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Abstract

Multirotors are here to stay, and may soon be expected to interact in an human environ-

ment. Commodity quadcopters are advertising capabilities to act as chase-cams and turn-key

mapping solutions, but none of the current generation commodity UAV chase-cams o↵er

computer vision driven or even assisted flight modes to improve tracking, image framing or

obstacle avoidance. Such vision assisted routines would also apply to autonomous or semi-

autonomous inspection tasks for fixtures in remote or hazardous environments.

In this project, we re-designed and re-built the hexacopter platform inherited from previous

year groups and implemented turn-key waypoint navigation and failsafe methods using the

Ardupilot software stack. Using this platform, we developed and tested computer-vision

driven object tracking and navigation routines using limited computational resources. The

aim being to integrate vision assisted behaviours into future low-cost, lightweight UAVs.
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1 Introduction

Recent developments in power and control electronics has allowed small, consumer level Un-

manned Aerial Vehicles (UAVs) to lift enough processing capacity to navigate at least partly

by computer vision.

The University of Western Australia (UWA) hexacopter development programme commenced

in 2013. It provides a UAV platform with which students can develop and test appropriate

technologies in a structured format. The hexacopter was initially built by the 2013 project

group.

The 2015 programme team-members were Jeremy Tan [1], Richard Allen [2] Manish Mohanty

[3] and Brett Downing [4]. The team agreed to design and execute individual projects as

interdependent modules within the overall programme.

Tan [1] developed a library of feature detection and extraction routines and assessed the

optimisation potential for each on the single board computer of our platform.

Allen [2] investigated means of implementing collision avoidance on a UAV, developing a

robust algorithm to find the shortest detour around an exclusion zone, and experimenting

with low-confidence occupancy grids.

Mohanty [3] worked on Capture and Tagging of images to suit proprietary online 3D recon-

struction algorithms, and the generation of paths with which to scan objects and fields.

I (Brett Downing) [4] developed the computer vision driven chase-cam behaviour described

in this report, using the optimised Computer Vision routines under active development by

Tan [1].

All Motion Control routines in the code base were designed keeping in mind that they must

eventually be integrated with the collision avoidance and geo-fencing routines developed by

Allen [2]. This included the mapping paths used by Mohanty [3].

The UAV inherited from the 2014 project team was tested and determined to be inadequate as

a test-bed for the 2015 project. We re-designed and re-built the UAV, thereby greatly improv-

ing its overall capabilities and making it fit-for-purpose. The re-build involved replacement

of both the flight controller and the server, and optimised the sensor package.

We brought the code-base up to a level where it is feasible to implement rudimentary Si-

multaneous Localisation and Mapping (SLAM) processes. We also demonstrated that low-

power single board computers can perform live computer vision processes and elements of
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SLAM processes with uncertainty based reasoning to track and follow moving objects. Our

Computer-Vision-Only routines are by no means as robust as radio links and di↵erential

Global Positioning System (GPS), but the use of Computer Vision allows aesthetic framing

of more than a wrist-worn GPS beacon. Our object tracker was demonstrated with a variety

of navigation loops, some of which were not GPS dependent.

In this report, the chase-cam project is documented in two parts: re-purposing of the UAV

test-platform; and development and testing of Object Tracker autonomous navigational sys-

tems. Methodology, results and discussion are covered separately for each of the Platform

and Object Tracker sections.

2 Background

2.1 Motivation

A number of commercial micro UAVs are beginning to advertise the ability to act as an

autonomous chase-cam [5] [6]. Almost all of these systems rely on a tracking device on the

user, and many navigate entirely by GPS. While the performance of GPS is improving, the

performance of a chase-cam will be limited to the update rate and fix accuracy of the beacon

and drone GPS modules. It also requires a GPS lock and radio link to be achieved and

maintained in both devices for the system to function at all.

The power distribution and plant monitoring sectors have recently been taking on small

fleets of drones to perform routine inspection of remote, hazardous or otherwise di�cult

locations [7]. Many of the tasks are reasonably repetitive and well defined enough to fully

automate, but cannot be navigated by GPS alone due to the poor repeatability resulting

from GPS signal drift. During this project, we were approached by a mining safety startup

interested in using UAVs for routine site inspections.

The UAVs we are targeting operate with small payloads, must react quickly to changes in

the environment, and frequently feature camera systems. Despite falling costs of hobby and

toy-grade multirotor systems, collision avoidance, object tracking, mapping and inspection

are not well catered for in the current UAV market. Very few sensors are of the appropriate

scale, or mass for low-cost UAVs. Ground based vehicles have an advantage in that a 1D

sensor need only be swept in one axis to search for obstacles, whereas a UAV must collect

data filling a volume ahead of it. About the only form of sensor capable of doing this is a

3D laser scanner which is an high-precision, high-cost, high-mass device. A simple camera

collects data on at least two axes at high enough speeds to navigate a multirotor, but the
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data is often di�cult or computationally expensive to interpret.

With environmental data collected by an e�cient computer-vision routine, the current gen-

eration of multirotor devices would be able to interact with an human environment.

Computer vision assisted control routines would permit common low cost UAVs to better

frame extreme sport chase-cam film reels, automatically avoid obstacles, and stabilise GPS

variances in remotely operated inspection tasks.

In this study we investigate the usability of computer vision alone to track and follow a moving

target. It is hoped that this work can be used to improve the performance of camera tracking

routines in autonomous chase-cam and cinematographic applications, and partially automate

remote inspection applications.

Much of the technology related to multi-copters is applicable to most other forms of UAV. The

vast array of tasks micro UAVs have already been applied to suggests our work may find use in:

Agriculture; mapping; targeted crop dusting; cinematography; extreme-sport photography;

data collection; remote observation and inspection; and hazard and environmental monitoring.

