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Abstract 
 

In 2013, an autonomous high level control system was developed on a Formula SAE race car, 

enabling the vehicle to autonomously drive along paths defined by GPS waypoints. This provided 

UWA with a platform as a foundation for further research into driverless performance vehicles. In 

2015, the Autonomous SAE Team of the REV project set out to improve a number of aspects on 

the functionality and robustness of the vehicle. Subsequent to preliminary investigation, it was 

determined that a limiting factor in the vehicles performance, ease of use and propensity for 

advanced obstacle avoidance was its poor localisation. A robotic vehicles localisation describes its 

ability to accurately determine its position in either an absolute (global) frame, or its relative 

position from its initialized position. 

This report outlines the design and implementation of a unique low cost Real-time Kinematic GPS 

solution, integrated into the SAE vehicle’s localisation scheme. This integration is adapted to 

vehicles current controller and configured to enable survey grade absolute positioning during times 

of GPS availability. The tests on the RTK implementation indicated significant improvements in 

the accuracy of absolute position, with a slight compromise in reliability. However more 

importantly, the capacity for the vehicle to localize accurately identified masked problems in the 

vehicle control, and thus allowed for progression towards a better functioning autonomous vehicle.  

Whilst the complete implementation of the RTK GPS was successful, it highlighted the need for 

the vehicle to be able to operate even in times of a loss of GPS availability. For a complete 

localisation solution, methods of dead-reckoning and filter driven interpolation between GPS 

corrections were investigated. 

The second phase of the report aims to implement a tightly coupled recursive Extended Kalman 

Filter into a sensor fusion scheme using odometry as the main element of positioning. The fusion 

method software and hardware infrastructure is designed and partially implemented, outlining all 

possible issues that might arise in the full implementation and testing. 
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1. Introduction 
1.1  Background and Motivation 
1.1.1    Autonomy and Localisation 

The automotive industry has targeted vehicles as a platform for automation from as early as the 

1920’s [1]. In the past decades, major industry leaders and academic institutes have accelerated 

improvements and emphasized a shift to complete self-sufficient autonomy [2, 3]. This change 

encompasses an overarching goal of developing commercialized autonomous vehicles that are able 

to navigate a variety of environments, including urban and dense locations. Whilst trying to reach 

this goal, it is important to ensure ultimate safety and reliability of the vehicle when in robotic 

control, and thus new methods are constantly being developed to improve upon existing 

foundations[4]. The ability for a nonholonomic vehicle to accurately localize itself within both a 

local and absolute global frame is the underlying requirement for autonomous control[5]. It thus 

acts as both a precursor to advanced path planning and obstacle avoidance techniques, as well as 

a constant target to be holistically redesigned to adhere to lower costs and robustness[6]. 

Current autonomous vehicle localisation methods are numerous in implementation, mostly due to 

the requirement for adaptability to the specific vehicle platform they are employed on[7] as well 

as cost constraints. Commonality in the methodologies is however realized through the fusion of 

at least two or more sensors, such as GPS and IMU [8, 9]. This has been proven to achieve 

autonomous compliant accuracies whilst still allowing for multiple redundancies and 

environmental changes.  In accordance with the immediate purpose or dependency of the 

autonomous vehicle, localisation can be tightly coupled with mapping techniques such as SLAM, 

incorporating sensors such as LIDAR[10]. Cameras and night vision are often used in conjunction 

with various computer vision techniques to allow for specific application such as detecting road 

signs and pedestrians [11]. These mapping techniques are often used to aid localisation by 

identifying landmarks and ‘fence posts’ so that a vehicle can employ pattern recognition to localize 

itself in a previously known environment [12]. 

Absolute positioning is an extension of relative positioning that applies a global correction to the 

localisation frame of the vehicle. If a vehicle is to drive in unknown environments or by plotted 

global waypoints, it would require some form of global correction. This is however a large 
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restriction as any sky cover will disable the use of GPS, thus requiring intermediate relative 

positioning. The ability for a vehicle to interpolate its relative position during global corrections is 

known as dead reckoning [9]. The most common form of dead reckoning is the use of odometry 

techniques enabled by wheel speed sensors [13]. One of the more prominent challenges in dead 

reckoning methodology is the ability to mitigate cascading errors that result in expanding 

ellipsoidal-form error over time. Attempts have been made to minimize the errors, however this 

requires computationally expensive processes similar to neural networks and machine learning 

[14]. 

1.1.2    Project Context 

Formulae SAE [15] is a long-running annual competition organized by the Society of Automotive 

Engineers, running various events around the world. The new branch of the competition focuses 

in electric vehicles, from which the vehicle discussed in this report spawns. The vehicle however 

has since expanded out of the specifications of the competition by becoming fully-autonomous. In 

2015, the Autonomous SAE Vehicle Project is orientated towards the improvement of various 

aspects and short-comings of vehicle control, path planning, obstacle detection, safety procedures 

and interfaces. These have been identified from a combination of previous work recommendations 

[16] and preliminary testing on the current performance issues. The project is carried out under the 

banner of the REV Project at UWA [17] in collaboration with a team, using an electric SAE vehicle 

with an existing autonomous specification. The focus of the project is to conduct research on an 

autonomous vehicle platform relating to control algorithms, sensor interfacing and low-cost 

compliance. The vehicle must maintain its ability to be controlled manually, whilst being able to 

navigate autonomously to global waypoints and monitor its surroundings for obstacles[18]. 
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Figure 1 2015 Autonomous SAE Race Car 

1.2  Purpose 
This report focuses on an encompassing approach to improving the absolute localisation of the 

SAE vehicle, with respect to both accuracy and functionality. This is initially investigated by the 

complete implementation of RTK GPS to improve the vehicles absolute localisation. Subsequently, 

through the aspect of functionality in GPS outage, the effectiveness of integrating odometry into a 

non-linear sensor fusion scheme is investigated. This ultimately results in the dynamism towards 

a tightly coupled, closed loop fusion scheme driven by a recursive Extended Kalman Filter. 

Adopted methodology is integrated into a new novel type of control platform (Raspberry Pi 2) 

with limited data acquisition interfaces and computational capability.   

1.3  Project Delimitations 
This project will outline the complete implementation of integrating RTK GPS into the localisation 

scheme, as well as detail the resulting improvements to the overall functionality. As a direct 

outcome of the results from this change, further evocations of extended methods are investigated 

and designed. The implementation of an Extended Kalman Filter with tightly coupled odometry 

integration is modeled for adaption to the localisation scheme. The software and hardware design 

is completed sufficiently for primary tests and discussion, however the complete implementation 

is not covered and tested due to scope constraints. Furthermore, throughout the course of the 
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project, a multitude of auxiliary changes were made to the SAE vehicle as tangential improvements 

to its overall autonomy. These changes will not be covered, as they do not strictly adhere to the 

goal of the research to remain self-contained and modular. 

1.4  Report Layout 
Section 2 will cover the various navigation and positioning systems associated with the sensors to 

be used throughout the project. This invokes understanding on the relative emphasis placed on 

both the choice of methodology, as well as design criteria surrounding the limitations of each 

sensor. Section 3 will briefly cover the theory background to the fusion techniques referred to in 

the design of the new fusion implementation. 

Section 4 of the report will outline the rationalization and final design choices for the RTK-GPS 

interface. A considerable extension to the project was to design an interface to the control platform 

for each sensor that is both computationally compatible and functionally sound. The design choice 

is rationalized against various methods, and a brief comparison is drawn between each. 

Section 5 outlines the design of the Extended Kalman Filter, which is outlined together with the 

required inputs from each sensor. 

In section 6, the RTK GPS implementation is tested against the previous QStarz GPS using various 

metrics that are important for localization. Results are detailed and discussed in regards to the 

overall implications towards the initial goal and to the system performance as a whole. 

Furthermore the primary tests involved in the design of the EKF and odometry are described, with 

the issues uncovered relating to the full implementation. 

Finally, in section 7 conclusions are drawn about the effectiveness of both designs and using the 

results and discussions. Recommendations are made for further work, which covers the full 

implementation of the EKF, as well as the next steps for the Autonomous SAE project. 
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2    Navigation and Positioning System 
2.1  GNSS 
2.1.1    Global Co-ordinate System 

Global Navigational Satellite System (GNSS) is an autonomous system of satellites that provide 

geo-spatial positioning with global coverage to ground based receivers. It allows the receivers to 

determine their longitude, latitude and altitude using temporal signals transmitted from satellites 

carrying ephemeris data. There is a multitude of GNSS receivers available at varying costs in the 

consumer grade level capable of varying levels of accuracy. The more commonly used GNSS in 

Australia and other western countries is GPS, developed by the US in 1973 [19]. 

