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Abstract 
This project focuses on the implementation of local path planning for the UWA REV Autonomous SAE 

Electric Race Car, implementing a solution amongst existing code in a practical way. The implemented 

advanced path-planning algorithm is built and based on an algorithm used by both Hanyang University 

in Korea and Harvard University in the US, competing in separate autonomous vehicle challenges. In 

essence, the algorithm will generate a range of possible manoeuvres, assess each option using a 

combination of cost functions and finally select the manoeuvre with the least cost to submit to vehicle 

control. 

The structures of the advanced path planning algorithm and the simulator used for testing are discussed, 

with results presenting the correct functionality and also the limitations of the implementation when 

tested in the simulator and on the UWA REV Autonomous SAE Electric Race Car. The findings 

conclude that the implementation successfully provides navigation around static obstacles, thus 

achieving the goal of this project. 
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1.0 Introduction 
Autonomous cars are vehicles capable of navigating through an environment, often self-sensed, without 

human intervention. These types of cars commonly exist as prototypes and platforms for learning in the 

area of robotics. From the 1920s through to the 1950s, researchers produced primitive ‘driverless’ 

prototypes that would lay the foundations for autonomous car technology for the future [1]. These cars 

were radio controlled or could follow wires/electrical circuits embedded in the roadways [2]. It wasn’t 

until the 1980s before large companies like Mercedes-Benz and universities such as the Bundeswehr 

University of Munich developed something that resembles modern autonomous technology. Their 

Eureka Prometheus Project was a vision-guided vehicle, which attained a top speed of 39mph on the 

streets without traffic [1]. As computing power increased the complexity of autonomous driving systems 

followed with more public projects such as the Park Shuttle public transport system in the Netherlands 

in the early 2000s [3].  

The only commercially fully autonomous vehicle available today is an electric shuttle bus which travels 

at speeds just over 12mph, ideal for contained environments such as universities and corporate campuses 

[4]. Although fully autonomous cars are not yet readily available to the public, several manufacturers 

produce cars with driver assist systems for increased safety, fuel economy and driver comfort. Systems 

of this type include Audi’s adaptive cruise control [5], which automatically adjusts speed to keep a safe 

distance from the car in front and Mercedes lane keeping system, which steers the vehicle within it’s 

lane [6]. 

Recently, autonomous performance cars have been of interest to researchers as a means to push the 

boundaries of automotive racing that is limited by the abilities of human drivers. One such example is 

Stanford University’s Audi TT ‘Shelley’ which has proven itself by posting lap times comparable to that 

of a seasoned driver [7]. Stanford has also developed an off-road autonomous vehicle ‘Stanley’ for the 

DARPA Grand Challenge [8]. Similarly, Hanyang University in Korea developed an autonomous off-

road Hyundai ‘A1’ to compete in the Autonomous Vehicle Competition (AVC) organized by the 

Hyundai–Kia Automotive Group [9]. These three vehicles are of particular interest to this project 

because they operate in a non-urban scenario without traffic. This type of autonomous challenge best fits 

the goals and operating scenario of the UWA Autonomous SAE Electric Race Car, which will be 

subsequently referred to as the AutoSAE. 

Path-planning solutions have been heavily researched in the past with a large emphasis on robotic 

applications. Consequently, many of the proposed algorithms are undesirable for automotive 
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applications. Path planning and vehicle navigation can be broken up into two steps; First: Global path 

planning, which deals with generating the most ideal route to reach the final destination and second: 

Local path planning, which is responsible for obstruction avoidance and path planning for each segment 

generated by the global path planner [10]. This project is more concerned with local path planning and 

obstruction avoidance as a global set of waypoints are provided to the system pre-operation. Proposed 

methods of local path planning primarily fall into three sub-divisions: potential field approaches, grid 

based approaches, and discrete optimization approaches. 

The potential field approach to path planning involves the generation of an artificial vector field 

influenced by obstacles and waypoints [11]. Obstacles to be avoided are represented by repulsive 

potentials while the goal or waypoints are represented by an attractive potential. This approach is 

computationally less expensive compared to commonly proposed search algorithms however doesn’t 

always yield a path to the goal because of local minima in the vector field. Stanford’s Audi TT ‘Shelley’ 

uses this method for lane keeping and obstacle avoidance at the limits of vehicle capability [7]. 

Grid based approaches such as the A* search algorithm outlined by Ozguner et al. in [10] are based on a 

distance-cost heuristic function to determine the order of searched nodes on a graph. Consider a map 

diced into equally sized tiles, each tile can be seen as a node with a line connecting adjacent tiles as an 

edge on the graph. A cost is associated with traversing an edge and the algorithm tries to minimize the 

total cost of traveling from the initial node to the goal node. While this method is ideal for robots with 

high manoeuvrability operating in cluttered environments, it does not translate well to lane/track based 

driving with few obstacles. 

