Using and Porting GNU CC

Richard M. Stallman

Last updated 29 June 1996

for version 2.7.2.1

Copyright (©) 1988, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.

For GCC Version 2.7.2

Published by the Free Software Foundation
59 Temple Place - Suite 330

Boston, MA 02111-1307, USA

Last printed November, 1995.

Printed copies are available for $50 each.
ISBN 1-882114-66-3

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “GNU General
Public License,” “Funding for Free Software,” and “Protect Your Freedom—Fight ‘Look
And Feel’” are included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the sections entitled
“GNU General Public License,” “Funding for Free Software,” and “Protect Your Freedom—
Fight ‘Look And Feel’””, and this permission notice, may be included in translations ap-
proved by the Free Software Foundation instead of in the original English.

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

2 Using and Porting GNU CC

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 3

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,

Using and Porting GNU CC

by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a

GNU GENERAL PUBLIC LICENSE 5

10.

11.

12.

version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK ASTO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

6 Using and Porting GNU CC

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.J

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit

GNU GENERAL PUBLIC LICENSE 7

linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Using and Porting GNU CC

Contributors to GNU CC 9

Contributors to GNU CC

In addition to Richard Stallman, several people have written parts of GNU CC.

The idea of using RTL and some of the optimization ideas came from the program PO
written at the University of Arizona by Jack Davidson and Christopher Fraser. See
“Register Allocation and Exhaustive Peephole Optimization”, Software Practice and
Experience 14 (9), Sept. 1984, 857-866.

Paul Rubin wrote most of the preprocessor.

Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of
the Vax machine description.

Ted Lemon wrote parts of the RTL reader and printer.
Jim Wilson implemented loop strength reduction and some other loop optimizations.

Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for
the Sony NEWS machine.

Charles LaBrec contributed the support for the Integrated Solutions 68020 system.

Michael Tiemann of Cygnus Support wrote the front end for C++, as well as the support
for inline functions and instruction scheduling. Also the descriptions of the National
Semiconductor 32000 series cpu, the SPARC cpu and part of the Motorola 88000 cpu.

Gerald Baumgartner added the signature extension to the C++ front-end.

Jan Stein of the Chalmers Computer Society provided support for Genix, as well as
part of the 32000 machine description.

Randy Smith finished the Sun FPA support.

Robert Brown implemented the support for Encore 32000 systems.
David Kashtan of SRI adapted GNU CC to VMS.

Alex Crain provided changes for the 3bl.

Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX for the 9000
series 300.

William Schelter did most of the work on the Intel 80386 support.
Christopher Smith did the port for Convex machines.
Paul Petersen wrote the machine description for the Alliant FX/8.

Dario Dariol contributed the four varieties of sample programs that print a copy of
their source.

Alain Lichnewsky ported GNU CC to the Mips cpu.

Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the Tahoe.
Jonathan Stone wrote the machine description for the Pyramid computer.

Gary Miller ported GNU CC to Charles River Data Systems machines.

Richard Kenner of the New York University Ultracomputer Research Laboratory wrote
the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and
the IBM RS/6000 as well as the support for instruction attributes. He also made
changes to better support RISC processors including changes to common subexpression

elimination, strength reduction, function calling sequence handling, and condition code
support, in addition to generalizing the code for frame pointer elimination.

Using and Porting GNU CC

Richard Kenner and Michael Tiemann jointly developed reorg.c, the delay slot sched-
uler.

Mike Meissner and Tom Wood of Data General finished the port to the Motorola 88000.

Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the
Tron architecture (specifically, the Gmicro).

NeXT, Inc. donated the front end that supports the Objective C language.

James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register
stack.

Mike Meissner at the Open Software Foundation finished the port to the MIPS cpu,
including adding ECOFF debug support, and worked on the Intel port for the Intel
80386 cpu.

Ron Guilmette implemented the protoize and unprotoize tools, the support for
Dwarf symbolic debugging information, and much of the support for System V Re-
lease 4. He has also worked heavily on the Intel 386 and 860 support.

Torbjorn Granlund implemented multiply- and divide-by-constant optimization, im-
proved long long support, and improved leaf function register allocation.

Mike Stump implemented the support for Elxsi 64 bit CPU.

John Wehle added the machine description for the Western Electric 32000 processor
used in several 3b series machines (no relation to the National Semiconductor 32000
processor).

Holger Teutsch provided the support for the Clipper cpu.
Kresten Krab Thorup wrote the run time support for the Objective C language.

Stephen Moshier contributed the floating point emulator that assists in cross-compilation]]
and permits support for floating point numbers wider than 64 bits.

David Edelsohn contributed the changes to RS/6000 port to make it support the Pow-
erPC and POWER2 architectures.

Steve Chamberlain wrote the support for the Hitachi SH processor.

Peter Schauer wrote the code to allow debugging to work on the Alpha.

Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.
Michael K. Gschwind contributed the port to the PDP-11.

Chapter 1: Funding Free Software

1 Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU C compiler contribute more; major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright (C) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

Using and Porting GNU CC

Chapter 2: Protect Your Freedom—Fight “Look And Feel”

2 Protect Your Freedom—Fight “Look And Feel”

This section is a political message from the League for Programming Freedom
to the users of GNU CC. We have included it here because the issue of interface
copyright is important to the GNU project.

Apple, Lotus, and now CDC have tried to create a new form of legal monopoly: a
copyright on a user interface.

