

destination, first using teleoperation (a video feed and controller), followed by using the 

developed interface. The time to destination was recorded as well as any potential robot 

crashes. An experienced operator was present during all tests to follow the robot and 

stop the system if the user was in danger of harming a bystander or damaging the robot. 

Half of the users were asked to complete the tests in the opposite order (i.e. 

teleoperation after interface operation) to negate the learning effect on the second test. 

A multi-robot task completion test was undertaken last. Users were given control of two 

robots and were asked to map the third floor of the Electrical Engineering building. 

Time to complete the task and potential crashes were recorded.  

Questioning was performed after each test using an informal interview structure that 

attempted to start conversations with the user. Feedback was recorded to help draw 

conclusions about the system usability and to investigate possible improvements or 

features.    
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2.6.5 Heuristic Evaluation  

A heuristic evaluation was performed based on the conclusion of all results collected 

The criteria used were developed by the Open Source Robotics Foundation and is 

specially designed for robotic interfaces (Steffi, 2013).  Items were ranked between zero 

and four, as shown in table 2.1.  

Score Rank 

0 Not a problem 

1 Cosmetic problem only 

2 Minor usability problem 

3 Major usability problem 

4 Usability catastrophe 

Table 2.1 The ranking system used for the heuristic evaluation. 

When rating an item the following will also be taken into account. Frequency, how 

often the issue happens, impact, how hard is it to recover from the issue and persistence, 

will user have the issue over and over again. 

2.7 Robot Software Design   

To facilitate a working robotic interface a substantial amount of software had to be 

implemented on each robot. In order to save time, increase the overall system quality 

and increase the ROS compatibility most of this software was implemented using open 

source ROS packages.  

2.7.1 Hardware drivers  

Each robot uses a number of sensors that require drives; these were implemented 

thought ROS packages and set up via ROS nodes.  When selecting driver packages 

forums where reviewed and basic tests were carried out to ensure the package was 

stable. The SICK1000 laser range scanner used the package LMSxx (Banachowicz, 

2011) and the Hokyou URG laser scanner used the hokuyo node package (Gerkey, et 

al., 2012). Both drivers were chosen for having good reviews. The base drivers were 

implemented using the p2os_driver package (Feil-Seifer, 2012). This package was 

chosen due to it having good troubleshooting resources, diagnostics features, good user 

comments and a high level of refinement.  
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2.7.2 Mapping and Robot Localisation  

For map generation and robot localisation the ROS package hector_slam was used 

(Kohlbrecher & Meyer, 2013). The package uses Simultaneous Localisation and 

Mapping (SLAM). This allows the robot to build a map of an unknown environment 

while simultaneously locating the robots position within that map. By using laser scan 

data, robot odometry and thought the use of an Extended Kalman Filter detailed maps of 

the environment can be created down to a resolution of 5cm (Kohlbrecher & Meyer, 

2013) . The robots position can then be localised with in this map.   

 

Figure 2.2 A robot using SLAM to map an environment with the boundaries shown in 

black and free space shown in grey. The localised robot position is shown in the centre, 

displayed in red and green. (Kohlbrecher, 2012). 

2.7.3 Navigation and Collision Avoidance   

To facilitate navigation and collision avoidance each robot runs the ROS Navigation 

Stack (Marder-Eppstein, 2013). Using this robot can plan paths to a goal while avoiding 

obstacles. The local map created by hector_slam is used to generate a costmap, where 

by a high cost relates to an obstacle. The path of lowest cost will be the path avoiding 

all obstacles.  The navigation stack was one of the first packages released for ROS and 

was primarily designed by Willow Garage, the creators of ROS. This makes the 

package highly compatible with ROS and very refined.  

The primary laser scanner is placed to take horizontal scans to maximise its range. This 

however will not detect low lying features which could potentially be hazardous to the 
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robots. To detect low lying obstacles the Hokuyo laser scanner was angled downwards. 

Any low lying objects will intersect with the laser and can be added to the cost map.   

2.7.3 Communication  

To allow a single master computer to communicate with multiple robots a multi-master 

communication system is required. This will facilitate wireless data transfer between a 

master computer and a number of robots. The ROS Multimaster Special Interest Group 

provides a summary of all current multi-master packages available on ROS (Stonier, 

2013). Thought analysis of existing techniques a decision was made to use the ROS 

package multimaster (Meeussen, 2011). Data is transmitted using the ROS package 

foreign relay (Gassend, 2012), which permits a topic on one computer to be published 

on a second remote computer. The multimaster package uses a configuration file 

defined on the master computer to define which topics the master will send and receive. 

This makes the system much simpler and requires only one node to be run for each 

robot.  

2.8 Interface Design  

Primary interface features went thought a process of iterative refinement using the 

iterative procedure defined in early sections.  

2.8.1 Central Display 

The implementation of the central map display had two design options, a graphical 

environment using OpenGL (Open Graphics Language) or a 2D image environment 

using Qt Image features. The image solution would be simpler and have a faster 

development time while the graphical solution would have more flexibility and in future 

versions could be made into a 3D system. It was decided to use a graphical environment 

implementing using a QGLWidget (Qt, 2013). Using a Qt implementation of OpenGL 

provides a simpler and faster development process when compared to a stranded 

OpenGL system. Maps can be rendered using textures with GPU acceleration producing 

a fast and seamless map update system.  QGLWidget’s  also  contain an effective screen 

to world coordinates transformation mechanism, which was sued to implement the robot 

selection and waypoint features.  
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2.8.2 RQT 

Initially the program was designed to be a standalone product, however towards the end 

of the construction phase ROS released the rqt framework. This had profound influence 

on the course of the interface design. Rqt is a Qt-based framework for ROS GUI 

development; it provides a base to which plugins can be run.  The system functions by 

having ‘dockable’ modules that can that be moved and resized.  Available plugins 

include; Image View which is used to display video feeds, Bag, a system for recording 

and playing back ROS topics, Launch that can be used to launch ROS launch files in a 

user friendly manner, Shell which is an embedded terminal and many more.   

Using the rqt framework a dynamic and module interface could be made.  Modules can 

then be selected by the user depending on the task at hand.  Furthermore developing 

with regards to rqt conventions and standards will result in a high ROS compatible 

interface.  The decision was made to re- design various interface components to allow 

for rqt compatibility.  

2.8.3 Interface Visual Design  

The interface visual design had five main revisions; these can be seen in Appendix A. 

The final design was based preliminary off identified RTS features. Key components 

included a main map and a control panel consisting of a mini map, control and a display 

panel to display robot data.  Unlike a video game a robotic interface requires the user 

have more control over the system. To this end a series of system controls where added 

to facilitate full system control options. To increase overall mission awareness a robot 

list was added which provides a user with a state summary of each robot.  A message 

bar was also added promote user feedback.  The visual design was designed to be clean 

and simple with clear boundaries and an appropriate colour pallet all to help manage 

user attention. A video feed will be available thought the Image View rqt plugin. A low 

fidelity prototype of the interface layout can be seen in figure 2.3.  
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Figure 2.3  Final interface layout with the main map and control panel positioned to be 

the central display features. 

Many possible plugin combinations can be formed using RQT, the user can customise 

the system depending on the mission. If for example a constant video feed for all robots 

is required, then multiple instances of the Image View plugin can be run.  

2.8.4 Feedback Mechanisms 

To ensure the user has the optimal view of the interfaces current state, feedback 

mechanisms were used.  The message bar provides users with important system 

information with a sound played upon creation of a new message. Sound was used in 

other situations to provide feedback.  When a unit is selected or a goal is transmitted 

unique sounds will be played. Hints were overlayed on icons and buttons being 

activated when a user hovers over them.  These are implanted through Qt’s   tooltip  

function.  

2.8.5 Icons 

Proper icon design is a critical part of refining any user interface. The icons used in the 

system where based upon open source images obtained from (Oxygen Team, 2011) 

which are free for non-commercial use.  Icons where then modified in Photoshop to 

provide the correct design and to comply with the ascetic style of the interface. The 

remainder of the icons where created in Photoshop.  
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2.9 User Interaction 

User interaction was specifically designed with the main goals of; minimising the 

cognitive load on the user, increasing situational awareness and to provide a simple and 

easy to use experience for the user.  

2.9.1 Robot State Summary and Status  

The supply the user with continuous feedback about the overall state of each robot a 

robot state summary was displayed using the robot list.  The list shows the names of 

each robot with an adjacent icon, this icon represents the overall state of the robot.  The 

feature will provide the user with an overview of all the robots, helping to increase the 

users overall mission and status awareness.  

2.9.2 Increasing Situational Awareness  

Increasing the situational awareness was defined as a high priority in the design 

guidelines. However by increase situational awareness more data is needed to be 

displayed this in turn increases the cognitive load on the user. Thus a trade-off can 

occur. To ensure a fine balance is met continuous testing on a wide variety of users was 

undertaken. The amount of data a user can handle will mainly depend of the experience 

of the user and the current situation. To keep the system flexible data features will have 

the ability to be hidden.  Situational awareness was further increased with the following 

features:  

1) Overall map with localised robot position, increases location awareness and 

surroundings awareness. 

