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Abstract

Reducing energy consumption and the use of renewable energy sources have be-
come increasingly important. While the public have been taking steps to reduce
energy consumption and switch over to more energy efficient appliances, there
is a limit to the possible level of energy reduction using this approach. Making
more effective use of the variable generation of renewable energy sources requires
a shift in patterns of consumption to more closely follow generation. However,
typically occupants are unaware of their energy usage until the end of each billing
period.

There are a number of commonly used appliances that contribute significantly
to household energy consumption and for which time of use could be shifted
without significant inconvenience, such as washing-machines, dishwashers and
tumble-dryers. A system capable of monitoring and processing data for household
energy consumption, generation and storage in real-time could provide useful
feedback to occupants leading to a reduction in both overall energy consumption
and that from the power grid.

This exploratory study focuses the development of a system to monitor energy
consumption and generation for households with roof-top solar photovoltaic (PV)
systems and to use that data to drive shifts in energy consumption to better
match generation. We present the development of a system to ingest, process
and visualise energy consumption and generation data. Using this system we
implement a processor to predict, in the short-term, periods of lower than usual
energy generation and generate notifications for household occupants to suggest
deferring using elastic-load appliances. The model of a battery energy storage
system created is presented and used to analyse the viability of incorporating
battery energy storage into household solar PV systems.

Keywords: energy monitoring, domestic, prediction, solar photovoltaic, visual-
isation, notification
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CHAPTER 1

Introduction

This exploratory study focuses the development of a system to monitor energy
consumption and generation for households with roof-top solar photovoltaic (PV)
systems and to use that data to drive shifts in energy consumption to better
match generation. To maximise the value of energy generated by the solar PV
system occupants must closely regulate their power usage throughout the day
to match that of the solar PV systems generation. An ideal outcome would
be a system that could predict and recommend the best times for occupants to
use elastic-loads, such as charging electric vehicles (EV), running dishwashers,
tumble-dryers or washing-machines.

In this paper we present the development of a system to ingest, process and
visualise energy consumption and generation data. Using this system we imple-
ment a processor to predict, in the short-term, periods of lower than usual energy
generation and generate notifications to suggest deferring using elastic-loads. A
model of a battery energy storage system was created for use in simulation. Re-
sults from the data gathered by the monitoring system are used to show the
potential of a low-capacity energy storage device and the reliability of energy
predictions and disaggregation investigated.

To provide context a background overviewing the influences and challenges
to solar PV energy generation, energy monitoring and energy prediction is given.
After the aims of the project are outlined with a problem statement, a require-
ments analysis leads into the details of the system design and how it has been
implemented. Followed by the design and simulation of a battery energy storage
model. Finally an analysis of the data from the monitoring system is performed
alongside the battery model created and the results generated conclude the paper.

1



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

1.1 Background

1.1.1 Overview

The latest figures from the Australian Bureau of Statistics [1] find that solar
photovoltaic (PV) systems are now installed on the rooftops of one-fifth of Aus-
tralian households, reaching a total of over 4GW installed solar capacity [2]. The
majority of these systems are grid-tied, installed on domestic rooftops and have
generation capacities ranging from 1.5 - 5kW [3]. These systems can optionally be
installed as a hybrid with battery energy storage to help negate the intermittent
power caused by changes in solar radiation, cloud conditions, temperature and v-i
operating characteristics [4]. Grid-isolated systems require the battery capacity
be sized to provide continual power during PV output fluctuations and through-
out the night, however grid-tied systems can rely on the power grid for consistent
power during these periods. Free of this constraint, grid-tied systems can balance
the cost of battery capacity with sizing to maximise the value of energy generated
by storing it to be used within the household rather than exporting it to the grid
at a reduced feed-in tariff [5]. Changes in power consumption patterns within the
household, even for a given total energy, can allow for more optimal utilisation
of the power generated or the use of a smaller, more affordable system.

To meet the goals of a more sustainable future an increased proportion of en-
ergy from renewable sources combined with a reduction in consumption will be
key. The most significant variances in domestic energy consumption have been
attributed to occupant behaviour [6]. Typically occupants are unaware of their
energy usage until the end of each billing period but by providing direct feedback
in the form of a clearly understandable, real-time usage display energy savings in
the range of 5-10% can be expected [7]. Further studies have expanded this prin-
ciple by presenting the occupants with indirect feedback produced by processing
raw usage data [8, 9], while others have tried incorporating social media [10] or
provide tailored feedback to individual occupants [11]. The outcomes when using
indirect feedback have been varied, depending largely on the quality of infor-
mation presented to the occupants [7]. Disaggregated appliance usage feedback
has, in the past, been expensive to implement and difficult to study, so limited
data for outcomes exists, but theory suggests the increased insight for should
prove valuable [7]. There are a large number of energy monitoring devices and
platforms currently available, however as found in a study by Banerjee [12] the
majority provide nothing further than access to fine-grained energy data, leav-
ing the task to the user to interpret and monitor these results and decide what
decisions to make to reduce energy consumption.

Since Hart [13] pioneered the approach of non-intrusive appliance load moni-

2



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

toring (NALM) to disaggregate individual appliance energy usage there have been
many [14, 15, 16, 17, 18, 19] approaches to sensing and processing algorithms.
The most widely adopted sensing being whole-house level power sensors and
smart meter integrations [20]. Algorithms have been driven by the data features
made visible with the sampling frequency and power-level resolution available
[20]. While high frequency (>1MHz) and resolution sensors allow for algorithms
to disaggregate a larger number of appliances [19], low frequency (1Hz) data
from whole-house CT sensors can still produce useful disaggregation results into
groups of appliance types [14].

1.1.2 Solar Photovoltaic Generation

The primary factor in solar photovoltaic system design is the ability to collect
solar radiation. The amount of energy produced is a function of the solar radi-
ation incident on the panel surface. This is dependant on a number of factors,
Duffie and Beckman [21] found the main factors as being global radiation, ground
reflectance, time and day of year, panel tilt angle, altitude and climate influences.
Energy generation from a solar PV system is also dependant on other charac-
teristics of the system and site. Iyengar et al. [22] found these factors to be the
characteristics of;

• panel size, type, age and number,

• site placement, tilt and orientation,

• surrounding area proximity to trees or buildings that could cast shadows
over the panels,

• season, determining the length of day and solar intensity,

• weather factors of temperature and cloud cover.

Due to these factor, close-by objects casting shadows can make solar gener-
ation prediction difficult, as there are dynamic changes in shadows throughout
the day and year. Iyengar et al. [22] found that most prediction models had fo-
cused on only large solar farms, where these factors cause less of an impact given
the typical, more open siting. A method for calculating cloudless irradiance by
multiplying all weather parameters proved to be useful in making predictions in
a study by Sharma et al. [23].

3



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

1.1.3 Energy Display & Feedback

Many studies [24, 25] have found that energy consumption is essentially invisible
to household occupants and thus difficult to connect to specific behaviours. A
qualitative field study by Hargreaves, Nye and Burgess[26] of households given
visual energy displays, found that the monitors needed to look visually attrac-
tive and provide clear information that is easily contextualised. Typical in-home
displays give a simple factual feedback of the current power usage, and historical
comparative feedback using graphs comparing the energy consumed in periods
of time [9]. After evaluating the current state of energy consumption visualisa-
tion, Masoodian et al. [27] found most to use either a time-series or pie chart,
they introduce a new visualisation, the time-pie, combining elements of both
and allowing for the inclusion of contextual information. Moving further away
from simplistic, raw data presentation, Holmes [28] propose eco-visualisations
as a method of combining data-driven computer animations and artistic forms
to create ambient energy visualisations and potentially act as a non-monetary
incentive to increase conservation.