A third path planning method is the discrete optimization approach used by both Stanford’s ‘Stanley’ [8] 

and Hanyang’s ‘A1’ [9]. This approach computes a finite number of paths generated from a set of 

equations describing vehicle motion. The path is defined by the lateral offset perpendicular to a fixed 

base frame. A cost is calculated for each path based on various criteria such as path ‘smoothness’, path 

consistency and path safety. Finally, the path associated with the least cost is selected. The discrete 

optimization method is best suited for this project because of its ability to generate paths parallel to a 

base frame (the track trajectory), resulting in real time performance gains. This method also proves to be 

favorable because it’s generated paths match the geometry of movement for a front wheel steer 

automobile such as the AutoSAE used in this project. As such the implemented algorithm will be guided 

by the work of Hanyang University and their algorithm developed for ‘A1’. 
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This project focuses on the implementation of local path planning for the UWA REV Autonomous SAE 

Electric Race Car, amongst existing code in a practical way with tests, rather than algorithm 

improvements. Accordingly, the goal of this project is to implement a path planning solution capable of 

navigating static obstacles to be used within the existing car code. The remainder of this report will be 

broken down as follows: The existing systems on the AutoSAE will be briefly introduced in Section 2.0. 

An outline of the algorithm, including base frame generation, path candidate generation, path cost 

calculation and path selection will be presented in Section 3.0. The testing system, results and 

recommendations will be discussed in Section 4.0 and the report concluded in Section 5.0. 
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2.0 System Overview 
The AutoSAE uses three main control components: the Control Software, the Low Level Controller and 

the Safety Supervisor. The Control Software concerns itself with environment mapping, path planning, 

vehicle control as well as communicating with an emergency base station and a webpage for human-

machine interfacing. The Low Level Controller takes commands from the Control Software to actuate 

physical components on the car including the steering wheel and the hydraulic brakes. The Low Level 

Controller also provides a signal to the motor controllers for vehicle acceleration. The Safety Supervisor 

provides an additional layer of safety should the Control Software fail. These three systems were 

installed on the car as part of previous projects [12][13]. Figure 1 below illustrates the relationship 

between the three systems. 

 

FIGURE 1 – ‘AUTOSAE’ SYSTEM OVERVIEW. SOURCE [12] 

The Control Software collects information from an array of sensors and interfaces including a GPS, 

Inertial Momentary Unit, an IBEO Laser Scanner and a Web Interface, subsequently building a map of 

waypoints, obstacles and current position [12]. The algorithm implemented in this project is 

incorporated between this mapping task and vehicle control task as illustrated in Figure 2 below. 

 

FIGURE 2 - CONTROL SOFTWAE FLOW 
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The task of the Vehicle Control component is to take a set of immediate waypoints from the Path 

Planning algorithm, calculate the desired steering angle and speed, subsequently commanding the Low 

Level Controller. Vehicle control is a crucial module for testing the implementation of this project so it is 

beneficial to understand how it operates. When passed a set of waypoints, the vehicle control will 

sequentially drive to each point until it reaches the final one. A waypoint is marked as reached when the 

vehicle has come within a defined tolerance from its position. A heading to the next waypoint is 

calculated and set as the desired bearing. The steering command to reach this desired bearing is 

calculated using a PID loop with the desired bearing as its set point and the current heading as the 

process variable. The PID loop is tuned such that the heading of the vehicle will align itself with the 

desired bearing, consequently steering the vehicle toward the next waypoint. 

The path-planning algorithm implemented in this project is initially developed in MATLAB for rapid 

development and simplicity of debugging. The various algorithms and functions are first developed and 

tested in MATLAB before being converted to C++ code using the MATLAB coder. This code is 

subsequently compiled and archived into a static library for use in the existing car control code. 

 

FIGURE 3 - CODING APPROACH 

The multi-threaded nature of the existing control code made the implementation simple. A new thread is 

generated once the first waypoint is hit, if advanced path planning is desired. This code conceptually 

runs along side the GPS/IMU processing thread using a mutex to ensure the path plan doesn’t change 

while calculating a new heading or sending commands to the low level system. 

A list of MATLAB functions and their descriptions can be found in Appendix A1. 

   

Generate C++ code 
using MATLAB coder. 

Compile and create 
a static library. 

Link with existing car 
control code. 
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3.0 Algorithm Description 
This section of the report will outline the mathematical concepts of the path-planning algorithm, which 

is broken up into the following four sub tasks: base frame generation, candidate manoeuvre generation, 

manoeuvre cost calculation and manoeuvre selection.  

Before run time, the base frame is generated using a parametric cubic spline through a set of given 

waypoints. Then, at each path-planning interval, the position of the vehicle is determined on the base 

frame enabling the extraction of the directional information embedded in the base frame. Next, a set of 

path candidates is generated from the integration of a vehicle model using the base frame and current 

vehicle heading. From each path in this set, a cost is calculated with respect to three cost criteria: base 

frame offset, path consistency and path safety. Finally the path associated with the least cost is selected 

and submitted to Vehicle Control. 

3.1 Base Frame Generation 

As mentioned above the base frame is a parametric cubic spline of waypoints that provides directional 

information for the path-planning algorithm. A parametric cubic spline parameterized by an arbitrary 

parameter is not ideal for path generation and motion control. Consequently, an arc length parameterized 

cubic spline is generated to simplify path generation and enable the algorithm to perform in real time 

[9]. 

