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Abstract 
The following dissertation describes the improvements developed for the localization system of the 
Autonomous SAE vehicle at UWA. The main improvements that were applied to the localization 
system are the addition of odometry to the low level control system, as well as an Extended Kalman 
Filter, and changes to the low level software, and to the sensor fusion algorithms. 

Odometry sensing to the SAE vehicle was added in by use of a microcontroller and Hall Effect 
Sensors.  This microcontroller communicated with the microcontroller in charge of steering, braking 
and acceleration of the vehicle, to provide wheel speed measurements to the main microcontroller into 
the main processing system. The sensor fusion algorithm attempted to compare and contrast at least 
three cases; sensor fusion with odometry with a Kalman filter, sensor fusion with odometry using a 
Kalman Filter, and sensor fusion with odometry and an EKF. 

A reliable odometry measurement sensor has been obtained, that provides speed for each of the four 
wheels. The wheel speeds are then captured by the central control unit (An NVidia Jetson TX1 
board), which uses the wheel speeds for localization in its control system. Minor calibration will be 
needed for more accurate wheel speed measurements, outside of this, the odometry is a partially 
integrated system in the SAE vehicle. The Kalman filter sensor fusion variants and the EKF could not 
be tested on due to errors in the fusion class, which needs to full fully integrated into the system. 

The addition of the Jetson board allows others to improve the localization of the SAE vehicle by 
adding in some form of monte-carlo algorithms, such as a Particle Filter, or using an Unscented 
Kalman Filter for localization. The improvements to localization allows for the implementation of a 
SLAM type control system for the SAE vehicle, or other control system features. 
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Nomenclature 
CLI – Command Line Interface 

EKF – Extended Kalman Filter 

GPS- Global Positioning System 

IMU – Inertial Measurement Unit 

ISR – Interrupt Service Routine 

RTK-GPS – Real Time Kinematics GPS 

USB – Universal Serial Bus 
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1. Introduction and Background 
There has been significant interest in autonomous driving over the past few years, with car 
manufacturers and semiconductor manufacturers attempting to enter this developing market, such as 
Tesla, Google, and Toyota. An early example of Autonomous driving can be traced back to 1925, in 
which a radio controlled car in the streets of Fredericksberg, Virginia was demonstrated [1]. Since this 
time though, the continuing progress of this area has advanced to such a degree that Google has 
successfully developed an autonomous car that has driven approximately 300,000 miles since 2012 
without an accident [2]. This field has yet to take off commercially, but with Toyota has announcing 
plans to release a commercial autonomous vehicle by 2020 [3], it may not be long until autonomous 
cars become a regular addition to modern life.  Before this happens, Improvements should be made to 
the standards of this field before it can take off in the market. 

Participating in this emerging field, the UWA Renewable Energy Vehicle (REV) Project has made an 
Autonomous SAE vehicle as a research platform. This car started off as running on an internal 
combustion engine, but was converted to an electric car in (08/09), and then an additional drive-by-
wire system was added in (11/13). In 2017, the goal was to get autonomous driving with cone 
detection and path planning that emulates the demonstration shown in the Formula Student Germany 
[4].  

 
Figure 1: The UWA Autonomous SAE Vehicle 

This project was carried out in a team with four other students; Gabriel, Roman, Sam and Jason with 
two PhD students; Thomas and Kai. For object detection and mapping, Gabriel, Roman and Sam were 
in charge of using the Lidar to find objects, as well as the control and path planning. Jason and Kai 
were doing the computer vision and object detection of the SAW Vehicle, and Thomas and I were in 
charge of the localization.  
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2. Literature Review 
The history of the SAE vehicle is that it started off as a internal combustion engine powered SAE car, 
that was converted to an electric vehicle in 2010 [5] and then autonomous driving and a drive-by-wire 
system was implemented in  2013 [6]. In 2015, the software was updated in to refine the path 
planning algorithm by using an Extended Kalman Filter (EK-Filter) over a regular Kalman Filter as 
well as implementing RTK-GPS module [7]. The RTK-GPS module was done using a component 
from a company called Swift Navigation called a Piksi GPS. From this the SAE vehicle control 
software was changed to pick between the RTK-GPS and normal GPS device. The results of the work 
performed in [7] was improved localization due to the RTK-GPS module, though the EKF required 
more work and possible fusion with vehicular odometry to drive effectively in the absence of a stable 
GPS connection. Investigation into the odometry of the SAE vehicle found that it did not work, and 
thus needed to be re-implemented.  

