
Martin French 20743871 Page 1

Advanced Path Planning
for an Autonomous SAE
Electric Race Car

 Martin French 20743871

2014 FYP Project Report

Supervisor: Professor Dr. Thomas Bräunl
Submitted: Friday 24th October 2014

Martin French 20743871 Page 3

Abstract
This project focuses on the implementation of local path planning for the UWA REV Autonomous SAE

Electric Race Car, implementing a solution amongst existing code in a practical way. The implemented

advanced path-planning algorithm is built and based on an algorithm used by both Hanyang University

in Korea and Harvard University in the US, competing in separate autonomous vehicle challenges. In

essence, the algorithm will generate a range of possible manoeuvres, assess each option using a

combination of cost functions and finally select the manoeuvre with the least cost to submit to vehicle

control.

The structures of the advanced path planning algorithm and the simulator used for testing are discussed,

with results presenting the correct functionality and also the limitations of the implementation when

tested in the simulator and on the UWA REV Autonomous SAE Electric Race Car. The findings

conclude that the implementation successfully provides navigation around static obstacles, thus

achieving the goal of this project.

Acknowledgements
The author would like to thank the following people for their guidance, support and contributions
throughout the duration of the project.

Thomas Bräunl – Project Supervisor,
Thomas Drage – AutoSAE Team Leader,
Ruvan Muthu-Krishna – AutoSAE Team Member,
Family and Friends.

Martin French 20743871 Page 1

Advanced Path Planning for an Autonomous SAE
Electric Race Car

P R O J E C T R E P O R T

Table of Contents

ABSTRACT ... 3

ACKNOWLEDGEMENTS ... 3

1.0 INTRODUCTION ... 3

2.0 SYSTEM OVERVIEW .. 6

3.0 ALGORITHM DESCRIPTION .. 8

3.1 BASE FRAME GENERATION ... 8

3.2 LOCALIZATION .. 10

3.3 CANDIDATE MANOEUVER GENERATION ... 11

3.3.1 Coordinate System .. 11
3.3.2 Manoeuvre Generation ... 11

3.4 PATH COSTS .. 13

3.4.1 Path Offset Cost .. 13

3.4.2 Path Safety Cost .. 15

3.4.3 Path Consistency Cost ... 15

3.5 PATH SELECTION .. 17

3.5.1 Longest Collision Free Path .. 17

4.0 TESTING ... 18

4.1 SIMULATION ... 18

4.1.1 Setup ... 18

4.1.2 Test Map ... 21

4.1.3 Results ... 22

4.1.4 Discussion of Results .. 24

4.2 PRACTICAL TESTING .. 25
4.2.1 Test Map ... 25

4.2.2 Setup ... 25

4.2.3 Results ... 26

Martin French 20743871 Page 2

4.2.4 Discussion of Results .. 26

4.3 RECOMMENDATIONS FOR FUTURE WORK ... 27

4.3.1 Path Planning ... 27

4.3.2 AutoSAE .. 28

5.0 CONCLUSION ... 29

REFERENCES .. 30

APPENDIX .. 32

5.1 ADVANCED PATH PLANNING FUNCTION API .. 32

Martin French 20743871 Page 3

1.0 Introduction
Autonomous cars are vehicles capable of navigating through an environment, often self-sensed, without

human intervention. These types of cars commonly exist as prototypes and platforms for learning in the

area of robotics. From the 1920s through to the 1950s, researchers produced primitive ‘driverless’

prototypes that would lay the foundations for autonomous car technology for the future [1]. These cars

were radio controlled or could follow wires/electrical circuits embedded in the roadways [2]. It wasn’t

until the 1980s before large companies like Mercedes-Benz and universities such as the Bundeswehr

University of Munich developed something that resembles modern autonomous technology. Their

Eureka Prometheus Project was a vision-guided vehicle, which attained a top speed of 39mph on the

streets without traffic [1]. As computing power increased the complexity of autonomous driving systems

followed with more public projects such as the Park Shuttle public transport system in the Netherlands

in the early 2000s [3].

The only commercially fully autonomous vehicle available today is an electric shuttle bus which travels

at speeds just over 12mph, ideal for contained environments such as universities and corporate campuses

[4]. Although fully autonomous cars are not yet readily available to the public, several manufacturers

produce cars with driver assist systems for increased safety, fuel economy and driver comfort. Systems

of this type include Audi’s adaptive cruise control [5], which automatically adjusts speed to keep a safe

distance from the car in front and Mercedes lane keeping system, which steers the vehicle within it’s

lane [6].

Recently, autonomous performance cars have been of interest to researchers as a means to push the

boundaries of automotive racing that is limited by the abilities of human drivers. One such example is

Stanford University’s Audi TT ‘Shelley’ which has proven itself by posting lap times comparable to that

of a seasoned driver [7]. Stanford has also developed an off-road autonomous vehicle ‘Stanley’ for the

DARPA Grand Challenge [8]. Similarly, Hanyang University in Korea developed an autonomous off-

road Hyundai ‘A1’ to compete in the Autonomous Vehicle Competition (AVC) organized by the

Hyundai–Kia Automotive Group [9]. These three vehicles are of particular interest to this project

because they operate in a non-urban scenario without traffic. This type of autonomous challenge best fits

the goals and operating scenario of the UWA Autonomous SAE Electric Race Car, which will be

subsequently referred to as the AutoSAE.

Path-planning solutions have been heavily researched in the past with a large emphasis on robotic

applications. Consequently, many of the proposed algorithms are undesirable for automotive

Martin French 20743871 Page 4

applications. Path planning and vehicle navigation can be broken up into two steps; First: Global path

planning, which deals with generating the most ideal route to reach the final destination and second:

Local path planning, which is responsible for obstruction avoidance and path planning for each segment

generated by the global path planner [10]. This project is more concerned with local path planning and

obstruction avoidance as a global set of waypoints are provided to the system pre-operation. Proposed

methods of local path planning primarily fall into three sub-divisions: potential field approaches, grid

based approaches, and discrete optimization approaches.

