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Abstract

This thesis investigates the implementation of formation control with a leader-
follower approach for differentially driven robots. In this way, the positions
of multiple robots are controlled such that they attain a specified formation.
Furthermore, an optimal path planning algorithm is discussed and implemented.
In combination with the leader-follower controller, the generated path is used
as a virtual leader to navigate multiple robots along the desired trajectory. In
the planning algorithm, the system dynamics of the robots and the avoidance of
known obstacles is considered. Additionally, the formation controller is extended
to incorporate on-board position sensitive devices in order to detect and avoid any
obstacles close to the robot. All of these control schemes are first evaluated in
simulation while measurement noise and subsequently in real experiments. The
resulting combination of control schemes is able to navigate the robots to a goal
position in an arbitrary world setup without any collisions.
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Chapter 1

Motivation

In recent years, the interest in self driving cars has grown rapidly. Without the interaction
of a user, a car is able to drive around and decide autonomously how to behave in different
situations using artificial intelligence. This idea also motivates the development of a controller
for solving similar tasks. Although in this case the goals of artifical intelligence and control
theory are comparable, they vary greatly in their implementation. Artificial intelligence is
based on an enormous amount of training data, while a controller uses a physical model to
derive its control inputs.
Since the 1960s [1], solving a control problem for mobile robots earned major attention, due
to their theoretical challenges and diverse applications, like explorations [2], rescue missions
[3] or entertainment such as robot soccer games [4]. If a coordinated group of robots is used,
many of these tasks could be executed faster, cheaper and more reliably [5].
Controlling the position of multiple robots while maintaining a desired spatial pattern is called
formation control. These control problems are aiming to find a controller, which calculates
automatically and continuously a control input, like a desired velocity or steering angle of a
mobile robot. A survey regarding this research area is conducted in [6]. Formation control
can be divided into three main approaches, the behavior-based approach [4], virtual structure
[7] and leader-follower solution [8]. The behavior-based approach focuses on coordinating
the behaviors of individual robots, while an approach with virtual structures considers the
formation of multiple robots as a single object. A leader-follower approach defines at least
one robot as the leader and the remaining robots are assigned to follow the leader. Due to
its simplicity and scalability, the leader-follower approach is widely adopted and has been
studied extensively [9]. This approach is investigated throughout the course of this thesis.
It is desirable to identify a continuous path for the robots in order to preplan their nav-
igation in a smooth fashion. This is addressed with a path planning algorithm, which
generates a path from a start to a goal, while additional constraints can be adressed. An
overview about different algorithms is given in [10], where the various solutions are divided
into the categories roadmap techniques [11], cell decomposition algorithms [12] and artificial
potential methods [13]. The roadmap technique maps the available space into a system of
one-dimensional curves. This approach is specifically used for high dimensional problems.
A cell decomposition method divides the total free space into several regions and the algo-
rithm is looking for a sequence of cells to reach the target. An artificial potential approach
extends the control scheme for a function which repels the robot of any unwanted location.
Avoiding obstacles is one core element for all of these techniques.
The goal of this thesis is the implementation of a formation controller with a path planning
algorithm, that is capable of navigating multiple robots in a world with several obstacles.
To reduce the difference of the simulation to the experiments, uncertainties regarding the
knowledge of the world and sensor measurements is considered during the simulation.
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Chapter 2

Background

This chapter introduces the basics needed for the later analysis in chapter 3.
At first, a differentially driven robot is defined. Next, the research project of this thesis
and the simulation software, used to evaluate the functionality of the control schemes, are
presented.
Lastly, a general concept for a path planning algorithm is introduced, which finds an optimal
path without any collision with an obstacle.

2.1 Differentially Driven Robot

One of the most popular architecture of mobile robots is a so called differentially driven
robot [14]. These are car-like robots, which have been extensively studied due to their simple
functionality and broad application area.

2.1.1 System Dynamics

A generic sketch of a differentially driven vehicle is depicted in fig. 2.1. In general, motors
are connected to the left and right wheel of the robot. Additionally, the robot has a third
wheel, which is called a castor c, and prevents the robot from falling over. It is placed either
in the front or the rear [15].
The state of a differentially driven robot q(t) = (x(t), y(t), θ(t))T consists of the position
variables x(t), y(t) and the steering angle θ(t). The state vector, which does not include θ(t),
is denoted with q̃(t) = (x(t), y(t))T . For better readability, the time argument of the variables
is omitted in obvious cases in this work.
The dynamic equations of a differentially driven robot are

ẋ = r

(
ωL + ωR

2

)
cos(θ)

ẏ = r

(
ωL + ωR

2

)
sin(θ)

θ̇ = r

(
ωL − ωR

b

)
,

(2.1)

where r > 0 denotes the wheel radius and b > 0 the distance between the wheels. ωL and
ωR are the inputs of the system and describe the angular velocities of the left and right
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Figure 2.1: Visualization of a differentially driven vehicle, adapted from [14].

wheel respectively [16]. If the transformation

u =
(
v
ω

)
= T

(
ωL
ωR

)
=
[
r/2 r/2
r/b −r/b

](
ωL
ωR

)
, (2.2)

is applied, the input u changes to a more intuitive representation: the linear velocity v and
the angular velocity ω of the vehicle. Now, the differentially driven model simplifies to

ẋ = vcos(θ)
ẏ = vsin(θ)
θ̇ = ω.

(2.3)

These equations also represent the dynamics of a unicycle, if the balancing concerns are
neglected [14]. Since the matrix T is always invertible, it suffices to analyze eq. (2.3) for
deriving a control law [16].
The exact discrete time dynamics of this system can be attained by using direct integration,
when the control inputs are constant on each interval [kts, (k+1)ts), k ∈ N0 [17]. The equation
is given by

q(k + 1) = fts(q(k), u(k)) =

x(k)
y(k)
θ(k)

+


v(k)
ω(k)( sin(θ(k) + tsω(k))− sin(θ(k))
v(k)
ω(k)(−cos(θ(k) + tsω(k)) + cos(θ(k))

tsωk

 (2.4)

with sampling time ts and ω(k) 6= 0.
When moving in a straight line, the right hand side of eq. (2.4) becomes

q(k) + lim
ω→0


v(k)
ω(k)( sin(θ(k) + tsω(k))− sin(θ(k))
v(k)
ω(k)(−cos(θ(k) + tsω(k)) + cos(θ(k))

tsωk

 = q(k) + tsv(k)

 cos(θ(k)
sin(θ(k))

0

 (2.5)

and therefore the case ω(k) = 0 has to be considered separately.
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2.1 Differentially Driven Robot

In contrast to an automobile, a differentially driven robot can turn on the spot, if the linear
velocity v = 0 and angular velocity ω 6= 0 holds. However, these robots are still not able to
drive sideways. This restriction is expressed by the nonholonomic no-slip constraint [18]

A(q)q̇ = 0 with A(q) = [−sin(θ), cos(θ), 0]. (2.6)

During a path planning algorithm this restriction has to be considered to result in a smooth
and consistent trajectory.