The system was centralized around a Raspberry Pi as the main processor, with all the sensors sending 
it their data so it can make decisions based on this. While the Raspberry Pi was used in [5] and [6], 
and [7] utilized a Raspberry Pi 2, it was too slow in which it ended up hampering progress. So the 
system was moved to a Raspberry Pi 3 in 2016/2017 to provide greater processing power.  

Odometry was achieved originally by using the Arduino UNO that controlled the steering, braking 
and acceleration to record the speed of each wheel of the vehicle. Doing all these tasks proved to be 
nonviable for the microcontroller, as the system did not possess the processing power to be able to 
handle all four of these tasks, especially due to how the odometry was implemented in code, which 
used an interrupt service routine, which had to share its time with other ISRs in the low level 
software. To resolve this issue, the low level control circuit and the circuit for the odometry were 
recommended to be separated for modularity, and an additional microcontroller or another method to 
perform the odometry is to be added. 

Extended Kalman Filters have been widely implemented since the use and are the most widely used 
filter on localization in the world [8]. Many studies employ the use of Extended Kalman Filters as a 
tool or a testing system for localization. A comparison of Kalman filter variants is presented in [9], 
including an unscented Kalman filter, extended Kalman filter and two H∞ filters, each compared for 
their performance. The study found that the unscented Kalman filter and the EKF had similar 
performance, as long as the non linear elements of the system are non severe, the EKF and the 
Unscented Kalman Filter have similar performance, but when the non linear elements are severe, the 
Unscented Kalman Filter had superior performance, in addition to no significant improvement in 
performance when comparing the Kalman filter variants to the H∞ variants. This conclusion was also 
reached in [8], as well as noting that implementing the Unscented Kalman Filter was easier than the 
EKF.  

In [10], a system of sensor fusion involving multiple sensors with a Kalman filter is proposed and 
tested on a radar tracking system. The sensor fusion algorithm follows a complex system of two 
layered Kalman Filtering and is on a radar system that uses position, velocity and acceleration in the 
state transition matrix. The result of this mutli-sensor mutli-layered Kalman Filter sensor fusion 
algorithm was it was optimal for systems with multiple sensors and correlated noises. As our position, 
velocity and acceleration are needed to get results, and these noises are likely not correlated, this 
studies’ sensor fusion model would not prove useful to the project. 

There are papers with numerous ways of sensor fusion with different types of sensors. Sensor fusion 
algorithms with various combinations of sensors including GPS, IMU and Wheel Encoders along with 
other sensors are performed in [11], [12] and [13]. The robot in [11] had five sensors, including an 
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encoder, compass, GPS, gyroscope and accelerometer, which were all fused with an EKF. The study 
used its own variation of the state transition matrix and the measurement matrices for each of its 
sensors. The sensor fusion involved fusion of both of the position, velocity, acceleration and headings. 

In [12], a sensor fusion algorithm employing the EKF is employed and the algorithm employs the use 
force body dynamics for use in the modelling the state transition vectors of the EKF.  

In particular [13] described a robot which used IMU and Wheel Encoders, as well as image 
processing and utilizing a Kalman Filter for sensor fusion. The IMU was stressed as low cost due to 
utilizing a Nintendo Wii remote as an improvised IMU, at estimated $42USD at the time of writing.  
The result of the sensor fusion from [13] was a drive that was very close to the actual path, which was 
compared to drives with only one of each sensor. All three of these studies provide useful material to 
setting the state transition and observation matrices for making an EKF to suit our purposes.  

 

3. System Design 

3.1. Hardware 
Autonomous driving systems are dependent on relatively powerful microprocessors, depending on the 
sensors used. Initially the SAE vehicle used a Raspberry Pi for this application. As the system is being 
implemented with cameras, and an IBEO LUX Light Detection and Ranging Laser Scanner, for object 
and feature detection, a more robust, device is needed to accommodate the processing power needed 
from all of these scanners. Comparing the Raspberry Pi 3’s specifications, featuring a 1.2GHz ARM 
processor, 1GB LPDDR2 RAM, and 16GB Micro SD card storage [16], with a NVidia Jetson TX1 
board, which uses a Quad ARM® A57/2 MB L2 CPU , 4GB 64 bit LPDDR4 RAM, and features 
various other types of data storage [14]. For this reason, the Raspberry Pi was swapped for the NVidia 
Jetson TX1 board, which allows the SAE vehicle to become a more powerful autonomous driving 
system. 

