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Abstract — Recently, there has been a lot of interest in the 
application of autonomous flight with small unmanned aerial 
vehicles (UAV’s). Research was taken with the Robotics and 
Automation Labratory at the University of Western Australiain 
this area with a Hexacopter UAV to see if such a platform could 
be developed for various Search and Rescue applications, 
building upon work started last year. 

Using pre-existing components, a system was developed 
capable of autonomously mapping an outdoor area and returning 
information to the user about any interesting features. This thesis 
focused on the navigational capabilities of the Hexacopter system 
and how well it could be made to move between locations. 

The performance of the platform was sufficiently upgraded, 
allowing it to be operated in a much more precise, controlled 
manner which would have been needed for our intended 
applications.    

I. INTRODUCTION 

A. Background 
Aerial vehicles present an exciting and interesting area for 

research. There has recently been a lot of growth in this area, 
especially with regards to unmanned flight. The University of 
Western Australia Robotics and Automation Laboratory began 
a project last year investigating the capabilities of a small, 
autonomous platform that could be programmed to do a 
variety of tasks. The project was run by Professor Thomas 
Bräunl and Chris Croft along with the final year students Chris 
Venables and Rory O‟Connor. 

Together, they managed to develop a Hexacopter UAV 
(Unmanned Aerial Vehicle) platform capable of position 
tracking, along with on-board image processing [1][2]. The 
goal this year was to further develop that platform into a more 
robust system that could then be sent different objectives in 
flight, check for objects of interest and be controlled via a web 
interface. 

My particular area of focus was on the Autonomous 
Navigation, concentrating on ways to optimise the motion of 
the Hexacopter. It wanted to be seen if it were possible to 
improve upon the navigation methods developed last year and 
have the Hexacopter perform some sort of ordered search, 
rather than simply fly to random locations. 
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B. Hexacopters 
There are several different models of small, remote-

controlled UAV‟s available commercially. The model being 
currently used is a Hexacopter, a small helicopter-like vehicle 
with six sets of rotor vertical blades, as shown below. A 
Hexacopter was determined to be the most suitable design last 
year as it was capable of vertically taking off, but also had 
redundant components in case of failure [1]. 
 

 
Fig. 1 - DJI F550 Hexacopter 

Rather than create their own platform from scratch, the 
team last year selected a pre-existing Hexacopter platform to 
make their own changes to. The DJI Flamewheel F550 was 
chosen as the most capable design as it came with a pre-
existing flight controller that offered better control than any 
corresponding open source models [1]. The F550 has its rotors 
arranged in a Hexa-V formation, as is shown below in Error! 
Reference source not found., where the six blades are spaced 
equidistant around the outside of the Hexacopter, each 
spinning in the opposite direction to those adjacent to prevent 
the Hexacopter from rotating. Two of the arms form a „V‟ at 
the front of the craft and are coloured red to help the pilot 
identify which way the craft is facing while it is in the air. 
Further information about the F550 can be found in Appendix 
A. 
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Fig. 2 - Layout of Hexacopter Blades 

C. Navigation 
In order for any robotic system to operate autonomously, it 

must have some sort of feedback about its position and 
orientation. Since a Hexacopter is capable of moving in three 
dimensions, this would indicate that a total of six different 
coordinates would be needed to record position and 
orientation, which can be seen below in Fig. 3. However our 
problem can be simplified by taking into account the 
mechanical restrictions the Hexacopter structure imposes on 
the system. 

 
Fig. 3 - General Body Coordinates for an Aircraft [3] 

Due to the lift generated by each of the blades, the 
Hexacopter will self-correct if it undergoes any small 
perturbations in its pitch and roll, provided it does not get 
perturbed so far that it flips over. Also, for reasons that I will 
explain later, the height of the Hexacopter was made to always 
be controlled manually. This reduces the three dimensional 
problem indicated earlier to a much simpler two dimensional 
one, requiring only three coordinates – two for position (x and 
y) and one for orientation (yaw) – that we needed to consider. 

Although several methods for a UAV to determine its 
position with respect to some local coordinate system exist, 
these would require a pre-built environment for the UAV to 
operate in. As we wished develop a system capable of 
operating in many different outdoor environments, it was 
decided that we would need to use some form of universal 

method to determine the UAV‟s position. The most 
straightforward method to implement was with a GPS, or 
Global Positioning System, as these are frequently used a 
variety of outdoor setting, not just robotics.  

 

D. Search Patterns 
Once the UAV knows its position, it can then be given 

flight objectives in the form of position coordinates and then 
fly to them in turn. However having the user enter all these 
manually could be time consuming and required the user to be 
experienced enough to know what the best search pattern 
would be. In order to remove the emphasis on operator 
knowledge and to make it easier for unexperienced users to 
access the system via the web interface, it wanted to be seen if 
the Hexacopter could be made to follow a flight path that it 
generated itself, given very little user input, such as a start and 
finish location. 

In Search and Rescue, one of the most common patterns 
used to scan over an area by air is the Creeping Line pattern 
[5]. As shown below, this pattern involves making alternating 
parallel sweeps of a target area, allowing the whole area to be 
covered in a relatively short time.  
 

 
Fig. 4 – Creeping Line Search Pattern [5] 

 This pattern is especially useful when the objects that you 
are looking for can be anywhere within the area. For Search 
and Rescue operations this is ideal as we would have no pre-
existing information about the location of any people or 
objects we would be looking for. Several other resources 
examined confirmed that this would be the best case for our 
purposes, as well as listing other patterns used for aerial 
searches. These additional patterns are mentioned in Appendix 
B. 

E. Literature Review 
Before we started our project, it was important for us to get 

an idea of the current state of the field. While the most helpful 
resources were the papers of the students who worked on 
robotics projects at this university last year, there were still a 
lot of other additional resources available in areas such as GPS 
tracking and aerial navigation. A full summary of these 
resources that I used in this project can be found in Appendix 
C. 
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II. EQUIPMENT 

A. Manual Flight 
Particular care was taken to learn how to control the 

Hexacopter manually so that all the relevant capabilities could 
then be replicated autonomously. Knowing how to pilot the 
craft was also important in case of an emergency, for example 
if an error occurred with our software we could confidently 
take over and bring the Hexacopter back under control. 

Manually, the Hexacopter is controlled by the user sending 
it signals via a hand-held controller, which is connected to a 
receiver mounted on board the Hexacopter. The receiver then 
sends these signals to the Flightboard, a proprietary controller 
mounted in the centre of the Hexacopter that analyses the user 
commands and converts them into the necessary commands 
for each motor. This process can be seen in the figure below, 
where the four coordinate channels used to determine the pose 
of the Hexacopter are passed to the Flightboard by the 
Receiver and then converted to six motor commands. 