The potential field approach to path planning involves the generation of an artificial vector field

influenced by obstacles and waypoints [11]. Obstacles to be avoided are represented by repulsive

potentials while the goal or waypoints are represented by an attractive potential. This approach is

computationally less expensive compared to commonly proposed search algorithms however doesn’t

always yield a path to the goal because of local minima in the vector field. Stanford’s Audi TT ‘Shelley’

uses this method for lane keeping and obstacle avoidance at the limits of vehicle capability [7].

Grid based approaches such as the A* search algorithm outlined by Ozguner et al. in [10] are based on a

distance-cost heuristic function to determine the order of searched nodes on a graph. Consider a map

diced into equally sized tiles, each tile can be seen as a node with a line connecting adjacent tiles as an

edge on the graph. A cost is associated with traversing an edge and the algorithm tries to minimize the

total cost of traveling from the initial node to the goal node. While this method is ideal for robots with

high manoeuvrability operating in cluttered environments, it does not translate well to lane/track based

driving with few obstacles.

A third path planning method is the discrete optimization approach used by both Stanford’s ‘Stanley’ [8]

and Hanyang’s ‘A1’ [9]. This approach computes a finite number of paths generated from a set of

equations describing vehicle motion. The path is defined by the lateral offset perpendicular to a fixed

base frame. A cost is calculated for each path based on various criteria such as path ‘smoothness’, path

consistency and path safety. Finally, the path associated with the least cost is selected. The discrete

optimization method is best suited for this project because of its ability to generate paths parallel to a

base frame (the track trajectory), resulting in real time performance gains. This method also proves to be

favorable because it’s generated paths match the geometry of movement for a front wheel steer

automobile such as the AutoSAE used in this project. As such the implemented algorithm will be guided

by the work of Hanyang University and their algorithm developed for ‘A1’.

Martin French 20743871 Page 5

This project focuses on the implementation of local path planning for the UWA REV Autonomous SAE

Electric Race Car, amongst existing code in a practical way with tests, rather than algorithm

improvements. Accordingly, the goal of this project is to implement a path planning solution capable of

navigating static obstacles to be used within the existing car code. The remainder of this report will be

broken down as follows: The existing systems on the AutoSAE will be briefly introduced in Section 2.0.

An outline of the algorithm, including base frame generation, path candidate generation, path cost

calculation and path selection will be presented in Section 3.0. The testing system, results and

recommendations will be discussed in Section 4.0 and the report concluded in Section 5.0.

Martin French 20743871 Page 6

2.0 System Overview
The AutoSAE uses three main control components: the Control Software, the Low Level Controller and

the Safety Supervisor. The Control Software concerns itself with environment mapping, path planning,

vehicle control as well as communicating with an emergency base station and a webpage for human-

machine interfacing. The Low Level Controller takes commands from the Control Software to actuate

physical components on the car including the steering wheel and the hydraulic brakes. The Low Level

Controller also provides a signal to the motor controllers for vehicle acceleration. The Safety Supervisor

provides an additional layer of safety should the Control Software fail. These three systems were

installed on the car as part of previous projects [12][13]. Figure 1 below illustrates the relationship

between the three systems.

FIGURE 1 – ‘AUTOSAE’ SYSTEM OVERVIEW. SOURCE [12]

The Control Software collects information from an array of sensors and interfaces including a GPS,

Inertial Momentary Unit, an IBEO Laser Scanner and a Web Interface, subsequently building a map of

waypoints, obstacles and current position [12]. The algorithm implemented in this project is

incorporated between this mapping task and vehicle control task as illustrated in Figure 2 below.

FIGURE 2 - CONTROL SOFTWAE FLOW

Mapping
and Sensing

Position
Speed

Heading
Obstacles

Path
Planning

Intermediate
Waypoints

Vehicle
Control

Martin French 20743871 Page 7

The task of the Vehicle Control component is to take a set of immediate waypoints from the Path

Planning algorithm, calculate the desired steering angle and speed, subsequently commanding the Low

Level Controller. Vehicle control is a crucial module for testing the implementation of this project so it is

beneficial to understand how it operates. When passed a set of waypoints, the vehicle control will

sequentially drive to each point until it reaches the final one. A waypoint is marked as reached when the

vehicle has come within a defined tolerance from its position. A heading to the next waypoint is

calculated and set as the desired bearing. The steering command to reach this desired bearing is

calculated using a PID loop with the desired bearing as its set point and the current heading as the

process variable. The PID loop is tuned such that the heading of the vehicle will align itself with the

desired bearing, consequently steering the vehicle toward the next waypoint.

The path-planning algorithm implemented in this project is initially developed in MATLAB for rapid

development and simplicity of debugging. The various algorithms and functions are first developed and

tested in MATLAB before being converted to C++ code using the MATLAB coder. This code is

subsequently compiled and archived into a static library for use in the existing car control code.

FIGURE 3 - CODING APPROACH

The multi-threaded nature of the existing control code made the implementation simple. A new thread is

generated once the first waypoint is hit, if advanced path planning is desired. This code conceptually

runs along side the GPS/IMU processing thread using a mutex to ensure the path plan doesn’t change

while calculating a new heading or sending commands to the low level system.

A list of MATLAB functions and their descriptions can be found in Appendix A1.

Generate C++ code
using MATLAB coder.

Compile and create
a static library.

Link with existing car
control code.

Martin French 20743871 Page 8

3.0 Algorithm Description
This section of the report will outline the mathematical concepts of the path-planning algorithm, which

is broken up into the following four sub tasks: base frame generation, candidate manoeuvre generation,

manoeuvre cost calculation and manoeuvre selection.