To achieve this, a parametric cubic spline is generated from the given waypoints using the minimal 

centripetal parameterization proposed by Lee [14]. The total path length is then calculated using the 

adaptive Gaussian quadrature numerical integration method developed by Guenter and Parent [15]. The 

curve is then broken up into equidistant points with the separation of each point defined as a design 

parameter stipulating how well the arc-length parameterized curve should match the original curve. The 

2-D arc-length parametric cubic spline is defined in Equation 1; with s representing the arc length along 

the base frame and the subscript i denoting the spline segment number [16].  

xb(s) = ax,i (s− si )
3 + bx,i (s− si )

2 + cx,i (s− si )+ dx,i
yb(s) = ay,i (s− si )

3 + by,i (s− si )
2 + cy,i (s− si )+ dy,i

 (1) 

Subsequently, the tangent and curvature of the base frame can simply be calculated using the following 
equations [9]: 

!"!
!" = !!! = cos!! !!!!"!!" = !!! = sin!! (2) 
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!! = ! !!
!!!!!!!!!!!!!

(!!!!!! )
!
!

 (3) 

FIGURE 4 – UNEQUALLY SPACED WAYPOINTS 
 

FIGURE 5 – ARC-LENGTH PARAMETERIZED SPLINE (BASE 
FRAME) 

 
FIGURE 6 - BASE FRAME CURVATURE 

 (4) 

FIGURE 4 above shows 11 unequally spaced waypoints that are used to develop the arc-length 

parameterized cubic spline shown in  Figure 5. Figure 6 is a graph of path curvature against path length 

for the generated base frame in  Figure 5, which is computed using Equation 4 [9]. Candidate paths will 

be generated from this curvature to utilize the directional information the base frame provides. 

  

κb =
x 'b y ''b− x ''b y 'b
(x 'b+ y 'b )

3/2
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3.2 Localization 

Clearly, the main goal of local path planning is to navigate around obstacles and choose the most ideal 

path at that moment. Consequently, the car will deviate from the base frame during operation. The 

algorithm therefore needs to localize the position of the car on the base frame so the directional 

information can be extracted. This is achieved by finding the closest point on the curve using a 

combination of Quadratic Minimization and Newton’s method proposed by Wang et al [17].  

 

FIGURE 7 – LOCALIZATION. RED: CAR POSITION, BLUE: CLOSEST POINT ON THE BASE FRAME 
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3.3 Candidate Manoeuver Generation 

3.3.1 Coordinate System 

A curvilinear coordinate system is set up to enable simple smooth path generation [9]. Figure 8 

illustrates the concept of the coordinate system and it’s geometric relationship to the generated path. The 

distance along the base frame s becomes the horizontal axis and the tangential distance offset from the 

base frame q becomes the vertical axis. Figure 8 also demonstrations a generated path where the 

difference between the final offset qf and the initial offset qi is non-zero and consequently the generated 

path is bent further away from the base frame. 

 
FIGURE 8 – CURVILINEAR COORDINATE SYSTEM 

3.3.2 Manoeuvre Generation 

Ignoring the curvature of the base frame and working within the curvilinear coordinate system, a path is 

defined by the length Δsf along the base frame and its final offset qf from the base frame. A smooth path 

needs to be generated to take the vehicle from its current offset qi to its final offset qf. It is essential that 

the generated paths take into account the current heading of the vehicle (illustrated in Figure 9) 

q 

Base 

frame 

Pat
h 

s 

q 

s 

qi 

qf 
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FIGURE 9 – CURVILINEAR COORDINATE SYSTEM MANOEUVRE. 
THETA: ANGLE DEVIATION FROM BASE FRAME. 

SOURCE [9] 

 

 FIGURE 10 – 17 GENERATED PATHS 

 to ensure realistic path planning. θ represents the angle difference between the current vehicle heading 

and the heading of the localized point on the base frame. It is also desirable to have the end of the path 

align with the heading of the base frame at that point as shown in Figure 9 and Figure 10. These four 

requirements translate to 4 boundary conditions defined by Equations 6 below. Each manoeuvre is 

defined by a cubic polynomial (Equation 5), the coefficients of which can be computed using the 

aforementioned boundary conditions [9][18]. 

! ! = !∆!! + !∆!! + !∆!!+ !! , !! ≤ ! < !!
!! , !! ≤ !  (5) 

! !! = !! !!!!!"!" !! = tan! !!!!!! !! = !! !!!!!"!" !! = 0 (6) 

 

FIGURE 9 – CURVILINEAR COORDINATE SYSTEM MANOEUVRE. 
THETA: ANGLE DEVIATION FROM BASE FRAME. 

SOURCE [9] 

 

 FIGURE 10 – 17 GENERATED PATHS 
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A set of manoeuvres, like that shown in Figure 10, are defined by their final offset qf which are 

generated from a maximum lateral offset defined as a design parameter depending on the track. To 

further illustrate this, the paths generated in Figure 10 have a maximum lateral offset of 8m with a 

granularity of 1m. So the path final offsets (qf) are therefore -8, -7, …, 0, …, 7, 8m from the base frame 

respectively, which covers a 16m wide track. 

Once the coefficients for each manoeuvre are solved, the actual curvature of the manoeuvre combined 

with the base frame curvature can be computed as follows [19]: 

! = !
! !! +

!!!!! !!!
!!! !!! !"

!"
!
!

!!  (7) 

! = !"# 1− !!! !!!!!!!!! = ! !"
!"