An interface is a kind of language—a set of conventions for communication between
two entities, human or machine. Until a few years ago, the law seemed clear: interfaces
were outside the domain of copyright, so programmers could program freely and implement
whatever interface the users demanded. Imitating de-facto standard interfaces, sometimes
with improvements, was standard practice in the computer field. These improvements, if
accepted by the users, caught on and became the norm; in this way, much progress took
place.

Computer users, and most software developers, were happy with this state of affairs.
However, large companies such as Apple and Lotus would prefer a different system—one
in which they can own interfaces and thereby rid themselves of all serious competitors.
They hope that interface copyright will give them, in effect, monopolies on major classes of
software.

Other large companies such as IBM and Digital also favor interface monopolies, for the
same reason: if languages become property, they expect to own many de-facto standard
languages. But Apple and Lotus are the ones who have actually sued. Apple’s lawsuit was
defeated, for reasons only partly related to the general issue of interface copyright.

Lotus won lawsuits against two small companies, which were thus put out of business.
Then Lotus sued Borland; Lotus won in the trial court (no surprise, since it was the same
court that had ruled for Lotus twice before), but the court of appeals ruled in favor of
Borland, which was assisted by a friend-of-the-court brief from the League for Programming
Freedom.

Lotus appealed the case to the Supreme Court, which heard the case but was unable to
reach a decision. This failure means that the appeals court decision stands, in one portion
of the United States, and may influence the other appeals courts, but it does not set a
nationwide precedent. The battle is not over, and it is not limited to the United States.

The battle is extending into other areas of software as well. In 1995 a company that
produced a simulator for a CDC computer was shut down by a copyright lawsuit, in which
CDC charged that the simulator infringed the copyright on the manuals for the computer.

If the monopolists get their way, they will hobble the software field:

¢ Gratuitous incompatibilities will burden users. Imagine if each car manufacturer had
to design a different way to start, stop, and steer a car.

e Users will be “locked in” to whichever interface they learn; then they will be prisoners
of one supplier, who will charge a monopolistic price.

e Large companies have an unfair advantage wherever lawsuits become commonplace.
Since they can afford to sue, they can intimidate smaller developers with threats even
when they don’t really have a case.

Using and Porting GNU CC

¢ Interface improvements will come slower, since incremental evolution through creative
partial imitation will no longer occur.

If interface monopolies are accepted, other large companies are waiting to grab theirs:

e Adobe is expected to claim a monopoly on the interfaces of various popular application
programs, if Lotus ultimately wins the case against Borland.

¢ Open Computing magazine reported a Microsoft vice president as threatening to sue
people who imitate the interface of Windows.

Users invest a great deal of time and money in learning to use computer interfaces. Far
more, in fact, than software developers invest in developing and even implementing the
interfaces. Whoever can own an interface, has made its users into captives, and misappro-
priated their investment.

To protect our freedom from monopolies like these, a group of programmers and users
have formed a grass-roots political organization, the League for Programming Freedom.

The purpose of the League is to oppose monopolistic practices such as interface copyright
and software patents. The League calls for a return to the legal policies of the recent past,
in which programmers could program freely. The League is not concerned with free software
as an issue, and is not affiliated with the Free Software Foundation.

The League’s activities include publicizing the issues, as is being done here, and filing
friend-of-the-court briefs on behalf of defendants sued by monopolists.

The League’s membership rolls include Donald Knuth, the foremost authority on algo-
rithms, John McCarthy, inventor of Lisp, Marvin Minsky, founder of the MIT Artificial
Intelligence lab, Guy L. Steele, Jr., author of well-known books on Lisp and C, as well
as Richard Stallman, the developer of GNU CC. Please join and add your name to the
list. Membership dues in the League are $42 per year for programmers, managers and
professionals; $10.50 for students; $21 for others.

Activist members are especially important, but members who have no time to give are
also important. Surveys at major ACM conferences have indicated a vast majority of
attendees agree with the League on both issues (interface copyrights and software patents).
If just ten percent of the programmers who agree with the League join the League, we will
probably triumph.

To join, or for more information, phone (617) 243-4091 or write to:

League for Programming Freedom
1 Kendall Square #143

P.O. Box 9171

Cambridge, MA 02139

You can also send electronic mail to 1pf@uunet.uu.net.

In addition to joining the League, here are some suggestions from the League for other
things you can do to protect your freedom to write programs:

e Tell your friends and colleagues about this issue and how it threatens to ruin the
computer industry.

¢ Mention that you are a League member in your ‘. signature’, and mention the League’s
email address for inquiries.

Chapter 2: Protect Your Freedom—Fight “Look And Feel”

¢ Ask the companies you consider working for or working with to make statements against
software monopolies, and give preference to those that do.

¢ When employers ask you to sign contracts giving them copyright on your work, insist
on a clause saying they will not claim the copyright covers imitating the interface.

¢ When employers ask you to sign contracts giving them patent rights, insist on clauses
saying they can use these rights only defensively. Don’t rely on “company policy,” since
that can change at any time; don’t rely on an individual executive’s private word, since
that person may be replaced. Get a commitment just as binding as the commitment
they get from you.

¢ Write to Congress to explain the importance of these issues.

House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510

(These committees have received lots of mail already; let’s give them even more.)

Democracy means nothing if you don’t use it. Stand up and be counted!

Using and Porting GNU CC

Chapter 3: Compile C, C*tt+“tt4, or Objective C

3 Compile C, C++, or Objective C

The C, C++, and Objective C versions of the compiler are integrated; the GNU C compiler
can compile programs written in C, C++, or Objective C.

“GCC” is a common shorthand term for the GNU C compiler. This is both the most
general name for the compiler, and the name used when the emphasis is on compiling C
programs.