Differential GPS is a method of providing differential corrections from a base station receiver to a 

roving receiver in order to improve the accuracy of the solution. This tends to be a more expensive 

alternative to standard GPS, however able to provide better accuracy and faster solutions. To 

achieve accuracy compliant to autonomous on-road driving, a form of differential GPS is 

recommended[20], as this allows for accuracies below a meter. An extended form of differential 

GPS is RTK GPS. This involves setting up a base station at a surveyed known position at close 

proximity to a roving receiver. The base station and roving receiver will attempt to receive signals 

from the same satellites and compare carrier cycles in the signal. This is explained in detail in 

Appendix B. 

The SAE Vehicle had an existing positioning system it used for basic autonomous driving in large 

open areas, achieved by using a standard low cost GPS (QStarz BT-Q818X) and IMU. It required 

a constant GPS fix, and used an IMU to interpolate movement during incoming GPS data. This 

was sufficient for basic waypoint navigation; however sensor drift made it unviable for on-road 

driving. Incoming data from the two sensors was directly read in by the car controller, and used a 

C++ implementation for interfacing and fusion.  
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2.1.2    Limitations 

A number of factors can lead to poor position or track angle solutions from a GPS, resulting in 

either inaccurate values or none at all. The largest contributor to a poor solution is a lack of 

satellites available to the receiver. If the satellites used in the solution is less than six the solution 

could deviate by up to ten meters [8, 9] and if below four, the fix can be lost entirely. When in 

differential or RTK fix, the only constant limitation in positioning capability is the reliability to 

maintain that fix. Other limitations such as poor satellite dilution of precision (DoP) and age of 

corrections are inevitabilities that are ‘force majeure’ in that they cannot be removed. This however 

shifts design criteria implied by these limitations into the second part of the project, which is 

integrating dead reckoning (Detailed in section 3.1). 

2.2  IMU/INS 
2.2.1    Inertial Navigational System 

Inertial Measurement Units measure inertial forces on their frame to determine accelerations in 

relative Cartesian co-ordinates. It does this with the aid of 3 degrees of freedom accelerometers, 

gyroscopes and magnometers. If the initial forces on an object are known as well as initial position 

and velocity, an IMU can be used to determine position when GPS is unavailable[21]. Furthermore, 

the IMU will always output a heading relative to true north after calibration, generated by either 

quaternions or Euler angles (Pitch/Roll/Yaw).  

The IMU on the SAE Vehicle is an Xsens MTi IMU [22], which has already been integrated in 

2013 by a previous student team. It is currently being used to output heading and for interpolating 

acceleration, velocity and position in the fusion scheme. It is thus using a method of minimal loose 

coupling with GPS as it is only being used to aid GPS based localisation. 

2.2.2    Limitations 

The main fallback of an IMU is its inability to acknowledge any errors accumulated over time. 

The unit will experience a cascading effect on sensor drift and without a global correction such as 

GPS, error will increase over time[7]. This limitation is only noticeably reduced when entering the 

high price range bracket for IMUs, and is highly restrictive in long or high speed driving. The 
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implication of this is a necessity to tightly couple an IMU with some form of odometry like wheel 

speed sensors or to constantly receive global GPS corrections. 

2.3  Odometry 
2.3.1    Wheel speed sensors 

The use of wheel speed sensors are generally considered essential for many autonomous platforms. 

They can be used to accurately determine velocity of all four wheels, which can be integrated to 

provide position. More importantly, they are able to effectively mitigate position drift when the 

vehicle is stationary. There are numerous simple methods of implementing them into localisation 

and also using them in feedback control of acceleration and steering. In conjunction with wheel 

speed, it is beneficial to use sensors such as Hall Effect sensors on the steering position to feed 

back into the controller. This can be used in conjunction with wheel velocities to accurately 

determine the direction of travel and the distance travelled. 

In the past, wheel speed sensors on the SAE car has been implemented in foundation through both 

hardware and software. This involved setting up 7 magnets on each wheel in a location that a hall 

sensor would detect them. The signals are compared with an expected voltage increase (through a 

comparator), which combined with logic, outputs a high voltage signal into an Arduino Embedded 

Controller. This year, a few changes had to be made to the initial wiring to get functioning signals, 

as well as a few software changes to the Arduino to calculate and output the wheel speeds to the 

main controller. 

2.3.2    Limitations 

Wheel speed sensors can be inaccurate when the data from them is not properly acquisitioned at 

set intervals. This makes it important to calculate wheel speed in real time and on a separate 

dedicated controller rather than the main controller. It can then work through the use of software 

and hardware interrupts on every pulse count of a sensor on the wheel. The data should be 

synchronously outputted to the main controller so that the controller can construct an accurate 

integration on velocity. 
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3    Sensor Fusion 
3.1  Dead Reckoning 

Dead Reckoning is the process of obtaining position using the previously known position and 

advancing that position based on dynamics including velocity, acceleration and heading and is the 

most common way to localize any robotic system [9, 23, 24]. It is a form of relative positioning, 

as it can only determine the change in positon from a starting position. Dead reckoning can use a 

number of sensors such as wheel speed, IMUs, cameras and LIDAR (See introduction).  

In this project, dead reckoning is investigated in regards to providing interpolating distances in 

between times of GPS unavailability. Wheel speed velocity and IMU acceleration is used to 

construct a measurement vector for the Extended Kalman Filter, configured to advance the system 

state vector according the a process model defining the vehicle dynamics. 

3.2  Kalman Filters 
The Kalman filter was developed and published in 1960 by Rudolph Kalman as a recursive 

filtering method for discrete sets of data [25]. The filter uses a three step algorithm to estimate past, 

present and future states of a linear system. This is enabled through using actual measurements of 

various states and processing them with the goal of minimization of the least mean squared error 

[26]. This results in ‘smoothing’ out a data set by trying to remove predicted noise and drift and 

can be used to more accurately determine changes in position and velocity.  

The existing Kalman filter in the car is used in both the path planning and path tracking algorithms. 

This is a standard 3rd order position, velocity and acceleration filter implemented in C++ by Adrian 

Boeing [27]. This is able to filter the dynamical state of the vehicle to some extent, however the 

inherent non-linear relationship of the vehicle dynamics will negatively impact the effectiveness 

of the filter. Whilst there exists multiple flavors of Kalman filters such as unscented Kalman filters, 

recursive Kalman filters and Extended Kalman Filters, they all require the model on which they 

act to ultimately be linear. A Kalman filter, namely the Extended Kalman Filter can be modified 

however to act upon a non-linear system by first linearizing about a covariance of the 

measurements. This is explained in detail in appendix 9.2 and section 5.1. 
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4    Data Interface Design and Collection 
4.1  RTK GPS – Piksi 
4.1.1    Control Structure 

For use in this project, the Autonomous SAE Team has acquired a relatively low cost RTK GPS 

module built by a San Francisco based company, Swift Navigation [28]. It is a first generation 

product with limited documentation and example code. In an effort to maintain homogeneity in 

system infrastructure, the interface was programmed into the controller with C++ and a C based 

message parser. Furthermore, maintaining the GPS receiver and IMU on the same platform, where 

latency can be mitigated through a common clock will improve synchronization and signal 

processing capability [24]. 

This system has bi-lateral communication requirements, as RTK GPS needs to maintain 

communication between both base station and the roving receiver, as well as between the receiver 

and the control hardware on the vehicle. The communication between the base station and receiver 

units simplifies into two feasible options after considering the maximum reached distance between 

the two (approximately 500m). The first of these is using Wi-Fi to communicate correction data 

from the base station to the receiver, however this was not chosen so to minimize IP traffic into 

the Pi for separate reasons. The chosen implementation was to use the existing hardware on the 

Piksi GPS modules to communicate through two 915MHz 3DR Radio Receivers. Furthermore, the 

Piksi units each have an external GPS antenna, which will be described in section 4.1.3 further. 

Figure 2 shows the block diagram with all associated communication channels involved in the 

setup.  

The Raspberry Pi 2 controller is a relatively new product, and runs a Linux based operating system. 

This had to have extensive work done to it to enable fully functioning connectivity to the RTK 

GPS, which was documented and shared with other researchers online. 
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Figure 2 Piksi RTK GPS Set up Block Diagram 
 

4.1.2    Serial Interface 

Communication between the roving receiver and base station is limited to USB. The 

communication protocol being carried through USB is not the standard NMEA 0183 strings 

commonly used by GPS. The Piksi GPS units use their own proprietary protocol, SBP (SwiftNav 

Binary Protocol), which is able to communicate more information than NMEA, as well as baseline 

RTK compatible messages which NMEA is not. This however results in the requirement to 

develop a specific message parser. This parser was developed in C, using the supplied SwiftNav 

Piksi libraries for running cycling redundancy checks on the incoming messages, and for generic 

node allocation. The code for this is shown in appendix 9.4 and is compiled and ran on the 

Raspberry Pi 2. 