The impact of feedback on behaviour has been extensively studied, a review
by Abrahamse et al. [29] found that feedback is more effective when provided in
real-time and frequently. A study by Darby [7] into the effectiveness of feedback
on reducing energy consumption found that it is predominately unknown by
many users and that immediate, real-time feedback could be extremely valuable
if presented in a clearly understandable manner. Fischer [30] identifies additional
features for successful feedback as involving appliance-specific breakdowns and
interaction or choices. Implementations of useful feedback have failed to keep up
with current knowledge, often due to the technical requirements of the required
monitoring system [30].

1.1.4 Predicting Energy Consumption

Most past research has focussed on predicting energy consumption from the per-
spective of load-prediction for use by electricity generators at utility scale. When
applied to only a single household energy consumption prediction allows for the
intelligent use of energy storage systems and load-shifting. Hobbs [31] groups
energy prediction into three range categories, short, medium and long-term.

• Short-term predictions being between one-hour to one-week,

• medium-term between one-week to one-year,

• long-term as more than a year in advance.

4
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Mishra et al. [32] studied short-term prediction in several households over
a three month period. Using various sensors they were able to predict energy
consumption for five periods of a day, in some cases reaching with an error of less
than 5%. Using the available REDD dataset for analysis Viet et al. [33] studied
the relationship between historical and future energy consumption. Errors for
their predictions ranged between 5 and 150%.

1.1.5 Battery Energy Storage Systems

Early studies [34, 35] began with a focus on system design for grid-tied solar PV
energy smoothing to meet utility connection requirements rather than to store
energy for an isolated system using available components. At the time of the
Hund, Gonzalez and Barret [34] study, valve-regulated lead-acid (VRLA) bat-
teries were the most economical choice but was noted that an their smoothing
algorithm would be damaging to battery longevity. The report notes that the
system was not suited to providing smoothing for short periods of cloud cover
but rather smoothing a solar irradiance curve modelled from the previous day
and spreading the peak of the power generation curve. The study determined
that smoothing could be achieved using a relatively small battery capacity, but
had only modelled their irradiance averaging algorithm. Zahedi [35] reviewed the
current role of energy storage in grid-tied solar PV systems and identified the
benefits to the power grid of a wider deployment. The paper modeled a super
capacitor as the ideal storage solution. Li, Hui and Lai [36] further improved
over the smoothing system from Hund, Gonzalez and Barret [34] and produced a
model for a real-time smoothing system able to smooth fluctuations of 10% per
15 minutes and had shifted from VRLA batteries to better suited LiFePO4 bat-
teries. Chersin, Ongsakul and Mitra [4] approached the design of a PV smoothing
battery energy storage system (BESS) with a model that better suited a time-of-
day tariff and optimised local consumption. This study modelled a BESS able to
provide a constant power output during daytime and smoothing battery charging
from the grid during off-peak hours. The constant power output by the system
is better matched to the stand-by consumption of a household, so is consumed
locally rather than exported to the grid at a lesser value.

1.1.6 Energy Disaggregation

Nonintrusive Appliance Load Monitoring (NALM) is built upon the research by
Hart [13] into determining the consumption of individual appliances by analysing
the total current and voltage, this was in contrast the the techniques previously

5
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used requiring sensors to be placed at each appliance to measure individual power
consumption. This method proved to be very convenient and effective compared
to using individual sensors. Two algorithms were presented in the paper MS-
NALM and AS-NALM, manual and automated initial setup variants, which are
combined with appliance models and signatures to determine which appliance is
undergoing a state change. At this point NALM was not reliable with appliances
using <150W or those using a continuously variable amount of power. This paper
lays out the theory for NALM, which later algorithms and models expand on.

Since its introduction, research into NALM has covered a range of sampling
frequencies, from hourly [37] to into the mega-hertz range [38]. Most studies
have involved either low frequency power measurements or kilo-hertz range AC
current measurements. The use of high frequency (kHz) data samples allowed
Laughman et al. [39] to identify appliance signatures using higher harmonics and
transient characteristics of the power signal and Patel[40] to observe identifiable
differences in the noise created by the switch of an appliance. Systems requiring a
high sampling frequency are held back from broader deployment due to the costs.
Using a lower frequency of sampling (1Hz) for pattern matching was studied
by Berges et al.[41] with the constraint of disaggregating to only a small set
of typical appliances. Baranski and Voss [42] use statistical methods to build
appliance pattern databases, which Bergman et al.[43] later use to apply dynamic
programming to increase the accuracy of the database by allowing for variations
between different appliances of the same type, however results are only accurate
with kilo-watt range loads.

More recent research by Kolter and Johnson [44] applied Hidden Markov
Models (HMM) in appliance modelling, Kim et al. [15] extended the probability
appliance model factoring in typical usage durations, time of day and past corre-
lations between appliance usages. While Vogiatzis, Kalogridis and Denic [45] have
shown success in applying rule-based filtering and Fourier analysis to optimise
the the finite state machine appliance model when using power measurements
sampled only every 20 seconds.

One more novel approach has been to extend the disaggregation from the
appliance level into the energy used by a particular occupant for that appliance.
In Lee et al. [11], a system to personalise appliance disaggregation is proposed
based on tracking the households occupants, at the room level, and linking this
with the given appliance room location.

The application of NALM to real-time feed is limited as most algorithms are
intended for off-line processing and are computationally expensive [46], [15], [44].
These studies have taken the approach of modelling appliances into transitions
between a small number of steady operating states. To achieve reasonable levels

6
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of accuracy only the energy consumption of a small number of devices, with
only on/off states, could be disaggregated, typically appliances using significant
energy for heating or cooling and simple thermostat control. A review of NALM
approaches by Barker et al. [47] found state-based appliance model approaches
are not suitable for online processing to provide real-time results.

1.1.7 Tariffs

Energy retailers apply a charge per unit of energy imported-to or exported-from
the grid. A number of tariffs are currently available, in the case of Synergy [48],
there are three options of residential import tariff and one export tariff. These
are

• Home Plan (A1), a flat-rate unit charge

• SmartPower (SM1) a variable-rate unit charge with weekday morning and
afternoon peak rates with seasonal changes to time periods, and

• PowerShift (PS1) a variable-rate unit charge with weekday afternoon peak
rates, in addition to

• Renewable Energy (RE) a fixed-rate unit charge for energy exported.

To encourage roof-top solar PV uptake previous government feed-in sub-
sidies resulted in exporting energy to the grid being cost-effective than self-
consumption. These subsidies are no longer available for new installations in
Western Australia and as they effectively negate the economic argument for self-
consumption and use of battery storage they are not discussed further in this
study. The costs of the tariffs studied are given in Table 1.1, and their hourly
variance over a winter week is shown in Figure 1.1.

Cents per unit A1 SM1 PS1 RE
Constant 24.5961 7.1350
Peak 47.4099 22.6326
Off peak 12.7360 11.7193
Weekend shoulder 19.9873
Weekday shoulder 24.1195
Super peak 41.1872

Table 1.1: Tariff period rates

7
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Figure 1.1: Tariffs for energy time of use

1.2 Monitoring Locations

A number of locations, with differing generation and monitoring equipment were
used in this study. The system was designed with a consideration of ingesting
data from a variety of sources, those used are detailed in this section.

1.2.1 Off-grid Solar PV with storage

The UWA Future Farm 2050, located 150km south-east of Perth, consists of 2 x
5kW ground mounted solar arrays with battery storage to provide up to 3 days
redundancy. The initial system was installed in mid-2012, however a manually
switchable grid connection was later added. An online platform, AllSolus Access,
is integrated with the AllSolus LiveBase for data collection.