When referring to C++ compilation, it is usual to call the compiler “G++”. Since there is
only one compiler, it is also accurate to call it “GCC” no matter what the language context;
however, the term “G++” is more useful when the emphasis is on compiling C++ programs.

We use the name “GNU CC” to refer to the compilation system as a whole, and more
specifically to the language-independent part of the compiler. For example, we refer to
the optimization options as affecting the behavior of “GNU CC” or sometimes just “the
compiler”.

Front ends for other languages, such as Ada 9X, Fortran, Modula-3, and Pascal, are
under development. These front-ends, like that for C++, are built in subdirectories of GNU
CC and link to it. The result is an integrated compiler that can compile programs written
in C, C++, Objective C, or any of the languages for which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and C++ compilers
and those of the GNU CC core. Consult the documentation of the other front ends for the
options to use when compiling programs written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your
C++ program source. There is no intermediate C version of the program. (By contrast,
for example, some other implementations use a program that generates a C program from
your C++ source.) Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU debugger, GDB,
works with this information in the object code to give you comprehensive C++ source-level
editing capabilities (see section “C and C++” in Debugging with GDB).

Using and Porting GNU CC

Chapter 4: GNU CC Command Options

4 GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation, assembly and
linking. The “overall options” allow you to stop this process at an intermediate stage. For
example, the ‘-c’ option says not to run the linker. Then the output consists of object files
output by the assembler.

Other options are passed on to one stage of processing. Some options control the pre-
processor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are useful for C
programs; when an option is only useful with another language (usually C++), the explana-
tion says so explicitly. If the description for a particular option does not mention a source
language, you can use that option with all supported languages.

See Section 4.3 [Compiling C++ Programs], page 25, for a summary of special options
for compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have mul-
tiletter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very
different from ‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for example, ‘-fforce-mem’ Jj
‘~-fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both positive and negative
forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. This manual documents only one
of these two forms, whichever one is not the default.

4.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 4.2 [Options Controlling the Kind of Output], page 24.

-c -3 -E -o file -pipe -v -x language
C Language Options
See Section 4.4 [Options Controlling C Dialect], page 26.
-ansi -fallow-single-precision -fcond-mismatch -fno-asm
-fno-builtin -fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char -fwritable-strings
-traditional -traditional-cpp -trigraphs

C++ Language Options
See Section 4.5 [Options Controlling C++ Dialect], page 29.

-fall-virtual -fdollars-in-identifiers -felide-constructors
-fenum-int-equiv -fexternal-templates -ffor-scope -fno-for-scopel]

Using and Porting GNU CC

-fhandle-signatures -fmemoize-lookups -fno-default-inline -fno-gnu-keywords
-fnonnull-objects -foperator-names -fstrict-prototype
-fthis-is-variable -nostdinc++ -traditional +en

Warning Options

See Section 4.6 [Options to Request or Suppress Warnings], page 33.
-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return -Wbad-function-cast
-Wcast-align -Wcast-qual -Wchar-subscript -Wcomment
-Wconversion -Wenum-clash -Werror -Wformat
-Wid-clash-len -Wimplicit -Wimport -Winline
-Wlarger-than-len -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs
-Wno-import -Woverloaded-virtual -Wparentheses
-Wpointer-arith -Wredundant-decls -Wreorder -Wreturn-type -Wshadow]]
-Wstrict-prototypes -Wswitch -Wsynth -Wtemplate-debugging
-Wtraditional -Wtrigraphs -Wuninitialized -Wunused
-Wwrite-strings

Debugging Options
See Section 4.7 [Options for Debugging Your Program or GCC], page 39.
-a -dletters -fpretend-float
-g -glevel -gcoff -gdwarf -gdwarf+
-ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
-p -pg -print-file-name=library -print-libgcc-file-name
-print-prog-name=program -print-search-dirs -save-temps

Optimization Options
See Section 4.8 [Options that Control Optimization], page 43.

-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
-fdelayed-branch -fexpensive-optimizations
-ffast-math -ffloat-store -fforce-addr -fforce-mem
-finline-functions -fkeep-inline-functions
-fno-default-inline -fno-defer-pop -fno-function-cse
-fno-inline -fno-peephole -fomit-frame-pointer
-frerun-cse-after-loop -fschedule-insns
-fschedule-insns2 -fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops
-0 -00 -01 -02 -03

Preprocessor Options
See Section 4.9 [Options Controlling the Preprocessor|, page 47.
-Aquestion(answer) -C -dD -dM -dN
-Dmacro[=defn] -E -H
-idirafter dir
-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-M -MD -MM -MMD -MG -nostdinc -P -trigraphs
-undef -Umacro -Wp,option

Chapter 4: GNU CC Command Options

Assembler Option
See Section 4.10 [Passing Options to the Assembler|, page 49.

-Wa,option

Linker Options
See Section 4.11 [Options for Linking], page 49.

object-file-name -1llibrary

-nostartfiles -nodefaultlibs -nostdlib
-8 -static -shared -symbolic
-Wl,option -Xlinker option

-u symbol

Directory Options
See Section 4.12 [Options for Directory Search], page 51.

-Bprefix -Idir -I- -Ldir

Target Options
See Section 4.13 [Target Options], page 52.

-b machine -V version

Machine Dependent Options
See Section 4.14 [Hardware Models and Configurations|, page 53.