Before run time, the base frame is generated using a parametric cubic spline through a set of given

waypoints. Then, at each path-planning interval, the position of the vehicle is determined on the base

frame enabling the extraction of the directional information embedded in the base frame. Next, a set of

path candidates is generated from the integration of a vehicle model using the base frame and current

vehicle heading. From each path in this set, a cost is calculated with respect to three cost criteria: base

frame offset, path consistency and path safety. Finally the path associated with the least cost is selected

and submitted to Vehicle Control.

3.1 Base Frame Generation

As mentioned above the base frame is a parametric cubic spline of waypoints that provides directional

information for the path-planning algorithm. A parametric cubic spline parameterized by an arbitrary

parameter is not ideal for path generation and motion control. Consequently, an arc length parameterized

cubic spline is generated to simplify path generation and enable the algorithm to perform in real time

[9].

To achieve this, a parametric cubic spline is generated from the given waypoints using the minimal

centripetal parameterization proposed by Lee [14]. The total path length is then calculated using the

adaptive Gaussian quadrature numerical integration method developed by Guenter and Parent [15]. The

curve is then broken up into equidistant points with the separation of each point defined as a design

parameter stipulating how well the arc-length parameterized curve should match the original curve. The

2-D arc-length parametric cubic spline is defined in Equation 1; with s representing the arc length along

the base frame and the subscript i denoting the spline segment number [16].

xb(s) = ax,i (s− si)
3 + bx,i (s− si)

2 + cx,i (s− si)+ dx,i
yb(s) = ay,i (s− si)

3 + by,i (s− si)
2 + cy,i (s− si)+ dy,i

 (1)

Subsequently, the tangent and curvature of the base frame can simply be calculated using the following
equations [9]:

!"!
!" = !!! = cos!! !!!!"!!" = !!! = sin!! (2)

Martin French 20743871 Page 9

!! = ! !!
!!!!!!!!!!!!!

(!!!!!!)
!
!

 (3)

FIGURE 4 – UNEQUALLY SPACED WAYPOINTS

FIGURE 5 – ARC-LENGTH PARAMETERIZED SPLINE (BASE
FRAME)

FIGURE 6 - BASE FRAME CURVATURE

 (4)

FIGURE 4 above shows 11 unequally spaced waypoints that are used to develop the arc-length

parameterized cubic spline shown in Figure 5. Figure 6 is a graph of path curvature against path length

for the generated base frame in Figure 5, which is computed using Equation 4 [9]. Candidate paths will

be generated from this curvature to utilize the directional information the base frame provides.

κb =
x 'b y ''b− x ''b y 'b
(x 'b+ y 'b)

3/2

Martin French 20743871 Page 10

3.2 Localization

Clearly, the main goal of local path planning is to navigate around obstacles and choose the most ideal

path at that moment. Consequently, the car will deviate from the base frame during operation. The

algorithm therefore needs to localize the position of the car on the base frame so the directional

information can be extracted. This is achieved by finding the closest point on the curve using a

combination of Quadratic Minimization and Newton’s method proposed by Wang et al [17].

FIGURE 7 – LOCALIZATION. RED: CAR POSITION, BLUE: CLOSEST POINT ON THE BASE FRAME

Martin French 20743871 Page 11

3.3 Candidate Manoeuver Generation

3.3.1 Coordinate System

A curvilinear coordinate system is set up to enable simple smooth path generation [9]. Figure 8

illustrates the concept of the coordinate system and it’s geometric relationship to the generated path. The

distance along the base frame s becomes the horizontal axis and the tangential distance offset from the

base frame q becomes the vertical axis. Figure 8 also demonstrations a generated path where the

difference between the final offset qf and the initial offset qi is non-zero and consequently the generated

path is bent further away from the base frame.

FIGURE 8 – CURVILINEAR COORDINATE SYSTEM

3.3.2 Manoeuvre Generation

Ignoring the curvature of the base frame and working within the curvilinear coordinate system, a path is

defined by the length Δsf along the base frame and its final offset qf from the base frame. A smooth path

needs to be generated to take the vehicle from its current offset qi to its final offset qf. It is essential that

the generated paths take into account the current heading of the vehicle (illustrated in Figure 9)

q

Base

frame

Pat
h

s

q

s

qi

qf

Martin French 20743871 Page 12

FIGURE 9 – CURVILINEAR COORDINATE SYSTEM MANOEUVRE.
THETA: ANGLE DEVIATION FROM BASE FRAME.

SOURCE [9]

 FIGURE 10 – 17 GENERATED PATHS

 to ensure realistic path planning. θ represents the angle difference between the current vehicle heading

and the heading of the localized point on the base frame. It is also desirable to have the end of the path

align with the heading of the base frame at that point as shown in Figure 9 and Figure 10. These four

requirements translate to 4 boundary conditions defined by Equations 6 below. Each manoeuvre is

defined by a cubic polynomial (Equation 5), the coefficients of which can be computed using the

aforementioned boundary conditions [9][18].

! ! = !∆!! + !∆!! + !∆!!+ !! , !! ≤ ! < !!
!! , !! ≤ ! (5)

! !! = !! !!!!!"!" !! = tan! !!!!!! !! = !! !!!!!"!" !! = 0 (6)

FIGURE 9 – CURVILINEAR COORDINATE SYSTEM MANOEUVRE.
THETA: ANGLE DEVIATION FROM BASE FRAME.

SOURCE [9]

 FIGURE 10 – 17 GENERATED PATHS

Δs
f

qf

Δs
f

qf

Martin French 20743871 Page 13

A set of manoeuvres, like that shown in Figure 10, are defined by their final offset qf which are

generated from a maximum lateral offset defined as a design parameter depending on the track. To

further illustrate this, the paths generated in Figure 10 have a maximum lateral offset of 8m with a

granularity of 1m. So the path final offsets (qf) are therefore -8, -7, …, 0, …, 7, 8m from the base frame

respectively, which covers a 16m wide track.

Once the coefficients for each manoeuvre are solved, the actual curvature of the manoeuvre combined

with the base frame curvature can be computed as follows [19]:

! = !
! !! +

!!!!! !!!
!!! !!! !"