2.2 Related Work

2.2.1 Optical Search

Search and Rescue lend themselves to automation due to the di�culty in mobilising teams in

remote, harsh or dangerous conditions. A UAV can be deployed quickly and commence the

search operation before boots can be placed on the ground. The UAV Outback Challenge [8]

is a regular competition to perform various search and rescue missions. The performance

demands are deliberately set very high, and the competition frequently goes uncompleted.

In 2012 CanberraUAV [9], a UAV development team from Canberra completed the search

aspect of the competition. After trying a number of image recognition algorithms, the search

algorithm that they flew with simply looked for the blue of the jeans of Outback Joe [10].

This was su�cient to locate the target in a 4x6 km area. This goes to show that even a

minimally complex routine can be e↵ectively applied in appropriate conditions.

2.2.2 Terrain Estimation via Optical Flow Methods

Adding sensors to allow the copter to understand its environment is a surprisingly di�cult

task. Conventional contact methods operate at ranges far too close for UAVs. Ultrasonics are

bu↵eted by down-wash and most depth sensors are either too heavy or su↵er under intense
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light. In terms of simplicity of algorithms, biomimicry has turned up some surprising results.

In 2004, a French research group applied a number of optical flow algorithms inspired by

insect vision to the navigation of a small helicopter [11]. The computer vision routines were

used to inform the navigation loops, following the middle of urban tunnels and reducing

speed in dense clutter, without necessarily computing the distance to the obstacles. These

routines were relatively expensive in terms of computational power, but extremely simple and

parallelizeable.

2.2.3 Position Estimation using Stereoscopic Methods

Any measurement will have an associated uncertainty. Extracting the most information out

of a collection of measurements rarely requires taking the most accurate measurements. It is

possible to estimate the position of an object or feature using multiple images separated in

either space or time, but making e↵ective use of the information requires an understanding of

how the uncertainties behave. Error Modelling in Stereo Navigation [12] utilizes a number of

routines to estimate the position of a vehicle by tracking visible land-marks in a stereoscopic

system; and notes the interaction between the geometry of the uncertainties, and the stability

of the result.

2.2.4 Altitude Estimation and Odometry by Optical Flow

Elementary methods are still interesting for the sake of biomimicry. A twenty-element photo-

array was demonstrated to provide su�cient resolution to control the altitude of an air-

craft [13], coupling the altitude to the velocity. Dedicated, low-resolution optical flow sensors

have become exceedingly cheap since the market-saturation of the optical mouse; and many

commodity flight computers already include doppler information from GPS modules. Combin-

ing these elements allows a UAV to estimate the distance to the terrain [14]. These commodity

sensors typically do not include circuitry for computing rotation, but given the cost of the

sensors, that limitation can be overcome by combining two sensors [15]. A number of UAV

systems such as ArduPilot already include support for these devices in their code-base [16].

This support also covers pitch and roll compensation and position stabilisation [16] [17].
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2.3 Project History

2.3.1 2013

The 2013 team of O’Connor [18] and Venables [19] established the UAV research programme

with the purchase of a DJI “Flamewheel” F550 Hexacopter with a NAZA lite flight controller.

This copter was fitted and tested, and finally converted to an autonomous platform with the

addition of a Raspberry Pi model B+ single-board computer and a circuit to switch the

control channels from the radio receiver to the Raspberry Pi General Purpose Input Ouput

(GPIO) outputs. The NAZA lite at this time did not feature telemetry outputs or waypoint

inputs, but it was able to loiter in a sti↵ wind using a GPS fix. This team gathered location

information for the Raspberry Pi using a QStar-Z GPS unit, and bearing information using

an X-Sens Inertial Measurement Unit (IMU). The weight of the sensor duplication did not

exceed the maximum payload capacity of the platform, but it did compromise flight-time.

Under direct control from the Raspberry Pi, the drone was able to execute basic waypoint

navigation.

2.3.2 2014

The 2014 team of Baxter [20], Mazur [21] and Targhagh [22] added an internet accessible

web User Interface (UI) to control the various autonomous features of the original platform,

displaying the flight-path of the copter and a live feed from the camera. The navigation

routines were improved and extended to permit operation in the absence of reliable heading

information, and the computer vision routines were extended.

3 Platform

3.1 Introduction

This project centred around an hexacopter based on the DJI F550 “Flamewheel” frame. This

frame allows for a generous lift capacity, and plenty of space to fasten flight assist hardware,

and represents a low cost platform so that our work can be reproduced by a su�ciently

motivated hobbyist.

In this work, the flight tasks are based around two physically separate processors: the flight

controller, and the server. This allows a stable, known-safe build to be maintained on the

flight controller, while experimental code runs on the server. If the server fails for any reason,
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the flight controller will maintain flight and engage various fail-safe behaviours without having

to rely on the experimental code for flight critical functions.

The platform inherited from the previous years’ team was tested and found to be inadequate

for the planned development of object tracking systems. The platform was re-designed and

re-built according to a di↵erent set of constraints. This involved:

• installing a new flight controller;

• minimising sensor duplication;

• inclusion of a dedicated telemetry channel;

• using an open-source simulation environment;

• refreshing the Web UI and HUD; and

• a new interface between the flight controller and the server.

3.2 Methodology

At initial handover, the flight controller was a DJI NAZA lite, and the server was a Rasp-

berry Pi model B+. These two systems were linked by Radio Control (RC) emulation using

ServoBlaster [23] to generate the Pulse Width Modulation (PWM) signals.

The NAZA lite and RC emulation for autonomous flight did not fit together well. The NAZA

lite is designed as an entry level free-flight controller and does not expose any interfaces for

telemetry or data acquisition. As a result, the previous teams had to duplicate the GPS and

IMU sensors to make such information available to the server’s algorithms.

We attempted to address the issues on the existing platform individually, but quickly realised

that the improvements could only go so far with the NAZA lite, and even then would involve

significant purchases of DJI accessories.