A significant redesign of the previous setup of the autonomous SAE vehicle has taken place in order 
to improve the car’s functionality. An additional DCDC converter from Mean Well [15] to convert the 
LiPo battery output voltage from 48V to 12V to power the NVidia Jetson TX1 board was utilized. To 
provide power to a 10 port USB hub, a 12V to 5V DCDC converter was also utilized. Initially the 
Lidar was connected to the Raspberry Pi via an Ethernet modem, but after replacing the Raspberry Pi 
with the NVidia Jetson TX1 board, the modem was able to be removed from that, and the Lidar was 
directly inputted into the NVidia JetsonTX1 board through its own cable into the Ethernet socket of 
the NVidia Jetson TX1 board. 

 

3.2. Software 
The Software architecture of the project, from [5] is centralized around the control class, with wrapper 
classes for each of the sensors, as well as the fusion class. The software includes a web based 
framework by [5], which allows for a simpler use than a CLI. From there the output of many variables 
can be displayed, which will be employed significantly, as well as the Logger class, which record all 
the information needed.  
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3.3. GPS 
From [7], a RTK GPS system was tested for the localization of the SAE vehicle. This proved to be 
very useful for localization, when the system was reliable. Currently the GPS module being used is a 
Columbus V-800 USB GPS [18]. Besides being able to attain latitude and longitude from the system, 
the GPS can also be used to obtain track angle, velocity and acceleration, though since the V-800 
USB GPS module is not an RTK-GPS module, these measurements will be poorer than it could be. 
This proves to be especially true when these measurements are found through integration. 

 
Figure 2: The GPS velocity vs time, output throgh the EKF, and the Integrated Accleration. 

The figure 2 above shows a large divergence in the acceleration if the GPS acceleration is obtained 
just through raw integration. This is why odometry was investigated in order to prevent a large 
divergence from appearing near immediately. 
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Figure 3: The V-800 USB GPS module 

 

Due to the face that the current software uses the GPS for setting the starting position before a drive, 
the GPS was kept for localization.  

3.3. IMU 
The IMU employed in this project is an XSens MTi-100, which provides velocity and acceleration 
around the x, y and z axis, as well as pitch, roll and yaw [19]. The IMU was calibrated in previous 
years to fit the SAE’s specific dimensions and to protect it from interference from metal.  It can output 
values in ranges from 100Hz to 10Hz, in which 10Hz was chosen in order to provide stable enough 
data for the sensor fusion, and to allow the GPS module to keep pace. 
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Figure 4: XSens IMU MTi 1000 

 

3.4. Cameras 
As the REV project plans for the use of computer vision algorithms for object detection and planning, 
localization and vehicular odometry, two cameras have been mounted on the top of the SAE vehicle 
on either side of the IMU. These are for cone detection in emulation of [4], and possible other road 
feature detection. This is to be implemented into the system and give object coordinates, for which 
they need good localization in order to do this.  

 

3.5. Lidar 
The Light Detection and Ranging device used is an IBEO LUX. This allows four layers of object 
detection for distances up to 200m, and as many as 65 objects to be tracked [20]. This communicates 
with other system through Ethernet cable, so TCP/IP is what is needed to perform communications 
with the device. Similar to the camera setup, this system of object detection and mapping also 
depends on the localization from the sensors being highly accurate.  

 

3.6. Odometry 
Taking into account the problems with the initial odometry that were outlined in [7], the Odometry 
circuit was modified. The Front Wheels were achieved through using Hall Effect sensors. The Hall 
Effect sensors worked through the use of placing magnets on the front wheels of the car, and using the 
output of the Hall Effect sensors when they are closest to the magnet for their respective wheel, to 
become the input for a simple circuit to pickup when the Hall Effect sensors arrive in close proximity 
with the magnets on the wheels.  
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Figure 5: The Odometry Circuit. 

