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Abstract	

With	increasing	global	interest	in	semi-	and	fully-autonomous	vehicle	systems,	the	

University	of	Western	Australia	has	several	research	groups	continuing	to	advance	the	

capabilities	of	autonomous	driving	vehicles.	This	research	comes	with	significant	cost	and	

risk,	so	a	team	was	formed	to	research	the	effectiveness	of	embedded	robotic	vehicles	

(using	the	Raspberry	Pi-based	Eyebot	platform)	and	determine	the	viability	of	a	multi-robot	

autonomous	driving	system	on	the	low-power,	low	cost	hardware.		

	

The	navigation	system	of	an	autonomous	robot	requires	the	synthesis	of	data	from	a	variety	

of	sensors.	The	camera	systems	provide	a	significant	amount	of	information,	including	the	

classification	and	location	of	objects,	though	this	usually	requires	running	expensive	and	

complex	algorithms.	Therefore,	the	purpose	of	this	thesis	is	to	research,	design	and	

implement	an	object	detection	and	classification	algorithm	that	achieves	high	speed	and	

accuracy	while	running	on	the	computationally-limited	Eyebot	platform.	

	

After	researching,	testing	and	comparing	several	object	detection	algorithms,	it	was	

determined	that	a	mobile-specific	neural	network	implementation	would	give	the	best	

combination	of	performance	and	efficiency.	

	

This	neural	network	was	trained	on	a	relatively	small	dataset,	with	impressive	accuracy	for	

its	speed	when	compared	with	other	researched	algorithms.	The	solution	provides	real-time	

detection	of	hazards	such	as	other	vehicles,	as	well	as	the	ability	to	recognise	different	

traffic	signs,	with	speeds	approaching	real-time	detection	(approximately	4.5	frames	per	

second).		
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1.	Introduction	
	
Autonomous	vehicles	are	vehicles	that	operate	with	higher	levels	of	automation,	allowing	

them	to	function	without	human	intervention	(ADVI	2018).	While	still	a	relatively	new	

technology,	they	are	becoming	more	prominent	in	numerous	industries,	such	as	mining	(Rio	

Tinto	2017)	and	transportation	(nuTonomy	2017).	By	using	numerous	sensors,	such	as	

cameras,	laser	scanners,	and	proximity	sensors	(Waymo	2017),	the	car	is	able	to	observe	its	

environment	and	make	decisions	regarding	navigation	and	collision	avoidance.	These	

sensors	are	often	expensive,	with	LiDAR	scanners	for	Google’s	autonomous	car	costing	

around	$70,000	US	(ArsTechnica	2017)	

Mainstream	media	coverage	of	major	breakthroughs	in	autonomous	vehicle	technology	has	

propelled	the	topic	into	the	forefront	of	social	consciousness.	However,	autonomous	

vehicles	(especially	self-driving	cars)	have	been	met	with	hot	debate	around	key	topics	such	

as	safety,	ethics,	cost,	and	legal	responsibility.	These	debates	have	been	exacerbated	after	

several	fatal	car	accidents	involving	self-driving	cars,	such	as	a	driver	who	was	killed	after	his	

Tesla	collided	with	a	truck	(Tesla	2016)	and	a	pedestrian	who	was	killed	when	crossing	the	

road	with	her	bike	by	a	self-driving	Uber	car	(National	Transport	Safety	Board	2018).	

These	incidences	demonstrate	the	complexity	of	both	the	problem	and	solutions,	and	the	

significant	risks	involved	in	developing	autonomous	vehicles.	These	risks	can	be	mitigated,	if	

not	removed,	by	creating	small-scale	variants	of	these	vehicles	and	testing	them	in	various	

environments,	both	physical	and	simulated.	

	

1.1 Small-Scale	Implementations	

With	the	high	risk	involved	in	exploring	and	creating	autonomous	vehicle	solutions,	many	

car	companies,	industry	bodies	and	universities	turn	to	scaled-down	implementations	to	

develop	their	concepts.	Audi	is	one	of	many	vehicle	manufacturers	that	has	allied	with	local	

universities,	forming	a	competition	between	eight	German	universities	where	participants	

create	an	autonomous	driving	system	(Audi	Autonomous	Driving	Cup	2018b).	Teams	receive	

two	scaled-down	Audi	Q1	vehicles	fitted	with	five	ultrasonic	distance	sensors,	two	cameras	

(front	and	rear),	accelerometer,	wheel	speed	sensors,	and	a	LiDAR	sensor	(Audi	

Autonomous	Driving	Cup	2018c).	The	vehicles	also	come	equipped	with	desktop	computer-

level	hardware,	similar	in	performance	to	the	hardware	available	on	the	real	Audi	Q1	(Audi	
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Autonomous	Driving	Cup	2018a).	The	vehicles	come	with	an	API	used	for	accessing	this	

hardware	and	are	tasked	with	building	a	control	system	that	allows	the	car	to	autonomously	

navigating	a	pre-made	environment	complete	with	road	signs,	intersections,	parking	areas,	

and	other	cars	(AADC	2018	Rulebook	2018).		

While	these	model	cars	use	cheaper	and	far	less	complex	hardware	than	the	vehicles	they	

are	modelled	on,	they	still	use	expensive	components	such	as	LiDAR	and	desktop	graphics	

cards	(Audi	Autonomous	Driving	Cup	2018a,	Audi	Autonomous	Driving	Cup	2018c).	To	

complete	a	thesis	with	such	hardware	would	be	prohibitive,	due	to	the	limited	number	of	

vehicles	afforded	with	the	given	budget.	However,	the	Robotics	and	Automation	Lab	at	the	

University	of	Western	Australia	has	a	large	number	of	EyeBots,	custom-made	robots	based	

around	the	cheap	and	readily-available	Raspberry	Pi	3	platform	(Robotics	UWA	2008).	These	

robots	have	three	infrared-based	proximity	sensors,	a	front-facing	camera,	and	a	differential	

drive	wheel	configuration,	keeping	the	cost	down	while	still	providing	similar	functionality	

to	the	Audi	robots.	The	robots	have	their	own	high-level	API	for	reading	sensor	data,	driving	

the	robot,	and	basic	image	processing.	Additionally,	a	cross-platform	simulator	(called	

EyeSim)	is	also	available	that	can	be	used	to	virtually	test	the	robots	(Robotics	UWA	2017).	

Therefore,	any	successful	autonomous	control	systems	developed	on	the	EyeBots	should	be	

able	to	run	on	much	cheaper	hardware	than	what	is	required	for	the	real-life	Audi	Q1,	

potentially	paving	the	way	for	low-cost	consumer	autonomous	vehicles	in	the	future.	

	
1.2	Autonomous	Vehicle	Control	Systems	

The	control	system	for	an	autonomous	vehicle	is	complex,	consisting	of	many	subsystems.	

They	can	be	categorised	into	three	types:	perception,	decision,	and	manipulation	(Behere	

and	Törngren	2016).	Manipulation	consists	of	the	components	involved	in	the	motion	of	the	

vehicle	such	as	steering	and	braking	and	is	used	by	the	decision-making	system	to	operate	

the	vehicle.	In	most	cases,	the	manipulation	systems	are	already	implemented	in	vehicles	

that	have	manual	controls,	such	as	cars	and	boats.	