2) Robot icon with direction, increases location awareness 

3) Cost maps , increases surroundings awareness 

Colour coding was applied by setting the robot as a base colour with the map and 

costmaps as darker and lighter shades of the base colour respectively.  

2.10  System Design  

2.10.1 Reducing Network Traffic 

The amount of data each robot sends over the Wi-Fi network is critical to the systems 

scalability. If too much data is sent over the network the ROS system will begin to 

suffer from lag.  Table 2.2 shows the different bandwidth usage of each message. 
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Demonstrating that 88.4% of network bandwidth is due to the sending of the map and 

9% is due to the video feed.  To reduce the network load both the map and video feed 

where compressed. 

Type Band width  Percentage 

Map  2250 Kb/s 88.4% 

Costmap  50 Kb/s 1.96% 

Path 10 Kb/s 0.4% 

Pose 4 Kb/s 0.15% 

Image  230 Kb/s 9% 

Table 2.2 The calculated bandwidth for various ROS topics, bandwidth is measured in 

kilobytes per second. With the percentage of the message bandwidth relative to the total 

transmitted bandwidth is also displayed.     

2.10.2 Global Origin  

A critical aspect for a state of the art multi-robot system is for the system to share a 

common global origin.  When a user selects a point on the map a global goal is being 

created, the robot must then be able to translate this to its local origin and thus move to 

that position.  For this to be feasible the robot must know its own position within a 

global frame of reference.  The original project plan involved using a software module 

called Map Builder.  Developed by Rob Reid for the MAGIC 2010 completion the 

program uses a gird based SLAM that is capable of producing 500 x 500 meter maps 

from sub maps supplied by the robots (Reid & Braunl, 2011).  The smaller sub maps are 

fused on the master computer.  

At the time of the completion of this project Map Builder was still in the process of 

being ported to ROS by a fellow researcher. The system however was not ready to be 

integrated into a user interface with testing showing the system would break down with 

an increasing number of robots, an example of this is shown in Figure 2.4.  
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Figure 2.4 A screenshot showing Map Building failing to fuse two robot maps. 

A global origin was still required to implement a multi-robot system.  A temporary 

solution involved starting the robots in the same location and orientation resulting in the 

local maps from each robot roughly lining up.  By then creating effective user interface 

features a user was able to effectively manage the system. Future work will focus on 

completing the Map Builder port and integrating it into the interface. 

  



27 
 

3. Final Design 

The final interface design is composed to two main systems; the master base station and 

the robots. The master is comprised of the graphical user interface, run on a standard 

computer. The robots each run software locally with bi-directional communication 

facilitated between the master and the robots.  

The system created displays an environmental map with localised robot positions. A 

single user can command multiple robots thought the use of waypoints and receive 

efficiently organised data of each robot. An object detection system was implemented 

that allows robots to detect objects of interest.  

For a copy of the full system software please contact Professor Thomas Bräunl. 

3.1 Master Software  

Figure 3.1 shows the software module block diagram of the master system. The system 

is designed in a hieratical fashion with the GUI Module or main class situated at the top 

with other features implemented as sub classes.  

 

Figure 3.1 The final software block diagram for the master user interface.  

The main class, named GUI module is the parent class and deals with all interface logic. 

This includes the function of buttons to the text labels displayed, as well as maintaining 

all the sub classes. Sub classes are implemented to increase system modularity which 

also aids makes testing easier. As a basic overview; the Map module creates the central 

interface display, the server class is responsible for communication with the robots; the 

VIDEO 
MODULE 

VIDEO 
MODULE 

WORLD SERVER UI    
FORM 

SETTINGS 

ROBOT ITEM MINIMAP 
MODULE 

GUI 
MODULE 



28 
 

video module enables a video feed to be displayed and the world class represents the 

system data structures.  

3.1.1 UI Form  

The form represents the skin of the interface, defining the position and visual look of 

each of the interfaces components.  QtCreator was used to create the form for this 

system (Qt Project, 2013).  

3.1.2 World 

The world class attempts to create a virtual representation of the robots environment. 

This class holds all current robots and items in the environment. The data of any given 

robot is stored in a separate sub class which attempts to synchronise its data with its real 

counterpart. An item sub class is defined to represent objects of interest with in the 

environment.   

3.1.3  Settings 

The settings class enables program features to be modified thought a configuration file. 

3.2 Robot Software  

The final system running on each of the robots consisted of a combination of open 

source and custom developed packages. Details of the selected open source packages 

can be found in section 2.7. 

3.2.1 Custom Packages  

Custom robot software was developed including; robot comms a basic server for the 

robot. This class receives commands from the master server. Process Manager, a class 

that monitors the status of the robot. Detector, a class to manage the object detection 

algorithms. Name Convertor, remaps topic names to include a prefix determined by the 

robots name which are used to send to the master.  

3.3 Communication 

Communication between the master and robots was enabled by a Wi-Fi network using 

the standard IEEE 802.11 protocol and the ROS multimaster package to facilitate data 

transfer. The system’s  design was based around each robot communicating with a single 

master. Outgoing data from the master will be transmitted from the server class with 
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incoming the data from each robot being read by the respective robot classes. Each 

robot sends the following topic with the associated topic name to the master, as shown 

in Table 3.1.  

Description ROS Message Type Target Topic Name 

Current position  geometry_msgs/PoseStamped /pose 

Local map nav_msgs/OccupancyGrid /map 

Costmap nav_msgs/GridCells /costmap 

Path to planned goal nav_msgs/Path /path 

Video feed sensor_msgs/CompressedImage /video_feed 

Table 3.1 A list of the data messages each robot transits to the master computer.  Using 

the Name Convertor class these topics are renamed to start with a prefix determined by 

the  robots  name,  for  example  “wambot4/path”. 

A low priority communication protocol (LPCP) was implemented to allow simple 

messages of low frequency or bandwidth to be transferred. The system was designed to 

transmit messages that include robot goals, robot state changes and objects of interest 

that robots have detected. An overview of the messages used in LPCP is shown in Table 

3.2, for further details of these messages see Appendix B. 

Message Name Purpose 

robot_to_base Transmit robot data to the master 

base_to_robot Transmit master data to a robot 

ObjectOfIntrest Contains the details of an object detected by 

the robot. Sent from robot to the master 

Table 3.2 Overview of the custom messages used in LPCP. 

The master receives and transmits a unique topic for each robot. All robots publish to 

the same master topic with a name tag contained within the message to identify its 

sender to the master. The communication is illustrated in Figure 3.2.  
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Figure 3.2 LPCP block diagram, illustrating communication between a single master 

and multiple robots. The topic names are displayed.  

3.4  Robot State 

Each robot maintains an internal state that defines the status of its hardware, battery 

level and current operational modes. The state is defined by nine components as shown 

below:  

1) Base status. 

2) Primary laser status. 

3) Secondary laser status. 

4) Camera status. 

5) IMU status. 

6) Connection status. 

7) Control mode, refers the robots control system. For example manual verses 

autonomous exploration.  

8) Detect mode, refers to what objects the robot is looking for. 

9) Failsafe mode, refers to the actions the robot takes if it loses connection with the 

base.  

The six hardware status features including the base, lasers, camera, IMU and connection 

are all monitored by a Process Manager node which is run locally on each robot. The 

advantage of doing management locally is that if connection is lost, the system will 

continue to make informed decisions independently of a master computer.   
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All hardware features are primarily monitored using a data flow checker. The 

hardware’s  data   topic   is  subscribed too, if the streaming of data stops the hardware is 

said to fail. A middle warning state can be determined for the base and secondary laser 

by examining the diagnostics topic outputted by the base drivers.  The robot will update 

the master of its current state using the LPCP. An array is sent containing the current 

state as shown in Table 3.3.   

Index Item Representation 

1 Base status 0  to 2 

2 Primary Laser Status  0  to 2 

3 Secondary Laser Status 0  to 2 

4 Camera 0 to 2 

5 IMU 0 to 2 

6 Battery Level Percentage 

7 Current Mode 0 to  number of modes 

8 Current Detect Mode 0 to  number of modes 

9 Current Failsafe 0 to  number of modes 

Table 3.3   The array sent by each robot which defines its state is made up of nice 
components.  

3.5 Master Communication  

Using the LPCP a robots state can also be modified by using the base_to_robot 

message. Three main state modifiers are included in the system; mode, object detection 

and failsafe. All state changes can be made from the use of a Qt QCombox, as shown in 

Figure 3.3. 

 

Figure 3.3 A example of a QComboBox used to change the robots object detection 

algorithm. Currently the robot is set to detect no objects.  

The mode refers to the control state the robot is in this includes two sub states; manual 

control and autonomous exploration.  Manual control lets the user control the selected 

robot via waypoints or by using a controller. In the explore mode, the robot will explore 
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autonomously.  The detect mode enables to user to change the current object detection 

algorithm run on the robot.  

The failsafe state is used to determine what actions the robot will take if connection is 

lost with the master. If the robot loses connection it can take one of three actions; return 

home (defined as the place the robot was turned on), stop or do nothing.  If connection 

is lost due to the robot going out of network range the home option will return the robot 

to within range.     

