

User Interface for a Group of Mobile Robots

Liam Poli

20367119

School of Mechanical and Chemical Engineering

University of Western Australia

Supervisor: Professor Thomas Bräunl

School of Electrical, Electronic & Computer Engineering

University of Western Australia

Final Year Project Thesis

School of Mechanical and Chemical Engineering

University of Western Australia

Submitted: June 3rd, 2013

i

Project Summary

The field of robotics has progressed significantly over the past decade. New robust

systems can now be used in challenging applications such as military reconnaissance,

hazardous environment exploration and search and rescue. Current technology is based

around the teleoperation approach which requires at least one human controller to

monitor each robot. This approach however cannot be extended to multi-robot control.

For a single operator to effectively control multiple robots, an increase in robot

autonomy and an advanced multi-robot interface is required. State of the art robotic

systems use multiple robots to complete complex and challenging missions that would

not be possible with single robot systems. This project covers the design, construction

and testing of a multi-robot user interface.

The system design was based on modern Real Time Strategy (RTS) video games. A

large emphasis was placed on creating a user friendly system centred on a user

experience based design. The system built provided a single user an effective means of

controlling multiple robots; with high compatibility with ROS (Robot Operating

System), the current standard robotic operating system used by the majority of research

institutions. ROS compatibility will allow the product to be easily integrated into other

robotic systems.

Evaluation was carried out by user testing and heuristic evaluation. The results show

that for a single robot users had far superior control using the interface when compared

to a simple teleoperation system. Effective multiple robot control was demonstrated by

users for two robots through exploration of an unknown environment. The project

results were used to develop a set of design guidelines to be used for future multi-robot

interface design.

iii

Acknowledgments

The author would like to thank his supervisor Professor Thomas Bräunl for his advice,

guidance and for the opportunity to undertake in a very rewarding experience.

The author would like to thank all the users who donated their time to be involved in the

user testing. Their contribution and suggestions that helped increase the quality of the

final system.

Finally, the author would like to thank his friends and family for their support and

encouragement during the course of this project.

iv

Publications

Reid, R., Cann, A., Meiklejohn, C., Poli, L .& Braunl, T. Cooperative Multi-Robot

Navigation, Exploration, Mapping and Object Detection with ROS.

To be presented at the 2013 IEEE Intelligent Vehicles Symposium, 26 June 2013.

v

 Table of Contents

Project Summary ... i
Acknowledgments ... iii
Publications ... iv

1. Introduction ... 1

1.1 MAGIC2010 ... 1

1.2 ROS .. 2

1.3 Human Robot Interaction ... 3

1.4 Real Time Strategy Games ... 6

1.5 Current Systems ... 6

2. Process .. 12

2.1 Design Constraints ... 12

2.2 Tools ... 13

2.3 Design Guidelines .. 13

2.4 Development Cycles ... 15

2.5 Requirement Analysis .. 15

2.6 Evaluation ... 16

2.7 Robot Software Design .. 19

2.8 Interface Design ... 21

2.9 User Interaction .. 24

2.10 System Design .. 24

3. Final Design ... 27

3.1 Master Software ... 27

3.2 Robot Software ... 28

3.3 Communication .. 28

3.4 Robot State ... 30

3.5 Master Communication .. 31

3.6 Full System ... 32

3.7 User Feedback .. 38

vi

3.8 Object Detection ... 40

4. Results and Discussion .. 43

4.1 Test Cases ... 43

4.2 User Tests ... 44

4.3 Heuristic Evaluation ... 48

4.4 Important findings .. 50

5. Conclusions .. 53

5.1 Contribution to the State of the Art .. 53

5.2 Multi-Robot User Interface Design Guidelines .. 53

6. Future Work and Recommendations .. 55

7. References .. 56

8. Appendices ... 61

Appendix A – Graphical Interface Evolution ... 61

Appendix B - Custom Messages ... 64

Appendix C - Test Case Results ... 66

Appendix D – User Test Results ... 69

Appendix E – Heuristic Evaluation Reasoning ... 85

Appendix F – Bug Tracker .. 89

1

1. Introduction

The field of mobile robotics is both a promising and challenging one with potential to

greatly advance many industries including mining, defence and consumer robotics.

Current research is focused on developing effective complex multi-robot systems. With

robots lacking advanced problem solving and reasoning skills, human supervision is

still required to complete complex tasks. Thus a critical component of such a system is

the user interface.

A robotic interface is the mechanism a human uses to interact with the robotic system,

normally run on a computer and being called the master. Current multi-robot interfaces

available are predominately designed for experts in robotics, making them near

impossible to use for an average user. For a multi-robot interface to enter the

commercial market, more user friendly systems are required.

The primary objective of this project is to research, design, construct and then evaluate

a multi-robot user interface. The system created will focus on improving the state of the

art by creating an interface which is:

1) User friendly, aiming to create a system that can be used by operators with

limited robotics experience.

2) Compatible with current research robotic systems with the final goal to release

the system to the robotic community.

3) A single user system.

4) Easily expandable so that other research intuitions can easily use the system to

further the HRI field.

5) Modelled after popular Real Time Strategy Video Games.

1.1 MAGIC2010

The University of Western Australia’s (UWA) robotic fleet consists of five robots,

named WAMbots. Originally developed as an entry to the Multi Autonomous Ground-

robotic International Challenge in 2010 (MAGIC 2010), it earned the team fourth place.

The main objective of the competition was to develop a robotic system that could

cooperate autonomously over extended missions. The challenge required two human

operators to control three or more robots and to build a map and locate simulated bombs

(red barrels) and hostile humans (Reid & Braunl, 2011).

2

The WAMbots were based on a Pioneer 3AT outdoor robot platform, with an

automotive core-2 duo PC under Windows XP, three laser scanners (Sick LMS, Sick

Ibeo and Hokuyo), a Qstarz GPS, an Xsens IMU, two digital cameras for teleoperation

and an object identification/tracking system (Reid & Braunl, 2011). The system relied

on sponsored military and commercial software, which at the completion of the project

had to be returned and is now unavailable. The next generation system will implement

the features of the original system using fully open source software. Future projects

hope to further develop the foundation laid out by MAGIC2010.

1.2 ROS

ROS (Robot Operating System) is an operating system designed specifically for robots.

Originally developed by Stanford University, the system is now supervised by Willow

Garage. ROS provides hardware abstraction, device drivers, libraries, visualizers,

message-passing, package management and more. It is released under the BSD licence

and is open source, making it free for research use (Willow Garage, 2012).

1.2.1 Node, Topics and Services

ROS works by running a series of nodes or software modules. A full system can include

nodes that enable mapping, navigation and communication. Nodes communicate with

each other via topics, which a node can publish or subscribe too. ROS Messages are the

data types that are sent along topics. Services can be used as nodal functions and node

parameters can be set and changed in real time (Willow Garage, 2012).

When a node subscribes to a topic, the topic will begin sending data to that node. When

a node publishes to a topic, every other node subscribed to the topic will now receive

the incoming data. The advantage of such a system is that nodes can run independently

of each other meaning a node can be stopped or changed without affecting the overall

system. This is of importance when dealing with a robotic system that is made up of

many sensors that can possibly fail. A distributed system such as ROS will allow the

system as a whole to continue if one node crashes.

1.2.2 ROS Packages

ROS has a large community and provides many free open source packages that can be

easily integrating into a robotic system. The standard package execution recommended

by ROS is through the use of ROS launch files (Willow Garage, 2012).

3

1.3 Human Robot Interaction

Human Robotic Interaction (HRI) deals with the science of studying how humans, the

user, interact with robotic systems. Current robotic technology is not yet advanced

enough to operate without human intervention. Robots have their advantages; they don’t

grow tired, can perform boring and mundane tasks at high levels of consistency and can

operate in hazardous environments. However, they lack advanced decision making and

reasoning, skills at which humans excel at. Thus an optimal system will involve the

cooperation of robots and humans working together. To facilitate efficient and optimal

communication between the two, advanced robot interfaces are required.

Most current robotic systems rely on the teleoperation approach, in which a user

controls the robot via a video feed and a controller. As humans can only process a finite

amount of data at one time, effective control of multi robots using a pure teleopoeration

approach is near impossible. The phenomenon of computational overloading explains

how a user can only process a limited amount of information at one time; to focus on

more than a single video feed will very quickly overload a user (Olson, et al., 2012).

The limitations of control via a video feed are discussed in (Chen, et al., 2006). To

implement a non-teleoperation-based system an increase in robot autonomy is required,

providing a system that can be controlled with less user concentration.

The computational load on a user is higher when using teleporting compared with

controlling an autonomous system (Dixon, et al., 2003) and (Schipani, 2003). However

this is dependent on the reliability of the autonomous system; an unreliable system can

possibly produce a higher cognitive load on a user compared with a teleoperation

system (Dixon & Wickens, 2004).

1.3.1 Situational Awareness

Situation awareness (SA) can be defined as “the perception of environmental elements

within a volume of time and space, the comprehension of their meaning, and the

projection of their status in the near future” (Endsley, 1988). From this, five forms of

situation awareness can be further defined: location awareness is the knowledge where

the robot is located within an environment; activity awareness it the understanding of

the progress the robot is making towards completing its mission; surroundings

awareness pertains to obstacle avoidance, namely, the understanding of potential

obstacles surrounding the robot; status awareness refers to the understanding of the

status of the robot including; battery level, hardware status and the current mode of the

4

robot; and overall mission awareness is defined as the understanding of the progress

towards the overall mission objective (Gomez, 2010). An effective robot user interface

must maximise all forms of SA.

1.3.2 Measuring Situational Awareness

Due its complex nature, measuring and quantifying a user’s SA is difficult. Various

methods have been proposed in the literature. Objective measures compare user

perceptions of a feature to some constant real feature within an environment. Subjective

measures ask users to rate their own SA, while performance and behavioural measures

infer SA from task outcome (Endsley & Garland, 2000). The LASSO technique

(Location Activity Surroundings Status Overall Awareness) involves getting users to

“think aloud”. This technique does not require users to rate themselves and thus is less

subjective and is not based on task performance (Drury, et al., 2007).

1.3.3 Scalability

System scalability refers to an interfaces ability to still remain effective for an

increasing number of robots. B. Trouvain and H.L. Wolf (2003) used a simulation of a

multi- robot scenario invloving mapping and video feeds with a goal setting control

structure. User testing showed eight robots were the optimal number; more than this

resulted in a decrease in a user’s situational awareness.

1.3.4 Human Computer Interaction

Human Computer Interaction (HCI) is a well-developed field of computer science that

deals with the interactions of a human (user) and computers. HCI provides theories to

help with interface development that explain cognitive aspects such as attention,

memory, perception and recognition.

The human mind is limited to only focusing on one distinct point at a time; to monitor

multiple points the mind will jump from one to the other. To aid in a user’s attention

management, information should be ordered and structured. This can be achieved using

perceptual boundaries such as windows and tables, adding colour when an item needs to

be drawn attention to and using sound and flashing lights to confirm user actions and to

help divert attention. Keeping the visual design crisp, clean and free of clutter and the

interface will help with user attention management (Sharp, et al., 2011).

Memory in the human mind involves two main processes: encoding followed by

retrieval of knowledge. Studies have shown humans are much better at recognising

5

things versus recalling things. Research has also shown the human mind is much better

at remembering images rather than words (Sharp, et al., 2011). The design implications

of such findings imply recognition should always be used over recall. An example of

this would be when a user is required to selection an action. Where possible always

show a list of possible actions should always be shown as opposed to having the user

remember the name of the action.

Icons are used in interface design to condense information and help define a overall

visual design. The use of hints, such as text overlays which appear when the user

hovers over the icon can help a user comprehend icons they do not immediately

recognise (Sharp, et al., 2011). User frustration will make a user inefficient and reduce

their responsiveness to the interface. Common causes of user frustration include the

interface crashing, the system not doing what the user expects, not providing sufficient

information to enable the user to know what to do next, having vague or condemning

error messages, requiring users to carry out too many steps to achieve a simple task and

a noisy, gimmicky or patronizing visual appearance (Sharp, et al., 2011).

Usability in the context of HCI refers to how user friendly a program is or how easily a

user can effectively use the system (Bevana, et al., 1991). The techniques of increasing

a system’s usability are centred on using continuous evaluation methods throughout

project development. The standard evaluation method recommends using a combination

of user testing and heuristic evaluation (Sharp, et al., 2011). User testing involves

getting future users to trial the system and heuristic evaluation attempts to produce

empirical data by ranking the interface against a standard set of evaluation criteria, such

as Nielsen’s heuristics (Nielsen & Molich, 1990).

1.3.5 Evaluation

System evaluation is a critical part of the software design process. HCI recommends

evaluating a user interface with a combination of heuristics, metrics, user testing and

expert involvement (Sharp, et al., 2011). Interface designers from ROS recommend

using usability heuristics as outlined in Nielsen (1995). For example Steffi (2013)

provides a set of usability heuristics specially tailored to robotic interface design.

