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Abstract 
With the development of the economy, the numbers of vehicles in various cities around 

the world are increasing dramatically. At the same time, problems such as traffic 

congestion, traffic accidents, air and noise pollution are getting worse and worse in 

urban areas in different countries. Considering the current state of IT technology, the 

best solution for most of traffic problems at the moment is autonomous vehicle. The 

problem I am trying to solve in this research paper is developing a low-cost autonomous 

vehicle that is suitable for internal roads environment, for instance, university campus, 

industrial areas and large residential areas. For this research project, I use an open urban 

driving simulator Carla, which offered an internal roads environment, to train and test 

my autonomous vehicle. 

 

Compared with other autonomous vehicle that based on high precision map and optical 

radar, the approaches I adopted to develop this low-cost autonomous vehicle are 

machine learning and computer vision. During the research, a few methods have been 

tried to identify traffic lanes, traffic lights, vehicles and pedestrians. Eventually, I chose 

to use AlexNet, one of Convolutional Neural Network (CNN) models for training 

driving behavior classifier, and use YOLOv3, a real-time object detection system for 

detecting obstacles, such as other vehicles, traffic lights and pedestrians. Moreover, 

edge detection and Tesseract OCR have been used for traffic sign detection. At the end 

of this research project, an autonomous vehicle in Carla simulating environment has 

been found that achieve human like self-driving, avoiding obstacles, and detecting 

traffic indication in real time. 

 

Keywords: Autonomous vehicle, Computer Vision, Machine Learning, Edge Detection, 

OCR 
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Simulating Autonomous Vehicles 

 

1. Introduction 

1.1 Autonomous Vehicles 

An autonomous vehicle is a ground vehicle that can receive its environment such as 

other vehicles, pedestrians, traffic safety instructions, and move automatically without 

human input. In order to detect surrounding environment, the autonomous vehicles will 

use a variety of techniques such as radar, laser light, GPS and Computer Vision. The 

control system in the autonomous vehicles use the sensory information to navigate the 

roads, avoid the obstacle and follow traffic rules.  

  

The idea of automating driving has been found since at least 1920s, at that time, 

autonomous vehicle was called “Phantom motor car” (The Milwaukee Sentinel, 1926). 

In the 1980s, Navlab project from Carnegie Mellon University built a self-driving 

vehicle which analysis raw images from the road by neural networks and control the 

steering wheel in real time (Thorpe et al., 1988). In 2009, some vehicle manufactures 

such as Toyota, BMW and Ford offered automatic parking assistance for their products 

(Evans, 2009). In 2012, Tesla Model S was released, and Model S is considered the 

world’s first autonomous car (Tesla.com, 2012). Nowadays, almost all the vehicle 

manufactures and Internet Companies such as Google, Uber and Baidu are working on 

Autonomous Vehicles (Whitwam, 2014). 

 

To identify autonomous vehicles, SAE International released a formal classification 

system for autonomous vehicles in 2016. There are 6 levels of driving mode for vehicle 

(SAE International, 2014). 

 

 Level 0: Automated system issues warnings and may momentarily intervene but 

has no sustained vehicle control. 
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 Level 1(“hands on”): The driver and the automated system share control of the 

vehicle. 

 Level 2(“hands off”): The automated system takes full control of the vehicle. The 

driver must monitor the driving and be prepared to intervene immediately at any time 

if the automated system fails to respond properly. 

 Level 3(“eyes off”): The driver can safely turn their attention away from the driving 

tasks, the vehicle will handle situations that call for an immediate response. The driver 

must still be prepared to intervene within some limited time. 

 Level 4(“mind off”): As level 3, but no driver attention is ever required for safety. 

 Level 5(“steering wheel optional”): No human intervention is required. 

 

The new Audi A8 is generally considered the first level 3 autonomous vehicle in the 

world (McAleer, 2017). 

 

Figure 1: The new Audi A8 First Level 3 Autonomous Vehicle 

Compared with regular vehicles that can be find easily on the roads, there are four 

dominate potential advantages for autonomous vehicles. Firstly, and most importantly 

is safety. Autonomous vehicles are safer because the traffic accidents caused by human 
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errors, delayed reaction time and distracted will almost be eliminated. Moreover, 

autonomous vehicle has border view and shorter reaction time compared with human 

driver, and this benefit can make passengers safer (Anderson, 2016). Secondly, welfare. 