When designing the interface, multiple polling and interrupt based methods were investigated and 

tested. The main considerations in investigating the method was to note the data from the GPS was 
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synchronous, fast and important. The final decision was chosen to poll serial data into a FIFO 

structure that would be emptied at set intervals. This ensured that no data would be missed and the 

most recent solutions would be available to the controller. The code process implementation is 

shown in figure 3. 

 

Figure 3 Code Structure for Piksi Serial Interface (See Appendix for Actual Code) 

The software implementation uses a multi-threaded approach as well as class orientated 

programming. A thread separate to the main car control thread is spawned to carry out dedicated 

processing of the Piksi messages, as well as dedicated thread to monitor for GPS failure. This is 

compliant with keeping the software running in modular fashion, as well as utilizing the full 

processing capacity of the Raspberry Pi 2. 

4.1.3    Physical Implementation 

As described in section 5.1.1, the Piksi units have an external GPS antenna. This requires a metallic 

ground plane, which has been investigated to provide a large improvement on the antenna signal 

gain [29]. Furthermore, this antenna cannot be placed close to any magnetic interference such as 

an IMU’s magnometers, as it will reduce both the quality of the IMU as well as the GPS signal. 

The final design is shown in figure 4, using an enclosure designed by a previous student, Ruvan 

Muthu-Krishna [29]. 
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Figure 4 GPS Physical Implementation  

4.2  IMU 
The IMU was calibrated and configured in previous years to send pitch, roll and yaw to the car 

controller. The only change made in this configuration was to reduce the rate at which the car 

controller accepts messages from the IMU from 100Hz to 10Hz. This was done to further increase 

computational efficiency of the other components of the controller. Whilst increased sensor 

reading rates are generally beneficial for localisation, there is a diminishing returns factor involved 

[30], especially if other sensors are incapable of generating solutions at an equally large rate. 

4.3  Odometry 
The wheel speed sensors are a simple configuration of hall sensors detecting the passing of seven 

magnets attached to each wheel. As described in section2.3.1, the hardware for this was already 

on the car, as well as the required circuitry for inputting the received signals into the current Low 

Level Control. Small wiring changes had to be made to integrate all four wheels into the circuitry, 
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as well as some minor changes to the logic. This was done by the help of another SAE Team 

member, Sonia Miranda. The Arduino used in the Low Level Control was programmed to calculate 

the wheel speed for each wheel individually, and then to transmit those values, along with the 

current steering position through serial to the car controller.  

5    Fusion Implementation 
5.1  EKF 

The extended Kalman Filter is a derivative of the Kalman Filter, with the only difference being its 

effectiveness in a non-linear environment. This is through computing Jacobian matrices of the non-

linear relationship in the state vector evolution to conduct linearization about the estimate of 

current covariance and mean [31]. The localisation of an autonomous vehicle following complex 

paths is inherently non-linear, and so the new adaption of the EKF is required.  

The most imperative step in developing an EKF is to accurately model the system through a 

relevant state vector and transition matrix. In the case of this project, a model has been designed 

and outlined based on an 8 state EKF model which remains simple, yet effective. The model (fully 

described in appendix 9.2) defines the set of matrices in table 1 to be used in the algorithm 

described in figure 5. 

The vehicles dynamical state is can be completely described by the state vector, 𝒙𝒌. 

𝒙𝒌 = [𝒙, 𝒚, 𝒗, 𝒂, 𝝋, 𝝋̇]𝑻 

X

Y

v, a

ϕ 

 

Figure 5 Vehicle Local Co-ordinate frame 
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The evolution of this state vector is described by the process model, 𝑓, using the previous state, a 

control vector and a process noise. The state vector is also related to the actual measured values of 

the system, z through a measurement model function, h. 

𝒙𝒌 = 𝑓(𝒙𝒌−𝟏, 𝒖𝒌−𝟏,𝒘𝒌−𝟏) 

𝒛𝒌 = ℎ(𝒙𝒌, 𝒗𝒌) 

For our system, the process model is described by the set of equations below. 

𝑥𝑘 = 𝑥𝑘−1 + cos(𝜑𝑘−1)(𝑣𝑘−1𝑇 + 𝑎𝑘−1 𝑇2 2⁄ ) − sin(𝜑𝑘−1)(𝑣𝑘−1𝜑
.
𝑘−1 𝑇2 2⁄ )

+ 2𝑎𝑘−1𝜑
..
𝑘−1 𝑇3 6⁄  

𝑦𝑘 = 𝑦𝑘−1 + sin(𝜑𝑘−1)(𝑣𝑘−1𝑇 + 𝑎𝑘−1 𝑇2 2⁄ ) + cos(𝜑𝑘−1)(𝑣𝑘−1𝜑
.
𝑘−1 𝑇2 2⁄ )

+ 2𝑎𝑘−1𝜑
..
𝑘−1 𝑇3 6⁄  

𝜑𝑘 = 𝜑𝑘−1 + sign(𝑣𝑘−1)(𝜑
.
𝑘−1𝑇 + 𝜑

..
𝑘−1 𝑇2 2⁄ ) 

𝑣𝑘 = 𝑣𝑘−1 + a𝑘−1𝑇 

𝑎𝑘 = 𝑎𝑘−1 

The measurement model is described by the matrix. 

𝑯𝒊,𝒋 =  

[
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0]

 
 
 
 
 
 

 

In our system, there is no implementation yet of a control vector u, or consideration towards the 

noise implications towards state evolution. All of the other matrices involved in the algorithm and 

the already discussed are outlined in table 1. 

The covariance matrices 𝑸𝒌 and 𝑹𝒌 will need to be individually constructed when the Kalman 

filter is optimized, so that they capture the noise associated with the sensors involved in processing 

and measuring the states discussed above. 
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Table 1 EKF Definitions used in this model 

𝒙𝒌: [𝒙, 𝒚, 𝒗, 𝒂, 𝝋, 𝝋̇]𝑻 State Vector 

𝒛𝒌: [𝒙, 𝒚, 𝒙̇, 𝒚̇, 𝒙̈, 𝒚̈, 𝝋]𝑻 Measurement Vector 

𝒇(𝒙𝒌−𝟏, 𝒖𝒌−𝟏,𝒘𝒌−𝟏) Non-linear process function (of state vector, control vector 

and process noise vector respectively) 

𝒉(𝒙𝒌, 𝒗𝒌) Non-linear measurement function (of state vector and 

measurement noise vector respectively) 

𝝏𝒇𝒊

𝝏𝒙𝒋
= 𝑭𝒊,𝒋 

Transition Matrix: Jacobian of process function with 

respect to state vector 

𝝏𝒉𝒊

𝝏𝒙𝒋
= 𝑯𝒊,𝒋 

Measurement Matrix: Jacobian of measurement function 

with respect to state vector 

𝝏𝒇𝒊

𝝏𝒘𝒋
= 𝑾𝒊,𝒋 

Jacobian of process function with respect to process noise 

vector 

𝝏𝒉𝒊

𝝏𝒗𝒋
= 𝑽𝒊,𝒋 

Jacobian of measurement function with respect to 

measurement noise vector 

𝑸𝒌 Process Noise Covariance Matrix 

𝑹𝒌 Measurement Noise Covariance Matrix 

 

The input to the recursive EKF algorithm (shown in figure 6) is the current measurement vector, 

as well as the previous state vector and previous estimation covariance P. The first step is to make 

a prediction of the current state vector and error based on the matrices defined in table 1. The next 

step is to correct the prediction based on the actual measured values and resulting gain. The output 

is then a more accurate definition of the current state and corresponding covariance. 
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Recursive EKF Algorithm 
 

Input : 𝑧𝑘, 𝑥𝑘−1, 𝑃𝑘−1 

 Data: f and h 

 for current time k do 

  Prediction Step: 

  𝑥̂𝑘= 𝑓(𝑥̂𝑘−1, 𝑢̂𝑘−1) 

   𝐹𝑘=
𝜕𝑓
𝜕𝑥

|𝑋𝑘−1, 𝑢𝑘−1 

   𝐻𝑘=
𝜕ℎ
𝜕𝑥

|𝑋𝑘−1 

   𝑊𝑘=
𝜕𝑓
𝜕𝑤

|𝑋𝑘−1, 𝑢𝑘−1 

   𝑉𝑘=
𝜕𝑓
𝜕𝑣

|𝑋𝑘−1 

   𝑃𝑘=𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 + 𝑊𝑘𝑄𝑘−1𝑊𝑘

𝑇  

  Correction Step: 