 

 
Fig. 5 - Manual Control Diagram 

1) Controller 
The controller used was the Futuba 14SG, which allowed us 

to use up to 8 different channels to control the Hexacopter [6]. 
The table below outlines the function of each of the 8 channels 
as used in our project. The first four are the coordinate 
channels, they allow us to change the position and yaw of the 
Hexacopter. The fifth and sixth switch the Hexacopter 
between a variety of control modes, the seventh was unused 
and the eighth controlled the camera pan, which was used for 
the Image Processing.  More information about the controller 
can be found in Appendix D.  

 
TABLE I 

HEXACOPTER CHANNELS 

Number Name Function 

1 Aileron Strafes Hexacopter Left/Right 
2 Elevator Strafes Hexacopter 

Forwards/Backwards 
3 Throttle Moves Hexacopter Vertically Up 

and Down 
4 Rudder Rotates Hexacopter on the Spot 

5 Mode Control Shifts the Hexacopter between its 
own Internal Modes 

6 Command Control Shifts Control of the Hexacopter 
between Manual and Automatic 

7 Gimble Switch 2 Unused 

8 Gimble Switch 1 Camera Pan 

 
2) DJI Flamewheel F550 Platform 
 

As mentioned earlier, the Hexacopter platform used in this 
project was a Flamewheel F550, developed by DJI industries 

[7]. This platform is has 6 motors, each mounted on an arm 
connected to two central plates. In between the plates, at the 
centre of the Hexacopter is mounted the Flightboard, the 
device responsible for converting the flight commands from 
the controller into motor commands.  

This Flightboard provided several additional features which 
were quite useful for our project, such as inbuilt flight 
stabilisation, which corrected the position of the Hexacopter if 
it was hit by strong winds and adjusted the camera if 
necessary. The F550 also came with several safety features, 
such as an Automated Recovery System (ARS) that would 
return the Hexacopter to its starting location if it lost contact 
with the controller and a low-battery warning system that 
would land the Hexacopter immediately if it detected that it 
did not have sufficient power to keep flying. 
 
3) Batteries 

The Hexacopter platform was powered by a single Lithium 
Potassium, or LiPo, 11.1 V (3 Cell) rechargeable battery. 
These batteries were used as they have a reasonably high 
energy density and are used for many industrial multirotor 
applications [8]. However good care must be taken with these 
batteries in order to prolong their life and ensure that they can 
be used over and over again without breaking. Failure to do so 
can result in the internal resistance of the batteries 
substantially increasing, which is often visible as a bulge or 
swelling on the battery. 

Generally speaking, LiPo batteries must not be allowed to 
drop below about 30% of their maximum charge and 
whenever they are being charged, the charging cycle must not 
be interrupted early. To make these guidelines easier to 
follow, we used a balance charger, the Imaxrc B6AC Pro, 
which gave us feedback on the charging progress of the 
batteries and also charged each cell equally. 

 When new, our batteries gave about 15 minutes of flying 
time and took about 2 hours to recharge. However as they 
were used more and more often resistance errors began to 
creep in. Eventually the batteries held so little charge that the 
low voltage thresholds on the Hexacopter would be triggered 
only 5 minutes after taking off, making them virtually useless. 

At present the batteries have to be replaced and set on 
charge manually. While automatic charging stations for 
UAV‟s have been proposed [9], as we were only using one 
UAV the scale of our operation was not large enough to justify 
such a set-up. 

 

B. Autonomous Flight 
Of course, although the manual capabilities are important, 

the real purpose of the project was to explore the autonomous 
capabilities of such a platform. Autonomous control is 
important as in some cases an operator may not be able to 
move the Hexacopter precisely to where it is needed. Rather 
than design a whole new system from scratch, an autonomous 
system was used that replicated the signals sent by the 
controller, allowing the pilot to switch between manual and 
autonomous control in flight. 

 



 
 

3 

1) Safety 
Even while operating a UAV manually, there is a clear and 

present risk that someone may be injured as a result, a fact that 
we were reminded of when someone was injured in Geralton 
after being hit by a Drone [10]. Of course, making the system 
autonomous only adds to the danger and we had to ensure that 
we were operating in clear and safe manner at all times. In 
Australia, the Civil Aviation Safety Authority (CASA) is the 
national agency responsible for all aviation safety, including 
regulations about autonomous flight. When operating the 
Hexacopter, we had to be sure to follow their requirements, 
especially making sure we were not operating the Hexacopter 
near crowds and that we could instantly take over manually 
when it was flying autonomously [11]. A summary of the 
relevant CASA regulations for this project can be found in 
Appendix E. 

 
2) Raspberry Pi 

In order to control the Hexacopter autonomously, a 
microcontroller was needed to both replicate the signals 
produced by the controller and to calculate when those signals 
had to be generated.  Rather than use a separate device for 
each function, it was decided that it would be easier to simply 
use a microcontroller that could do both, which meant that we 
could mount fewer devices on the Hexacopter, improving 
battery life. 

A Raspberry Pi was used as it not only fitted both our 
requirements, but also came with several standard software 
libraries that reduced the need for complex programming. 
Since we had to mount sensors that were USB compatible, the 
B+ model with 4 USB ports was the best one for our purposes. 
Raspberry Pi‟s also have the property that all their software is 
loaded onto an SD card which they then boot from, so that we 
could set up multiple cards each with slightly different 
software and test them all by switching between SD cards. 
Camera chips also specifically designed for the Pi exist, 
making it easier to support image processing. 

A schematic of the B+ can be seen below, where we can see 
that a Raspberry Pi takes a 5V power supply, but the only 
power source in the Hexacopter was the 11.1V battery. Rather 
than use a separate power supply, a DC-DC converter that 
could output 5V was used to step down the supplied voltage to 
an appropriate level. 

 

 
Fig. 6 - Raspberry Pi Schematic, B+ Model [12] 

3) PWM Signals 
The signals generated by the Controller were Pulse Width 

Modulated, or PWM, signals. These were capable of being 
reproduced by the Pi, with help of a special software library 
known as wiringPi. The signals for each channel had a 
frequency of 66.67Hz, with a high pulse time that roughly 
ranged from 1200 to 1900 μs. Further details about the value 
of each particular channel used can be found in Appendix F. 
 
4) Switching Circuit 

In order to determine the flight mode, a switching circuit 
was used to change between the controller and the Raspberry 
Pi signals. The switching circuit used was developed by 
Jonathan Brant, a Senior Electronics Technician working at 
the UWA in the faculty of Electrical and Electronic 
Engineering and installed on the Hexacopter last year [1]. By 
reading a control signal, the switching circuit diverts one of 
two input channels to an output channel. Each channel is 
capable of supporting up to eight different signals, so it was 
more than capable of switching between the controller and the 
Raspberry Pi. A diagram showing how the switching circuit 
fitted into the circuit can be seen below, with a more detailed 
version in Appendix G. 