• 22 x 235W Q-Cells Q-Pro G2 solar cells

• SMA Sunny Boy 5000TL solar inverter

• 56 x 90W Q-Cells Q-Smart modules solar cells

• SMA SMC 5000A solar inverter

• 24 x Hoppecke 8 OpzV Solar.Power 1000 batteries

• 3 x SMA Sunny Island 5048 battery inverter

• AllSolus LiveBase data-logger

8
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1.2.2 Grid-tied Solar PV

Two home locations are monitored each with separate Efergy CT-clamp transmit-
ters installed on the household-side of the main breaker and on the solar inverter
feed-in connection. The Efergy transmitters take a measurement at most every 6s
and transmit this wirelessly to an in-home internet-connected hub, which in turn
uploads this measurement to the Efergy Engage platform. Data is then accessible
via the Efergy Engage platform, with no direct access via the hub possible.

• Household 1 Single-phase 2.5kW solar

• Household 2 Three-phase 5kW solar

• UWA Human Movement Three-phase 10kW solar

The UWA Human Movement Building has a solar panel installation with a
total capacity of 20kW. The installation contains a SMC Sunny WebBox data
logger that is accessible within the UWA network. An existing system periodically
downloads data from the SMC Sunny WebBox and stores this data in an Internet
accessible location.

• 2 x SMA Sunny Boy 10000TL solar inverters

• SMA Sunny WebBox

9



CHAPTER 2

Aims

2.1 Problem Statement and Motivation

Previous studies have found that feedback to occupants on energy usage can lead
to reductions in the order of 5-10% [7, 8, 9]. The degree of change in occupant
behaviour to reduce consumption has been linked to the quality and clarity of
feedback provided. A significant number of households currently incorporate so-
lar PV systems to generate power [1] and future increases in the adoption of
battery energy storage systems (BESS) [4] and electric vehicles (EV) are likely.
These conditions combined mean household occupants must track not only en-
ergy consumption, but also generation, diversion to storage, and their temporal
relationship, to minimise energy consumed from the power grid and optimise
economic benefits given the feed-in tariffs available.

A system capable of monitoring and processing data for household energy
consumption, generation and storage in real-time could provide useful feedback
to occupants leading to a reduction in energy consumed from the power grid. This
project seeks to develop a prototype system that will process energy data from
typically available monitoring sources to provide immediate and useful feedback
to occupants.
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CHAPTER 3

System Design

This chapter states the requirements of the system then details the design of
components and platform they are deployed upon. Data flows between these
components are shown and a rationale for the selection of tools used given.

3.1 Requirements Analysis

System development, particularly in the software space, begins by undertaking
a requirements analysis. Functional requirements specify the required behaviour
and processes of the system, while non-functional requirements drive the archi-
tecture. Consideration is given to key functional and non-functional requirements
for the system developed in this project.

3.1.1 Functional

• Ingest of energy monitoring data is the primary requirement of the
system, as without this input no processing or output can be produced.
This requirement includes ingesting consumption and generation from a
number of sources, be that directly from monitoring devices, via gateways
or hosted services. This process should be as timely as possible, within the
constraints of the source, and not sacrifice measurement resolution. Data
should be ingested with the sampling rate faithful to the source, including
support for a variable period between samples. The system should have
the capacity to import historical data.

• Ingest of environmental data to support in data processing and predic-
tion. Historical, present, and forecast environmental data must ingested by
the system to be made available for analysis.

• Historical data of any ingest to the system is to be stored and accessible.
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• Data processing to both validate data being ingested and be able to con-
dense the many data streams into useful information. A further requirement
of this aspect is for the system to be able to extract key information from
the current and historical data, and perform predictions using this data.

• Feedback should be provided to the user in the form of simplified energy
statistics, visualisations and recommendation notifications. This includes
includes historical, present and predictions.

3.1.2 Non-functional

• Accessibility is a key non-functional requirement, in that the system be
not limited any any one platform for access.

• Response time is kept to a minimum when accessing large ranges of data.

• Reliability of the correctness in processing, visualisations and usefulness
of notifications must be ensured. Notifications are only to be generated on
predictions of high confidence.

• Reproducibility of the system to allow it to be easily re-built, installed
and configured by other researchers.

• Modularisation of the system to allow changes in one component without
restarting the entire system.

3.2 System Components

An outline of the major components that comprise the system is shown in Fig-
ure 3.1. Ingest worker nodes accept tasks, from a messaging queue, to collect data
from external monitoring sources. These tasks are periodically scheduled to the
a messaging queue by the task controller. Ingest workers place the collected data
back onto a different messaging queue, where it is then immediately available for
any processing nodes and also stored in a time-series database. Processing nodes
act upon the incoming data streams and are also able to extract data from the
time-series database. Results from each processing node are placed back onto
a messaging queue, for immediate access by other processing nodes, and to be
stored in the time-series database. Processing nodes are able to send notifica-
tions via an external notification service. Data from the time-series database can
be visualised using graphs and metrics on a dashboard, where aggregations and
down-sampling are performed using query functions of the time-series database.
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Figure 3.1: Major system components and data flows

3.2.1 Platform

The various components of the system have been compartmentalised using Docker
[49] containers and deployed across two DigitalOcean [50] hosts. The allocation
of containers to hosts is given in Table A.1. Docker is an open platform that
builds upon the use of Linux (LXC) containers. Using Docker is similar to de-
ploying each application in its own virtual machine, the key difference being that
each Docker image shares the same Linux kernel already running on the host.
This allows for many of the benefits of running and storing applications as self-
contained virtual machines but without the same level of overhead. Each Docker
container is created using a simple script, known as a Dockerfile, that defines ex-
actly how to build up the image, right from the operating system, to any libraries
and dependancies, and finally application. A review by Boettiger [51] recognised
the applicability of using Docker to build a system that is easily reproducible for
use by future researchers.

3.2.2 Task Controller

To generate the tasks that need to either periodically or continually execute, to
facilitate data ingest or processing, a Task Controller has been implemented.
Dependant on the particular task the controller is able to assign a continually
executing task or periodic tasks at a fixed rate or on a date/time based schedule.
The Task Controller has been implemented using a Celery [52] beat scheduler.
Celery is a Python [53] framework for a distributed task queue. While the primary
use case of Celery is for real-time processing it is also able to support scheduled
tasks. The scheduled tasks are configured on the Task Controller as Python
dictionary objects, see Figure A.1, and loaded into the Celery beat scheduler at
start-up.

13



CHAPTER 3. SYSTEM DESIGN 3.2. SYSTEM COMPONENTS

3.2.3 Ingest and Processing Nodes

As both ingest, and processing nodes perform similar functions they have both
been implemented using Celery workers. Each node is a Docker container exe-
cuting the Celery daemon, celeryd, which presents that node as a number of con-
current Celery workers assigned to a particular task queue. The task queues are
assigned using a routing pattern in the form tasks.processing.* and tasks.ingest.*.
As tasks are pushed to queues matching these routing patterns, workers accept
and execute these tasks. Data ingested or results from processing are then pushed
by the worker back to a messaging queue with a routing key set to channel them
into storage, as described in Section 3.2.5.

Efergy Engage

Data from the Efergy Engage platform is accessed via a web service as described
in Table A.2. As the Efergy Hub only transmits data every 6s, this is the period
we use to poll the API. The 6-second resolution data is only available when
polled live, historical data is only stored by Efergy in 1-minute intervals. For
every household monitored using the Efergy Engage platform a different API key
is used, therefore individual polling instances for each household are required.
When the connection between the in-home Efergy hub and Engage platform is
unavailable data is not buffered by the hub. Due to this we can be certain that
data we read from the live API will not later be back-filled with additional data.