  𝐾𝑘=𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑉𝑘𝑅𝑘𝑉𝑘
𝑇)−1 

  𝑥̂𝑘 = 𝑥̂𝑘 + 𝐾𝑘(𝑧𝑘 − ℎ(𝑥̂𝑘) 

  𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘 

 end 

Output: 𝑥𝑘, 𝑃𝑘 
 

Figure 6 Recursive EKF Algorithm [32] 

 

The measurement vector used in the algorithm requires position from the GPS, velocity from the 

wheel speed sensors and acceleration from the IMU. The car heading is determined by a fusion of 

the yaw from the IMU and the track angle from the GPS. The algorithm runs on a set time interval, 

which is calibrated to the rate at which data from the sensors can reliably be interpreted, and that 

the computed covariance is associated with. 
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6    Results and Discussion 
6.1  RTK GPS 

A complete testing procedure was developed at the start of the project for testing various GPS 

receiver metrics against each other as well as against the performance specification supplied by 

the manufacturer. This included either quantitative statistical analysis or qualitative analysis on the 

following: 

1. Position Accuracy 
2. Velocity Accuracy 
3. Orientation Accuracy 
4. Availability and Reliability 
5. Speed of initialization (Time to acquire feasible fix)  
6. Long term dead reckoning tests 
7. Integration with current control system 
8. Integration with fusion auxiliaries *if required* 
9. Additional interfaces  

 
Each metric had a pre-defined requirement checklist, as well as a template for the required data, 

of which as example is shown in appendix 9.6. The below results are comparing the Piksi to the 

previously used QStarz GPS on various platforms, including the SAE vehicle and other vehicles 

that could maintain a faster speeds. This is only a summary of the tests conducted, with the 

resulting implications. 

6.1.1    System Reliability 

The reliability was a lumped measurement of both acquisition rate from a cold or hot start and 

utilization of available satellites over time. The test platform for each GPS was the SAE vehicle 

itself, as this is able to incorporate the final design location of the receivers on the vehicle, which 

is expected to effect the results. 

6.1.1.1    Acquisition Rate 

The acquisition rate for a cold start (after powering on) and a hot start (temporarily loosing signal) 

can be measured for both receivers simultaneously. This was done using GPSD, a Linux based 

C++ standard GPS wrapper [Refer to Computer Listing], and the software developed for the Piksi 

on the Autonomous SAE vehicle. Table 2 shows the averaged results from 10 attempts under 
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various cloud cover and sky density conditions. A two satellite fix was chosen as metric as this is 

generally when the GPS receiver has initialized and is able to start receiving data. 

Table 2 Acquisition Rates - Cold and Hot Start 

 QStarz Cold/Hot Piksi Cold/Hot 

2 Satellite Fix 28s ± 3s / 1s ± 1s 15s ± 5s / 1s ± 0.5s 

Single Point 35s ± 5s / 2s ± 1s 26s ± 6s / 1s ± 1s 

Differential  Not Available 46s ± 8s / 2s ± 3s 

Floating RTK Not Available 50s ± 11s / 2s ± 3s 

Fixed RTK Not Available 64s ± 13s / 4s ± 2s 

 

The Piksi has a faster cold start A/R than the QStarz GPS for baseline single point solutions by 

roughly 34% and for two satellites by roughly 50%. This is likely due to the use of an external 

antenna on a ground plane for the Piksi, where the QStarz uses an internal smaller antenna without 

a ground plane. The cold start acquisition rates for differential and RTK solutions (available to 

only the Piksi) is roughly double that of the single point solution, however the compromise is 

acceptable to obtain the improved accuracy as detailed in earlier sections. Hot start is consistently 

low for both the QStarz and Piksi, which is expected. The increase from the nominal 1 second 

from single point solution to 2 or 3 seconds for differential and RTK is due to delay in correction 

data being computed by the Piksis’ roving receiver. This is important for when the sky above the 

receiver is blocked by the environment or a building. When the line of sight is re-established, the 

Piksi receiver is able to generate a temporary solution in a similar interval to the QStarz. It is then 

able supply a more accurate solution when the RTK algorithm reaches acceptable thresholds for a 

generated solution. 

6.1.1.2    Available Satellites Used 

The type and quality of the obtained fix is directly correlated to the number of satellites used in 

the solution. Receivers will acknowledge available satellites and attempt to use them in a solution 

if they comply with a low dilution of precision (DOP) and can be interpreted [8]. This test was 
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carried out using the two receivers placed at close proximity, and monitoring the satellites they 

saw available and what they used in solution simultaneously, with results displayed in figure 7. 

 

Figure 7 Satellites Available and Used over approximately 6 hours 

The number of available satellites remains relatively constant and similar between both receivers. 

However, it can be seen that the Piksi consistently uses 2 to 3 less satellites in the solution relative 

to the QStarz. This would not be a problem during an RTK fix as the solution quality is superior 

even with low satellites numbers, however the single point solution from the Piksi would be poorer 

than the QStarz. The implication of this is aligned with limitations described in section 2.1.2, and 

is another motivator for the complete integration of Odometry and EKF. 

6.1.2    System Performance 

6.1.2.1    Positioning 

After setting up the Piksi GPS according to section 4, it could be tested against both the previous 

GPS and the Piksi’s themselves when not in an RTK fix. Since the RTK correction is applied on 

single point position data, it is possible to log the single point standard solution against the RTK 

solution simultaneously for a single run.  

The base station was setup at a known GPS location and initialized to start sending correction data 

to the roving receiver. The results of the RTK solution against single point position are shown in 

figure 8 for a single run. 
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Figure 8 RTK Position Performance vs Single Point Solution 

Table 3 Position Accuracy Max, Average and Std 

Solution Maximum Deviation Average Deviation Std of Deviation 

Piksi RTK Solution 0.23 m 0.04 m 0.01 m 

Single Point Solution 

Piksi 
5.45m 3.45m 2.42m 

Single Point Solution 

QStar 
4.42m 3.31m 1.14m 

*Deviation was determined by linearizing path segments and rotating along an axis such that 

the perpendicular distance between two paths could be compared. (Mathematica Used) 

 

The RTK solution shows significant improvements over the single point solution throughout the 

course of the run. It should be noted that the single point solution from the Piksi was on average 

less accurate than the solution from the QStarz, despite its RTK solution being vastly superior. 

This highlights the fact that even with less satellites and poorer triangulation, RTK still 

outperforms single point solutions. There is deviation regardless of the solution when the rover is 

close to an object that may cover the sky line of sight (like a tree), however the RTK solution is 

RTK Solution 

QStarz Single Point  

Ground Truth 

Base Station 

*Piksi Single Point Solution Not 

Shown 
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less perturbed. This is because the GPS receiver will always attempt to generate a single point 

solution as a baseline, regardless of how many satellites it currently has access to. The RTK 

solution on the other hand will receive correctional data from the base station over radio during 

the intermittency and be able to accurately position itself as soon as satellites ephemeris is re-

established.  

6.1.2.2    Velocity 

The receivers were placed on a vehicle maintaining a constant speed on a flat road to measure the 

velocity jitter over approximately 4 minutes. 

 

Figure 9 Stacked Scatter Graph for Velocity Jitter 

As expected, the baseline velocity measurements from an RTK fix is more stable about the constant 

value. The standard deviation from the single point solution is 1.279 m/s whereas the RTK GPS 

has a deviation of only 0.4m/s. The fusion scheme could not previously use the velocity 

measurement from the only available single point solution, as it was too inaccurate, which agrees 

with the above result. However, if an RTK fix is used, the velocity is much more reliable, to the 

extent that it could be used with the Kalman filter to effectively provide position from velocity 

integration.  
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6.1.2.3    Heading 

The heading generated from GPS is a standard message parsed in normal NMEA 0183 protocol 

[33], referred to as GPS track angle. The SBP message protocol used by the Piksi currently does 

not have track angle natively parsed, so it is calculated. The coding changes to the GPS class in 

control involved with both initializing the GPS and calculating the GPS track angle (along with 

LLA) is shown in appendix 9.5. 

6.1.2.4    Drift 

The sensor drift of each GPS was compared over an extended period of time when a nominal 

amount of satellites (6 or 7) were being used. This gives an indication on the effect the GPS 

position will have over long drives. It furthermore can be used later on in the modelling of noise 

variance in a Kalman filter. The Piksi console software (See computer listing) has been used to 

display drift over a period of 10 minutes. 