For the rear wheels, odometry is available via the motor controllers and motor of the SAE vehicle. 
The motor has built-in Hall Effect sensors. The Hall Effect sensors of the rear end have to be isolated 
from the low level and odometry circuits in order to avoid electrical hazards. To achieve this, an 
optocoupler isolation circuit was utilized, that obtains the signal of the pulses of the rear wheel motor, 
and passes it through the rest of the Odometry circuit as a pulse train similar to the front wheel Hall 
Effect sensors. There was an existing optocoupler circuit, but that proved to be non viable, as there 
was never any output in response to input, so the circuit had to be redesigned. Later investigation 
found that it was due to the optocouplers being used in that isolation circuit were TRIAC 
optocouplers, the wrong type required for digital signals. The pulses from the hall effect sensors and 
the optocoupler isolation circuit goes through a comparator chip, and the outputs of the comparator 
chip go into both the OR gate and the analog inputs of the Arduino Nano. The Arduino Nano runs an 
ISR when the output of the OR gate sends a high signal to one of the pins on the Arduino Nano. The 
Odometry microcontroller then uses the time difference to get these interrupt signals:  

     
     

                               
 

From then on a simple equation to transform the RPM of each wheel into meters per second was used.  

           
      

  
 

In this r is the radius of the wheels, of which the SAE has all four wheels at the same radius at 
0.2575m. The Arduino Nano then sends the wheel speeds over to the Arduino Uno through a serial 
interface emulated by the Arduino Software Serial library, which can then send the wheel speeds to 
the NVidia Jetson TX1 board. The rate chosen for this was around 5Hz, to be a similar to the GPS and 
to the IMU for the fusion, and to not interrupt the other functions of the Arduino Uno. 

An issue described in [7] was that the samples may be not frequent enough for the microcontroller to 
report accurate speeds. This was due to the Arduino Uno having several other functions that use ISRs 
in order to function effectively.  
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3.7. Ackerman Drive Model 
After obtaining the wheel speeds from the odometry circuit, these wheel speeds need to be translated 
into something more useful than a magnitude of speed to be useful for the SAE vehicle. For this, a 
steering model is required. As the SAE vehicle utilizes Ackerman steering, using this model to get 
from wheel speed magnitudes and steering angle to a linear x and y velocities is needed. From [17], 
we can obtain this from: 

 

 
 

 
 
 
  

 
 

 

Where V is the average of all four wheel speeds, ψ is the yaw angle, δ the steering angle, R the radius 
of curvature, and L the distance between the front and back wheels. From the SAE vehicle, the 
measured L is 1.81m, δ ranges from ±30°, and since the SAE uses a steering linkage arrangement that 
keeps the left and right steering angles approximately equal, even though in reality there will be a 
small difference, in low speeds this will not be significant, and our steering sensor does not account 
for the steering angles of two wheels. After obtaining the radius of curvature, the ψ, the steering yaw 
can be obtained, then the slip angle, β from: 

         
               

     
  

In this equation, lf and lr are the distances from the centre of gravity. For the SAE vehicle, these values 
are approximately lf = 1.15m and lr=0.66m respectively. After obtaining the slip angle and the driving 
angle, the linear x and y velocities can now be calculated as: 

            

            

From there on these values are stored into a vector for the sensor fusion to use. As the wheel speeds 
are sent from the Arduino Uno to the Jetson TX1, there needed to be programming done to capture the 
output and store it in order for it to be utilized around the rest of the software. The class that initially 
interacted with the Arduino Uno was called LowLevelSerialOutput, which utilized the boost software 
library to perform asynchronous serial communications with it. Changes to the code of this class were 
to capture the output and process it into a vehicle vector.  

 

3.8 Low Level Improvements 
As the automated steering, braking and acceleration system on the SAE vehicle was controlled by the 
Arduino UNO, changes to the programming needed to be made to make it as efficient as possible. 
Initially the steering control unit was running on a simple while loop which would may have could 
potentially cause issues when the system needs to perform a turn and it was not in that part of the code 
for a particular frame of time. This was moved into a hardware timer interrupt algorithm to ensure that 
the steering would tune itself every 150ms.  