3.6 Full System 

 

Figure 3.4 The final graphical user interface displayed on the master computer. In the 

screen shot the user is controlling two robots, with robot 1, shown in blue currently 

selected. 
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3.6.1 Map Module  

The map module implements the central display and is capable of displaying the map, 

robot position, robot paths, costmaps and detected items. The module is implanted using 

a QGLWidget, using an orthogonal camera view; positioned form a bird’s eye view of 

the environment.  The final image displayed to the user is a layering of many parts. By 

using the z-axis feature of OpenGL components can be painted at different height 

levels. Thus when viewed from above the image will appear as a single image. The 

layering order is: maps, costmaps, robot positions, robot paths, items then robot status 

icons.  The map presents a relatively large data object that needs to be updated 

frequently, thus an efficient technique of updating and displaying the maps is required. 

The mapping pipeline involves a number of steps to get from a robot generated map to 

an image displayed to the user.  

Robot maps are first converted to a ROS Image using the ROS package 

hector_compressed_map_transport (Kohlbrecher & Meyer, 2013). These maps are then 

sent over the network to the master computer. Once received the image is uncompressed 

using the image_transport package, running a republish node (Mihelich & Bowman, 

2013).  The interface reads in this image as a ROS Image message.  To display the map 

in a Qt OpenGL environment the image must be converted to a QImage.  To achieve 

this the ROS Image is first converted to a openCV image using the cv_bridge package 

(Mihelich & Bowman, 2010).  From this the openCV image can be converted to a Qt 

QImage using Qt based functions. This QImage can then be mapped to a texture and 

displayed in the graphical environment. 
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Figure 3.5  Block diagram illustrating the map display pipeline. Data transmission 

between the robot and master is facilitated thought the Wi-Fi network.  

The robot position is displayed by using a preload icon image that is textured mapped 

and placed at the robots position. Cost maps and robot paths are drawn using OpenGL 

primitives types. Simple squares are used for the cost maps and lines to draw the paths.   

To help manage user attention each robots map is coloured coded efficiently using 

QImage colour tables. The final product is shown in Figure 3.6.  

 

Figure 3.6  The Map Module demonstrating a) colour coded maps, b) robot position 

and c) colour coded costmaps.  
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Simple mouse controls where added to help the user navigate the map. Holding the left 

mouse button gave the user the ability to drag the view and the scroll bar can be to 

zoom in and out.  

3.6.2  Navigation  

The navigation features of the system allow a user to select a robot by clicking the robot 

icon on the map. From this the user can select a point of the map. This point will now 

become the robots goal.  The robot will proceed to calculate a path to the goal then 

drive to that position. Figure 3.7 illustrates this feature.  

 

Figure 3.7 The Map Module demonstrating the navigation features. The robot is 

traveling along a path to a user defined goal. a) robot is selected, b) calculated path is 

displayed c)goal icon is displayed. 

3.6.3 Control Panel 

The control panel represents the primary means for a user to gather information about a 

robot. The panel can change the data it displays depending on the type of unit selected. 

Figure 3.8 illustrates the control panel for a selected robot.  

a) 

b) 

c) 
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Figure 3.8 Display panel for a selected robot showing a)minimap, b)robot icon, c) 

central controls,  d) status display and e) command pad. 

Figure 3.8 shows the control panel view when a robot is selected. Figure 3.8.a shows 

the mini map which represents a full view of the environment with all robot positions 

displayed. Figure 3.8.c illustrates robot state information including the battery charge 

which will change colour depending on the level of charge. At over 50 precent it will be 

green, between 50 and 20 precent yellow and under 20 precent red. Figure 3.8.d 

displays the status of the robots hardware components.  The base, primary laser, 

secondary laser, camera and IMU status are all represented by three states OK, warning 

and error. Represented by the colours green, yellow and red respectively shown below 

in Figure 3.9.   

 

Figure 3.9 The three possible hardware states a) OK in green, b) Warning in yellow, c) 

Error in red.  

Figure 3.8.e shows the command pad. This feature has three modes depending on which 

unit type is selected.  If a robot is selected the button outcomes are shown below in 

Table 3.4. 

 

a) b) c) d) e) 

a) b) c) 
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Button Action 

Top Left Toggle display of robot path 

Top Centre Move robot forwards 

Top Right Toggle display of robot costmap 

Middle Left Rotate robot left 

Middle Centre Stop robot 

Middle Right Rotate robot right 

Bottom Left Toggle display of map 

Bottom Centre Move robot backwards 

Bottom Right Toggle camera controls 

Table 3.4 Possible controls for a selected robot. 

Basic control of the robot can be performed using the control panel. Move forward and 

backward will send the robot a goal one meter in front or behind the robots current 

position. Using such a system as opposed to simply sending the robot a drive command 

will integrate collision avoidance. This is especially useful when commanding the robot 

to reverse.  Each robot has a blind spot behind it as the camera and both scanners do not 

have sufficient field of view. The robot will only reverse if it can be certain no objects 

lie behind it.  The toggle camera button will open the camera control pad.  This can be 

used to move the camera.  

When no unit is selected the control panel will change its display to that as shown in 

Figure 3.10. Using these controls the user can move the position of the camera.  

 

Figure 3.10 The Control Panel display when no unit is selected. 
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3.7 User Feedback 

3.7.1 Sound 

System sounds are implemented using the ROS package audio_common (Hendrix, 

2012). Unique sounds are played for robot selection, goal selection and for incoming 

messages. All sounds used where based for open source wave files.  

3.7.2 State Summary  

The state summary as shown in figure 3.11.b is used to provide the user with a summary 

of the state of all robots in the environment. The list was designed to be interactive so 

that robots could be selected by selecting a list item.  Hints were also added to given an 

explanation to the status icon. Overall five states are available with assigned priorities; 

only the worst case error will be shown to the user. The state summaries and there 

priories are shown below in Table 3.5, a priority of one is considered to be the most 

urgent.  

Priority Name Icon 

1 Lost Connection 
 

2 Low Battery 
 

3 General Error 
 

4 General Warning 
 

5 No Problems 
 

Table 3.5 Possible robot state summaries, shown in descending order of priority 

3.7.3 Message Box 

The message box as shown in figure 4.11.a is used to display system messages to the 

user. A QtListView is used to implement this feature.  
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Figure 3.11 A screenshot showing a) Message box, b)Robot list displaying a state 

summary for two robots.  

3.7.4 Video Feed  

The video module selects which image to publish to the video_output topic.  This topic 

can then be used by an Image View plugin. By default the module will output the video 

feed of the selected robot. When an item is selected the detection image will be 

displayed.   

3.7.5 Side Panel 

The side panel is located of the left side of the interface and provides the user with 

further system options. Table 3.6 shows the possible commands.  

Button Action 

1 Stop all robots 

2 Centre Camera – return the camera to the origin  

3 Add item – a user can manual add an item to the 

world 

4 Show summary – disabled  

5 Toggle Template- Toggles showing the map template 

6 Scan – scan for new robots to add to the system 

7 Toggle Map control – Toggle between moving the 

main view or the mini map view 

8 Help – Show the help page    

Table 3.6 List of all possible system commands.  

a) b) 
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3.8 Object Detection  

By integrating object detection algorithms into the system each robot can search for 

objects of interest independent of operator assistance. This can greatly decrease a suers 

the cognitive load in search based missions. Two object algorithms where created, a red 

barrel detector and a face detector.  

The red barrel detector uses the ROS package cmvision (Lazewatsky, 2011) which uses 

a RGB or YUV blob detector. Cmvision outputs a list of all possible blobs to a topic, 

defining blob size and location. The detect node then analyses these blobs to determine 

if they correspond to a red barrel. The face detector algorithm was created using an 

openCV HarrDetector.   

3.8.1 Detection Pipeline  

When a robot detects an object it publishes an ObjectsOfIntrest message which is read 

by the interface.  Each message contains the robot finders name, find time, percentage 

chance the object is correct and the image that was used for the successful 

identification. The interface then displays an icon of the object on the map in the 

discovered location. This is shown in Figure 4.13.  

 

Figure 3.12 An example of a robot detecting a red barrel a) the current robot video feed 

b) the red barrel icon being displayed on the map in the position of the detected item.  

b) 

a) 
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By clicking on the item the control panel will show item information and supply basic 

commands. The user may adjust the items position, remove it from the environment or 

change the items type. Figure 4.13 shows the control panel display for a selected item.  

 

Figure 3.13 A screenshot illustrating the Control panel for a selected an item. In this 
example a red barrel is current selected.  
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Figure 3.14 Comparison between a) interface generated environment and b) real world 

environment.  

a) 

b) 
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4.  Results and Discussion  

The final system was evaluated to determine the systems stability and level of usability. 

These areas can then be subsequently reviewed in future work to improve the system. 

Stability was tested using test cases and usability was tested using a combination of user 

testing and heuristic evaluation.  

4.1 Test Cases  

Test cases were applied for both one and two robots for both standard and extreme 

cases, focusing on evaluating the performance of all the systems features. The test 

which was designed for this evaluation can be found in section 2.6.3.  A full list of test 

case results can be found in Appendix C.  For the single robot tests the system passed 

50 out of 54 tests and for the double robot case 26 out of 31 tests, resulting in a 

combined score of 90%.  