 

Figure 10 GPS Drift RTK Fixed vs Single Point 
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 The drift from the Piksi in RTK fixed mode is maintained within a maximum of 10 centimeters 

vertically and similar horizontally. The single point solution on the other hand drifts to a maximum 

of 8 meters. The spread index improvement from RTK is in the order of 8000%, which is a clear 

significant improvement. This indicates that the solution from an RTK fix can be trusted to always 

be accurate regardless of when it is obtained, and no averaging is required. This synergizes well 

with a proposed Extended Kalman Filter that accepts event based global corrections (See Section). 

6.2  Odometry and EKF 
Whilst the EKF and odometry have not been fully implemented, primary tests and results will be 

outlined to identify uncovered issues that may arise during full implementation. 

6.2.1    Odometry 

The setup described in section 5.3 was tested on the two front wheel speed sensors by creating a 

temporary serial interface to the low level controller performing the pulse counts and speed 

calculations. One wheel had its pulse count (magnets per second) sampled every 10 milliseconds 

and plotted in figure 11. 

 

Figure 11 Wheel Speed Pulse Count 

The 6 point moving average (60ms) stabilizes the sample somewhat, however it can be seen that 

there are significant number of samples that are outliers to the trend. This is likely due to the fact 

that the count works on an interrupt in a microcontroller that already has a number of interrupts 
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and control loops running. The current configuration will indicate speeds sufficiently, however if 

odometry is to be used in a localisation scheme, especially as the main generation of position 

through velocity integration, it will have to be more accurate than shown in figure 11. 

This indicates that in the future, if wheel speed is to be integrated into a controller, it should be 

performed by a single thread processor with no other allocations. Some controllers have inbuilt 

encoder pulse counting hardware that runs on a dedicated separate loop. This ensures that a 

calculation of wheel speed isn’t interrupted by another important task. 

6.2.1    EKF 

The Extended Kalman Filter algorithm outlined in section 6.1 and fully described in appendix 9.2 

has not been completely implemented to the point where it can be tested in conjunction with all 

available sensors. The code implementation has however been included in the appendix (9.7), 

which includes the process model and measurement model from section 5 integrated into it. This 

is a class based programming orientated approach, and enables the controlling software to spawn 

an EKF class with certain initialization parameters such as time interval and matrix dimensions. 

The covariance matrices can be created out of class and sent to the class to update the correction 

step inputs.  

The measurements are sent to the class on an interval with time varying capacity, which triggers 

the algorithm to occur and output the predicted next state and error. Whilst this is a standard 

recursive approach, it can be expanded to be event triggered, as every step in the process is a public 

function from within the EKF class. For example, if GPS corrections are received, they can be 

injected into the correction step at any point, which will update the current state vector. 

An issue that may arise from the implementation of the filter is the ability for the control processor 

to computer the prediction and correction steps at a reasonable speed. The code implementation 

attempts to reduce the computing strain by performing efficient matrix multiplications, however 

this will have to be tested.  
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7    Conclusions 
7.1  Conclusion 

At the beginning of the project, the localisation of the autonomous SAE vehicle was identified to 

be a contributing factor to failure in other aspects of control with regards to accuracy and 

robustness. This generated a clear goal to investigate both hardware and software changes required 

to improve functionality at low cost. Whilst there exists extensive research in the field of 

localisation for robotic and autonomous vehicles, no major work was found regarding the 

implementation of RTK GPS. This is partly due to RTK GPS receivers traditionally costing ten 

times that of the acquired Piksi receivers.  

The Piksis’ are a development board that is yet to reach commercialized maturity, and thus little 

documentation or other similar examples exist. Much of the work regarding successful serial 

interface with the Piksi, as well as integration into a separate control infrastructure has therefore 

been shared online.  

The conducted tests in positioning demonstrated accuracies that is expected from RTK GPS 

signifying successful integration, resulting in significant improvements to standard GPS single 

point solution. This proves that absolute (global) positioning is available for autonomous vehicles 

at a low cost range, without the requirement for large processing power and strict sensor fusion. 

Acquisition rate and reliability from the Piksi was deemed to be slightly compromised, however 

the implications of this is minimal considering the improvements elsewhere.  

The RTK GPS was therefore integrated and fully installed into the vehicle as a result.  Other 

improvements made this year to the SAE vehicle were merged into the vehicle and autonomous 

on-road driving was tested. The improved localisation removed a large factor of instability in 

vehicle performance, and furthermore helped to identify the next set of improvements to be made 

to the vehicle.  

The next step identified was to improve the ability for the vehicle to localize itself when there is 

no GPS available. The Extended Kalman Filter was modelled for the vehicle, and aligned with the 

current choice of IMU and wheel speed. The filter was implemented in C++ and added to the 

software repository for the vehicle. The existing wheel speed sensors have been extended to be 

fully implemented in both hardware and software, thus available for the Extended Kalman Filter 
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when it is used. It is expected that the use of wheel speed for dead reckoning in conjunction with 

the EKF will allow the vehicle to localize itself during times of GPS unavailability. 

7.2  Future Work 
In regards to the vehicles positioning, the immediate next task should be to completely integrate 

both the wheel speed sensors and Extended Kalman Filter. As previously mentioned, this will 

enable the vehicle to remain localized even during long periods of GPS outages, as well as allow 

for longer drives and faster speeds.  The Extended Kalman Filter could also be modified and 

optimized to various implementations of itself, for example an event based fusion instead of a 

recursive based fusion, the event being GPS correction. Furthermore the model used to describe 

the dynamics of the vehicle makes a number of assumptions about wheel slip and car dimensions. 

When turning the EKF, it would be beneficial to test the vehicles actual motion during various 

scenarios, and incorporate that into the process model of the filter.  

Another possible overall system improvement would be to use the Radio communication channel 

between RTK base station and roving station for more than just corrections. The SAE vehicle 

needs a heartbeat signal from an external source during autonomous driving to act as both a failsafe 

and emergency stop. It is possible to transmit this heartbeat over radio using the Piksis instead of 

the current method of transmitting over wireless, which is not as reliable. 

During an RTK fix, the position solution will be accurate to 10cm, and so this enables a multitude 

of opportunities to improve other aspects of vehicle control. Most importantly, the actual position 

of the vehicle can be accurately compared to the planned paths the vehicle attempts to track. This 

will not only allow for the steering and acceleration control loops to be optimized, but furthermore 

improve the capability for advanced obstacle avoidance.  

The tests after the localisation improvements especially highlighted the need for the vehicle to be 

able to detect what is in front of it at a large distance. Planned paths work optimally when they are 

computed with knowledge of the full environment in front of the vehicle. This highlights the need 

for introducing advanced SLAM techniques from either integrating the LIDAR or a camera into 

the localisation scheme. If the vehicle is able to detect objects at far distances in front of it and 

map those objects into its local co-ordinate frame, it will be able to drive smoother curves. 
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9    Appendices 
9.1  RTK GPS 

GPS Satellite

Roving Station Antenna Base Station Antenna

RadioRadio

Correction Data

 

Figure 12 RTK GPS Configuration 

 

Both the roving and base station receive the same carrier signal from a satellite. This receivers then 

count the carrier cycles it receives from the L1 carrier signal instead of the actual course acquisition 

data contained in the signal [34]. Signal delay errors resulting from ionospheric and tropospheric 

delays are constant, and so can be negated by comparing the data received by each receiver, and 

running an algorithm to fix the phase ambiguities to integer numbers. 
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At a given epoch for a given satellite, the carrier phase ambiguity observation equation is the 

following: 

∅ = 𝜌 − 𝐼 + 𝑇𝑟 + 𝑐(𝑏𝑅𝑥 − 𝑏𝑆𝑎𝑡) + 𝑁𝛾 +  𝜀 

Where: 

x 𝜌 is the geometrical range between satellite and receiver 

x I is the ionospheric delay, Tr the tropospheric delay 

x c is the speed of light, (𝑏𝑅𝑥 − 𝑏𝑆𝑎𝑡) the clock offset differences 

x 𝑁𝛾 is the phase ambiguity integer multipled by wavelength 

x 𝜀 is the measurement noise components 

Ambiguity Resolution Algorithm: 

x First fixed to float numbers using standard least-square techniques 

x Set of integer ambiguities are set to the one that optimizes residuals in the surroundings of 

the float solution 

x Carrier measurements are corrected with the integer ambiguities and are used to obtain 

relative position 
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9.2  EKF Model 

 

The state vector is combination of position, velocity and acceleration in x and y space, as well as 

angle 𝜑. 