Allsolus Access

Data from the Allsolus Access platform is accessed via a web service as described
in Table A.3. The Allsolus platform uses an on-site logger, the LiveBase, to buffer
data to send periodically to the Allsolus Access platform. Measurements on the
LiveBase logger are typically made every few minutes, but at most frequent are
uploaded to the Allsolus Access platform in 10-minute intervals. If the data
connection between the LiveBase and Allsolus Access platform is unavailable the
LiveBase will buffer data to transmit latter. For this reason we cannot simply poll
the Allsolus Access platform for live readings but must first check our database
for the last reading and query the Allsolus Access platform for any readings
between then and the present time. Only a single measurement channel can be
queried in each call, so individual polling instances for each device measurement
are required.
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UWA Solar

Data from the UWA solar logging platform is accessed via a web service as de-
scribed in Table A.4. The UWA solar logging platform downloads CSV files,
generated by a Sunny Webbox data logger, every 15 minutes and stores these in
a location accessible via HTTP. The Sunny Webbox data logger stores measure-
ments at 5-minute intervals and buffers data internally, splitting the CSV file by
date. So, as with the Allsolus Access ingest, we first check our database at each
poll to determine what period we need to search through the CSV files to ingest.
Each row in this CSV has all the measurements made, so only a single polling
instance is required.

Forecast.io

Weather data is ingested from the Forecast.io [54] service using a web service as
described in Table A.5. The weather data provided by Forecast.io is generated
from data aggregated from a wide range of sources and provides both current
conditions and hourly forecasts for a given location. The current conditions are
polled and ingested directly by a polling instance for each location. Additional
polling instances for each location also ingest the current and next day’s hourly
forecasts every hour. Unlike the rest of the data ingested the forecast data is pre-
sented with a routing key that does not result in it being stored in the database.

3.2.4 Message Broker

The open-source message broker application RabbitMQ [55] provides an imple-
mentation of the Advanced Message Queuing Protocol (AMQP). A Docker con-
tainer for RabbitMQ has been created to host the application as part of the
system. The Python library Pika [56] is used by the components of this system
to interact with RabbitMQ using AMQP. When messages are passed to Rab-
bitMQ they contain a routing key, which determines how they will pass through
and to what components they will be made available. The configuration of these
routes is summarised in Table A.6.

3.2.5 Storage

InfluxDB [57] an open-source time-series database is used to provide storage for
the system. When compared with traditional relational databases, a time-series
specific database is optimised to work with time-series data and can provide a
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significant speed advantage. InfluxDB also provides functions for easily querying
to aggregate or down-sample data. Any queries that are commonly used can
be converted into continuous queries, so that data is processed as it enters the
database rather than when being queried.

RabbitMQ is connected to InfluxDB using the InfluxDB Storage Exchange
plugin [58]. This plugin allows an InfluxDB to appear as a RabbitMQ routing
exchange. Any messages routed to this exchange in RabbitMQ are then stored
into an InfluxDB time-series named with the routing key. The routing keys, and
thus time-series names in InfluxDB follow the format given in Figure 3.2, a full
listing of the time-series is given in Appendix C.

[site].[device].*.*
[site].notification

[lat]_[lng].weather.*

Figure 3.2: Time-series naming convention

Each entry in a time-series contains a UTC timestamp, auto-incrementing
sequence number and typically only a single value. Multiple values can later be
combined from other time-series using either merge or join operations.

3.2.6 Dashboard

The primary end-user interface to the system is a graphical dashboard view.
This dashboard is implemented using the Grafana [59] web application. Grafana
is open-source dashboard web application built upon the JavaScript framework
AngularJS [60] and and plotting library Flot [61]. Being open-source and built
with common technologies makes Grafana extensible to adding new graph types
or metrics.

Grafana integrates directly with InfluxDB to query any time-series and pro-
vides an internal user account database to apply permissions over the data and
dashboard options presented. As the user adjusts the time-span being viewed
in the dashboard Grafana appends variable down-sampling parameters to the
InfluxDB query to limit the data required to best suit the level of zoom.

A dashboard view, as seen in Figure 3.3 has been developed to show the
user how their power consumption and generation align over a period of time.
The view also shows instantaneous power and trends over time for the amount
of energy being generated and consumed. We also show metrics of always-on
power and variable energy consumption and generation over a period including
the amount of this imported-from or exported-to the grid.
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Figure 3.3: End-user dashboard

3.2.7 Notifications

A simple cross-platform method of sending notifications to users was required.
To achieve this, the delivery of notifications to end-devices is handled by the
service Pushover [62]. Pushover is a service that takes in commands to send push
notifications via a HTTP POST request, as given in Figure A.2, and delivers
native push notifications to devices using their client on iOS, Android or desktop
as shown in Figure 3.4.
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Figure 3.4: Mobile device notification

A notification can be generated by any processing node. When this occurs the
command to generate a push notification is immediately sent to Pushover by the
worker that generated the notification and the notification put into the messaging
queue with a notifications routing key. This allows for any notification to be
received for any further processing and to be stored to be used for annotations
on the dashboard.

3.3 Metrics Calculations

Energy monitoring devices used in this study provide a periodic measurement of
instantaneous power, with the period between measurements not guaranteed to
be constant. This section discusses how we calculate a measure of energy and
other metrics from these readings.

3.3.1 Normalising Periodic Measurements

As measurements ingested into the system may be taken at varying intervals, the
period between measurements must be considered when performing calculations.
Given a fixed duration, simply calculating the arithmetic mean, Equation 3.1,
for that period results in a value weighted to intervals with more frequent mea-
surements.

p̄ =
p1 + p2 + · · ·+ pn

n
(3.1)
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To address this we must calculate a time-interval weighted mean, using Equa-
tion 3.2 with weights given by the time-span between measurements. If all weights
are equal this simplifies to the arithmetic mean.

p̄ =
t1p1 + t2p2 + · · ·+ tnpn

t1 + t2 + · · ·+ tn
(3.2)

This is implemented in our system by first up-sampling measurements using
a continuous query in InfluxDB, resulting in measurements being converted into
fixed intervals in the up-sampled time-series by forward-filling from the last value.
This up-sampled time-series is then used to perform calculations.

3.3.2 Energy From Power

We can calculate energy from the power measurements and the time-span be-
tween them using Equation 3.3. Energy is calculated for both consumption and
generation, as well as import and export from the grid. Energy consumption
and generation are directly calculated from the power measurements. For grid
imported and exported energy, first the difference between power consumption
and generation is derived at each point in the time-series and used for this cal-
culation. Periods with a positive power difference occur when energy is being
imported from the grid and negative when it is being exported.

E =
n∑

i=1

tipi (3.3)

This can further be simplified, given the normalised time periods when using
the up-sampled time-series, we can calculate energy in InfluxDB by summing the
power measurements over a time range and scaling this value by the number of
hours in the given time range.

E = trange

n∑

i=1

pi (3.4)

3.3.3 Always-on Consumption

The always-on power consumption is a measure of the constant power consump-
tion of a household when occupants are not actively using any appliances. This
figure represents the stand-by power used in a household. Power consumption
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throughout a typical day is shown in Figure 3.5. The always-on power consump-
tion is most clearly noticeable in the early hours of the day, 01:00AM - 05:00AM.
To approximate always-on power consumption we take the minimum of the power
measurements for a period, the result of this is shown in Figure 3.6.