Decision-making	systems	consist	of	the	components	that	are	concerned	with	vehicle	

behaviour	given	its	external	environment	(Behere	and	Törngren	2016).	This	includes	

components	such	as	path	planning,	localisation,	collision	avoidance,	and	object	recognition	

(Herbert	1988).	Localisation	and	object	recognition	are	key	to	determining	what	possible	
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routes	are	available	when	path	planning	and	are	also	heavily	reliant	on	the	perception	

capabilities	of	the	vehicle.	

Perception	systems	consist	of	both	the	components	that	are	concerned	with	the	gathering	

of	environmental	data	and	the	components	used	to	interpret	the	data	at	a	higher	level	

(Behere	and	Törngren	2016).	This	includes	components	such	as	proximity	sensing,	LiDAR	

imaging	systems,	object	tracking,	image	processing,	object	detection,	and	object	

classification	(Agarwal	et	al.	2017).	While	the	first	two	perception	components	listed	simply	

gather	data	from	the	environment,	the	latter	components	extract	and	interpret	information	

from	raw	sensor	data	(in	this	case,	a	camera).	The	information	from	these	components	is	

used	to	create	a	“world	model”	(Behere	and	Törngren	2016),	which	is	vital	to	the	

functionality,	accuracy	and	performance	of	the	decision-making	components.	

	

1.3 Project	Scope	

As	this	project	is	large	and	complex,	it	will	be	undertaken	by	a	team	of	four	Masters	

students:	myself,	Nicholas	Burleigh,	Bin	Cui,	and	Yang	Zhang.	Together,	our	goal	is	to	create	

an	autonomous	robot	system	for	use	on	the	EyeBots,	capable	of	navigating	environments	

and	overcoming	obstacles	similar	to	what	is	present	in	the	Audi	Autonomous	Cup	

competition.	To	do	this,	we	will	break	the	work	down	into	its	components	–	Yang	will	create	

a	lane-	and	intersection-detection	subsystem	to	assist	with	navigation,	Bin	will	create	a	

localisation	subsystem,	Nicholas	will	work	on	path	planning	and	navigation,	and	I	will	create	

a	subsystem	to	track,	detect	and	classify	objects	with	the	camera	for	use	with	navigation	

and	path	planning.	

	

My	intended	contribution	is	a	high-level	C++	API	for	object	detection,	tracking	and	

classification	designed	for	use	with	the	EyeBots	and	the	Robios	7	API.	This	API	will	be	

designed	with	efficiency	in	mind	(due	to	the	limited	compute	power	of	the	EyeBots)	and	will	

be	used	by	other	team	members	for	path	planning,	navigation,	and	decision-making	tasks	

within	the	autonomous	control	system.	

	



	 8	

2.	Literature	Review	

In	this	section,	the	existing	literature	is	reviewed	to	identify	various	object	detection	and	

classification	methods.	Firstly,	the	more	common	and	well	understood	algorithms	are	

explored,	followed	by	a	review	of	the	emerging	algorithms	explored	in	more	recent	papers.	

	

2.1	Existing	Solutions	

The	project	requires	the	detection	and	classification	of	the	objects	around	the	EyeBots,	

using	the	available	sensors.	Unlike	the	single	forward-facing	infrared	sensor,	the	camera	

gives	a	significant	amount	of	information	about	the	objects	in	front	of	the	vehicle.	Image	

processing	and	computer	vision	techniques	can	therefore	be	used	to	extract	information	

about	the	objects	in	the	camera’s	view.	

Common	computer	vision	techniques	employed	to	extract	objects	from	an	image	use	a	

classifier	trained	on	features	extracted	from	the	image.	Traditional	solutions	include	using	a	

support	vector	machine	(SVM)	trained	on	HoG	(Histogram	of	Orientated	Gradients)	features	

extracted	from	training	images	(Dalal	and	Triggs	2005).	This	an	optimised	algorithm	with	

good	accuracy	and	performance,	however	it	is	a	binary	object	detector,	requiring	a	new	

detector	for	each	new	object	(Dalal	and	Triggs	2005).	For	many	classes,	such	as	the	case	

with	an	autonomous	vehicle	object	detection	system,	the	large	number	of	SVMs	would	

outweigh	any	performance	gains.	However,	newer	solutions	based	on	convolutional	neural	

networks	have	been	developed	in	the	last	decade	which	can	detect	multiple	different	

classes	in	a	single	network.	

Convolutional	neural	networks	(CNNs)	are	a	type	of	deep,	artificial	neural	network	that	are	

capable	of	processing	image	data.	The	network	uses	its	training	to	learn	what	filters	to	apply	

to	the	image,	as	opposed	to	relying	on	a	pre-specified	algorithm.	However,	they	cannot	be	

used	to	classify	multiple	objects	within	an	image,	since	they	cannot	distinguish	between	

separate	regions	of	the	image.	Region-proposal	CNNs	(R-CNNs)	were	designed	to	solve	this	

issue	by	incorporating	a	region	proposal	algorithm	based	on	selective	search	(Girshick	et	al.	

2014).	This	method	proposes	almost	two	thousand	regions	(Girshick	et	al.	2014),	which	

gives	the	algorithm	a	high	accuracy	but	causes	the	runtime	of	the	algorithm	(at	up	to	a	

minute	per	image)	to	be	far	too	slow	for	real-time	object	detection	(Girshick	2015).	
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Several	improvements	have	been	made	to	R-CNNs	in	the	years	following	Girshick	et	al.’s	

2014	paper.	The	first	was	the	development	of	the	Fast	R-CNN,	which	addressed	the	runtime	

performance	and	training	time	of	the	original	implementation.	This	was	achieved	by	

calculating	the	convolutional	feature	map	before	processing	the	proposed	regions	to	

improve	detection	speed	(Girshick	2015),	and	also	by	incorporating	bounding	box	regression	

into	the	network	training	to	reduce	total	training	time.	This	resulted	in	a	performance	

increase	of	over	150	times	compared	to	the	original	R-CNN	implementation	(Girshick	2015).	

The	next	major	development	came	in	the	form	of	Faster	R-CNN,	which	replaces	the	selective	

search	algorithm	used	in	previous	implementations	with	a	small	convolution	network	called	

the	Region	Proposal	Network	(Ren	et	al.	2017).	This	resulted	in	an	average	runtime	of	just	

0.2	seconds	for	the	deepest	tested	network	with	an	improved	accuracy	over	Fast	R-CNN	

(Ren	et	al.	2017).		

	
With	the	limited	hardware	considerations	of	the	Raspberry	Pi-based	EyeBots,	and	the	high-

performance	hardware	used	to	test	these	R-CNNs	(Girshick	2015,	Ren	et	al.	2017),	it	is	

important	to	consider	alternative	algorithms	that	sacrifice	some	accuracy	for	extra	

performance.	One	such	algorithm	is	the	Single-Shot	MultiBox	Detector	(SSD),	a	feed-forward	

network	convolutional	neural	network	which	generates	scores	for	the	presence	of	objects	at	

each	of	a	default	set	of	bounding	boxes	(Liu	et	al.	2016).	This	eliminates	bounding	box	

proposals	and	subsequent	resampling,	resulting	in	an	approximate	seven	times	increase	in	

performance	compared	to	Faster	R-CNN	with	little	change	in	accuracy	(Liu	et	al.	2016).		