 

 
Fig. 7 – Autonomous Control with the Switching Circuit 

 It can be seen from the diagram that the Throttle, 
responsible for controlling the altitude of the Hexacopter, was 
actually hardwired directly into the Flightboard and bypassed 
the switching circuit entirely. Although the original intention 
had been to also control the altitude autonomously, this proved 
too difficult achieve safely as it was strongly dependent on the 
remaining power available in the battery. Unfortunately, as we 
were using LiPo batteries, this was not a simple linear 
relationship and to make matters worse, the exact Voltage-
Current curve varied from battery to battery and slowly 
changed over time. This meant that trying to implement 
altitude control proved to be too risky to achieve safely and for 
this reason the control was simplified to a two dimensional 
problem as alluded to earlier. 
  
5) GPS Module 

As mentioned earlier, the most suitable way for the 
Hexacopter to determine its orientation was with a GPS 
system as this could be used in a variety of outdoor settings. 
While the F550 comes with its own GPS module, this was 
propriety hardware, meaning that it was locked and we could 
not access it for our purposes. This meant that we had to 
install a separate module for the Raspberry Pi to access so that 
it could reliably determine the position of the Hexacopter.  

The module selected was the QSTARZ 818X-BT. The main 
reason that this model was selected was that it that had been 
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successfully used in other Robotics Projects, including last 
year‟s Hexacopter Project [1][2]. However, it was not in any 
way inferior to our purposes as it had a standardised USB plug 
that the Pi could easily interface with and was capable of 
determining a position fix accurate to within 3m in less than 
35 seconds. Research of other possible models indicated that 
this was one of, or close to, the best available in the field at the 
time.  

 

 
Fig. 8 - QSTARZ 818-X GPS Module 

III. SOFTWARE 

A. Standardised Libraries 
 

Rather than develop a whole software system for 
controlling the Hexacopter from scratch, it was decided that 
just as we had modified an existing platform for our uses, we 
would also take advantage of the many software libraries also 
developed for the Raspberry Pi. The Raspberry Pi is an open-
source piece of hardware, and its creators have strongly 
encouraged the creation of software by its users, so a lot of 
people have developed software for others to use. In 
particular, a lot of the low-level functionality of the Pi such as 
reading and sending digital signals already existed. 
 
1) Raspian 

Raspian is a Linux based operating system (OS) provided 
by the Raspberry Pi Foundation that can be installed on a 
Raspberry Pi allowing it to boot up in a manner similar to that 
of a Desktop computer. Using Raspian meant that we had a 
pre-built environment to load and test our own programs 
without having to worry about the low-level microcontroller 
management of the Pi, which was the main benefit of actually 
using a Pi in the first place. The Raspian OS, along with 
instructions for its use, can be downloaded from the Raspberry 
Pi Foundation website [13]. 

 
2) wiringPi 

In order to send and receive data with the Pi, the most 
common method is to use the General Purpose Input and 
Output (GPIO) pins. These allow for more generic interfacing 
compared to other data ports such as USB‟s and a lot more 
devices can be connected to them. The wiringPi libraries, 
allow these pins to be set up for any type of data transfer [14]. 
While wiringPi also has the ability to create PWM signals, we 
found that the signals it could generate were not suitable for 
our purposes, similar to what was found last year [1]. 

 
3) servoBlaster 

To create PWM signals identical to those generated by the 
controller, the ServoBlaster library was used as this could 

generate PWM signals at the desired frequency in steps of 
10µs, fine enough for our needs [15] . These signals were 
tested in the laboratory to ensure that they replicated the 
desired signals exactly. Appendix F contains further 
information about these signals.  

B. User Programs 
Of course, software did not exist that already covered all of 

our design requirements and so we wrote some of our own 
programs. Almost all of the programs generated were written 
in the C++ language as this was compatible with the low-level 
libraries used and could be written up and tested on other 
systems. 

 
1) Reading Sensors 

Although the GPS module easily interfaced with the 
Raspberry Pi through a USB connection, there was no 
software provided to process the data so we had to write our 
own libraries. Using wiringPi, we were able to read directly 
the raw data being emitted by the GPS, which was in National 
Maritime GPS Association (NMEA) form. 

 

 
Fig. 9 - Sample NMEA GPS Data generated by our module 

In the raw data, the position data is always expressed as a 
string beginning with the header „$GPGGA‟, which can be 
seen in the top and bottom sample lines. This string always 
contains the the latitude and longitude data, along with their 
hemisphere identifiers, separated by commas. This means that 
the position data can then be extracted by scanning the input 
from the GPS until a string with the appropriate header is 
found, then counting along the commas until the appropriate 
location. 

Once the raw data had been identified, it had to be 
converted into an appropriate form. According to NMEA 
standards [16], the latitude (or longitude) is represented as a 
decimal number which is equal to one hundred times the 
degree value of the latitude (or longitude) plus the number of 
arc minutes, along with a character representing what 
hemisphere the GPS is in. This can be converted into an 
absolute value in of degrees by the formulas shown below.  
 

          (⌊
      
   

⌋  (          )    )

                                                           ( ) 

           (⌊
       
   

⌋  (           )    )

                                                          ( )   

$GPGGA,050126.000,3158.7593,S,11548.9611,E,1,
5,5.84,18.6,M,-29.4,M,,*51 
$GPGSA,M,3,30,26,15,07,28,,,,,,,,6.15,5.84,1.92*01 
$GPGSV,3,1,11,28,69,137,33,26,56,212,36,05,40,30
7,,30,37,125,33*7C 
$GPGSV,3,2,11,13,32,058,,17,27,038,,15,18,225,15,
10,14,359,*79 
$GPGSV,3,3,11,07,10,105,17,09,01,048,,46,,,*7B 
$GPRMC,050126.000,A,3158.7593,S,11548.9611,E,
0.58,346.65,261014,,,A*7D 
$GPGGA,050126.200,3158.7592,S,11548.9611,E,1,
5,5.84,18.6,M,-29.4,M,,*52 
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Where: 

�             is the latitude, in degrees 
�             is the longitude, in degrees 
�           is the raw latitude value outputted by the 

GPS, in NMEA format 
�           is the raw longitude value outputted by the 

GPS, in NMEA format 
�               is 1 if the latitude hemisphere character 

is „N‟, -1 if it is „S‟ 
�                is 1 if the longitude hemisphere 

character is „E‟, -1 if it is „W‟ 
� ⌊ ⌋  is the floor, or whole number part, of   
�    is the modulo, or remainder operator 

2) Waypoint Navigation 
In order to travel between locations, the Hexacopter would 

measure its current position and compare that to its target. By 
determining the compass bearing between the two locations, 
this could then be converted into channel commands for the 
Hexacopter, based on its current orientation. 