𝑥𝑘 = [𝑥 𝑦 𝑣 𝑎 𝜑 𝜑̇]𝑇 

𝑧𝑘 = [𝑥, 𝑦, 𝑥̇, 𝑦̇, 𝑥̈, 𝑦̈, 𝜑]𝑇 

The non-linear process model is described by the following set of equations theorized by Lars 

Danielsson [4]. 

𝑥𝑘 = 𝑥𝑘−1 + cos(𝜑𝑘−1)(𝑣𝑘−1𝑇 + 𝑎𝑘−1 𝑇2 2⁄ ) − sin(𝜑𝑘−1)(𝑣𝑘−1𝜑
.
𝑘−1 𝑇2 2⁄ )

+ 2𝑎𝑘−1𝜑
..
𝑘−1 𝑇3 6⁄  

𝑦𝑘 = 𝑦𝑘−1 + sin(𝜑𝑘−1)(𝑣𝑘−1𝑇 + 𝑎𝑘−1 𝑇2 2⁄ ) + cos(𝜑𝑘−1)(𝑣𝑘−1𝜑
.
𝑘−1 𝑇2 2⁄ )

+ 2𝑎𝑘−1𝜑
..
𝑘−1 𝑇3 6⁄  

𝜑𝑘 = 𝜑𝑘−1 + sign(𝑣𝑘−1)(𝜑
.
𝑘−1𝑇 + 𝜑

..
𝑘−1 𝑇2 2⁄ ) 

𝑣𝑘 = 𝑣𝑘−1 + a𝑘−1𝑇 

𝑎𝑘 = 𝑎𝑘−1 

 

The above functions can be used to determine all the other required matrices for the model. 
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9.3  Receiver Performance Specifications 
 

Table 4 GPS Receiver Specifications 

 Ellipse-N QstarZ BT-818X  Piksi RTK 

Configuration IMU Integrated w/ 
GNSS 

Standard GPS 
(Fusion with XSens 
MTi IMU) 

RTK GPS  

Channels 72 66  

GPS Bands L1 C/A GPS, 
GLONASS, 
Galileo, Beidou 

- L1 GPS, GLONASS, 
Galileo 

GPS Antenna Internal or External 
(Model Dependent)  
Dual Compatibility 

Internal with LNA Internal/External 3.3V 

Acquisition 

Rate 

Cold Start 26s 35s - 

Hot Start <1s 1s - 

Update Rate 10Hz 5Hz - 

Positional Accuracy 2m 10m 1cm 

Velocity Accuracy 0.1m/s 0.1m/s - 

Heading Accuracy <0.5˚ <1 ˚ (IMU Int.) <1 ˚ (IMU Int.) 

Power Consumption <650mW - 500mW 

Compatibility with 

DGPS / RTK 

DGPS / RTK DGPS DGPS / RTK 

Protocols Binary eCom, 
NMEA, ASCII, 
TSS 

NMEA, GSA, GSV, 
RMC, VTG, GLL 

- 

Protocol Rates Up to 921,600ps 115200 bps Baud, 8 
bit 

3 bit, 16.368 MS/s 

Interface RS-232, RS-
422,USB,CAN 

Bluetooth, USB USB, dual UART 

Sensors 3 Axis Gyroscopes 
3 Axis 
Accelerometers 
3 Axis 
Magnetometers 
Temperature 
Sensors 
Odometer Compat. 

XSens IMU XSens IMU 
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9.4  Piksi Message Parser 
#include "Piksi_Read.h" 
 
//Serial FIFO 
u32 serialread(u8 *buf, u32 n, void* context) { 
    context_t ctx = *(context_t *)context; 
    return read(ctx.fd, buf, n); 
} 
 
//Callback node allocation 
void sbp_pos_llh_callback(u16 sender_id, u8 len, u8 msg[], void *context) 
{ 
  pos_llh = *(msg_pos_llh_t *)msg; 
} 
void sbp_baseline_ned_callback(u16 sender_id, u8 len, u8 msg[], void *context) 
{ 
  baseline_ned = *(msg_baseline_ned_t *)msg; 
} 
void sbp_vel_ned_callback(u16 sender_id, u8 len, u8 msg[], void *context) 
{ 
  vel_ned = *(msg_vel_ned_t *)msg; 
} 
void sbp_dops_callback(u16 sender_id, u8 len, u8 msg[], void *context) 
{ 
  dops = *(msg_dops_t *)msg; 
} 
void sbp_gps_time_callback(u16 sender_id, u8 len, u8 msg[], void *context) 
{ 
  gps_time = *(msg_gps_time_t *)msg; 
} 
 
/* ACKNOWLEDGEMENTS TO SWIFTNAV LIBSBP 
 * Set up SwiftNav Binary Protocol (SBP) nodes; the sbp_process function will 
 * search through these to find the callback for a particular message ID. 
*/ 
void sbp_setup(sbp_state_t *sbp_state, context_t *context) 
{ 
  /* SBP parser state must be initialized before sbp_process is called. */ 
  sbp_state_init(sbp_state); 
  sbp_state_set_io_context(sbp_state, context); 
  /* Register a node and callback, and associate them with a specific message ID. */ 
  sbp_register_callback(sbp_state, SBP_MSG_GPS_TIME, &sbp_gps_time_callback, 
                        NULL, &gps_time_node); 
  sbp_register_callback(sbp_state, SBP_MSG_POS_LLH, &sbp_pos_llh_callback, 
                        NULL, &pos_llh_node); 
  sbp_register_callback(sbp_state, SBP_MSG_BASELINE_NED, &sbp_baseline_ned_callback, 
                        NULL, &baseline_ned_node); 
  sbp_register_callback(sbp_state, SBP_MSG_VEL_NED, &sbp_vel_ned_callback, 
                        NULL, &vel_ned_node); 
  sbp_register_callback(sbp_state, SBP_MSG_DOPS, &sbp_dops_callback, 
                        NULL, &dops_node); 
} 
 
//Serial Opening Flags and File Descriptor 
int openSerial(char *path, speed_t baud) { 
    printf("Opening %s\b\n", path); 
    int fd = open(path, O_RDWR | O_NOCTTY); 
    struct termios toptions; 
    bzero(&toptions, sizeof(toptions)); 
 
    if (tcgetattr(fd, &toptions) < 0) { 
        perror("tcgetattr"); 
        return -1; 
    } 
    toptions.c_cflag = CRTSCTS | CS8 | CLOCAL | CREAD; 
    toptions.c_iflag = IGNPAR; 
    toptions.c_oflag = 0; 
    toptions.c_lflag = 0; 
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    struct serial_struct ss;  
    ioctl(fd, TIOCGSERIAL, &ss);  
    ss.flags = (ss.flags & ~ASYNC_SPD_MASK) | ASYNC_SPD_CUST; 
    ss.custom_divisor = ss.baud_base / baud;  
    ioctl(fd, TIOCSSERIAL, &ss); 
     
    cfsetispeed(&toptions, B38400); 
    cfsetospeed(&toptions, B38400); 
    toptions.c_cc[VMIN]     = 5;   // blocking read until 5 chars received 
    toptions.c_cc[VTIME]    = 0;   // inter-character timer unused 
    tcflush(fd, TCIFLUSH); 
    if (tcsetattr(fd, TCSANOW, &toptions) < 0) { 
        perror("tcsetattr"); 
        return -1; 
    } 
    return fd; 
} 
 
//Run to initialize Piksi 
int OpenPiksi(char *path, int baud) { 
    context.path = path; 
    context.fd = openSerial(path, baud); 
    sbp_setup(&sbp_state, &context); 
    return context.fd; 
} 
 
//Run to Process Piksi through the addressed Queue 
void ProcessPiksi() { 
    sbp_process(&sbp_state, &serialread); 
} 
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9.5  Changes to GPS Connection Class 
/* 
    Rest of class code Authored by Thomas Drage on 23/7/13 
    Not included in this extract 
*/ 
extern "C" { 
#include "Piksi_Read.h" 
} 
 