We undertook a full critical review of every aspect of the copter, and prepared a report

proposing changes we thought would be su�cient. The proposal document is included in

Appendix B.

Discussed here are all of the significant changes made to the platform.
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3.3 Results and Dicussion

3.4 Server Upgrade

The server was upgraded to a Raspberry Pi Version 2 shortly after its release in February

2015. The Version 2 is a multi-core processor with more memory, but we still regard as

a computationally starved platform. At the time of writing, the Raspberry Pi V2 has less

computational power than a smart-phone in the AU$200 price bracket.

3.4.1 New Flight Controller

We swapped the NAZA flight controller for a 3DR Pixhawk [24] running the Ardupilot 3.2

firmware. This gave us a feature-rich platform with a clear upgrade path to newer versions

of Ardupilot, the option to use alternative firmwares like PX4 and Paparazzi, and the option

for future students to recompile the firmware with new high-performance features.

3.4.2 Telemetry

The telemetry link supports the MAVlink [25] protocol, which defines various commands

from interrogating the status to setting waypoints, or even setting the instantaneous velocity

vector. This enabled us keep the high-speed components of the control loops firmly inside

the flight controller, and direct it with the lower speed vision tasks. This also gave us linear

control inputs in International System of Units (SI) units.

3.4.3 Sensor Duplication

In our initial e↵orts, we broke into the data channel between the NAZA flight controller and

its GPS module in order to remove the redundant QStar-Z GPS module and acquire some

telemetry data from the NAZA.

The data channel for the GPS had been deliberately obfuscated by DJI, making it quite clear

that this was beyond the design intent of the flight controller.

A community RC group had reverse-engineered this link, and we ported their code to the

Raspberry Pi, successfully decoded the data stream and integrated the NAZA GPS and

compass data into our control loops. Unfortunately, the raw GPS and compass data was not

particularly useful without the accelerometer and gyro data generated on the flight controller
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unit itself.

After changing to the Pixhawk [24], the coordinates, body angles, velocity, and battery state

were all available over the MAVlink [25] telemetry interface. The new configuration allowed

us to fully eliminate duplicated hardware, an opportunity to re-build the wiring harness,

significantly reduce the weight of the craft and extend the flight time to almost twenty minutes

on the original batteries and motors.

Near the end of the project, we fitted a second GPS module to the flight controller to combat

the poor multipath environment of the UWA campus. With the sensor fusion and Extended

Kalman Filter (EKF) in the Ardupilot firmware, we were able to fly on GPS alone in some

of the worst urban canyons on the campus.

3.5 Waypoints

Waypoints were initially handled on the server despite the NAZA featuring GPS assisted

loiter behaviour, and a reliable Return to Launch (RTL) failsafe feature. Generally speaking,

control loops should be as short as possible, and routing them through an entirely separate

processor is clearly suboptimal.

Waypoints are a well-solved problem and come as standard with every open-source flight

controller on the market.

3.5.1 Control Handover

Initially, control was handed from pilot to server using relays on the RC inputs of the flight

controller. The ongoing development of control loops meant that the RC switch had never

been configured to surrender the throttle channel, and the server was left without altitude

control; this meant that the server had continuous perturbations from the user who remained

responsible for maintaining a fixed altitude by sight alone.

Using the Pixhawk [24] in guided mode, the flight controller is responsible for maintaining

and changing altitude based on requests from the server over the primary telemetry channel.

The flight controller is toggled between guided and manual modes by a switch on the pilot’s

transmitter. If the UAV ever flies out of range of the transmitter, the flight controller drops

into the RTL fail-safe mode. At the request of our supervisors, this was demonstrated almost

every week.
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The changes give the platform complete autonomy, and still permit operator intervention at

any stage.

3.5.2 Simulation Environment

By using a fully-featured open-source flight controller, we also had access to the community

developed simulation environment. The Ardupilot simulator is designed to simulate the be-

haviour of the flight controller against various hardware configurations and flight styles. As

such, it incorporates a comprehensive inertial model and injects noise into the various sensors.

We were able to compile our tests for our development machines, couple them to the simulator

over a local TCP socket, and test them against the same version of the flight control firmware

as we had uploaded to the physical copter.

3.5.3 Web User Interface

The server hosts a webpage used to configure and activate the autonomous features. We saw

fit to refresh the Web UI and Heads Up Display (HUD), implementing a more appealing and

maintainable template system, and adding more information to the display. The Web UI now

works on almost all devices.

More detail on the Web UI is available in the 2015 thesis of Tan [1].

3.5.4 Wiring Harness

The RC switch was a source of considerable confusion, and wiring faults had caused power

supply contention issues leading to regular server failures. After installing the Pixhawk [24],

the wiring harness was completely reworked, and every major component was placed on

separate regulators.

Attention was paid to the mass of the wiring harness; almost 200g of cables and adaptors

came out of the copter during the upgrade.

The only custom components remaining on the copter are the power supplies, interlink cables,

and a GPIO breakout board for the Raspberry pi. We are very confident that this platform

can be fully replicated by any motivated hobbyist.
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4 Object Tracker

4.1 Introduction

Tracking objects requires a long chain of systems to work in unison. From tracking features

in single images, all the way to reconstructing and navigating the environment without losing

sight of the object. By focussing on extreme sport cinematography as the end goal of the

project, the bar was set deliberately high. Tracking high-speed, high-acceleration objects

requires a large control bandwidth and accurate compensation for perturbations injected by

the flight hardware.

At handover, the platform contained a chase-cam algorithm that used a Proportional, Integral,

Derivative (PID) loop between the position of the object in the image frame and the RC inputs

to the flight computer. Venables [19] notes that the system does not deal well with changes

in altitude, or perturbations in pitch and roll. We found it was not able to follow an high

contrast marker under modest accelerations in most conditions.