Design metrics can also be used to help guide development and conduct evaluation.

Goodrich and Olsen, Jr (2003) provide principles for efficient human robot interaction.

While Steinfeld, et al (2006) produced a comprehensive set of metrics defined in five

6

categories: navigation, perception, management, manipulation and social. Design and

evaluation of a multi-robot interface is discussed by Trouvain and Wolf (2003).

1.4 Real Time Strategy Games

This project will attempt to use a Real Time Strategy (RTS) video game paradigm to aid

in the design process. RTS games are a genre of video games in which a player

commands units and structures to compete objectives in real time. The fit to a robot

interface is apparent: both an RTS game and a multi-robot system require users to

control multiple units to complete a mission. The genre has been around for almost two

decades, which has given it time to mature and develop a highly refined control style.

Researchers at Stanford University developed a robot interface based on the RTS

interface paradigm (Jones & Snyder, 2001). The system was developed as a proof of

concept and still requires considerable work to become an effective control system.

Key RTS game features were determined by analysing popular games. Units are moved

by first selecting the unit followed by giving the unit a goal, called a waypoint. When a

unit is selected, the units relevant status and other important information is displayed in

a control panel. The camera is positioned in a bird’s eye view of the world with features

allowing easy navigation. Data is displayed in a highly efficient manner with extensive

user of colour, icons and structured visual layouts.

1.5 Current Systems

Rviz is a 3D visualization tool developed for ROS and is capable of displaying maps,

robot positions, cost maps and other common ROS topics (Spaepcke, 2013). Rviz is

capable of displaying the output from multiple robots; this makes it an effective data

visualisation tool. However the control system has low usability and as it lacks adequate

control mechanisms and robot feedback, control of multiple robots is not possible.

Figure 1.1 shows a screenshot of Rviz.

7

Figure 1.1 A screenshot from Rviz showing the localised position of a single robot

within a map (Fraunhofer IPA, 2011).

The literature provides a few notable examples of state of the art multi-robotic user

interfaces and four examples of such systems were analysed. All these interfaces can be

classified as map-centric systems meaning the central control structure is implemented

using map and not teleoperation through a video feed.

Figure 1.2 shows a system developed by the University of Pittsburgh and Carnegie

Mellon University (Wang, et al., 2008). Developed and tested on simulated robot data

the system is capable of controlling multiple robots. Control is facilitated through the

setting of waypoints on a map with a video camera feed present for each robot. No robot

status feedback is given and the visual design poorly structured. As the system was only

tested on simulated data, no conclusions can be drawn on whether it will work in a real

world scenario.

A state of the art multi-user, multi-robot interface was developed in 2010 by the

University of Rome La Sapienza (Gomez, 2010), shown in Figure 1.3.The interface

built was capable of controlling four robots and was developed for search and rescue

applications. Although it is working and has been tested, the system is limited to control

of four robots, lacks adequate feedback mechanisms and refined visual design, and has

deficiencies in usability features.

8

Figure 1.2 A multi-robot interface developed by the University of Pittsburgh and

Carnegie Mellon University. Four camera feeds are shown and two maps. The system

was developed and tested using simulated robot data. (Wang, et al., 2008).

Figure 1.3 A multi user, multi robot interface developed in 2010 by the University of

Rome La Sapienza. Demonstrated in the screenshot is a user controlling a single robot

by setting multiple waypoints (Gomez, 2010).

9

The MAGIC2010 completion produced many state of the art multi-robot systems each

having an advanced user interface. Notable interfaces were produced by Team

Michigan (Olson, et al., 2012) and RASR (Lacaze, et al., 2012). It should be noted that

all the interfaces used were designed to be used by two operators over multiple screens.

The RASR team placed third in the completion. The user interface drew design ideas

from RTS games with a design philosophy of providing operators with high level

system controls. The interface was distributed over two screens: the main map-centric

display allowed users to set waypoints and displayed basic robot status information,

shown in Figure 1.4, while the second screen was used to show the robot video feed

(Lacaze, et al., 2012).

Figure 1.4 A screenshot from the system developed by the RASR team for

MAGIC2010. Shown on the right hand side is the robot status feedback mechanism.

The central display shows the robots exploring the environment with overlayed robot

position (Lacaze, et al., 2012).

10

Team Michigan placed first in MAGIC2010. Their user interface consisted of four

screens each displayed on a separated computer monitor requiring two users for control.

The four screens were defined as: a sensor operator console which was used for object

identification and to display sensor information; a task operator console, used to send

waypoint to the robots; a status dashboard which displays the status of each robot and a

Situation, Actions, Goals, Environment (SAGE) Display used to display the overall

status of the mission (Olson, et al., 2012). Although this is a state of the art the system it

still requires two operators for effective control. The team commented that further work

was required to optimise human operators into the system (Crossman, et al., 2012). The

system was tailored for users with high robotic experience and thus will be unsuitable

for a single inexperienced user to achieve effective control. The Team Michigan

interface will be considered the most state of the art of all systems analysed. Figure 1.5

shows a set of screenshots of the Team Michigan system.

11

Figure 1.5 A set of screenshots showing the full user interface developed by Team

Michigan a) Sensor Operator console, b) Task Operator console c) SAGE Display d)

Status Dashboard (Olson, et al., 2012).

a)

b)

c)

d)

12

2. Process

2.1 Design Constraints

2.1.1 Hardware

The robotic fleet for the project was based off the existing the MAGIC2010 hardware;

with the fleet consisting of five robots .The setup, as shown in Figure 2.1, was built on a

Pioneer 3AT four wheel differential base. Each robot had an automotive core-2 duo PC

running Ubuntu with Wi-Fi connectivity. Two laser ranger finders where included, the

primary laser being a SICK100 with a range of 20 m, a 270 degree field of view and a

scanning frequency of 50Hz. The secondary laser was a Hokuyo URG, with a range of

4m and a field of view of 240 degrees, angled down ward to detect low lying objects.

Each robot was also equipped with an Xsens MTi Inertial Measurement Unit (IMU), a

set of speakers and a webcam used for teleoperation and object detection.

Figure 2.1 A image illustrating the hardware components of each robot.

2.1.2 Safety

Safety is an important consideration when dealing with any robotic system. Even with

the inclusion of a robust and well tested collision avoidance system precautions were

taken to ensure no bystander was ever hurt during system testing. All preliminary

testing was conducted within a controlled environment, room 3.13 of the Electrical

Engineering Building. For tests that required inexperienced users or a larger

WEBCAM

SICK100

HOKUYO
URG

SPEAKERS

BASE

WIFI

IMU

CPU

13

environment the robot speed was reduced. In situations were safe operation could not be

irrefutably confirmed an experienced operator followed the robots and had the ability to

disable the system if a problem arose.

2.2 Tools

2.2.1 Ubuntu

All code for the project was developed for the Ubuntu operating system. Although

ROS is supported for Windows and OS X the builds are experimental and it is highly

recommended by the ROS team to develop on Ubuntu (Willow Garage, 2012).

2.2.2 Qt

Qt is a cross platform application framework used to develop user interface layouts (Qt

Project, 2013). Many open source interface frameworks are available but Qt was chosen

due to its high compatibility with ROS (Willow Garage, 2012), large community and

the long list of released programs developed including Skype, Mathematica and

Autodesk Maya (Qt Project, 2013).

2.2.3 Programing Language

Development of ROS systems can be done in either Python or C++. For this project the

majority of the programing was written in Python. Python is a general purpose high

level programming language that comes highly recommended by the creators of ROS

for user interface development (Thomas, et al., 2013). Python is well suited to

prototyping projects, is highly readable and the growing trend in the ROS community is

leaning towards systems written in the language. Where speed is absolutely essential

components were written in C++.

2.2.4 Photoshop

 All icon design and visual features were created in Adobe Photoshop CS6.

2.3 Design Guidelines

Modern HCI development procedures recommend developing a set of design guide

lines when designing complex systems (Sharp, et al., 2011). This helps keep the product

on course during development and can be used for system evaluation. The following

nine guidelines were created for the project.

14

2.3.1 Agile Development

An agile design process was applied, by developing the project thought iterative design

cycles. At the end of each cycle the product was evaluated and appropriate changes

were made.

2.3.2 User Experience Centred Design

To create highly usable systems, users much be involved in all stages of development

(Sharp, et al., 2011). The target user group was defined to be users with low levels of

robotic experience with relatively high levels of computer competency. To enable

frequent user interaction a user base was created containing four users with varying

levels of robotic experience. Feedback was gathered from these four users at frequent

intervals and was taken into account in all development phases. The users included:

1) Thomas Bräunl, the project supervisor who is highly experienced in robotics and

whose role was to ensure the project stays within the outline of the project

requirements.

2) Chris Parkin, a computer game developer and graduate mechanical engineer.

3) Prawi Woods an experienced StarCraft player and a student civil engineer.

4) Calum Meiklejoh, an experienced ROS user and graduate robotics engineer

2.3.3 Video Game Inspired Design

The interface was inspired by modern RTS computer games. Critical features were

constructed to be similar to modern popular computer games including replication of

the mouse and keyboard control structure, and the visual layout. Two RTS games were

used for analysis, StarCraft 2 and Company of Heroes.

2.3.4 Modular Design

Modular software construction principles were applied using an object orientated

paradigm and the use of the ROS node architecture.

2.3.5 ROS Compatible

The system will use ROS components where possible. The final system will be made

open source and released to the ROS community upon completion.

2.3.6 Scalable

A user should be able to control five robots with the same relative ease and

effectiveness as controlling one robot.

15

2.3.7 Reduce Cognitive Load

The cognitive load on the user was minimised wherever possible. The aesthetic design

of the interface was kept clean and simple.

2.3.8 Enhance Situational Awareness

The interface prioritised increasing all forms of situational awareness.

2.4 Development Cycles

The project development plan had four main cycles.

1) Research - develop a firm understanding of state of the art multi-robot

interfaces, the theories needed to develop one and learn the necessary tools

required to construct such a system.

2) Design - create a well thought out state of the art system design through the use

of low fidelity prototyping. Undertake feasibility studies to identify if the

proposed system is possible and if it can be constructed within the allocated time

frame.

3) Construction - build the system complying with the design constraints and

conduct frequent user testing to ensure a stable and usable design is being

produced.

4) Evaluation – conduct testing to determine the systems stability and usability.

2.5 Requirement Analysis

Project requirements were defined as the high level system critical components and the

low level feature requirements that would follow the design guidelines. The

requirements for the system were keep flexible to ensure an agile development. The

program was developed in cycles with continuous evaluation used to further refine the

system. If testing uncovered new requirements or found current requirements to be

obsolete the system would be changed. The process emphasised keeping the

development dynamic.

A base set of core requirements were defined in an early production cycle through

research into HCI, HRI, RTS games and current robotic systems. This coupled with

early prototype systems and user involvement, particularly involvement from Professor

Bräunl, produced a base set of requirements as outlined below.

16

2.5.1 System Critical Components

1) Selection Method - a simple method to select a robot.

2) Simple Control System - a simple method to control the robots with limited

human interaction.

3) Full World Overview, increased location awareness by having a clear view of

the world positioned from a bird’s eye view.

4) Full System Overview - users should know at all times the status of all robots,

increasing the users overall mission awareness.

5) Status Identification - users need to be able to identify the exact status of a robot,

increasing status awareness. The solution should require limited cognitive load.

2.5.2 System Feature Requirements

1) Display the robot generated maps and allows users to easily navigate them.

2) Stream video from robots.

3) Multiple control methods; waypoint, command buttons and a controller.

4) Display status of each robot.

5) High level of robot autonomy.

6) An Object detection system.

7) Feedback mechanisms.

8) A robot monitoring system to increase system robustness.

9) Robust communication protocol.

2.6 Evaluation

2.6.1 Agile Evaluation

In keeping with the agile development mentality, evaluation methods were continuously

applied throughout the design and construction phases. Frequent testing was used to

both improve the initial requirement list and refine the system. At regular intervals

evaluation sessions were conducted in which the current system will be compared

against the design guidelines, changes made were noted. User tests were also conducted

at regular intervals using the user base. Tests were performed in an informal setting and

involved showing the users the system to get feedback.

2.6.2 Final System Evaluation

Final system evaluation was done in two parts, system stability testing and system

usability testing. Stability testing involved creating test cases and simulating extreme

17

cases for the system to complete. Usability was tested by user tests, which involved

users completing tasks with the system. Results from all tests were then used to

complete a heuristic evaluation of the whole system.

2.6.3 Stability Testing

Stability testing of the system was performed to ensure both stability and robustness.

Test cases were designed to test all system features and components in both general and

extreme cases. Tests had a pass/fail outcome with notable results being recorded. All

bugs found were recorded in a bug tracker and prioritised depending on their severity.

2.6.4 Usability Tests

The final user tests were centred on evaluating the systems usability. The main goal was

to prove the interface is an effective means for a single user to control a robotic fleet.