!
+ 1− !!! !  (8) 

If the radius of curvature!1/! at any point of a generated manoeuvre is less than 2m, the calculated 

turning radius of the ‘AutoSAE’, the path cannot be driven and is consequently discarded. Finally, the 

manoeuvres that remain are converted back to Cartesian coordinates using the following equations, first 

integrating for theta and subsequently x and y [9]. 

!"
!" = !"!!!! !"!" = ! sin! !!!!!"!" = ! cos! (9) 

3.4 Path Costs 

3.4.1 Path Offset Cost 

The motive for the path-offset cost is to allow the AutoSAE to run on tracks without road edges, which 

is a common scenario for testing. The cost aims to keep the car as close to the base frame as possible and 

is simply calculated as the absolute value of each paths final offset qf. The path offset is a necessary 

building block for the algorithm and hence will always exist for every path-planning instance, in contrast 

to the safety cost, which is entirely zero when no collisions are present. This means that the path offset 

cost will be the final influence on deciding the ideal path if all other cost functions equal zero, and 

consequently ensuring an ideal path can be calculated. The path-offset cost can be expressed as: 

!! ! = !! !  (10) 
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FIGURE 11 – PATH OFFSET COST 

 

FIGURE 12 – GENERATED PATHS 

Figure 11 shows a graph of offset cost for the paths shown in Figure 12. Clearly path 9 is the ideal path 

in this case as it is the closest to the base frame.  
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3.4.2 Path Safety Cost 

The path safety cost is trivially part of the algorithm to ensure the chosen path does not lead to a 

collision. To do this, each path is checked against the map of obstacles. Each path is checked to see if it 

passes through a zone defined by a radius around an objects location. If it does, the path is not a feasible 

path and is therefore marked as having a collision. It is beneficial to invoke risk into neighboring paths 

to further evaluate the safety of paths that may not collide with an obstacle, but run close by. This is 

achieved by using Discrete Gaussian Convolution over a collision matrix [9], which produces a cost 

function like that shown in Figure 13. The path safety cost can be expressed as: 

  (11) 

 
FIGURE 13 - COLLISION MATRIX AND CALUCLATED COST 

FUNCTION 

 

FIGURE 14 – GENERATED PATHS WITH TWO OBSTACLES 

Figure 13 illustrates both the collision matrix and the associated cost function for the set of paths and 

their corresponding collisions with the two obstacles shown in Figure 14. Figure 13 also shows the result 

of the Discrete Gaussian Convolution, that there is risk in paths 5 and 10-13 even though there is no 

direct collision with an obstacle.  

3.4.3 Path Consistency Cost 

The path consistency cost provides a mechanism to choose the next path with some consideration to the 

previously chosen path. This cost favors paths that are most similar to the previously chosen path. The 

motivation for this cost is to provide a way to discern between two similarly costing paths on either side 

of an obstacle, like that shown in Figure 15. This situation poses a risk because choosing a path on the 

other side of an obstacle may result in a collision if the vehicle’s control system is inadequate or the road 

conditions are poor. 

CS[i]= c[k]g[i− k]
k=0

N

∑ g[i]= 1
2πσ

exp −(Δq ⋅ i)2

2σ 2

$

%
&

'

(
)
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FIGURE 15 - POSSIBLE COLLISION DUE TO PATH CHANGE. SOURCE [9] 

Calculating the cost associated with a given path with respect to the previously chosen path can be 

achieved by totaling the distance between the common arc length sections of the previous path and the 

new path. The arc-length common between the two paths provides suitable scaling to the cost. The 

equation for this cost is similar to that given in [9] with the exception that the authors use an integral 

where this method simply uses the sum of discrete path distances q - qprev. Again, i is the path index, N 

corresponds to the number of common arc length points between the two paths, s2 is the arc-length of the 

final common point and s1 the initial common point, as illustrated in Figure 17. 

 (12)  

 
FIGURE 16 – COSISTENCY COST 

 

FIGURE 17 – CONSISTENCY COST PATH SELECTION 
COMPARISON.  

Figure 16 shows the calculated consistency cost for the scenario shown in Figure 17. The effect of path 

consistency is evident in Figure 17 where the selected path is no longer the one that finishes closer to the 

base frame but aligns closer to the previous path.  

CC[i]=
1

s2 − s1
qk,i − qk,prev

k=1

N

∑

 

N
 =

 9
 

With Consistency Cost Without Consistency Cost 

s2 

s1 
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3.5 Path Selection 

The ideal path is calculated using a linear combination of weighted cost functions as shown in Equation 

13 below. Each of the three cost functions for path offset, path safety and path consistency are scaled 

with a weighting w and summed for each path index i. 

!!"!#$ ! = !!!!! ! + !!!! ! + !!!! !    (13) 

These weightings are important as they allow the operator to change the way the car drives depending 

on the requirements of certain scenarios. For example, using a relatively high safety weighting will 

choose a path further from obstacles but with a greater offset from the base frame. 

The path associated with the lowest total cost is chosen as the ideal path. The Cartesian coordinates of 

that path are finally submitted to the vehicle control code discussed in Section 2.0 as waypoints. 