	
2.2	Emerging	Solutions	

The	next	major	breakthrough	in	convolutional	neural	network	research	came	with	the	

release	of	“MobileNets”	–	efficient	networks	designed	by	researchers	from	Google	for	

mobile	and	embedded	vision	applications	(Howard	et	al.	2017).	They	are	based	on	

factorising	standard,	high-dimension	convolutions	into	lower-dimension	depthwise	and	

pointwise	convolutions.	These	lower-dimension	convolutions	are	far	more	efficient,	giving	a	

reduction	in	computation	of	approximately	eight	to	nine	times	when	compared	to	regular	

convolution	methods,	and	with	only	a	small	reduction	in	accuracy	(Howard	et	al.	2017,	

figure	1).	When	compared	to	other	networks,	MobileNet	was	able	to	match	alternatives	
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such	as	GoogleNet,	Squeezenet	and	VGG16	in	accuracy	with	significant	improvements	in	

speed	(Howard	et	al.	2017).		

	

	
Figure	1:	Comparison	of	standard	convolution	layer	with	the	proposed	MobileNet	layer	(Howard	et	al.	2017)	

	

MobileNets	were	designed	for	easy	modification	with	two	hyperparameters:	the	width	

multiplier	and	the	resolution	multiplier.	The	width	multiplier	(ɑ)	is	designed	to	uniformly	

thin	out	the	network	at	each	layer	and	ranges	from	0	to	1,	though	it	is	typically	set	to	a	value	

of	1,	0.75,	0.5	or	0.25	(Howard	et	al.	2017).	This	multiplier	effectively	reduces	the	number	of	

computations	as	well	as	the	number	of	parameters	by	roughly	ɑ2.	The	resolution	multiplier	

(ρ)	is	used	to	reduce	the	dimensionality	of	the	layers	in	the	network	(Howard	et	al.	2017).	It	

also	ranges	from	0	to	1	but	is	implicitly	set	so	the	input	resolution	of	the	network	is	224,	

192,	160,	or	128.	Reducing	the	resolution	multiplier	also	has	the	effect	of	reducing	the	

number	of	computations	by	ρ2.	A	comparison	of	the	effects	of	these	two	hyperparameters	

on	accuracy	can	be	seen	in	Figure	2	below:	

	

	
Figure	2:	MobileNet	accuracy	compared	to	width	and	resolution	(Howard	et	al.	2017)	
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This	architecture	was	later	improved	upon	by	the	researchers	at	Google	to	produce	

MobileNet	v2,	which	improved	performance	by	30-40%	while	also	increasing	accuracy	

(Sandler	et	al.	2018,	Sandler	&	Howard	2018>.	This	is	done	by	changing	the	convolutional	

architecture	from	two	to	three	layers	–	input	data	is	fed	into	an	expansion	layer,	which	

outputs	high-dimensional	features	to	a	lightweight	depthwise	convolution	layer,	before	

being	projected	back	down	to	a	lower	dimension	with	a	linear	convolution	layer.	This	

architecture	preserves	more	information	when	compared	to	MobileNet	v1’s	non-linear	

convolutions	(Sandler	et	al.	2018),	resulting	in	the	increased	accuracy	and	speed.	

In	implementing	the	MobileNet	v2	architecture,	the	paper’s	authors	demonstrated	how	it	

could	be	paired	with	the	Single	Shot	Detector	(SSD)	algorithm,	using	MobileNet	v2	as	the	

basis	for	the	neural	network	component.	This	allows	the	combined	MobileNet-SSD	

architecture	to	detect	objects	within	an	image	instead	of	just	classifying	images,	retaining	

the	speed	and	accuracy	characteristics	of	both	MobileNet	and	SSD	(Sandler	et	al.	2018).	

Furthermore,	the	paper	takes	the	improvements	to	convolutions	in	MobileNet	v1	(replacing	

regular	convolutions	with	depthwise	and	pointwise	convolutions)	to	the	SSD	architecture,	

producing	a	much	less	computationally	expensive	variant	dubbed	SSDLite.	This	network	

reduces	the	number	of	parameters	by	a	factor	of	seven,	and	reduces	the	computational	cost	

by	over	three	times	(Sandler	et	al.	2018),	making	it	one	of	the	fastest	object	detectors	for	

the	given	accuracy.		

	

3.	Design	

In	this	section,	the	design	constraints	are	identified	and	justified,	and	a	methodology	is	

presented	to	evaluate	the	effectiveness	of	a	solution.	The	design	process	is	then	detailed,	

explaining	the	decisions	behind	architecture	selection	and	the	final	system	design.	

	

3.1	Design	Constraints	

The	design	is	primarily	constrained	by	the	available	compute	power.	While	the	Raspberry	Pi	

3	platform	offers	significant	performance	for	the	price,	it	falls	short	of	modern	mobile	

phone	processors	and	far	behind	regular	PC	capabilities.	Additionally,	there	is	little	room	in	

the	budget	to	expand	the	Raspberry	Pi’s	compute	capabilities,	either	through	the	use	of	
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more	powerful	alternative	compute	boards	to	the	Raspberry	Pi	or	through	external	

hardware	modules	such	as	the	Intel	Movidius	Neural	Compute	Stick	(Intel	Developer	Zone	

2018).	Therefore,	the	solution	must	be	efficiency-focused,	to	ensure	that	the	EyeBots	can	

detect	objects	in	real	time.	

	

Accuracy	must	also	be	a	major	factor	in	the	design	–	in	particular,	making	sure	that	the	

number	of	false	negative	detections	is	kept	to	a	minimum.	This	is	because	an	incorrectly	

classed	object	is	generally	(but	not	always)	more	useful	than	a	missing	one	–	a	car	being	

classified	as	a	truck	is	generally	safer	than	a	car	that	is	not	detected,	as	this	still	gives	the	

navigation	system	the	ability	to	avoid	a	collision.	A	high	accuracy	will	ensure	that	the	object	

detection	subsystem	can	be	relied	upon	by	the	navigation	subsystem	when	other	sensors	

and	systems	have	limited	world	information.	

	

Regarding	interactions	with	other	subsystems,	the	solution	is	required	to	be	programmed	in	

C++	to	work	with	the	existing	C/C++	RoBIOS	API	for	the	EyeBots	(Bräunl,	Keat	and	Pham	

2018).	Furthermore,	due	to	the	limited	free	space	on	the	EyeBot	SD	cards,	the	size	of	most	

modern	computer	vision	libraries,	and	the	reliance	of	other	subsystems	on	OpenCV,	the	

solution	must	also	use	OpenCV	for	any	computer	vision	and	neural	network	capabilities.	The	

solution	must	also	be	modular,	so	that	it	may	be	worked	on	by	future	students	and	easily	

integrated	into	the	other	subsystems.	