To determine its current orientation without a compass, the 
Hexacopter had to perform a bearing test so that it could 
calculate its bearing using only a GPS. It did this by 
measuring its current GPS location, then flying forwards for 
several seconds, then measuring its new location. By 
comparing the latitude and longitude of where it started and 
finished, its orientation could then be determined. 

In a similar manner, the compass bearing the Hexacopter 
had to fly in could then be determined by comparing its 
current position to its target. Then, by comparing the bearing 
with the Hexacopter orientation, the relative direction the 
Hexacopter had to travel in could be determined. As we had 
no feedback about the orientation, the rudder command was 
set to zero so that the orientation would remain constant.  

However while this gave a relative indication of the Aileron 
and Elevator commands, it gave no information about their 
actual values. This was calculated by determining the distance 
between the start and end positions, then using a proportional, 
or P, controller to determine their actual values. Since the start 
and end positions were points on a sphere, the Haversine 
formulas below in (3) and (4) was used to determine the 
distance, similar to what was used last year [1][2].  

 

           (√    (
     
 

)     (  )    (  )     (
     
 

))    ( ) 

       (
   (     )    (  )

   (  )    (  )     (  )    (  )    (     )
)                    ( ) 

 
Where: 

�    is the starting latitude 
�     is the stating longitude 
�    is the ending latitude 
�    is the ending longitude 
�   is the radius of the Earth 

 
Fig. 10 - Process the Hexacopter would use to fly to a waypoint 

 
3) Creeping Line Search 

In order to search a target area in a Creeping Line pattern, 
the overall area was broken down into a series of target points 
so that it all the points ordered into a flight and then the 
method of flying to the waypoints could be called iteratively 
until all of the points had been reached. The area to search was 
assumed to be rectangular and aligned with lines of latitude 
and longitude as this allowed the Pi to calculate the internal 
points much quicker. 

To calculate the points, the start and end points were fed 
into the program, which were then used to calculate all four 
corner points. From these, the ends of the sweeps were 
determined. Finally, intermediate points along the sweeps 
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were also calculated in order to improve the accuracy of the 
flight, as can be seen in the figure below. 
 

 
Fig. 11 – Generated points for the Creeping Line Pattern. The 
Red points are the starting locations, the Blue points are the ends 
of the sweeps and the Green points are the intermediate points. 
Background image courtesy of WDSOT, 1997 [5] 

 The flow chart following shows the overall flow of the 
Program used to fly to each point in the Creeping Line Pattern. 
Firstly, the Hexacopter would check that the GPS Module was 
attached and that sensible data could be read from it, in order 
to prevent the Hexacopter flying without a proper position fix. 
Then, the Hexacopter would generate all the points it had to 
fly to before waiting to be put into autonomous mode. Once it 
had permission to do so, it would then fly to each point in the 
list, checking the whole time that it was still allowed to be 
flying autonomously. If it was switched back into Manual 
mode, or it finished flying to all the points, it would then stop 
flying and exit the program. While the stop command would 
be ignored if it had been switched back into Manual mode, 
this was still important to include so that the Hexacopter 
would not continue to fly off in a random direction if it were 
inadvertently switched back.  
 

 
Fig. 12 - Generation of the Creeping Line Search Pattern 

 
4) Image Processing 

Of course, it was important that the Hexacopter was able to 
more than just fly around. Software was developed allowing it 
to process images in-flight using the Raspberry Pi Camera. To 
overcome the fact that we would be investigating objects some 
distance away, a Hue, Saturation and Value (HSV) scheme 
was used to identify colours as this was found to be superior to 
the Red Green Blue (RGB) system that is conventionally used 
in image processing.  

In order to perform the Image Processing, the Raspberry Pi 
Camera module was used to capture images while in the air. 
While this module is normally capable of taking images with a 
resolution of          pixels, it was found that this was 
much too slow for our purposes. By reducing the resolution to  
a quarter of its standard value  –          pixels – we were 
able to get image processing speeds up to around 25 frames 
per second, almost fast enough so that the video feed would 
not seem jerky to an observer. 

Most of the actual processing was done using the Open CV 
libraries which are used in a variety of Linux systems, not 
only Raspian. These libraries were used to perform a mean-
shift search on the image so that the Hexacopter would be 
capable of tracking multiple objects at once. 
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Fig. 13 - HSV Colour Wheel [17] 

 
5) Web Server 

All of our programs would be useless if they could not be 
accessed readily and easily. A web interface was developed so 
that users would be able to send commands to the Hexacopter 
in flight, from everyday devices such as a smartphone or a 
laptop.  

The server was hosted on a network that the Pi generated 
itself on boot, meaning that a user could connect by simply 
being in Wi-Fi range, several hundred meters in our case, and 
then opening a website on a browser. For security reasons, the 
network was made password-protected so that we could 
restrict access and be sure no unauthorised flight commands 
were being sent to the Hexacopter. 

The website was designed to be very user friendly, 
displaying the location of the Hexacopter superimposed over a 
satellite map of the local area, with a trace visually recording 
the flight path. Users could also see the live camera feed being 
streamed down from the Raspberry Pi Camera. 

C. Overall Layout 
The diagram below shows the overall structure of the 

software installed on the Pi for this project. The bottom or 
„Base‟ level contains all of the basic libraries that were used 
throughout most of our programs. The middle, or „Modules‟ 
level used elements from several of the Base libraries and 
combined into self-contained programs that fulfilled a specific 
purpose such as Navigating via GPS locations or analysing 
images. Most of the code that I wrote for this project was in 
this level. Finally, the top or „Applications‟ level had 
programs that wrapped around the files from the Modules 
level and allowed them to be used in actual programs that 
could them be used on the PI, either via the Web Interface or 
smaller testing programs that only considered a particular 
aaspect. 
 

Web Server

Navigation Image Processing

Pi Testing Programs

Open CVservoBlasterWiring PiGPS Reading

 
Fig. 14 - Software Structure, with the top ‘Applications’, middle 
‘Modules’ and bottom ‘Base’ levels 

D. Additional Software 
In addition to the software running on the Pi, several other 

programs were used in the laboratory to assist with other 
functions such as writing code, connecting to the Pi and 
receiving feedback from the Hexacopter. As the Pi‟s 
processor, while still powerful, was not that fast compared to a 
desktop computer, it was often faster for us to write code on 
some other machine and then transfer it over to the Pi. 
 
1) PuTTY 

Using PuTTY, we were able to connect to the Raspberry Pi 
and run programs on it form our own computers using a 
terminal interface over a network connection. Similar to that 
found when you boot up a Pi, this meant that we could have 
multiple students using the same computer, each of us making 
their own changes to their part of the program. This was also 
handy to use in the field so that we did not have to use a 
screen or power in order to get our programs started. 
 
2) WinSCP 

While we could run programs on the Pi with PuTTY, we 
needed other programs to get files on there in the first place. 
WinSCP is a file transfer program for Windows that allows 
file to be transferred over two computers using the same 
network with a click and drag user interface. This was used in 
the lab to transfer files to and from the Hexacopter. 
 