Autonomous vehicles make travel much more easy than regular vehicles. Seniors, 

minors, disabled person can use autonomous vehicles service individually without 

another people’s help. And driver can do exactly the same things as passengers do in 

the autonomous vehicles (Stenquist, 2014). Thirdly is traffic. If all the vehicles on the 

roads are autonomous vehicles, traffic control department can increase the speed limits 

and decrease safety gaps, in this condition, roadway capacity will increase and traffic 

congestion will be minimized (Andra Keay, 2012). Lastly, due to safer driving and less 

traffic congestion, the traffic cost such as vehicle insurance and fuel consumption will 

reduce (Du, Ang & Rus, 2017). 

 

In order to achieve the goals that autonomous vehicle has ability to avoid obstacles 

(such as other vehicles and pedestrians) and obtain traffic rules information (such as 

traffic lights and speed limits), it is important for autonomous vehicle to sense its 

environment. Perceived devices such as camera, radar and laser light have been utilized 

widely for autonomous vehicles to detect their surroundings. Figure 2 shows the sensors 

on autonomous vehicle.  

 

 

Figure 2: the image from “Sensor Online” shows the sensors on Autonomous Vehicle 
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1.2 Simulating Autonomous Vehicles 

For any vehicle manufacture who wants to build an autonomous vehicle, the most 

important part for autonomous vehicle is that it can drive perfectly in a variety of real-

world scenarios without any accident. However, according to a report by 

RAND  (Kalra, 2016), autonomous vehicles would have to be driven hundreds of 

millions of miles and sometimes hundreds of billions of miles to demonstrate their 

reliability in terms of fatalities and injuries, and under even aggressive testing 

assumptions, existing fleets would take tens and sometimes hundreds of years to drive 

these miles – an impossible proposition if the aim is to demonstrate their performance 

prior to releasing them on the roads for consumer use. Table 1 shows how long time the 

autonomous vehicle require for safety from RAND. 

Table 1: RAND Corporation for Autonomous Vehicle Reliability 

In this situation, simulation is the best solution for building a reliable autonomous 

vehicle. To ensure that everything is taken into consideration, the simulation should 

have: 

 A variety of world scenarios, such as traffic situation, driver behavior, time, 

weather and road environment. 

Benchmark Failure Rate 

S
ta

ti
st

ic
a
l 

Q
u

es
ti

o
n

 

 

How many miles (years*) would be 

driven… 

(A) 1.09 

fatalities 

per 100 

million 

miles? 

(B) 77 reported 

injuries per 

100 million 

miles? 

(C) 190 reported 

crashes per 100 

million miles? 

(1) Without failure to demonstrate with 

95% confidence that their failure 

rate is at most… 

275 million 

miles 

(12.5 years) 

3.9 million miles 

(2 months) 

1.6 million miles 

(1 month) 

(2) To demonstrate with 95% 

confidence their failure rate to 

within 20% of the true rate of… 

8.8 billion 

miles 

(400 years) 

125 million 

miles 

(5.7 years) 

51 million miles 

(2.3 years) 

(3) To demonstrate with 95% 

confidence and 80% power that 

their failure rate is 20 % better than 

the human driver failure rate of ,,, 

11 billion miles 

(500 years) 

161 million 

miles 

(7.3 years) 

65 million miles 

(3 years) 

*We assess the time it would take to compete the requisite miles with a fleet of 100 autonomous 

vehicles (larger than any known existing fleet fleet) driving 24 hours a day, 365 days a year, at an 

average speed of 25 miles per hour. 
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 Multiple sensor suites/array, such as radar, camera and laser light. 

 With multiple, scalable random permutations. 

 

Nowadays, a variety of vehicle simulator have released, Vires, CarSim, ROS and Carla. 

Moreover, the researchers from Princeton even use video game GTA V (Filipowicz, A., 

Liu, J., & Kornhauser, A. 2017) for simulating autonomous vehicles. 

 

1.3  Research Goals 

As demonstrated in the introduction, compared with regular vehicles, autonomous 

vehicles are much safer, cheaper and wider application. Moreover, for any vehicle 

manufactures that want to build their own autonomous vehicle, simulating autonomous 

vehicle is one of the most important parts which will directly influence the safety and 

reliability for autonomous vehicle. Subsequently, this research project’ goal is that build 

an autonomous vehicle on Carla driving simulator, detect traffic light, traffic sign, other 

vehicles and pedestrians so that vehicle can drive with traffic instruction and avoid 

obstacles. 