2.1.2 EyeBot Project and EyeSim

For the last 20 years, the EyeBot Project [19] focused on the research of embedded controllers
for robotics applications. This includes the development of mobile robots and simulating
their behavior with the multi-robot, multi-tasking simulation software EyeSim. The project is
researching various different types of robots, like omni-directional robots, underwater vehicles
or flying robots. The current focus lies on the previously introduced differentially driven
robots. The EyeBot robots were originally designed to compete in Robosoccer [20], but now
the research area has been extended e.g. to image processing and deep learning [21].
The differentially driven robots are based on the operating system RoBIOS (robot basic
input output system) of EyeBot and they are programmable in C or Python. Amongst
other things, RoBIOS provides access to various driving functions, realistic sensor readings
and communication between robots via a radio function. For driving, the user can choose
between high level functions, e.g. driving straight or following a curve segment for a set
distance and angle, and low level functions, e.g. setting the linear and angular velocity or
actuate the motors directly. An EyeBot robot is mounted with position sensitive devices
(PSD) for measuring the distance towards an object. The software provides the possibility to
consider noise for the position readings and the PSD sensors. Thus, a better representation of
the real sensors can be achieved. During the simulation, any collision of a robot is detected.
One major advantage of the project is the combination of EyeSim with the EyeBot robots.
Thus, it is possible to evaluate and test any algorithm first in simulation, and at a later stage,
these algorithms can be implemented on the real robots without any significant changes.
The simulation of an EyeBot robot is depicted in fig. 4.1. The Eyesim software is used for
the simulations presented in chapter 3 and the experiments in chapter 4 are conducted with
the EyeBot robots.

Figure 2.2: Simulation of a differentially driven robot with EyeSim.
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Chapter 2 Background

2.2 Path Planning

A path planning algorithm determines a sequence of configurations to navigate a robot from a
start to a goal position, without interfering with any known obstacles. One famous algorithm
is the Rapidly Exploring Random Tree, which will be introduced and analyzed in this section
and later in section 3.2.1, it will be extended to satisfy the kinematics of a unicycle.

2.2.1 Rapidly Exploring Random Tree

A Rapidly Exploring Random Tree (RRT) is first introduced by LaValle in [22] and can be
used for a broad class of path planning problems. A randomized data structure T is created
in order to find a path from a start position q̃start to a goal q̃goal, while additional conditions,
e.g. not being obstructed by obstacles, can be addressed. The RRT-Star algorithm proposed
by Karaman in [23] extends this method to guarantee asymptotic optimality.
First, a random point q̃rand is selected within some bounded area. The closest node to q̃rand
within T becomes q̃parent and a path is created, if the length of this path is not smaller than
some value dmin. q̃new is chosen such that it either becomes q̃rand or, if the path is longer than
dmax, it steers into the direction of q̃rand until the threshold is reached. Checking that q̃rand,
q̃new and the connecting path do not interfere with any obstacles q̃obst is required during these
steps. Finally, the new node q̃new is added to the RRT T . Since it is very unlikely that q̃goal
is exactly reached, a goal region must be defined such that it is sufficient if q̃new lies within
that region.
The RRT-Star algorithm extends the choice of q̃parent and rewires T . After q̃new is chosen,
q̃parent is re-selected as the best node in T , which can reach q̃new. In order to identify the
cheapest neighbour, a state requires to have a cost function with respect to the total traveled
distance, time or any other measure. Secondly, after each iteration it is checked whether any
node within the neighbourhood gets a lower total cost with q̃new. If so, the parent of this
node is changed to q̃new. A summary of the basic steps to generate a RRT, including the
RRT-Star extensions, are stated in algorithm 1.

Algorithm 1 Pseudo Code for a Rapidly Exploring Random Tree T (xinit, d, q̃obst,Kmax) [22]
with star extensions [23].
1: initialize T (q̃init)
2: for n = 1 to Nmax do
3: q̃rand ← random point
4: q̃parent ← closest neighbour (q̃rand, d, q̃obst, T )
5: u← select input (q̃rand, q̃parent, d)
6: q̃new ← new node (q̃parent, u, q̃obst)
7: q̃parent ← cheapest neighbour (q̃new, d, q̃obst, T )
8: T ← add new node (q̃new)
9: T ← add new path (q̃new, q̃parent, u)

10: T ← rewire graph (q̃new, q̃neighbours, u)
11: end for
12: return T
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(b) Results of RRT-Star with n = 5 (left), 10 (middle) and 200 (right) nodes.

Figure 2.3: Comparison of the optimal path of RRT and RRT-Star with q̃start, q̃goal, q̃obst, q̃rand, q̃new,
q̃node and optimal path.

A comparison of these two different variations is visualized in fig. 2.3. For the first n = 5
steps, the RRT in fig. 2.3a and the RRT-Star in fig. 2.3b are equivalent. A difference is visible
at n = 10. Based on the proximity to q̃new and not the total traveled distance, the RRT is
selecting a different q̃parent for the same q̃new than the RRT-Star algorithm. Additionally,
rewiring of the graph causes to change the parent of q̃new’s neighbour and therefore the over-
all tree structure becomes smoother. This smoothness can be particularly seen at n = 200,
where two structurally different trees have been growing and the optimal path of RRT-Star
is shorter than the path of RRT.
The tree structure of RRT-Star induces mathematical optimality, when Nmax →∞ and the
difference between each node dmin → 0. However, the optimality properties cause increased
complexity [23]. In the RRT-Star algorithm, every node within T has to be scanned multiple
times and therefore the total computation time increases exponentially with the number of
nodes. Both methods can be used for arbitrary system dynamics while satisfying nonholo-
nomic constraints [23]. This possibility is further investigated in section 3.2.1.

2.2.2 Homogenous Transformation

In order to describe the position of mobile robots, the ability to change their coordinates with
respect to different coordinate systems is indispensable. In general, the position of a global
coordinate frame is fixed and it can be used to describe a setup for multiple robots. On the
other hand, every robot holds its own local coordinate system, where the robot itself is always
at the origin and the coordinate frame is used to distinguish the location of an object relative
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to the corresponding robot. The relation between coordinate system A and B is visualized in
fig. 2.4. The coordinates of point P are denoted as (xBP , yBP ), where the superscript indicates
the affiliation to system B. Using a rotational and translational coordinate transformation1

[24] , P is transformed from system B into system A with

xAP = cos(θAB)xBP + sin(θAB)yBP − xAB
yAP = −sin(θAB)xBP + cos(θAB)yBP − xAB.

(2.7)

xAB, yAB and θAB are the pose of the coordinate frame B expressed with respect to A. To result
in a matrix notation for better computability, the position coordinates can be extended with
an additional column toxAPyAP

1

 =

 cos(θAB) sin(θAB) −xAB
−sin(θAB) cos(θAB) −yAB

0 0 1


xBPyBP

1

 , (2.8)

also known as homogenous coordinates.
With this approach, it is possible to transform the position and any information of a robot
into different coordinate systems.