Figure 3.5: Power consumption in a household over the period of a day

Figure 3.6: Daily minimum power consumption in a household

3.3.4 Clouded Irradiance

The PySolar [63] package was used to calculate an estimated value for clear-sky
radiation at each location for a flat surface. In Figure 3.7 the estimated clear-sky
radiation is shown against the power generated. When looking at the hourly
observations for the day using Forecast.io, given in Table 3.1 we can visually
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identify a relationship between cloud cover and power generation. A simple
metric for this is calculated as the product of estimated clear-sky radiation and
clear-sky cover. The clear-sky cover being the remaining percentage of sky after
the cloud cover has been subtracted. This metric is then grouped into a mean
for morning and afternoon to be used in generating notifications.

Figure 3.7: Solar power generation and estimated clear-sky radiation

Time Cloud cover (%)
06:00:00 0
09:00:00 0
11:00:00 0
12:00:00 9
15:00:00 66
18:00:00 79
19:00:00 0

Table 3.1: Time and observed cloud cover
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CHAPTER 4

Battery Model

A battery model was required to investigate the impact of incorporating battery
energy storage with household roof-top solar PV systems. This chapter details
the development of such a model and how it was used in a simulation with data
gathered by the energy monitoring system.

4.1 Design

As periodic consumption and generation power were the only measurements avail-
able from the monitoring system a simplified battery model driven by only these
measurements was created for use in a discrete-step simulation. The assumptions
made in the model closer reflect a battery energy storage system rather than bat-
tery cell, in that the voltage-current (V-I) relationship is abstracted by a battery
management system (BMS).

The battery model was implemented in Python [53] as a discrete time-step
power-energy-power converter incorporating an ideal fixed-capacity energy store.
An outline of the algorithm is shown in Algorithm 4.1 and the complete code
listing in Appendix D. Once instantiated, the battery is at its lowest depth-
of-discharge (DoD), and can be either charged or discharged at a given power
level and duration. Returned is either the amount of energy consumed-by or
extracted-from the battery for this duration. A maximum continuous power and
short-duration peak power limit the energy returned, as does the current amount
of energy stored in the battery, or state-of-charge (SoC). Conversion losses are
applied as a fraction of this energy at both charge and discharge. A cycle is
counted by the battery after the SoC reaches full and then returns to empty.

22



CHAPTER 4. BATTERY MODEL 4.1. DESIGN

4.1.1 Assumptions

• Power is constant (either continuous or peak level) given there is available
energy capacity.

• Peak charging/discharging power is possible at a fixed multiple of continu-
ous power for a set period. Unless this period is fully depleted a set recovery
period is not required.

• Conversion losses are equal for charge and discharge.

• Capacity is unaffected by charge/discharge rate (No Peukert effect) or cycle
count.

• A cycle is counted only when SoC meets the extremes of empty-full-empty
for the given depth of discharge (DoD) and maximum charge level.

• No temperature dependance.

• Self-discharge is not significant.

• Instant charge/discharge response time.

4.1.2 Parameters

• Capacity: Maximum battery capacity (Wh)

• Depth of discharge: Minimum level to discharge to (ratio compared to
full capacity)

• Maximum charge: Maximum level to charge to (ratio compared to full
capacity)

• Discharge rate: Maximum sustained discharge rate (W)

• Charge rate: Maximum sustained charge rate (W)

• Park charge/discharge rate: Peak rate (ratio compared to charge/dis-
charge rate)

• Peak rate period: Maximum continuous peak period (s)

• Peak rate recovery period: Duration to recover from peak rate (ratio
compared to peak rate period)
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• Conversion loss: Loss in energy during conversion to/from storage (ratio
lost compared to input amount)

Algorithm 4.1: Battery Model

begin
for energy measurement step period do

if power > 0 then
charge(power, period);

else
discharge(power, period)

fi
where
proc charge(power, period) ≡
if peak charge left then

power := min(power, peak rate)
else

power := min(power, continuous rate)
fi

energy stored
+
= (power ∗ period) ∗ (1− losses)

.
proc discharge(power, period) ≡
if peak discharge left then

power := min(power, peak rate)
else

power := min(power, continuous rate)
fi

energy stored
−
= (power ∗ period) ∗ (1 + losses)

.
end

4.2 Simulation

An environment that steped through a time-series of power levels was required
to operate the battery model in a simulation. This was achieved using a Pan-
das dataframe with values for power consumption and generation along a fixed-
frequency time-series index, which was then iterated along with the state cal-
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culated at each step. To demonstrate the battery model a step function, in
three-hour intervals, attempting to charge at 2kW, zero-power, and attempting
to draw 2kW is show in Figure 4.1 using the parameters given in Table 4.2.

Data captured by the monitoring system, for both households with roof-top
solar PV, between 2015/05/14 and 2015/06/05 inclusive was then used to provide
the power level values into the simulation. For these simulations the environment
included the grid-connection as a source/sink for infinite energy. Using the fixed
interval data as generated in Section 3.3.1 the environment was calculated at
each step and the step results saved. This calculation first determines the flow of
power at the step, by comparing power consumption and generation to determine
whether there is any shortfall or excess and how much energy has been generated
and consumed by assuming the power levels are constant for the step duration.
If there is an excess of power at this step an attempt is made to use it to charge
the battery for the step duration. The battery stores energy from this charge
period according to its parameters and the remainder is exported to the grid. If
instead there is a shortfall in power, an attempt is made to discharge the battery
at this level for the step duration in preference to importing from the grid. This
process was repeated for each household and set of battery parameters, as given
in Table 5, including a zero-kWh ideal battery to show the comparison to the
present situation.

Figure 4.1: Battery energy over a charge-discharge cycle
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Capacity 2 kWh
Range 20% - 80%
Continuous Power 500W (0.25C)
Peak Power 1500W (0.75C)
Losses 10%

Table 4.1: Battery parameters used in Figure 4.1
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Results & Analysis

Using data ingested and processed by the system some initial data analysis has
been performed. In particular these analyses shows the usefulness of the ingest,
processing and storage components of the system. The dashboard user interface
was used for an initial visual analysis of the data, while the Python library
Pandas [64] was used for a deeper analysis. Unless otherwise stated results have
been calculated for the period of 2015/05/14 to 2015/06/05 inclusive and for the
battery parameters as shown in Table 5.

Capacity (kWh) 0.5, 1, 2, 5, 7, 15
Range 0% - 100%
Continuous Power 0.5C / 0.5E
Peak Power 0.75C / 0.75E
Losses 10%

Table 5.1: Battery parameters used for simulations

5.1 Energy Usage

For the period examined in this analysis daily totals for energy generation and
consumption are shown in Figure 5.1 for both households. Over this period it
is evident that no amount of battery storage could completely remove the need
for grid import as daily generation rarely exceeds consumption. Low energy
consumption can be seen in household 1 for May 18th and 19th, this was due
to a power monitoring transmitter requiring a battery replacement. The time
period for these two days has been excluded from any further calculations.
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Figure 5.1: Daily energy consumption and generation

Looking at energy generation and consumption at a daily level obscures the
true amount of grid interaction as varying proportions of that energy generated
and consumed are exported and imported from the grid. In Figure 5.2 a view
of the power consumption and generation for both households over a single day,
May 26th, shows the variations in alignment and amplitude. These variations
can be seen even closer in Figure 5.3 and correspond to a need to either import or
export energy to the grid. Short duration, often just minutes, changes in power
in the order of 1-2kW can be seen.

The total energy figures for both households have been calculated and are
given in Table 5.1. Both households have shown the ability to generate approx-
imately 70% of the energy they consumed, but only 25% and 58%, respectively,
of that consumed was from local generation.