3.5.1 Longest Collision Free Path 

In the exceptional case where there is no collision free path available, like that shown in Figure 18, the 

path with the longest collision free length is chosen and submitted to vehicle control under the 

assumption that a collision free path will subsequently be discovered, like that shown in Figure 19. This 

action is sufficient enough for all scenarios intended for this implementation [9].  

 
FIGURE 18 – NO COLLISION FREE PATH 

 

FIGURE 19 - COLLISION FREE PATH AVAILABLE 
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4.0 Testing 

4.1 Simulation 

Due to various factors outside of this projects control, testing the implementations functionality in the 

existing car code was initially carried out in a suitable simulator. The simulator used was Open 

Dynamics Engine (ODE), an open source, high performance rigid body simulator for Linux [20]. The 

world and vehicle used for simulation is shown in Figure 20 below.  

 

FIGURE 20 - SIMULATOR WORLD AND VEHICLE 

4.1.1 Setup 

Measurements of wheel distances were taken from the AutoSAE to best represent the vehicle and its 

turning capabilities in the simulator.  

Longitudinal Wheel Distance: 1.8m 

Lateral Wheel Distance: 1.4m  

From last years drive by wire conversion project [13], the steering command – steering angle 

relationship was obtained to map between the control software and the simulator. The relationship can 

be expressed as: 

! = 0.027!! 

Where ! is the steering angle in radians and ! is the steering command from the control software. Using 

this relationship, the simulator can set the joint angle on the two font wheels providing similar behavior 

to the AutoSAE. 
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The existing car control code uses a GPS library for position, speed and heading information under 

normal operation [13]. The simulator provides body position and velocity in Cartesian (x, y and z) 

coordinates and body rotation with a 3x3 rotation matrix [21]. Consequently, with the exception of 

position, some conversion is required to bypass the GPS library and ensure the correct parameters 

(heading and speed) are passed to the car control code. 

4.1.1.1 SPEED 
The simulator provides the body velocity in x,y and z components. It is then trivial to calculate the 

vehicle speed by taking the magnitude of this vector. 

!"##$ = ! !!! + !!! + !!! 

4.1.1.2 HEADING 
A yaw angle is analogous to a heading and can be calculated from the body rotation matrix obtained 

from the simulator.  

Given a rotation matrix returned from the simulator: 

!!! !!" !!"
!!" !!! !!"
!!" !!" !!!

 

yaw ! can be calculated as follows [22]: 

! = − sin!!(!!")!

! = atan2 !!"
cos! ,

!!!
cos! !3602!  

The atan2 function takes two arguments to obtain an angle in the correct quadrant between -!! and ! 

radians. As mentioned above, the existing car control code takes in a compass heading, which values 

from 0 to 360 degrees. Furthermore, in the simulator, a heading of 0 degrees aligns with the positive x-

axis, while in the car code, 0 degrees aligns with positive y-axis. Hence an angle remap is required, 

which can be expressed as: 

ℎ!"#$%& = ! − 90 , −180 ≤ ! ≤ !90
360− (! − 90), !"ℎ!"#$%!  
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4.1.1.3 PROCESS COMMUNICATION 
The calculated heading, speed and position can now be injected into the car control code, bypassing the 

GPS library. 

The simulator is run as its own executable, separate from the car software. This was a choice made to 

keep the length of the car control code to a minimum and to ensure that the code remained manageable 

for others not needing the simulator. A disadvantage of this approach is that a transfer of bidirectional 

information must occur between the two processes. This pass of information is achieved using two Unix 

named pipes, each of which is a unidirectional FIFO buffer. Once each buffer is created, commands and 

feedback flow between the two programs as illustrated in Figure 21 below. 

 

FIGURE 21 - COMMAND AND FEEDBACK FLOW 

Position, heading and speed are sent from the simulator to the car control software with a period of 

100ms in the following format: 

P,<px>,<py>,<pz> 

B,<heading> 

S,<speed> 

A frequency of 100ms replicates the rate of information the fusion class provided in the existing car 

code [12]. The simulator is then providing a similar feedback environment found on the AutoSAE to the 

control code. 

Similarly, a steering command is sent from the control software to the simulator every 50ms in the 

following format: 

S,<command> 

Position, Heading 
and Speed. 

Steering Command 
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The AutoSAE can be run in manual acceleration mode to alleviate control issues presented by the slow 

GPS feedback and unresponsive drive system [12]. This manual mode is what is commonly used for 

practical testing so a design choice was made to exclude speed control in the simulator and revert to 

manual control. 

4.1.2 Test Map 

This test aims to verify the functionality of the implemented algorithm in the car control code within the 

simulation environment. The car in the simulator must travel around the defined waypoints and avoid 

obstacles along the way. 

 
FIGURE 22 - SIMULATION TEST MAP 

 

FIGURE 23 – OBSTACLES IN THE SIMLATOR 

Figure 22 shows the map used in the simulator for this test. The black dots represent the defined 

waypoints, the black line is the generated base frame and the red dots are the two obstacles, shown in 

Figure 23. The locations of these two obstacles are known and hence were hard coded into the control 

software. Figure 22 also shows that one of the waypoints sits inside the footprint of the obstacle. 