4.1.1 Stability  

Through analysis of the test case numerical data it can be concluded that system 

performance can be considered stable for the purpose of a prototype system. However, 

this stability ranking cannot be extended to a higher level as very occasionally program 

crashing will occur. The cause of the crashing has not yet been directly identified. 

However, basic testing suggests the problem could be due to incorrect integration with 

rqt. More refinement will be needed to bring the system stability up to the level required 

for public release. 

4.1.2 Discovered System Bugs   

A number of system bugs where uncovered during the testing process with major bugs 

discussed below. For a complete list of all bugs see Appendix F.  

An issue was identified when the robots began to leave the connection range of the 

network; system lag was experienced that slowed the full system. The reason for this is 

still not fully understood, however the current hypothesis is that the problem is due to a 

remote terminal window being kept open. The window is required to launch the robots 

and must remain running on the master computer. It is believed that as the connection 

strength decreases, system lag will occur due to this window. A solution to this would 

involve stating the robots without the need for a remote terminal window to be 

constantly open. 
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Another concern was the red barrel detection algorithm was found to be not robust 

under varying light sources. In environments of high light saturation no detection was 

registered. It was also identified that the robot motion was occasionally affecting the 

algorithm resulting in no detection. The user tests had originally planned to involve 

using the object detection. However, it was deemed that the detector would not be 

robust enough to produce consistent results as users will be conducting the tests in an 

environment with varying lighting conditions. Hence it was decided to remove the 

detection tasks from the user tests.  

4.2 User Tests  

Tests were conducted for a total of eight users, an outline of the user tests is explained 

in section 2.6.4..  Users came from a similar engineering background with varying 

levels of robotics experience. Three out of the eight users were considered to be 

experienced in robotics. The full test results for each user can be found in Appendix D. 

4.2.1 Task Identification  

The averaged results for the task identification tests are shown in Table 4.1. It should be 

noted this task was completed with the users having no prior knowledge of the system, 

only being told the system was based on a RTS game. 

Task Time 

(s) 

Wrong 

actions 

Help 

needed 

Move the camera <5 0.1 No 

Zoom the camera in and out <5 0 No 

Select a robot <5 0.1 No 

Rotate a robot <5 0 No 

Find battery of robot 1 <5 0 No 

Find the status of robot 3 

camera 

12.8 0.4 No 

Find out what is wrong with 

robot 1 

<5 0 No 

Send robot a goal <5 1 No 

How would you stop a 

robot 

5.2 0.4 No 

Find out if an obstacle is in 41 6.6 Yes 
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the robots path 

Table 4.1 Averaged results from the Task Identification tests for a sample size of eight 

users, <5 refers  to  ‘under  five  seconds’. Actions as defined as anything that can change 

the state the system.   

The task identification results can be used to conclude that the user interface is 

providing an intuitive system for users to complete simple tasks. As a small sample size 

was used, with a limited number of tasks the results must be considered to be 

subjective. Because of this the conclusions made are to be considered as preliminary. To 

obtain more conclusive results a larger sample size must be used, with more detailed 

tasks of varying difficultly level and possibly conducted by an approved HCI tester 

(Sharp, et al., 2011). 

4.2.2 Single Robot Test: Teleoperation vs Interface 

The results from the single robot user tests were averaged and are shown in Table 4.2. 

Type Average 

Time (s) 

Average Potential  

Crashes 

Teleoperation 99.6  1.3 

Interface 60.3  0 

Table 4.2 Averaged results from the single robot control tests. A potential crash is 

defined as the test supervisor having to intervene to stop the user driving.  

Results indicate that the interface provides an improvement of 35% in user times when 

driving to a destination, when compared to the teleoperation system. Users had on 

average 1.3 crashes when controlling the robot using teleoperation compared to zero 

crashes when using the interface. Users commented that they felt much more confident 

and in control when using the interface. Observations showed that users found it 

particularly difficult to navigate doorways and corners using teleoperation, this problem 

was non-existent using the interface.  Figure 4.1 shows a comparison of times for both 

cases.  
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Figure 4.1  Mean time for users to drive to the destination point, a sample size of eight 

users. For teleoperation mean = 99.6s, slowest time = 145s, fastest time = 59s and for 

interface control mean = 60s, slowest time = 80s, fastest time = 40s. Error bars represent 

the fastest and slowest user times for the case.  

4.2.3 Advanced Test 

The advanced tests required users to map the third floor of the Electrical Engineering 

building using two robots.  A full floor exploration was defined to include all the hall 

ways, the robotic laboratory and the staff room; all users where able to complete this 

task. A map generated by a user is shown in Figure 4.2. The analysed results can be 

seen in Table 4.3. 

Type Result  

Average Map Time 277.7 s 

Potential crashes  0.1 

Fastest Time 210 s 

Slowest Time 405 s 

Table 4.4.3 Computed results from the user tests requiring users to map an area in the 

fastest time possible with two robots. A sample size of eight user was used.  

 

 

Teleoperation Interface 

Time to 
destination 

(s) 
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Figure 4.2 A user generated map of the third floor of the Electrical Engineering 

building using two robots. The robotics laboratory and staff room are labelled.  

Users where divided into two groups, those with robotic experience and those without. 

A distinction was made by examining the user’s academic and employment 

backgrounds. RTS experience cannot be used in the analysis as the method used to 

collect experience levels is subjective; requiring users to rank their abilities. A more 

advanced method required, such as getting users to play an RTS game resulting in a 

quantified score of performance.  Figure 4.3 shows the difference in average time taken 

to map the floor between the different user types. The figure demonstrates that a  user’s 

performance is relativity constant and independent of the user’s  experience in the field 

of robotics. It should be noted that this test has a small sample size and contains 

possible outliers. Further testing will be required to produce conclusive. 

 

 

 

Robotics Laboratory 

Staff Room 



48 
 

 

Figure 4.3 Mean time for user to map the third floor of the Electrical Engineering 

building. Comparison between uses with no robotics experience (mean = 262s) and 

users with robotic experience (mean = 304s).   

4.2.4 Analysing User Comments and Observations  

Analysing user feedback can be used to further infer the systems usability, details on 

each user’s comments can be found in Appendix C.  All users commented that they had 

more in control of the system and were more confident when using the interface as 

opposed to using teleoperation. Users commented that they liked the visual appearance 

of the interface and that information was appropriately organised and displayed.  

4.3 Heuristic Evaluation 

The data from user testing was later used to conduct a heuristic evaluation. The details 

explaining the evaluation can be found in section 2.6.5, the calculated heuristic scores 

are shown below in Table 4.4 below, with detailed explanation of the point allocations 

are located in Appendix E. 
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 Evaluation Criteria Score 
1 The overall navigation structure is clear and easy to understand 0 

2 Minimalist design— No excess features or information 0 

3 Visual elements (menus, colours, layout) are consistent across the 

system 

0 

4 Design follows same conventions as existing tools that serve the same or 

similar purpose  

1 

5 Interactions and behaviours are consistent across the system 0 

6 Aesthetic integrity— Design has clear visual hierarchy, good alignment, 

good colours contrast, and readability  

1 

7 Each interface has a clear path for the user to take 0 

8 Content is clear and concise 0 

9 Labels and button text are clear and concise 0 

10 Icons are unambiguous 1 

11 UI elements provide visual feedback when manipulated (i.e. buttons 

depress when clicked) 

0 

12 Number of buttons/links is reasonable 0 

13 System’s  visual  characteristics  imply  how  to  interact  with  the  interface  

(affordance) 

1 

14 Interface provides feedback to the user about the status of the system 2 

15 System speaks the  user’s  language   0 

16 Users must confirm before error-prone actions are taken (i.e. deleting, 

quitting) 

2 

17 Users can tailor frequent actions to boost efficiency 2 

18 Alerts and notifications are used only for the most important information 0 

19 Error messages are in plain language, informative, and unambiguous 0 

20 Error messages offer solutions 3 

21 Users can easily access instructions, when appropriate 0 

22 Documentation is easy to search, focused  on  the  user’s  tasks,  and  not  too  

dense 

0 

23 Layout could support translation to another language (i.e. Spacing is 

forgiving enough to accommodate longer words or characters 

1 

   Total Score 14 

Table 4.4 Results from the heuristic evaluation. Detailed explanations of the point 

allocations are located in Appendix E. 
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4.3.1 Heuristic Evaluation Discussion       

The interface scored 14 deducing points from the heuristic evaluation. This is equivalent 

to a score of 101/115 or 88%. This score can be used reinforce the belief that the 

interface is providing a highly usable experience for user. However, such a score can 

only be considered a preliminary estimation of the system. This is due to subjective 

nature of heuristic evaluation which is due to bias created from the author conducting 

the tests. 

4.4 Important findings 

4.4.1 Testing Limitations   

As discussed in all test selections, the results obtained must be carefully assessed. The 

nature of many user interface evaluation methods is that they can produce inconclusive 

results for small sample sizes.  Result accuracy can be improved by using professional 

experimenters, which can reduce the bias of tests or the use of a large and diverse user 

base.  However, such methods were in excess of this project’s allocated budget.  