Users were chosen to have varying backgrounds in robotics and pilot tests were

conducted prior to the main testing to ensure the testing procedure was adequate. The

format of each test can be summarised as follows:

1) Introduction and User Background identification.

2) Task Identification.

3) Single Robot Test.

4) Questioning.

5) Multi Robot Test.

6) Questioning.

An introduction was used to gather information about the user’s background and

identify the users experience level in both robotic and real time strategy gaming. A rank

between zero and ten was assigned to each user, with ten implying an expert level of

experience. The task identification test involved users completing simple system tasks

as listed below, with users given no instruction on how to use the system only being

told it was based off an RTS game. The time taken to complete the task as well as the

number of wrong actions taken where recorded. An action was defined as issuing a

command that could influence the system. If a user asked for assistance it was given

and recorded. The tasks were;

1) Move the camera.

2) Zoom the camera in and out.

3) Select a robot.

18

4) Rotate a robot.

5) Determine the battery level of robot one.

6) Determine the status of the camera of robot two.

7) Determine out the error in robot one.

8) Send robot two a goal.

9) Stop robot one.

10) Determine he real time obstacles surrounding robot one.

The funcation of task identification tests were to investigate how well users can figure

out the appropriate actions needed to perform a task given they have a limited

understanding of the system. A recording of two robots was used to implement the test

to ensure the test conditions were kept constant. The test had a secondary purpose of

determining if a user was skilled enough to control the system safely.

Following the task identification users were given control of a single robot to complete

a task completion test. An instructional brief was given to ensure the user completely

understood how to control the system. Users were then asked to drive the robot to a

destination, first using teleoperation (a video feed and controller), followed by using the

developed interface. The time to destination was recorded as well as any potential robot

crashes. An experienced operator was present during all tests to follow the robot and

stop the system if the user was in danger of harming a bystander or damaging the robot.

Half of the users were asked to complete the tests in the opposite order (i.e.

teleoperation after interface operation) to negate the learning effect on the second test.

A multi-robot task completion test was undertaken last. Users were given control of two

robots and were asked to map the third floor of the Electrical Engineering building.

Time to complete the task and potential crashes were recorded.

Questioning was performed after each test using an informal interview structure that

attempted to start conversations with the user. Feedback was recorded to help draw

conclusions about the system usability and to investigate possible improvements or

features.

19

2.6.5 Heuristic Evaluation

A heuristic evaluation was performed based on the conclusion of all results collected

The criteria used were developed by the Open Source Robotics Foundation and is

specially designed for robotic interfaces (Steffi, 2013). Items were ranked between zero

and four, as shown in table 2.1.

Score Rank

0 Not a problem

1 Cosmetic problem only

2 Minor usability problem

3 Major usability problem

4 Usability catastrophe

Table 2.1 The ranking system used for the heuristic evaluation.

When rating an item the following will also be taken into account. Frequency, how

often the issue happens, impact, how hard is it to recover from the issue and persistence,

will user have the issue over and over again.

2.7 Robot Software Design

To facilitate a working robotic interface a substantial amount of software had to be

implemented on each robot. In order to save time, increase the overall system quality

and increase the ROS compatibility most of this software was implemented using open

source ROS packages.

2.7.1 Hardware drivers

Each robot uses a number of sensors that require drives; these were implemented

thought ROS packages and set up via ROS nodes. When selecting driver packages

forums where reviewed and basic tests were carried out to ensure the package was

stable. The SICK1000 laser range scanner used the package LMSxx (Banachowicz,

2011) and the Hokyou URG laser scanner used the hokuyo node package (Gerkey, et

al., 2012). Both drivers were chosen for having good reviews. The base drivers were

implemented using the p2os_driver package (Feil-Seifer, 2012). This package was

chosen due to it having good troubleshooting resources, diagnostics features, good user

comments and a high level of refinement.

20

2.7.2 Mapping and Robot Localisation

For map generation and robot localisation the ROS package hector_slam was used

(Kohlbrecher & Meyer, 2013). The package uses Simultaneous Localisation and

Mapping (SLAM). This allows the robot to build a map of an unknown environment

while simultaneously locating the robots position within that map. By using laser scan

data, robot odometry and thought the use of an Extended Kalman Filter detailed maps of

the environment can be created down to a resolution of 5cm (Kohlbrecher & Meyer,

2013) . The robots position can then be localised with in this map.

Figure 2.2 A robot using SLAM to map an environment with the boundaries shown in

black and free space shown in grey. The localised robot position is shown in the centre,

displayed in red and green. (Kohlbrecher, 2012).

2.7.3 Navigation and Collision Avoidance

To facilitate navigation and collision avoidance each robot runs the ROS Navigation

Stack (Marder-Eppstein, 2013). Using this robot can plan paths to a goal while avoiding

obstacles. The local map created by hector_slam is used to generate a costmap, where

by a high cost relates to an obstacle. The path of lowest cost will be the path avoiding

all obstacles. The navigation stack was one of the first packages released for ROS and

was primarily designed by Willow Garage, the creators of ROS. This makes the

package highly compatible with ROS and very refined.

The primary laser scanner is placed to take horizontal scans to maximise its range. This

however will not detect low lying features which could potentially be hazardous to the

21

robots. To detect low lying obstacles the Hokuyo laser scanner was angled downwards.

Any low lying objects will intersect with the laser and can be added to the cost map.

2.7.3 Communication

To allow a single master computer to communicate with multiple robots a multi-master

communication system is required. This will facilitate wireless data transfer between a

master computer and a number of robots. The ROS Multimaster Special Interest Group

provides a summary of all current multi-master packages available on ROS (Stonier,

2013). Thought analysis of existing techniques a decision was made to use the ROS

package multimaster (Meeussen, 2011). Data is transmitted using the ROS package

foreign relay (Gassend, 2012), which permits a topic on one computer to be published

on a second remote computer. The multimaster package uses a configuration file

defined on the master computer to define which topics the master will send and receive.

This makes the system much simpler and requires only one node to be run for each

robot.

2.8 Interface Design

Primary interface features went thought a process of iterative refinement using the

iterative procedure defined in early sections.

2.8.1 Central Display

The implementation of the central map display had two design options, a graphical

environment using OpenGL (Open Graphics Language) or a 2D image environment

using Qt Image features. The image solution would be simpler and have a faster

development time while the graphical solution would have more flexibility and in future

versions could be made into a 3D system. It was decided to use a graphical environment

implementing using a QGLWidget (Qt, 2013). Using a Qt implementation of OpenGL

provides a simpler and faster development process when compared to a stranded

OpenGL system. Maps can be rendered using textures with GPU acceleration producing

a fast and seamless map update system. QGLWidget’s also contain an effective screen

to world coordinates transformation mechanism, which was sued to implement the robot

selection and waypoint features.

22

2.8.2 RQT

Initially the program was designed to be a standalone product, however towards the end

of the construction phase ROS released the rqt framework. This had profound influence

on the course of the interface design. Rqt is a Qt-based framework for ROS GUI

development; it provides a base to which plugins can be run. The system functions by

having ‘dockable’ modules that can that be moved and resized. Available plugins

include; Image View which is used to display video feeds, Bag, a system for recording

and playing back ROS topics, Launch that can be used to launch ROS launch files in a

user friendly manner, Shell which is an embedded terminal and many more.

Using the rqt framework a dynamic and module interface could be made. Modules can

then be selected by the user depending on the task at hand. Furthermore developing

with regards to rqt conventions and standards will result in a high ROS compatible

interface. The decision was made to re- design various interface components to allow

for rqt compatibility.

2.8.3 Interface Visual Design

The interface visual design had five main revisions; these can be seen in Appendix A.

The final design was based preliminary off identified RTS features. Key components

included a main map and a control panel consisting of a mini map, control and a display

panel to display robot data. Unlike a video game a robotic interface requires the user

have more control over the system. To this end a series of system controls where added

to facilitate full system control options. To increase overall mission awareness a robot

list was added which provides a user with a state summary of each robot. A message

bar was also added promote user feedback. The visual design was designed to be clean

and simple with clear boundaries and an appropriate colour pallet all to help manage

user attention. A video feed will be available thought the Image View rqt plugin. A low

fidelity prototype of the interface layout can be seen in figure 2.3.

23

Figure 2.3 Final interface layout with the main map and control panel positioned to be

the central display features.

Many possible plugin combinations can be formed using RQT, the user can customise

the system depending on the mission. If for example a constant video feed for all robots

is required, then multiple instances of the Image View plugin can be run.

2.8.4 Feedback Mechanisms

To ensure the user has the optimal view of the interfaces current state, feedback

mechanisms were used. The message bar provides users with important system

information with a sound played upon creation of a new message. Sound was used in

other situations to provide feedback. When a unit is selected or a goal is transmitted

unique sounds will be played. Hints were overlayed on icons and buttons being

activated when a user hovers over them. These are implanted through Qt’s tooltip

function.

2.8.5 Icons

Proper icon design is a critical part of refining any user interface. The icons used in the

system where based upon open source images obtained from (Oxygen Team, 2011)

which are free for non-commercial use. Icons where then modified in Photoshop to

provide the correct design and to comply with the ascetic style of the interface. The

remainder of the icons where created in Photoshop.

 Main Map

Display Panel
Mini

Map

System

Controls

Control

Pad

Robot

List

Message

Box

24

2.9 User Interaction

User interaction was specifically designed with the main goals of; minimising the

cognitive load on the user, increasing situational awareness and to provide a simple and

easy to use experience for the user.

2.9.1 Robot State Summary and Status

The supply the user with continuous feedback about the overall state of each robot a

robot state summary was displayed using the robot list. The list shows the names of

each robot with an adjacent icon, this icon represents the overall state of the robot. The

feature will provide the user with an overview of all the robots, helping to increase the

users overall mission and status awareness.

2.9.2 Increasing Situational Awareness

Increasing the situational awareness was defined as a high priority in the design

guidelines. However by increase situational awareness more data is needed to be

displayed this in turn increases the cognitive load on the user. Thus a trade-off can

occur. To ensure a fine balance is met continuous testing on a wide variety of users was

undertaken. The amount of data a user can handle will mainly depend of the experience

of the user and the current situation. To keep the system flexible data features will have

the ability to be hidden. Situational awareness was further increased with the following

features:

1) Overall map with localised robot position, increases location awareness and

surroundings awareness.

2) Robot icon with direction, increases location awareness

3) Cost maps , increases surroundings awareness

Colour coding was applied by setting the robot as a base colour with the map and

costmaps as darker and lighter shades of the base colour respectively.

2.10 System Design

2.10.1 Reducing Network Traffic

The amount of data each robot sends over the Wi-Fi network is critical to the systems

scalability. If too much data is sent over the network the ROS system will begin to

suffer from lag. Table 2.2 shows the different bandwidth usage of each message.

25

Demonstrating that 88.4% of network bandwidth is due to the sending of the map and

9% is due to the video feed. To reduce the network load both the map and video feed

where compressed.

Type Band width Percentage

Map 2250 Kb/s 88.4%

Costmap 50 Kb/s 1.96%

Path 10 Kb/s 0.4%

Pose 4 Kb/s 0.15%

Image 230 Kb/s 9%

Table 2.2 The calculated bandwidth for various ROS topics, bandwidth is measured in

kilobytes per second. With the percentage of the message bandwidth relative to the total

transmitted bandwidth is also displayed.

2.10.2 Global Origin

A critical aspect for a state of the art multi-robot system is for the system to share a

common global origin. When a user selects a point on the map a global goal is being

created, the robot must then be able to translate this to its local origin and thus move to

that position. For this to be feasible the robot must know its own position within a

global frame of reference. The original project plan involved using a software module

called Map Builder. Developed by Rob Reid for the MAGIC 2010 completion the

program uses a gird based SLAM that is capable of producing 500 x 500 meter maps

from sub maps supplied by the robots (Reid & Braunl, 2011). The smaller sub maps are

fused on the master computer.

At the time of the completion of this project Map Builder was still in the process of

being ported to ROS by a fellow researcher. The system however was not ready to be

integrated into a user interface with testing showing the system would break down with

an increasing number of robots, an example of this is shown in Figure 2.4.

26

Figure 2.4 A screenshot showing Map Building failing to fuse two robot maps.

A global origin was still required to implement a multi-robot system. A temporary

solution involved starting the robots in the same location and orientation resulting in the

local maps from each robot roughly lining up. By then creating effective user interface

features a user was able to effectively manage the system. Future work will focus on

completing the Map Builder port and integrating it into the interface.

27

3. Final Design

The final interface design is composed to two main systems; the master base station and

the robots. The master is comprised of the graphical user interface, run on a standard

computer. The robots each run software locally with bi-directional communication

facilitated between the master and the robots.

The system created displays an environmental map with localised robot positions. A

single user can command multiple robots thought the use of waypoints and receive

efficiently organised data of each robot. An object detection system was implemented

that allows robots to detect objects of interest.