 

1.4  Basic Structure of This Paper 

First Part is the introduction, which presents the motivation, status of this research 

project. 

Second Part introduces related technology, machine learning and computer vision have 

been used for this research project. 

Third Part presents the methods for this research project. Use machine learning on 

vehicles driving, object detection system for obstacles detection and edge detection plus 

Tesseract OCR for traffic sign detection. 

Fourth Part is about the result of this research project. 

Last Part is about the future works and the summary for this research projects. 
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2  Related Technology 

2.1  Machine Learning 

Machine learning (ML) (Samuel, 1959) is a category of algorithm that allows software 

applications to become more accurate in predicting outcomes without being explicitly 

programmed, it is a field of artificial intelligence that use statistical techniques to give 

computer systems the ability to “learn” form data. 

 

The processes involved in machine learning are similar to that of data mining and 

predictive modeling (Mannila, n.d.1988). Both require searching through data to look 

patterns and adjusting program actions accordingly. Machine learning has been used in 

recommendation engine, fraud detection, spam filtering, network security threat 

detection, predictive maintenance and building news feeds. 

 

With the development of Machine learning, numerous of machine learning approaches 

have been found these years, ("Machine learning", 2018) for example, Decision tree 

learning, Association rule learning, Artificial neural networks, Deep learning, Inductive 

logic programming, Support vector machines, Clustering, Bayesian networks, 

Representation learning, Similarity and metric learning, Sparse dictionary learning, 

Genetic algorithms and Rule-based machine learning. In this research project, the 

approach adopted is artificial neural network, especially Convolutional neural network. 

 

2.2  Convolutional neural network 

A convolutional neural network (CNN) is a type of artificial neural network used in 

image recognition and processing that is specifically designed to process pixel data 

("MNIST Demos on Yann LeCun's website", 1988). CNN is a class of deep, feed-

forward artificial neural networks, most commonly applied to analyzing visual imagery. 

CNN uses a variation of multilayer perceptions designed to require minimal 

preprocessing. They are also known as shift invariant or space invariant artificial neural 
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networks (SIANN), based on their shared-weights architecture and translation 

invariance characteristics (Zhang, Itoh, Tanida & Ichioka, 1990). 

 

A CNN has an input and an output layer, as well as multiple hidden layers. The hidden 

layers of a CNN typically consist of convolutional layers, pooling layers, fully 

connected layers and ReLU (Rectified Linear Unit) layers. Convolutional layers are for 

convolution calculation layer, then linear product and summation. Pooling layers are 

for calculating maximum or average of the areas. ReLU layers are activate layer, ReLU 

is one of the activation functions. Fully connected layers are transfer image data to 

labels. The image shows how CNN classifier identify a vehicle. Figure 3 shows the 

structure of Convolutional neural networks. 

 

Figure 3: The structure for Convolutional neural networks (Image from Quora) 

Based on the differences of the structure of CNN such as number of layers and type of 

layers, there are several CNN models that have been used widely, Lenet, AlexNet, 

GoogLenet, VGG and Deep Residual Learning ("Five Class CNN Models: Lenet，

Alexnet，Googlenet，VGG，DRL", 2017). Depends on the requirement and working 

environment, in this research project, I chose AlexNet model for training. 

 

Moreover, in this research project, except for training classifier, CNN is also adopted 

for real-time object detection system. Object detection is a computer technology related 
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to computer vision and image processing that deals with detecting instances of semantic 

objects of a certain class (such as humans, buildings, or cars) in digital images and 

videos. Methods for object detection generally fall into either machine learning-based 

approaches or deep learning-based approaches. For machine learning approaches, it 

becomes necessary to first define features using one of the methods below, then using 

a technique such as support vector machine (SVM) to do the classification. On the other 

hand, deep learning techniques that are able to do end-to-end object detection without 

specifically defining features, and are typically based on convolutional neural network 

(CNN). In this research project, You Only Look Once (YOLO) has been used for object 

detection. 

 

2.2.1 AlexNet Model 

AlexNet is the name of a convolutional neural network model, it contained eight layers 

(Krizhevsky, Sutskever & Hinton, 2017). The first five were convolutional layers, and 

the last three were fully connected layers. It used the non-saturating ReLU activation 

function, which showed improved training performance over tanh and sigmoid. Figure 

4 shows the structure of AlexNet. 