	
3.2	Design	Evaluation	

To	ensure	a	certain	level	of	accuracy,	this	paper	will	use	a	“confusion	matrix”	to	compare	

predicted	classifications	to	the	true	classifications,	a	technique	commonly	used	when	

comparing	learning	classifiers	such	as	neural	networks	(Cireşan	et	al.	2012,	Karpathy	et	al.	

2014).	This	has	the	benefit	of	not	only	allowing	the	accuracy	to	be	calculated,	but	also	the	

sensitivity	and	specificity	of	the	solution.	The	sensitivity	of	the	solution	is	its	ability	to	avoid	

overlooking	positive	results,	whereas	specificity	is	the	ability	of	the	solution	to	classify	true	

negatives	correctly.	Both	statistical	measures	are	useful	when	measuring	the	capabilities	of	

an	object	detector	for	autonomous	driving	purposes	–	low	sensitivity	values	may	prevent	

the	object	detection	system	from	identifying	a	pedestrian	or	vehicle	in	time	to	avoid	an	

accident.	Therefore,	the	solution	must	have	a	significantly	high	sensitivity	to	ensure	a	level	
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of	practical	reliability.	Additionally,	the	solution	must	have	a	significant	specificity	so	that	it	

does	not	misclassify	objects	from	the	background.	This	is	especially	true	in	the	case	of	

detecting	signs,	as	detecting	a	non-existent	traffic	sign	may	have	undesirable	effects	when	

processed	by	the	navigation	system	(such	as	driving	at	very	high	speed	if	it	incorrectly	

detects	a	speed	sign).	

	

In	addition,	the	solution	should	be	fast	enough	to	be	performed	in	real	time.	While	the	

definition	of	“real	time”	differs	considerably	between	proposed	architectures	(Ren	et	al.	

2017,	Redmon	et	al.	2018),	the	relatively	slow	movement	of	the	EyeBot	robots	and	their	

limited	hardware	capabilities	allows	the	inference	time	to	be	higher.	This	paper	proposes	

that	the	target	inference	time	of	the	object	detection	subsystem	should	target	200	

milliseconds,	or	5	frames	per	second	(fps),	similar	to	that	of	the	Faster	R-CNN	paper	(Ren	et	

al.	2017).		

	
3.3	Design	Process	

The	MobileNet-SSD	architecture	was	chosen	for	further	investigation	based	on	their	balance	

of	accuracy,	latency,	and	network	size	on	embedded	hardware,	as	determined	by	the	

literature	review.	While	its	original	implementation	uses	Google’s	TensorFlow	library	

(Sandler	et	al.	2018),	the	version	of	OpenCV	available	on	the	EyeBots	at	the	time	(version	

3.3.0)	did	not	have	native	support	for	TensorFlow	models.	Due	to	previous	experience	in	the	

deep	learning	framework	Caffe	(Caffe	2018)	and	the	existence	of	a	port	of	MobileNet-SSD	in	

this	framework	(GitHub	2018a),	initial	testing	of	the	MobileNet	architecture	was	performed	

with	Caffe	instead.	Detection	using	the	available	pretrained	models	demonstrated	a	high	

level	of	accuracy,	however	the	inference	time	was	considerably	higher	than	specified	in	the	

original	paper	(Howard	et	al.	2017),	and	there	was	little	documentation	on	retraining	the	

network	on	other	datasets.	While	other	solutions	were	being	explored,	a	simple	test	dataset	

were	prepared	using	the	EyeSim	simulator	–	100	images	on	three	different	objects	were	

gathered,	including	a	soccer	ball,	a	soft	drink	can,	and	an	EyeBot.	Bounding	boxes	with	

ground	truth	categories	were	defined	in	XML	for	each	image	using	the	open-source	tool	

labelImg	(GitHub	2018c).		
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Later	updates	to	the	OpenCV	library	allowed	TensorFlow	models	to	be	loaded	directly	

within	the	framework	(starting	with	version	3.4.1),	and	so	a	test	network	was	created	using	

TensorFlow	based	on	MobileNet-SSD	v1	to	assess	the	viability	of	porting	networks	between	

the	two	frameworks.	The	test	network	was	created	by	retraining	an	existing	MobileNet-SSD	

network	using	the	EyeSim	test	dataset	in	TensorFlow	until	the	losses	reached	a	value	of	1.0	

(or	until	the	losses	reached	a	consistent	minimum	value).	After	several	hours	of	training	on	

the	multi-GPU	lab	machine,	the	network	was	able	to	detect	objects	within	the	EyeSim	

simulator	with	a	very	high	degree	of	accuracy	with	an	average	inference	time/latency	of	30	

milliseconds	–	over	33	frames	per	second	–	on	the	same	machine.	While	the	excellent	

performance	results	were	discounted	due	to	the	superior	hardware	compared	to	the	

EyeBots,	the	accuracy	results	were	significant,	and	demonstrated	that	the	network	could	be	

optimised	to	reduce	accuracy	in	favour	of	speed	with	minimal	effect.	The	results	are	shown	

in	Figure	3	below:	

	

	
Figure	3:	Demonstration	of	the	accuracy	of	MobileNet-SSD	in	EyeSim	

	

With	the	recent	addition	of	MobileNet-SSDLite	in	TensorFlow	(Sandler	et	al.	2018)	and	the	

high	accuracy	of	the	SSD-based	MobileNet,	there	was	the	capacity	to	lose	some	accuracy	

and	gain	significant	speed	by	using	the	new	SSDLite	architecture.	A	second	network	was	

trained	using	the	same	test	EyeSim	dataset	on	a	MobileNet-SSDLite	network	previously	
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trained	on	the	COCO	dataset	(GitHub	2018b),	resulting	in	a	decrease	in	the	inference	time	

down	to	just	26	milliseconds	(an	increase	to	38	frames	per	second).	However,	the	overall	

accuracy	of	the	network	diminished	significantly,	with	bounding	boxes	often	not	centred	on	

objects	or	grouping	multiple	objects	into	a	single	box.	For	this	reason,	further	

experimentation	focused	on	the	MobileNet-SSD	architecture.	