 

The steering PID loop had a problem in that when turning too hard to either the left or the right 
directions, the whole system would turn off. While the Raspberry Pi was still on as the main 
processor, an attempt to mitigate this was by using a large capacitor at the power source of the 
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Raspberry Pi, which although somewhat worked, still did not completely alleviate the original 
problem. Eventually, software changes to the Arduino Uno were made to prevent this. Effectively the 
steering range of the maximum left and maximum right angles were restricted in order to stop the 
steering motor controller from hitting the end stops of either side of the steering shaft. This was a 
success in preventing the automatic steering from turning off  

 

3.8.1 Formatting 
The output values of the Arduino Uno that are required to be outputted into the NVidia Jetson TX1 
board outputted in a paragraph describing all the values, with many spaces and periods as separators. 
Each time the data is outputted, can potentially amount to strings of lengths over 200 characters. This 
proves to be bad, especially as the LowLevelSerialOut class processes the serial output by separating 
them with newline characters, which can cause packets of information that need to be displayed 
separately to possibly together, and that the large paragraph uses up more time and processing power 
in the rest of the system. The serial output from the Arduino Uno was therefore change to reflect 
LowLevelSerialOut, which means the values were separated via newline characters and the value 
names were abbreviated to save string space. This was simply done by abbreviating values that are 
outputted to the user. The result was being a string that was reduced in size by more than half, which 
can be viewed in the Appendix (low level changes). 

 

3.9.1 Kalman Filter 
From [5], the Kalman Filter was accomplished by importing a 3rd party library called OpenCV. This 
library includes software for matrix calculations, and has its own implementation of a Kalman filter 
class. The code of the Kalman Filter allows it to be modified to work as an EKF [21]. This was done 
to provide  

 

 

3.9.2 Extended Kalman Filter  
The application of extended Kalman filters is common in the field of localization. The EKF is an 
extension to the normal Kalman filter, which attempts to compensate for the Kalman Filter’s 
weakness in estimation for non-linear systems. A system is linear if it follows the rule that: 

            

As the SAE vehicle will be travelling in angular and linear directions, it follows that the system can be 
assumed to be non-linear. The Kalman filter is optimal given that the system it is being used on is 
linear. Otherwise alterations of the Kalman Filter will need to be utilized. 

As with the Kalman filter, the EKF requires a model to be chosen for it to work optimally. When 
compared with the regular Kalman Filter, the EKF relies on the Jacobians of the state transition 
function and the observation function to accurately model it. As this filter is being applied to find the 
correct position, velocity and accelerations of the x and y coordinates, the state transition matrix was 
in [5] was defined as:  
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The EKF defines Fk-1 as:  

        
                

 

So for the EKF, using the state transition matrix for linear position, velocity and acceleration, this 
comes to be: 

     
    
   
   

 

The observation matrix is also been defined as the Jacobian of the observation function, which for this 
paper will be assumed as:  

      
       

 
   
   
   

 

This observation matrix is an Identity matrix in our case due to the face that the EKF will use one 
sensor per variable measurement.  

3.9.3Sensor Fusion 
Sensor fusion is the most significant task in localization, as it is the test of the effectiveness of the 
sensors, as well as the effectiveness of the filtering algorithms employed. The previous sensor fusion 
algorithm involved GPS and IMU as the primary sensors [13],  

 
Figure 6: Original Sensor Fusion Algorithm [5]. 

As outlined in figure [5], the sensor fusion algorithm starts off with obtaining the IMU orientation and 
acceleration frame to change the reference frame, then the acceleration and GPS velocity are 
processed into a Kalman filter, then the output of that is put into another Kalman filter with the GPS 
position measurements. Using the Columbus V-800 USB GPS has shown to be unreliable, as it cannot 
get as many locks on satellites as the Piksi RTK-GPS can, and connections to satellites are easily 
interrupted by walls.  

With the addition of odometry, the Kalman Filter now has a more stable input, over the GPS which 
depends on outside systems such as satellites. An alteration to the Kalman Filter is done by using the 
velocity vector transformation via the Ackerman steering method from the odometry and using that as 
the input into both the velocity-acceleration and position-velocity Kalman Filters again. The system is 
described below:  
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Figure 7: Modified Sensor Fusion Algorithm, with Odometry as the velocity measurement. 

 

From then on after this sensor fusion algorithm has been verified, the next step can be taken by 
directly implementing the EKF. The control chart below describes this. 