We have broken the process into clearly defined estimation steps to expose implicit assump-

tions, and have incorporated some features from modern SLAM processes. Our e↵orts re-

sulted in an end-to-end chain of modular software, with some functions migrated onto the

flight controller to shorten control loops and enhance stability.

4.2 Method

4.2.1 Position Estimation

After experimenting briefly with the existing PID loop process, we moved on to basic trian-

gulation methods to estimate the location of an object with the assumption that it was on

the ground. We estimated the height based on the GPS altitude data streaming from the

NAZA GPS module, but without access to the NAZA’s internal barometer, the uncertainty

in height caused the navigation loop stability to vary significantly minute by minute. After

upgrading to the Pixhawk [24], we had access to the data from the EKF sensor fusion in the

flight controller which included barometric data. We also made significant changes to the way

the flight controller was guided by the server, and this prompted a near total re-write of the

object-tracking code-base.
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4.2.2 Desired Relative Pose

Once the object is located in 3D space, the copter will calculate a vantage point from which

to view it. This vantage point could include information regarding the terrain, the size and

trajectory of the object, the field of view of the camera, locations of light sources etc. This is

the point at which cinematographic style is included in the chain.

The camera position used in testing selects the nearest point at the copter’s current altitude,

on a cone of a given slope radiating upwards from the object. The uncertainty analysis (dis-

cussed in section 4.2.5.2) is available to this algorithm, and could be used in a SLAM system

to select a pose that will most e�ciently reduce the uncertainty of a given landmark’s loca-

tion. Computation of uncertainty-minimising poses can lend an observation priority metric

to systems such as those used in cooperative robotics [26].

4.2.3 Motion Control

As of version 3.3, the Arducopter code-base has support for arbitrary velocity vectors. The

first iteration of the motion control algorithm mirrored the old RC emulation code base

and transmitted a velocity vector in body coordinates to the flight controller and closed

the motion loop through the automation server. The long feedback loops had problems with

delays and required detailed tuning. The Pixhawk [24] already has advanced automatic tuning

routines and performs very well as a stand-alone autonomous platform. To further reduce

feature duplication, we replaced the motion control code with a guided-mode waypoint. The

automation server then simply computes and transmits the desired vantage points and yaw

values to the Pixhawk [24].

The coming Arducopter 3.4 release is set to include more advanced control schemes and

support for GPS-independent autonomous features. All of the motion control processes were

kept in the code-base for comparisons and future work, particularly to facilitate a fully GPS-

independent acceleration vector control scheme.

The command structure on the Pixhawk [24] supports dead-channel detection and can execute

failsafe behaviours on loss of link. Even if our motion control system were to use an Acceler-

ation vector output, a loss of link or server crash would engage the appropriate fail-safe, and

the copter would continue flying.
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4.2.4 Structure from Image

Resolving structure from image is a field unto itself. In general, the computational load

of modelling the environment in three dimensions live is beyond the capabilities of super-

computing clusters that would fit in the mass restrictions of most multirotors. However,

SLAM systems optimise components of this field into a vast array of algorithms of varying

computational power requirements. One of the critical features of modern SLAM systems is

an acknowledgement that every measurement comes with some uncertainty. The treatment

of uncertainty can be very simple: carrying a one-dimensional confidence value; through to

very complex, where every aspect of the measurement is recorded for post-processing and

non-linear couplings can be accounted for.

Some systems are beginning to feature graph-traversal techniques where observations are

stored as relative links in a graph, and networks are drawn through those links to optimise

against the uncertainty of various aspects of the environment. These techniques allow the

landmarks to be unloaded from memory very easily permitting a small live map, and can

approach the detail of full-map covariance methods by using a less-than-live graph traversal

process [27].

4.2.5 Observations and Uncertainties

4.2.5.1 Observation to Object Allocation

With many observations streaming from the camera simultaneously, the algorithm must de-

cide which observation relates to which object in memory.

We developed and tested several algorithms to di↵erentiate objects and refine uncertainties.

Most of these su↵ered from the objects’ uncertainties falling so low that the probability of

intersection between observation and model fell below reasonable thresholds and new object

models were generated. Part of the problem being that our object detection is still based

on colour thresholding; this generates objects of significant size. Sized objects violate the

assumption implicit in the normal distributions where the probability of locating an ‘object’

at a zero sized point, is zero.

In order to facilitate rapid testing and expose weaknesses, the algorithm with which we have

field tested deletes and regenerates the objects every cycle unless the object leaves the field

of view. This makes it very clear when the object estimation code is behaving erratically.
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4.2.5.2 Uncertainty Analysis

A good uncertainty model encodes everything that is known and nothing of what is unknown.

Good treatment of uncertainties combines knowledge without losing information, or adding

assumptions. In the case of structure from image, a system that extracts maximal information

from a single camera should be automatically capable of full stereoscopy using only the

uncertainty analyses that applied to the monocular case.

With this in mind, we developed a framework to manipulate vectors with uncertain geometry.

Our proof-of-concept and clean implementation in written in Octave is included in Appendix

A

4.2.5.3 Ellipsoidal Models with Covariance Matrices

For the sake of computational load, we have assumed that the collected data has a three

dimensional multivariate normal distribution. We have used this distribution in the quadratic

form which uses the inverse of the covariance matrix.

PDF =
1p

(2⇡)k|⌃|
e

� 1
2((x�µ)T⌃�1(x�µ)) (1)

where

⌃ =

2

664

�

2
x

�

xy

�

xz

�

yx

�

2
y

�

yz

�

zx

�

zy

�

2
z

3

775 , k = 3 (2)

This form is particularly useful because the normal distribution behaves as a Probability Den-

sity Function (PDF) of prediction, and the combination of two observations is the normalised

product of probability density functions. The product of two elliptical normal distributions

is also an elliptical normal distribution.