	

The	high	accuracy	of	the	MobileNet-SSD	network	within	EyeSim	was	contributed	in	part	to	

the	relatively	low	number	of	classes	–	3	compared	to	the	91	classes	used	in	the	COCO	

dataset	that	the	MobileNet-SSD	network	was	originally	trained	on	(Lin	et	al.	2018),	which	

yielded	an	accuracy	of	around	73%	(Howard	et	al.	2017).	Considering	that	a	single	object	

detection	network	would	require	knowledge	of	many	different	classes	(vehicles,	traffic	

signs,	pedestrians,	common	obstacles,	etc.)	the	accuracy	seen	in	the	EyeSim-based	network	

would	decrease	significantly.	This	led	to	the	concept	of	creating	several	networks	designed	

for	each	category	of	classifier	to	retain	this	accuracy,	while	potentially	allowing	the	

networks	to	be	optimised	and	reduced	to	improve	inference	times.	This	has	the	added	

benefit	of	allowing	certain	networks	to	be	disabled	by	other	components	of	the	

autonomous	driving	subsystem	when	they	are	not	needed.	For	example,	when	the	vehicle	is	

waiting	for	pedestrians	to	cross	a	road,	the	navigation	system	can	disable	the	traffic	sign	and	

vehicle	detection	networks	until	the	system	determines	there	are	no	more	pedestrians,	

improving	overall	system	performance	and	resource	sharing.	Additionally,	this	allows	the	

different	analytical	properties	(specificity,	sensitivity	and	accuracy)	to	be	compared	and	

evaluated	differently	depending	on	the	categories	of	objects	that	are	being	detected.	For	

example,	the	behaviour	of	the	navigation	system	will	be	highly	dependent	on	the	type	of	

sign,	such	as	a	stop	sign	compared	to	a	give	way	sign,	and	therefore	need	a	high	degree	of	

sensitivity	and	accuracy	to	prevent	the	sign	being	misclassified	as	a	different	type	of	sign	(or	

as	the	background).	Vehicles	are	less	susceptible	to	this	problem,	as	the	behaviour	from	the	

point	of	view	of	the	navigation	system	will	not	likely	change	much	between	vehicle	classes,	

so	a	lower	level	of	accuracy	is	still	acceptable.	

	

Given	the	significant	training	time	and	vast	number	of	images	required	to	train	a	neural	

network	from	scratch,	the	networks	would	be	retrained	from	the	existing	COCO-trained	

models	available	in	TensorFlow	(GitHub	2018b).	Due	to	the	limited	real-world	scenarios	that	
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would	be	reproducible	on	the	track	in	the	lab,	there	would	be	a	very	high	chance	that	a	

network	trained	from	scratch	would	exhibit	overfitting	to	the	presented	scenarios.	

Additionally,	there	are	several	students	working	on	postgraduate	research	projects	that	

require	use	of	the	lab	machine	for	training	various	learning	algorithms,	which	means	

extended	use	of	the	lab	machine	for	training	is	not	possible.	Extending	a	pretrained	model	

has	the	advantage	of	reusing	the	models’	learned	features	for	detecting	general	objects,	

drastically	reducing	both	the	training	time	and	the	training	dataset	size,	as	the	network	

must	only	learn	the	specifics	of	the	new	objects	presented	to	it.	

	

For	the	final	object	detection	subsystem	design,	two	networks	were	thought	to	give	enough	

variety	to	test	the	navigation	subsystem	effectively	without	introducing	too	many	variables	

and	would	demonstrate	the	key	advantages	of	the	proposed	multi-network	design.	One	

network	was	designed	to	detect	two	very	similar	types	of	EyeBot	(the	original	green	

Soccerbot,	and	an	updated	blue	Soccerbot),	while	the	other	was	designed	to	detect	6	

different	traffic	signs	(stop	sign,	give	way	sign,	pedestrian	crossing	sign,	30	kilometre	per	

hour	zone	sign,	end	of	30	kilometre	per	hour	zone	sign,	and	parking	sign).		

To	create	the	real	training	dataset,	each	object	was	photographed	using	several	EyeBots	(to	

ensure	the	network	did	not	overtrain	to	specific	camera	irregularities)	from	multiple	angles	

and	distances.	This	would	ensure	that	the	EyeBots	could	detect	the	objects	with	a	high	level	

of	accuracy	even	from	the	other	side	of	the	track.	Lighting,	the	relative	position	of	the	

object	in	the	frame,	and	the	scale	of	the	objects	in	the	images	were	all	varied	to	ensure	that	

the	network	would	learn	the	objects	and	not	parameters	about	the	environment	or	the	

camera.		

Bounding	boxes	were	manually	recorded	for	each	of	the	476	images	used	to	train	the	

EyeBot	network	and	the	378	images	used	to	train	the	traffic	sign	network.	In	addition,	a	

validation	dataset	was	created	with	100	images	that	would	be	used	to	test	the	performance	

of	the	networks	in	different	situations.	50	of	those	images	were	similar	to	images	used	to	

train	the	network,	while	the	other	50	differed	from	the	training	dataset	(with	partial	

occlusion,	multiple	similar	nearby	objects,	etc.)	to	ensure	that	the	network	remained	

general	enough	to	handle	unfamiliar	situations.	
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To	extract	the	maximum	performance	from	the	networks	while	retaining	acceptable	

accuracy	levels,	different	values	for	the	MobileNet	width	hyperparameter	(ɑ)	were	used	on	

each	of	the	two	networks	(1.0,	0.75,	0.5	and	0.25).	This	results	in	a	total	of	eight	MobileNet-

SSD	networks.	The	resolution	parameter	was	not	used	to	reduce	network	size	for	two	

reasons.	Firstly,	separate	reductions	in	width	and	resolution	result	in	an	equal	decrease	in	

accuracy,	however	the	reduced-width	network	has	far	fewer	computations	(and	therefore	

faster	inference	time)	as	well	as	almost	a	third	of	the	parameters	of	the	reduced-resolution	

network	(resulting	in	a	smaller	memory	footprint).	Secondly,	the	width	hyperparameter	is	

easier	to	tune	in	TensorFlow	whereas	changing	the	resolution	hyperparameter	requires	

readjustment	of	the	SSD	component	of	the	network,	making	it	less	likely	to	negatively	

impact	overall	accuracy.	

	

4.	Results	

Each	of	the	eight	networks	were	run	on	the	validation	dataset	with	a	confidence	threshold	

of	0.7	and	non-maxima	suppression	of	0.2.	The	high	confidence	threshold	ensures	that	the	

object	detection	algorithm	does	not	output	unlikely	detections	(incorrect	detections	could	

have	major	consequences	when	the	navigation	system	uses	the	data	for	path	planning)	and	

the	low	non-maxima	suppression	value	allows	the	network	to	detect	objects	separated	by	

relatively	small	distances.	A	copy	of	the	processed	images	complete	with	labelled	bounding	

boxes	is	saved	for	processing	later,	and	the	inference	times	for	each	image	in	the	validation	

set	is	also	recorded.	The	following	section	details	how	that	data	was	processed	to	extract	

relevant	statistical	parameters	for	each	network,	and	presents	the	findings	on	network	

accuracy,	sensitivity,	specificity	and	latency.	

	

4.1	Confusion	Matrices	

As	mentioned	in	section	3.2,	several	statistical	parameters	can	be	determined	by	creating	a	

confusion	matrix	from	the	test	results.	By	analysing	the	results	of	the	object	detection	

networks	on	each	individual	image	in	the	validation	dataset,	a	confusion	matrix	can	be	

constructed,	as	shown	in	Table	1	below.	Note	the	bold	font	for	the	true	positive	predictions:	
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Table	1:	Confusion	matrix	for	the	EyeBot	network,	with	a	width	hyperparameter	of	1.0	

	

	

	

	

	

	

A	full	set	of	confusion	matrices	for	all	eight	networks	can	be	found	in	Appendix	A.		