 

Figure 4: The structure of AlexNet 

Compared with other CNN model such as Lenet, GoogLenet and VGG, the reason 

AlexNet model is selected for this research project is that AlexNet has less computation 

but good performance. It has only 8 layers, but models such as GoogLenet and VGG 

has over 30 layers. Then, AlexNet is first CNN model that can work on GPU, which is 

40 times faster than running on CPU. Moreover, AlexNet is first CNN model that use 
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ReLU activation function. 

 

One more feature for AlexNet is that there is a special calculating layer, LRN layer, 

which is used for smoothing operation for output data from pervious layer. The formula 

for this calculating layer is: 

𝑏𝑥,𝑦
𝑖 = 𝑎𝑥,𝑦

𝑖 (𝑘 + 𝛼 ∑ (𝑎𝑥,𝑦
𝑗

)
2

𝑚𝑖𝑛(𝑁−1,𝑖+ 𝑛 2⁄ )

𝑗=𝑚𝑎𝑥(0,𝑖−𝑛 2⁄ )

)

𝛽

⁄  

 

2.2.2 YOLOv3 

 You Only Look Once (YOLO) is a real-time object detection system that based on 

darknet and Convolutional neural networks (Redmon, J., & Farhadi, A. ,2018). Figure 

5 shows the structure of YOLO. For YOLO algorithm, object detection problem is 

treated as a regression problem, using one convolutional neural network structure can 

directly predict the bounding box and class probability from the input image. Compared 

with other object detection system such as R-CNN, Fast R-CNN and SSD, there are 

several advantages: 

 

Figure 5: The structure of YOLO 

 Firstly, YOLOv3 is extremely fast and accurate. According to Figure 6, YOLOv3 

is 1000 times faster than R-CNN and 100 times faster than Fast R-CNN. 
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Figure 6: line chart of inference time for different object detection 

 Secondly, compared with old version YOLO, such as YOLOv2, the performance 

of detecting small objects in YOLOv3 is much better. Detecting small objects ability is 

important for autonomous vehicle because find objects in distances is necessary for 

vehicle so that vehicle has enough time to react about the finding obstacles. Figure 7 

shows the comparison between YOLOv2 and YOLOv3 one small objects. 

 

Figure 7: Compared between YOLOv2 and YOLOv3 

 Thirdly, Generalization. According to the image below, Skull is not in the training 

dataset, but with YOLO’s powerful generalization ability, it is automatically classified 

into human. Generalization is important for this research project because this object 

detection system is adopted in virtual environment. Figure 8 shows that YOLOv3 detect 

skull as person. 



15 

 

 

Figure 8: Detect skull 

 

2.3  Edge Detection 

Edge detection includes a variety of mathematical methods that aim at identifying 

points in a digital image at which the image brightness changes sharply or, more 

formally, has discontinuities (Memon, 2014). The points at which image brightness 

changes sharply are typically organized into a set of curved line segments termed edges.  

Approaches such as Canny edge operator, Sobel edge operator and Prewitt edge 

operator are widely use for edge detection. In this research project, Canny edge operator 

has been used for traffic sign detection because in Carla environment, traffic sign is red 

circle. 

 

2.4  Tesseract OCR 

Tesseract OCR is an optical character recognition engine for various operating systems. 

("tesseract-ocr", 2018) It is considered one of the most accurate open source optical 

character recognition engines. In this research project, Tesseract OCR is used for 

detecting the digital numbers on traffic signs. 
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2.5  Hardware & Software Environment 

Hardware Environment 

This research project is running on a personal computer with 

CPU: Intel(R) Core (TM) i7-4770 CPU @ 3.40Hz  

GPU: Nvidia GTX GeForce TITAN X, 12Gb 

Installed Memory (RAM): 8Gb 

 

Software Environment 

This research Environment is running with  

Operating System: Windows 10 Pro 64-bit 

Programming Language: Python 3.5.6 

Master Libraries Included: Tensorflow-gpu, Keras, Pillow, OpenCV-Python, AlexNet, 

YOLOv3, Tesseract   
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3  Methods for Virtual Autonomous vehicle  
For Carla environment, traffic lanes, traffic lights, traffic signs, vehicles and 

pedestrians are included in the simulating urban environment. To achieve the goals 

that autonomous vehicles can drive without breaking traffic rules or hitting obstacles 

in Carla environment, three major parts should be solved and these three parts are 

driving in traffic lanes, detecting traffic signs, detecting traffic lights, other vehicles 

and pedestrians (traffic light can be considered as an obstacle because vehicle needs to 

stop when traffic light is in red). The following part will focus on these three parts. 