In order to save on computing resources, we use the inverse of the covariance matrix na-

tively C, and ignore the normalisation constant, which has a closed-form solution and can be

calculated from the inverse covariance matrix directly as follows:
p
|C|p
(2⇡)3

(3)

This allows a slightly faster rasterisation of the probability density than covariance matrices,

but more importantly, follows almost exactly the definition of an ellipsoid 4 and permits

highly e�cient geometric manipulation:

1 = (x� x0)
T

A (x� x0) (4)
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(a) Measurement 1 (b) Measurement 2 (c) Combined Measurements

Figure 1: The Product of Two Ellipsoids

With no normalisation constant, the distribution always has a value of exactly one at the

centroid. By permitting singular matrices, the ellipsoidal format has the flexibility to represent

uncertainty distributions unbounded in length in any direction, representing rays and planes.

Such distributions are extremely common as measurements; an absence of information about

constraints along a given axis would just be a zero in the diagonal of the inverse covariance

matrix [28]. These singular forms still combine e�ciently to form non-singular localised

distributions.

4.2.5.4 Combining Measurements

The covariance structures are well suited to use as vectors, automatically calculating the

uncertainty of any combination of vectors. Multiple observations of a single point are generally

combined with a weighted average, but assigning weights to superior measurements is often

di�cult as is a common point of discussion in Kalman Filter design.

If the subject of the measurements is known to be the same object, the object is likely to be

at the centroid of the product of the probability density functions. This takes measurement

accuracy into account. Using the forms described above, the product of density functions

becomes the sum of polynomials.

C3 = C1 + C2 (5)

µ3 = C

�1
3 .(C1.µ1 + C2.µ2) (6)

Clearly apparent here, is that µ3 is undefined if C3 is singular. This is not a loss of generality,

merely an artefact of the matrix form. If the matrix C3 represents a ray, C3 will have one
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(a) Object at the Origin (b) Uncertain Displacement (c) Final Object Location

Figure 2: The Vector Sum of Two Uncertainty Distributions

eigenvalue of zero and µ will have a degree of freedom along the corresponding eigenvector.

This method minimises the sum of the squares of the Mahalanobis distances between the

result and the initial two ellipsoids. This property of minimised Mahalanobis distances is

maintained with additional ellipsoids, e↵ectively creating a least sum of squares regression

method that accounts for the covariance geometry of each measurement as successive ellipsoids

are added to the mix. This least-squares regression behaviour becomes obvious in the case of

spherical distributions. The successive combination of n measurements, each with an assumed

variance of �2, will have a resultant variance of �2
/n which is consistent with treatment of

uncertainties in the one dimensional case.

In a network of observations, using this transformation destroys the assumption of indepen-

dence of the observations. A full covariance matrix method would track this by generating

cross terms. The Covariance Intersection described in [29] provides a weighted method of

fusing observational data while keeping the uncertainty estimate conservative enough to re-

tain the assumption of independence. The algorithm in this report can be considered as a

destructive intersection, where the two observations are collapsed into one; any use of the

initial observations would invoke the lost cross-terms.

4.2.5.5 Vector Transformations

Vector Sum Treating the ellipsoids as approximate displacement vectors requires the def-

inition of vector operators. Again, the matrix form below does not permit singular matrices

as inputs nor outputs, but unpacking it into polynomial form does allow suitable centroids to

be chosen.

C3 = (C�1
1 + C

�1
2 )�1 (7)
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µ3 = µ1 + µ2 (8)

Again, this ignores cross terms that would be generated from a full covariance matrix. It

can be thought of as a means of collapsing multiple, chained, relative observations or motion

estimates into a single relative observation.

Scale

C
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C (9)
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0 = Sµ (10)
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Where S

n

represents the change of scale along any axis. The scale operator can be used

to reverse the direction of a vector. This allows the definition of a discreet time derivative

ẋ = (x(t1)�x(t2))/(t2� t1). A positional derivative defined in this way has an appropriately

large velocity uncertainty distribution that increases in size with shorter time-steps, but can

be averaged by intersecting multiple samples of velocity.

Rotate The ellipsoidal structure can be rotated as follows:

C

0 = R

�1
CR (12)

µ

0 = R

�1
µ (13)

Where R is the rotation matrix.

The rotation transformation is a major source of systematic error in the system because it

doesn’t model covariances in the measured rotations.

4.2.5.6 Taking Measurements

Every sensor on our platform has some resolving power which favours particular directions.

19



Our camera cannot locate a point in 3D space, but the direction is known within some small

angular uncertainty. Our implementation takes creates a ray of some width along the Z-

axis, and rotates it to where the the point of interest would lie on the focal plane in front

of the camera. At this time, the ray has exactly no divergence, pending a solution to the

normalisation of the ray described in 4.2.5.7.

The Lidar Lite time of flight optical range sensor has a 3 degree conical beam, a 10mm starting

aperture, 10mm resolution and a small amount of sample noise. It can locate an object in

3D space, but the uncertainty model favours depth to breadth. The GPS measurements get

interesting: in general we can say it has at least 3m � = 1 radius; however, over short time

periods it has a relative resolution much better than that.

4.2.5.7 The Hyperbolic Case

With a system that allows seamless representations of ellipsoids with singular matrices, it is

not much of a stretch to consider ellipsoids represented by matrices with a negative deter-

minant; the uncertainty ellipsoid becomes hyperbolic, expanding to an asymptote with an

elliptical conic cross-section. This is interesting because it represents an angular uncertainty

with minimal changes to the uncertainty model. A simple hyperbolic form aligned along an

axis will have one negative diagonal term, and zeros for all o↵-diagonal terms. It is worth

reiterating here that positive numbers represent increasing certainty and zero represents total

uncertainty; intersecting an hyperbolic distribution with an elliptical one would suggest that

the result contains less information than the elliptical distribution alone. This stems from an

hyperbolic PDF requiring a normalisation function over its area. The location and size of the

resulting ellipsoid is strongly a↵ected by the density gradient of the axis of the hyperbolic

distribution.