From	here,	a	table	of	confusion	can	be	created	for	each	class,	reducing	the	data	down	to	a	

simple	binary	table.	Table2	shows	a	table	of	confusion	for	the	Green	EyeBot	class	from	the	

data	in	Table	1:	

	

Table	2:	Table	of	confusion	for	the	"Green	EyeBot"	class	in	the	EyeBot	network,	with	a	width	hyperparameter	of	1.0	

EyeBot-1.0	 Green	EyeBot	 Non-Green	EyeBot	

Green	EyeBot	 29	True	Positives	 5	False	Positives	

Non-Green	EyeBot	 12	False	Negatives	 73	True	Negatives	

	

This	table	of	confusion	can	be	used	to	calculate	the	sensitivity,	specificity	and	accuracy	of	

the	network	on	these	parameters,	using	the	following	formulas	from	Fawcett	(2006):	

	

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃
𝑃
= 	

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

	

	

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁
𝑁

=	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
	

	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝐹
𝑃 + 𝑁

=	
𝑇𝑃 + 𝑇𝐹

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
	

	

From	these	formulas,	the	sensitivity	for	the	Green	EyeBot	class	in	the	table	above	is	

calculated	to	be	0.7073,	the	specificity	is	0.9359,	and	the	accuracy	is	0.8571.	

These	calculations	have	been	performed	for	all	classes	in	each	of	the	eight	networks,	with	

the	results	attached	in	Appendix	B.		

EyeBot-1.0	
Actual	Class	

Green	EyeBot	 Blue	EyeBot	 None	
Pr
ed

ic
te
d	

Cl
as
s	

Green	EyeBot	 29	 3	 2	

Blue	EyeBot	 1	 15	 3	

None	 11	 4	 51	



	 19	

	

4.2	Accuracy	

Averaging	the	accuracy	of	all	categories	in	the	networks	allows	the	overall	network	accuracy	

to	be	calculated.	The	results	are	shown	below	in	Figure	4,	showing	the	effects	of	the	

MobileNet	width	parameter	on	network	accuracy	for	both	networks:	

	

	
Figure	4:	Graph	of	network	accuracy	compared	to	network	width.	

	

Note	that	the	accuracy	remains	relatively	high	despite	significant	decreases	in	the	width	of	

the	network.	

	

4.3	Sensitivity	

Averaging	the	sensitivity	of	all	categories	in	the	networks	allows	the	overall	network	

sensitivity	to	be	calculated.	The	results	are	shown	below	in	Figure	5,	showing	the	effects	of	

the	MobileNet	width	parameter	on	network	sensitivity	for	both	networks:	
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Figure	5:	Graph	of	network	sensitivity	compared	to	network	width	

	

Note	the	significant	lack	of	sensitivity	of	both	the	EyeBot	and	Sign	networks	when	the	width	

parameter	is	0.75	–	this	will	be	discussed	further	in	Section	5.	Both	networks	achieve	their	

highest	sensitivity	at	the	full	network	width,	as	expected	from	the	review	of	the	literature.	

	

4.4	Specificity	

Averaging	the	specificity	of	all	categories	in	the	networks	allows	the	overall	network	

specificity	to	be	calculated.	The	results	are	shown	below	in	Figure	6,	showing	the	effects	of	

the	MobileNet	width	parameter	on	network	specificity	for	both	networks:	

	

	

	
Figure	6:	Network	specificity	compared	to	network	width	
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Note	that	the	specificity	stays	near	a	value	of	1	for	all	width	values,	except	for	the	EyeBot	

network	at	a	width	of	0.25.	Further	discussion	on	how	these	parameters	relate	back	to	the	

sensitivity	values	will	be	explored	further	in	Section	5.	

	

4.5	Latency	

Network	latency	times	were	recorded	for	each	image	in	the	validation	dataset	using	the	

EyeBot	hardware,	and	the	average,	minimum	and	maximum	times	were	calculated	for	each	

of	the	eight	networks.	The	results	were	run	five	times	to	ensure	that	the	results	were	

consistent,	and	the	latency	results	are	displayed	below	in	Figure	7:	

	

	

	
Figure	7:	Network	latency	compared	to	network	width	

	

Note	the	near	linear	relationship	between	network	latency	and	the	MobileNet	width	

hyperparameter,	only	approaching	an	asymptote	at	the	smallest	width	value.	Interestingly,	

both	networks	achieved	almost	identical	inference	times	with	the	same	width	

hyperparameter,	which	will	be	discussed	further	in	the	next	section.	

	

5.	Discussion	
	
As	seen	in	Figure	4	above,	the	accuracies	of	the	networks	are	impressively	high.	The	full-

sized	networks	(with	a	width	hyperparameter	of	1.0)	achieve	an	accuracy	of	92.5%	and	
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96.8%	on	the	EyeBot	and	traffic	sign	networks,	respectively.	Even	as	the	worst-performing	

network	in	terms	of	accuracy,	the	EyeBot	network	with	a	width	of	0.25	achieved	an	accuracy	

of	75.3%.	However,	this	does	not	indicate	that	all	the	networks	were	successful	–	for	

example,	the	traffic	sign	network	trained	with	a	width	of	0.75	had	an	accuracy	of	86.4%,	

however	in	practice	the	network	did	not	successfully	identify	any	traffic	sign.	This	

discrepancy	is	due	to	the	accuracy	being	calculated	as	the	percentage	of	identified	true	

results	(true	positive	and	true	negative)	out	of	all	results,	and	why	it	is	important	to	view	the	

sensitivity	and	specificity	values	of	the	networks	as	well.	The	sensitivities	indicate	the	

capability	of	the	network	to	detect	objects	when	they	are	truly	there,	the	accuracy	indicates	

how	often	the	detected	objects	are	correctly	classified,	and	the	specificity	indicates	how	

resilient	the	network	is	against	falsely	detecting	objects	in	an	image.	Given	that	half	of	the	

images	in	the	validation	dataset	differ	from	the	images	in	the	training	dataset,	sensitivity	

values	greater	than	0.5	indicate	that	the	network	has	been	able	to	identify	objects	within	

the	lesser-known	part	of	the	validation	dataset.	Therefore,	it	can	be	inferred	that	the	

network	has	avoided	overtraining	and	has	successfully	learned	to	detect	objects	in	a	variety	

of	conditions.	From	Figure	5	above,	four	networks	fit	that	requirement	–	all	EyeBot	

networks	aside	from	the	one	with	the	width	hyperparameter	of	0.75,	and	the	traffic	sign	

network	with	a	width	hyperparameter	value	of	1.0.	The	traffic	sign	network	with	a	width	of	

0.25	gets	close	with	a	value	of	0.483.	