3) NAZA-M Assistant 

DJI provided software for users to interact with the 
Hexacopter while it was landed. Using the NAZA-M assistant 
software, we were able to properly calibrate the Hexacopter 
before use and to set up the Flightboard. The interface also 
allowed us to get feedback about the PWM signals generated 
by the controller. Further information about this software can 
be found in Appendix A. 
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IV. FINDINGS 

A. GPS Drift 
Testing for the error associated with the position bearing of 

the QSTARZ GPS indicated that the nominal error quoted by 
the manufacturer did not tell the entire story. By leaving the 
GPS unit in one place and repeatedly taking position 
measurements, we were able to obtain a more accurate 
estimate of the error that would be associated with the position 
drift of the GPS. As shown in the figure below, this error was 
not constantly around 3m, as claimed by the manufacturer, or 
around 0 m as it was in reality, but instead slowly increased as 
we kept measuring for longer and longer periods.  

 

 
Fig. 15 - Error in position due to GPS Drift. The orange dashed 
line is the nominal error of 3m and the blue solid line is the 
measured drift. 

                                                                                                                                                                                                                                                                                                                                     
Given that the error increased with time, the obvious 

solution was to make sure that not much time passed between 
the start and end of our flights. Even with new batteries, the 
maximum amount of flight time we could get was about 
fifteen minutes, but by flying in short bursts of no more than 
five minutes at a time, we could ensure that the maximum 
possible position error was kept to under a meter. 

It was also noted that the accuracy of the GPS decreased 
substantially whenever we could not get a sufficiently strong 
connection to enough satellites. Measurements in the 
laboratory were noted to be substantially less accurate than 
those made outside, or on cloudy days. One of the advantages 
of using the safety features on the DJI F550 was that we could 
tell if it took a long time to start up because its own 
GPS/Compass unit would take a while to get a lock, then this 
would mean that the Qstarz module used by the Raspberry Pi 
would also struggle to obtain a strong signal. 

B. Waypoint Accuracy 
Once we knew the accuracy of our GPS, we knew what sort 

of error we would have to expect in our flight. As the error 
from the GPS could not be ignored, this meant that we could 
never be sure that we were exactly where the GPS claimed we 
were, so we could be trying to fly to a point but never exactly 
reach it, because the GPS would drift around too much. 

To overcome this, we had to include an allowance for some 
positional error whenever we attempted to reach a waypoint. 
So rather than considering our waypoints as points, we had to 
consider them as circles and assume that the point had been 
„reached‟ when the Hexacopter was inside that circle. By 
tightening the bounds more and more, managed to get more 
and more accurate runs and we were able to use targets as 
small as one meter. 

However while reducing the size of our target circles 
improved accuracy, it also led to other problems. When using 
a proportional controller to determine speed, as we got closer 
and closer to the waypoint, the Hexacopter travelled slower 
and slower. This meant that our runs took longer to complete, 
increasing the risk of GPS drift as mentioned above. Also, the 
Flightboard interpreted any motor commands close to zero as 
zero, as a safety feature in case of improper calibration, so 
sometimes the Hexacopter did not move at all if it was given 
very small commands. 

Clearly, something better was needed and so we switched 
from a simple P (proportional) controller to a PI (Proportional 
and Integral) one. By using a discrete PI controller, as seen in 
(5), we not only considered the present error in the position of 
the Hexacopter but also its past errors. This greatly improved 
performance and overcame the two problems mentioned above 
with the P model – Flight time and hitting the „dead band‟ of 
the Flightboard.  
 

               ∑   

 

     

                    ( ) 

 
Where: 

�    is the Proportional gain 
�     is the Integral gain 
�    is the time difference between measurements 
�    is the ith distance between the Hexacopter‟s current 

position and its desired position 
�    is the ith speed 

 Although adding in a Derivative Control element as well 
was considered, this was not included because the role of a 
Derivative Controller is to improve settling time of the system. 
However as we were considering waypoints to be circles, we 
did not have to worry about the system settling down to an 
exact value and so this element would have been redundant. 
Leaving out the Derivative Controller also meant that we did 
not have to filter out the high frequency noise that would have 
been amplified by a derivative term. 
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Fig. 16 - Control Loop used to determine the Hexacopter's speed 

 In order to properly tune the PI controller, the Zeiger-
Nichols method was used to optimise the values of the 
parameters    and   . First,    was set to 0, and then    was 
slowly increased until the resulting loop oscillated about the 
mean position. Once this oscillation gain    was found, then 
   and    could be calculated according to the formulas below 
for a PI controller. 
  

                                                       ( ) 
                                                   ( ) 

 
Where: 

�    is the tuned Proportional gain 
�     is the tuned Integral gain 
�    is the Proportional gain that just causes oscillation 
�     is the period of oscillation 

 Using this method, I found the value of     that just caused 
oscillation to be 25 with a frequency of 1Hz, which led to    
and     values of 12 and 2.4 respectively. 

C. Creeping Line Run 
Using these determined values for the Control Loop 

constants, I was able to get the Hexacopter to perform more 
reliable Creeping Line searches, an example of which can be 
seen below. In this example, the target waypoints generated by 
the Hexacopter show up as grey diamonds, with the dotted line 
between them being the desired path of travel and the actual 
path travelled being shown by the coloured lines (each 
different colour represents the Hexacopter flying to a different 
waypoint). 
 

 
Fig. 17 – Creeping Line Run with Intermediate Points 

 It can be seen that the Hexacopter was able to follow the 
desired path very closely, with a few deviations of about a 
meter occurring at the ends of some of the sweeps when it 
changed direction. Since these only occur at some of the ends 
and are always in the same direction, they are almost certainly 
the result of wind affecting the Hexacopter and dragging it off 
course. This is further reflected by measurements we took 
regarding wind speed, which were in the same direction as the 
deviations to the plot. 
 It can also be seen that the deviations did not have the 
chance to affect the overall path the Hexacopter travelled, with 
the intermediate points, being added in at 5m intervals, 
causing it to quickly return to the desired path after it had left. 
Note also that with this Creeping Line search the Hexacopter 
finished on the same side that it started; this is because the 
overall target area was only 15m wide and the Hexacopter was 
told to make sweeps 5m apart, so the number of sweeps it 
needed to make to properly cover the area was even. 

V. CONCLUSION 

A. Meeting Aims 
I am very happy with the progress made throughout the year 

and I believe I successfully managed to achieve the goals I had 
intended with regards to the Hexacopter navigation. I 
successfully managed to identify and implement a professional 
Search and Rescue method to scan an area by air with a UAV 
– as could be seen earlier, the Hexacopter used the Creeping 
Line Search pattern to navigate over an area with a reasonably 
high degree of accuracy.  The Hexacopter was also able to 
navigate much closer to waypoints, around one meter rather 
than four, thanks to a tuned PI controller. The groundwork that 
I have put in this year will serve as an excellent base for any 
students who wish to continue working on this project in the 
future.  