!"
!
!

!! (7)

! = !"# 1− !!! !!!!!!!!! = ! !"
!"

!
+ 1− !!! ! (8)

If the radius of curvature!1/! at any point of a generated manoeuvre is less than 2m, the calculated

turning radius of the ‘AutoSAE’, the path cannot be driven and is consequently discarded. Finally, the

manoeuvres that remain are converted back to Cartesian coordinates using the following equations, first

integrating for theta and subsequently x and y [9].

!"
!" = !"!!!! !"!" = ! sin! !!!!!"!" = ! cos! (9)

3.4 Path Costs

3.4.1 Path Offset Cost

The motive for the path-offset cost is to allow the AutoSAE to run on tracks without road edges, which

is a common scenario for testing. The cost aims to keep the car as close to the base frame as possible and

is simply calculated as the absolute value of each paths final offset qf. The path offset is a necessary

building block for the algorithm and hence will always exist for every path-planning instance, in contrast

to the safety cost, which is entirely zero when no collisions are present. This means that the path offset

cost will be the final influence on deciding the ideal path if all other cost functions equal zero, and

consequently ensuring an ideal path can be calculated. The path-offset cost can be expressed as:

!! ! = !! ! (10)

Martin French 20743871 Page 14

FIGURE 11 – PATH OFFSET COST

FIGURE 12 – GENERATED PATHS

Figure 11 shows a graph of offset cost for the paths shown in Figure 12. Clearly path 9 is the ideal path

in this case as it is the closest to the base frame.

Martin French 20743871 Page 15

3.4.2 Path Safety Cost

The path safety cost is trivially part of the algorithm to ensure the chosen path does not lead to a

collision. To do this, each path is checked against the map of obstacles. Each path is checked to see if it

passes through a zone defined by a radius around an objects location. If it does, the path is not a feasible

path and is therefore marked as having a collision. It is beneficial to invoke risk into neighboring paths

to further evaluate the safety of paths that may not collide with an obstacle, but run close by. This is

achieved by using Discrete Gaussian Convolution over a collision matrix [9], which produces a cost

function like that shown in Figure 13. The path safety cost can be expressed as:

 (11)

FIGURE 13 - COLLISION MATRIX AND CALUCLATED COST

FUNCTION

FIGURE 14 – GENERATED PATHS WITH TWO OBSTACLES

Figure 13 illustrates both the collision matrix and the associated cost function for the set of paths and

their corresponding collisions with the two obstacles shown in Figure 14. Figure 13 also shows the result

of the Discrete Gaussian Convolution, that there is risk in paths 5 and 10-13 even though there is no

direct collision with an obstacle.

3.4.3 Path Consistency Cost

The path consistency cost provides a mechanism to choose the next path with some consideration to the

previously chosen path. This cost favors paths that are most similar to the previously chosen path. The

motivation for this cost is to provide a way to discern between two similarly costing paths on either side

of an obstacle, like that shown in Figure 15. This situation poses a risk because choosing a path on the

other side of an obstacle may result in a collision if the vehicle’s control system is inadequate or the road

conditions are poor.

CS[i]= c[k]g[i− k]
k=0

N

∑ g[i]= 1
2πσ

exp −(Δq ⋅ i)2

2σ 2

$

%
&

'

(
)

Martin French 20743871 Page 16

FIGURE 15 - POSSIBLE COLLISION DUE TO PATH CHANGE. SOURCE [9]

Calculating the cost associated with a given path with respect to the previously chosen path can be

achieved by totaling the distance between the common arc length sections of the previous path and the

new path. The arc-length common between the two paths provides suitable scaling to the cost. The

equation for this cost is similar to that given in [9] with the exception that the authors use an integral

where this method simply uses the sum of discrete path distances q - qprev. Again, i is the path index, N

corresponds to the number of common arc length points between the two paths, s2 is the arc-length of the

final common point and s1 the initial common point, as illustrated in Figure 17.

 (12)

FIGURE 16 – COSISTENCY COST

FIGURE 17 – CONSISTENCY COST PATH SELECTION
COMPARISON.

Figure 16 shows the calculated consistency cost for the scenario shown in Figure 17. The effect of path

consistency is evident in Figure 17 where the selected path is no longer the one that finishes closer to the

base frame but aligns closer to the previous path.

CC[i]=
1

s2 − s1
qk,i − qk,prev

k=1

N

∑

N
 =

 9

With Consistency Cost Without Consistency Cost

s2

s1

Martin French 20743871 Page 17

3.5 Path Selection

The ideal path is calculated using a linear combination of weighted cost functions as shown in Equation

13 below. Each of the three cost functions for path offset, path safety and path consistency are scaled

with a weighting w and summed for each path index i.

!!"!#$! = !!!!! ! + !!!! ! + !!!! ! (13)

These weightings are important as they allow the operator to change the way the car drives depending

on the requirements of certain scenarios. For example, using a relatively high safety weighting will

choose a path further from obstacles but with a greater offset from the base frame.

The path associated with the lowest total cost is chosen as the ideal path. The Cartesian coordinates of

that path are finally submitted to the vehicle control code discussed in Section 2.0 as waypoints.

3.5.1 Longest Collision Free Path

In the exceptional case where there is no collision free path available, like that shown in Figure 18, the

path with the longest collision free length is chosen and submitted to vehicle control under the

assumption that a collision free path will subsequently be discovered, like that shown in Figure 19. This

action is sufficient enough for all scenarios intended for this implementation [9].

FIGURE 18 – NO COLLISION FREE PATH

FIGURE 19 - COLLISION FREE PATH AVAILABLE

Martin French 20743871 Page 18

4.0 Testing

4.1 Simulation

Due to various factors outside of this projects control, testing the implementations functionality in the

existing car code was initially carried out in a suitable simulator. The simulator used was Open

Dynamics Engine (ODE), an open source, high performance rigid body simulator for Linux [20]. The

world and vehicle used for simulation is shown in Figure 20 below.