M680x0 Options

-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881
-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
-mrtd -mshort -msoft-float

VAX Options

-mg -mgnu -munix

SPARC Options

-mapp-regs -mcypress -mepilogue -mflat -mfpu -mhard-float
-mhard-quad-float -mno-app-regs -mno-flat -mno-fpu
-mno-epilogue -mno-unaligned-doubles

-msoft-float -msoft-quad-float

-msparclite -msupersparc -munaligned-doubles -mv8

SPARC V9 compilers support the following options
in addition to the above:

-mmedlow -mmedany
-mint32 -mint64 -mlong32 -mlong64
-mno-stack-bias -mstack-bias

Convex Options

-mcl -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount

-mlong32 -mlong64
-mvolatile-cache -mvolatile-nocache

Using and Porting GNU CC

AMD29K Options

-m29000 -m29050 -mbw -mnbw -mdw -mndw
-mlarge -mnormal -msmall

-mkernel-registers -mno-reuse-arg-regs
-mno-stack-check -mno-storem-bug
-mreuse-arg-regs -msoft-float -mstack-check
-mstorem-bug -muser-registers

ARM Options

-mapcs -m2 -m3 -m6 -mbsd -mxopen -mno-symrename

MB88K Options

-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options

-mcpu=cpu type

-mpower -mMNO-power -mpower2 -mno-power2

-mpowerpc -mMNo-powerpc

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mnew-mnemonics -mno-new-mnemonics

-mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-in-toc
-msoft-float -mhard-float -mmultiple -mno-multiple

-mstring -mno-string -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable -mno-relocatable]]
-mtoc -mno-toc -mtraceback -mno-traceback

-mlittle -mlittle-endian -mbig -mbig-endian

-mcall-aix -mcall-sysv -mprototype

RT Options

-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options

-mabicalls -mcpu=cpu type -membedded-data
-membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64
-mgpopt -mhalf-pic -mhard-float -mint64 -mipsl

Chapter 4: GNU CC Command Options

-mips2 -mips3 -mlong64 -mlong-calls -mmemcpy
-mmips-as -mmips-tfile -mno-abicalls
-mno-embedded-data -mno-embedded-pic

-mno-gpopt -mno-long-calls

-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats
-mrnames -msoft-float

-m4650 -msingle-float -mmad

-mstats -EL -EB -G num -nocpp

i386 Options

-m486 -m386 -mieee-fp -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mreg-alloc=list -mregparm=num
-malign-jumps=num -malign-loops=num
-malign-functions=num

HPPA Options

-mdisable-fpregs -mdisable-indexing -mfast-indirect-calls

-mgas -mjump-in-delay -mlong-millicode-calls -mno-disable-fpregsj]
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-millicode-long-calls

-mno-portable-runtime -mno-soft-float -msoft-float

-mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime -mschedule=list]]

Intel 960 Options

-mcpu type -masm-compat -mclean-linkage
-mcode-align -mcomplex-addr -mleaf-procedures
-mic-compat -mic2.0-compat -mic3.0-compat
-mintel-asm -mno-clean-linkage -mno-code-align
-mno-complex-addr -mno-leaf-procedures
-mno-old-align -mno-strict-align -mno-tail-call
-mnumerics -mold-align -msoft-float -mstrict-align
-mtail-call

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float
-msoft-float

Clipper Options
-mc300 -mc400

H8/300 Options
-mrelax -mh

System V Options
-Qy -Qn -YP,paths -Ym,dir

Using and Porting GNU CC

Code Generation Options
See Section 4.15 [Options for Code Generation Conventions], page 77.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -finhibit-size-directive
-fno-common -fno-ident -fno-gnu-linker
-fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fvolatile -fvolatile-global
-fverbose-asm -fpack-struct +e0 +el

4.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. The first three stages apply to an individual source
file, and end by producing an object file; linking combines all the object files (those newly
compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code which must be preprocessed.

file.1 C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the library ‘1ibobjc.a’
to make an Objective-C program work.

file.h C header file (not to be compiled or linked).

file.cc

file.cxx

file.cpp

file.C C++ source code which must be preprocessed. Note that in ¢.cxx’, the last two

letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

file.s Assembler code.
file. S Assembler code which must be preprocessed.
other An object file to be fed straight into linking. Any file name with no recognized

suffix is treated this way.
You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:
c objective-c c++

c-header cpp-output c++-cpp-output
assembler assembler-with-cpp

Chapter 4: GNU CC Command Options

-X none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-¢’, ‘-S’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’ instruct gcc to do
nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix
“.c”, .17 ¢ls, ete., with ¢.o.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the
suffix ‘.c’, ¢.1’, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

Since only one output file can be specified, it does not make sense to use ‘-0’

when compiling more than one input file, unless you are producing an executable
file as output.

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, and
all preprocessed C source on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

-pipe Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

4.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ¢.C’, ‘.cc’, ‘cpp’, or ‘.cxx’; pre-
[

processed C++ files use the suffix ‘.ii’. GNU CC recognizes files with these names and

Using and Porting GNU CC

compiles them as C++ programs even if you call the compiler the same way as for compiling
C programs (usually with the name gcc).

However, C++ programs often require class libraries as well as a compiler that under-
stands the C++ language—and under some circumstances, you might want to compile pro-
grams from standard input, or otherwise without a suffix that flags them as C++ programs.
g++ is a program that calls GNU CC with the default language set to C++, and automat-
ically specifies linking against the GNU class library libg++. ! On many systems, the
script g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 4.4 [Options Controlling C Dialect], page 26, for explanations of options
for languages related to C. See Section 4.5 [Options Controlling C++ Dialect], page 29, for
explanations of options that are meaningful only for C++ programs.