B. Future Work 
Although a lot of work was done on the Hexacopter 

navigation this year, there certainly is room for improvement,. 
The following are a few suggested areas that students wishing 
to work on this project next year may want to look at to 
improve the reliability and the robustness of the existing 
system. 
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1) Altitude Control  

While using the Throttle autonomously safely proved to be 
too difficult this year, turning the two dimensional motion of 
the Hexacopter into three dimensional motion should certainly 
be looked into in the future. Implementing altitude control will 
allow the user to be able to set waypoints in three dimensions, 
but a more accurate method of determining height may need to 
be considered as the only currently installed sensor, the 
Qstartz GPS is unable to determine height readings very 
accurately. Possible solutions may include a downward facing 
laser sensor that constantly measures off the ground or an 
accelerometer. 

 
2) Installing a Compass 

While using the GPS to determine the bearing was adequate 
for our purposes, it would probably be worthwhile to include a 
sensor that is capable of giving feedback about the orientation 
of the Hexacopter in in real time. Not being able to know the 
orientation meant that we had to assume that it was constant 
throughout the flight. While we were able to account for this 
in our code, it meant that the Hexacopter was unable to correct 
for external factors that spun it around mid-flight, causing its 
orientation to change. 

 
3) More Robust Flight Plan 

Adding intermediate points to the Creeping Line search 
pattern improved its accuracy, particularly in windy 
conditions, but also meant that the Hexacopter flew slower as 
it tried getting to more points. In order to improve 
performance while retaining speed, an idea that could 
potentially be implemented next year is to have the 
Hexacopter fly following a line, rather than to a point. 

The Hexacopter would then fly to the ends of the sweeps 
using a PI controller as before, but also try and stay close to 
the line between the two using a „bang-bang‟ or a P controller.  
As it would not be flying to close to its target point the PI 
controller would keep it moving quickly but the „bang-bang‟ 
controller would keep it on the desired flight path. 

 
4) Simulator 

All of the data and testing of our flight code that we had to 
collect had to be done in the field, a process which was often 
rather time consuming. In order to save time, it may be 
worthwhile for any students wishing to continue this project 
next year to look into a Hexacopter simulator which can 
replicate the function of the F550. While a simulator would 
not replicate some of the outdoor features such as wind that 
you would get in the real world, it could still assist students by 
providing a platform where they could comfortably and 
quickly test their flight codes in the laboratory without any of 
the dangers of failures that you could get outdoors [18]. 

However, performing simulations of a Hexacopter system is 
inherently complicated as you have to simulate several 
complex factors, such as three dimensional motion. This was 
one of the reasons simulations were not used this year. A 
possible solution is to use one of the more advanced Robotic 
Control Systems available, such as ROS, Robotic Operating 
System, to handle the programming while using a separate 
simulator for the graphics [19] . 

VI. APPENDIX 

A. DJI F550 Hexacopter 
Developed by DJI Industries [7], the F550 is an integrated 

Hexacopter kit that serves as a base for the user to develop 
their own UAV platform.  The base kit consists of two 
integrated modules – the Flightboard and the GPS/Compass 
along with six sets of motors, rotors and ECG‟s. 
 
1) Flightboard 

The Flightboard is an integrated module that is responsible 
for interpreting the commands coming in from the joystick and 
converting these to the desired motor speeds. The Flightboard 
must be placed as close to the centre of mass of the 
Hexacopter as possible in order to function properly. The one 
we were using could also be pre-programmed to perform 
several key tasks, such as an auto landing function if it ever 
lost connection with the controller, which we added in as an 
extra safety feature.  

In order to monitor the status of the Flightboard while in the 
air, an external LED sensor relayed information back to the 
pilot by varying the colour and number of blinks. For 
example,  

 

 
Fig. 18 - Basic DJI Kit, with the top plate removed showing the 
red Flightboard module mounted in the centre of the aircraft 

2) GPS/Compass 
Combined into one unit, which was mounted high above the 

main body of Hexacopter in order to reduce interference from 
the motor spin, the GPS/Compass was used by the Flightboard 
in order to determine the location and orientation of the 
Hexacopter. Although we were using our own version of these 
instruments on the Raspberry Pi, maintaining them as 
redundant components that interfaced directly with the 
Flightboard meant that we could be sure that the Hexacopter 
was capable of maintain its own stability and position control 
even if the Raspberry Pi or our own programs failed. 

 
3) Motors 

Each of the motors was mounted at the end of an arm, with 
an ECG mounted in the underside. Each ECG took in the DC 
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12V and Ground Voltages from the battery, as well as a 
control signal from the Flightboard, and converted these into 
the voltages sent to each motor. 
 
4) NAZA-M Assistant Software 

The Assistant Software provided with the Pi was very 
useful and allowed us to do a variety of tasks. With the 
Assistant Software, we could use our own computers to pre-
set some of the DJI safety features such as the auto-landing 
function. Also, we had to use the software before we could 
take off to set the location and orientation of the 
GPS/Compass module relative to the Flightboard. This 
allowed the Hexacopter to use its own internal self-
stabilisation routines, even when it was receiving signal from 
the Raspberry Pi. 

However the most useful feature of the Assistant Software 
that meant we saved a lot of time during testing was that it 
outputted the relative strengths of the joystick commands, as 
received by the Flightboard. This was used when calibrating 
the PWM signals in order to determine what the rise time of 
the signals being sent by the Pi should have been. It was also 
used when testing our flight code, as it meant that we could 
see what signals the Pi was sending the Flightboard in the lab 
without having the Hexacopter take off. 

The latest version of the Assistant Software that we were 
using at the time of writing this report was 2.20. 

B. Alternative Search Patterns 
Several other Search Patterns were considered, but 

ultimately found to be inferior for our purposes compared to 
the Creeping Line Search Pattern which we ultimately used to 
autonomously scan over an area. 

 
1) Expanding Square Search Pattern 

As can be seen below, this pattern involves spiralling 
outwards in an ever-expanding square. This pattern is useful if 
you do not wish to fly very far or if you know that the object 
that you are looking for is very close to your starting location, 
but it also requires you to have very good methods of 
maintaining your position in order to avoid gaps. As we were 
developing a system that could be used in outdoor settings 
where any external factors could cause us to deviate from our 
intended path and no information about our targets would be 
known we decided to not consider this pattern. 

 

 
Fig. 19 - Expanding Square Search Pattern [5] 

2) Sector Search 
This pattern involves making repeated sweeps over a small 

target. This pattern is mainly used for obtaining more 
information about a particular target in a very small area. As 
we were only wished to identify specific objects over large 
areas this pattern was not particularly useful. 
  