Given that hyperbolic volumes integrate to infinity, this hyperbolic probability density func-

tion would be infinitesimal everywhere. A more useful construction for its behaviour would

set the density along its major axis to one (Figure 3b), or alternatively, set the integral of the

cross-section to one (Figure 3c). The latter model is similar to the definition of a Gaussian

laser beam profile; the total energy in the beam is proportional to its length and is therefore

unbounded, but the power density is fixed for any cross section through the beam. With a

single image from a camera, the only information collected about the location of an object

is that it lies somewhere within a narrow cone of infinite length, ignoring exploitable imper-

fections in the camera such as focal length. In the case of stereo imaging, the hyperbolic

measurements of points in the near field would immediately reduce to localised ellipsoids,

while points in the far field would become narrow hyperbolic distributions.
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(a) Negative Determinant (b) Normalised Major Axis (c) Normalised Cross Section

Figure 3: An Hyperbolic Distribution with Normalisations

The hyperbolic structure is symmetrical like the ellipse, which suggests probability behind

the camera. With decent image classifiers this is unlikely to be a problem as the final localised

object will fall on the intersection of the rays.

4.2.5.8 Allocating Observations to Objects

If multiple observations are made of multiple similar objects, the observations must be allo-

cated to the appropriate object.

The observations must be ranked by some metric, and sorted. For m objects, and n observa-

tions, this takes m⇥ n memory. In our low resolution computer vision pipeline, the number

of possible visually non-unique objects is very small, so this product remains quite small in

practice.

The choice of ranking metric is very much a context-dependent decision. In general though,

because the ellipsoids can be interpreted as probability density functions of prediction, there is

a function that defines the probability of intersection. The Bhattacharyya distance is a metric

used in estimating the separability of clustered data, and makes for a reasonable first-choice

of metric.

4.2.6 Assumptions

We have tried to make all of our assumptions explicitly, and have, to a large extent, succeeded.

Many of the assumptions in the object localisation code have even had to be expressed in the

covariance forms described above.
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GPS drift has been deliberately assumed to be negligible, instead preferring to have our

coordinate frame drift with the GPS signal. This was encoded as a velocity uncertainty

ellipsoid encoded in all detected objects. This way, the system will operate based on what

is e↵ectively Di↵erential GPS (DGPS) resolution, which is the case on all current chase-cam

implementations anyway.

To assess the stability of the object locator, we set the observation allocator to create a new

object for each observation, and assumed the object was at ground level. The assumption

that the object is at ground level was defined using the same covariance model format as

any other observation in the system; this time, a singular matrix defining an infinite plane at

approximately zero altitude. Using a destructive Covariance Intersection described Section

4.2.5.4, locating the intersection between the ground and the ray from camera to object

becomes a trivial application of uncertain geometry.

4.3 Results and Discussion

4.3.1 Simulation Tests

We used the simulator built alongside the Arducopter firmware to run our tests. This sim-

ulator is detailed enough to handle the inertial model of the platform and inject noise into

the sensors. This simulator allows us to run our full software stack on any computer with a

functioning compiler. The object tracking code estimates the location of the objects using

data from the camera and flight controller covering the gimbal pose, the roll, pitch and yaw

of the copter, and the GPS location as fused with the accelerometer and gyro data.

Because the the camera cannot resolve range, an assumption model describing the ground

was added to the code reducing the columnar vision model to a spot on the ground.

Using a servo-driven gimbal on the real copter we cannot perform mechanical compensation

of the pitch and roll without injecting extremely large angular uncertainties. The object

estimation code compensates for the pitch and roll using matrices representing body rotations

under OpenCV. This compensation is designed to cleanly counter the non-linear second order

signal injection, but with the camera mechanically coupled to a laptop instead of the simulated

copter, the loop becomes completely unstable.

Commenting out the pitch and roll decoupling code makes the copter very well-behaved in the

simulator. Using a pose generator that attempts to place the object at a ray cast forward and

down from the copter, the copter can be confidently led around the simulation environment.

If the object appears behind the copter (below the centre-line of the image frame), the copter
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moves forward away from the object, turning around as it does so.

4.3.2 Live Tests

The copter was able to physically follow one object, while tracking multiple others. Unfor-

tunately, problems in maintaining calibration on multiple systems, particularly the camera

gimbal, severely limited the opportunities for testing edge cases in an end-to-end system.

4.3.2.1 Navigation System

The change from RC inputs to velocity vector commands for the sake of control linearity

resulted in much more predictable and consistent behaviour without significant loss of control

bandwidth. To reduce the length of the feedback loop, we used the guided waypoint functions

and absolute yaw commands in Arducopter 3.2 onward. This change drastically improved the

flight stability of the copter, but significantly reduced the control bandwidth. The waypoint

updates appeared to be obeyed at several Hertz, despite a new request being sent every frame

(30Hz). The behaviour of our final navigation system was refreshingly predictable and by far

the best choice for future development despite the loss of bandwidth.

4.3.2.2 Object Localisation

The observation allocation routine selects the most likely object an observation could refer

to. If the associated probability is below some threshold, it instead creates a new object. In

one of the tests, velocity predictions were enabled along with object creation with an inverted

axis on the inertial compensation matrices. This system quickly generated more than seventy

unique objects in memory and ran velocity prediction on all of them live. The algorithm’s

processor usage never approached the requirements for the computer vision despite running

an unoptimised sorting and allocation routine, and uncertainty analysis.

