User Manual for Cube Clustering

I assume that the user is familiar with the use of the EyeBot and its tools. Therefore, I will only discuss those parts that are directly related to the clustering program. The manual is structured in two parts.

1. Running the program

2. Setting up a robot

3. How to use the simulator

1. Running the program

Running the program is quite straightforward. We assume that all preparations have been made: A number of red cubes have been distributed on a suitable walled plane. For obvious reasons, neither the plane nor the walls should be red. The height of the walls must be at least 6cm so that the PSD sensors can detect them. It is not recommended to place cubes too close to a wall. The robots have difficulties to collect cubes that are close to walls, they need space for navigation.

Then we download the program onto an EyeBot. Note that each EyeBot has its own version of the program, as each robot needs its own sensor settings/tables. Make sure that the correct version is downloaded. The user can now place the robot in the operational area and start the clustering by pressing the 'Go' button. Pressing the ‘End’ button terminates the program.

Please note that the robots need to be reset if the user wants to restart the program or run another program. The reason is that some hardware devices are currently not released at the end of the program, and multiple initializations result in errors.

2. Setting up a robot

The sensors of the robots need to be calibrated before they can be used. This includes the camera servo, the camera itself (cube color and distance tables), and the 3 infrared sensors.

Generally, for all robot-specific settings a pre-processor entry must be created. For example "#define EYEBOT8_CUBECLUSTERING_PARAMETERS 1", or "#define EYEBOT3_CUBECLUSTERING_PARAMETERS 1". These entries are in Version.h. Depending on the version that the user wants, he needs to activate (i.e. un-comment) the respective entry before compiling the program for a specific robot.

2.1 The camera servo

We have to make sure that the camera points straight. This can either be done by adjusting the hardware, or by changing the setting for the camera servo in the class Camera.

2.2.1 The cube color

The program setcolor (same version for all robots) can be used to get the hue of the cubes to be clustered. Download and start the program. Place a cube in front of the camera. With the first two buttons you can increase/decrease the hue values. Choose the hue value where the cube is most clearly visible. This value should be assigned to cubeColor in the constructor of the SIR class.

2.2.2 The distance tables

The robot estimates the distance of a cube by looking at the height of the cube in the image (i.e. the higher the cube appears in the image, the further it is away). Therefore, for each image row, the approximate distance of an object appearing in that row must be entered in a distance table. The best solution would be to have a separate table for each robot. However, often it is sufficient to use the already existing table and to adapt it with a single factor for each robot.

The program calibrate is included to test the cube distance estimation of the robots. The program runs the cube detection algorithm. It displays the row where the cube is detected, and shows the estimated distance from the robot in x and y coordinates. Both values are given in meter, the x coordinate measured from the tip of the electrical magnet, the y coordinate measured from the robot middle. If the real cube distance differs too much from the estimated distance, the table/corrective factor in the class SIR must be adapted for the tested robot. As the table is different for each robot, the test program is also different for each robot. Make sure that you download the correct one. After changes, the test program must be re-compiled with the new table/corrective factors. To do that you need to un-comment the marked areas in the class SIR (2 sections) and the section at the beginning of Explorer::activate that is deactivated by //.
2.3 The infrared sensors

The PSD sensors should be calibrated. However, the values do not need to be very exact as the PSD sensors are basically only used for obstacle avoidance. That is why in most cases the PSD sensors do not need to be calibrated in the HDT, which takes quite some time. Instead a single corrective factor for each PSD sensor (see PSD class) often gives sufficient results.

The front PSD sensor is used (a) for obstacle avoidance, and (b) to check if the robot still has the cube while in pushing mode. These two tasks require a fine-tuning of the obstacleFrontThreshold value in SIR. If the threshold is set too low, the obstacle avoidance is activated too late, and the robot tends to believe it has lost the cube. If the threshold is set too high, the robot sees obstacle everywhere. To find the correct value it is recommended to place the robot on the table and measure the PSD readings when no obstacles are in front of the robot. The obstacleFrontThreshold value should be slightly below the minimum reading. For example: if the PSD readings range from 114 to 116, obstacleFrontThreshold should be set to 110, 111 or 112.

3. How to use the simulator

I assume that the user is familiar with the use of EyeSim. Therefore, I will only discuss those parts that are directly related to the clustering program.

All robot-specific parameters have already been entered for the simulated robots. The user does not need to adapt/calibrate the software to/for the simulated robots anymore.

However, in the file Version.h the user needs to

(a) enter the maximum number of robots he wants in the simulation and

(b) un-comment the line "#define EYESIM_CUBECLUSTERING_PARAMETERS 1" and deactivated any line with "#define EYEBOTX_CUBECLUSTERING_PARAMETERS 1".

Note that you have to enter the number of desired robots + 1 in step (a). For example: you want to simulate up to 3 robots, then you must enter 4. And make sure that you are using the correct version of the source code, the source codes for real and simulated robots differ from each other.

Recompile the program, copy the created file into the simulation directory, and start the simulator!