1In the literature, these equations usually state the inverse transformation. To be consistent with section 3.1
and due to the fact that the direction is solely a matter of definition, the inverse is neglected here.
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Chapter 3

Simulation Results

The first step of controlling robots through a world with obstacles, is finding a suitable control
scheme. This chapter will verify, that the leader-follower tracking controller by Loria et al.
[25] can be used to fulfill this task. Additionally, an optimal path planning algorithm is used
to create a path for a unicycle robot and a method to change the control scheme in order to
maneuver around obstacles will be proposed. The control scheme will be the basis for all of
these extensions.
Every section first introduces the theoretical basics and is concluded with simulation results,
which verify their functionality. All of the simulations are conducted with EyeSim.
At the end of this chapter, every algorithm is combined to navigate two robots through an
extended world with known and unknown obstacles.

3.1 Leader-Follower Tracking Control

As stated in the motivation, a leader-follower approach will be investigated throughout the
course of this thesis. In [26], several leader-follower approaches are compared and experi-
mentally evaluated. In [5], the leader-follower relation is defined with a cluster framework
to control and monitor formation parameters relevant to the specific task. A large number
of robots are capable of achieving a complex formation, if the control scheme of [27] is fol-
lowed. The controller is based on a consensus algorithm and one advantage of this approach
is the automatic dividing of the robots into leader and follower. Especially during the earlier
proposals, it is often differentiated between driving along a curve or a straight line due to
limitations in the stability proof. Covering both cases is crucial for following an arbitrary
trajectory and therefore must be considered when choosing a control scheme. Many of the
proposals in the literature focus on finding full state feedback controllers with global knowl-
edge.
The controller used throughout this thesis, is proposed in [25] and originally based on [28],
where results from nonlinear and adaptive control are combined. Its main purpose is to con-
trol the position of a follower, such that a leader is followed with a desired displacement in
x− or y−coordinates. In contrast to the aforementioned implementations, the leader follower
tracking controller defines the desired configuration of the leader in global coordinates, not
in local. Moreover, this controller can be used to follow a trajectory or as a point-to-point
position controller. During the simulation, inaccurate sensor readings are used.
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Chapter 3 Simulation Results

3.1.1 Control Algorithm

As introduced by the unicycle model in eq. (2.3), the dynamic equations of N mobile robots
are given by

ẋi = vicos(θi)
ẏi = visin(θi)
θ̇i = ωi

(3.1)

with i ∈ [0, .., N ]. The goal of every robot i is to follow its leader i − 1 with a displacement
dd,i = (dd,x,i, dd,y,i)T in global coordinates and where i = 0 implies a virtual leader. Therefore,
the desired configuration for the follower is

xd,i = xi−1 − dd,x,i
yd,i = yi−1 − dd,y,i
θd,i = θi−1

(3.2)

and the controller’s objective is to drive the cartesian error coordinates

px,i = xd,i − xi
py,i = yd,i − yi
pθ,i = θd,i − θi

(3.3)

to zero. Transforming these equations into local error coordinates of the follower results in

ex,i = cos(θi)px,i + sin(θi)py,i
ey,i = −sin(θi)px,i + cos(θi)py,i
eθ,i = pθ,i.

(3.4)

In [29] it is shown that the inputs

vi = vi−1 + caex,i ca > 0
ωi = h(t, ey,i) + cbeθ,i cb > 0

(3.5)

lead to an uniformly globally asymptotically stable origin, if h is bounded, locally of linear
order in ey,i and continuously differentiable. ca and cb are control gains and must be positive.
Here, h replaces the original condition ωi−1 6= 0 and implies that ḣ has to be persistently
exciting.
According to Loria et al. [25], the controller can be chosen to

vi = vi−1 + caex,i

ωi = ωi−1 + ccφ(t)tanh(ey,i) + cbeθ,i, cc > 0,
(3.6)

and for this case, the stability proof also covers straight lines. φ(t) is required to guarantee
that the signal h(t, ey,i) is uniformly δ-persistently exciting. This can be provided with φ(t)
being a square-pulse-train signal. Even if ωi−1 = 0 holds, the error dynamics are stabilized
in y-direction, as for ey,i 6= 0 the term φ(t)tanh (ey,i) induces enough excitation [29].
The stability proof is based on Lyapunov’s Theory and the Small-Gain Theorem for input
to state stable systems [29], where the unicycle model is used to derive the closed loop error
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3.1 Leader-Follower Tracking Control

kinematics. During the stability analysis of [29], it is proven that the control law of eq. (3.6)
leads to an asymptotically stable origin for the kinematics of the error coordinates e. This
means, that e(t) → 0 for t → ∞ and as the error converges to zero, the measured position
qi converges to the desired position qd,i and stays there eventually. It is important to notice
that only boundedness of vi−1 is required. Therefore, this controller can also be used as a
point-to-point position controller, if the (virtual) leader is set to the desired coordinates and
vi−1 = ωi−1 = 0 holds. For an in-depth analysis of the theoretical results, refer to the original
sources [28], [25] and [29].

3.1.2 Simulation

This section investigates the leader-follower tracking controller. First, a scenario, where the
controller is used to follow a robot, is presented. Afterwards the effect of the measurement
noise is analyzed.
The leading robot 1 is driving along a trajectory, which is divided in four segments, while
robot 2 is assigned to follow its leader with a chosen offset. The trajectory segments last
for 10 seconds and they are changing from driving straight to driving a curve. In order
to use the control law of eq. (3.6), continuous communication between the leader and the
follower is required to compute the control inputs u2 = (v2, ω2). The follower must receive
a broadcast from the leader, containing the whole state information q1 and the input signals
u1. Additionally, the initial positions for both robots have to be known. They are arbitrarily
chosen to

q1(0) =

0
0
0

 , q2(0) =

 0
−0.5
−π

2

 (3.7)

and the control parameters are

dd,x,2 = −0.5, dd,y,2 = 0 and ca = 0.5, cb = 0.5, cc = 1, (3.8)

implying that the follower tracks its leader with a displacement in x−direction and no offset
in y−coordinates. The square-pulse-train signal φ(t) has a period of four seconds, a pulse
width of 3 seconds and an amplitude of 1.
The result of the controller is visualized in fig. 3.1. Figure 3.1a shows the state-space coor-
dinates q = (x, q, θ) of both robots and the desired goal configuration for the follower qd,2.
The follower converges through a transition phase to qd,2 and then follows its leader with
the desired displacement in x−direction, while the desired y−coordinate are identical to the
leader’s. After 15 seconds the desired configuration is reached and the leader is followed with
the specified offset, even if the leader’s trajectory segment changes. It is mentionable, that
the y−coordinates of the follower are stabilized for both ω1 = 0 and ω1 6= 0, as incorporated
during the control design. Analyzing the cartesian error coordinates p2 in fig. 3.1b leads
to the conclusion that the controller offers rapid response and good performance, as p2 are
converging to zero and stay there. Thus, the controller achieves its objective.
When the path of the robots in fig. 3.1c is analyzed, the impression that the follower is not
satisfying the nonholonomic constraints at the beginning of the simulation might arise. How-
ever, if the initial position and especially θ2(0) = −π