 

Figure 9: Screenshot from Carla environment 

 

3.1 Driving in Traffic Lanes 

To achieve driving in traffic lanes, at the beginning of this research project I decided to 

use edge detection method. My initial plan was detecting double yellow solid lines at 

the middle and the boundary of traffic line and sidewalk as the driving traffic lane, and 

make sure the central point of autonomous vehicle is at the middle of these two lines. 

This method can work in some special condition but it can not be the general method 

because in some conditions this method can not work. For example, in Carla 

environment, vehicles need to go through the intersections and, in these areas, there is 
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no double yellow solid lines. This means that edge detection is not suitable for roads 

with intersections. Secondly, the performance is not good enough for finding the line 

of the double yellow solid lines, especially in rainy or overcast weather. At that situation, 

left side boundary of traffic lane and sidewalk will be identified as the left line and 

vehicle will drive across the double yellow solid lines. Overall, edge detection method 

is not suitable for detecting traffic lanes in Carla Environment. 

 

Since Carla is an environment with closed internal roads, which means that the length 

of roads is limited, I can manually drive the vehicle in Carla environment and follow 

the rules of driving in my side of roads, in the same time, record my operations and 

camera image from the vehicle. With all this collected information, I can “teach” 

vehicle how to drive in its own side of the roads, which I called “Driving Behavior 

Training”. 

 

3.1.1 Driving Behavior Training 

Like most racing games that controlled by keyboard, vehicle in Carla can be controlled 

by WASD keys, W means Throttle, S means Brake, A means Left and D means Right. 

To collect data for training driving behavior classifier, I wrote a python script that can 

save keyboard control and Carla screen in the same time. For example, Figure 10 shows 

that at that situation, vehicle at the middle of the intersection and decide to go right, the 

controller should press W and D in the same time, which means the operation of go 

forward right. 

 

Figure 10: Training dataset 
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For this method of controlling vehicle, there are 9 different operations, Forward, Brake, 

Turn Left, Turn Right, Forward Left, Forward Right, Retard Left, Retard Right and No 

key. The following chart shows how these operations means in keyboard control and 

training label. 

No Operations Keyboard 

Input 

Training Label 

1 Forward W [1, 0, 0, 0, 0, 0, 0, 0, 0] 

2 Break S [0, 1, 0, 0, 0, 0, 0, 0, 0] 

3 Turn Left A [0, 0, 1, 0, 0, 0, 0, 0, 0] 

4 Turn Right D [0, 0, 0, 1, 0, 0, 0 ,0, 0] 

5 Forward Left W A [0, 0, 0, 0, 1, 0, 0, 0 ,0] 

6 Forward Right W D [0, 0 ,0 ,0 ,0, 1, 0, 0, 0] 

7 Retard Left S A [0, 0, 0, 0, 0, 0, 1, 0, 0] 

8 Retard Right S D [0, 0, 0, 0, 0, 0, 0, 1, 0] 

9 No Key - [0, 0, 0, 0, 0, 0, 0, 0, 1] 

Table 2: Label for Training dataset 

After driving for over 3 hours, over 500,000 datasets had been collected. After data 

preprocessing such as image resize, image transfer, data balancing and data randomly, 

I put all this processed data into AlexNet model, with epochs of 10, this model had 

finished training for 30 hours on computer with single GTX GeForce TITAN X.  

 

Figure 11: Tensorboard for classifier 
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Figure 11 is the tensorboard for classifier. It shows that the currency for this classifier 

close to 100%. 

 

3.2 Detecting Traffic Signs 

In Carla environment, there is only one type of traffic signs, which is speed limit sign. 

This sign is combined with a red circle, and speed number inside the circle. The 

following image shows the sample of speed limit traffic sign. Figure 12 shows the 

sample speed limit traffic sign. 

 

Figure 12: Sample of speed limit traffic sign 

To detect this traffic sign, the approach that been adopted is detecting circle first, then 

identify the number inside the circle. 

 

3.2.1 Identify Circle  

In this research project, edge detection was adopted for identifying circles. To achieve 

circle identification, Figure 13 is a flow chart that indicates the necessary operations. 

 

Figure 13: The process of edge detection 

ROI (Region of Interest) for this research project is the right side of the image. Set ROI 

can reduce the amount of calculation, which can make identification faster. Moreover, 
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ROI can avoid detecting circles that are not necessary. For example, the following 

image shows the situation that there are traffic signs in both sides of the street, but only 

right side one is useful. Using ROI can avoid detecting any traffic signs in the left side 

of the street. 