For a copy of the full system software please contact Professor Thomas Bräunl.

3.1 Master Software

Figure 3.1 shows the software module block diagram of the master system. The system

is designed in a hieratical fashion with the GUI Module or main class situated at the top

with other features implemented as sub classes.

Figure 3.1 The final software block diagram for the master user interface.

The main class, named GUI module is the parent class and deals with all interface logic.

This includes the function of buttons to the text labels displayed, as well as maintaining

all the sub classes. Sub classes are implemented to increase system modularity which

also aids makes testing easier. As a basic overview; the Map module creates the central

interface display, the server class is responsible for communication with the robots; the

VIDEO
MODULE

VIDEO
MODULE

WORLD SERVER UI
FORM

SETTINGS

ROBOT ITEM MINIMAP
MODULE

GUI
MODULE

28

video module enables a video feed to be displayed and the world class represents the

system data structures.

3.1.1 UI Form

The form represents the skin of the interface, defining the position and visual look of

each of the interfaces components. QtCreator was used to create the form for this

system (Qt Project, 2013).

3.1.2 World

The world class attempts to create a virtual representation of the robots environment.

This class holds all current robots and items in the environment. The data of any given

robot is stored in a separate sub class which attempts to synchronise its data with its real

counterpart. An item sub class is defined to represent objects of interest with in the

environment.

3.1.3 Settings

The settings class enables program features to be modified thought a configuration file.

3.2 Robot Software

The final system running on each of the robots consisted of a combination of open

source and custom developed packages. Details of the selected open source packages

can be found in section 2.7.

3.2.1 Custom Packages

Custom robot software was developed including; robot comms a basic server for the

robot. This class receives commands from the master server. Process Manager, a class

that monitors the status of the robot. Detector, a class to manage the object detection

algorithms. Name Convertor, remaps topic names to include a prefix determined by the

robots name which are used to send to the master.

3.3 Communication

Communication between the master and robots was enabled by a Wi-Fi network using

the standard IEEE 802.11 protocol and the ROS multimaster package to facilitate data

transfer. The system’s design was based around each robot communicating with a single

master. Outgoing data from the master will be transmitted from the server class with

29

incoming the data from each robot being read by the respective robot classes. Each

robot sends the following topic with the associated topic name to the master, as shown

in Table 3.1.

Description ROS Message Type Target Topic Name

Current position geometry_msgs/PoseStamped /pose

Local map nav_msgs/OccupancyGrid /map

Costmap nav_msgs/GridCells /costmap

Path to planned goal nav_msgs/Path /path

Video feed sensor_msgs/CompressedImage /video_feed

Table 3.1 A list of the data messages each robot transits to the master computer. Using

the Name Convertor class these topics are renamed to start with a prefix determined by

the robots name, for example “wambot4/path”.

A low priority communication protocol (LPCP) was implemented to allow simple

messages of low frequency or bandwidth to be transferred. The system was designed to

transmit messages that include robot goals, robot state changes and objects of interest

that robots have detected. An overview of the messages used in LPCP is shown in Table

3.2, for further details of these messages see Appendix B.

Message Name Purpose

robot_to_base Transmit robot data to the master

base_to_robot Transmit master data to a robot

ObjectOfIntrest Contains the details of an object detected by

the robot. Sent from robot to the master

Table 3.2 Overview of the custom messages used in LPCP.

The master receives and transmits a unique topic for each robot. All robots publish to

the same master topic with a name tag contained within the message to identify its

sender to the master. The communication is illustrated in Figure 3.2.

30

Figure 3.2 LPCP block diagram, illustrating communication between a single master

and multiple robots. The topic names are displayed.

3.4 Robot State

Each robot maintains an internal state that defines the status of its hardware, battery

level and current operational modes. The state is defined by nine components as shown

below:

1) Base status.

2) Primary laser status.

3) Secondary laser status.

4) Camera status.

5) IMU status.

6) Connection status.

7) Control mode, refers the robots control system. For example manual verses

autonomous exploration.

8) Detect mode, refers to what objects the robot is looking for.

9) Failsafe mode, refers to the actions the robot takes if it loses connection with the

base.

The six hardware status features including the base, lasers, camera, IMU and connection

are all monitored by a Process Manager node which is run locally on each robot. The

advantage of doing management locally is that if connection is lost, the system will

continue to make informed decisions independently of a master computer.

MASTER

SERVER

ROBOT 1

MULTI
MASTER

comms/robot1

comms/robot2

base/comms

robot/comms

robot/comms

ROBOT 2
base/comms

robot/comms

31

All hardware features are primarily monitored using a data flow checker. The

hardware’s data topic is subscribed too, if the streaming of data stops the hardware is

said to fail. A middle warning state can be determined for the base and secondary laser

by examining the diagnostics topic outputted by the base drivers. The robot will update

the master of its current state using the LPCP. An array is sent containing the current

state as shown in Table 3.3.

Index Item Representation

1 Base status 0 to 2

2 Primary Laser Status 0 to 2

3 Secondary Laser Status 0 to 2

4 Camera 0 to 2

5 IMU 0 to 2

6 Battery Level Percentage

7 Current Mode 0 to number of modes

8 Current Detect Mode 0 to number of modes

9 Current Failsafe 0 to number of modes

Table 3.3 The array sent by each robot which defines its state is made up of nice
components.

3.5 Master Communication

Using the LPCP a robots state can also be modified by using the base_to_robot

message. Three main state modifiers are included in the system; mode, object detection

and failsafe. All state changes can be made from the use of a Qt QCombox, as shown in

Figure 3.3.

Figure 3.3 A example of a QComboBox used to change the robots object detection

algorithm. Currently the robot is set to detect no objects.

The mode refers to the control state the robot is in this includes two sub states; manual

control and autonomous exploration. Manual control lets the user control the selected

robot via waypoints or by using a controller. In the explore mode, the robot will explore

32

autonomously. The detect mode enables to user to change the current object detection

algorithm run on the robot.

The failsafe state is used to determine what actions the robot will take if connection is

lost with the master. If the robot loses connection it can take one of three actions; return

home (defined as the place the robot was turned on), stop or do nothing. If connection

is lost due to the robot going out of network range the home option will return the robot

to within range.

3.6 Full System

Figure 3.4 The final graphical user interface displayed on the master computer. In the

screen shot the user is controlling two robots, with robot 1, shown in blue currently

selected.

33

3.6.1 Map Module

The map module implements the central display and is capable of displaying the map,

robot position, robot paths, costmaps and detected items. The module is implanted using

a QGLWidget, using an orthogonal camera view; positioned form a bird’s eye view of

the environment. The final image displayed to the user is a layering of many parts. By

using the z-axis feature of OpenGL components can be painted at different height

levels. Thus when viewed from above the image will appear as a single image. The

layering order is: maps, costmaps, robot positions, robot paths, items then robot status

icons. The map presents a relatively large data object that needs to be updated

frequently, thus an efficient technique of updating and displaying the maps is required.

The mapping pipeline involves a number of steps to get from a robot generated map to

an image displayed to the user.

Robot maps are first converted to a ROS Image using the ROS package

hector_compressed_map_transport (Kohlbrecher & Meyer, 2013). These maps are then

sent over the network to the master computer. Once received the image is uncompressed

using the image_transport package, running a republish node (Mihelich & Bowman,

2013). The interface reads in this image as a ROS Image message. To display the map

in a Qt OpenGL environment the image must be converted to a QImage. To achieve

this the ROS Image is first converted to a openCV image using the cv_bridge package

(Mihelich & Bowman, 2010). From this the openCV image can be converted to a Qt

QImage using Qt based functions. This QImage can then be mapped to a texture and

displayed in the graphical environment.

34

Figure 3.5 Block diagram illustrating the map display pipeline. Data transmission

between the robot and master is facilitated thought the Wi-Fi network.

The robot position is displayed by using a preload icon image that is textured mapped

and placed at the robots position. Cost maps and robot paths are drawn using OpenGL

primitives types. Simple squares are used for the cost maps and lines to draw the paths.

To help manage user attention each robots map is coloured coded efficiently using

QImage colour tables. The final product is shown in Figure 3.6.

Figure 3.6 The Map Module demonstrating a) colour coded maps, b) robot position

and c) colour coded costmaps.

HECTOR

MAP

COMPRESS

MAP

TRANSMIT

MAP

RECEIVE

MAP

UN

COMPRESS

CONVERT

TO OPENCV

CONVERT

TO QIMAGE

BIND

TEXTURE

DISPLAY

MAP

MASTER ROBOT

a)

b)

c)

35

Simple mouse controls where added to help the user navigate the map. Holding the left

mouse button gave the user the ability to drag the view and the scroll bar can be to

zoom in and out.

3.6.2 Navigation

The navigation features of the system allow a user to select a robot by clicking the robot

icon on the map. From this the user can select a point of the map. This point will now

become the robots goal. The robot will proceed to calculate a path to the goal then

drive to that position. Figure 3.7 illustrates this feature.

Figure 3.7 The Map Module demonstrating the navigation features. The robot is

traveling along a path to a user defined goal. a) robot is selected, b) calculated path is

displayed c)goal icon is displayed.

3.6.3 Control Panel

The control panel represents the primary means for a user to gather information about a

robot. The panel can change the data it displays depending on the type of unit selected.

Figure 3.8 illustrates the control panel for a selected robot.

a)

b)

c)

36

Figure 3.8 Display panel for a selected robot showing a)minimap, b)robot icon, c)

central controls, d) status display and e) command pad.

Figure 3.8 shows the control panel view when a robot is selected. Figure 3.8.a shows

the mini map which represents a full view of the environment with all robot positions

displayed. Figure 3.8.c illustrates robot state information including the battery charge

which will change colour depending on the level of charge. At over 50 precent it will be

green, between 50 and 20 precent yellow and under 20 precent red. Figure 3.8.d

displays the status of the robots hardware components. The base, primary laser,

secondary laser, camera and IMU status are all represented by three states OK, warning

and error. Represented by the colours green, yellow and red respectively shown below

in Figure 3.9.

Figure 3.9 The three possible hardware states a) OK in green, b) Warning in yellow, c)

Error in red.

Figure 3.8.e shows the command pad. This feature has three modes depending on which

unit type is selected. If a robot is selected the button outcomes are shown below in

Table 3.4.

a) b) c) d) e)

a) b) c)

37

Button Action

Top Left Toggle display of robot path

Top Centre Move robot forwards

Top Right Toggle display of robot costmap

Middle Left Rotate robot left

Middle Centre Stop robot

Middle Right Rotate robot right

Bottom Left Toggle display of map

Bottom Centre Move robot backwards

Bottom Right Toggle camera controls

Table 3.4 Possible controls for a selected robot.

Basic control of the robot can be performed using the control panel. Move forward and

backward will send the robot a goal one meter in front or behind the robots current

position. Using such a system as opposed to simply sending the robot a drive command

will integrate collision avoidance. This is especially useful when commanding the robot

to reverse. Each robot has a blind spot behind it as the camera and both scanners do not

have sufficient field of view. The robot will only reverse if it can be certain no objects

lie behind it. The toggle camera button will open the camera control pad. This can be

used to move the camera.

When no unit is selected the control panel will change its display to that as shown in

Figure 3.10. Using these controls the user can move the position of the camera.

Figure 3.10 The Control Panel display when no unit is selected.

38

3.7 User Feedback

3.7.1 Sound

System sounds are implemented using the ROS package audio_common (Hendrix,

2012). Unique sounds are played for robot selection, goal selection and for incoming

messages. All sounds used where based for open source wave files.

3.7.2 State Summary

The state summary as shown in figure 3.11.b is used to provide the user with a summary

of the state of all robots in the environment. The list was designed to be interactive so

that robots could be selected by selecting a list item. Hints were also added to given an

explanation to the status icon. Overall five states are available with assigned priorities;

only the worst case error will be shown to the user. The state summaries and there

priories are shown below in Table 3.5, a priority of one is considered to be the most

urgent.

Priority Name Icon

1 Lost Connection

2 Low Battery

3 General Error

4 General Warning

5 No Problems

Table 3.5 Possible robot state summaries, shown in descending order of priority

3.7.3 Message Box

The message box as shown in figure 4.11.a is used to display system messages to the

user. A QtListView is used to implement this feature.

39

Figure 3.11 A screenshot showing a) Message box, b)Robot list displaying a state

summary for two robots.

3.7.4 Video Feed

The video module selects which image to publish to the video_output topic. This topic

can then be used by an Image View plugin. By default the module will output the video

feed of the selected robot. When an item is selected the detection image will be

displayed.

3.7.5 Side Panel

The side panel is located of the left side of the interface and provides the user with

further system options. Table 3.6 shows the possible commands.

