

Publication# 18929 Rev. B Amendment /0

Issue Date: November 19953-34

How to Design with Am29Fxxx
Embedded Algorithm

Application Note
by Kumar Prabhat

Advanced
Micro

Devices

This design note provides a general overview of the Embedded Algorithm and write operation status
bits (DQ7–DQ3) that are incorporated in AMD’s Flash memory devices and discusses any system
level implementation issues associated with them. The Am29F010, a 5.0 Volt-only 1 Mbit Flash
device is used as an example. It is highly recommended that this design note be used with the
Am29F010 data sheet. Please note that the details on write operation status bits (DQ7–DQ5)
provided in this design note may also be used with the Am28F256A, Am29F512A, Am28F010A and
Am28F020A flash devices.

EMBEDDED PROGRAMMING OPERATION

Overview
The Am29F010 device is programmed on a byte per
byte basis using a four bus cycle command sequence.
Addresses are latched on the falling edge of WE or CE,
whichever happens later. Data is latched on the rising
edge of WE or CE, whichever happens first. The rising
edge of WE (or CE) begins the programming operation.
The Am29F010 device supports both WE or CE

controlled write operations. Upon executing the Embed-
ded Programming command sequence, the system is
not required to provide further controls or timings. The
device will automatically provide internally generated
program pulses and verify the programmed cell margin.
An Embedded Programming operation is completed
when the data on DQ7 is equivalent to the data written,
at which time the device returns to the read mode. The
flowchart for Embedded Programming is shown below.

Start

Programming Completed

Yes

Last Address
?

Write Program Command Sequence
(see below)

Data Poll Device

Increment Address

Yes

18929B-1

No

5555H/AAH

2AAAH/55H

5555H/A0H

Program Address/Program Data

Program Command Sequence (Address/Command):

Figure 1. Embedded Programming Flowchart

AMD

3-35How to Design with Am29Fxxx Embedded Algorithm

Implementation
Addresses are latched on the falling edge of WE during
the Embedded Program command execution. Hence
the system is not required to keep the address stable
during the entire Programming operation. However,
once the device completes the Embedded Program-
ming operation, it returns to the read mode and address
is no longer latched. Therefore, the device requires that
valid address to the device be supplied by the system at
this particular instant of time. Otherwise, the system will
never read valid data on DQ7.

A system designer has two design alternatives to imple-
ment the Embedded Programming Algorithm:

■ The system may initiate the Data Polling operation
immediately after the the Embedded Programming
command sequence is written.

■ Once the system executes the Embedded Program-
ming command sequence, the system microproces-
sor may take away the address from the device and
thus is free to perform other tasks. In this case, the
system microprocessor is required to keep track of
the valid address which can be done by loading the
address into a temporary register or any memory lo-
cation. When the system microprocessor comes
back to perform the Data Polling operation, it should
reassert the same address.

However, since the Embedded Programming operation
takes only 14–28 µs, it may be easier for the system mi-
croprocessor to start the Data Polling operation imme-
diately after it has written an Embedded Programming
Command instead of coming back and reasserting the
valid address during the Data Polling operation. The op-
tion of either method is left to the system designer’s
choice. Figure 2 illustrates the timing diagram for the
Embedded Programming operation.

DOUTPD

tAH tRC

Data Polling

tDF

tOH

tCE

tOE

tDS

tCS
tWPH

tDH

tWP

tGHWL

Addresses

CE

OE

WE

Data

5.0 V

Notes:
1. PA is address of the memory location to be programmed.

2. PD is data to be programmed at byte address.

3. DQ7 is the output of the complement of the data written to the device.

4. DOUT is the output of the data written to the device.

5. Figure indicates last two bus cycles of four bus cycle sequence.

tWC tAS

DQ7

5555H PA

A0H

tWHWH1

PA

18929B-2

Figure 2. Embedded Programming Operation

AMD

3-36 How to Design with Am29Fxxx Embedded Algorithm

EMBEDDED ERASE

Overview
When executing the Embedded Erase Algorithm com-
mand sequence the device automatically will prepro-
gram and verify the entire memory array for an all ‘zero’
data pattern prior to electrical erase. The system is not

required to provide any controls or timings during this
operation. The automatic erase begins on the rising
edge of the last WE pulse in the command sequence
and terminates when the data on DQ7 is ‘1’. The
flowchart for the Embedded Erase operation is
shown below.

Start

Erasure Completed

Write Erase Command Sequence
(see below)

Data Polling or Toggle Bit
Successfully Completed

Yes

18929B-3

5555H/AAH

2AAAH/55H

5555H/80H

Chip Erase Command Sequence
 (Address/Command):

5555H/AAH

2AAAH/55H

5555H/10H

5555H/AAH

2AAAH/55H

5555H/80H

Individual Sector/Multiple Sector
Erase Command Sequence

 (Address/Command):

5555H/AAH

Sector Address/30H

Sector Address/30H

Sector Address/30H

2AAAH/55H

Additional sector
erase commands
are optional

Figure 3. Embedded Erase Flowchart

AMD

3-37How to Design with Am29Fxxx Embedded Algorithm

Implementation
Similar to the Embedded Programming operation, once
the device completes the Embedded Erase operation it
returns to the read mode and addresses are no longer
latched. Therefore, the device requires that a valid ad-
dress input (sector address within any of the sectors be-
ing erased) to the device be supplied by the system at
this particular instant of time. Otherwise, the system will
never read a “1” on the DQ7 bit.