FIGURE 20 - SIMULATOR WORLD AND VEHICLE

4.1.1 Setup

Measurements of wheel distances were taken from the AutoSAE to best represent the vehicle and its

turning capabilities in the simulator.

Longitudinal Wheel Distance: 1.8m

Lateral Wheel Distance: 1.4m

From last years drive by wire conversion project [13], the steering command – steering angle

relationship was obtained to map between the control software and the simulator. The relationship can

be expressed as:

! = 0.027!!

Where ! is the steering angle in radians and ! is the steering command from the control software. Using

this relationship, the simulator can set the joint angle on the two font wheels providing similar behavior

to the AutoSAE.

Martin French 20743871 Page 19

The existing car control code uses a GPS library for position, speed and heading information under

normal operation [13]. The simulator provides body position and velocity in Cartesian (x, y and z)

coordinates and body rotation with a 3x3 rotation matrix [21]. Consequently, with the exception of

position, some conversion is required to bypass the GPS library and ensure the correct parameters

(heading and speed) are passed to the car control code.

4.1.1.1 SPEED
The simulator provides the body velocity in x,y and z components. It is then trivial to calculate the

vehicle speed by taking the magnitude of this vector.

!"##$ = ! !!! + !!! + !!!

4.1.1.2 HEADING
A yaw angle is analogous to a heading and can be calculated from the body rotation matrix obtained

from the simulator.

Given a rotation matrix returned from the simulator:

!!! !!" !!"
!!" !!! !!"
!!" !!" !!!

yaw ! can be calculated as follows [22]:

! = − sin!!(!!")!

! = atan2 !!"
cos! ,

!!!
cos! !3602!

The atan2 function takes two arguments to obtain an angle in the correct quadrant between -!! and !

radians. As mentioned above, the existing car control code takes in a compass heading, which values

from 0 to 360 degrees. Furthermore, in the simulator, a heading of 0 degrees aligns with the positive x-

axis, while in the car code, 0 degrees aligns with positive y-axis. Hence an angle remap is required,

which can be expressed as:

ℎ!"#$%& = ! − 90 , −180 ≤ ! ≤ !90
360− (! − 90), !"ℎ!"#$%!

Martin French 20743871 Page 20

4.1.1.3 PROCESS COMMUNICATION
The calculated heading, speed and position can now be injected into the car control code, bypassing the

GPS library.

The simulator is run as its own executable, separate from the car software. This was a choice made to

keep the length of the car control code to a minimum and to ensure that the code remained manageable

for others not needing the simulator. A disadvantage of this approach is that a transfer of bidirectional

information must occur between the two processes. This pass of information is achieved using two Unix

named pipes, each of which is a unidirectional FIFO buffer. Once each buffer is created, commands and

feedback flow between the two programs as illustrated in Figure 21 below.

FIGURE 21 - COMMAND AND FEEDBACK FLOW

Position, heading and speed are sent from the simulator to the car control software with a period of

100ms in the following format:

P,<px>,<py>,<pz>

B,<heading>

S,<speed>

A frequency of 100ms replicates the rate of information the fusion class provided in the existing car

code [12]. The simulator is then providing a similar feedback environment found on the AutoSAE to the

control code.

Similarly, a steering command is sent from the control software to the simulator every 50ms in the

following format:

S,<command>

Position, Heading
and Speed.

Steering Command

Martin French 20743871 Page 21

The AutoSAE can be run in manual acceleration mode to alleviate control issues presented by the slow

GPS feedback and unresponsive drive system [12]. This manual mode is what is commonly used for

practical testing so a design choice was made to exclude speed control in the simulator and revert to

manual control.

4.1.2 Test Map

This test aims to verify the functionality of the implemented algorithm in the car control code within the

simulation environment. The car in the simulator must travel around the defined waypoints and avoid

obstacles along the way.

FIGURE 22 - SIMULATION TEST MAP

FIGURE 23 – OBSTACLES IN THE SIMLATOR

Figure 22 shows the map used in the simulator for this test. The black dots represent the defined

waypoints, the black line is the generated base frame and the red dots are the two obstacles, shown in

Figure 23. The locations of these two obstacles are known and hence were hard coded into the control

software. Figure 22 also shows that one of the waypoints sits inside the footprint of the obstacle.

The test will firstly be run in the simulator at a manual constant speed, using the primitive path-planning

algorithm implemented by Drage [12], and then using the advanced path-planning algorithm

implemented in this project to illustrate the improvements in terms of obstacle avoidance.

Martin French 20743871 Page 22

4.1.3 Results

4.1.3.1 PRIMATIVE PATH PLANNING

FIGURE 24 – PRIMATIVE PATH PLANNING MAP

FIGURE 25 – PRIMATIVE PATH PLANNING COLLISION

In this simulation, the advanced path planning implemented in this project was disabled and the control

code relied on the previously implemented waypoint-to-waypoint algorithm.

As a result, the vehicle collided with one of the obstacles, evident in Figure 25, and hence did not make

it all the way to the final waypoint. Figure 24 shows the traveled path in blue, which clearly terminates

at the first obstacle. This behavior is obviously undesirable and so this simulation provides a base point

for improvement.

Martin French 20743871 Page 23

4.1.3.2 ADVANCED PATH PLANNING

FIGURE 26 – ADVANCED PATH PLANNING MAP

FIGURE 27 – ADVANCED PATH PLANNING OBSTACLE
AVOIDANCE

In this simulation, the advanced path planning was re-enabled and the car was able to avoid the two

obstacles as shown in Figure 27. Figure 26 shows a familiar map, with the traveled path again shown in

blue. Evidently, the vehicle in the simulator using the implemented advanced path planning was able to

travel the whole path.