The test will firstly be run in the simulator at a manual constant speed, using the primitive path-planning 

algorithm implemented by Drage [12], and then using the advanced path-planning algorithm 

implemented in this project to illustrate the improvements in terms of obstacle avoidance. 
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4.1.3 Results 

4.1.3.1 PRIMATIVE PATH PLANNING 

 
FIGURE 24 – PRIMATIVE PATH PLANNING MAP 

 

FIGURE 25 – PRIMATIVE PATH PLANNING COLLISION 

In this simulation, the advanced path planning implemented in this project was disabled and the control 

code relied on the previously implemented waypoint-to-waypoint algorithm.  

As a result, the vehicle collided with one of the obstacles, evident in Figure 25, and hence did not make 

it all the way to the final waypoint. Figure 24 shows the traveled path in blue, which clearly terminates 

at the first obstacle. This behavior is obviously undesirable and so this simulation provides a base point 

for improvement. 
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4.1.3.2 ADVANCED PATH PLANNING 

 
FIGURE 26 – ADVANCED PATH PLANNING MAP 

 

FIGURE 27 – ADVANCED PATH PLANNING OBSTACLE 
AVOIDANCE 

In this simulation, the advanced path planning was re-enabled and the car was able to avoid the two 

obstacles as shown in Figure 27. Figure 26 shows a familiar map, with the traveled path again shown in 

blue. Evidently, the vehicle in the simulator using the implemented advanced path planning was able to 

travel the whole path. 

A path-planning instance occurring in this simulation is shown in Figure 28 below. The chosen path is 

highlighted in green while the other blue paths are the other path candidates. Figures 29-31 show the 

various costs associated with this particular path plan, while Figure 32 shows a graph of the total cost 

which is the linear combination of the three cost functions as described in Section 3.5. The weightings 

used in this particular simulation were: 5.0, 0.5, and 0.1 for safety, offset and consistency costs 

respectively. Figure 32 also clearly shows path index 7 as the least cost path. 

 

FIGURE 28 – NAVIGATING TWO OBSTACLES 
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FIGURE 29 – GRAPH OF THE OFFSET COST 

 

FIGURE 30 – BINARY GRAPH OF THE COLLISION CHECK AND 
A GRAPH OF THE SAFETY COST 

 

FIGURE 31 – GRAPH OF THE CONSISTENCY COST 

 

FIGURE 32 – GRAPH OF THE TOTAL COST 

4.1.4 Discussion of Results 

Clearly, the advanced path planning provides a significant safety improvement over the primitive 

implementation by successfully navigating around the two obstacles on the map. By comparing Figure 

24 and Figure 26, it is clear that the advanced navigational algorithm does not stick to the base frame 

quite as accurately as the primitive algorithm. This is not a significant issue as the base frame is only 

there to provide directional information. The deviation is most likely due to the way in which the control 

software calculates it’s bearing and steering command. Although run in a simulation, the car control 

code is running as it would on the AutoSAE and these results therefore prove correct functionality and 

implementation of the Advanced Navigational Algorithm into the existing car control code. The outcome 

of this test suggests that the implemented algorithm should work successfully on the AutoSAE, which is 

discussed in the following section. 
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4.2 Practical Testing 

4.2.1 Test Map 

Although the simulation proves the success of the algorithm implementation into the car code of the 

AutoSAE, it does not give any indication of its performance when used on the actual car. Testing was 

carried out within the limited space available at the UWA Sport Science oval next to the Business 

School. The map of waypoints and the generated base frame are shown in Figure 33. 

 

FIGURE 33 - PRACTICAL TESTING WAYPOINTS 

4.2.2 Setup 

Due to the small testing area and consequently tight set of waypoints, reduced manoeuvre parameters 

were set to ensure the car adequately stuck to the base frame. The manoeuvre parameters were set as 

follows: 

Manoeuvre Length: 10m  Max Lateral Offset: 3m  Manoeuvre Granularity: 1m  

These parameters produce a reduced set of 6 possible paths, like that shown in Figure 34, with reduced 

lengths of 10m compared to 30m which is what has been seen previously.  

 

FIGURE 34 - REDUCED MANOEUVRE MAP 
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Unfortunately, the implementation of an accurate mapping a sensing system as described in Section 2.0, 

which included an accurate differential GPS system, and a map of detected upcoming obstacles was not 

fully implemented. This GPS system, which was planned for the AutoSAE in a parallel project, was 

found to be highly unreliable and consequently not fully implemented. Due to this unreliability, a change 

of scope occurred and as a result the obstacle detection was also never implemented.  

This test was consequently run with the older, much less accurate GPS system without obstacle 

detection. The aim of this test is therefore to assess the implementations performance when inaccuracies 

of the GPS and the resulting effect on the car’s steering control loop are taken into consideration.  

Similar to the tests run in the simulator, the cars speed was manually controlled. In this test, a safety 

driver operating the throttle provided that speed control. 

4.2.3 Results 

The position results of three test runs are shown in Figure 35 where the black dots represent the defined 

waypoints and the colored lines represent the path travelled.  

 

FIGURE 35 – POSITION RESULTS OF THREE TEST RUNS 

4.2.4 Discussion of Results 

Figure 35 shows the path traveled of three test runs on the same track. The inaccuracies of the path 

traveled compared to the base frame are unsurprising considering the results obtained by Drage [12] 

using the same control and GPS system. Despite these inaccuracies, this test proves that the 

implemented algorithm was successful in generating paths as the vehicle progressed around the track.   