2 are considered, it is noticable that the
follower is facing in the opposite direction of qd,2 for the first few seconds. Therefore, initially,
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Figure 3.1: Simulation results of the leader-follower tracking controller with EyeSim.
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3.1 Leader-Follower Tracking Control

the robot drives backwards while turning to reach qd,2, as indicated by the partial circle at the
beginning of the path. After the leader has advanced, the direction of the follower changes,
as the robot moves forwards to reach qd,2.
Using the control scheme as a point-to-point position controller is skipped in this section, as
this possibility is used during the investigation of the collision avoidance extension in sec-
tion 3.3.1.
As outlined in chapter 1, the controller must accomplish its objective while measurement
noise is considered. In the simulation just mentioned, the position readings are disturbed by
the inbuilt noise of EyeSim. The effect of the noise can be seen particularly in fig. 3.1b. As
stated above, the controller achieves its objective in the perturbed case. Therefore, the im-
pact of measurement noise with respect to the control inputs will be investigated further. An
arbitrary state of the preceding scenario results in the nominal case of v0 and ω0. This state
is copied, by holding all variables constant except of the steering angle θ. The disturbance of
the leader’s steering angle θlead has a different sign than θfollow of the follower. Hence, the
inputs v−0.05/ω−0.05 for the case θ−0.05 use θlead−0.05 = θlead0 − 0.05 and θfollow−0.05 = θfollow0 + 0.05
and vice versa for θ0.05. As seen in fig. 3.2, the effect of varying θ towards v is neglectable.
On the other hand, the variation of θ lies within the expected limit of −0.55 rads / − 30◦s
to −0.45 rads / − 25◦s , since θlead and θfollow are varied for similar values. This leads to the
conclusion that the controller is not amplifying the disturbance.
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Figure 3.2: Comparison of the inputs for perturbed and unperturbed θ for the leader-follower tracking
controller.
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Chapter 3 Simulation Results

3.2 Optimal Path Planning

Optimal path planning algorithms are searching for a feasible and optimal path from a start
to a goal, without hitting any known obstacles. For an EyeBot robot to follow this path,
the unicycle dynamics and nonholonomic constraints of 2.1.1 must be satisfied and therefore
considered during the algorithm. The RRT-Star algorithm, introduced in section 2.2.1, can
be extended to follow system dynamics and handle additional constraints and high degrees
of freedom [22]. This option is analyzed and the resulting path will be followed by a robot
with the leader-follower tracking controller.

3.2.1 Dynamic RRT-Star

The dynamic RRT-Star algorithm is looking for a path, which satisfies the system dynamics of
a unicycle (eq. (2.3)) and the nonholonomic no-slip constraint (eq. (2.6)). However, addressing
these restrictions during the algorithm results in a complex and computationally intensive
problem.
First, a definition for optimality in this context is required. Driving from one node to another
takes a specific amount of time to accomplish. Therefore, the total time of the subsequent
steps while traveling along the path, is minimized with the dynamic RRT-Star algorithm.
[30] suggests to define motion primitives to reduce the aforementioned computational
challenges. Figure 3.3 shows three possible motion primitives, namely driving left, straight
and right. The basic structure of the dynamic RRT-Star algorithm is unchanged and still
follows algorithm 1, but now the algorithm is looking for the best sequence of these primitives
to reach the goal.

0 1 2 30

1

2

3

Figure 3.3: Possible motion primitives for the dynamic RRT-Star algorithm with qstart, qgoal, qObst,
qrand, qnode and qnew.

The primitives are created by choosing appropriate inputs for the linear and angular velocity
and the duration for every motion. To follow the unicycle dynamics, every node has to be
extended for a steering angle θ. Consequently, the same x − /y−position can be visited
multiple times for different θ and additional checking during the neighbour selection and the
rewiring is required to guarantee, that the overall path achieves a continuous θ.
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3.2 Optimal Path Planning

For every new random point qrand, the dynamic RRT-Star algorithm checks which primitive
within T gets closest to the new point. When a new qnew is chosen, the algorithm has to find
a position and orientation that is not yet present within T . While checking for a cheaper
possibility, it must be ensured that the orientation is not changed or otherwise a whole path
can be corrupted. Special attention must be paid to the iterative calling of the rewiring
function, as it is required to check whether any node with an updated cheaper cost can reach
another new node with a cheaper cost now. The previous checking of the path not interfering
with any obstacle is still required, but now it is extended to a minimal safety distance dSafety
between every node and the obstacle. Thus, the node cannot get arbitrarily close to the
obstacle and it can be guaranteed that a region around the robot is also not colliding with
an obstacle.
Discretizing the state space limits the number of possibilities and reduces the computational
effort. Also, using the discretized version of the unicycle dynamics (eq. (2.4)) avoids the
continuous integration of the system dynamics, which can get challenging, if the algorithm is
implemented in C. Additionally, the necessity of introducing a goal region becomes obsolete.
To stay consistent, the created random points match the discretized state space.
The generated path can be used as a virtual leader in combination with the leader follower
tracking controller of section 3.1 to navigate a robot to a desired location in a time optimal
way, while inherently avoiding any known obstacles.

3.2.2 Simulation

The option to combine the dynamic RRT-Star algorithm with the leader-follower tracking
controller will be examined below. The motion primitives are chosen to be driving left,
straight and right. The individual paths are created by applying

vleft = π

40 vstraight = 2
15 vright = π

40
ωleft = π

16 ωstraight = 0 ωright = − π

16
tleft = 8 tstraight = 1.5 tright = 8

(3.9)

to the unicycle kinematics. v and ω denote the input to the robot and t is the duration of a
primitive. These values are chosen such that the endpoints

qleft,end =

xlocstartylocstart
θlocstart

+

0.4
0.4
π
2


qstraight,end =

xlocstartylocstart
θlocstart

+

0.2
0
0


qright,end =

xlocstartylocstart
θlocstart

+

 0.4
−0.4
−π

2



(3.10)

fit to the discretization of the state space.
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These coordinates are expressed in local coordinates. xlocstart, ylocstart and θlocstart are the starting
point, whereas qend describes the new pose of the robot after a primitive has finished.
Although the unicycle allows to turn the robot on the same spot, this possibility is inten-
tionally omitted to result in a smooth trajectory without abrupt transitions or even stopping
the robot. The time value of driving straight is chosen to be significantly faster than turning
left or right. To point this reasoning out, two fictive nodes are connected. Those nodes
result in a triangle with the catheti being the x− and y−axis, while the connecting line is
the shortest distance and therefore the hypotenuse of the triangle. It is favorable, if the time
values are chosen such that following the catheti is faster than turning consecutively along
the hypotenuse. If the total time would be proportional to the traveled distance, the resulting
path would get curvier. Obviously, driving straight for a longer distance is preferably over the
latter case and with the chosen values a curve is only performed, if a change in θ is required
Revisiting the optimality property of the RRT-Star algorithm from section 2.2.1, the path
converges to the true optimum for Nmax → ∞ and dmin → 0. Therefore the distance of
driving straight is shorter than the other primitives.
The algorithm was developed with MATLAB 2018b and exported to C code with the
automatic code generation. The dynamic RRT-Star T is created with

qstart =

0.2
2
0

, q̃goal =
(

2.6
2

)
, q̃Obst =

[(
1
1

)(
1.6
3

)]
, dSafety = 0.4, Nmax = 3000. (3.11)

qstart denotes the initial position of the robot, q̃goal is the goal position, which can be reached
with any heading angle, dSafety is the minimal safety distance of a robot to an obstacle which
renders a node as valid and Nmax is the total number of random points that are checked
during the algorithm. Without loss of generality, only rectangular obstacles q̃Obst =