 
Figure 8: Modified Sensor Fusion Algorithm with Odometry and EKFs. 

After the Kalman filter changes to include the SAE Vehicle odometry measurements were made, the 
class BoeingKalman had to be changed in order to emulate an EKF, according to [21]. Using these 
sensors, the system can then use dead reckoning to record the current position, after being filtered by 
the Extended Kalman Filter.  

 

4. Results 

4.1. Odometry  
The Odometry Circuit that was made was successful in extracting the wheel speed of each wheel. The 
new optocoupler isolation circuit between the motors, motor controllers and the odometry circuit 
succeeded in recording the velocity measurements. The Arduino Nano and Uno were able to 
communicate successfully via software serial without any issues to the safety actions the Uno has to 
perform, as well as the steering, braking and the acceleration of the SAE vehicle. 
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Figure 9: Wheel Speed output of Odometry circuit via Arduino serial monitor. 

The interrupt software model proved to have issues. This is mainly due to the logic of the controller. 
As the isolation circuit inverter digital highs and lows of the rear wheel hall sensors, this would cause 
a constant interrupt if the isolation circuit was not connected and working. Changing the software 
model into a polling algorithm improved the reliability of the odometry, as the logic issue was 
superseded by not depending on an interrupt.  

An issue that arose from [7] was that the ISRs cause by the Odometry logic circuit had a very 
inconsistent pulse count. How much of this was due to the faulty wiring of the Low Level Control 
circuit is unknown, but it remains a valid concern, though due to the Odometry counter circuit not 
being required to perform functions other than besides counting and one way serial communications, 
the 16MHz microprocessor of the Arduino Nano should be more than adequate enough to perform the 
pulse counting for the car.  

The LowLevelSerialOut was able to obtain the wheel speed measurements from the Arduino Uno 
serial interface. The results of the translation of the wheel speeds into a velocity vector showed results 
that were in line with the wheel speeds. The problem with the wheel speeds is that they are not in 
close range with each other, which is probably due to calibration errors from the odometry circuit. 
This will have to be corrected in the future. The rear wheel speeds are likely the more correct ones, as 
the front wheel sensors are affected by the Hall Effect sensors being non-uniformly close to their 
respective wheel’s magnets. Despite this, the wheel speed sensors have been partially integrated into 
the software. The odometry circuit may require more adjusting before it becomes a really accurate 
reader for the speed of the SAE vehicle.  
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Figure 10:Wheel Speeds and Odometry X and Y velocities from the SAE web interface. 

 

 

 

4.2. Low Level System Changes 
The changes made to the Low Level Arduino Uno provided several benefits. Though at first, the PID 
loop constants that the steering used, KP, KD and Ki needed to be changed to reflect the new system, as 
the previous values had were causing significant overshoot and increased the settling time 
significantly. The changes to the output formatting allowed for more robust output and better reflected 
the embedded system of it.  

The change in the low level control software the involved limiting the range of the steering proved to 
stop the steering motor controller from drawing too much current and turning the system off abruptly. 
This also will preserve the SAE vehicle’s steering shaft, as the steering motor controller will not be 
able to hit the stoppers at the ends of the steering shaft. A small downside to this is that the turning 
circle of the SAE vehicle will be reduced, 

 

4.3. Kalman Filters 
The Kalman Filters with and without odometry were implemented in software, but the tests did not 
really help with the localization, indicating that the fusion class has some issues in software. Each of 
the Kalman Filters variants (GPS-IMU and GPS-Odometry-IMU) were implemented in the code and 
are able to be compiled, indicating that the issue is within the fusion class itself. This will need to be 
fixed as soon as possible for the SAE vehicle to be able to localize itself.  

4.4. EKF 
The EKF with Odometry model has not being fully implemented in the software, though the 
BoeingKalman class was adjusted to be an EKF filter. As the regular fuser class ran into issues, the 
EKF was not able to be implemented in software. 
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5. Conclusion  
The beginning of the project determined that there were some much needed improvements in the 
localization of the SAE vehicle. The quality of the localization was initially very good, due to the use 
of an RTK-GOS module, and a working sensor fusion class, to the degree that the SAE vehicle was 
able to drive via GPS waypoints.  