The best approach to obtain conclusive results for the developed system would involve 

a release to the robotic community. Once released, user feedback will be easily 

obtained, with the errors uncovered and subsequently repaired by system updates. The 

ROS package distribution system provides the ideal infrastructure to implement such a 

strategy.  

4.4.2 Discovered Improvements  

Possible system improvements can be identified through investigation of the obtained 

results. Stability analysis proved that an increase in robustness would be needed to 

produce a higher quality system. Further development of the communication system 

would also be needed, not only to increase the robustness of the current system, but to 

also increase the systems scalability. 

Task identification results identified a number of improvements that will increase 

usability. Many users attempted to click either the hardware status icons or the robot 

state summary icons. Further refinement could improve this icon design to make it look 

less like a button. Some users did not understand the colour coding convention; this will 

have to be clearly illustrated in all manuals and help pages.  
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By analysing user comments and observations future improvements can be suggested. 

100 % of users commented that the mouse drag system was hard to use at times, feeling 

that the motion was jerky and unresponsive. This component can be refined by using 

more advanced screen movement algorithms and will be addressed in future work.  63 

% of users commented that the webcam controls could be improved, with some users 

suggesting that a hold function could be added. Such a feature would allow continuous 

camera movement as long as the button is pressed. 

It was discovered through testing that additional feedback mechanisms will be required, 

with a specific area being the management of lag and delays. Commands sent to the 

robot will not happen instantly, requiring a small amount of time to be processed. 75% 

of users agreed that a connection strength meter for each robot will be useful, the simple 

‘yes or no’ connection feature is not sufficient. It was identified that increased general 

system feedback was also needed. This would include mechanisms to let a user know 

their command has been sent and is being processed, as well as sounds and loading 

icons. When questioned about the addition of speakers and a microphone to the robots, 

100% of users said this would be a great addition.  

Other user suggested improvements included: a video recording feature, a health bar to 

represent robots connection strength, the introduction of hotkeys to allow a robot to be 

selected by pressing a number, having the camera track a robots position and the ability 

to send multiple goals to a robot.  

4.4.3 System Limitations  

The system was only tested with two robots, hence although the system was designed to 

accommodate for five robots, no claims can be made about the effectiveness of the 

system for more than two robots. The system was tested indoors and in a level 

environment. It is predicated that a 3D map display will be needed to allow for effective 

control in outdoor environments.  

4.4.4 Comparison to the State of the art  

Comparison to the state of the art is difficult as full access to another state of the art 

interface is required for a complete evaluation. Instead, to perform comparison primary 

features of each interface can be compared. It was determined through research that 

Team  Michigan’s interface (TMI) is currently deemed to be the most state of the art 
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interface available. Hence this interface was used to compare against this projects 

developed interface (DI). 

1) TMI requires two operators while DI needs only one.   

2) TMI was been successfully tested using 11 robots compared to DI’s  2 robots.  

3) DI focuses on providing a simple to use system and has been tested on users 

with no robotics experience or training, TMI has only been used by robotic 

experts.  

4) TMI provides the option to show a three dimensional maps to help increase 

situational awareness, MRC does not.  

5) DI provides a modular design that can be modified for different applications, 

TMI is specifically designed for explore and locate missions.  

The above can be summarised as follows; the Team Michigan interface is a complex 

and powerful system, specifically tailored to the application of explore and locate 

missions. It however requires two highly trained operators and is built off private 

software, making it very inaccessible to outside researchers.   

The developed interface is simpler in design and features when compared to TMI, but it 

is user friendly and can be operated by a single user. The system is built with a modular 

and ROS compatible design; meaning it can be easily integrated into other robotic 

systems running ROS.  
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5. Conclusions 

The overall project objective was to develop an effective single-user, multi-robot user 

interface. The collection of project results can be used to create a preliminary evaluation 

of the system, which can be used to produce initial conclusions of the system.  

Results from the test cases proved the system has adequate stability, noting that further 

refinement is still required.  The single robot tests showed the system has improved 

performance over transitional teleoperation methods. Results from the task 

identification, user comments and heuristic evaluation prove the system is providing an 

intuitive and user friendly experience for the user. The advanced robot control tests 

demonstrate the system is useable for users inexperienced in in the field of robotics.   

It can hence be concluded that the primary objective of creating a user-friendly, single 

user, multi-robot user interface, based upon the RTS paradigm has been developed.  

Demonstrating that for an indoor environment the system provides an implementation 

for a user of low robotics experience to effectively control two robots. 

5.1 Contribution to the State of the Art  

By developing the system as an rqt plugin and by using only ROS compatible 

components a system has been created that can be easily integrated into other ROS 

systems. Once released to the robotic community, the system will provide a state of the 

art and easy to run multi-robot interface that can be used by other researchers. By 

having access to ROS compatible product other researchers can use the system as the 

foundation for other interfaces, or to conduct further research in HRI.  The project has 

also produced results for the use of the RTS paradigm in the design of a multi-robot 

interface. Preliminary results have begun to show that the RTS paradigm is an effective 

design constraint for the development of multi-robot user interfaces.  However, more 

results are needed before conclusive claims can be made.  

5.2 Multi-Robot User Interface Design Guidelines 

A series of design guidelines can be recommend for the development of future multi-

robot user interfaces. This has been developed from analysing the project results and 

incorporating the lessons learnt from the construction of the system. 
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5.2.1 Follow the RTS Paradigm 

1) Use a layout based upon a central map display with a control panel placed 

below. 

2) Implement a robot section method that continuously updates the control 

panel with data of the selected unit.  

3) Look to tested RTS features when developing new interface features.  

5.2.2 Enhance Situational Awareness  

1) Use maps with an overlayed robot position to increase location awareness. 

2) Overlay costmaps and provide a webcam feed to help increase surroundings 

awareness. 

3) Provide users with a robot list which is visible at all times, to help increase 

mission awareness. 

5.2.3 Lower users cognitive load  

1) Provide a simple goal selection control system. 

2) Implemented colour coding mechanisms. 

3) Have the option to disable central map display features. 

4) Use a clean and simple design, with well-defined borders, a simple colour 

palette and appropriate icons.  

5.2.4 Adequate Status Information  

1) Provide the user with easy to interpret robot status information. 

2) Summarise and prioritise each robots state. 

3) Use sounds and flashing animations to increase feedback.  
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6. Future Work and Recommendations 

Using the current interface as a foundation a number of possible future work areas have 

been devised; with the primary focus on refining the system in preparation for release to 

the ROS community, and eventually for use in real world applications.   

Further development focusing on increasing system robustness should ne the number 

one priority.  Refining software on both the robots and master interface will ensure the 

system is stable in all situations. The development of a more advanced process manger 

will enable robots to effectively monitor all their nodes, taking informed actions to 

overcome errors, effectively increasing the robot robustness.  

A more advanced communication system is needed. An asynchronous dynamic design 

that only sends data to the interface when requested should be implemented. For 

example a costmap should only be transmitted if the interface is actually displaying the 

map.  Such a system will reduce the network traffic and will make the system more 

scalable, allowing for more robots to be used at one time. A mesh network could also be 

set up to allow the master to communicate with a robot by using the other robots as 

network nodes. This will greatly increase the systems communion range. Further user 

testing is required to correctly make conclusive conclusions which can later be 

published in support of the system upon its release. Using these new results and the 

results from the conducted tests further features refinement can be undertaken.  

With a fully tested and refined multi-robot interface, work can turn to developing the 

system into a next generation system.  Finishing the Map Builder port will allow for a 

state of the art large scale mapping solution that will greatly increase the maximum map 

size available. Converting the map module to a three dimensional map display will 

further increase the users situational awareness and will enable the system to work in 

more complex environments.  

Finally application specific features can be added to tailor the system for a certain 

mission. Such as; developing object detection algorithms for search and rescue 

missions, multi-robot path navigation for mining applications and, durable hardware 

and software for military roles.  
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8. Appendices 

Appendix A – Graphical Interface Evolution  

 

Figure A1 Graphical user interface version 1, a mock up desinged in photoshop. 

 

Figure A2 Graphical user interface version 2, layout designed in Qt. Other features not 

functional, images added with Photoshop. 
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Figure A3   Graphical interface version 3, functional; map module, video feed, robot 

selection and goal commands.  Basic control panel functions where implemented.  