 

Figure 14: Screenshot of Carla environment with traffic signs in both side of the roads 

 

3.2.2 Identify Speed Number  

Once the circle for traffic sign has been found, we can use Tesseract OCR (Optical 

Character Recognition) to detect the speed number on this traffic sign. Tesseract OCR 

is considered one of the most accurate open source optical character recognition engines. 

Pytesseract is the python library for Tesseract OCR that can use python script on 

Tesseract OCR. In this research project, we can set Tesseract OCR as only detecting 

digital numbers. 

 

3.3 Detecting Obstacles 

In this research project, three objects have been considered as obstacles, traffic lights, 

other vehicles and pedestrians. At the very beginning, I planned to train three different 

classifiers for these three obstacles. To collect training dataset, I manually drove vehicle 
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in Carla Environment and save the images from Carla. Then, find the required areas 

from images and crop to small images that only have designed objects. The following 

images shows the dataset for traffic lights in Carla Environment.  

 

Figure 15: Collected dataset for traffic lights 

After the first classifier finished, which is traffic light classifier, I realized that this 

approach was not working. The reason is that running three classifiers in the same time 

is not realistic, this method takes up too much graph memory. Then, I decided to train 

one classifier by three objects, which means traffic lights, other vehicles and pedestrians 

can be classified by one classifier. However, this method can’t work, either. The most 

important reason why this method is not working is that the size and shape for these   

three objects are different. For, example, when randomly select one image for vehicle, 

one image for traffic light and one image for pedestrian, the size of vehicle is 

492 × 243, the size of traffic light is 85 × 198, the size of pedestrian is 69 × 216. 
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Figure 16, 17, 18 Selected images for vehicle, traffic light and pedestrian 

From the images above, the ratio of width and height for the images of traffic lights and 

pedestrians can be considered as 1:3, but the ratio of width and height for the images of 

other vehicles is approximately 2:1. It is impossible to resize all the image into same 

designed size. And if I resize all the image with the ratio of width and height as 1:3, this 

classifier can’t identify vehicles accurately. 

 

To find the solution that using only one classifier to identify all the obstacles accurately, 

I decided to use real-time object detection system YOLOv3. 

 

Figure 19: The demo for YOLOv3 

There are over 100 classes of objects that can be identified by YOLOv3, such as car, 

person, train, plane, motorbike etc. But in this research project, only traffic light, car, 

bus and person need to be found in Carla environment.  
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3.3.1 Traffic Light 

Two attributes for traffic light are important for autonomous vehicle, current light state 

and the distance. To identify the distance between the traffic light and autonomous 

vehicle, I selected to calculate the size of the box that covered traffic light. If the size 

of the box is larger than a designed number, for example 2000 (this number is 

determined by the size of Carla window), this means the traffic light is close to 

autonomous vehicle and vehicle should respond accordingly to this traffic light.  

 

To identify which light is on for one traffic light, I chose to calculate the average RGB 

in the founding box of traffic light. Average RGB method means add up R, G, B 

respectively while traversing the image, then for total R, G, B, divided by the size of 

the image, the result is the average RGB for this image. For example, the following 

three images are traffic lights that I randomly selected. The first is in green, and the 

average RGB is (80, 95, 87). The second is in red, and the average RGB is (78, 62, 56). 

The third is in yellow, and the average RGB is (32, 32, 22). 

                                            

Figure 20, 21, 22 Traffic light in green (80, 95, 87), red (78, 62, 56) and yellow (32, 32, 22) 

If the green light is on, the image of traffic light is close to green, so the average RGB 

for this image, G is the maximum. If the red light is on, the image of traffic light is close 

to red, so the average RGB for this image, R is the maximum, If the yellow light is on, 

the image of traffic light is close to yellow, and yellow is made up of red and green, so 

the average RGB for this image, R and G is close (absolute value is less than 2), B is 

smaller than R and G. 
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Overall, if autonomous vehicle detects that there is a traffic light that is close to the 

vehicle, and the red light is on for this traffic light, the vehicle will stop in this situation. 