4.3.2.3 Object Detection

The feature detection algorithm used in all testing of this platform was very simple colour

space thresholding. In uncontrolled environments, this resulted in multiple detected features

with no e↵ective means of di↵erentiating them. The uncertainty analysis did appear to help

with this in the limited live testing it received, but the code was not su�ciently ready to draw

any generalised conclusions.
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Many more advanced object detection processes became available on our platform over the

course of the programme thanks to the work of Tan [1], but these were in active development

throughout this project and o↵ered no consistent foundation to test upon.

4.3.2.4 Bench Marks

As mentioned earlier, the Arducopter firmwares o↵er a GPS driven ‘follow me’ mode using

the Android application “Tower” [30]. The GPS tether mode was very stable and eminently

usable in real circumstances. The update bandwidth was lower than our autonomous modes,

and it frequently allowed the beacon to leave the frame, but it never lost lock or moved beyond

the GPS tether radius. We can presume that the commodity chase-cams soon to be released

will optimise for bandwidth and pay more attention to camera direction.

The GPS chase system did have some serious flaws though. In the very poor GPS environ-

ment of the Great Court on the UWA campus, the Ublox Neo7m radio was deviating more

than 500m every couple of seconds. With no operator assistance, the loss of GPS led to a

catastrophic failure of the algorithm and a very di�cult operator intervention. Fortunately,

the Ardupilot firmware permits multiple GPS modules in redundant fashion, so we were able

to combat the urban canyon environment with radio diversity.

4.4 Extensions

4.4.1 Atomic Graph-Traversal SLAM

The following is a speculative description of what is potentially an entirely new SLAM process

using the uncertainty analysis outlined in Section 4.2.5.

Full-state covariance SLAM has demonstrated some truly incredible results, but is limited in

its applications by the large computing requirements. It has also been criticised for the way

it treats non-linearity in the observations makes between landmarks.

Storing a motion history of the objects would facilitate the generation of a time-dependent

network of estimated locations and relative measurements. Here, the nodes represent the

instantaneous locations of the objects, linked forward in time by velocity estimates, and

linked in space by relative distance measurements. Assumptions can be added to this mix in

the same form as the object locations, time evolution, and relative measurements.

Building a single covariance matrix for the entire state-space generates extremely large ma-

trices very quickly, and every algorithm that implements full-state covariance pays attention
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to pruning the map in some way [31] [32].

A live process need only deal with the instantaneous positions of the robot and a small

collection of landmarks. This sub-set of landmarks can be dealt with in a full-state covariance

matrix [31].

The lesser ‘full-state’ covariance matrix can be generated by collapsing dependent chains of

observations down using the vector sum, and combining network loops with the intersection

into landmarks. The ‘full-state’ covariance matrix can be populated by choosing the result-

ing landmarks that best reduce absolute navigation uncertainty for the copter’s current and

planned locations. Further observations are still generated as atomic, relative observation

structures and added to the network. These additional observations are then used to refine

or regenerate the lesser ‘full-state’ covariance matrix by the graph traversal algorithm. This

graph-traversal algorithm can operate less-than-live [27].

By storing the observations as an undirected graph of relative links, initialising the algorithm

is as trivial as creating an assumption in the form of an artificial survey marker at boot. The

assumption can be later removed and replaced by real survey markers if they exist, with the

map fully regenerated by the graph traversal process which need not be on-board the robot.

This process still retains su�cient detail to support a bundle adjustment algorithm, optimising

for consistency in cycles detected by a spanning tree algorithm [27].

5 Conclusions

We reviewed, re-designed and re-built the UWA autonomous hexacopter thereby greatly im-

proving its overall capabilities and making it fit-for-purpose as a development platform for

autonomous navigational routines. The re-build involved replacement of both the flight con-

troller and the server. The new flight controller provided the following capabilities:

• new gimbal features for the object tracker;

• waypoint navigation;

• robust and consistent failsafe behaviours;

• extended Kalman Filter for flight dynamics; and

• live telemetry and reporting of flight parameters.
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During the project, the flight controller firmware advanced from Arducopter V3.2, through

V3.3rc10, to V3.3 stable near the end of the project. The enhanced server supported advanced

computer vision routines. We brought the code-base up to a level where it is feasible to

implement rudimentary SLAM processes. We also demonstrated that low-power single board

computers can perform live computer vision processes and elements of SLAM processes with

uncertainty based reasoning to track and follow moving objects. Our computer-vision-only

routines are by no means as robust as radio links and di↵erential GPS, but the use of computer

vision allows aesthetic framing of more than a wrist-worn GPS beacon. Our object tracker

was demonstrated with a variety of navigation loops, some of which were not GPS dependent.

In commodity chase-cams, these control schemes could allow a graceful handover from radio

beacon to computer vision in the event of a GPS failure.

The processes described here can be applied to almost any UAV with modest processing

power, and o↵er additional capabilties for handling edge-case scenarios. This work brings us

one step further to allowing UAVs to interact with an human environment.

6 Recommendations

The UWA hexacopter platform is reaching a level of hardware maturity where future work

can focus on new algorithms and applications. Key areas for improvement mainly relate to

the gimbal and camera.

The servo-driven gimbal is a large source of error and can removed entirely in favour of a fixed

camera mount, or replaced by a brushless DC motor driven gimbal for accurate mechanical

image stabilisation. The camera could benefit from a wider angle lens, although the narrow

field of view did prompt us to find a sound solution for tracking an object beyond the frame

boundary.

As discussed in section 4.2.5.7, the uncertainty analyses are incomplete. Without solutions to

the hyperbolic uncertainty case or rotational transforms, the object tracker will have some-

what unpredictable accuracy. However, the system does function and can still benefit from

case-specific functions to generate camera angles to suit artistic direction.