	

The	poor	performance	of	the	0.75	networks	is	likely	due	to	some	object	classification	

information	being	lost	because	of	the	smaller	width	value,	resulting	in	more	training	steps	

being	required	when	compared	to	the	full-width	network.	This	would	be	offset	in	smaller	

network	architectures,	as	there	are	far	fewer	parameters	to	tune,	requiring	fewer	total	

steps	to	converge.	This	would	explain	why	the	sensitivity	of	both	networks	increase	at	a	

width	of	0.25	to	its	second	highest	values	(the	highest	being	when	the	width	value	is	1.0)	

but	are	at	their	lowest	at	a	width	value	of	0.75.	With	enough	training	time	this	would	not	be	

an	issue,	however,	as	mentioned	in	Section	3.3,	the	limited	access	to	the	lab	machines	for	

network	training	along	with	the	large	number	of	networks	to	be	trained	resulted	in	most	

networks	being	stopped	after	approximately	10,000	steps.	The	networks	had	relatively	low	

losses	(between	1.0	and	2.0)	but	it	is	likely	they	were	halted	before	they	may	have	had	a	

chance	to	relearn	some	of	the	deeper	object	extraction	features	lost	in	the	width	reduction.	
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Looking	at	the	three	EyeBot	networks	with	sensitivities	above	0.5,	there	is	a	clear	trade-off	

occurring	at	the	lowest	width	of	0.25	between	sensitivity	and	specificity.	As	shown	in	Figure	

4,	the	network	can	achieve	a	sensitivity	of	0.628	at	this	width,	close	to	its	maximum	

recorded	sensitivity	of	0.695	on	the	full-sized	network.	This	is	offset	by	the	significant	

decrease	in	the	specificity	from	approximately	0.95	down	to	just	0.628	as	shown	in	Figure	6,	

as	well	as	the	overall	decrease	in	accuracy	of	the	network	to	75.3%,	the	lowest	of	all	

networks,	as	shown	in	Figure	4.	Given	that	the	network	with	a	width	of	0.5	only	just	exceeds	

the	threshold	of	sensitivity	(with	a	value	of	0.553)	the	best	overall	option	given	the	data	is	

the	full-sized	network	(network	with	a	width	hyperparameter	of	1.0).	This	results	in	a	

network	that	can	detect	EyeBots	with	92.46%	accuracy,	has	a	sensitivity	(detection	

accuracy)	of	0.6946,	and	a	specificity	of	0.9473.	Additionally,	as	shown	in	Figure	7,	this	

network	can	achieve	those	results	with	an	average	latency	of	690.68	milliseconds,	equating	

to	1.448	frames	per	second.	While	this	frame	rate	falls	short	of	the	5	frame	per	second	

target	mentioned	in	Section	3.2,	there	are	still	optimisations	that	can	be	made	to	help	

improve	speed	–	optimised	OpenCV	libraries	for	the	Raspberry	Pi	were	not	used	but	may	

help	increase	performance	by	30-50%	(Rosebrock	2017).	Additionally,	further	training	of	the	

network	would	help	improve	the	network	sensitivity	at	all	widths,	allowing	the	smallest	and	

fastest	networks	to	become	viable	options.	

	

When	looking	at	the	two	traffic	sign	networks	(with	width	hyperparameters	of	1.0	and	0.25)	

that	have	sensitivities	at	or	near	0.5,	there	is	a	clear	decrease	in	sensitivity	at	the	lower	

width	network.	While	the	full-sized	network	can	achieve	a	sensitivity	of	0.793	(the	highest	of	

all	networks),	the	next	most	sensitive	network	(with	a	width	of	0.25)	only	achieves	a	

sensitivity	of	0.483.	However,	the	specificity	and	accuracy	of	the	network	is	retained	at	this	

low	level,	as	shown	in	Figure	6	and	Figure	4,	respectively.	Given	that	the	smaller	of	the	two	

networks	can	achieve	around	60%	of	the	sensitivity	with	only	about	30%	of	the	latency	time,	

the	higher	number	of	frames	will	allow	the	smaller	network	to	compensate	for	the	lower	

sensitivity.	While	the	network	may	miss	detections	more	frequently	on	the	smaller	network,	

there	is	a	greater	chance	of	detecting	the	object	overall	considering	there	are	more	frames	

to	analyse,	a	result	of	the	much	faster	inference	time.	This	inference	time	(averaging	
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226.725	milliseconds)	equates	to	4.411	frames	per	second,	very	close	to	the	5	frame	per	

second	target	outlined	in	Section	3.2.		

6.	Conclusions	

This	paper	demonstrates	the	viability	of	the	MobileNet-SSD	neural	network	architecture	for	

object	detection	on	embedded	hardware.	After	exploring	the	existing	literature	regarding	

object	detection	algorithms,	several	prototype	MobileNet-SSD	networks	were	created,	

demonstrating	the	benefits	of	this	architecture	in	terms	of	speed	and	accuracy.	A	multi-

network	design	was	proposed	to	ensure	maximum	efficiency	on	the	hardware,	and	

statistical	analysis	methods	were	used	to	measure	the	effectiveness	of	this	design	in	

practice.	The	analysis	demonstrated	the	effectiveness	of	the	proposed	solution	and	resulted	

in	networks	that	are	able	to	detect	objects	at	up	to	4.4	frames	per	second	while	maintaining	

a	high	level	of	accuracy	and	sensitivity.		

	

As	a	next	step	towards	improving	the	results	that	were	obtained	here,	further	training	of	

the	networks	with	the	given	datasets	should	help	alleviate	some	of	the	sensitivity	issues	

identified	in	Section	5.	Furthermore,	an	expanded	training	dataset	including	more	varied	

lighting	conditions,	more	cases	of	partial	occlusion,	motion	blur,	and	general	noise	should	

increase	the	sensitivity	of	the	networks,	allowing	smaller	and	faster	networks	to	be	used.	

Additionally,	an	expanded	dataset	such	as	this	may	allow	the	use	of	the	MobileNet-SSDLite	

network	architecture,	which	would	further	decrease	detection	times.	Additional	

improvements	include	the	use	of	optimised	OpenCV	libraries	for	the	Raspberry	Pi	compute	

boards	used	by	the	EyeBots,	and	closer	integrations	of	the	API	into	the	other	autonomous	

driving	subsystems,	which	should	provide	further	speed	increases.		
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8.	Appendices	
	
Appendix	A:	Confusion	Matrices	
	

Table	3:	Confusion	matrix	for	the	EyeBot	network,	with	a	width	hyperparameter	of	1.0	

EyeBot-1.0	
Actual	Class	

Green	EyeBot	 Blue	EyeBot	 None	

Pr
ed

ic
te
d	
Cl
as
s	 Green	EyeBot	 29	 3	 2	

Blue	EyeBot	 1	 15	 3	

None	 11	 4	 51	

	
	
	

Table	2:	Confusion	matrix	for	the	EyeBot	network,	with	a	width	hyperparameter	of	0.75	

EyeBot-0.75	
Actual	Class	

Green	EyeBot	 Blue	EyeBot	 None	

Pr
ed

ic
te
d	
Cl
as
s	 Green	EyeBot	 10	 0	 1	

Blue	EyeBot	 0	 8	 0	

None	 30	 13	 53	

	
	
	

Table	3:	Confusion	matrix	for	the	EyeBot	network,	with	a	width	hyperparameter	of	0.5	

EyeBot-0.50	
Actual	Class	

Green	EyeBot	 Blue	EyeBot	 None	

Pr
ed

ic
te
d	
Cl
as
s	 Green	EyeBot	 17	 1	 3	

Blue	EyeBot	 0	 13	 2	

None	 16	 8	 49	
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Table	4:	Confusion	matrix	for	the	EyeBot	network,	with	a	width	hyperparameter	of	0.25	