Figure 5.2: Single day power consumption and generation
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Figure 5.3: Single hour power consumption and generation

Energy (kWh) Household 1 Household 2
Energy Exported 122.61 130.68
Energy Imported 200.25 290.91
Energy Generated 187.50 347.14
Energy Consumed 265.13 507.37

Table 5.2: Total energy for 2015/05/14 to 2015/06/05 inclusive

5.2 Energy Prediction

To determine the correlation between energy consumption and time or temper-
ature, scatter plots were created as shown in Figure 5.4 and Figure 5.5. The
baseline energy consumption is clear and consistent across both, with the time
of day plot showing a trend toward increased power consumption in the evening
and night. Given this trend, the temperature plot would need to be controlled
for time of day before any further conclusions could be drawn from it.

Focussing on the correlation between energy consumption and time of day,
Figure 5.6 shows how average hourly energy consumption compares between
weekdays and weekends. It is clearly evident that during the weekday work-
ing hours significantly less energy is consumed. Given the limited period of data
ingested into the system, and that this data covers only a winter period it is fair
to assume this difference is due to heating while the household occupied rather
than an opportunity for appliance load-shifting.
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Figure 5.4: Scatter plot of hourly en-
ergy consumption for household 1 and
time of day

Figure 5.5: Scatter plot of hourly en-
ergy consumption for household 1 and
temperature

Figure 5.6: Average hourly energy consumption for household 1 separated into
weekdays and weekends

5.3 Battery Storage

The impact of the addition of even a small battery (2kWh) can be seen in Fig-
ure 5.7, energy is diverted to battery storage then returned throughout the day
thus reducing the amount imported from the grid. It can be see how the bat-
tery charge increases smoothly and provides power for a number of hours after
sunset. The reduction in the average hourly energy imported for increasing bat-
tery capacity can be seen in Figure 5.8. This reduction appears most significant
during the afternoon and evening, which corresponds with an increased level of
consumption, usually of grid-imported power, that instead the battery storage is
able to provide.
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Figure 5.7: Comparison of power and energy over a day, with and without battery
storage

Figure 5.8: Impact of battery capacity on average energy import per 15min

The full disharge-charge-discharge cycle count for the range of battery sizes
is given in Table 5.3. As the batteries are power limited to 0.5C in charging and
discharging the smaller capacity batteries don’t under-go excessive cycle counts.
However, performing a full-cycle daily indicates that at some point the battery
reached full capacity and excess energy would have been exported to the grid. A
higher cycle count would also result in a shorter battery lifespan.
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Full-cycle count Household 1 Household 2
0.5kWh 23 28
1kWh 23 24
2kWh 20 21
5kWh 10 6
7kWh 6 1
15kWh 2 0

Table 5.3: Battery full-cycles for 2015/05/14 to 2015/06/05 inclusive

5.4 Costs

Dependant on the tariff and timing of generation and consumption the cost of
importing energy compared to exporting varies between 149% to 604%, so even
small fluctuations between power generation and consumption can be multiplied
significantly in cost due to timing and tariff. The total costs over the period
are given in Table 5.4 and include a base with and without solar generation in
addition to a 2kWh and 7kWh battery storage system. The energy costs of solar
combined with the range of battery capacities are broken into daily averages and
visualised in Figure 5.9.

Immediately it is visible that the PS1 tariff, which favours a reduction in
weekday afternoon and evening energy consumption is the most economical for
the period analysed. As solar only generates energy during the daylight hours,
alone it can only impact on reducing the amount of consumption during the PS1
tariff super-peak (2pm to 8pm) period until sunset. The reduction in energy im-
port and thus super-peak rates, when adding battery storage capacity is evident
after sunset until 8pm in Figures 5.10 to 5.15.

The most effectively utilised battery can be selected for each household from
the levelling out of daily costs as capacity increases shown in Figure 5.9. For
both households this point occurs at the 5 to 7kWh capacities. The yearly sav-
ings compared with the household importing all energy consumed are given in
Table 5.4, and from this a value/kWh to add battery capacity for each house-
hold is calculated. For household 1 this value is $67.68/kWh when adding a
2kWh battery but drops to $35.67/kWh if adding a 7kWh battery, for house-
hold 2 these values are $101.06/kWh and $46.32/kWh, respectively. A review by
Schoenung [65] found $600(USD)/kWh, assuming the power subsystem costs are
covered in the solar PV system installation, as the cost of a suitable Lithium-ion
energy storage subsystem a with 10-year lifespan. Given these costs, a 2kWh
battery storage system could have been economically viable at the time of solar
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PV installation for household 2.

Costs ($) A1 SM1 PS1
Household 1
None 55.59 58.61 51.95
Solar 39.63 41.34 35.48
Solar + 2kWh 33.90 31.05 26.58
Solar + 7kWh 26.11 21.15 19.06

Household 2
None 114.54 124.50 111.73
Solar 61.30 65.36 57.32
Solar + 2kWh 50.93 50.15 44.03
Solar + 7kWh 43.66 40.76 36.00

Table 5.4: Total costs for 2015/05/14 to 2015/06/05 inclusive

Yearly Saving
($)

Household 1
Yearly Saving

Household 2
Yearly Saving

Solar $250.48 (32%) $827.49 (49%)
Solar + 2kWh $385.84 (49%) $1,029.60 (61%)
Solar + 7kWh $500.20 (63%) $1,151.73 (68%)

Table 5.5: Yearly savings compared to household without generation (PS1 tariff)

Figure 5.9: Average daily costs with the addition of battery capacity for
2015/05/14 and 2015/06/05 inclusive
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Figure 5.10: Average weekday and
weekend energy and tariff costs for
household 1

Figure 5.11: Average weekday and
weekend energy and tariff costs for
household 2

Figure 5.12: Average weekday and
weekend energy and tariff costs for
household 1 with 2kWh battery storage

Figure 5.13: Average weekday and
weekend energy and tariff costs for
household 2 with 2kWh battery storage

Figure 5.14: Average weekday and
weekend energy and tariff costs for
household 1 with 7kWh battery storage

Figure 5.15: Average weekday and
weekend energy and tariff costs for
household 2 with 7kWh battery storage

5.5 Energy Disaggregation

Disaggregation of appliance energy usage from the power consumption data in-
gested into the system was attempted using algorithms from both NILMTK [66]
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and WikiEnergy [67] projects. NILMTK required labeled sub-metered power con-
sumption data to first use to learn appliance models, using the datasets supplied
with NILMTK for training to then disaggregating from the power consumption
data ingested in our system provided little success. The WikiEnergy algorithm
uses a database of appliance models instead of learning. Applying this algorithm
using appliance models made from measurements taken from the Tracebase[68]
repository, resulted in an inability to match any energy consumption with the
models of washing-machine and dishwasher available. These were the only elastic-
load appliances tested with. Appliance models were created using the power
consumption data shown in Appendix B. More success is likely with either more
generalised appliance models or models specific to match the specifications of the
appliances in the household in question.

5.6 Limitations

During the development of the system some limitations of the design become
apparent.

• No feedback for notifications is possible using a service like Pushover to
deliver push notification. This means we are unable to determine with the
occupant found the notification useful or whether it was even acted upon.

• Limited solar PV model not taking into account tilt-angle or reflect-
ed/diffuse radiation. The current energy generation prediction algorithm
assumes a flat panel, that results in an estimate of equal morning and
afternoon generation, which is not the case for an angled panel.

• The limited query language in InfluxDB when compared with a tradi-
tional SQL database constrained the possible metric generation at query-
time.

• No nested queries are possible, though some can be achieved using con-
tinuous queries these must be kept continuously generating data.

• Results from continuous queries aren’t generated until the end of
the period the query is grouped by. This means that for an hourly average,
the current hours average isn’t available until the next hour has started.