Button Action

1 Stop all robots

2 Centre Camera – return the camera to the origin

3 Add item – a user can manual add an item to the

world

4 Show summary – disabled

5 Toggle Template- Toggles showing the map template

6 Scan – scan for new robots to add to the system

7 Toggle Map control – Toggle between moving the

main view or the mini map view

8 Help – Show the help page

Table 3.6 List of all possible system commands.

a) b)

40

3.8 Object Detection

By integrating object detection algorithms into the system each robot can search for

objects of interest independent of operator assistance. This can greatly decrease a suers

the cognitive load in search based missions. Two object algorithms where created, a red

barrel detector and a face detector.

The red barrel detector uses the ROS package cmvision (Lazewatsky, 2011) which uses

a RGB or YUV blob detector. Cmvision outputs a list of all possible blobs to a topic,

defining blob size and location. The detect node then analyses these blobs to determine

if they correspond to a red barrel. The face detector algorithm was created using an

openCV HarrDetector.

3.8.1 Detection Pipeline

When a robot detects an object it publishes an ObjectsOfIntrest message which is read

by the interface. Each message contains the robot finders name, find time, percentage

chance the object is correct and the image that was used for the successful

identification. The interface then displays an icon of the object on the map in the

discovered location. This is shown in Figure 4.13.

Figure 3.12 An example of a robot detecting a red barrel a) the current robot video feed

b) the red barrel icon being displayed on the map in the position of the detected item.

b)

a)

41

By clicking on the item the control panel will show item information and supply basic

commands. The user may adjust the items position, remove it from the environment or

change the items type. Figure 4.13 shows the control panel display for a selected item.

Figure 3.13 A screenshot illustrating the Control panel for a selected an item. In this
example a red barrel is current selected.

42

Figure 3.14 Comparison between a) interface generated environment and b) real world

environment.

a)

b)

43

4. Results and Discussion

The final system was evaluated to determine the systems stability and level of usability.

These areas can then be subsequently reviewed in future work to improve the system.

Stability was tested using test cases and usability was tested using a combination of user

testing and heuristic evaluation.

4.1 Test Cases

Test cases were applied for both one and two robots for both standard and extreme

cases, focusing on evaluating the performance of all the systems features. The test

which was designed for this evaluation can be found in section 2.6.3. A full list of test

case results can be found in Appendix C. For the single robot tests the system passed

50 out of 54 tests and for the double robot case 26 out of 31 tests, resulting in a

combined score of 90%.

4.1.1 Stability

Through analysis of the test case numerical data it can be concluded that system

performance can be considered stable for the purpose of a prototype system. However,

this stability ranking cannot be extended to a higher level as very occasionally program

crashing will occur. The cause of the crashing has not yet been directly identified.

However, basic testing suggests the problem could be due to incorrect integration with

rqt. More refinement will be needed to bring the system stability up to the level required

for public release.

4.1.2 Discovered System Bugs

A number of system bugs where uncovered during the testing process with major bugs

discussed below. For a complete list of all bugs see Appendix F.

An issue was identified when the robots began to leave the connection range of the

network; system lag was experienced that slowed the full system. The reason for this is

still not fully understood, however the current hypothesis is that the problem is due to a

remote terminal window being kept open. The window is required to launch the robots

and must remain running on the master computer. It is believed that as the connection

strength decreases, system lag will occur due to this window. A solution to this would

involve stating the robots without the need for a remote terminal window to be

constantly open.

44

Another concern was the red barrel detection algorithm was found to be not robust

under varying light sources. In environments of high light saturation no detection was

registered. It was also identified that the robot motion was occasionally affecting the

algorithm resulting in no detection. The user tests had originally planned to involve

using the object detection. However, it was deemed that the detector would not be

robust enough to produce consistent results as users will be conducting the tests in an

environment with varying lighting conditions. Hence it was decided to remove the

detection tasks from the user tests.

4.2 User Tests

Tests were conducted for a total of eight users, an outline of the user tests is explained

in section 2.6.4.. Users came from a similar engineering background with varying

levels of robotics experience. Three out of the eight users were considered to be

experienced in robotics. The full test results for each user can be found in Appendix D.

4.2.1 Task Identification

The averaged results for the task identification tests are shown in Table 4.1. It should be

noted this task was completed with the users having no prior knowledge of the system,

only being told the system was based on a RTS game.

Task Time

(s)

Wrong

actions

Help

needed

Move the camera <5 0.1 No

Zoom the camera in and out <5 0 No

Select a robot <5 0.1 No

Rotate a robot <5 0 No

Find battery of robot 1 <5 0 No

Find the status of robot 3

camera

12.8 0.4 No

Find out what is wrong with

robot 1

<5 0 No

Send robot a goal <5 1 No

How would you stop a

robot

5.2 0.4 No

Find out if an obstacle is in 41 6.6 Yes

45

the robots path

Table 4.1 Averaged results from the Task Identification tests for a sample size of eight

users, <5 refers to ‘under five seconds’. Actions as defined as anything that can change

the state the system.

The task identification results can be used to conclude that the user interface is

providing an intuitive system for users to complete simple tasks. As a small sample size

was used, with a limited number of tasks the results must be considered to be

subjective. Because of this the conclusions made are to be considered as preliminary. To

obtain more conclusive results a larger sample size must be used, with more detailed

tasks of varying difficultly level and possibly conducted by an approved HCI tester

(Sharp, et al., 2011).

4.2.2 Single Robot Test: Teleoperation vs Interface

The results from the single robot user tests were averaged and are shown in Table 4.2.

Type Average

Time (s)

Average Potential

Crashes

Teleoperation 99.6 1.3

Interface 60.3 0

Table 4.2 Averaged results from the single robot control tests. A potential crash is

defined as the test supervisor having to intervene to stop the user driving.

Results indicate that the interface provides an improvement of 35% in user times when

driving to a destination, when compared to the teleoperation system. Users had on

average 1.3 crashes when controlling the robot using teleoperation compared to zero

crashes when using the interface. Users commented that they felt much more confident

and in control when using the interface. Observations showed that users found it

particularly difficult to navigate doorways and corners using teleoperation, this problem

was non-existent using the interface. Figure 4.1 shows a comparison of times for both

cases.

46

Figure 4.1 Mean time for users to drive to the destination point, a sample size of eight

users. For teleoperation mean = 99.6s, slowest time = 145s, fastest time = 59s and for

interface control mean = 60s, slowest time = 80s, fastest time = 40s. Error bars represent

the fastest and slowest user times for the case.

4.2.3 Advanced Test

The advanced tests required users to map the third floor of the Electrical Engineering

building using two robots. A full floor exploration was defined to include all the hall

ways, the robotic laboratory and the staff room; all users where able to complete this

task. A map generated by a user is shown in Figure 4.2. The analysed results can be

seen in Table 4.3.

Type Result

Average Map Time 277.7 s

Potential crashes 0.1

Fastest Time 210 s

Slowest Time 405 s

Table 4.4.3 Computed results from the user tests requiring users to map an area in the

fastest time possible with two robots. A sample size of eight user was used.

Teleoperation Interface

Time to
destination

(s)

47

Figure 4.2 A user generated map of the third floor of the Electrical Engineering

building using two robots. The robotics laboratory and staff room are labelled.

Users where divided into two groups, those with robotic experience and those without.

A distinction was made by examining the user’s academic and employment

backgrounds. RTS experience cannot be used in the analysis as the method used to

collect experience levels is subjective; requiring users to rank their abilities. A more

advanced method required, such as getting users to play an RTS game resulting in a

quantified score of performance. Figure 4.3 shows the difference in average time taken

to map the floor between the different user types. The figure demonstrates that a user’s

performance is relativity constant and independent of the user’s experience in the field

of robotics. It should be noted that this test has a small sample size and contains

possible outliers. Further testing will be required to produce conclusive.

Robotics Laboratory

Staff Room

48

Figure 4.3 Mean time for user to map the third floor of the Electrical Engineering

building. Comparison between uses with no robotics experience (mean = 262s) and

users with robotic experience (mean = 304s).

4.2.4 Analysing User Comments and Observations

Analysing user feedback can be used to further infer the systems usability, details on

each user’s comments can be found in Appendix C. All users commented that they had

more in control of the system and were more confident when using the interface as

opposed to using teleoperation. Users commented that they liked the visual appearance

of the interface and that information was appropriately organised and displayed.

4.3 Heuristic Evaluation

The data from user testing was later used to conduct a heuristic evaluation. The details

explaining the evaluation can be found in section 2.6.5, the calculated heuristic scores

are shown below in Table 4.4 below, with detailed explanation of the point allocations

are located in Appendix E.

0

50

100

150

200

250

300

350

1 2No Experience Experience

Time to
map floor

(s)

49

 Evaluation Criteria Score
1 The overall navigation structure is clear and easy to understand 0

2 Minimalist design— No excess features or information 0

3 Visual elements (menus, colours, layout) are consistent across the

system

0

4 Design follows same conventions as existing tools that serve the same or

similar purpose

1

5 Interactions and behaviours are consistent across the system 0

6 Aesthetic integrity— Design has clear visual hierarchy, good alignment,

good colours contrast, and readability

1

7 Each interface has a clear path for the user to take 0

8 Content is clear and concise 0

9 Labels and button text are clear and concise 0

10 Icons are unambiguous 1

11 UI elements provide visual feedback when manipulated (i.e. buttons

depress when clicked)

0

12 Number of buttons/links is reasonable 0

13 System’s visual characteristics imply how to interact with the interface

(affordance)

1

14 Interface provides feedback to the user about the status of the system 2

15 System speaks the user’s language 0

16 Users must confirm before error-prone actions are taken (i.e. deleting,

quitting)

2

17 Users can tailor frequent actions to boost efficiency 2

18 Alerts and notifications are used only for the most important information 0

19 Error messages are in plain language, informative, and unambiguous 0

20 Error messages offer solutions 3

21 Users can easily access instructions, when appropriate 0

22 Documentation is easy to search, focused on the user’s tasks, and not too

dense

0

23 Layout could support translation to another language (i.e. Spacing is

forgiving enough to accommodate longer words or characters

1

 Total Score 14

Table 4.4 Results from the heuristic evaluation. Detailed explanations of the point

allocations are located in Appendix E.

50

4.3.1 Heuristic Evaluation Discussion

The interface scored 14 deducing points from the heuristic evaluation. This is equivalent

to a score of 101/115 or 88%. This score can be used reinforce the belief that the

interface is providing a highly usable experience for user. However, such a score can

only be considered a preliminary estimation of the system. This is due to subjective

nature of heuristic evaluation which is due to bias created from the author conducting

the tests.

4.4 Important findings

4.4.1 Testing Limitations

As discussed in all test selections, the results obtained must be carefully assessed. The

nature of many user interface evaluation methods is that they can produce inconclusive

results for small sample sizes. Result accuracy can be improved by using professional

experimenters, which can reduce the bias of tests or the use of a large and diverse user

base. However, such methods were in excess of this project’s allocated budget.

The best approach to obtain conclusive results for the developed system would involve

a release to the robotic community. Once released, user feedback will be easily

obtained, with the errors uncovered and subsequently repaired by system updates. The

ROS package distribution system provides the ideal infrastructure to implement such a

strategy.

4.4.2 Discovered Improvements

Possible system improvements can be identified through investigation of the obtained

results. Stability analysis proved that an increase in robustness would be needed to

produce a higher quality system. Further development of the communication system

would also be needed, not only to increase the robustness of the current system, but to

also increase the systems scalability.

Task identification results identified a number of improvements that will increase

usability. Many users attempted to click either the hardware status icons or the robot

state summary icons. Further refinement could improve this icon design to make it look

less like a button. Some users did not understand the colour coding convention; this will

have to be clearly illustrated in all manuals and help pages.

51

By analysing user comments and observations future improvements can be suggested.

100 % of users commented that the mouse drag system was hard to use at times, feeling

that the motion was jerky and unresponsive. This component can be refined by using

more advanced screen movement algorithms and will be addressed in future work. 63

% of users commented that the webcam controls could be improved, with some users

suggesting that a hold function could be added. Such a feature would allow continuous

camera movement as long as the button is pressed.

It was discovered through testing that additional feedback mechanisms will be required,

with a specific area being the management of lag and delays. Commands sent to the

robot will not happen instantly, requiring a small amount of time to be processed. 75%

of users agreed that a connection strength meter for each robot will be useful, the simple

‘yes or no’ connection feature is not sufficient. It was identified that increased general

system feedback was also needed. This would include mechanisms to let a user know

their command has been sent and is being processed, as well as sounds and loading

icons. When questioned about the addition of speakers and a microphone to the robots,

100% of users said this would be a great addition.

Other user suggested improvements included: a video recording feature, a health bar to

represent robots connection strength, the introduction of hotkeys to allow a robot to be

selected by pressing a number, having the camera track a robots position and the ability

to send multiple goals to a robot.

4.4.3 System Limitations

The system was only tested with two robots, hence although the system was designed to

accommodate for five robots, no claims can be made about the effectiveness of the

system for more than two robots. The system was tested indoors and in a level

environment. It is predicated that a 3D map display will be needed to allow for effective

control in outdoor environments.