4.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++
and Objective C) that the compiler accepts:

-ansi Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C,
such as the asm, inline and typeof keywords, and predefined macros such as
unix and vax that identify the type of system you are using. It also enables
the undesirable and rarely used ANSI trigraph feature, disallows ‘$’ as part of
identifiers, and disables recognition of C++ style ‘//’ comments.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ANSI
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

-

The ‘-ansi’ option does not cause non-ANSI programs to be rejected gratu-
itously. For that, ‘-pedantic’is required in addition to ‘-ansi’. See Section 4.6
[Warning Options], page 33.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ANSI standard doesn’t call for;
this is to avoid interfering with any programs that might use these names for

other things.

4

! Prior to release 2 of the compiler, there was a separate g++ compiler. That version was
based on GNU CC, but not integrated with it. Versions of g++ with a ‘1.xx’ version
number—for example, g++ version 1.37 or 1.42—are much less reliable than the versions
integrated with GCC 2. Moreover, combining G++ ‘1.xx’ with a version 2 GCC will
simply not work.

Chapter 4: GNU CC Command Options

-fno-asm

The functions alloca, abort, exit, and _exit are not builtin functions when
‘-ansi’ is used.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘-ansi’ implies ‘-fno-asm’.

-

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, as it also disables the other, C++-specific, extension keywords such as
headof.

-fno-builtin

-trigraphs

Don’t recognize builtin functions that do not begin with two leading under-
scores. Currently, the functions affected include abort, abs, alloca, cos, exit,
fabs, ffs, labs, memcmp, memcpy, sin, sqrt, strcmp, strcpy, and strlen.

GCC normally generates special code to handle certain builtin functions more
efficiently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function calls
no longer appear as such, you cannot set a breakpoint on those calls, nor can
you change the behavior of the functions by linking with a different library.

The ‘-ansi’ option prevents alloca and £fs from being builtin functions, since
these functions do not have an ANSI standard meaning.

Support ANSI C trigraphs. You don’t want to know about this brain-damage.
The ‘-ansi’ option implies ‘-trigraphs’.

-traditional

Attempt to support some aspects of traditional C compilers. Specifically:

o All extern declarations take effect globally even if they are written inside
of a function definition. This includes implicit declarations of functions.

¢ The newer keywords typeof, inline, signed, const and volatile are not
recognized. (You can still use the alternative keywords such as __typeof_
_, —_inline__, and so on.)

¢ Comparisons between pointers and integers are always allowed.

o Integer types unsigned short and unsigned char promote to unsigned
int.

¢ Qut-of-range floating point literals are not an error.

o Certain constructs which ANSI regards as a single invalid preprocessing
number, such as ‘Oxe-0xd’, are treated as expressions instead.

e String “constants” are not necessarily constant; they are stored in writable
space, and identical looking constants are allocated separately. (This is the
same as the effect of ‘~-fwritable-strings’.)

¢ All automatic variables not declared register are preserved by longjmp.
Ordinarily, GNU C follows ANSI C: automatic variables not declared
volatile may be clobbered.

Using and Porting GNU CC

° The character escape sequences ‘\x’ and ‘\a’ evaluate as the literal
characters ‘x’ and ‘a’ respectively. Without ‘-traditional’, ‘\x’is a prefix
for the hexadecimal representation of a character, and ‘\a’ produces a bell.

¢ In C++ programs, assignment to this is permitted with ‘-traditional’.
(The option ‘-fthis-is-variable’ also has this effect.)

You may wish to use ‘-fno-builtin’ as well as ‘-~traditional’if your program
uses names that are normally GNU C builtin functions for other purposes of
its own.

You cannot use ‘-traditional’ if you include any header files that rely on
ANSI C features. Some vendors are starting to ship systems with ANSI C
header files and you cannot use ‘-traditional’ on such systems to compile
files that include any system headers.

In the preprocessor, comments convert to nothing at all, rather than to a space.
This allows traditional token concatenation.

In preprocessing directive, the ‘4’ symbol must appear as the first character of
a line.

In the preprocessor, macro arguments are recognized within string constants in
a macro definition (and their values are stringified, though without additional
quote marks, when they appear in such a context). The preprocessor always
considers a string constant to end at a newline.

The predefined macro __STDC__ is not defined when you use ‘-traditional’,
but __GNUC__ is (since the GNU extensions which __GNUC__ indicates are not
affected by ‘-traditional’). If you need to write header files that work differ-
ently depending on whether ‘-traditional’is in use, by testing both of these
predefined macros you can distinguish four situations: GNU C, traditional GNU
C, other ANSI C compilers, and other old C compilers. The predefined macro
__STDC_VERSION__ is also not defined when you use ‘-traditional’. See sec-
tion “Standard Predefined Macros” in The C Preprocessor, for more discussion
of these and other predefined macros.

The preprocessor considers a string constant to end at a newline (unless the
newline is escaped with ‘\’). (Without ‘-traditional’, string constants can
contain the newline character as typed.)

-traditional-cpp
Attempt to support some aspects of traditional C preprocessors. This includes
the last five items in the table immediately above, but none of the other effects
of ‘-traditional’.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Chapter 4: GNU CC Command Options

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘-funsigned-char’. Likewise, the option ‘-fno-signed-char’is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bitfield is signed or unsigned, when the decla-
ration does not use either signed or unsigned. By default, such a bitfield is
signed, because this is consistent: the basic integer types such as int are signed
types.

However, when
what.

‘~traditional’ is used, bitfields are all unsigned no matter

-fwritable-strings
Store string constants in the writable data segment and don’t uniquize them.
This is for compatibility with old programs which assume they can write into
string constants. The option ‘-traditional’ also has this effect.