 

3.3.2 Vehicle 

When identify the vehicle, which include car and bus in Carla environment, except 

identifying the distance between detected vehicle and autonomous vehicle, which is 

same as traffic light, we also need the relative position of detected vehicle for 

autonomous vehicle. For example, the vehicles in opposite lane are not important for 

autonomous vehicle no matter how close it is. If the vehicle is in front of the 

autonomous vehicle, and the position of the detected vehicle will be reached later for 

autonomous vehicle, autonomous vehicle should respond accordingly to this detected 

vehicle. 

 

To determine whether detected vehicle is necessary for autonomous vehicle to respond 

or not, I create a region on Interest (ROI), which is a trapezoid in front of the 

autonomous vehicle. The following image shows the ROI for detecting vehicle. 

 

Figure 23: ROI area for vehicle and pedestrian detection 
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Overall, if autonomous vehicle detects that there is a vehicle that is close to the vehicle, 

and the central point of detected vehicle is in the area of ROI, the vehicle will stop in 

this situation. 

 

Due to the generalization of YOLOv3, the hood of autonomous vehicle will be detected 

as vehicle, and this “detected vehicle” are always in the ROI area, to avoid that, it is 

necessary to crop the bottom before detection. 

 

3.3.3 Pedestrian 

The operation for detecting pedestrians is exactly the same as detecting other vehicles. 

If autonomous vehicle detects that there is a person that is close to the vehicle, and the 

central point of detected person is in the area of ROI, the vehicle will stop in this 

situation. 

 

The way for determining the distance between pedestrian or vehicle with autonomous 

vehicle are the same as traffic light, which is the size of the box that covered vehicle or 

pedestrian. It is obvious that the size of vehicle is much larger than pedestrian, so the 

designed size for vehicle is 25000 and designed size for person is 5000 (this number is 

determined by the size of Carla window). 
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4 Results for Virtual Autonomous Vehicle  
Unfortunately, due to the performance issue of the computer, especially the 

performance of GPU is not enough, three parts of classifiers and detectors can’t run in 

the same time. When running Carla Simulator, this will take up a certain amount of 

graph card performance, the driving behavior classifier, real-time object detection and 

traffic sign detection will all take up graph card performance when running them, so 

when too much graph memory has been occupied, CUDA boost is disable at that 

situation and AlexNet and YOLOv3 can’t run without CUDA. To show the result of 

this research project, I will show every part of detection individually. 

 

4.1 Driving  

After training for over 30 hours by AlexNet, a model had been created as the classifier 

for driving in Carla Environment. To use this driving classifier, it is necessary to launch 

Carla by windowed mode, because windowed mode Carla requires less on graph 

memory. Then, set window size of Carla window as 800 × 600, and put Carla window 

at upper left corner of the desktop screen, this is the area python script will read.  

 

Trained driving classifier will read Carla window and take this as input image, then 

give predicted operation and output on the screen. The following images are the 

screenshots about driving. Left is Carla window, right side is python script result, it 

shows the current operation at this image and current fps. 

 

This image shows that the autonomous vehicle is at the middle of the road and the front 

of the vehicle is straight road, so the operation is W, which means go forward.  
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Figure 24: Result 1 for driving 

When the autonomous vehicle is approaching the intersection, it needs to reduce the 

speed, otherwise, the vehicle will get out of control at the curved road. At this situation, 

the operation is S, which means brake, or no keys. 

 

Figure 25: Result 2 for driving 

The image below shows the situation that the autonomous vehicle is passing the right 

turn curved road. The operations are D, which means turn right, and WD, which means 

go forward right. 
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Figure 26: Result 3 for driving 

 

4.2 Traffic Sign 

In order to identify traffic sign in Carla Environment, it is necessary to launch Carla by 

windowed mode, because windowed mode Carla requires less on graph memory. Then, 

set window size of Carla window as 800 × 600, and put Carla window at upper left 

corner of the desktop screen, this is the area python script will read. This python script 

will display the area it read, then find and display the circle in this area. Once circle has 

been found, Tesseract OCR will identify the speed number that inside the circle. The 

following images are the screenshots about traffic sign detection. Left is Carla window, 

right side is detected window that created by python script, it shows the found circle 

and detected speed number. 

 

Figure 27: Result1 for traffic sign 
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Figure 28: Result 2 for traffic sign 

 

Figure 29: Result 3 for traffic sign 

 

Figure 30: Result 4 for traffic sign 

At the second image and last image, there is a traffic sign at the left side of the road, the 

circle will not be identified because of ROI, ROI is the right side of the image, so all 

the traffic signs that for opposite roads will not be identify.  
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For the last image, right part of the outside circle was identified as right parenthesis. 