//Opens and Intializes Piksi 
bool GPSConnection::Open() { 
    std::string LogPath = CarControl->LogDir + "/gps.log"; 
    GPSLog = new Logger(LogPath.c_str()); 
 
    fd = OpenPiksi(PIKSI_PATH, PIKSI_BAUD); 
 
    if (fd < 0) { 
        Log->WriteLogLine("No Piksi Found - Attempting GPSD..."); 
        GPSDFound(); 
    } else { 
        Log->WriteLogLine("Piksi - GPS successfully opened and initialized"); 
        UsingGPSD = false; 
        GPSState = true; 
    } 
    return true; 
} 
//Starts Multi-Threaded Processing and Monitoring 
void GPSConnection::Start() { 
 
    if(GPSState) { 
 
        Run = true; 
        if (! UsingGPSD) { m_Thread = boost::thread(&GPSConnection::ProcessMessages, this); } 
                    else { m_Thread = boost::thread(&GPSConnection::ProcessMessagesDep, this);} 
        m_Thread.detach(); 
 
        s_Thread = boost::thread(&GPSConnection::Monitor, this); 
        s_Thread.detach(); 
    } 
} 
//Processes Messages by Emptying FIFO into nodes and probing 
void GPSConnection::ProcessMessages() { 
    int nullcount = 0; 
 
    while(Run) { 
 
        ProcessPiksi(); 
        NumSat = pos_llh.n_sats 
 
        if (pos_llh.lat == NULL) { 
            nullcount += 1; 
            if (nullcount == 1000) { 
                Log->WriteLogLine("GPS - Read error! No Fix."); 
            } 
        } else { 
            nullcount = 0; 
            Time = gps_time.tow; 
            velocity_n = double (vel_ned.n); 
            velocity_e = double (vel_ned.e); 
            if (vel_ned.n > 0) { 
                if (vel_ned.e > 0) { 
                    TrackAngle = (atan(velocity_e/velocity_n)* 180 / PI); 
                } else { 
                    TrackAngle = 360.0 + (atan(velocity_e/velocity_n)* 180 / PI); 
                } 
            } else if (vel_ned.n < 0) { 
                if (vel_ned.e > 0) { 
                    TrackAngle = 180.0 + (atan(velocity_e/velocity_n)* 180 / PI); 
                } else { 
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                    TrackAngle = 180.0 + (atan(velocity_e/velocity_n)* 180 / PI); 
                } 
            } 
             
            NewTrack(); 
            Speed = sqrt(vel_ned.e*vel_ned.e + vel_ned.n*vel_ned.n)*0.001; // convert to m/s 
 
            Latitude = pos_llh.lat - CarControl->LatOffset;     //Lat 
            Longitude = pos_llh.lon - CarControl->LongOffset;   //Long 
            NewSpeedAndPosition();   
            boost::this_thread::sleep(boost::posix_time::milliseconds(5)); 
        } 
    } 
} 
 
void GPSConnection::Monitor() { 
 
    while(Run) { 
 
        if(CarControl->AutoRun) { 
            if(! (Time > (OldTime + 1000))) { Log->WriteLogLine("GPS - GPS Fix is old."); }  
        } 
 
        OldTime = Time; 
 
        boost::this_thread::sleep(boost::posix_time::milliseconds(500)); 
    } 
} 
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9.6  Example GPS Test Process (Orientation/Track Angle) 
Pre Test 
 

1. Test vehicle maximum turning circle, and survey waypoints at maximum diameter 
 

 
 
 
 
 
 
 
 
 
 
During Test 

1. Initialize the GPS/INS and Logging for all devices 
2. Mark measurement points before and after, to ensure the orientation of the car is correctly 

‘quantized’ 
3. Manually Drive along updated path waypoints 
4. Log dynamic GPS/INS orientation measurements 

 
Post Test 

1. Overlay GPS/INS data as orientation vectors onto path defined. 
2. Use straight section to test orientation stability, and circle to test general accuracy 
3. Orientation of the vehicle to be compared at well-defined equally spaced points on the path 
4. Analyze mean and standard deviation of difference between planned path (Use computer 

algebra software, MATLAB/Mathematica) 
 
Path and Waypoints with GPS Data Overlay Difference 

Measurements 
Comments / 
Uncertainty 

 
 
 
 
 
 
 
 
 
 
 
 
 

Static Mean  

X: Y: 
Static STD  

X: Y: 
Dynamic Mean   

X: Y: 
Dynamic STD   

X: Y: 
Maximum Difference  

X: Y: 
 

Starting Position 

RTK Surveyed 

Waypoints 

360 degree 

turn at 

maximum 

turning 

circle Proposed Measurement 

Points 
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9.7  EKF Filter C++ Implementation 
// 
//  Authored by Christopher Blignaut  
//   
 
#include "EKFilter.h" 
#include <iostream> 
#include <fstream> 
using namespace std; 
 
EKFilter::EKFilter() { 
     
    //Dimension of State Vector 
    x_dimension=0; 
    //Dimension of Measurement Vector 
    z_dimension=0; 
    //Dimension of Control Vector 
    u_dimension=0; 
    //Dimension of Process Noise Vector 
    w_dimension=0; 
    //Dimension of Measurement Noise Vector 
    v_dimension=0; 
 
    //State Vector 
    x_last=NULL; 
    x_predicted=NULL; 
    x_updated=NULL; 
    //Control Vector 
    u=NULL; 
    //Measurement Vector 
    z=NULL; 
    z_predicted=NULL; 
 
    ////Matrices 
    P_last=NULL; 
    P_predicted=NULL; 
    P_updated=NULL; 
    A=NULL; 
    W=NULL; 
    Q=NULL; 
    H=NULL; 
    V=NULL; 
    R=NULL; 
    S=NULL; 
    K=NULL; 
 
} 
 
EKFilter::~EKFilter() 
{ 
    ClearMatrices(); 
} 
 
int EKFilter::ClearMatrices() 
{ 
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    if (x_last!=NULL) 
        x_last.release(): 
    if (x_predicted!=NULL) 
        x_predicted.release(); 
    if (x_updated!=NULL) 
        x_updated.release(); 
    if (u!=NULL) 
        u.release(); 
    if (z!=NULL) 
        z.release(); 
    if (z_predicted!=NULL) 
        z_predicted.release(); 
    if (P_last!=NULL) 
        P_last.release(); 
    if (P_predicted!=NULL) 
        P_predicted.release(); 
    if (P_updated!=NULL) 
        P_updated.release(); 
    if (A!=NULL) 
        A.release(); 
    if (W!=NULL) 
        W.release(); 
    if (Q!=NULL) 
        Q.release(); 
    if (H!=NULL) 
        H.release(); 
    if (V!=NULL) 
        V.release(); 
    if (R!=NULL) 
        R.release(); 
    if (S!=NULL) 
        S.release(); 
    if (K!=NULL) 
        K.release(); 
 
    return 0; 
} 
 
int EKFilter::SetDimensions(int x_dimension, int u_dimension, int 
z_dimension, int w_dimension, int v_dimension) 
{ 
    x_dimension=x_dimension; 
    u_dimension=u_dimension; 
    z_dimension=z_dimension; 
    w_dimension=w_dimension; 
    v_dimension=v_dimension; 
 
    return 0; 
} 
 
int EKFilter::CheckDimension(Mat M1,Mat M2) 
{ 
    if (M1==NULL || M2==NULL) 
        return -1; 
    if (M1->cols!=M2->cols ||M1->rows!=M2->rows) 
        return -1; 
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    return 0; 
} 
 
int EKFilter::InitMatrices() 
{ 
    ClearMatrices(); 
     
    //State Vector 
    x_last.create(x_dimension,1,CV_32F); 
    x_last = Mat::zeros(x_dimension,1,CV_32F); 
    x_predicted.create(x_dimension,1,CV_32F); 
    x_predicted = Mat::zeros(x_dimension,1,CV_32F); 
    x_updated.create(x_dimension,1,CV_32F); 
    x_updated = Mat::zeros(x_dimension,1,CV_32F); 
    //Control Vector 
    u.create(u_dimension,1,CV_32F); 
    u = Mat::zeros(u_dimension,1,CV_32F); 
    //Measurement Vector 
    z.create(z_dimension,1,CV_32F); 
    z = Mat::zeros(z_dimension,1,CV_32F); 
    z_predicted.create(z_dimension,1,CV_32F); 
    z_predicted = Mat::zeros(z_dimension,1,CV_32F); 
 