4.4.4 Comparison to the State of the art

Comparison to the state of the art is difficult as full access to another state of the art

interface is required for a complete evaluation. Instead, to perform comparison primary

features of each interface can be compared. It was determined through research that

Team Michigan’s interface (TMI) is currently deemed to be the most state of the art

52

interface available. Hence this interface was used to compare against this projects

developed interface (DI).

1) TMI requires two operators while DI needs only one.

2) TMI was been successfully tested using 11 robots compared to DI’s 2 robots.

3) DI focuses on providing a simple to use system and has been tested on users

with no robotics experience or training, TMI has only been used by robotic

experts.

4) TMI provides the option to show a three dimensional maps to help increase

situational awareness, MRC does not.

5) DI provides a modular design that can be modified for different applications,

TMI is specifically designed for explore and locate missions.

The above can be summarised as follows; the Team Michigan interface is a complex

and powerful system, specifically tailored to the application of explore and locate

missions. It however requires two highly trained operators and is built off private

software, making it very inaccessible to outside researchers.

The developed interface is simpler in design and features when compared to TMI, but it

is user friendly and can be operated by a single user. The system is built with a modular

and ROS compatible design; meaning it can be easily integrated into other robotic

systems running ROS.

53

5. Conclusions

The overall project objective was to develop an effective single-user, multi-robot user

interface. The collection of project results can be used to create a preliminary evaluation

of the system, which can be used to produce initial conclusions of the system.

Results from the test cases proved the system has adequate stability, noting that further

refinement is still required. The single robot tests showed the system has improved

performance over transitional teleoperation methods. Results from the task

identification, user comments and heuristic evaluation prove the system is providing an

intuitive and user friendly experience for the user. The advanced robot control tests

demonstrate the system is useable for users inexperienced in in the field of robotics.

It can hence be concluded that the primary objective of creating a user-friendly, single

user, multi-robot user interface, based upon the RTS paradigm has been developed.

Demonstrating that for an indoor environment the system provides an implementation

for a user of low robotics experience to effectively control two robots.

5.1 Contribution to the State of the Art

By developing the system as an rqt plugin and by using only ROS compatible

components a system has been created that can be easily integrated into other ROS

systems. Once released to the robotic community, the system will provide a state of the

art and easy to run multi-robot interface that can be used by other researchers. By

having access to ROS compatible product other researchers can use the system as the

foundation for other interfaces, or to conduct further research in HRI. The project has

also produced results for the use of the RTS paradigm in the design of a multi-robot

interface. Preliminary results have begun to show that the RTS paradigm is an effective

design constraint for the development of multi-robot user interfaces. However, more

results are needed before conclusive claims can be made.

5.2 Multi-Robot User Interface Design Guidelines

A series of design guidelines can be recommend for the development of future multi-

robot user interfaces. This has been developed from analysing the project results and

incorporating the lessons learnt from the construction of the system.

54

5.2.1 Follow the RTS Paradigm

1) Use a layout based upon a central map display with a control panel placed

below.

2) Implement a robot section method that continuously updates the control

panel with data of the selected unit.

3) Look to tested RTS features when developing new interface features.

5.2.2 Enhance Situational Awareness

1) Use maps with an overlayed robot position to increase location awareness.

2) Overlay costmaps and provide a webcam feed to help increase surroundings

awareness.

3) Provide users with a robot list which is visible at all times, to help increase

mission awareness.

5.2.3 Lower users cognitive load

1) Provide a simple goal selection control system.

2) Implemented colour coding mechanisms.

3) Have the option to disable central map display features.

4) Use a clean and simple design, with well-defined borders, a simple colour

palette and appropriate icons.

5.2.4 Adequate Status Information

1) Provide the user with easy to interpret robot status information.

2) Summarise and prioritise each robots state.

3) Use sounds and flashing animations to increase feedback.

55

6. Future Work and Recommendations

Using the current interface as a foundation a number of possible future work areas have

been devised; with the primary focus on refining the system in preparation for release to

the ROS community, and eventually for use in real world applications.

Further development focusing on increasing system robustness should ne the number

one priority. Refining software on both the robots and master interface will ensure the

system is stable in all situations. The development of a more advanced process manger

will enable robots to effectively monitor all their nodes, taking informed actions to

overcome errors, effectively increasing the robot robustness.

A more advanced communication system is needed. An asynchronous dynamic design

that only sends data to the interface when requested should be implemented. For

example a costmap should only be transmitted if the interface is actually displaying the

map. Such a system will reduce the network traffic and will make the system more

scalable, allowing for more robots to be used at one time. A mesh network could also be

set up to allow the master to communicate with a robot by using the other robots as

network nodes. This will greatly increase the systems communion range. Further user

testing is required to correctly make conclusive conclusions which can later be

published in support of the system upon its release. Using these new results and the

results from the conducted tests further features refinement can be undertaken.

With a fully tested and refined multi-robot interface, work can turn to developing the

system into a next generation system. Finishing the Map Builder port will allow for a

state of the art large scale mapping solution that will greatly increase the maximum map

size available. Converting the map module to a three dimensional map display will

further increase the users situational awareness and will enable the system to work in

more complex environments.

Finally application specific features can be added to tailor the system for a certain

mission. Such as; developing object detection algorithms for search and rescue

missions, multi-robot path navigation for mining applications and, durable hardware

and software for military roles.

56

7. References

Banachowicz, K., 2011. SICK ROS Drivers. [Online]

Available at: http://www.ros.org/wiki/LMS1xx

[Accessed 2013].

Bevana, N., Kirakowski, J. & Maissel, J., 1991. What is Usability?. Stuttgart,

Proceedings of the 4th International Conference on HCI.

Bruemmer, D. J. et al., 2005. “Turn Off the Television!”: Real-World Robotic

Exploration Experiments with a Virtual 3-D Display. s.l., Proc. HICSS.

Chen, J. Y., Haas, E. C., Pillalamarri, K. & Jacobson, C. N., 2006. Human-Robot

Interface: Issues in Operator Performance, Interface Design, and Technologies,

Aberdeen: U.S. Army Research Laboratory.

Crossman, J., Marinier, R. & Olson, E. B., 2012. A Hands-Off, Multi-Robot Display for

Communicating Situation Awareness to Operators. Denver, Colorado, Proceedings of

the International Conference on Collaboration Technologies and Systems.

Dixon, S. R. & Wickens, C. D., 2004. Automation reliability in unmanned aerial

vehicle flight control. Mahwah, NJ: Lawrence Erlbaum, Proceedings of Human

Performance, Situational awareness and Automation Conference.

Dixon, S. R., Wickens, C. D. & Chang, D., 2003. Comparing quantitative model

predictions to experimental data in multiple-UAV flight control. Santa Monica, CA,

Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting.

Drury, J. L., Keyes, B. & Yanco, H. A., 2007. Lassoing HRI: analyzing situation

awareness in map-centric and video-centric interfaces. s.l., Proceedings of the Second

ACM SIGCHI/SIGART Conference on Human-Robot Interaction.

Endsley, M. R., 1988. Design and evaluation for situation awareness enhancement. s.l.,

Proceedings of the Human Factors Society 32nd Annual Meeting.

Endsley, M. R. & Garland, D. J., 2000. Situation Awareness: Analysis and

Measurement. s.l., LAWRENCE ERLBAUM ASSOCIATES.

57

Feil-Seifer, D., 2012. p2os ROS drivers. [Online]

Available at: http://www.ros.org/wiki/p2os

[Accessed 2013].

F. I., 2011. Care-O-bot Environment. [Online]

Available at:

http://ftp.isr.ist.utl.pt/pub/roswiki/cob_experimentation_days(2f)Tutorials(2f)Care(2d)O

(2d)bot(20)Environment.html

[Accessed 2013].

Francois, S. & Gilbert, P., 2008. Recent Advances in Multi Robot Systems, Chapter 10.

s.l.:s.n.

Gassend, B., 2012. ROS Foreign Relay. [Online]

Available at: http://www.ros.org/wiki/foreign_relay

[Accessed 2013].

Gerkey, B. P., Leibs, J. & Gassend, B., 2012. ROS Hokyou laser scanner drivers.

[Online]

Available at: http://www.ros.org/wiki/hokuyo_node

[Accessed 2013].

Gomez, A. V., 2010. Evolutionary Design of Human-Robot Interfaces for Teaming

Humans and Mobile Robots in Exploration Missions, Rome: University of Rome.

Goodrich, M. A. & Olsen, Jr, D. R., 2003. Seven Principles of Efficient Human Robot

Interaction. Systems, Man and Cybernetics, Volume IV, pp. 3942-3948.

Hendrix, A., 2012. ROS package audio_common. [Online]

Available at: http://www.ros.org/wiki/audio_common

[Accessed 2013].

Jones, H. & Snyder, M., 2001. Supervisory control of multiple robots based on a real-

time strategy game interaction paradigm. Tucson, AZ, Systems, Man, and Cybernetics,

2001 IEEE International Conference.

Kohlbrecher, S., 2012. ROS SLAM example. [Online]

Available at: http://answers.ros.org/question/35684/icp-scan-matching-failure/

[Accessed 2013].

58

Kohlbrecher, S. & Meyer, J., 2013. ROS Hector Slam. [Online]

Available at: http://www.ros.org/wiki/hector_slam

[Accessed 2013].

Lacaze, A., Murphy, K., Del Giorno, M. & Corley, K., 2012. Reconnaissance and

Autonomy for Small Robots (RASR) team: MAGIC 2010 challenge. Journal of Field

Roboitcs, 29(5), pp. 729-744.

Lazewatsky, D., 2011. ROS cmvision. [Online]

Available at: http://www.ros.org/wiki/cmvision

[Accessed 2013].

Marder-Eppstein, E., 2013. ROS Navigation Stack. [Online]

Available at: http://www.ros.org/wiki/navigation

[Accessed 2013].

Meeussen, W., 2011. ROS multimaster. [Online]

Available at: http://ros.org/wiki/multimaster

[Accessed 2013].

Mihelich, P. & Bowman, J., 2010. ROS cv_bridge. [Online]

Available at: http://www.ros.org/wiki/cv_bridge

[Accessed 2013].

Mihelich, P. & Bowman, J., 2013. ROS Image Common. [Online]

Available at: http://www.ros.org/wiki/image_common?distro=groovy

[Accessed 2013].

Nielsen, J., 1995. 10 Usability Heuristics for User Interface Design. [Online]

Available at: http://www.nngroup.com/articles/ten-usability-heuristics/

[Accessed 2013].

Nielsen, J. & Molich, R., 1990. Heuristic evaluation of user interfaces. New York,

SIGCHI Conference on Human Factors in Computing Systems.

Olson, E. et al., 2012. Progress Toward Multi-Robot Reconnaissance and the MAGIC

2010 Competition. Journal of Field Robotics, 29(5), pp. 762-792.

O. T., 2011. Oxygen Iconset. [Online]

Available at: http://www.iconarchive.com/show/oxygen-icons-by-oxygen-

59

icons.org.html

[Accessed 2013].

Qt Project, D., 2013. Qt UI Framework. [Online]

Available at: www.qt-project.org/

[Accessed 2013].

Qt, 2013. QGLWidget Class Reference. [Online]

Available at: http://qt-project.org/doc/qt-4.8/qglwidget.html

[Accessed 2013].

Reid, R. & Braunl, T., 2011. Large-scale Multi-robot Mapping in Magic 2010.

Qingdao, IEEE, pp. 239-244.

Rule, A. & Forlizzi, J., 2012. Designing Interfaces for Multi-User, Multi-Robot

Systems. Human-Robot Interaction: Proceedings of the seventh annual ACM/IEEE

international conference, pp. 97-104.

Schipani, S. P., 2003. An evaluation of operator workload during partially-autonomous

vehicle operations. s.l., Proceedings of PerMIS 2003.

Sharp, H., Rogers, Y. & Preece, J., 2011. Interaction Design: Beyond Human-computer

Interaction. 3rd ed. s.l.:John Wiley & Sons.

Spaepcke, 2013. Rviz. [Online]

Available at: http://www.ros.org/wiki/rviz

[Accessed 27 05 2013].

Steffi, 2013. Usability Heuristics. [Online]

Available at: http://wiki.osrfoundation.org/Usability/Heuristics

[Accessed 2013].

Steinfeld, A. et al., 2006. Common metrics for human-robot interaction. s.l., Proceeding

of the 1st ACM SIGCHI/SIGART conference on Humanrobot interaction.

Stonier, D., 2013. ROS Multimaster Special Interest Group. [Online]

Available at: http://www.ros.org/wiki/sig/Multimaster

[Accessed 2013].

60

Thomas, D., 2013. ROS PyStyle Guide. [Online]

Available at: http://www.ros.org/wiki/PyStyleGuide

[Accessed 2013].

Thomas, D., Scholz, D. & Blasdel , A., 2013. RQT. [Online]

Available at: http://www.ros.org/wiki/rqt

[Accessed 2013].