 

 

Figure A4 Graphical interface version 4, non-functional purely a layout and visual 

design. Colour palette had to be abandoned as to be compatible with the rqt framework. 
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Figure A5  Graphical interface version 5,  a fully working system embedded within the rqt framework. 
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Appendix B - Custom Messages 

base_to_robot 

int64 type 

string message 

 

robot_to_base 

Header header 

string owner 

int8[] status 

string message 

 

ObjectOfIntrest 

int8 type 

string name 

string finder 

time found_time 

sensor_msgs/Compressed image 

 

Type Description 

1 Change detection algorithm  

2 Send a global goal 

3 Send a local goal 

4 A drive command  

5 Change robots mode 

6 Change robot fail safe 

7 Connection check  

Table B1 Key table used by the base_to_robot message. 
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Type Type Name Sub 

Type 

Description 

5 Change robots mode 0 Manual Control 

5 Change robots mode 1 Explore 

1 Change detection algorithm 0 Nothing 

1 Change detection algorithm 1 Red Barrels 

1 Change detection algorithm 2 Human faces 

6 Change robot fail safe 0 Home 

6 Change robot fail safe 1 Explore 

6 Change robot fail safe 2 Stop 

Table B1 Sub key used to define which selection with in a state change command. For 

example is robot mode is to be changed, 0 supplied to the message field will command 

the robot to enter manual control. 
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Appendix C - Test Case Results 

C1 One Robot  

 Test Case Result Comments 
1 Turn on wambot4 PASS - 
2 Start-up interface PASS - 
3 Zoom map PASS - 
4 Move map PASS Could do with refinement 
5 Toggle template PASS - 
6 Move template  PASS - 
7 Confirm robot state is correct PASS - 
8 Toogle map control PASS - 
9 Zoom mini map PASS - 
10 Select robot, unselect robot PASS - 
11 Confirm robot battery PASS - 
12 Confirm robot battery has three 

colours 
PASS - 

13 Confirm robot state PASS - 
14 Fail  primary laser – check status 

icon 
PASS - 

15 Fail secondary laser– check status 
icon 

PASS - 

16 Fail camera– check status icon PASS - 
17 Fail IMU – check status icon FAIL Not implemented 
18 Lose connection – check icon PASS - 
19 Check base warning icon PASS - 
20 Check secondary laser warning icon  PASS - 
21 Send robot goal PASS - 
22 Toggle costmap PASS - 
23 Toggle path  PASS - 
24 Turn map black PASS - 
25 Turn map off PASS - 
26 Stop robot PASS - 
27 Rotate left and right PASS Could increase rotation 

amount 
28 Move forward and back PASS More feedback as to 

what the robot is doing 
could be helpful. 

29 Toggle camera controls PASS - 
30 Move camera  PASS - 
31 Add item PASS - 
32 Move item PASS - 
33 Select item, then select robot PASS - 
34 Remove item  PASS - 
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35 Force robot to state summary 1 -  no 
connection 

PASS - 

36 Force robot to state summary 2 – low 
power 

PASS - 

37 Force robot to state summary 3 - 
error 

PASS - 

38 Force robot to state summary 4 - 
Warning 

PASS - 

39 Force robot to state summary 5 - OK PASS - 
40 Confirm detect state change PASS - 
41 Confirm red barrel detection – low 

light 
FAIL - 

42 Confirm red barrel detection – 
standard light  

PASS - 

43 Confirm red barrel detection – highly 
saturated 

FAIL - 

44 Confirm item displayed on map, 
confirm item shown 

PASS - 

45 Move found item PASS - 
46 Delete item PASS - 
47 Confirm face detection  PASS - 
48 Confirm failsafe state change PASS - 
49 Confirm home failsafe PASS - 
50 Confirm none failsafe PASS - 
51 Confirm stop failsafe PASS - 
52 Explore area with interface PASS - 
53 Explore using controller  PASS - 
54 Move robot out of range  FAIL System experienced lag 

and did not update the 
interface with the lost 

connection. 

Table C1 Results from the single robot test cases   

Pass rate = 50 /54 = 92.6% 

C2 Two Robots  

 Test Case Result Comments 
1 Turn on wambot1 (robot 1) PASS - 
2 Turn on wambot4 (robot 2)  PASS - 
3 Confirm robot  1 state is correct PASS - 
4 Confirm robot 2 state is correct PASS - 
5 Select robot 1  PASS - 
6 Select robot 2 PASS - 
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7 Send robot 1 a goal PASS - 
8 Send robot 2 a goal PASS - 
9 Stop robot 1 PASS - 
10 Stop robot 2 PASS - 
11 Stop all robots  PASS - 
12 Toggle robot 1 costmap PASS - 
13 Toggle robot 2 costmap PASS - 
14 Toggle robot 1 path PASS - 
15 Toggle robot 2 path PASS - 
16 Move robot 1 camera PASS - 
17 Move robot 2 camera PASS - 
18 Test switching video feed  FAIL - 
19 Test joy stick controller for both FAIL - 
20 Explore with robot 1 PASS - 
21 Explore with robot 2 PASS - 
22 Drive robot 1 into a low connection 

range 
FAIL - 

23 Drive robot 2 into a low connection 
range 

FAIL - 

24 Return robot 1 home PASS - 
25 Return robot 2 home PASS - 
26 Select goal in unknown space PASS - 
27 Return camera home PASS - 
28 Press help button PASS - 
29 Pause map update and confirm it is 

correct  
PASS - 

30 Stop all robots PASS - 
31 Send both robots to the same goal and 

confirm no collision occurs 
FAIL - 

Table C2 Results from the test case with two robots.  

Pass rate = 26/31 = 83.8% 
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Appendix D – User Test Results  

D1 User 1 

Name Dagogo Altraide   
Age 22 
Qualifications Mechanical Engineer 
Robot Experience None – 0 
RTS experience  Limited - 2 
 

Task Identification 

Task Time Wrong 
actions 

Help 
needed 

Comments 

Move the map view U5 0 No - 

Zoom the map view U5 0 No - 

Select a robot U5 0 No - 

Rotate a robot 13 0 No Took a bit of time to find 

the button. 

Find battery of robot 1 U5 0 No - 

Find the camera status of 

robot 2 

20 1 No Had to be told it was in 

the control panel 

Find out what is wrong 

with robot 1 

U5 0 No Previous question 

influenced? 

Send a goal to robot 1 U5 3 No Pressed the wrong button 

Stop a robot U5 0 No - 

Find out if an obstacle is 

in the robots path 

NA 9 Yes Over 60 seconds  

 

Teleportation vs. Interface 

Type Time Potential 

Crashes  

Teleoperation 124 s  2 

Interface  68 s 0 
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Advanced Test 

Type Result 

Map Time 302 s 

Potential crashes  0 

 

User Comments and Observations  

The user stated that he was very inexperienced with real time strategy games. In the task 

identification test the user required help completing some tasks.  

In the single robot test the user found it difficult to drive the robot though the initial 

door way, driving very slowly and carefully. Even with his caution two potential 

crashes occurred in his attempt to clear the door way. The user commented that he 

would like to see between camera controls, “The   camera   control   was   sub-par”.   He  

suggested adding a function where a user could hold the button to allow a continuous 

camera movement.  

For the advanced test the user showed relatively good control of the system. Although 

his exploration method was sub optimal.  The user commented about the map drag 

function saying it needed more work,  “The  map  drag  is  very  jerky  and  hard  to  control”. 

During this user test the hector mapping algorithm on the robot produced a slightly 

messy map.  The user commented that this was confusing.  
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D2 User 2 

Name Prawi Woods 
Age 22 
Qualifications Civil Engineering student 
Robot Experience None - 0 
RTS experience  Very experienced real time strategy game player, expert 

StarCraft player - 9 
 

Task Identification 

Task Time Wrong 
actions 

Help 
needed 

Comments 

Move the map view U5 1 No First attempt  didn’t  hold  

button 

Zoom the map view U5 0 No - 

Select a robot U5 0 No - 

Rotate a robot U5 0 No - 

Find battery of robot 1 U5 0 No - 

Find the camera status of 

robot 2 

10 1 No Did not understand the 

colour coding. 

Find out what is wrong 

with robot 1 

U5 0 No - 

Send a goal to robot 1 U5 0 No Pressed the wrong button 

Stop a robot U5 0 No - 

Find out if an obstacle is 

in the robots path 

30 s 3 Yes Was told to try press 

buttons  

 

Teleportation vs. Interface 

Type Time Potential 

Crashes  

Teleoperation 80 1 

Interface  52 0 
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Advanced Test 

Type Result 

Map Time 248 

Potential crashes  0 

 

User Comments and Observations  

In the task identification tests the user seemed very confident using the system, being 

able to complete most tasks very quickly. The user had to be told the colour coding of 

the status icon, but was able to identify that the icon represented the camera status. Did 

not know what a costmap was, but was able to identify that it was showing a real time 

obstacle map after clicking it.  

In the single robot test the user found it hard to drive though doors, moving slowly 

when taking corners, “I   found   it   very   hard   to   control   the   robot   especially   around  

corners,” and “I  wasn’t  sure  which  direction  the  camera  was  pointing  with  respect  to the 

robots  orientation”.  The  user  commented  that  he  really  enjoyed  used  the  system  and  that  

it reminded him of playing an RTS game, “I  really  like  this  it,  it really does remind me 

of  playing  Starcraft.” 

For the advanced test the users experience in RTS gaming was apparent, with the user 

making fast and decisive decisions. The user said he enjoyed using the system and likes 

the idea of basing the system off an RTS. When questioned about what the user thought 

of the overall system his replay was “The system works, but  it  still  needs  refinement”.  