Writing into string constants is a very bad idea; “constants” should be constant.

-fallow-single-precision
Do not promote single precision math operations to double precision, even when
compiling with ‘-traditional’.
Traditional K&R C promotes all floating point operations to double precision,
regardless of the sizes of the operands. On the architecture for which you are
compiling, single precision may be faster than double precision. If you must use
‘~traditional’, but want to use single precision operations when the operands

are single precision, use this option. This option has no effect when compiling
with ANSI or GNU C conventions (the default).

4.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ pro-
grams; but you can also use most of the GNU compiler options regardless of what language
your program is in. For example, you might compile a file firstClass.C like this:

Using and Porting GNU CC

g++ -g -felide-constructors -0 -c firstClass.C

In this example, only ‘-felide-constructors’is an option meant only for C++ programs;
you can use the other options with any language supported by GNU CC.

Here is a list of options that are only for compiling C++ programs:

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fall-virtual
Treat all possible member functions as virtual, implicitly. All member functions
(except for constructor functions and new or delete member operators) are
treated as virtual functions of the class where they appear.

This does not mean that all calls to these member functions will be made
through the internal table of virtual functions. Under some circumstances, the
compiler can determine that a call to a given virtual function can be made
directly; in these cases the calls are direct in any case.

-fcheck-new
Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. The current Working Paper requires that
operator new never return a null pointer, so this check is normally unnecessary.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two definitions were merged.

-fdollars-in-identifiers
Accept ‘$’ in identifiers. You can also explicitly prohibit use of ‘$’ with the
option ‘-fno-dollars-in-identifiers’. (GNU C++ allows ‘¢’ by default on
some target systems but not others.) Traditional C allowed the character ‘$’ to
form part of identifiers. However, ANSI C and C++ forbid ‘$’ in identifiers.

-fenum-int-equiv
Anachronistically permit implicit conversion of int to enumeration types. Cur-
rent C++ allows conversion of enum to int, but not the other way around.

-fexternal-templates
Cause template instantiations to obey ‘#pragma interface’and ‘implementation’;]]
template instances are emitted or not according to the location of the tem-
plate definition. See Section 7.5 [Template Instantiation|, page 153, for more
information.

-falt-external-templates
Similar to -fexternal-templates, but template instances are emitted or not ac-
cording to the place where they are first instantiated. See Section 7.5 [Template
Instantiation]|, page 153, for more information.

Chapter 4: GNU CC Command Options

-ffor-scope

-fno-for-scope
If -ffor-scope is specified, the scope of variables declared in a for-init-statement
is limited to the ‘for’ loop itself, as specified by the draft C++ standard. If -
fno-for-scope is specified, the scope of variables declared in a for-init-statement
extends to the end of the enclosing scope, as was the case in old versions of gcc,
and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

-fno-gnu-keywords
Do not recognize classof, headof, signature, sigof or typeof as a keyword,
so that code can use these words as identifiers. You can use the keywords
classof__, __headof signature
‘~-ansi’ implies ‘-fno-gnu-keywords’.

sigof__,and __typeof__ instead.

——Y - ——Y -

-fno-implicit-templates
Never emit code for templates which are instantiated implicitly (i.e. by use);
only emit code for explicit instantiations. See Section 7.5 [Template Instantia-
tion], page 153, for more information.

-fhandle-signatures
Recognize the signature and sigof keywords for specifying abstract types.
The default (‘-fno-handle-signatures’) is not to recognize them. See Sec-
tion 7.6 [C++ Signatures|, page 154.

-fhuge-objects
Support virtual function calls for objects that exceed the size representable by
a ‘short int’. Users should not use this flag by default; if you need to use it,
the compiler will tell you so. If you compile any of your code with this flag, you
must compile all of your code with this flag (including libg++, if you use it).

This flag is not useful when compiling with -fvtable-thunks.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fmemoize-lookups

-fsave-memoized
Use heuristics to compile faster. These heuristics are not enabled by default,
since they are only effective for certain input files. Other input files compile
more slowly.

The first time the compiler must build a call to a member function (or reference
to a data member), it must (1) determine whether the class implements mem-
ber functions of that name; (2) resolve which member function to call (which
involves figuring out what sorts of type conversions need to be made); and (3)
check the visibility of the member function to the caller. All of this adds up

Using and Porting GNU CC

to slower compilation. Normally, the second time a call is made to that mem-
ber function (or reference to that data member), it must go through the same
lengthy process again. This means that code like this:
cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a software cache, a “hit”
significantly reduces this cost. Unfortunately, using the cache introduces an-
other layer of mechanisms which must be implemented, and so incurs its own
overhead. ‘-fmemoize-lookups’ enables the software cache.

Because access privileges (visibility) to members and member functions may
differ from one function context to the next, G++ may need to flush the cache.
With the ‘-fmemoize-lookups’ flag, the cache is flushed after every function
that is compiled. The ‘-fsave-memoized’ flag enables the same software cache,
but when the compiler determines that the context of the last function com-
piled would yield the same access privileges of the next function to compile, it
preserves the cache. This is most helpful when defining many member functions
for the same class: with the exception of member functions which are friends
of other classes, each member function has exactly the same access privileges
as every other, and the cache need not be flushed.

The code that implements these flags has rotted; you should probably avoid
using them.

-fstrict-prototype
Within an ‘extern "C"’ linkage specification, treat a function declaration with
no arguments, such as ‘int foo ();’, as declaring the function to take no argu-
ments. Normally, such a declaration means that the function foo can take any
combination of arguments, as in C. ‘-pedantic’ implies ‘-fstrict-prototype’
unless overridden with ‘-fno-strict-prototype’.