Trouvain, B. & Wolf, H. L., 2003. Design and Evaluation of a Multi-Robot Control

Interface. s.l., NATO.

Wang, J. et al., 2008. Experiments in Coordination Demand for MultiRobot Systems.

s.l., Proceedings of 2008 IEEE International Conference on Distributed Human-

Machine Systems.

W. G., 2012. ROS. [Online]

Available at: http://www.ros.org/wiki/

[Accessed 2012].

61

8. Appendices

Appendix A – Graphical Interface Evolution

Figure A1 Graphical user interface version 1, a mock up desinged in photoshop.

Figure A2 Graphical user interface version 2, layout designed in Qt. Other features not

functional, images added with Photoshop.

62

Figure A3 Graphical interface version 3, functional; map module, video feed, robot

selection and goal commands. Basic control panel functions where implemented.

Figure A4 Graphical interface version 4, non-functional purely a layout and visual

design. Colour palette had to be abandoned as to be compatible with the rqt framework.

63

Figure A5 Graphical interface version 5, a fully working system embedded within the rqt framework.

64

Appendix B - Custom Messages

base_to_robot

int64 type

string message

robot_to_base

Header header

string owner

int8[] status

string message

ObjectOfIntrest

int8 type

string name

string finder

time found_time

sensor_msgs/Compressed image

Type Description

1 Change detection algorithm

2 Send a global goal

3 Send a local goal

4 A drive command

5 Change robots mode

6 Change robot fail safe

7 Connection check

Table B1 Key table used by the base_to_robot message.

65

Type Type Name Sub

Type

Description

5 Change robots mode 0 Manual Control

5 Change robots mode 1 Explore

1 Change detection algorithm 0 Nothing

1 Change detection algorithm 1 Red Barrels

1 Change detection algorithm 2 Human faces

6 Change robot fail safe 0 Home

6 Change robot fail safe 1 Explore

6 Change robot fail safe 2 Stop

Table B1 Sub key used to define which selection with in a state change command. For

example is robot mode is to be changed, 0 supplied to the message field will command

the robot to enter manual control.

66

Appendix C - Test Case Results

C1 One Robot

 Test Case Result Comments
1 Turn on wambot4 PASS -
2 Start-up interface PASS -
3 Zoom map PASS -
4 Move map PASS Could do with refinement
5 Toggle template PASS -
6 Move template PASS -
7 Confirm robot state is correct PASS -
8 Toogle map control PASS -
9 Zoom mini map PASS -
10 Select robot, unselect robot PASS -
11 Confirm robot battery PASS -
12 Confirm robot battery has three

colours
PASS -

13 Confirm robot state PASS -
14 Fail primary laser – check status

icon
PASS -

15 Fail secondary laser– check status
icon

PASS -

16 Fail camera– check status icon PASS -
17 Fail IMU – check status icon FAIL Not implemented
18 Lose connection – check icon PASS -
19 Check base warning icon PASS -
20 Check secondary laser warning icon PASS -
21 Send robot goal PASS -
22 Toggle costmap PASS -
23 Toggle path PASS -
24 Turn map black PASS -
25 Turn map off PASS -
26 Stop robot PASS -
27 Rotate left and right PASS Could increase rotation

amount
28 Move forward and back PASS More feedback as to

what the robot is doing
could be helpful.

29 Toggle camera controls PASS -
30 Move camera PASS -
31 Add item PASS -
32 Move item PASS -
33 Select item, then select robot PASS -
34 Remove item PASS -

67

35 Force robot to state summary 1 - no
connection

PASS -

36 Force robot to state summary 2 – low
power

PASS -

37 Force robot to state summary 3 -
error

PASS -

38 Force robot to state summary 4 -
Warning

PASS -

39 Force robot to state summary 5 - OK PASS -
40 Confirm detect state change PASS -
41 Confirm red barrel detection – low

light
FAIL -

42 Confirm red barrel detection –
standard light

PASS -

43 Confirm red barrel detection – highly
saturated

FAIL -

44 Confirm item displayed on map,
confirm item shown

PASS -

45 Move found item PASS -
46 Delete item PASS -
47 Confirm face detection PASS -
48 Confirm failsafe state change PASS -
49 Confirm home failsafe PASS -
50 Confirm none failsafe PASS -
51 Confirm stop failsafe PASS -
52 Explore area with interface PASS -
53 Explore using controller PASS -
54 Move robot out of range FAIL System experienced lag

and did not update the
interface with the lost

connection.

Table C1 Results from the single robot test cases

Pass rate = 50 /54 = 92.6%

C2 Two Robots

 Test Case Result Comments
1 Turn on wambot1 (robot 1) PASS -
2 Turn on wambot4 (robot 2) PASS -
3 Confirm robot 1 state is correct PASS -
4 Confirm robot 2 state is correct PASS -
5 Select robot 1 PASS -
6 Select robot 2 PASS -

68

7 Send robot 1 a goal PASS -
8 Send robot 2 a goal PASS -
9 Stop robot 1 PASS -
10 Stop robot 2 PASS -
11 Stop all robots PASS -
12 Toggle robot 1 costmap PASS -
13 Toggle robot 2 costmap PASS -
14 Toggle robot 1 path PASS -
15 Toggle robot 2 path PASS -
16 Move robot 1 camera PASS -
17 Move robot 2 camera PASS -
18 Test switching video feed FAIL -
19 Test joy stick controller for both FAIL -
20 Explore with robot 1 PASS -
21 Explore with robot 2 PASS -
22 Drive robot 1 into a low connection

range
FAIL -

23 Drive robot 2 into a low connection
range

FAIL -

24 Return robot 1 home PASS -
25 Return robot 2 home PASS -
26 Select goal in unknown space PASS -
27 Return camera home PASS -
28 Press help button PASS -
29 Pause map update and confirm it is

correct
PASS -

30 Stop all robots PASS -
31 Send both robots to the same goal and

confirm no collision occurs
FAIL -

Table C2 Results from the test case with two robots.

Pass rate = 26/31 = 83.8%

69

Appendix D – User Test Results

D1 User 1

Name Dagogo Altraide
Age 22
Qualifications Mechanical Engineer
Robot Experience None – 0
RTS experience Limited - 2

Task Identification

Task Time Wrong
actions

Help
needed

Comments

Move the map view U5 0 No -

Zoom the map view U5 0 No -

Select a robot U5 0 No -

Rotate a robot 13 0 No Took a bit of time to find

the button.

Find battery of robot 1 U5 0 No -

Find the camera status of

robot 2

20 1 No Had to be told it was in

the control panel

Find out what is wrong

with robot 1

U5 0 No Previous question

influenced?

Send a goal to robot 1 U5 3 No Pressed the wrong button

Stop a robot U5 0 No -

Find out if an obstacle is

in the robots path

NA 9 Yes Over 60 seconds

Teleportation vs. Interface

Type Time Potential

Crashes

Teleoperation 124 s 2

Interface 68 s 0

70

Advanced Test

Type Result

Map Time 302 s

Potential crashes 0

User Comments and Observations

The user stated that he was very inexperienced with real time strategy games. In the task

identification test the user required help completing some tasks.

In the single robot test the user found it difficult to drive the robot though the initial

door way, driving very slowly and carefully. Even with his caution two potential

crashes occurred in his attempt to clear the door way. The user commented that he

would like to see between camera controls, “The camera control was sub-par”. He

suggested adding a function where a user could hold the button to allow a continuous

camera movement.

For the advanced test the user showed relatively good control of the system. Although

his exploration method was sub optimal. The user commented about the map drag

function saying it needed more work, “The map drag is very jerky and hard to control”.

During this user test the hector mapping algorithm on the robot produced a slightly

messy map. The user commented that this was confusing.

71

D2 User 2

Name Prawi Woods
Age 22
Qualifications Civil Engineering student
Robot Experience None - 0
RTS experience Very experienced real time strategy game player, expert

StarCraft player - 9

Task Identification

Task Time Wrong
actions

Help
needed

Comments

Move the map view U5 1 No First attempt didn’t hold

button

Zoom the map view U5 0 No -

Select a robot U5 0 No -

Rotate a robot U5 0 No -

Find battery of robot 1 U5 0 No -

Find the camera status of

robot 2

10 1 No Did not understand the

colour coding.

Find out what is wrong

with robot 1

U5 0 No -

Send a goal to robot 1 U5 0 No Pressed the wrong button

Stop a robot U5 0 No -

Find out if an obstacle is

in the robots path

30 s 3 Yes Was told to try press

buttons

Teleportation vs. Interface

Type Time Potential

Crashes

Teleoperation 80 1

Interface 52 0

72

Advanced Test

Type Result

Map Time 248

Potential crashes 0

User Comments and Observations

In the task identification tests the user seemed very confident using the system, being

able to complete most tasks very quickly. The user had to be told the colour coding of

the status icon, but was able to identify that the icon represented the camera status. Did

not know what a costmap was, but was able to identify that it was showing a real time

obstacle map after clicking it.

In the single robot test the user found it hard to drive though doors, moving slowly

when taking corners, “I found it very hard to control the robot especially around

corners,” and “I wasn’t sure which direction the camera was pointing with respect to the

robots orientation”. The user commented that he really enjoyed used the system and that

it reminded him of playing an RTS game, “I really like this it, it really does remind me

of playing Starcraft.”

For the advanced test the users experience in RTS gaming was apparent, with the user

making fast and decisive decisions. The user said he enjoyed using the system and likes

the idea of basing the system off an RTS. When questioned about what the user thought

of the overall system his replay was “The system works, but it still needs refinement”.

User suggestions included; Keep a unit selected when moving the map, be able to set

multiple goals, highlight the drive command buttons as the robot is driving. After 20 –

30 minutes of controlling the robots, the user claimed he was comfortable using the

system.

73

D3 User 3

Name Phillip Whyte
Age 22
Qualifications Mechanical Engineer with Finance Degree
Robot Experience None – 0
RTS experience Very Limited - 2

Task Identification

Task Time Wrong
actions

Help
needed

Comments

Move the map view U5 0 No -

Zoom the map view U5 0 No -

Select a robot U5 0 No -

Rotate a robot U5 0 No -

Find battery of robot 1 6 s 0 No -

Find the camera status of

robot 2

U5 1 No Understood the colour

coding for green equals

OK

Find out what is wrong

with robot 1

U5 0 No Figured immediately the

IMU error

Send a goal to robot 1 U5 2 No Took a few attempts

Stop a robot 20 3 No Tried to click the error

icon button

Find out if an obstacle is

in the robots path

52 s 8 Yes Through trail and error the

user figured out he needed

to pressed the costmap

button.

Teleportation vs. Interface

Type Time Potential Crashes

Teleoperation 75 s 3

Interface 41 s 0

74

Advanced Test

Type Result

Map Time 210 s

Potential crashes 1

User Comments and Observations

For the task identification test the user performed well given his limited experience with

RTS video games. The user correctly identified the colour coding of green equals OK

and red for error. The user was confused by the error icon above the robot, “I thought

the error icon was a stop button”. User also thought the status icons where buttons.

User produced fast times for both single robot cases, although an aggressive approach

was taken in the teleportation case, which can be seen in the three potential crashes. It

should be noted that in the interface case the user used both a combination of setting

goals and using the joy stick controller. The controller was used to get around convers

faster and make small adjustments to the path. This proved to be a very good

combination and resulted in a very fast time. The user commented that he could found

interface control much easier, “ because I could click on the goals and see the map, this

made it much easier to go thought doors. Because I could see the width of the door and

then compare it to the size of the robot I was confident the robot could clear it and thus

could go faster”. This comment is illustrating that the user is experiencing increased

situational awareness.

The user commented that he found the first test more exciting, “I like the immersive

nature of using only a video feed and it felt like I was going faster”. However the user

commented that he found the second test more “satisfying”. User suggestions on how

to improve the interface include;; more feedback, change the robot icon, “I can’t see the

arrow very well”, a heading on the video feed to both show the robot name and if a feed

is streaming, a video record function, wants speakers so can interact with surrounding

people.

User was impressed with the system and liked how the map would update as the robot

explored. User didn’t like the lag that occurred as the robots got further away from the

base, suggested a connection icon to show the connection strength of a robot.

75

D4 User 4

Name Bradley Pattrick
Age 23
Qualifications Chemical Engineer and Chemist
Robot Experience None - 0
RTS experience Very Experienced – 7

Task Identification

Task Time Wrong
actions

Help
needed

Comments

Move the map view U5 0 No -

Zoom the map view U5 0 No -

Select a robot U5 1 No Clicked the error icon.

Rotate a robot U5 0 No -

Find battery of robot 1 10 s 0 No Thought the robot colour

icon was the charge.

Find the camera status of

robot 2

43 s 0 1 User to a long time to

figure out the status icons

represented hardware

state. Did not understand

colour coding.

Find out what is wrong

with robot 1

10 s 0 No Influenced by help in

previous section.