This issue can be solved with regular expression. 

 

4.3 Obstacles Detection 

YOLOv3 real-time object detection system has been adopted for obstacles detection. 

To use this obstacles detection, same as driving classifier and traffic sign detection, it 

is necessary to launch Carla by windowed mode, because windowed mode Carla 

requires less on graph memory. Then, set window size of Carla window as 800 × 600, 

and put Carla window at upper left corner of the desktop screen, this is the area 

YOLOv3 object detection will read.  

 

Obstacles detection will read Carla window and take this as input image, then this 

python script will create a window that display the reading image, with detected objects 

in this reading image. At the upper left corner of the window, fps will be showed there. 

If a vehicle or a person is at the ROI area, which is in front of the autonomous vehicle, 

there will be a warning at the upper left corner of the windows, and the type of warning 

will be given. If a traffic light is detected and the red light is on, there will be a “stop” 

on the area of traffic light. The following images are the screenshots about object 

detection. Left is Carla window, right side is detected window, it shows the detected 

objects in Carla window. 

 

The image below shows the situation that there is a vehicle in front of autonomous 

vehicle, and the distance between two vehicles is close. At the upper left corner, there 

is a warning for this situation. In the same time, the red vehicle far away from the 

vehicle has been identify. 
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Figure 31: Result 1 for detection 

In this image, two vehicles, a person and the traffic light have been found. And the 

white vehicle in front of autonomous vehicle is close to the vehicle, so there is a warning 

at the upper left corner. 

 

Figure 32: Result 2 for detection 

In this image, one vehicle, one person and one traffic light have been found. The traffic 

light is close to autonomous vehicle, and it is in red, so there is a “stop” in the detected 

area of traffic light. The vehicle in front of autonomous vehicle is close to the vehicle, 

so there is a warning at the upper left corner. 

 

Figure 33: Result 3 for detection 
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For the image below, in this situation, there is a warning showed at the top when there 

is no vehicle in front of the autonomous vehicle. It is because of the SUV behind the 

yellow mini cooper. At this situation, autonomous vehicle is heading slightly left of the 

road, and the central point of SUV is in the ROI area and this vehicle is close to 

autonomous vehicle, that’s the reason for the warning. 

 

Figure 34 Result 4 for detection 

In this image, vehicle behind the jump has been detected even though over half of the 

vehicle has been blocked by jump. The traffic light is in red and close to autonomous 

vehicle, so there is a “stop” in the detected area of traffic light. 

 
Figure 35: Result 5 for detecting 

According to the fps information that showed at the upper left corner of these five 

images, the fps is always less than 5, but regular fps for YOLOv3 on GTX GeForce 

TITAN X is approximately 45, this showed that the GPU performance is not good 

enough for this method.  
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5 Future Work and Summary 
At the end of this research paper, I will summarize this research project, and list the 

future work of this research project. 

 

Based on the research results that presents above, we can make the conclusion that: 

firstly, it is available that use human operation and autonomous vehicle’s camera 

for driving behavior training, and the obtained classifier can make a vehicle drive 

like human in closed internal roads environment such as Carla environment. 

Secondly, it is working that using edge detection and Tesseract OCR for traffic sign 

detection if there is only speed limit traffic sign. Thirdly, using YOLOv3, object 

detection for obstacles detection is possible in virtual environment, and the real-

time performance is very good. Finally, the approach of using average RGB for 

determining the light state of traffic lights is working. In conclusion, if the GPU’s 

performance is good enough, based on all the approaches above, an autonomous 

vehicle in Carla environment is achieved that can self-driving like human and 

detecting other vehicles, pedestrians, light state of traffic lights and traffic sign 

content in real time. 

 

Moreover, there are some parts of this research project that could improve in future 

works: Firstly, and most importantly, find a way to reduce the requirement of GPU. 

Based on the research from Larabel (2016), they achieved that using CPU on training 

AlexNet, and it is available to use Tensorflow object detection system that works 

on CPU version Tensorflow. Secondly, find a way to control the speed of vehicle 

when use driving classifier for driving. There is a defect from this method that single 

image can not represent current speed of the vehicle, which is an important element 

for vehicle operation. To control the speed of vehicle, the ideal method is using PID 

controller. Finally, adopt the regular expression approach on speed number 

detection. Even though I have set on Tesseract OCR that detect digital number only, 

but sometime there is still symbol, such as right parenthesis that in figure 30.  
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