A path-planning instance occurring in this simulation is shown in Figure 28 below. The chosen path is

highlighted in green while the other blue paths are the other path candidates. Figures 29-31 show the

various costs associated with this particular path plan, while Figure 32 shows a graph of the total cost

which is the linear combination of the three cost functions as described in Section 3.5. The weightings

used in this particular simulation were: 5.0, 0.5, and 0.1 for safety, offset and consistency costs

respectively. Figure 32 also clearly shows path index 7 as the least cost path.

FIGURE 28 – NAVIGATING TWO OBSTACLES

Martin French 20743871 Page 24

FIGURE 29 – GRAPH OF THE OFFSET COST

FIGURE 30 – BINARY GRAPH OF THE COLLISION CHECK AND
A GRAPH OF THE SAFETY COST

FIGURE 31 – GRAPH OF THE CONSISTENCY COST

FIGURE 32 – GRAPH OF THE TOTAL COST

4.1.4 Discussion of Results

Clearly, the advanced path planning provides a significant safety improvement over the primitive

implementation by successfully navigating around the two obstacles on the map. By comparing Figure

24 and Figure 26, it is clear that the advanced navigational algorithm does not stick to the base frame

quite as accurately as the primitive algorithm. This is not a significant issue as the base frame is only

there to provide directional information. The deviation is most likely due to the way in which the control

software calculates it’s bearing and steering command. Although run in a simulation, the car control

code is running as it would on the AutoSAE and these results therefore prove correct functionality and

implementation of the Advanced Navigational Algorithm into the existing car control code. The outcome

of this test suggests that the implemented algorithm should work successfully on the AutoSAE, which is

discussed in the following section.

Martin French 20743871 Page 25

4.2 Practical Testing

4.2.1 Test Map

Although the simulation proves the success of the algorithm implementation into the car code of the

AutoSAE, it does not give any indication of its performance when used on the actual car. Testing was

carried out within the limited space available at the UWA Sport Science oval next to the Business

School. The map of waypoints and the generated base frame are shown in Figure 33.

FIGURE 33 - PRACTICAL TESTING WAYPOINTS

4.2.2 Setup

Due to the small testing area and consequently tight set of waypoints, reduced manoeuvre parameters

were set to ensure the car adequately stuck to the base frame. The manoeuvre parameters were set as

follows:

Manoeuvre Length: 10m Max Lateral Offset: 3m Manoeuvre Granularity: 1m

These parameters produce a reduced set of 6 possible paths, like that shown in Figure 34, with reduced

lengths of 10m compared to 30m which is what has been seen previously.

FIGURE 34 - REDUCED MANOEUVRE MAP

Martin French 20743871 Page 26

Unfortunately, the implementation of an accurate mapping a sensing system as described in Section 2.0,

which included an accurate differential GPS system, and a map of detected upcoming obstacles was not

fully implemented. This GPS system, which was planned for the AutoSAE in a parallel project, was

found to be highly unreliable and consequently not fully implemented. Due to this unreliability, a change

of scope occurred and as a result the obstacle detection was also never implemented.

This test was consequently run with the older, much less accurate GPS system without obstacle

detection. The aim of this test is therefore to assess the implementations performance when inaccuracies

of the GPS and the resulting effect on the car’s steering control loop are taken into consideration.

Similar to the tests run in the simulator, the cars speed was manually controlled. In this test, a safety

driver operating the throttle provided that speed control.

4.2.3 Results

The position results of three test runs are shown in Figure 35 where the black dots represent the defined

waypoints and the colored lines represent the path travelled.

FIGURE 35 – POSITION RESULTS OF THREE TEST RUNS

4.2.4 Discussion of Results

Figure 35 shows the path traveled of three test runs on the same track. The inaccuracies of the path

traveled compared to the base frame are unsurprising considering the results obtained by Drage [12]

using the same control and GPS system. Despite these inaccuracies, this test proves that the

implemented algorithm was successful in generating paths as the vehicle progressed around the track.

Martin French 20743871 Page 27

4.3 Recommendations for Future Work

4.3.1 Path Planning

This project provides a platform for further research in advanced path planning for the AutoSAE and

autonomous racecars in general. Improvements and additional functionality can be implemented and

tested on the foundations of this implementation by simply generating new cost functions to alter the

path selection.

One such cost function is to look ahead on the base frame at the upcoming curvature to characterize

where the vehicle should position itself to best approach a particular corner. This type of cost function

will bring path planning for the AutoSAE into the racing domain where the vehicle is designed to

operate. The goal would be to optimize the time the vehicle takes to traverse that corner or even the

whole track. Before this cost function is implemented, the detection and characterization of the road

edge must first be implemented.

The advanced path planning functionality could be extended to avoid not only static obstacles but also

dynamic obstacles that might represent other cars on a racetrack.

A number of system limitations were discovered when testing the implemented algorithm in both the

simulator and on the AutoSAE, these issues are the basis for the following recommendations.

Firstly, the AutoSAE experienced an issue in practical testing when traveling at slow speeds. The vehicle

wouldn’t follow the chosen path for long enough to complete a significant potion of the manoeuvre. This

caused an issue because each manoeuvre has a section of path at the start where there is only a small

change in offset. Reducing the manoeuvre length alleviated this issue, but is only suitable for constant

speed testing, as the car would traverse the immediately planned path before a new plan was generated.

A better solution would be to implement a speed dependent manoeuvre length, where the lengths of

manoeuvres at a given path-planning instance change depending on the speed of the vehicle. This will

ensure the vehicle can execute short manoeuvres, where the change in offset is fast (Figure 34) at slow

speeds, while remaining stable with long manoeuvres, where the change in offset is slow (Figure 28) at

high speeds.

A second issue arises when the vehicle control does not take the car along the base frame accurately

enough resulting in missed waypoints. This becomes an issue because the vehicle control will want to

turn the car around to visit this missed waypoint while the advanced path planning algorithm is only able

take the vehicle one way along the base frame. A proposed solution, should the desired operation be to

Martin French 20743871 Page 28

visit this missed waypoint, is to temporarily disable the advanced path planning, fall back on the

primitive waypoint to waypoint method, and then finally re-enable advanced path planning to continue

along the base frame once the waypoint has been hit.