The initial odometry circuit and software that was constructed in [7] was so constrained that it could 
not be a reliable measurement apparatus. The new odometry hardware and software is significantly 
less restrained and more reliable. Through some minor calibrations of the magnets and 
potentiometers, the odometry circuit can become a very reliable measurement device for the SAE 
vehicle’s localization.  

The EKF has been partially implemented in software through altering the BoeingKalman class. It has 
not been fully implemented in the fusion class, which will need to be done in the future. If the EKF 
and sensor fusion can be implemented correctly, there is a significant promise for the localization 
capabilities of the SAE vehicle.  

6. Future Work 
There is a significant scope of future work that can be to the localization system of the SAE vehicle to 
improve the autonomous driving capabilities of it. The first would be being able to compare the sensor 
fusion variants to find the most optimal use, although as the per paper [9] shows, as long as the non 
linear system linearization done by the EKF does not diverge too much, that EKF and Unscented 
Kalman Filters perform similarly. Though as driving is a largely non linear environment, 
implementing an Unscented Kalman Filter would probably provide better measurements, and it more 
simple to implement from [8]. 

The Odometry can be improved by changing the model currently used to calculate the x and y 
velocities into something that reflects reality a lot more. A more complex model is described [22], 
where the individual velocities of the x and y axis of the wheels and the angular velocities are taken 
into account, as well differing models for high and low speeds. The software code could also be 
potentially changed so that the Odometry completely replaces the need for a GPS, by providing 
acceleration and position measurements. Though potential changes in the low level odometry code 
would have to be done in order to refine the odometry for this use, which would include a better 
turning model for the estimate of the slip angle. Providing a better estimate for the velocity from the 
odometry system will make it more suited to be able to perform the function that it was meant to do; 
allow the SAE vehicle to perform drives for periods at a time without a functioning GPS system. 

As the Piksi GPS system from Swift Navigation was replaced with the Columbus V-800 GPS module, 
a cheaper, less precise option that does not use RTK-GPS, the GPS navigation has suffered as a result 
of this. This was mainly due to the Piksi being newer hardware, which had less documentation 
available for it, as well as a USB reliability issue. With the release of firmware version 1.2 [23], the 
USB issue seems to have been remedied, and the Piksi can be potentially moved back onto the SAE 
vehicle. The previous software for it may have to be modified if this were to happen.  

The now stable odometry can now provide a several advance driver assistance systems. These include 
anti-lock braking, rollover protection and electronic stability control, which would also improve the 
safety of the car for future students that work on it. These advanced driver assistance systems would 
probably requires a microcontroller with a greater processing power, meaning the Arduino Uno would 
have to be changed out. From [24], the list of Arduino products similar to the Uno but have higher 
processing power are the Zero, Due, Yun and MKR1000 among the variants of Arduino products 
available. Any variant of these chosen would result in some reworking of the Low Level Control 
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circuit needing to be implemented. The most powerful of these variants is the Arduino Yun, which 
has a 200MHz microcontroller, 64MB of RAM, an Ethernet port, which would allow it to perform 
probably all advanced driver assistance system functions if needed to.  

Currently the software architecture is being revised in order to construct a make each class less 
interlinked between each, a problem that occurred with the implementation in [5]. This is make the 
code more accessible and easier to read.  

To improve the reliability of the circuits, removing the prototyping boards out of the SAE Vehicle in 
place for properly made PCBs would improve the circuits considerably. This is especially true for the 
Low Level Control circuit, and the Safety Supervisor circuit, but can be extended to all of the low 
level circuits. 

With the addition of the NVidia Jetson Titan running as the SAE vehicle’s main control system, the 
use of SLAM related techniques becomes a real possible to test and perform without needing to worry 
about processing power too much. This processing, with the cameras set up on the SAE, allows the 
implementation of Visual Odometry to be added as a feature, to help with both the localization, as 
well as the object detection.  

The final improvements to localization that could potentially be made to the SAE Vehicle is through 
the addition of a particle filter based system. A recent paper by Chen et. al shows how much less the 
error is in a particle filter than in a EKF system. If this could be implemented correctly, the SAE 
Vehicle would probably not need any other improvements in its localization. 
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8. Appendices 

Appendix A - Low level circuit changes 
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Appendix B – Odometry and Opto Coupler Isolation circuit 
 

 

Appendix C – Low Level Code Changes 
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