Further exploration of the hyperbolic case and singular matrices would create support for

rotational uncertainties and greatly improve the tracking stability. Using a vector di↵erence

of positions to estimate the velocity, models of objects can be evolved over time and updated

with additional measurements. With additional statistical analysis, this landmark velocity

can be extended to a form consistent with a Kalman-style motion filter for the each visible

landmark.
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A problem addressed in section 4.2.5.1 is that the objects detected by colour thresholding

have a non-zero size which goes against the assumptions implicit in the statistical treatment

of the observations. An algorithm like Scale Invariant Feature Transform (SIFT) would track

multiple points on any given object, and provide nearly unique visual identifiers for allocating

observations to individual objects. While this would eliminate a small sorting routine in the

object allocator, the overheads of SIFT may well require a larger computing budget.

Optical Flow is an extremely interesting avenue of research for small UAVs because the high

compute-cost can be handled by dedicated silicon like a Field Programmable Gate Array

(FPGA). Coupled with a covariance uncertainty analysis, optical-flow is able to resolve the

relationship between relative velocity and proximity between copter and object with every

frame from the camera.

As it stands, the uncertainty analysis in our implementation does not account for correlations

between velocity and position, but the matrices can simply be expanded to 6⇥ 6 inverse cor-

relation matrices instead of storing independent 3⇥ 3 matrices for position and velocity. The

6⇥ 6 matrix also allows the observation-to-object allocator to use velocity as a distinguishing

feature when only a correlation between ẋ and z is known. For sensors that cannot resolve

velocity, the additional matrix elements are just zeroes.

Implementing Optical Flow with the uncertain geometry methods extended to 6⇥ 6 position

and velocity covariances is very straightforward. The probability distributions of optical flow

are described in the literature [33], and from there, the application is exactly the same as any

other camera data; set depth-certainty to zero and rotate into place.

The current structure of the code base is sound, but makes it di�cult to run processes like

object tracking and object avoidance simultaneously. This situation could be improved by

using a subscriber model between di↵erent processes, such as that used by Robot Operating

System (ROS).
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Appendix A Implementation of Uncertain Geometry

For completeness, included here is a functioning copy of the core elements of the uncertain

geometry processes used in our work. This proof-of-concept code was implemented first in

Octave, then ported to C++ for the live tests. This is the original Octave code.

Generation of primitives:

function [M,L ] = GenerateBlob (x , y , z , sx , sy , sz , tx , ty , tz )

M = [ 1 , 0 , 0 ; 0 , 1 , 0 ; 0 , 0 , 1 ] ;

L = [ 0 ; 0 ; 0 ] ;

[M,L ] = StretchBlob (M,L , sx , sy , sz ) ;

[M,L ] = RotateBlob (M,L , tx , ty , tz ) ;

[M,L ] = Trans lateBlob (M,L , x , y , z ) ;

endfunction

function [M,L ] = GenerateRay (x , y , z , sigma x , phi , theta , tx , ty , t z ) ;

M = [ 1 , 0 , 0 ; 0 , �1, 0 ; 0 , 0 , 1 ] ;

L = [ 0 ; 0 ; 0 ] ;

[M,L ] = StretchBlob (M,L , 1 ,1/ tan ( phi ) , 1/tan ( theta ) ) ;

[M,L ] = RotateBlob (M,L , tx , ty , tz ) ;

[M,L ] = Trans lateBlob (M,L , x , y , z ) ;

endfunction

Destructive Covariance Intersection:

function [M,L ] = In t e r s e c tB l ob (M1, L1 ,M2, L2)

M = M1+M2;

L = inv (M) ⇤ (M1⇤L1 + M2⇤L2 ) ;
endfunction

Transformations of primitives:

function [M,L ] = RotateBlob (M,L , tx , ty , tz )

Rx = [ 1 , 0 , 0 ; . . .

0 , cos ( tx ) , �sin ( tx ) ; . . .

0 , sin ( tx ) , cos ( tx ) ] ;

Ry = [ cos ( ty ) , 0 , sin ( ty ) ; . . .

0 , 1 , 0 ; . . .

�sin ( ty ) , 0 , cos ( ty ) ] ;
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Rz = [ cos ( tz ) , �sin ( tz ) , 0 ; . . .

sin ( tz ) , cos ( tz ) , 0 ; . . .

0 , 0 , 1 ] ;

R = Rx⇤Ry⇤Rz ;
M = inv (R)⇤M⇤R;

L= inv (R) ⇤ L ;

endfunction

function [M,L ] = StretchBlob (M,L , sx , sy , sz )

S = [ sx , 0 , 0 ; . . .

0 , sy , 0 ; . . .

0 , 0 , sz ] ;

M = inv (S) ⇤ inv (S) ⇤ M;

L = S⇤L ;

endfunction

function [M,L ] = SumBlob(M1, L1 ,M2, L2)

L = L1+L2 ;

M = inv ( inv (M1)+inv (M2) ) ;

endfunction

function [M,L ] = Trans lateBlob (M,L , x , y , z )

L += [ x ; y ; z ] ;

endfunction

Sampling and rasterising functions:

function H = GaussianBlob (M,L , x , y , z )

for i x = 1 : x ;

px=ix �((x+1)/2) ;

for i y = 1 : y ;

py=iy �((y+1)/2) ;

for i z = 1 : z ;

pz=iz �(( z +1)/2) ;

X = [ px ; py ; pz ] ;

H( iy , ix , i z ) = SampleBlob (M,L ,X) ;

endfor
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endfor

endfor

endfunction

function H = SampleBlob (M,L ,X)

H = eˆ(� (1/2)⇤ t ranspose (X�L)⇤M⇤(X�L) ) ;

endfunction

The square of the Mahalanobis distance of a point from the centroid of a primitive:

function D = MahalSq (M1, L1 ,X)

D = transpose (X�L1)⇤M1⇤(X�L1 ) ;
endfunction

Appendix B ArduPilot (Pixhawk) Proposal

34
