User suggestions included; Keep a unit selected when moving the map, be able to set 

multiple goals, highlight the drive command buttons as the robot is driving. After 20 – 

30 minutes of controlling the robots, the user claimed he was comfortable using the 

system.  
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D3 User 3 

Name Phillip Whyte   
Age 22 
Qualifications Mechanical Engineer with Finance Degree   
Robot Experience None – 0 
RTS experience  Very Limited - 2 
 

Task Identification 

Task Time Wrong 
actions 

Help 
needed 

Comments 

Move the map view U5 0 No - 

Zoom the map view U5 0 No - 

Select a robot U5 0 No - 

Rotate a robot U5 0 No - 

Find battery of robot 1 6 s 0 No - 

Find the camera status of 

robot 2 

U5 1 No Understood the colour 

coding for green equals 

OK 

Find out what is wrong 

with robot 1 

U5 0 No Figured immediately the 

IMU error 

Send a goal to robot 1 U5 2 No Took a few attempts 

Stop a robot 20 3 No Tried to click the error 

icon button 

Find out if an obstacle is 

in the robots path 

52 s 8 Yes Through trail and error the 

user figured out he needed 

to pressed the costmap 

button.   

 

Teleportation vs. Interface 

Type Time Potential Crashes  

Teleoperation 75 s 3 

Interface  41 s 0 
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Advanced Test 

Type Result 

Map Time 210 s 

Potential crashes  1 

 

User Comments and Observations 

For the task identification test the user performed well given his limited experience with 

RTS video games.   The user correctly identified the colour coding of green equals OK 

and red for error. The user was confused by the error icon above  the  robot,  “I  thought  

the  error  icon  was  a  stop  button”.  User  also  thought  the  status  icons  where  buttons.     

User produced fast times for both single robot cases, although an aggressive approach 

was taken in the teleportation case, which can be seen in the three potential crashes.  It 

should be noted that in the interface case the user used both a combination of setting 

goals and using the joy stick controller.  The controller was used to get around convers 

faster and make small adjustments to the path.  This proved to be a very good 

combination and resulted in a very fast time.  The user commented that he could found 

interface  control  much  easier,    “  because  I  could  click  on  the  goals  and  see  the  map,  this  

made it much easier to go thought doors. Because I could see the width of the door and 

then compare it to the size of the robot I was confident the robot could clear it and thus 

could   go   faster”.   This   comment   is   illustrating   that   the   user   is   experiencing   increased  

situational awareness.  

The user commented   that   he   found   the   first   test  more   exciting,   “I   like   the   immersive  

nature  of  using  only  a  video  feed  and  it  felt  like  I  was  going  faster”.  However  the  user  

commented  that  he  found  the  second  test  more  “satisfying”.    User  suggestions  on  how  

to improve the  interface  include;;  more  feedback,  change  the  robot  icon,  “I  can’t  see  the  

arrow  very  well”,  a  heading  on  the  video  feed  to  both  show  the  robot  name  and  if  a  feed  

is streaming, a video record function, wants speakers so can interact with surrounding 

people. 

User was impressed with the system and liked how the map would update as the robot 

explored.  User  didn’t  like  the  lag  that  occurred  as  the  robots  got further away from the 

base, suggested a connection icon to show the connection strength of a robot.   
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D4 User 4 

Name Bradley Pattrick 
Age 23 
Qualifications Chemical Engineer and Chemist   
Robot Experience None - 0 
RTS experience  Very Experienced – 7 
 

Task Identification 

Task Time Wrong 
actions 

Help 
needed 

Comments 

Move the map view U5 0 No - 

Zoom the map view U5 0 No - 

Select a robot U5 1 No Clicked the error icon.  

Rotate a robot U5 0 No - 

Find battery of robot 1 10 s 0 No Thought the robot colour 

icon was the charge. 

Find the camera status of 

robot 2 

43 s 0 1 User to a long time to 

figure out the status icons 

represented hardware 

state. Did not understand 

colour coding. 

Find out what is wrong 

with robot 1 

10 s 0 No Influenced by help in 

previous section.  

Send a goal to robot 1 U5 1 No Clicked wrong mouse 

button 

Stop a robot U5 0 No - 

Find out if an obstacle is 

in the robots path 

NA 10 - User could not figure out 

in fewer than 10 attempts.   

 

Teleportation vs. Interface 

Type Time Potential Crashes  

Teleoperation 109 s  0 

Interface  78 s 0 
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Advanced Test  

Type Result 

Map Time 315 s 

Potential crashes  0 

 

User Comments and Observations  

For the task identification test user could not figure out the status colour coding, and 

commented that the colour of green for OK and red for error is not easy to figure out.  

However once the understood he  said  “the  convention  makes  sense”. 

For the single robot tasks the user drove very slowly thought the door. Commenting 

“the  joy  stick  control  was  more  fun  and  liked  how  it  went  faster”.  However  he  also  said  

“he  felt  less  safe  and  confident  with  the  joy  stick”  and  proposed  an  idea  of  side  mounted  

cameras.   

For the advanced test the user showed good multi-tasking stills being able to effectively 

and quickly control the two robots. In the users test the map produced was particularly 

messy, the user responded well to this error and was able to complete the task.  Said the 

map drag needed more refinement and was hard to use, said the scroll was too fast, 

didn’t  like  hoe  the  hector  map  got  messy.    Said  he  likes  the  goal  setting  system  and  that  

it was easy to use.  Said the responsiveness of the system was adequate.  Noted that he 

did not use the mini map and instead simply zoomed out on the main map.  
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D5 User 5 

Name Remi Kent 
Age 22 
Qualifications Software Engineer 
Robot Experience Highly experienced with ROS. Has worked on 

the Wambots and a Nao - 7 
RTS experience  High level of experience with video games. - 7 
 

Task Identification 

Task Time Wrong 
actions 

Help 
needed 

Comments 

Move the map view U5 0 No - 

Zoom the map view U5 0 No - 

Select a robot U5 0 No - 

Rotate a robot U5 0 No - 

Find battery of robot 1 U5 0 No - 

Find the camera status of 

robot 2 

7 s 0 1 Told to look in display 

panel 

Find out what is wrong 

with robot 1 

U5 0 No -  

Send a goal to robot 1 U5 1 No - 

Stop a robot U5 0 No - 

Find out if an obstacle is 

in the robots path 

NA 10 - User could not figure out 

in fewer than 10 attempts.   

 

Teleportation vs. Interface 

Type Time Potential Crashes  

Teleoperation 145 s 2 

Interface  80 s 0 
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Advanced Test  

Type Result 

Map Time 247 s 

Potential crashes  0 

 

User Comments and Observations  

User produced very quick identification of all tasks.  The user did not manger to 

identify the costmap could be used to pick up obstacles.  

When driving the single robot using teleoperation the user found it quite hard to drive 

thought the door taking a long time. The user had two potential crashes when attempting 

to drive thought the door.  The user commented how he went the map was moved the 

unit  was  unselected.  Commented  “the   interface  was  must  easier   than  driving with the 

controller”. 

User suggested displaying the robots name or number above the map icon. User 

suggested a health bar above the robot icon that would represent the connection strength 

of the robot to the base. When asked what the user thought of the overall system he 

replied  “I  really  like  the  system  and  found  it  very  easy  to  use.”. 
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D6 User 6 

Name Enda Mccauley 
Age 21 
Qualifications Mechatronics Engineering and Computer Science student    
Robot Experience Highly experienced with ROS. Is working on a project 

using the Wambots. - 7 
RTS experience  Reasonable - 5 

 

Task Identification 

Task Time Wrong 
actions 

Help 
needed 

Comments 

Move the map view U5 0 No - 

Zoom the map view U5 0 No - 

Select a robot U5 0 No - 

Rotate a robot 6 0 No - 

Find battery of robot 1 U5 0 No - 

Find the camera status of 

robot 2 

7 s 0 1 Correctly identified green 

as OK. 

Find out what is wrong 

with robot 1 

U5 0 No -  

Send a goal to robot 1 U5 1 No Clicked wrong mouse 

button to send goal 

Stop a robot U5 0 No - 

Find out if an obstacle is 

in the robots path 

30 10 - Was told to try press 

buttons. 

 

Teleportation vs. Interface 

Type Time Potential Crashes  

Teleoperation 140 s 2 

Interface  75 s 0 
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Advanced Test  

Type Result 

Map Time 405 s 

Potential crashes  0 

 

User Comments and Observations 

User performed very well in the task identification test this test being able to complete 

most tasks very quickly. User failed to identify the cost map was a way to determine 

real time obstacles.  

For the single robot control test the user was very cautious when going thought 

doorways,  drove  constantly  too  close  to  the  walls  and  commented  “It was very hard to 

dive the robot through a door way”.   

User performed advanced test slowly although appeared to have good control and 

understanding of the system.  The mapping in this test produced a messy overlay. The 

user overcame this easily saying “the map colour coding and the fact that the selected 

map is displayed on the highset layer made it easy enough to comprehend the 

environment”. At one stage the user hid one of the robot maps so that he could better 

control the other robot. 

User suggested adding hot keys so that robots could be selected by pressing a number. 