[
q̃1 q̃2

]
are considered, where q̃1 is the position of one corner and q̃2 of the other. The remaining
corners are created by interchanging the respective x− or y−coordinates. Because of the
discretization, the other values like dmin, dmax or the goal region no longer have to be taken
into account.
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(a) Optimal path by dynamic RRT-Star algorithm. (b) Robot follows the generated optimal path.

Figure 3.4: Simulation of the dynamic RRT-Star Algorithm.
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The dynamic RRT-Star algorithm results in the optimal path of fig. 3.6b, which is combined
with the controller to drive a robot to a goal configuration, while the known obstacle is
avoided. The sequence of nodes of this path and the inputs of the corresponding primitives
are generating a time depending trajectory. This trajectory is used as a virtual leader for the
robot to determine the desired configurations qd. To achieve smooth transitions and no abrupt
changes, the path is interpolated in between two nodes. Figure 3.4b shows the performance
of the robot, while the optimal path is followed with the same control parameters as used in
section 3.1.2. It is easily verifiable that the robot is able to follow the intended trajectory.
Although only a spatial representation of the results is chosen, it can be concluded that the
robot reaches q̃goal with the optimal time of 38s. With this extension, the robot is able to
approach a goal configuration with a smooth trajectory in optimal time, while obstacles are
avoided.

3.3 Obstacle Avoidance

The just mentioned dynamic RRT-Star algorithm considers, that the optimal path does not
hit any obstacle. However, the topic of collision avoidance has to be readressed, as the
algorithm can only incorporate known obstacles. If the location of an obstacle varies, or is
not known at all, it can not be guaranteed that there is no collision. Therefore an extension
for the leader-follower tracking controller is proposed, which does not require knowledge of
the location of the obstacle.

3.3.1 Control Algorithm

In order to detect any obstacle close to the robot, the leader-follower tracking controller from
section 3.1 is extended to use the on-board position sensitive devices. The sensor readings
are now evaluated in order to manipulate the desired coordinates of the controller to avoid
any approaching obstacle.
Inspired by [26], a nearby obstacle is detected by the measurements of the sensors PSDx.
x indicates whether the sensor is mounted on the left, front or right side of the robot and
determines on which side the obstacle is located. If a value of a PSDx reading falls below a
limit dColl, the path of the robot must be changed, as the original trajectory probably leads to
a collision. To achieve this, new desired coordinates qlocd,new are chosen to avoid these contacts
and they replace the original values of the desired coordinates qd. If an obstacle is detected
at the front, the robot turns until the obstacle is on its side. While an obstacle is located on
either side, it will be followed with a safe distance until the end of the obstacle is identified.
When comparing eq. (3.4) with eq. (2.7), it can be perceived that the controller’s error co-
ordinates eloc are expressed as local coordinates of the robot, while the point P with xBP
corresponds to xd,i and xi matches xAB. The same correlation holds for y.
Consecutively, the controller’s desired coordinates qd1 are changed to new local coordinates
qlocd,new, if the robot is close to an obstacle. It is important to notice, that qd and qlocd,new
are expressed in different reference coordinate systems, and therefore qlocd,new has to be trans-
formed to the global frame to stay consistent. The cartesian error coordinates p are evaluated
with qd,new and transformed into the local coordinates eloc to calculate the control inputs.

1If no superscript is stated, the variable is expressed in the global world frame.
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Table 3.1: Different cases for collision avoidance.

case xlocd ylocd θlocd

1 : PSDL < dColl
PSDL
dColl

dx,L −(dColl − PSDR)KPSD,L atan2(ylocd , xlocd )

2 : PSDF < dColl (PSDF − dTol)KPSD,F ±dy,front atan2(ylocd , xlocd )

3 : PSDR < dColl
PSDR
dColl

dx,R (dColl − PSDR)KPSD,R atan2(ylocd , xlocd )

However, all of these steps can be omitted, when any of the cases in table 3.1 holds true. In
such situation, eloc is directly replaced with the new desired local position xlocd,new, ylocd,new and
θlocd,new from table 3.1.
In case 1 or 3, the closer the obstacle is located to the side and PSDL/R → 0, the smaller
xlocd gets while increasing ylocd . Thus, the robot prioritizes turning over driving straight, based
on the proximity to the obstacle. ylocd is controlled by a proportional controller (P-controller)
with the proportional gain KPSD. The sign indicates the side to which the robot is turning
to. This controller allows the robot to follow the obstacle with the designated distance dColl.
If the robot is facing away from the obstacle, it is controlled to turn towards it and stay close
in order to drive along the obstacle. Otherwise, the robot would assume that it has passed
the obstacle and return to its original qd. This would result in a zig-zag like path along the
obstacle, if the desired configuration is located on the other side. This is avoided when the
P-controller is used.
xlocd for case 2 is also controlled by a P-controller. This implies that even if an obstacle is
detected at the front, the robot is slowly driving forwards until a tolerance threshold dTol is
reached. If the threshold is obtained, xlocd is zero and therefore the controlled linear velocity
v is also zero. Meanwhile, the robot is turning towards ylocd . To guarantee that the robot
does not hit the obstacle at the front, the robot drives backwards, if PSDF falls below the
threshold since xlocd < 0. The constant dy,front for ylocd turns the robot in the direction which
is not obstructed by an obstacle. Checking whether PSDL ≥ PSDR holds, yields the sign of
ylocd and the robot turns to the corresponding side.
For all cases, θlocd is determined by the 2-argument arctangent to calculate the desired steering
angle correctly to steer towards qd,new. If PSD > dend, the end of the obstacle is detected
and the robot continues to drive straight for tend in order to ensure, that the obstacle is
passed and an imminent collision with a possible corner is avoided. Afterwards, the original
qd becomes valid again and the robot resumes to steer towards its desired configuration.
In contrast to the previous introduced RRT algorithm, this extension does not require any
knowledge of the location of an obstacle and only relies on the local information of the PSD
sensors. Hence this is a valuable expansion to the leader-follower tracking controller.