4.3.2 AutoSAE

Throughout the project, difficulties with the hardware and safety systems of the AutoSAE were

experienced at every step of the way. These difficulties motivate the following recommendations.

An accurate positioning system, as previously mentioned would provide a significant increase in the

accuracy of the path-planning algorithm. Similarly, the vehicle control loops for steering and speed

require significant tuning and debugging to ensure the vehicle is taken along the planned path with an

increased level of accuracy.

Reliable obstacle detection using the LIDAR would enable real world testing of the advanced path-

planning algorithm with obstacles.

One significant safety and reliability issue was the physical wiring to various sensors and the quality of

core system hardware in the car. Although not in the scope of this project, physical rebuilds of two core

system components were undertaken to significantly increase the reliability, safety and maintainability

of the vehicle. It is recommended that implemented hardware in the future is built and installed to a

satisfactory level of robustness and quality.

Martin French 20743871 Page 29

5.0 Conclusion
This project has focused on the implementation of local path planning for the UWA REV Autonomous

SAE Electric Race Car (AutoSAE), amongst existing code in a practical way. The implementation and

functionality of a suitable simulator, providing a quick way to test and improve implemented algorithms

has additionally been presented. Using an algorithm tested and used by both Hanyang University in

Korea and Harvard University in the US, this project was successfully able to implement an advanced

path planning system, which was broken down into four sub tasks: base frame generation, candidate

manoeuvre generation, manoeuvre cost calculation and manoeuvre selection.

This system was tested in both the simulator and on the AutoSAE. The results presented in section 4.1.3

demonstrate the implementations correct functionality in the both the simulator and on the AutoSAE

itself. Limitations on the accuracy and performance of the algorithm were discovered during testing on

the AutoSAE. These limitations were attributed to the inaccuracies of the positioning systems and

vehicle control loops. It is therefore recommended that each of these systems receive some attention and

tuning which will improve the performance of the implemented path-planning algorithm.

Scope for further work includes: the implementation of a speed dependent manoeuvre length, reducing

the need for constant speed testing; implementing a new cost function, enabling the vehicle to position

itself to best approach a particular corner, thus bringing the path planning algorithm into the racing

domain and finally, extending the advanced path planning functionality to avoid not only static obstacles

but also dynamic obstacles that might represent other cars on a racetrack.

Ultimately, this report has demonstrated that this project has successfully implemented an advanced path

planning solution and provided a platform for further research in advanced path planning for the

AutoSAE and the University of Western Australia.

Martin French 20743871 Page 30

References
[1] J. Schmidhuber, 'ROBOT CARS - autonomous vehicles - history of self-driving cars - best robot

car', Idsia.ch, 2009. [Online]. Available: http://www.idsia.ch/~juergen/robotcars.html. [Accessed:

May 17, 2014].

[2] ‘This Automobile Doesn't Need Driver’, Palm Beach Daily News, p. 4, December 15, 1966.

[Online]. Available: Google News Archive,

http://news.google.com/newspapers?id=MKskAAAAIBAJ&sjid=PaEFAAAAIBAJ&pg=3093,399

9582. [Accessed: May 17, 2014].

[3] University of Washington, 'Park shuttle automated driverless vehicle pilot project - Netherlands',

2009. [Online]. Available: http://faculty.washington.edu/jbs/itrans/parkshut.htm. [Accessed: May

17, 2014].

[4] M. Maisto, 'Induct Now Selling Navia, First Self-Driving Commercial Vehicle', 2014.

[5] S. Blackstone, 'Watch An Audi A4 Weave Through Traffic Using Adaptive Cruise Control', 2012.

[6] D. Newcomb, 'Almost autonomous 2014 Mercedes-Benz E-Class', MSN Autos, 2013.

[7] K. L. R. Talvala, K. Kritayakirana, and J. C. Gerdes, "Pushing the limits: From lanekeeping to

autonomous racing," Annual Reviews in Control, vol. 35, pp. 137-148, 2011.

[8] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, et al., "Stanley: The robot

that won the DARPA Grand Challenge," Journal of Field Robotics, vol. 23, pp. 661-692, 2006.

[9] C. Keonyup, L. Minchae, and S. Myoungho, "Local Path Planning for Off-Road Autonomous

Driving With Avoidance of Static Obstacles," Intelligent Transportation Systems, IEEE

Transactions on, vol. 13, pp. 1599-1616, 2012.

[10] U. Ozguner, K. Redmill, and T. Acarman, Autonomous Ground Vehicles. Norwood: Artech House,

2011.

[11] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, and G. Fiore, "Real-Time Motion Planning

With Applications to Autonomous Urban Driving," Control Systems Technology, IEEE

Transactions on, vol. 17, pp. 1105-1118, 2009.

[12] T. Drage. “Development of a Navigation Control System for an Autonomous Formula SAE-

Electric Race Car” BE thesis, UWA, 2013.

[13] J. Kalinowski. “Conversion of a Formula SAE Vehicle to Full Drive-by-Wire Capability” BE

thesis, UWA, 2013.

[14] E. T. Y. Lee, "Choosing nodes in parametric curve interpolation," Comput. Aided Des., vol. 21, pp.

363-370, 1989.

Martin French 20743871 Page 31

[15] B. Guenter and R. Parent, “Computing the arc length of parametric curves,” IEEE Comput. Graph.

Appl., vol. 10, no. 3, pp. 72–78, May 1990.

[16] H. Wang, J. Kearney, and K. Atkinson, “Arc-length parameterized spline curves for real-time

simulation,” in Proc. 5th Int. Conf. Curves Surf., 2002, pp. 387–396.