This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects
Don’t assume that a reference is initialized to refer to a valid object. Although
the current C++ Working Paper prohibits null references, some old code may
rely on them, and you can use ‘-fno-nonnull-objects’ to turn on checking.

At the moment, the compiler only does this checking for conversions to virtual
base classes.

-foperator-names
Recognize the operator name keywords and, bitand, bitor, compl, not,
or and xor as synonyms for the symbols they refer to. ‘-ansi’ implies
‘-foperator-names’.

-fthis-is-variable
Permit assignment to this. The incorporation of user-defined free store man-
agement into C++ has made assignment to ‘this’ an anachronism. Therefore,
by default it is invalid to assign to this within a class member function; that
is, GNU C++ treats ‘this’ in a member function of class X as a non-lvalue of
type ‘X *’. However, for backwards compatibility, you can make it valid with
‘~-fthis-is-variable’.

Chapter 4: GNU CC Command Options

-fvtable-thunks
Use ‘thunks’ to implement the virtual function dispatch table (‘vtable’). The
traditional (cfront-style) approach to implementing vtables was to store a
pointer to the function and two offsets for adjusting the ‘this’ pointer at the
call site. Newer implementations store a single pointer to a ‘thunk’ function
which does any necessary adjustment and then calls the target function.

This option also enables a heuristic for controlling emission of vtables; if a class
has any non-inline virtual functions, the vtable will be emitted in the translation
unit containing the first one of those.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building

libg++.)

-traditional
For C++ programs (in addition to the effects that apply to both C and C++),
this has the same effect as ‘-fthis-is-variable’. See Section 4.4 [Options
Controlling C Dialect], page 26.

In addition, these optimization, warning, and code generation options have meanings
only for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Sec-
tion 4.8 [Options That Control Optimization], page 43.

-Wenum-clash

-Woverloaded-virtual

-Wtemplate-debugging
Warnings that apply only to C++ programs. See Section 4.6 [Options to Request
or Suppress Warnings|, page 33.

+en Control how virtual function definitions are used, in a fashion compatible with
cfront 1.x. See Section 4.15 [Options for Code Generation Conventions],
page 77.

4.6 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘-Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GNU CC:

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

Using and Porting GNU CC

-pedantic
Issue all the warnings demanded by strict ANSI standard C; reject all programs
that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this
option (though a rare few will require ‘-ansi’). However, without this option,
certain GNU extensions and traditional C features are supported as well. With
this option, they are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files
should use these escape routes; application programs should avoid them. See
Section 6.34 [Alternate Keywords], page 146.

This option is not intended to be useful; it exists only to satisfy pedants who
would otherwise claim that GNU CC fails to support the ANSI standard.

Some users try to use ‘-pedantic’ to check programs for strict ANSI C con-

formance. They soon find that it does not do quite what they want: it finds
some non-ANSI practices, but not all—only those for which ANSI C requires a
diagnostic.

A feature to report any failure to conform to ANSI C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We recommend, rather, that users take advantage
of the extensions of GNU C and disregard the limitations of other compilers.
Aside from certain supercomputers and obsolete small machines, there is less
and less reason ever to use any other C compiler other than for bootstrapping

GNU CC.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.
-Wno-import

Inhibit warning messages about the use of ‘#import’.
-Wchar-subscripts

Warn if an array subscript has type char. This is a common cause of error, as
programmers often forget that this type is signed on some machines.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a comment.

-Wformat Check callsto printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified.

-Wimplicit
Warn whenever a function or parameter is implicitly declared.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an

assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Chapter 4: GNU CC Command Options

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a
case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered (assuming they are enabled).

-Wunused Warn whenever a variable is unused aside from its declaration, whenever a

function is declared static but never defined, whenever a label is declared but
not used, and whenever a statement computes a result that is explicitly not
used.
To suppress this warning for an expression, simply cast it to void. For unused
variables and parameters, use the ‘unused’ attribute (see Section 6.28 [Variable
Attributes], page 134).

-Wuninitialized

An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they re-
quire data flow information that is computed only when optimizing. If you
don’t specify ‘-0’, you simply won’t get these warnings.

These warnings occur only for variables that are candidates for register alloca-
tion. Therefore, they do not occur for a variable that is declared volatile, or
whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they
do not occur for structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough to
see all the reasons why the code might be correct despite appearing to have an
error. Here is one example of how this can happen:

{
int x;
switch (y)
{
case 1: x
break;
case 2: X
break;
case 3: X
}
foo (x);

1}
-
..

1]
NN

1}
)]

Using and Porting GNU CC

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC
doesn’t know this. Here is another common case:
{
int save_y;
if (change_y) save_y = y, y = new_y;

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 6.22 [Function Attributes],
page 129.

-Wenum-clash
Warn about conversion between different enumeration types. (C++ only).

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:
struct A {
int 1i;
int j;
AO: 3 (o), i (1) {1}
¥
Here the compiler will warn that the member initializers for ‘i’ and ‘j’ will be
rearranged to match the declaration order of the members.

-Wtemplate-debugging
When using templates in a C++ program, warn if debugging is not yet fully
available (C++ only).

-Wall All of the above ‘-W’ options combined. These are all the options which pertain
to usage that we recommend avoiding and that we believe is easy to avoid, even
in conjunction with macros.

The remaining ‘-W...” options are not implied by ‘-Wall’ because they warn about con-
structions that we consider reasonable to use, on occasion, in clean programs.