 A system designer has two design alternatives to imple-
ment the Embedded Erase Algorithm:

■ The system may initiate the Data Polling operation
immediately after the Embedded Erase command
sequence is written

■ Once the system executes the Embedded Erase
command sequence, the system microprocessor
takes away the address from the device and thus is
free to perform other tasks. In this case, the system
microprocessor is required to keep track of one of the
valid sector addresses (sectors being erased) and
when it comes back for performing the Data Polling
operation, it should reassert the same address.

Since the Embedded Erase operation takes a significant
amount of time (typically 1 second), the second method
would provide better system performance by freeing up
the CPU for other system level tasks. The system can
generate an interrupt on a regular interval to initiate the
Data Polling operation to determine the status of the
Embedded Erase operation. However, the choice of
either option has been left to the system designer.

For the chip erase operation, if the device does not in-
clude any protected sectors, Data Polling may be per-
formed at any address. When sectors are protected,
Data Polling should be performed at any of the sector
addresses which represent an unprotected sector.

WRITE OPERATION STATUS BITS
This section describes the operation of the Am29F010
write operation status bits (DQ3–DQ7). This section
also describes the timing diagrams for the Data Polling
(DQ7) and Toggle Bit (DQ6) operation.

AMD

3-38 How to Design with Am29Fxxx Embedded Algorithm

DQ7–Data Polling
The Am29F010 device features the Data Polling opera-
tion as a method to indicate to the host system whether
the Embedded Algorithms are in progress or completed.
During the Embedded Program Algorithm, any attempt
to read the device at address VA (Valid Address) will
produce the compliment of the data last written to DQ7.
Upon completion of the Embedded Program Algorithm,

an attempt to read the device will produce the true data
last written to DQ7. During the Embedded Erase Algo-
rithm, an attempt to read the device will produce a “0” at
the DQ7 output. Upon completion of the Embedded
Erase Algorithm, an attempt to read the device will pro-
duce a “1” at the DQ7 output. The flowchart for the Data
Polling operation (DQ7) is shown below.

18929B-4

Start

Fail

No

DQ7=Data
?

No Pass

Yes

No

Yes

Note:
1. DQ7 is rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5.

DQ7=Data
?

DQ5=1
?

Yes

Read Byte
(DQ0–DQ7)

Addr=VA

Read Byte
(DQ0–DQ7)

Addr=VA

VA = Byte address for programming
= Any of the sector addresses within the
 sector being erased during sector erase
 operation
= XXXXH during chip erase

Figure 4. DQ7— Data Polling Flowchart

AMD

3-39How to Design with Am29Fxxx Embedded Algorithm

Once the Embedded Algorithm operation is close to
being completed, the Am29F010 data pins (DQ0–DQ7)
may change asynchronously while the output enable
(OE) is asserted low. This means that the device is driv-
ing status information on DQ7 at one instant of time and
then changing to the byte’s valid data at the next instant
of time. Depending on when the system samples the
DQ7 output, it may read the status or the valid data.
Even if the device has completed the Embedded

operation and DQ7 has a valid data, the data outputs on
DQ0–DQ6 may still be invalid since the switching time
for the individual data bits (DQ0–DQ7) may not be the
same. This is due to the fact that the internal delay paths
for the individual data bits (DQ0–DQ7) are different. The
valid data will be provided only after a certain time delay
(<tOE). This has been explained in the timing diagram
shown below.

DQ0–DQ7
Valid Data

tCH

tOEH

tOE

tCE

tWHWH 1 or 2

DQ7=
Valid Data

High Z

CE

OE

WE

DQ7

tOH

tDF

DQ7

tOE

DQ0–DQ6 DQ0–DQ6=Invalid

*DQ7=Valid Data (The device has completed the Embedded operation).

*

18929B-5

Figure 5. DQ7— Data Polling Timing Diagram

AMD

3-40 How to Design with Am29Fxxx Embedded Algorithm

DQ6—Toggle Bit
The device also features a “Toggle Bit” operation as an-
other method that indicates the status of the Embedded
Algorithm operations to the host system. During an Em-
bedded Algorithm Program or Erase cycle, successive
attempts to read (toggling OE or CE) data from the

device will result in DQ6 toggling between one and zero.
Once the Embedded Algorithm Program or Erase cycle
is completed, DQ6 will stop toggling and valid data on
DQ0–DQ7 will be read on the next successive read at-
tempt (OE going low). The flowchart for the Toggle Bit
operation (DQ6) is shown below.

Start

Fail

No

DQ6=
Toggle

?

No

Pass

Yes

No

Yes

Note:
1. DQ6 is rechecked even if DQ5 = “1” because DQ6 may stop toggling at the same time as DQ5 changing to “1”.

DQ6=Toggle
?

DQ5=1
?