[17] H. Wang, J. Kearney, and K. Atkinson, “Robust and efficient computation of the closest point on a

spline curve,” in Proc. 5th Int. Conf. Curves Surf., 2002, pp. 397–406.

[18] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. Hoboken, NJ:

Wiley, 2006.

[19] T. Barfoot and C. Clark, “Motion planning for formations of mobile robots,” Robot. Auton. Syst.,

vol. 46, no. 2, pp. 65–78, Feb. 2004.

[20] R. Smith, 'Open Dynamics Engine - home', Ode.org, 2007. [Online]. Available:

http://www.ode.org. [Accessed: Aug 10th, 2014].

[21] Ode-wiki.org, 'Manual: Data Types and Conventions - ODE Wiki', 2012. [Online]. Available:

http://ode-wiki.org/wiki/index.php?title=Manual:_Data_Types_and_Conventions. [Accessed: Aug

10th, 2014].

[22] S. LaValle, 'Determining yaw, pitch, and roll from a rotation matrix', Planning.cs.uiuc.edu, 2012.

[Online]. Available: http://planning.cs.uiuc.edu/node103.html. [Accessed: Aug 10th, 2014].

Martin French 20743871 Page 32

Appendix

5.1 Advanced Path Planning Function API

MATLAB Function

Name

Inputs Outputs Description

arclengthcurve

points
Matrix of waypoints.

granularity

Granularity of base
frame points.

epsilon

Acceptable numerical
error.

scoefx

1x4 matrix

Coefficients of

arc length cubic
spline x.

scoefy

1x4 matrix

Coefficients of

arc length cubic
spline y.

si

Break points in

the spline.

Generates an arc-length

parameterized cubic

spline (base frame)

based on given

waypoints.

builddetailedbf scoefx

scoefy

si

granularity

Granularity of the

detailed base frame.

sx
X points.

sy
Y Points.

ss

Break points in

the spline.

Generates a detailed

(higher sampled) base

frame for plotting and

path generation.

parevalspline coefs

The 4x1 coefficient

matrix of the cubic

spline.

breaks

Break points in the

spline.

t

The point at which

the cubic spline is

result

The result of the

cubic spline
expression.

curvn

The curve number

of the spline

where t resides.

Evaluate the derivative

or value of a point

along a cubic spline.

Martin French 20743871 Page 33

to be evaluated.

d

Requested derivative
[0,1,2].

buildbfcurvature dxds

First derivative of x

with respect to arc

length.

dyds

First derivative of y

with respect to arc

length.

dx2ds

Second derivative of

x with respect to arc

length.

dy2ds

Second derivative of

y with respect to arc

length.

k

The base frame
curvature.

Calculate the base

frame curvature at each

point of s.

oblocalize scoefx

scoefy

si

ob

A 3x? matrix

describing the

location and radius

of ? obstacles.

sguess

An initial guess of

spline segment to

localize the

obstacle.

epsilon

arcob

2x? matrix

detailing the

position in arc

length and the

distance from the

base frame.

Localize a set of

obstacles onto the base

frame with the

curvilinear coordinate

system.

Martin French 20743871 Page 34

localize coefx

coefy

breaks

x0

The x value of the

point to localize.

y0

The y value of the

point to localize.

sguess

epsilon

value

Arc length along

the base frame.

distance

Distance from the

base frame.

loccurvn

The spline curve

number the point

was localized on.

count

The number of

iterations before

a solution was

found.

Localize a single point

onto the base frame

with the curvilinear

coordinate system.

evalheading scp

The arc length of the

base frame to

calculate heading at.

ss

dxds

dyds

sindex

The spline curve

number the arc

length was found

on.

paththeta

The heading at

that arc-length

on the base

frame.

Find the heading of a

point on the base frame

represented by its arc-

length.

buildmanouvers scp

The arc length of the

base frame to build

manoeuvres from.

cpdistance

Distance from the

base frame.

px

X value of point to

build manoeuvres

mxi

Matrix of i

manoeuvres x

points.

myi

Matrix of i

manoeuvres y
points.

pathki

Matrix of i

manoeuvres path

Generate a set of i

manoeuvres from a

point.

Martin French 20743871 Page 35

from.

py

Y value of point to

build manoeuvres
from.

maxlatoffset

Maximum lateral

offset.

mangran

Manoeuvre

granularity.

(Distance between
manoeuvres)

manlength
Manoeuvre Length.

mincurverad

Minimum curvature
radius to allow.

thetadiff

Difference in vehicle

heading and base
frame heading.

ss

sindex

kk

The base frame
curvature.

paththeta
Base frame heading.

curvature.

pathqi

Matrix of i

manoeuvres path
offsets.

dthetai

Matrix of i

manoeuvres

derivative of

theta.

mans

The arc lengths

of the set of

manoeuvres.

checkpathcollision arcob

pathqi

s

The arc lengths of

pathcollision

The collision

matrix.

Generate a collision

matrix for the set of

given manoeuvres.

Martin French 20743871 Page 36

the set of

manoeuvres.

equatesafetycost mangran

pathcollision

safetycost

The safety cost

for each

manoeuvre i.

Calculate the safety

cost of each given

manoeuvre.

equateoffsetcost pathqi pathoffsetcost

The offset cost

for each

manoeuvre i.

Calculate the offset

cost of each given

manoeuvre.

equateconscost previouspathq

The previous path

planning instances

path offset and arc-
length matrix.

pathqi

mans

pathconscost

The consistency

cost for each

manoeuvre i.

Calculate the

consistency cost of

each given manoeuvre.

mincost Ks
Safety weighting.

safetycost

Kpo
Path offset weighting.

pathoffsetcost

Kc

Path consistency

weighting.

conscost

totalcosts

The total cost of

each path i.

bestpath

The path index

associated with

the least cost.

Calculate the total cost

of each path i and the

best path index after

weighting.

genprevpathq bestpath

pathqi

mans

previouspathq Store the best paths

offset and arc-length

into a matrix for the

next path-planning

instance.