3.3.2 Simulation

This section evaluates the functionality of the leader-follower tracking controller with collision
avoidance. A robot is driving towards a goal, while two obstacles are avoided. The location
of these obstacles are not known to the robot.

24



3.3 Obstacle Avoidance

The world is setup with

q1(0) =

0
0
0

, qd,1 =

 2, 5
0

atan2(py,1, px,1)

,
q̃Obst,1 =

[(
0.8
−1

)(
1.2
0.5

)]
and q̃Obst,2 =

[(
1.5
−0.5

)(
2.5
−0.3

)]
.

(3.12)

These locations are chosen, such that the first obstacle is positioned at the front of the robot,
whereas the second obstacle is approached lateral. The parameters for the collision avoidance
extension are

dColl = 0.25, dTol = 0.1, KPSD,L/R = 1.5, KPSD,F = 0.3,
dx,L/R = 0.3, dy,front = 0.5, dend = 0.5 and tend = 2

(3.13)

The variables correspond to table 3.1. If the PSD sensor facing the obstacle exceeds dend,
the robot assumes to have passed the obstacle and drives straight for the duration of tend
before it resumes to drive towards the original qd. The parameter must lead to avoid the
obstacles for both the frontal and lateral case. The leader-follower tracking controller is used
as a point-to-point position controller, where all of the control parameters stay unchanged to
section 3.1.2. Both position noise and noise for the PSD sensors are considered.
The scenario is illustrated in fig. 3.5a, where the path of the robot and the position of the
detected obstacle is shown. Additionally, the pose of the robot for some selected time instances
are highlighted. There, the current PSD measurement with the corresponding position of
qd,new is depicted as well. The tip of the robot marks its front. As seen in the Figure, the
robot is driving towards q̃goal until an obstacle is detected at the front at t = 2.2. At first,
the robot continues to drive forwards while turning. Since the robot continues to approach
the wall, it slows down and the turning becomes more dominant. As soon as the obstacle is
on the side of the robot, it is controlled to follow the wall while staying close to the obstacle.
The effect of the P-controller for ylocd can be seen at t = 10.0 and t = 15.5, where the desired
location is placed based on the proximity to the obstacle. At t = 21.9 the edge of the obstacle
is detected and the robot continues to drive straight for tend, only to encounter the next
side of the obstacle shortly after. This new side is followed until t = 33.0. After tend the
robot resumes to drive towards q̃goal. At t = 37.1 the second obstacle is detected, which is
approached lateral by the robot. Again, an avoidance maneuver is performed to drive around
the obstacle. Eventually the goal configuration is reached at t = 55.3 without any obstacle
being hit. This conclusion is confirmed by fig. 3.5b, where the measurements of the PSD
sensors are illustrated. None of the values indicate a collision and the tolerance threshold
dTol is never undercut. The effect of controlling PSDL to dColl for case 1 and thereby the
robot following the wall can be perceived as well for the interval of t = [5, 20]s and to some
extent during t = [37, 45]s.
This simulation leads to the conclusion, that this extension prevents the robot to hit any
obstacle. Not only a collision is avoided, but the robot is also navigating around the obstacle
by following the wall, until an edge is detected. Afterwards, the robot resumes to drive
towards its original goal configuration, although it is possible to directly avoid a new wall, if
the target is still located at the direction of the obstacle.
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(b) Measurements of the PSD sensors, while obstacles are avoided.

Figure 3.5: Results of the leader-follower tracking controller with collision avoidance extension.
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3.4 Combined Implementation

This section combines all of the previously introduced control schemes in order to navigate
two robots through an extended world setup. On the one hand, the lead robot uses the
leader-follower tracking controller to drive along the optimal path created by the dynamic
RRT-Star algorithm. On the other hand, the follower uses the same controller to track its
leader. Both known and unknown obstacles will be avoided while the robots are approaching
their goal position.
There are four obstacles in the extended world setup, where three of them are known to the
robots. The path of the leader is generated by a dynamic RRT-Star algorithm, while the
known obstacles are incorporated. The world is designed such that at some point the robots
will encounter the unknown fourth obstacle, which will be avoided with the local PSD sensors.
The parameters of the RRT and the controller for this scenario are

q1,start =

0.8
0.6
0

, q̃1,goal =
(

2.6
5.4

)
, q2,start =

0.3
0.6
0

, dd,x,2 = 0, dd,y,2 = −0.4,

dColl = 0.25, dSafety = 0.8

(3.14)

and the world is created with

q̃knownObst,1 =
[(

1
3

)(
1.6
5

)]
, q̃knownObst,2 =

[(
2.6
2.2

)(
4.2
2.6

)]
,

q̃knownObst,3 =
[(

5
0

)(
6

0.4

)]
, q̃unknownObst,4 =

[(
3.5
3.8

)(
4

6.5

)]
.

(3.15)

To result in a reasonable trajectory for the follower with the collision avoidance controller, the
robot must be controlled to keep an appropriate distance to the leader. No collision should
be detected while the robot is following adequately and therefore the displacements must be
chosen such that |dd,2| > dColl holds. During the RRT algorithm, the minimal safety distance
dSafety of a node to an obstacle, which defines the node as valid, is increased. Thereby the
planning algorithm can consider not only the leader, but also incorporate that the desired
optimal path of the second robot is not obstructed by an obstacle. Hence, the value is
increased to validate |dd,2| + dColl < dSafety. In order to avoid following across an obstacle,
the desired location within the optimal path, instead of the current position of the leader,
is transmitted to the follower via the radio. Meanwhile, the follower robot i has to set vi−1
and ωi−1 locally to zero during the avoidance maneuver, so the computed inputs do not get
corrupted. Additionally, θd has to be changed to the 2-argument arctangent, while resuming
to the original trajectory, after the robot has evaded an obstacle. Unless mentioned previously,
all other parameters for the controller, the RRT algorithm or the collision avoidance extension
are unchanged.
The setup of the extended world, the optimal path by the dynamic RRT, and the traveled
path of both robots are visualized in fig. 3.6. The optimal time predicted by the RRT is
topt = 71s. Figure 3.7 shows the results of the simulation, where the coordinates, desired
coordinates and the PSD sensors for the leader and the follower are depicted. For the first
60s, the robots are navigating through the world, as intended by the RRT. The robot follows
the leader with the desired offset, without the need to avoid either an obstacle or the leader.
Based on the orientation, either the left, front or right PSD sensor detects the position of the
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(a) Optimal path by dynamic RRT-Star algorithm. (b) Optimal path by dynamic RRT-Star algorithm.