    ////Matrices 
    P_last.create(x_dimension,x_dimension,CV_32F); 
    P_last = Mat::zeros(x_dimension,x_dimension,CV_32F); 
    P_predicted.create(x_dimension,x_dimension,CV_32F); 
    P_predicted = Mat::zeros(x_dimension,x_dimension,CV_32F); 
    P_updated.create(x_dimension,x_dimension,CV_32F); 
    P_updated = Mat::zeros(x_dimension,x_dimension,CV_32F); 
    F.create(x_dimension,x_dimension,CV_32F); 
    F = Mat::zeros(x_dimension,x_dimension,CV_32F); 
    f.create(x_dimension,x_dimension,CV_32F); 
    f = Mat::zeros(x_dimension,x_dimension,CV_32F); 
    W.create(x_dimension,w_dimension,CV_32F); 
    W = Mat::zeros(x_dimension,w_dimension,CV_32F); 
    Q.create(w_dimension,w_dimension,CV_32F); 
    Q = Mat::zeros(w_dimension,w_dimension,CV_32F); 
    H.create(z_dimension,x_dimension,CV_32F); 
    H = Mat::zeros(z_dimension,x_dimension,CV_32F); 
    h.create(z_dimension,x_dimension,CV_32F); 
    h = Mat::zeros(z_dimension,x_dimension,CV_32F); 
    V.create(z_dimension,v_dimension,CV_32F); 
    V = Mat::zeros(z_dimension,v_dimension,CV_32F); 
    R.create(v_dimension,v_dimension,CV_32F); 
    R = Mat::zeros(v_dimension,v_dimension,CV_32F); 
    S.create(z_dimension,z_dimension,CV_32F); 
    S = Mat::zeros(z_dimension,z_dimension,CV_32F); 
    K.create(x_dimension,z_dimension,CV_32F); 
    K = Mat::zeros(x_dimension,z_dimension,CV_32F); 
 
    return 0; 
} 
 
int EKFilter::Set_NoiseCovariance(Mat Q,Mat R) { 
     
    if (Q.empty() || R.empty()) 
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        return -1; 
    R.copyTo(R); 
    Q.copyTo(Q); 
    return 0; 
     
} 
 
int EKFilter::PredictionStep() { 
    Get_x_predicted(); 
    Get_F(); 
    Get_W(); 
    Get_H(); 
    Get_V(); 
    x_predicted.copyTo(x_last); 
    return 0; 
} 
 
int EKFilter::Get_x_predicted(float dt) { 
         
    x_predicted.at<double>(0,0) = x_last.at<double>(0,0) + 
cos(x_last.at<double>(2,0))*(dt*x_last.at<double>(3,0) + 
dt*dt*x_last.at<double>(4,0)/2); 
    x_predicted.at<double>(1,0) = x_last.at<double>(1,0) + 
sin(x_last.at<double>(2,0))*(dt*x_last.at<double>(3,0) + 
dt*dt*x_last.at<double>(4,0)/2); 
    x_predicted.at<double>(2,0) = x_last.at<double>(2,0); 
    x_predicted.at<double>(3,0) = x_last.at<double>(3,0) + 
dt*x_last.at<double>(4,0); 
    x_predicted.at<double>(4,0) = x_last.at<double>(4,0); 
 
    Get_F(dt); 
     
    return 0; 
     
} 
 
int EKFilter::Get_F(float dt) 
{ 
    F = Mat::eye(x_dimension,x_dimension,CV_32F); 
    F.at<double>(0,2) = -
1*sin(x_last.at<double>(2,0))*(dt*x_last.at<double>(3,0) + 
dt*dt*x_last.at<double>(4,0)/2); 
    F.at<double>(0,3) = dt*cos(x_last.at<double>(2,0)); 
    F.at<double>(0,4) = dt*dt*cos(x_last.at<double>(2,0))/2; 
    F.at<double>(1,2) = 
cos(x_last.at<double>(2,0))*(dt*x_last.at<double>(3,0) + 
dt*dt*x_last.at<double>(4,0)/2); 
    F.at<double>(1,3) = dt*sin(x_last.at<double>(2,0)); 
    F.at<double>(1,4) = dt*dt*sin(x_last.at<double>(2,0))/2; 
    F.at<double>(3,4) = dt; 
     
    return 0; 
} 
 
int EKFilter::Get_W() 
{ 
    W = Mat::eye(x_dimension,w_dimension,CV_32F); 
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    return 0; 
} 
 
int EKFilter::Get_P_predicted() 
{ 
    Mat Ft.create(x_dimension,x_dimension,CV_32F); 
    transpose(F,Ft); 
    Mat Wt.create(w_dimension,x_dimension,CV_32F); 
    transpose(W,Wt); 
    P_predicted = F * P_last * Ft + W * Q * Wt; 
 
    return 0; 
} 
 
int EKFilter::Set_z(Mat* z) 
{ 
    if (CheckDimension(z,z)!=0) 
        return -1; 
    //cvmCopy(z,z); 
    cvReleaseMat(&z); 
    z=cvCloneMat(z); 
    return 0; 
} 
 
/*int EKFilter::Get_z_predicted() 
*/ 
 
int EKFilter::Get_H() 
{ 
     
    cvSetZero(H); 
    return 0; 
} 
 
int EKFilter::Get_S() 
{ 
    Mat* Ht.create(H->cols,H->rows,CV_32F); 
    Mat* Vt.create(V->cols,V->rows,CV_32F); 
    Mat* H_x_P.create(H->rows,P_predicted->cols,CV_32F); 
    Mat* H_x_P_x_Ht.create(H->rows,H->rows,CV_32F); 
    Mat* V_x_R.create(V->rows,R->cols,CV_32F); 
    Mat* V_x_R_x_Vt.create(V->rows,V->rows,CV_32F); 
 
    cvTranspose(H,Ht); 
    cvTranspose(V,Vt); 
    MatMul(H,P_predicted,H_x_P); 
    MatMul(H_x_P,Ht,H_x_P_x_Ht); 
    MatMul(V,R,V_x_R); 
    MatMul(V_x_R,Vt,V_x_R_x_Vt); 
 
    cvAdd(H_x_P_x_Ht,V_x_R_x_Vt,S); 
 
    cvReleaseMat(&Ht); 
    cvReleaseMat(&Vt); 
    cvReleaseMat(&H_x_P); 
    cvReleaseMat(&H_x_P_x_Ht); 
    cvReleaseMat(&V_x_R); 
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    cvReleaseMat(&V_x_R_x_Vt); 
 
    return 0; 
} 
 
int EKFilter::Get_K() 
{ 
 
    Mat* Ht.create(H->cols,H->rows,CV_32F); 
    Mat* Sinv.create(S->cols,S->rows,CV_32F); 
    Mat* P_x_Ht.create(P_predicted->rows,Ht->cols,CV_32F); 
 
    cvTranspose(H,Ht); 
    cvInvert(S,Sinv); 
    MatMul(P_predicted,Ht,P_x_Ht); 
    MatMul(P_x_Ht,Sinv,K); 
 
    cvReleaseMat(&Sinv); 
    cvReleaseMat(&Ht); 
    cvReleaseMat(&P_x_Ht); 
 
    return 0; 
} 
 
int EKFilter::Get_x_updated() 
{ 
    Mat* z_minus_z_predicted.create(z_dimension,1,CV_32F); 
    Mat* K_x_z_minus_z_predicted.create(K->rows,1,CV_32F); 
 
    cvmSub(z,z_predicted,z_minus_z_predicted); 
    MatMul(K,z_minus_z_predicted,K_x_z_minus_z_predicted); 
    cvmAdd(x_predicted,K_x_z_minus_z_predicted,x_updated); 
 
    cvReleaseMat(&z_minus_z_predicted); 
    cvReleaseMat(&K_x_z_minus_z_predicted); 
 
    return 0; 
} 
 
int EKFilter::Get_P_updated() 
{ 
    Mat* I.create(P_predicted->rows,P_predicted->rows,CV_32F); 
    Mat* K_x_H.create(K->rows,H->cols,CV_32F); 
    Mat* I_minus_K_x_H.create(K_x_H->rows,K_x_H->cols,CV_32F); 
 
    MatMul(K,H,K_x_H); 
    cvSetIdentity(I); 
    cvmSub(I,K_x_H,I_minus_K_x_H); 
    MatMul(I_minus_K_x_H,P_predicted,P_updated); 
 
    //Make sure P_updated is symmetric 
    for (int row=0;row<P_updated->rows;row++) 
    { 
        for (int col=row;col<P_updated->cols;col++) 
        { 
            double tmp; 
            tmp=cvmGet(P_updated,row,col)+cvmGet(P_updated,col,row); 
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            tmp=tmp/2; 
            cvmSet(P_updated,row,col,tmp); 
            cvmSet(P_updated,col,row,tmp); 
        } 
    } 
 
    cvReleaseMat(&I); 
    cvReleaseMat(&K_x_H); 
    cvReleaseMat(&I_minus_K_x_H); 
 
    return 0; 
} 

 

 

9.8  Software Used 
Author Software 

Swift Navigation libSBP 

Boost Project Boost C++ Libraries 

Ubuntu Community Ubuntu 

Linux Community Linux/Lubuntu 

Wolfram Mathematica 

Python Python 

Swift Navigation Piksi Console 

CATb GPSD 

XSens Xsens libraries 

Adrian Boeing Kalman Filter 

OpenPR EKF Extension to CV 

OpenCV Kalman Filter Libraries 

Chiark – OpenSource Putty 

Valgrind Valgrind 

Debian Wheezy 

Linux Community Advanced Packaging Tool 

Github Github 

 