Yes

Read Byte
(DQ0–DQ7)

Addr=VA

Read Byte
(DQ0–DQ7)

Addr=VA

VA = Byte address for programming
= any of the sector addresses within the
 sector being erased during sector erase
 operation
= XXXXH during chip erase

18929B-6

Figure 6. DQ6—Toggle Bit Flowchart

AMD

3-41How to Design with Am29Fxxx Embedded Algorithm

Please note that even if the device completes the Em-
bedded Algorithm operation and DQ6 stops toggling,
data bits DQ0–DQ7 may not be valid during the current
bus cycle. This happens since the internal circuitry may
be switching from a status mode to the read mode.

Since this time delay is always less than tOE (OE ac-
cess time), the next successive read attempt (OE going
low) will provide the valid data on DQ0–DQ7. This has
been explained in the timing diagram shown below.

CE

tOH

tOEH

WE

OE

tOE

Note:

*DQ6 stops toggling (The device has completed the Embedded operation).

DQ6=
Stop Toggling

DQ0–DQ7
ValidDQ6=ToggleDQ6=ToggleData

(DQ0–DQ7)

18929B-7

*

Figure 7. DQ6—Toggle Bit Timing Diagram

The Am29F010 provides the Data Polling (DQ7) and
Toggle Bit (DQ6) operations as two alternatives to de-
termine the write operation status. However, a system
designer is free to perform the complete byte verification
instead of implementing either of these two methods.

DQ5—EXCEEDED TIMING LIMITS
The Am29F010 will also be able to indicate through DQ5
if the program or erase time has exceeded the specified
limits (internal pulse count) . Under these conditions
DQ5 will produce a “1”. This is a failure condition which
indicates that either the program or erase cycle was not
successfully completed.

■ If this failure condition occurs during sector erase
operation, it specifies that a particular sector is bad
and it may not be reused; however, other sectors are
still functional and may be used for the program or
erase operation. To use other sectors, reset the
device by writing the Reset command sequence and
then executing the program or erase command
sequence. This allows the system to continue to use
other active sectors in the device.

■ If this failure condition occurs during the chip erase
operation, it indicates one of the following:

— The entire chip is bad and should not be reused

— One or more sectors are bad. The system should
be able to determine bad sectors by reading the
DQ5 bit for individual sectors.

■ If this failure condition occurs during the Byte Pro-
gramming operation, it specifies that the entire sec-
tor containing that byte is bad and may not be
reused.

The DQ5 failure condition may also appear if a user tries
to program a non-blank location without first erasing it.
In this case, the device locks out and never completes
the Embedded Algorithm operation. Hence the system
never reads a valid data on DQ7 bit and DQ6 never
stops toggling. Once the device exceeds timing limits
(internal pulse counts), the DQ5 bit will indicate a “1”.
Please note that this is not a device failure condition
since the device was incorrectly used. Under this illegal
condition, the system is required to reset the device by
writing the Reset command sequence before the device
can be used again.

AMD

3-42 How to Design with Am29Fxxx Embedded Algorithm

DQ3—SECTOR ERASE COMMAND
TIME-OUT FLAG

Overview
Sector erase is a six bus cycle operation similar to that
used by standard EEPROMs. There are two unlock
write cycles followed by writing the “set-up” command.
Two more unlock write cycles are then followed by writ-
ing the sector erase command. On this sixth bus cycle,
the sector address is latched on the falling edge of WE
while the sector erase command (30h) is latched on the
rising edge of WE. Multiple sectors may be erased by
writing the above six bus cycle operations followed by
subsequent writes of sector erase commands to all
other addresses in the sectors that need to be erased
concurrently. The following is an example:

7th Bus Cycle 8th Bus Cycle 9th Bus Cycle

SA1/30H SA2/30H SA3/30H

After the completion of the initial sector erase command
sequence, the sector erase time-out of 100 µs will begin.
Every time the system writes an additional sector erase
command, the time-out window is reset. The device will
indicate this time-out through the DQ3 bit. If the DQ3 bit
is high, the internally controlled erase cycle has begun.
Any attempts to write additional commands to the de-
vice will be ignored until the erase operation is
completed as indicated by Data Polling or Toggle Bit. If
DQ3 is low, the sector erase timer window is still open
and the device will accept additional sector erase com-
mands provided that these additional sector erase com-
mands are written within the 100 µs time-out window.

Implementation
Once the first sector erase command sequence is writ-
ten and the sector erase time out has begun, the system
software should read the status of DQ3 (at any address)
prior to writing any sector erase command to determine
whether the 100 µs time-out window is still open. The
system software should also read the status of DQ3 fol-
lowing each sector erase command to verify that the
command has been accepted.

Chip Erase
The chip erase command should not be used on devices
that use sector erase commands. Likewise, sector
erase commands should not be used on devices that
use the chip erase command.

Sector Erase
If the multiple sector erase command is used, multiple
sectors should be erased in groups to ensure that a
group of sectors is exposed to the same number of pro-
gram/erase cycles. In addition, the chip erase command
should not be used on a device that uses sector erase or
multiple sector erase commands.

DQ2–DQ0
Reserved for future use.