Figure 3.6: Spatial representation of the extended world simulation.

leader. If the sensors are aligned suitably, they indicate the desired displacement to the leader
dd = 0.4. At t = 65s, the unknown obstacle is encountered. As the leader detects the position
of its follower on the left side, the condition PSDL,1 < PSDR,1 holds true. Therefore, the
leader is turning to the right side of the obstacle. The follower experiences the reverse case
and hence drives around the left side of the obstacle. The desired coordinates qd are changing
continuously2 based on the proximity to the obstacle, while the robots are driving around
the obstacle. After 90s, both robots have passed the obstacle and continue to drive towards
their goal position, which is reached after 95s.
Overall, the robots are navigating through the extended world and reach their target position
without an obstacle being hit. As the fourth, unknown obstacle is blocking the optimal path,
the robot has not reached its target within the predicted time. However, with the collision
avoidance extension, the robots are able to navigate around the obstacle and eventually reach
the target position.

2The discontinuous course of the steering angle θ is explained by its restriction to [−π, π].
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(b) PSD readings of the leader robot 1 and follower robot 2 in the complex world.

Figure 3.7: Sensor readings during the simulation of the extended world.
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Chapter 4

Experimental Results and Discussion

This chapter will discuss the implementation of the previous algorithms. First, the robots used
for the experiments are presented and some remarks of their functionality are highlighted.
Secondly, the previously simulated scenarios are repeated with real experiments. During the
analysis, problems and improvements are highlighted. In the end, the robots are used to
navigate through an extended world without any collisions

4.1 EyeBot Robots

The EyeBot robots are developed as part of the EyeBot project, introduced in section 2.1.2.
The operating system of an EyeBot robot is run by a Raspberry Pi 3, while an Arduino
microcontroller is processing the low level functions, sensors and motors. Being a differ-
entially driven robot, the velocity of every wheel is set independently, however with the
transformation of eq. (2.1) it is also possible to directly set the linear and angular velocity of
the robot. An internal PID controller is controlling the effective velocity to the desired one.
The displacements of both wheels are measured by encoders to calculate the position for each
cycle of the IO board. The position and velocity of the robot are calculated by incrementing
these displacements regarding their geometric relation. The cycle time of a robot corresponds
to the time that is required to execute all functions that are looped, like reading the sensors,
calculating the control inputs and sending a message.
Every EyeBot robot is equipped with three PSD sensors to detect the distance towards an
object. They are located at the front, left and right side of the robot. In order to reduce
the effect of the measurement noise, their effective value is created by a mid-value selection
of the raw readings. Therefore it is required to save the last two raw sensor readings. For
every time instance, the two saved measurements and the current sensor reading are sorted
by size. The middle value of every pair of three becomes the current effective PSD reading.
As the last two raw values are stored, this method results in an averaged signal for every time
instance, without delaying the reading of the sensor.
By connecting the EyeBot robots to the same Wifi, they can communicate with each other.
The IP address of a robot is used to uniquely identify every vehicle and therefore it is possible
to exchange messages with information between robots. The continuous communication
between robots can overfill the communication buffer, if the robot, which continuously sends
a message, has a faster cycle time than the other. To avoid this, the sending robot always
waits until the receiver is signalizing when it is ready to receive a new message. Since the
messages are read on a first-in-first-out basis, receiving a delayed message is prevented, and
every message corresponds to the real-time response and is not delayed.
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Figure 4.1: Realization of the EyeBot robot.

4.2 Leader-Follower Tracking controller

In order to evaluate the functionality of the leader-follower tracking controller with the EyeBot
robots, the scenario of section 3.1.2 is replicated, where a lead robot is repeatedly changing
from driving straight to driving a curve. This leader is tracked by a follower with the control
parameters

dx,2 = −0.5, dy,2 = 0 and ca = 0.5, cb = 0.5, cc = 1. (4.1)

The control parameters are chosen such that cc >> cb holds. This leads to the effect, that the
controller emphasizes the stabilization of y over a correct steering angle θ. If the continuous
tracking of the x− and y−coordinate is correct, then, without loss of generality, the steering
angle of the robot is also correct. Therefore the controller achieves enhanced performance in
this case.
The result of this experiment with the EyeBots is visualized in fig. 4.2. It can be seen, that the
follower attains the desired configuration and follows the leader with the chosen offset. Just
like in simulation, the controller’s good performance is indicated by the error coordinates
p2. Analyzing fig. 4.2a leads to the conclusion that the messages received by the follower
correspond to the up-to-date position of the leader, as the time delay between yd,2 and y1 is
neglectable small. The nature of receiving the desired values discretely is related to the fact
that processing the physical signals from the Raspberry to the IO Board back and forth, like
reading the sensors and setting the motors, takes most of the time for every cycle. If the
leader trajectory does not suffice the system dynamics of a unicycle, it is important to use
the two argument arctangent to calculate θd = atan2(py,i−1, px,i−1). Otherwise, further path
planning to reach a position with a desired orientation, e.g. with Hermite splines [31], can be
implemented in future research.
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Figure 4.2: Results of the leader-follower tracking controller with two EyeBoot robots.
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4.3 Path Planning

Like in the previous section, the scenario of the simulation of the dynamic RRT-Star is re-
peated with the same parameters. The EyeBot robot solves locally the RRT-Star algorithm
for the optimal path, which is then used to be followed with the leader-follower tracking
controller. The resulting trajectory of the EyeBot robot is visualized in fig. 4.3. As expected,
the optimal path and therefore the trajectory of the desired coordinates qd is similar to the
simulation, as no parameters were changed. The total traveled path of the robot indicates
the successful tracking behavior. The path verifies that there was no collision, as this would
result in a stop of the robot. Thus, the objective of the dynamic RRT-star algorithm is
accomplished.
The current implementation only considers the system dynamics of a unicycle robot. There-
fore, the inputs of the linear velocity v and angular velocity ω are not restricted to be con-
tinuous. This means that, the input signals can jump, when different motion primitives are
used. This can be a problem in particular for the correct θ, if ω needs to ramp up or down
to reach the desired value, due to physical restrictions. However, as the path consists not
only of v and ω but also of the position of the nodes, this effect only influences the high-end
precision of the robot. This effect can also be seen, if the results of tracking the real robot
in section 4.2 and following the dynamic RRT are compared. If the leader is a real robot,
then the transmitted inputs correspond to the actual values, instead of the theoretical ones,
and therefore the follower achieves enhanced performance in this case. Although reason-
able results are achieved with the current implementation of the dynamic RRT, the high-end
accuracy can be improved in future research by addressing these issues.
The main drawback of the dynamic RRT-Star is currently the limited number of motion prim-
itives and therefore the coarse discretization of the nodes. As already discussed during the
design, it is easily verifiable that the optimal path is only optimal with respect to the allowed
primitives and the chosen time values. A path which favors transversal movements will lead
to an overall shorter total distance. If a primitive allows to steer towards a ±45◦ angle, this
option allows the optimal path to converge to the true optimum remarkably. Besides, addi-
tional trajectory optimization, like increasing the speed while driving along multiple straight
segments, can be considered in the future.
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Figure 4.3: Spatial path of the EyeBot following the optimal path of the dynamic RRT-Star algorithm.
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4.4 Collision Avoidance

This section presents the performance of an EyeBot robot avoiding collisions with the PSD
sensors, while the leader-follower tracking controller is used as a point-to-point position con-
troller.
The EyeBot robot is using the collision parameters

dColl = 0.3, dTol = 0.1, KPSD,L/R = 1.5, KPSD,F = 0.75,
dx,L/R = 0.4, dy,front = 0.8, dend = 0.5 and tend = 2.