Martin French 20743871 Page 27 

4.3 Recommendations for Future Work 

4.3.1 Path Planning 

This project provides a platform for further research in advanced path planning for the AutoSAE and 

autonomous racecars in general. Improvements and additional functionality can be implemented and 

tested on the foundations of this implementation by simply generating new cost functions to alter the 

path selection. 

One such cost function is to look ahead on the base frame at the upcoming curvature to characterize 

where the vehicle should position itself to best approach a particular corner. This type of cost function 

will bring path planning for the AutoSAE into the racing domain where the vehicle is designed to 

operate. The goal would be to optimize the time the vehicle takes to traverse that corner or even the 

whole track. Before this cost function is implemented, the detection and characterization of the road 

edge must first be implemented.  

The advanced path planning functionality could be extended to avoid not only static obstacles but also 

dynamic obstacles that might represent other cars on a racetrack.  

A number of system limitations were discovered when testing the implemented algorithm in both the 

simulator and on the AutoSAE, these issues are the basis for the following recommendations. 

Firstly, the AutoSAE experienced an issue in practical testing when traveling at slow speeds. The vehicle 

wouldn’t follow the chosen path for long enough to complete a significant potion of the manoeuvre. This 

caused an issue because each manoeuvre has a section of path at the start where there is only a small 

change in offset. Reducing the manoeuvre length alleviated this issue, but is only suitable for constant 

speed testing, as the car would traverse the immediately planned path before a new plan was generated. 

A better solution would be to implement a speed dependent manoeuvre length, where the lengths of 

manoeuvres at a given path-planning instance change depending on the speed of the vehicle. This will 

ensure the vehicle can execute short manoeuvres, where the change in offset is fast (Figure 34) at slow 

speeds, while remaining stable with long manoeuvres, where the change in offset is slow (Figure 28) at 

high speeds. 

A second issue arises when the vehicle control does not take the car along the base frame accurately 

enough resulting in missed waypoints. This becomes an issue because the vehicle control will want to 

turn the car around to visit this missed waypoint while the advanced path planning algorithm is only able 

take the vehicle one way along the base frame. A proposed solution, should the desired operation be to 
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visit this missed waypoint, is to temporarily disable the advanced path planning, fall back on the 

primitive waypoint to waypoint method, and then finally re-enable advanced path planning to continue 

along the base frame once the waypoint has been hit. 

4.3.2 AutoSAE 

Throughout the project, difficulties with the hardware and safety systems of the AutoSAE were 

experienced at every step of the way. These difficulties motivate the following recommendations. 

An accurate positioning system, as previously mentioned would provide a significant increase in the 

accuracy of the path-planning algorithm. Similarly, the vehicle control loops for steering and speed 

require significant tuning and debugging to ensure the vehicle is taken along the planned path with an 

increased level of accuracy. 

Reliable obstacle detection using the LIDAR would enable real world testing of the advanced path-

planning algorithm with obstacles.  

One significant safety and reliability issue was the physical wiring to various sensors and the quality of 

core system hardware in the car. Although not in the scope of this project, physical rebuilds of two core 

system components were undertaken to significantly increase the reliability, safety and maintainability 

of the vehicle. It is recommended that implemented hardware in the future is built and installed to a 

satisfactory level of robustness and quality. 
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5.0 Conclusion 
This project has focused on the implementation of local path planning for the UWA REV Autonomous 

SAE Electric Race Car (AutoSAE), amongst existing code in a practical way. The implementation and 

functionality of a suitable simulator, providing a quick way to test and improve implemented algorithms 

has additionally been presented. Using an algorithm tested and used by both Hanyang University in 

Korea and Harvard University in the US, this project was successfully able to implement an advanced 

path planning system, which was broken down into four sub tasks: base frame generation, candidate 

manoeuvre generation, manoeuvre cost calculation and manoeuvre selection.  

This system was tested in both the simulator and on the AutoSAE. The results presented in section 4.1.3 

demonstrate the implementations correct functionality in the both the simulator and on the AutoSAE 

itself. Limitations on the accuracy and performance of the algorithm were discovered during testing on 

the AutoSAE. These limitations were attributed to the inaccuracies of the positioning systems and 

vehicle control loops. It is therefore recommended that each of these systems receive some attention and 

tuning which will improve the performance of the implemented path-planning algorithm. 

Scope for further work includes: the implementation of a speed dependent manoeuvre length, reducing 

the need for constant speed testing; implementing a new cost function, enabling the vehicle to position 

itself to best approach a particular corner, thus bringing the path planning algorithm into the racing 

domain and finally, extending the advanced path planning functionality to avoid not only static obstacles 

but also dynamic obstacles that might represent other cars on a racetrack.  

Ultimately, this report has demonstrated that this project has successfully implemented an advanced path 

planning solution and provided a platform for further research in advanced path planning for the 

AutoSAE and the University of Western Australia. 
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Appendix 

5.1 Advanced Path Planning Function API 

MATLAB Function 

Name 

Inputs Outputs Description 

arclengthcurve 
 

points 
Matrix of waypoints. 

granularity 

Granularity of base 
frame points. 

epsilon 

Acceptable numerical 
error. 

scoefx 

1x4 matrix 

Coefficients of 

arc length cubic 
spline x. 

scoefy 

1x4 matrix 

Coefficients of 

arc length cubic 
spline y. 

si 

Break points in 

the spline. 