 
Fig. 20 - Sector Search Pattern [5] 

3) Contour Search 
With this pattern, the UAV tracked over an area, following 

contour lines so it would always be tracking a section of the 
ground at the same height above sea level. This pattern was 
deemed unsuitable as the Hexacopter was not able to control 
its height autonomously, so an operator would have had to 
assist with the search anyway 

 

 
Fig. 21- Contour Search Pattern [5] 
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4) Complex Scan 

This pattern is the same as the Creeping Line Pattern, but 
with a second pattern superimposed over the first one at right 
angles. For our purposes, as we intended to track objects that 
are moving much slower than the Hexacopter, any objects that 
we detect on the second sweep we will have already picked up 
on the first one, so there will be nothing gained. 

 

 
Fig. 22 - Complex Scan Search Pattern [20] 

5) Figure-of Eight 
One of the more simple patterns, this pattern involves 

making a continuous sweep in a figure-of-eight over an area. 
This pattern is only useful for obtaining repeated data about a 
particular target that you have already identified, not 
identifying objects of interest in the first place. 

 

 
Fig. 23 - Figure-of-Eight Search Pattern [20] 

6) Particle Swarm Optimisation (PSO) 
This pattern involved using multiple UAV‟s in order to 

generate an evolutionary search pattern that rapidly converged 
on a moving target. However this was not useful for several 
reasons, namely that it required more than one UAV and prior 
knowledge of the target, neither of which we had. 

 

 
Fig. 24 - PSO Search Pattern. Each Coloured Line represents a 
different UAV [21] 

7) Independent Circular Track Pattern 
While this pattern was originally designed to be used to 

track objects moving in a straight line, it was considered to be 
suitable also to scan an area as it offered a high level of 
overlap in case objects were missed. However initial tests of 
the Image Processing suggested that the Hexacopter only 
needed to perform one sweep over an area to detect the desired 
object and so this pattern was dropped in favour of a simpler 
one. 

 

 
Fig. 25 - Independent Circular Track Pattern [22] 

C. Literature Review 
 

1) Previous Students 

a) Multirotor Umanned Aerial Vehicle Autonomous 
Operation in an Industrial Environment using On-
board Image Processing, Venables C., 2013[1] 

This paper, written by Chris Venables in October 2013 for 
his Final Year Engineering Thesis on the Hexacopter, was the 
most widely-used resource for this project. It set the standard 
for our goals and aims and gave us a good background for 
what was achievable with the current system. The information 
on GPS navigation was extremely useful for me in particular, 
especially as many of the systems that I was working with 
were the same ones used last year. Unfortunately, the thesis 
was a little long to read (over 120 pages) and this made it a 
little hard to always find the relevant information. 
 

b) Developing a Multicopter UAV Platform to Carry 
Out Research into Autonomous Behaviours, using 
On-board Image Processing Techniques, O’Connor, 
R., 2013 [2] 

Rory O‟Connor‟s paper still contained important 
information about the Hexacopter project, but did not go into 
as much detail, and focused more on the areas that I was not 
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working on, such as Image Processing. However its brevity 
did make it somewhat easier to read and it was often handy for 
providing a quick summary about a particular area of the 
project. 
 

c) Development of a Navigation Control System for an 
Autonomous Formula SAE-Electric Race Car, Drage, 
T.H., 2013[3] 

While also dealing with autonomous navigation, this paper 
focused more on sensor fusion and tying together 
measurements from a whole range of devices such as laser 
scanners and compasses, not only GPS‟s. It still gave a good 
overview of the limitations of an autonomous system and also 
indicated the importance of always making sure to log data out 
in the field for later analysis in the laboratory, something 
which saved us a lot a of time and meant that we could 
perform tests more efficiently. 
 
2) GPS Measurements  

a) Validity and reliability of GPS for measuring 
distance travelled in field-based team sport,s Gray 
A.J. et al, 2010 [23] 

This paper highlights a study done at the School of Human 
Movement Studies at the University of Queensland measuring 
the accuracy of GPS measurements of moving objects. The 
study found that moving in non-linear paths reduced the 
accuracy of GPS measurements and that this could also be 
overcome by increasing the GPS update rate (1 Hz in their 
case). This was a very useful finding, as it meant, as it meant 
that we could limit our Hexacopter motion to linear paths and 
still maintain a high degree of accuracy. 
 

b) Advanced motion control and GPS guide car steering 
robot, Palmer, D., 2006 [24] 

This journal article was rather short and brief, with not 
much information. About the only useful piece was the claim 
that the accuracy of the GPS‟s could get to as low as 10 cm – 
this was used as a goal that we should strive to. 
 

c) Vehicle Dynamics Control Based on Low Cost GPS, 
Zhang, J., 2006 [25] 

This article was quite in-depth and went into a lot of detail 
about using GPS measurements on vehicles. Most of the study 
involved the use of ground vehicles, but it was still applicable 
for our use. The study also went into detail about how GPS 
measurements can be used to supplement other navigation 
systems, but in our case the GPS was the only such system so 
this was not so useful. 
 
3)  Flight Planning 

a) Chapter 11: Visual Search Patterns, WSDOT, 1997 
[5] 

While strictly speaking a government publication and not an 
academic publication, this reference was the most useful for 

this Thesis apart from the papers from last year. Its handy 
diagrams, some of which I have reproduced, were very good 
at readily conveying information about search atterns. 

b) Incorporating Heuristically Generated Search 
Patterns in Search and Rescue, Woolan, H., 2004 
[26] 

This paper gave a good sense of what is used by 
professional Search and Rescue teams in order to find objects 
of interest. While some of the patterns studied referred to 
planes only and so could not be used, there was still enough 
general information within for this to be a useful resource. 

c) Flight Plan Specification and Management for 
Unmanned Aircraft Systems, Santamaria E. et al, 
2012 [20] 

While this paper focused more on programming flight paths 
in planes, it still contained useful information such as 
alternative search patterns. It also confirmed our decision that 
the flight pattern we had selected was the correct one. 

d) Mobile Ground Target Pursuit Algorithm, Xiaowei 
F., 2012[27] 

The ideas contained within this paper related mainly to the 
tracking of moving objects autonomously by air. While the 
ideas were interesting, ultimately this line of research was not 
pursued. The paper still contained useful information about the 
manoeuvrability of Aerial Vehicles which was considered in 
my code. 

e) A New Performance Metric for Search and Track 
Missions, Pitre et al, 2009 [21] 

This paper covered an evolutionary search pattern known as 
Particle Swarm Optimisation, which could not be used for our 
purposes as it involved multiple UAV‟s. For a single UAV, 
the author recommended using a ladder search pattern, which 
functioned similar to the Creeping Line Pattern that we had 
already identified. This pattern was also noted as being 
superior for instances that you had no prior knowledge of the 
target, as was the case in our situation. 