(4.2)

Every other parameter is similar to the previous values. Primarily, it can be noticed during
the analysis of the results in fig. 4.4, that the robot reaches the target, without hitting an
obstacle. Although the PSD readings are significantly impacted by noise, the path of the
EyeBot is reasonably accurate. The PSD sensors are capable of measuring the distance of an
object within 0.8m, but due to noise, these values are not very reliable. However, most of the
readings below 0.4m correspond to a reasonably correct distance towards an object. Therefore
dColl should be chosen below this threshold. The effect of the noise can specifically seen at
PSDR, as there is no obstacle on the right-hand side over the course of the experiment.
The value tend is of major importance, which determines how long the robot resumes driving
straight, after the edge of the obstacle has been passed. If the goal is still located behind the
obstacle, the robot must not hit the new side of the obstacle, while turning towards q̃goal. In
rare cases, detecting the end of an obstacle with PSDx > dend is a concern. As the robot is
following the obstacle and therefore controlled to stay at PSDL/R = dColl, the robot turns
towards the side of the obstacle, if PSDL/R > dColl holds. Consequently, the robot might
be turning towards the new side of the obstacle and miss the detection of the edge. This
leads to another drawback of this approach, as the robot is always following the wall until an
edge has been detected. The robot does not resume to drive towards the target, even if the
obstacle is located to the other side. Aside from that, the collision avoidance extension can
be upgraded, if additional sensors are attached to the EyeBots. Specifically mounting sensors
at the front left and front right position of the robot will help to identify the direction of an
obstacle, which is approached laterally. Thus, objects at ±45◦ in addition to the current 0◦
and ±90◦ can be measured.
Although the sensor readings are very noisy, this extension allows the EyeBots to prevent an
imminent collision, follow an obstacle until an edge is detected and eventually continue to
drive towards the target configuration. Therefore, the collision avoidance extension can also
be used with the real EyeBot robots.
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Figure 4.4: Results of the EyeBot robots using the collision avoidance extension.
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4.5 Combined Implementation

As all of the previous control schemes are successfully applied to the EyeBot robots, this
section investigates their combination in order to navigate through the extended world of
section 3.4. Like in the simulation, the location of the obstacles q̃Obst,1−3 are known to the
robots and the fourth obstacle q̃Obst,4 is unknown. Robot 2 is controlled to follow the lead
robot 1 with an offset in y−coordinates. The path of the leader is generated with the dynamic
RRT-Star algorithm, such that both the leader and the follower do not come close to a known
obstacle. The required adaptation for the parameters was already discussed in section 3.4 and
as the previous, individual control schemes are already experimentally evaluated, no control
parameter has to be changed.
A visualization of the results can be seen in fig. 4.5 and fig. 4.6. Figure 4.5 shows the total
traveled path of both robots, with their desired position and PSD readings. For the sake
of clarity, it is abstained to display any PSD reading above the threshold dColl = 0.25, and
qd after the unknown obstacle is detected at t = 65s. The figure illustrates, that the goal
configuration is reached by the leader and the follower. The state variables q in fig. 4.6a
indicate, that the leader is driving successfully along the optimal path, generated by the dy-
namic RRT-Star, for the first 65s. The follower is tracking its leader with the desired offset
in y−coordinates. After the unknown obstacle has been encountered by both robots, the
collision avoidance extension is changing the desired configuration for the controller. After
the obstacle is passed, the leader reaches its target at t = 83s and the follower eventually at
at t = 95s. In contrast to the simulation, the PSD sensors do not give as much insight into
the course of the robots. However, most importantly fig. 4.6b confirms, that no robot collides
with any obstacle throughout the course of the experiment. Secondly, the figure indicates
that, due to the path planning, no obstacle is detected until t = 65s.
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Figure 4.6: Sensor readings of the EyeBot robots during the simulation of the extended world.
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If the purpose of the robots is to explore an environment with little to no knowledge of the
location, an algorithm, which guarantees to reach the target without getting stuck in a local
dead end, should be used. An analysis of navigation algorithms in unknown environments was
conducted in [32] and for example a distbug algorithm [33] can be employed. The dynamic
RRT-Star algorithm is only solved during initialization and is not suitable to find an optimal
path during operation. In contrast, a Model Predictive Control approach [34] solves an op-
timization problem online during operation of the robot. This possibility allows to enhance
the performance of the EyeBot robots and can be considered in future studies.
If the simulation results of all the different scenarios from chapter 3 are compared to their
corresponding experiments, it is noticeable, that the simulation hardly differs from the exper-
imental evaluation. Thus, the software EyeSim is very advantageous for the development of
differentially driven robots. As the PSD sensors and measurement noise are already considered
in simulation, a realistic representation of the EyeBot robots facilitates the implementation
on the real robots.
Overall, a combination of control schemes is found to navigate multiple EyeBot robots through
an extended world setup. As all of the experiments are conducted with the same control pa-
rameters, the robots can navigate through any arbitrary world setup by simply adjusting the
initial setup and desired configuration. If the position of the obstacles is known to the robots,
they reach their target along a time optimal trajectory, without encountering any obstacle.
However, if the knowledge is only partially valid, the robots are still avoiding the obstacle
and continue to drive towards the goal configuration, after the obstacle has been passed.
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Chapter 5

Summary

In this thesis, a combination of control schemes is found to navigate EyeBot robots to a goal
position, while obstacles are avoided.
This is achieved by a leader-follower tracking controller, which operates a follower to track
its leader with a desired position displacement. The leader is using the same control scheme
to drive along a trajectory, which is generated with an optimal path planning algorithm, the
dynamic RRT-Star. This path is time optimal and during the design it is considered, that
not only the leader itself, but also the follower keep a safe distance to any known obstacle.
However, this method requires knowledge of the location of the obstacles. As this information
is not always available, a variation of the leader-follower tracking controller was proposed, in
order to detect and avoid any additional, unknown obstacles. Using the on-board PSD sensors,
the desired position of the controller is adapted to prevent an imminent collision and also to
drive along the side of an obstacle, until an edge is detected. After the obstacle is passed,
the robot continues to drive towards the original goal. It was shown that the combination
of those control schemes allows the EyeBot robots to navigate through an extended world
without any collisions.
All of the control schemes were first implemented and evaluated in simulation, while noise
for the position coordinates and the PSD sensors were considered. Eventually, all scenarios
were successfully transferred to the EyeBot robots and executed in real experiments. Since a
realistic representation of the EyeBot robots was used, the simulation results were similar to
the experiment results.
Overall, the proposed combination allows the EyeBot robots to navigate through any arbitrary
world setup, with full or partial knowledge of the environment.
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