Generates an arc-length 

parameterized cubic 

spline (base frame) 

based on given 

waypoints.  

builddetailedbf scoefx 

scoefy 

si 

granularity 

Granularity of the 

detailed base frame. 

sx 
X points. 

sy 
Y Points. 

ss 

Break points in 

the spline. 

Generates a detailed 

(higher sampled) base 

frame for plotting and 

path generation. 

parevalspline coefs 

The 4x1 coefficient 

matrix of the cubic 

spline. 

breaks 

Break points in the 

spline. 

t 

The point at which 

the cubic spline is 

result 

The result of the 

cubic spline 
expression. 

curvn 

The curve number 

of the spline 

where t resides. 

Evaluate the derivative 

or value of a point 

along a cubic spline. 
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to be evaluated. 

d 

Requested derivative 
[0,1,2]. 

buildbfcurvature dxds 

First derivative of x 

with respect to arc 

length. 

dyds 

First derivative of y 

with respect to arc 

length. 

dx2ds 

Second derivative of 

x with respect to arc 

length. 

dy2ds 

Second derivative of 

y with respect to arc 

length. 

k 

The base frame 
curvature. 

Calculate the base 

frame curvature at each 

point of s. 

oblocalize scoefx 

scoefy 

si 

ob 

A 3x? matrix 

describing the 

location and radius 

of ? obstacles. 

sguess 

An initial guess of 

spline segment to 

localize the 

obstacle. 

epsilon 

arcob 

2x? matrix 

detailing the 

position in arc 

length and the 

distance from the 

base frame. 

Localize a set of 

obstacles onto the base 

frame with the 

curvilinear coordinate 

system. 
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localize coefx 

coefy 

breaks 

x0 

The x value of the 

point to localize. 

y0 

The y value of the 

point to localize. 

sguess 

epsilon 

value 

Arc length along 

the base frame. 

distance 

Distance from the 

base frame. 

loccurvn 

The spline curve 

number the point 

was localized on. 

count 

The number of 

iterations before 

a solution was 

found. 

Localize a single point 

onto the base frame 

with the curvilinear 

coordinate system. 

evalheading scp 

The arc length of the 

base frame to 

calculate heading at. 

ss 

dxds 

dyds 

sindex 

The spline curve 

number the arc 

length was found 

on. 

paththeta 

The heading at 

that arc-length 

on the base 

frame. 

Find the heading of a 

point on the base frame 

represented by its arc-

length. 

buildmanouvers scp 

The arc length of the 

base frame to build 

manoeuvres from. 

cpdistance 

Distance from the 

base frame. 

px 

X value of point to 

build manoeuvres 

mxi 

Matrix of i 

manoeuvres x 

points. 

myi 

Matrix of i 

manoeuvres y 
points. 

pathki 

Matrix of i 

manoeuvres path 

Generate a set of i 

manoeuvres from a 

point. 
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from. 

py 

Y value of point to 

build manoeuvres 
from. 

maxlatoffset 

Maximum lateral 

offset. 

mangran 

Manoeuvre 

granularity. 

(Distance between 
manoeuvres) 

manlength 
Manoeuvre Length. 

mincurverad 

Minimum curvature 
radius to allow. 

thetadiff 

Difference in vehicle 

heading and base 
frame heading. 

ss 

sindex 

kk 

The base frame 
curvature. 

paththeta 
Base frame heading. 

curvature. 

pathqi 

Matrix of i 

manoeuvres path 
offsets. 

dthetai 

Matrix of i 

manoeuvres 

derivative of 

theta. 

mans 

The arc lengths 

of the set of 

manoeuvres. 

checkpathcollision arcob 

pathqi 

s 

The arc lengths of 

pathcollision 

The collision 

matrix. 

Generate a collision 

matrix for the set of 

given manoeuvres. 
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the set of 

manoeuvres. 

equatesafetycost mangran 

pathcollision 

safetycost 

The safety cost 

for each 

manoeuvre i. 

Calculate the safety 

cost of each given 

manoeuvre. 

equateoffsetcost pathqi pathoffsetcost 

The offset cost 

for each 

manoeuvre i. 

Calculate the offset 

cost of each given 

manoeuvre. 

equateconscost previouspathq 

The previous path 

planning instances 

path offset and arc-
length matrix. 

pathqi 

mans 

pathconscost 

The consistency 

cost for each 

manoeuvre i. 

Calculate the 

consistency cost of 

each given manoeuvre. 

mincost Ks 
Safety weighting. 

safetycost 

Kpo 
Path offset weighting. 

pathoffsetcost 

Kc 

Path consistency 

weighting. 

conscost 

totalcosts 

The total cost of 

each path i. 

bestpath 

The path index 

associated with 

the least cost. 

Calculate the total cost 

of each path i and the 

best path index after 

weighting. 

genprevpathq bestpath 

pathqi 

mans 

previouspathq Store the best paths 

offset and arc-length 

into a matrix for the 

next path-planning 

instance. 