 

f) Path Generation Tactics for a UAV Following a 
Moving Target, Husby C.R., 2005 [22] 

This paper focused more on tracking moving objects, but 
again their method for tracking a stationary object was similar 
to the Creeping Line Search Pattern.  While the ideas for 
tracking a moving object could not be implemented this year, 
they may prove useful to future students working on this 
project. 

 
4) Simulators 

a) Real Time Multi-UAV Simulator, Göktoğan A.H. et 
al, 2003 [18] 

This paper outlined the role UAV simulators could play in 
developing software, and the benefits that could be gained 
from such a system. While being rather brief, it still provided a 
reasonably detailed overview of using such a system. 
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b) Comprehensive Simulation of Quadrotor UAVs Using 
ROS and Gazebo, Myer J. et al, 2012 [19] 

This suggested a possible solution to the problem of having 
to simulate both an UAV system and the software to run it – 
using two different systems that were each responsible for half 
of the simulation. This solution was also good because both of 
the systems mentioned have been used by other students at 
this University on similar projects, so some work has already 
been done on how to integrate them into a system such as 
ours. 

 
5) Batteries 

a) Lithium batteries: Status, prospects and future, 
Scrosati B.et al, 2009 [8] 

This article was a little old, and did not go into a lot of 
detail about LiPo batteries. However it still covered most of 
the basic information about them, including their construction, 
the internal chemical process that they use to generate energy 
and how to safely maintain and store them. This made it an 
excellent reference that we could use to refresh ourselves 
about LiPo batteries. 

b) Automatic Battery Replacement System for UAVs: 
Analysis and Design, Suzuki K. et al, 2011 [9] 

While the ideas mentioned in this paper about an automated 
charging system for a UAV ended up being too unfeasible to 
implement, it was still a useful resource, backing up some of 
the general statements made about LiPo batteries from our 
other sources and highlighting the benefits of using these in a 
UAV system. 

D. Controller 
The controller used, the Futuba 14SG, allowed the user to 

potentially send 8 different control signals to the Hexacopter 
[6]. The controller transmitted over a 2.4GHz frequency, 
which meant that we were avoiding possible signal clashes 
with the Raspberry Pi because its internal processors only ran 
at 700 MHz. Tests found its range to be about 500 m – almost 
double the length of a standard oval – so we were confident 
that we could maintain a secure connection with it while 
performing all of our testing on James Oval. 

The controller is very comfortable to use, which is not just 
an aesthetics bonus as this means that your hands do not 
become fatigued when you are using it and you are still able to 
react quickly to potential dangers. The graphics display, while 
basic, still relays important information such as the battery 
voltage and signal strength for each channel, meaning the pilot 
is able to obtain some feedback about the Hexacopter even 
when flying manually and the Raspberry Pi is not running. 

E. CASA Regulations 
CASA have outputted a number of regulations pertaining 

to the use of UAV‟s within Australia, both manned and 
unmanned, form as far back as 1998, with the latest revision 
to the rules being 2014. Part 101.F of their Safety 
Regulations [11] outlines the general rules surrounding 
UAV‟s, however as we operating a UAV for research 

purposes only, the majority of this section, particularly the 
part involving licencing, did not apply.  

 
Fig. 26 - Section 101.235 of the Civil Aviation Safety Regulations 
(CASA 1998) 

However, we still had to obey their general rules 
surrounding model aircraft as outlined in part 101.G, an 
excerpt from which is shown below, particularly the sections 
involving keeping it away from people. This often caused us 
problems as our flight area of choice, James Oval, was often 
very crowded between classes, forcing us to wait until the 
crowds dispersed. Also, members of the public were often 
very interested in our activities and would want to get close to 
the Hexacopter while it was flying. 
 

 
Fig. 27 - Section 101.395 of the Civil Aviation Safety Regulation 
(CASA 1998) 

For autonomous flight, CASA regulations state that the 
normal procedures apply, provided that a human operator is 
capable of instantaneously taking control of the aircraft. An 
advisory circular published in July 2002 [28] highlighted 
additional safety procedures that needed to be taken, including 
the need for an Automated Recovery System (ARS) that 
would land the Hexacopter automatically if the signal was 
lost, especially for operations in populated areas. 
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Fig. 28 - Section 5.2.2 of the CASA Advisory Circular (CASA 
2002) 

 

 
Fig. 29 - Section 8.2.2 of the CASA Advisory Circular (CASA 
2002) 

 

F. Desired PWM Signals 
Every time changes were made to the Hexacopter wiring, 

the peak time of the PWM signals that had to be sent to the 
Flightboard to achieve a specific signal would change 
slightly. This meant that we then had to measure the PWM 
values produced by the transmitter again and determine 
what the new relationship would be between motor output 
and PWM peak time, then re-enter this data into our 
programs. 

The measurements listed below are for the Aileron, 
Elevator, and Rudder channels, which were the three we 
were using to automate the movement. The peak times were 
measured with an oscilloscope while the motor outputs 
were measured with the NAZA-M assistant software as a 
percentage. The following data was recorded on 17 October 
2014 and at the time this report was published, was the data 
stored on the Hexacopter for its internal calculations. 
 

TABLE II 
ELEVATOR PWM VALUES, 17 OCTOBER 2014 

PWM Peak Time  (µs) Motor Output (percentage) 

1200 79.8 

1300 55.2 

1400 31.0 

1500 7.3 

1600 -14.5 

1700 -39.1 

1800 -62.6 

1900 -88.2 

 
 
 
 
 
 
 
 
 
 
 

TABLE III 
AILERON PWM VALUES, 17 OCTOBER 2014 

PWM Peak Time  (μs) Motor Output (percentage) 

1200 -78.0 

1300 -54.3 

1400 -29.5 

1500 -5.5 

1600 20.3 

1700 43.6 

1800 67.4 

1900 90.8 

 
TABLE IIV 

RUDDER PWM VALUES, 17 OCTOBER 2014 

PWM Peak Time  (µs) Motor Output (percentage) 

1200 -76.7 

1300 -51.1 

1400 -30.3 

1500 -5.1 

1600 19.7 

1700 42.6 

1800 67.3 

1900 91.3 

 
 

G. Wiring Schematic 
The diagram shown below is a more detailed version of Fig. 

7, found in section II.B.4), which shows all of the connections 
between the various components, along with a photo 
displaying those connections in real life. The ports listed for 
the Raspberry Pi follow the standard naming configuration as 
listed by the manufacturer [13]. 
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Fig. 30 - More detailed Schematic highlighting the various 
connections in the Switching Circuit 

 
Fig. 31 - The actual wiring of the Switching Circuit inside the 
Hexacopter. Key: 1 – Reciever, 2 – Switching Circuit, 3 – 
Flightboard, 4 – Ribbon cable connecting to Raspberry Pi 
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