• Panning the graphs in Grafana is not possible, as only data for the time
span shown in a graph is queried from the database.
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• Conversion losses are internalised to the battery model and as such
weren’t recorded separately from the amount of energy put into or taken
out of the battery.

• Battery model simulation doesn’t take into account the best time to
discharge the battery to maximise cost savings for variable-rate tariffs.

• Only a short duration (24 days) of measurements were available from
the monitoring system to analyse. These measurements were only for a
single month so are likely to be biased due to seasonal (winter) factors.
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CHAPTER 6

Conclusion

6.1 Future Work

It can be seen from the previous section that there are limitations of the system
that could be addressed by future work.

The most beneficial enhancement would be to create a method of determining
whether the occupant found the notification to be useful and whether they have,
or plan to act on the recommendation. This is likely to require the development
of a native mobile application to allow greater flexibility in the presentation and
function of notifications on the device.

Currently notifications are sent to a device, or set of devices, with no regard
to which of the occupants in a household may be able to apply the recommen-
dation. Given that a typical household has more than one occupant and there is
variability in which occupants may be present at a given time, the notification
system could be extended to only notify an occupant who was in a position to
act on the given recommendation.

For the analysis of the data captured by the monitoring system enhancements
could be made to the battery model used for simulations. A model able to
optimise charge and discharge with regards to time-variable energy tariffs may
prove to be more economically viable. Future work could also include further
comparisons between battery parameters, particularly the impact of optimal peak
and continuous charge/discharge rates for battery capacity sizing selection.

6.2 Conclusion

Although reducing energy consumption and switching to more energy efficient
appliances is a step in the right direction, there is a lower-bound to the energy
savings possible with this approach. At this point making more effective use of
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the variable generation of renewable energy sources requires a shift in consump-
tion to closer follow generation. As we have shown in this study, technology can
be applied to create a system capable of monitoring energy consumption and
generation, processing data and providing feedback. With improvements in con-
sumption and generation prediction techniques this type of system becomes more
relevant in helping to guide behaviours toward efficient energy use.

A model of a battery energy storage system proved useful in simulating the
viability of incorporating energy storage into solar PV systems. In particular, a
combination with a suitable energy rate tariff can further increase the value of
such a system. While costs are unlikely to be viable to retrofit existing installa-
tions with low-capacity battery energy storage, they may be as an addition to a
system at the time of install.

Disaggregation remains an area of study with ever growing improvements,
though as smart devices, with built-in monitoring, become more prevalent its
relevance will diminish. A trend toward increased home automation will help
with load shifting, allowing elastic-load appliances to schedule themselves to suit
the circumstances rather than requiring an occupant to do so manually.
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System Design Details

Host 1 Host 2
Database Ingest-1
Dashboard Ingest-2

Processing-1
Task Controller
Message Queue

Table A.1: Docker containers deployed on each host

{
’weekly-notification’: {

’task’: ’tasks.processing.notifier.summary_report’,
’schedule’: crontab(hour=18, minute=0,

day_of_week=’sunday’),
’args’: (’weekly’),

},
’efergy-poll’: {

’task’: ’tasks.ingest.efergy.poll’,
’schedule’: timedelta(seconds=6),
’args’: (API_KEY, HOUSE_ID)

},
’allsolus-poll’: {

’task’: ’tasks.ingest.allsolus.poll’,
’schedule’: timedelta(seconds=600),
’args’: (SITE_ID, DEVICE_ID, MEASUREMENT_ID)

}
}

Figure A.1: Example of schedule dictionary
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Task Ingest Poll
Period 6s
Type Web service - JSON
Measurement Precision 1s
Measurements UTC Timestamp (Unix)

Instantaneous power per transmitter (W)

Table A.2: Efergy Engage ingest

Task Ingest Backfill Poll
Period 10m
Type Web service - JSON
Measurement Precision 1m
Measurements Date-time string

Instantaneous power per inverter (W)
Instantaneous power consumption (W)
Instantaneous battery voltage (V)
Instantaneous battery current (A)

Table A.3: Allsolus Access ingest

Task Ingest Backfill Poll
Period 15m
Type HTTP access to CSV files
Measurement Precision 5m
Measurements Date-time string

Average power over 5 minutes (W)
Total energy generated since install (Wh)

Table A.4: UWA Solar ingest
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Task Ingest Poll
Period 1h
Type Web service - JSON
Measurement Precision 1h
Measurements UTC Timestamp (Unix)

Current temperature (◦C)
Current cloud cover (% of sky)
Hourly temperature forecast (◦C)
Hourly cloud cover forecast (% of sky)

Table A.5: Forecast.io ingest

Routing key Destination
*.*.generation.power Stream + DB
*.*.consumption.power Stream + DB
*.*.energy_metered DB
*.*.battery.voltage DB
*.*.battery.current DB
*.weather.current Stream + DB
*.weather.forecast Stream
*.notification Stream + DB

Table A.6: RabbitMQ Routes

POST /1/messages.json
Host: api.pushover.net
Content-Type: application/x-www-form-urlencoded
Content-Length: 50

token=API_KEY&user=ID&title=TITLE&message=CONTENT

Figure A.2: Example of push notification POST request
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Household Appliance Usage

The data in Table B.1 is derived from values given in MacKay [69]. Figures B.1,B.2,B.3
are plots of power consumption from measurements captured as part of the Trace-
base repository created by Reinhardt et al. [68]

Appliance Power (kW) Daily usage (h) Energy per day (kWh/d)
Tumble dryer 2.5 0.8 2
Dishwasher 2.5 0.6 1.5

Washing machine 2.5 0.4 1

Table B.1: Appliance usage with power and energy consumption

Figure B.1: Tumble dryer power consumption
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Figure B.2: Dishwasher power consumption

Figure B.3: Washing machine power consumption
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InfluxDB Time-series

• futurefarm.sma(2001543467).generation.power

• futurefarm.sma(2100473018).generation.power

• futurefarm.smaisland.battery.voltage

• futurefarm.smaisland.battery.current

• futurefarm.smaisland.total.power

• humanmovement.webbox.generation.power

• humanmovement.webbox.energy metered

• household1.consumption.power

• household1.generation.power

• household2.consumption.power

• household2.generation.power

• household3.consumption.power
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APPENDIX D

Battery Model Code Listing

1 class Battery:
2
3 def __init__(self, capacity, discharge_depth=0, max_fullcharge=1, discharge_rate=2400, charge_rate=2400,
4 peak_rate=1.5, peak_rate_period=60, peak_rate_recovery_ratio=1, conversion_loss=0):
5 """
6 :param capacity: Maximum battery capacity (Wh)
7 :param discharge_depth: Minimum level to discharge to (ratio compared to full capacity)
8 :param max_fullchage: Maximum level to charge to (ratio compared to full capacity)
9 :param discharge_rate: Maximum sustained discharge rate (W)