EyeBot-0.25	
Actual	Class	

Green	EyeBot	 Blue	EyeBot	 None	
Pr
ed

ic
te
d	
Cl
as
s	 Green	EyeBot	 17	 0	 37	

Blue	EyeBot	 9	 17	 42	

None	 12	 4	 1	

	
	
	

Table	5:	Confusion	matrix	for	the	traffic	signs	network,	with	a	width	hyperparameter	of	1.0	

Signs-1.0	
Actual	Class	

Pedestrian	
Sign	

Give	Way	
Sign	

Parking	
Sign	

30	Zone	
Sign	

30	End	
Sign	

Stop	
Sign	 None	

Pr
ed

ic
te
d	
Cl
as
s	

Pedestrian	Sign	 12	 0	 0	 0	 0	 0	 0	
Give	Way	Sign	 0	 20	 0	 0	 0	 0	 0	
Parking	Sign	 0	 0	 10	 0	 0	 0	 0	
30	Zone	Sign	 0	 0	 0	 12	 0	 0	 1	
30	End	Sign	 0	 0	 0	 0	 14	 0	 1	
Stop	Sign	 0	 0	 0	 0	 0	 12	 0	
None	 1	 3	 8	 4	 5	 1	 22	

	
	
	

Table	6:	Confusion	matrix	for	the	traffic	signs	network,	with	a	width	hyperparameter	of	0.75	

Signs-0.75	
Actual	Class	

Pedestrian	
Sign	

Give	Way	
Sign	

Parking	
Sign	

30	Zone	
Sign	

30	End	
Sign	

Stop	
Sign	 None	

Pr
ed

ic
te
d	
Cl
as
s	

Pedestrian	Sign	 0	 0	 0	 0	 0	 0	 0	
Give	Way	Sign	 0	 0	 0	 0	 0	 0	 0	
Parking	Sign	 0	 0	 0	 0	 0	 0	 0	
30	Zone	Sign	 0	 0	 0	 0	 0	 0	 0	
30	End	Sign	 0	 0	 0	 0	 0	 0	 0	
Stop	Sign	 0	 0	 0	 0	 0	 0	 0	
None	 13	 22	 20	 16	 19	 13	 24	
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Table	7:	Confusion	matrix	for	the	traffic	signs	network,	with	a	width	hyperparameter	of	0.5	

Signs-0.50	
Actual	Class	

Pedestrian	
Sign	

Give	Way	
Sign	

Parking	
Sign	

30	Zone	
Sign	

30	End	
Sign	

Stop	
Sign	 None	

Pr
ed

ic
te
d	
Cl
as
s	

Pedestrian	Sign	 2	 0	 0	 0	 0	 0	 0	
Give	Way	Sign	 0	 3	 0	 0	 0	 0	 0	
Parking	Sign	 0	 0	 3	 0	 0	 0	 0	
30	Zone	Sign	 0	 0	 0	 3	 0	 0	 0	
30	End	Sign	 0	 0	 0	 0	 2	 0	 0	
Stop	Sign	 0	 0	 0	 0	 0	 6	 0	
None	 10	 19	 17	 13	 17	 7	 2	

	
	

Table	8:	Confusion	matrix	for	the	traffic	signs	network,	with	a	width	hyperparameter	of	0.25	

Signs-0.25	
Actual	Class	

Pedestrian	
Sign	

Give	Way	
Sign	

Parking	
Sign	

30	Zone	
Sign	

30	End	
Sign	

Stop	
Sign	 None	

Pr
ed

ic
te
d	
Cl
as
s	

Pedestrian	Sign	 3	 0	 0	 0	 1	 0	 1	
Give	Way	Sign	 0	 7	 0	 0	 0	 0	 0	
Parking	Sign	 0	 0	 7	 0	 0	 0	 0	
30	Zone	Sign	 0	 0	 0	 3	 0	 1	 0	
30	End	Sign	 0	 0	 0	 0	 11	 0	 2	
Stop	Sign	 0	 0	 0	 0	 0	 4	 0	
None	 4	 10	 7	 8	 2	 3	 4	
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Appendix	B:	Model	Parameters	for	each	Class	
	
	

Table	1:	Model	parameters	for	the	"Blue	EyeBot"	class	

Width	
Parameter	

Sensitivity	 Specificity	 Accuracy	

1	 0.68181818	 0.95876289	 0.90756303	
0.75	 0.38095238	 1	 0.88695652	
0.5	 0.59090909	 0.97701149	 0.89908257	
0.25	 0.80952381	 0.56779661	 0.60431655	

	
Table	2:	Model	parameters	for	the	"Green	EyeBot"	class	

Width	
Parameter	

Sensitivity	 Specificity	 Accuracy	

1	 0.70731707	 0.93589744	 0.85714286	
0.75	 0.25	 0.98666667	 0.73043478	
0.5	 0.51515152	 0.94736842	 0.81651376	
0.25	 0.44736842	 0.63366337	 0.58273381	

	
Table	3:	Model	parameters	for	the	"Pedestrian	Sign"	class	

Width	
Parameter	

Sensitivity	 Specificity	 Accuracy	

1	 0.92307692	 1	 0.99206349	
0.75	 0	 1	 0.8976378	
0.5	 0.16666667	 1	 0.90384615	
0.25	 0.42857143	 0.97183099	 0.92307692	

	
Table	4:	Model	parameters	for	the	"Give	Way	Sign"	class	

Width	
Parameter	

Sensitivity	 Specificity	 Accuracy	

1	 0.86956522	 1	 0.97619048	
0.75	 0	 1	 0.82677165	
0.5	 0.13636364	 1	 0.81730769	
0.25	 0.41176471	 1	 0.87179487	

	

Table	5:	Model	parameters	for	the	"Parking	Sign"	class	

Width	
Parameter	

Sensitivity	 Specificity	 Accuracy	

1	 0.55555556	 1	 0.93650794	
0.75	 0	 1	 0.84251969	
0.5	 0.15	 1	 0.83653846	
0.25	 0.5	 1	 0.91025641	
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Table	6:	Model	parameters	for	the	"30	Zone	Sign"	class	

Width	
Parameter	

Sensitivity	 Specificity	 Accuracy	

1	 0.75	 0.99065421	 0.96031746	
0.75	 0	 1	 0.87401575	
0.5	 0.1875	 1	 0.875	
0.25	 0.27272727	 0.98507463	 0.88461538	

	

Table	7:	Model	parameters	for	the	"End	30	Zone	Sign"	class	

Width	
Parameter	

Sensitivity	 Specificity	 Accuracy	

1	 0.73684211	 0.99065421	 0.95238095	
0.75	 0	 1	 0.8503937	
0.5	 0.10526316	 1	 0.83653846	
0.25	 0.78571429	 0.96875	 0.93589744	

	

Table	84:	Model	parameters	for	the	"Stop	Sign"	class	

Width	
Parameter	

Sensitivity	 Specificity	 Accuracy	

1	 0.92307692	 1	 0.99206349	
0.75	 0	 1	 0.8976378	
0.5	 0.46153846	 1	 0.93269231	
0.25	 0.5	 1	 0.94871795	

	


