Lab Assignment 2 – CPU Design

EQUIPMENT: PC/Mac with ReTrO simulation system

EXPERIMENT 1 (8 points)
Build a working CPU with 16-bit data bus (8-bit op-codes, and 8-bit operands / 8-bit addresses). Use a 16-bit wide RAM module. Implement the following ALU/CU functions:

- \(0 \) * NOP no operation
- \(1 \) v LOADC load constant into accum. \(acc := v \)
- \(2 \) a LOADM load memory value into accum. \(acc := mem[a] \)
- \(3 \) v ADDC add constant to accumulator \(acc := acc + v \)
- \(4 \) a ADDM add memory value to accumulator \(acc := acc + mem[a] \)
- \(5 \) a STORE store accumulator to memory (high byte 0) \(mem[a] := acc \)
- \(6 \) a BZ branch cond. if acc = 0 to address a if acc=0 then \(pc := a \)
- \(7 \) a BRA branch unconditionally to address a \(pc := a \)

EXPERIMENT 2 (2 points)
Write a program to calculate \(1 + 2 + 3 \ldots + m \), for a given value \(m \) with \(m \geq 1 \).

Data locations: value \(m \) in location \(\$A0 \)
result in location \(\$A1 \)

Algorithm:

\[result = \sum_{i=1}^{m} i \]

clear result

loop:
 add mem[m] to result
 decrement mem[m]
 if (m \(\neq \) 0) branch to loop

done: branch to done /* finished: endless loop */