10 :param charge_rate: Maximum sustained charge rate (W)
11 :param peak_rate: Peak rate (ratio compared to charge/discharge rate)
12 :param peak_rate_period: Maximum continuous peak period (s)
13 :param peak_rate_recovery_ratio: Duration to recover from peak rate (ratio compared to peak rate period)
14 :param conversion_loss: Loss in energy during conversion to/from storage (ratio lost compared to input amount)
15 """
16
17 self.discharge_depth = discharge_depth
18 self.max_fullcharge = max_fullcharge
19 self.capacity = capacity
20
21 effective_capacity = (capacity * max_fullcharge) - (capacity * discharge_depth)
22 self.energy_storage = IdealStorage(effective_capacity)
23
24 self.conversion_loss = conversion_loss
25
26 self.discharge_rate = discharge_rate
27 self.charge_rate = charge_rate
28
29 self.peak_rate = peak_rate
30 self.peak_rate_period = peak_rate_period
31 self.peak_rate_recovery_ratio = peak_rate_recovery_ratio
32
33 self.peak_period_remaining = peak_rate_period
34 self.peak_period_recovery = peak_rate_period
35 self.peak_period_depleted = False
36
37 self.cycle_count = 0
38 self.current_mode = ’HIT_EMPTY’
39
40 def __str__(self):
41 return ’Battery - Capacity: %dWh, DoD: %.2f, Full charge: %.2f, Discharge: %dW, Charge: %dW, Peak: %.2f,’ \
42 ’ Peak dur: %ds, Recovery Ratio: %d, Conversion loss: %.2f’ % (self.capacity, self.discharge_depth,
43 self.max_fullcharge, self.discharge_rate,
44 self.charge_rate, self.peak_rate,
45 self.peak_rate_period,
46 self.peak_rate_recovery_ratio,
47 self.conversion_loss)
48
49 def charge(self, power, duration):
50 """
51 Charge battery for duration
52 :param power: Constant power for duration (W)
53 :param duration: Duration of charge (s)
54 :return: Amount of energy stored (Wh)
55 """
56 if power > self.charge_rate and self.peak_period_remaining >= 0 and not self.peak_period_depleted:
57 power = min(power, self.peak_rate * self.charge_rate)
58 self.peak_period_remaining -= duration
59 if self.peak_period_remaining <= 0 and not self.peak_period_depleted:
60 self.peak_period_recovery = self.peak_rate_period
61 self.peak_period_depleted = True
62 else:
63 power = min(power, self.charge_rate)
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64 if not self.peak_period_depleted:
65 self.peak_period_remaining += duration * self.peak_rate_recovery_ratio
66 self.peak_period_remaining = min(self.peak_period_remaining, self.peak_rate_period)
67
68 if self.peak_period_depleted:
69 self.peak_period_recovery -= duration * self.peak_rate_recovery_ratio
70 if self.peak_period_recovery <= 0:
71 self.peak_period_remaining = self.peak_rate_period
72 self.peak_period_depleted = False
73
74 assert power >= 0
75
76 energy = power * duration / (60.0 * 60.0)
77
78 stored = self.energy_storage.add_energy(energy)
79 losses = stored * self.conversion_loss
80
81 if self.energy_storage.soc >= 1 and self.current_mode != ’HIT_FULL’:
82 self.current_mode = ’HIT_FULL’
83 self.cycle_count += 1
84
85 # Return the amount the battery removed plus how much it wasted in losses
86 return stored + losses
87
88 def discharge(self, power, duration):
89 """
90 Discharge battery for duration
91 :param power: Constant power for duration (W)
92 :param duration: Duration of discharge (s)
93 :return: Amount of energy returned (Wh)
94 """
95 if power > self.discharge_rate and self.peak_period_remaining >= 0 and not self.peak_period_depleted:
96 power = min(power, self.peak_rate * self.discharge_rate)
97 self.peak_period_remaining -= duration
98 if self.peak_period_remaining <= 0 and not self.peak_period_depleted:
99 self.peak_period_recovery = self.peak_rate_period

100 self.peak_period_depleted = True
101 else:
102 power = min(power, self.discharge_rate)
103 if not self.peak_period_depleted:
104 self.peak_period_remaining += duration * self.peak_rate_recovery_ratio
105 self.peak_period_remaining = min(self.peak_period_remaining, self.peak_rate_period)
106
107 if self.peak_period_depleted:
108 self.peak_period_recovery -= duration * self.peak_rate_recovery_ratio
109 if self.peak_period_recovery <= 0:
110 self.peak_period_remaining = self.peak_rate_period
111 self.peak_period_depleted = False
112
113 assert power >= 0
114
115 energy = power * duration / (60.0 * 60.0)
116
117 removed = self.energy_storage.remove_energy(energy)
118 losses = removed * self.conversion_loss
119
120 if self.energy_storage.soc <= 0 and self.current_mode != ’HIT_EMPTY’:
121 self.current_mode = ’HIT_EMPTY’
122 self.cycle_count += 1
123
124 # Return the amount the battery removed minus how much it wasted in losses
125 return removed - losses
126
127 @property
128 def stored(self):
129 return self.energy_storage.stored + (self.capacity * self.discharge_depth)
130
131 @property
132 def soc(self):
133 return (float(self.energy_storage.stored) / float(self.capacity)) + self.discharge_depth
134
135 @property
136 def full_cycles(self):
137 return self.cycle_count / 2
138
139
140 class IdealBattery:
141 def __init__(self, capacity):
142 """
143 :param capacity: Maximum storage capacity (Wh)
144 """
145 self.capacity = capacity
146 self.energy_storage = IdealStorage(capacity)
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147
148 self.cycle_count = 0
149 self.current_mode = ’HIT_EMPTY’
150
151 def __str__(self):
152 return ’IdealBattery - Capacity: %dWh’ % self.energy_storage.capacity
153
154 def charge(self, power, duration):
155 """
156 Charge battery for duration
157 :param power: Constant power for duration (W)
158 :param duration: Duration of charge (s)
159 :return: Amount of energy stored (Wh)
160 """
161 assert power >= 0
162
163 energy = power * duration / (60.0 * 60.0)
164
165 if self.energy_storage.soc >= 1 and self.current_mode != ’HIT_FULL’:
166 self.current_mode = ’HIT_FULL’
167 self.cycle_count += 1
168
169 stored = self.energy_storage.add_energy(energy)
170 return stored
171
172 def discharge(self, power, duration):
173 """
174 Discharge battery for duration
175 :param power: Constant power for duration (W)
176 :param duration: Duration of discharge (s)
177 :return: Amount of energy returned (Wh)
178 """
179 assert power >= 0
180
181 energy = power * duration / (60.0 * 60.0)
182 removed = self.energy_storage.remove_energy(energy)
183
184 if self.energy_storage.soc <= 0 and self.current_mode != ’HIT_EMPTY’:
185 self.current_mode = ’HIT_EMPTY’
186 self.cycle_count += 1
187
188 return removed
189
190 @property
191 def stored(self):
192 return self.energy_storage.stored
193
194 @property
195 def soc(self):
196 return self.energy_storage.soc
197
198 @property
199 def full_cycles(self):
200 return self.cycle_count / 2
201
202
203
204 class IdealStorage:
205 def __init__(self, capacity):
206 """
207 :param capacity: Maximum storage capacity
208 """
209
210 self.capacity = capacity
211 self.stored = 0
212
213 def __str__(self):
214 return ’Ideal EnergyStorage - Capacity: %dWh’ % self.capacity
215
216 def add_energy(self, amount):
217 """
218 Add energy to storage
219
220 :param amount: Energy to try to store (Wh)
221 :return: Actual amount stored (Wh)
222 """
223
224 assert amount >= 0
225
226 available_capacity = self.capacity - self.stored
227 amount_to_store = min(available_capacity, amount)
228 self.stored += amount_to_store
229
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230 assert self.stored <= self.capacity
231
232 return amount_to_store
233
234 def remove_energy(self, amount):
235 """
236 Remove energy from storage
237
238 :param amount: amount to try and remove
239 :return: actual amount removed
240 """
241
242 assert amount >= 0
243
244 amount_to_remove = min(self.stored, amount)
245 self.stored -= amount_to_remove
246
247 assert self.stored >= 0
248
249 return amount_to_remove
250
251 @property
252 def soc(self):
253 """
254 State of charge
255 :return: Ratio of stored amount to capacity
256 """
257 if self.capacity == 0:
258 return 0.0
259 return float(self.stored) / float(self.capacity)
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