He also suggested that when the number was pressed twice the camera would centre on 

the robot. The user commented that really liked the system and that it remained him a 

lot of playing an RTS.  
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D7 User 7 

Name Calum  Meiklejoh 
Age 23 
Qualifications Robotics Engineer  
Robot Experience Has previously worked on the Wambots. - 9 
RTS experience  Average – 5  
 

Task Identification 

Task Time Wrong 
actions 

Help 
needed 

Comments 

Move the map view U5 0 No - 

Zoom the map view U5 0 No - 

Select a robot U5 0 No - 

Rotate a robot U5 0 No - 

Find battery of robot 1 U5 0 No - 

Find the camera status of 

robot 2 

U5 0 No - 

Find out what is wrong 

with robot 1 

U5 0 No -  

Send a goal to robot 1 U5 0 No - 

Stop a robot U5 0 No - 

Find out if an obstacle is 

in the robots path 

15 10 - - 

.  

Teleportation vs. Interface 

Type Time Potential Crashes  

Teleoperation 59s 0 

Interface  49s 0 
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Advanced Test  

Type Result 

Map Time 260s 

Potential crashes  0 

 

User Comments and Observations  

This user way identified to have a very high level of robotic experience, having 

previously worked on a project with the Wambots.  The user performed very well 

completing all tasks quickly, with no mistakes and no assistance. 

The user commented that he was experienced controlling the robot via a video feed, this 

showed in the users time.  User   said   “I  would   like   to  be   able to play sounds as I am 

exploring”.  When   asked   about   possible   improvements   the   user   suggested;;   improving  

the map drag, improve the navigation path finding, longer lasting batteries and a 

improved Wi-Fi network.  

The  user   commented   “this   is   a   very   easy   to   use   system   and   I   really   like   it”.  He   also  

made  a  comparison  to  Rviz  saying  “It  is  much  easier  to  control  compared  to  Rviz”. 
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D8 User 8 

Name Calum Webb  
Age 22 
Qualifications Mechanical  Engineer and Computer Scientist 
Robot Experience Low. – 2 
RTS experience  Very High - 8  
 

Task Identification 

Task Time Wrong 
actions 

Help 
needed 

Comments 

Move the map view U5 0 No - 

Zoom the map view U5 0 No - 

Select a robot U5 0 No - 

Rotate a robot U5 0 No - 

Find battery of robot 1 U5 0 No - 

Find the camera status of 

robot 2 

10 s 0 1 Tried to click the status 

icon. 

Find out what is wrong 

with robot 1 

U5 0 No -  

Send a goal to robot 1 U5 0 No - 

Stop a robot U5 0 No - 

Find out if an obstacle is 

in the robots path 

25 3 - Was able to quickly figure 

out what to do by pressing 

buttons.  

.  

Teleportation vs. Interface 

Type Time Potential Crashes  

Teleoperation 65 s 1 

Interface  40 s 0 
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Advanced Test  

Type Result 

Map Time 235 s 

Potential crashes  0 

 

User Comments and Observations  

User completed the task identification task quickly and will few mistakes. When driving 

the robot with teleoperation the user was appeared confident although the path the robot 

took  was  slightly  sporadic.  The  user  commented  “I  felt  much  more  in  control  using  the  

interface”  also  stating  “The  video  feed  was  more  fun  to  use”.     

The user suggested some possible improvements; keep a unit selected when the map is 

moved, refine the map drag, have an option that makes the camera follow a robots 

position, be able to set multiple waypoints, hotkeys for robot section the addition of 

speakers  and  a  microphone.  The  user  conducted  by    saying  “Overall  the  system  was  

really good and easy to use, however it needs more refinement before it can be 

published”.   
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Appendix E – Heuristic Evaluation Reasoning   

The following provides reasoning to the scores allocated in the heuristic evaluation.  

1) The overall navigation structure is clear and easy to understand  

All users were able to complete the task identification challenges in appropriate times.  

Score of 0 assigned.  

2) Minimalist design— No excess features or information 

Users commented on the clean and simple layout  

Score of 0 assigned.  

3) Visual elements (menus, colours, layout) are consistent across the system 

Two major sets of icons where used, all with a simple colour palette .This increases icon 

design consistency.  The status colour coding was keep constant, red for error, yellow 

for warning and green for OK. 

Score of 0 assigned.  

4) Design follows same conventions as existing tools that serve the same or similar 

purpose 

As new icons and conventions are introduced the system cannot be said to fully be fully 

consistent with the current rqt interface conventions. The use of hints makes this a 

problem a purely cosmetic flaw.  

Score of 1 assigned.  

5) Interactions and behaviours are consistent across the system 

The control system is identical for all unit types. Select is obtained from clicking the 

units map icon and commands to the unit can be issued from the command pad. 

Score of 0 assigned.  

6) Aesthetic integrity— Design has clear visual hierarchy, good alignment, good 

colours contrast, and readability (good font size & spacing)  
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Design is not fully optimised and can benefit from further refinement. Improvements 

would be purely cosmetic changes and would not significantly affect the usability of the 

system. 

Score of 1 assigned.  

7) Each interface has a clear path for the user to take 

User testing proved that for simple tasks user where able to clearly identify the path 

to take to complete an action. Hints are available to help a user determine the correct 

path to a solution.  

Score of 0 assigned.  

8) Content is clear and concise  

System visual dsing is clean and simple. Icons and colour are used to simplify data to 

reduce the cognitive laoad on the user.  

Score of 0 assigned.  

9) Labels and button text are clear and concise- 0 

All texted used is short and to the point. Hints provide the an appropriate level of text.  

Score of 0 assigned.  

10) Icons are unambiguous  

Task identification showed that users did not always correctly identify icons. Further 

refinement of icon design would be beneficial.  

Score of 1 assigned.  

11)  UI elements provide visual feedback when manipulated (i.e. buttons depress when 

clicked) 

Interface provides adequate forms of feedback for tasks, buttons are depressed when 

pressed, sounds are produced to correspond with actions and when a robot goal is given 

an icon is placed on the map. 

Score of 0 assigned.  
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12) Number of buttons/links is reasonable 

Users commented on the clean and simple design of the interface. The number of 

buttons was deemed to be reasonable.  

Score of 0 assigned.  

13) System’s  visual  characteristics  imply  how  to  interact  with  the  interface  (affordance)  

Most of the interface proved to be intuitive, users recognised buttons as buttons, 

however many users thought the status icons where buttons and proceeded to click 

these. Further refinement would benefit the system.  

Score of 1 assigned.  

14) Interface provides feedback to the user about the status of the system 

State summaries are given and messages are displayed to the user to indicate a change 

in the system.  More refinement would be beneficial, adding flashing animations and 

sounds to indicate a state change would increase usability.  

Score of 2 assigned.  

15) System  speaks  the  user’s  language  (appropriately technical for the audience  

User tests showed that even inexperienced users where able to complete complex tasks 

with the system.   

Score of 0 assigned.  

16) Users must confirm before error-prone actions are taken (i.e. deleting, quitting)  

The deleting of false item identification does not require user confirmation. The fix to 

this will only require a minor software modification.  

Score of 2 assigned.  

17) Users can tailor frequent actions to boost efficiency, where applicable 

No mechanism to increase efficiency of frequent actions was included. One solution to 

this would be to add hotkeys, such an implantation would be a minor change thus a 

score of 2.  
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Score of 2 assigned.  

18) Alerts and notifications are used only for the most important information 

Alerts are prioritised so that the user only sees the most important information. 

Score of 0 assigned.  

19) Error messages are in plain language, informative, and unambiguous 

All error messages supplied are intuitive and informative. 

Score of 0 assigned.  

20) Error messages offer solutions 

Error messages do not offer solutions. As solutions too many errors are quite complex a 

feature to work out error solutions would require considerable work.  

Score of 3 assigned.  

21) Users can easily access instructions, when appropriate 

Users can easily access the help page by clicking on the help button located on the 

system control panel.  Hints provide advice if users are unsure of a button or icons 

function. 

Score of 0 assigned.  

22) Documentation  is  easy  to  search,  focused  on  the  user’s  tasks, and not too dense - 0 

Documentation can be accessed thought the help button. Instructions are easy to follow 

and offer pictorial descriptions.  

Score of 0 assigned.  

23) Layout could support translation to another language (i.e. Spacing is forgiving 

enough to accommodate longer words or characters 

The interface was designed making all Qt features scalable. This means items can be 

easily resized while keeping the interface proportions. This system was not tested with 

other languages and thus will still benefit from refinement.   

Score of 1 assigned.   
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Appendix F – Bug Tracker   

The following Appendix contains a list of discovered bugs that where uncovered during 

the testing phase.  

F1 Major Bugs 

1) Red barrel detector is not robust under varying lighting conditions.  

2) As the connection between the robot and master weakens the system develops 

lag. 

3) A crash can occur when the plugin is moved within the rqt frame.  

 

F2 Minor Bugs  

1) Mag drag is at times hard to control. 

2) Video selection method is not current working.  

3) The rotation command for the robots will some time not cause an incremental 

movement but a continuous movement.  

4) Sometimes paths will be calculated through unknown space, causing un-

expected results.  

5) The communication hardware icon sometimes does not update. 

6) The scan feature has problems. 

7) The toggle highlight sometimes will not turn off.  