Send a goal to robot 1 U5 1 No Clicked wrong mouse

button

Stop a robot U5 0 No -

Find out if an obstacle is

in the robots path

NA 10 - User could not figure out

in fewer than 10 attempts.

Teleportation vs. Interface

Type Time Potential Crashes

Teleoperation 109 s 0

Interface 78 s 0

76

Advanced Test

Type Result

Map Time 315 s

Potential crashes 0

User Comments and Observations

For the task identification test user could not figure out the status colour coding, and

commented that the colour of green for OK and red for error is not easy to figure out.

However once the understood he said “the convention makes sense”.

For the single robot tasks the user drove very slowly thought the door. Commenting

“the joy stick control was more fun and liked how it went faster”. However he also said

“he felt less safe and confident with the joy stick” and proposed an idea of side mounted

cameras.

For the advanced test the user showed good multi-tasking stills being able to effectively

and quickly control the two robots. In the users test the map produced was particularly

messy, the user responded well to this error and was able to complete the task. Said the

map drag needed more refinement and was hard to use, said the scroll was too fast,

didn’t like hoe the hector map got messy. Said he likes the goal setting system and that

it was easy to use. Said the responsiveness of the system was adequate. Noted that he

did not use the mini map and instead simply zoomed out on the main map.

77

D5 User 5

Name Remi Kent
Age 22
Qualifications Software Engineer
Robot Experience Highly experienced with ROS. Has worked on

the Wambots and a Nao - 7
RTS experience High level of experience with video games. - 7

Task Identification

Task Time Wrong
actions

Help
needed

Comments

Move the map view U5 0 No -

Zoom the map view U5 0 No -

Select a robot U5 0 No -

Rotate a robot U5 0 No -

Find battery of robot 1 U5 0 No -

Find the camera status of

robot 2

7 s 0 1 Told to look in display

panel

Find out what is wrong

with robot 1

U5 0 No -

Send a goal to robot 1 U5 1 No -

Stop a robot U5 0 No -

Find out if an obstacle is

in the robots path

NA 10 - User could not figure out

in fewer than 10 attempts.

Teleportation vs. Interface

Type Time Potential Crashes

Teleoperation 145 s 2

Interface 80 s 0

78

Advanced Test

Type Result

Map Time 247 s

Potential crashes 0

User Comments and Observations

User produced very quick identification of all tasks. The user did not manger to

identify the costmap could be used to pick up obstacles.

When driving the single robot using teleoperation the user found it quite hard to drive

thought the door taking a long time. The user had two potential crashes when attempting

to drive thought the door. The user commented how he went the map was moved the

unit was unselected. Commented “the interface was must easier than driving with the

controller”.

User suggested displaying the robots name or number above the map icon. User

suggested a health bar above the robot icon that would represent the connection strength

of the robot to the base. When asked what the user thought of the overall system he

replied “I really like the system and found it very easy to use.”.

79

D6 User 6

Name Enda Mccauley
Age 21
Qualifications Mechatronics Engineering and Computer Science student
Robot Experience Highly experienced with ROS. Is working on a project

using the Wambots. - 7
RTS experience Reasonable - 5

Task Identification

Task Time Wrong
actions

Help
needed

Comments

Move the map view U5 0 No -

Zoom the map view U5 0 No -

Select a robot U5 0 No -

Rotate a robot 6 0 No -

Find battery of robot 1 U5 0 No -

Find the camera status of

robot 2

7 s 0 1 Correctly identified green

as OK.

Find out what is wrong

with robot 1

U5 0 No -

Send a goal to robot 1 U5 1 No Clicked wrong mouse

button to send goal

Stop a robot U5 0 No -

Find out if an obstacle is

in the robots path

30 10 - Was told to try press

buttons.

Teleportation vs. Interface

Type Time Potential Crashes

Teleoperation 140 s 2

Interface 75 s 0

80

Advanced Test

Type Result

Map Time 405 s

Potential crashes 0

User Comments and Observations

User performed very well in the task identification test this test being able to complete

most tasks very quickly. User failed to identify the cost map was a way to determine

real time obstacles.

For the single robot control test the user was very cautious when going thought

doorways, drove constantly too close to the walls and commented “It was very hard to

dive the robot through a door way”.

User performed advanced test slowly although appeared to have good control and

understanding of the system. The mapping in this test produced a messy overlay. The

user overcame this easily saying “the map colour coding and the fact that the selected

map is displayed on the highset layer made it easy enough to comprehend the

environment”. At one stage the user hid one of the robot maps so that he could better

control the other robot.

User suggested adding hot keys so that robots could be selected by pressing a number.

He also suggested that when the number was pressed twice the camera would centre on

the robot. The user commented that really liked the system and that it remained him a

lot of playing an RTS.

81

D7 User 7

Name Calum Meiklejoh
Age 23
Qualifications Robotics Engineer
Robot Experience Has previously worked on the Wambots. - 9
RTS experience Average – 5

Task Identification

Task Time Wrong
actions

Help
needed

Comments

Move the map view U5 0 No -

Zoom the map view U5 0 No -

Select a robot U5 0 No -

Rotate a robot U5 0 No -

Find battery of robot 1 U5 0 No -

Find the camera status of

robot 2

U5 0 No -

Find out what is wrong

with robot 1

U5 0 No -

Send a goal to robot 1 U5 0 No -

Stop a robot U5 0 No -

Find out if an obstacle is

in the robots path

15 10 - -

.

Teleportation vs. Interface

Type Time Potential Crashes

Teleoperation 59s 0

Interface 49s 0

82

Advanced Test

Type Result

Map Time 260s

Potential crashes 0

User Comments and Observations

This user way identified to have a very high level of robotic experience, having

previously worked on a project with the Wambots. The user performed very well

completing all tasks quickly, with no mistakes and no assistance.

The user commented that he was experienced controlling the robot via a video feed, this

showed in the users time. User said “I would like to be able to play sounds as I am

exploring”. When asked about possible improvements the user suggested;; improving

the map drag, improve the navigation path finding, longer lasting batteries and a

improved Wi-Fi network.

The user commented “this is a very easy to use system and I really like it”. He also

made a comparison to Rviz saying “It is much easier to control compared to Rviz”.

83

D8 User 8

Name Calum Webb
Age 22
Qualifications Mechanical Engineer and Computer Scientist
Robot Experience Low. – 2
RTS experience Very High - 8

Task Identification

Task Time Wrong
actions

Help
needed

Comments

Move the map view U5 0 No -

Zoom the map view U5 0 No -

Select a robot U5 0 No -

Rotate a robot U5 0 No -

Find battery of robot 1 U5 0 No -

Find the camera status of

robot 2

10 s 0 1 Tried to click the status

icon.

Find out what is wrong

with robot 1

U5 0 No -

Send a goal to robot 1 U5 0 No -

Stop a robot U5 0 No -

Find out if an obstacle is

in the robots path

25 3 - Was able to quickly figure

out what to do by pressing

buttons.

.

Teleportation vs. Interface

Type Time Potential Crashes

Teleoperation 65 s 1

Interface 40 s 0

84

Advanced Test

Type Result

Map Time 235 s

Potential crashes 0

User Comments and Observations

User completed the task identification task quickly and will few mistakes. When driving

the robot with teleoperation the user was appeared confident although the path the robot

took was slightly sporadic. The user commented “I felt much more in control using the

interface” also stating “The video feed was more fun to use”.

The user suggested some possible improvements; keep a unit selected when the map is

moved, refine the map drag, have an option that makes the camera follow a robots

position, be able to set multiple waypoints, hotkeys for robot section the addition of

speakers and a microphone. The user conducted by saying “Overall the system was

really good and easy to use, however it needs more refinement before it can be

published”.

85

Appendix E – Heuristic Evaluation Reasoning

The following provides reasoning to the scores allocated in the heuristic evaluation.

1) The overall navigation structure is clear and easy to understand

All users were able to complete the task identification challenges in appropriate times.

Score of 0 assigned.

2) Minimalist design— No excess features or information

Users commented on the clean and simple layout

Score of 0 assigned.

3) Visual elements (menus, colours, layout) are consistent across the system

Two major sets of icons where used, all with a simple colour palette .This increases icon

design consistency. The status colour coding was keep constant, red for error, yellow

for warning and green for OK.

Score of 0 assigned.

4) Design follows same conventions as existing tools that serve the same or similar

purpose

As new icons and conventions are introduced the system cannot be said to fully be fully

consistent with the current rqt interface conventions. The use of hints makes this a

problem a purely cosmetic flaw.

Score of 1 assigned.

5) Interactions and behaviours are consistent across the system

The control system is identical for all unit types. Select is obtained from clicking the

units map icon and commands to the unit can be issued from the command pad.

Score of 0 assigned.

6) Aesthetic integrity— Design has clear visual hierarchy, good alignment, good

colours contrast, and readability (good font size & spacing)

86

Design is not fully optimised and can benefit from further refinement. Improvements

would be purely cosmetic changes and would not significantly affect the usability of the

system.

Score of 1 assigned.

7) Each interface has a clear path for the user to take

User testing proved that for simple tasks user where able to clearly identify the path

to take to complete an action. Hints are available to help a user determine the correct

path to a solution.

Score of 0 assigned.

8) Content is clear and concise

System visual dsing is clean and simple. Icons and colour are used to simplify data to

reduce the cognitive laoad on the user.

Score of 0 assigned.

9) Labels and button text are clear and concise- 0

All texted used is short and to the point. Hints provide the an appropriate level of text.

Score of 0 assigned.

10) Icons are unambiguous

Task identification showed that users did not always correctly identify icons. Further

refinement of icon design would be beneficial.

Score of 1 assigned.

11) UI elements provide visual feedback when manipulated (i.e. buttons depress when

clicked)

Interface provides adequate forms of feedback for tasks, buttons are depressed when

pressed, sounds are produced to correspond with actions and when a robot goal is given

an icon is placed on the map.

Score of 0 assigned.

87

12) Number of buttons/links is reasonable

Users commented on the clean and simple design of the interface. The number of

buttons was deemed to be reasonable.

Score of 0 assigned.

13) System’s visual characteristics imply how to interact with the interface (affordance)

Most of the interface proved to be intuitive, users recognised buttons as buttons,

however many users thought the status icons where buttons and proceeded to click

these. Further refinement would benefit the system.

Score of 1 assigned.

14) Interface provides feedback to the user about the status of the system

State summaries are given and messages are displayed to the user to indicate a change

in the system. More refinement would be beneficial, adding flashing animations and

sounds to indicate a state change would increase usability.

Score of 2 assigned.

15) System speaks the user’s language (appropriately technical for the audience

User tests showed that even inexperienced users where able to complete complex tasks

with the system.

Score of 0 assigned.

16) Users must confirm before error-prone actions are taken (i.e. deleting, quitting)

The deleting of false item identification does not require user confirmation. The fix to

this will only require a minor software modification.

Score of 2 assigned.

17) Users can tailor frequent actions to boost efficiency, where applicable

No mechanism to increase efficiency of frequent actions was included. One solution to

this would be to add hotkeys, such an implantation would be a minor change thus a

score of 2.

88

Score of 2 assigned.

18) Alerts and notifications are used only for the most important information

Alerts are prioritised so that the user only sees the most important information.

Score of 0 assigned.

19) Error messages are in plain language, informative, and unambiguous

All error messages supplied are intuitive and informative.

Score of 0 assigned.

20) Error messages offer solutions

Error messages do not offer solutions. As solutions too many errors are quite complex a

feature to work out error solutions would require considerable work.

Score of 3 assigned.

21) Users can easily access instructions, when appropriate

Users can easily access the help page by clicking on the help button located on the

system control panel. Hints provide advice if users are unsure of a button or icons

function.

Score of 0 assigned.

22) Documentation is easy to search, focused on the user’s tasks, and not too dense - 0

Documentation can be accessed thought the help button. Instructions are easy to follow

and offer pictorial descriptions.

Score of 0 assigned.

23) Layout could support translation to another language (i.e. Spacing is forgiving

enough to accommodate longer words or characters

The interface was designed making all Qt features scalable. This means items can be

easily resized while keeping the interface proportions. This system was not tested with

other languages and thus will still benefit from refinement.

Score of 1 assigned.

89

Appendix F – Bug Tracker

The following Appendix contains a list of discovered bugs that where uncovered during

the testing phase.

F1 Major Bugs

1) Red barrel detector is not robust under varying lighting conditions.

2) As the connection between the robot and master weakens the system develops

lag.

3) A crash can occur when the plugin is moved within the rqt frame.

F2 Minor Bugs

1) Mag drag is at times hard to control.

2) Video selection method is not current working.

3) The rotation command for the robots will some time not cause an incremental

movement but a continuous movement.

4) Sometimes paths will be calculated through unknown space, causing un-

expected results.

5) The communication hardware icon sometimes does not update.

6) The scan feature has problems.

7) The toggle highlight sometimes will not turn off.