-W Print extra warning messages for these events:

¢ A nonvolatile automatic variable might be changed by a call to longjmp.
These warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp
will be called; in fact, a signal handler could call it at any point in the code.
As a result, you may get a warning even when there is in fact no problem
because longjmp cannot in fact be called at the place which would cause
a problem.

¢ A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

Chapter 4: GNU CC Command Options

foo (a)
{
if (a > 0)
return a;
}

e An expression-statement or the left-hand side of a comma expression con-
tains no side effects. To suppress the warning, cast the unused expression
to void. For example, an expression such as ‘x[1,j]’ will cause a warning,
but ‘x[(void)i,j]1’ will not.

¢ An unsigned value is compared against zero with ‘<’ or ‘<=’

¢ A comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y 7 1 : 0)
<= z’, which is a different interpretation from that of ordinary mathemat-
ical notation.

e Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

o If ‘-Wall’ or ‘~-Wunused’ is also specified, warn about unused arguments.

¢ An aggregate has a partly bracketed initializer. For example, the following
code would evoke such a warning, because braces are missing around the
initializer for x.h:
struct s { int £, g; };
struct t { struct s h; int 1i; };
struct t x = { 1, 2, 3 };

-Wtraditional
Warn about certain constructs that behave differently in traditional and ANSI

C.

¢ Macro arguments occurring within string constants in the macro body.
These would substitute the argument in traditional C, but are part of the
constant in ANSI C.

o A function declared external in one block and then used after the end of

the block.

e A switch statement has an operand of type long.
-Wshadow Warn whenever a local variable shadows another local variable.

-Wid-clash-len
Warn whenever two distinct identifiers match in the first len characters. This
may help you prepare a program that will compile with certain obsolete, brain-
damaged compilers.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

Using and Porting GNU CC

-Wbad-function-cast
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
Give string constants the type const char[length] so that copying the address
of one into a non-const char * pointer will get a warning. These warnings will
help you find at compile time code that can try to write into a string constant,
but only if you have been very careful about using const in declarations and
prototypes. Otherwise, it will just be a nuisance; this is why we did not make
‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration which specifies the argument types.)

-Wmissing-prototypes
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.

Chapter 4: GNU CC Command Options

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs

-Winline

Warn if an extern declaration is encountered within an function.

Warn if a function can not be inlined, and either it was declared as inline, or
else the ‘-finline-functions’ option was given.

-Woverloaded-virtual

Warn when a derived class function declaration may be an error in defining
a virtual function (C++ only). In a derived class, the definitions of virtual
functions must match the type signature of a virtual function declared in the
base class. With this option, the compiler warns when you define a function
with the same name as a virtual function, but with a type signature that does
not match any declarations from the base class.

-Wsynth (C++ only)

-Werror

Warn when g++’s synthesis behavior does not match that of cfront. For instance:

struct A {
operator int ();
A% operator = (int);

+;
main ()
{
A a,b;
a = b;
}

In this example, g++ will synthesize a default ‘A& operator = (const A&);’,
while cfront will use the user-defined ‘operator =’.

Make all warnings into errors.

4.7 Options for Debugging Your Program or GNU CC

GNU CC has various special options that are used for debugging either your program

or GCC:
-g

Produce debugging information in the operating system’s native format (stabs,

COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but will probably make other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the ex-
tra information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, ‘-~gdwarf+’,
or ‘-gdwart’ (see below).

Unlike most other C compilers, GNU CC allows you to use ‘-g’ with ‘-0°. The
shortcuts taken by optimized code may occasionally produce surprising results:

Using and Porting GNU CC

some variables you declared may not exist at all; flow of control may briefly move
where you did not expect it; some statements may not be executed because they
compute constant results or their values were already at hand; some statements
may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GNU CC is generated with the capability
for more than one debugging format.

-ggdb Produce debugging information in the native format (if that is supported),
including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

-gcoff Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf Produce debugging information in DWARF format (if that is supported). This
is the format used by SDB on most System V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gdwarflevel

Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Chapter 4:

P

-dletters

GNU CC Command Options

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Generate extra code to write profile information for basic blocks, which will
record the number of times each basic block is executed, the basic block start
address, and the function name containing the basic block. If ‘-g’ is used, the
line number and filename of the start of the basic block will also be recorded.
If not overridden by the machine description, the default action is to append
to the text file ‘bb.out’.

This data could be analyzed by a program like tcov. Note, however, that the
format of the data is not what tcov expects. Eventually GNU gprof should
be extended to process this data.

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the compiler. The file names for most of the dumps
are made by appending a word to the source file name (e.g. ‘foo.c.rtl’ or
‘foo.c.jump’). Here are the possible letters for use in letters, and their mean-
ings:

‘o Dump all macro definitions, at the end of preprocessing, and write
no output.

K Dump all macro names, at the end of preprocessing.

‘D’ Dump all macro definitions, at the end of preprocessing, in addition

to normal output.

‘y? Dump debugging information during parsing, to standard error.
‘r’ Dump after RTL generation, to ‘file.rt1’.
‘x’ Just generate RTL for a function instead of compiling it. Usually

used with ‘r’.
j Dump after first jump optimization, to ‘file. jump’.

S Dump after CSE (including the jump optimization that sometimes

follows CSE), to ‘file.cse’.

‘v Dump after loop optimization, to ‘file. loop’.

Using and Porting GNU CC

‘4’ Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to ‘file.cse2’.

‘£ Dump after flow analysis, to ‘file.f1low’.

‘e’ Dump after instruction combination, to the file ‘file. combine’.

‘s’ Dump after the first instruction scheduling pass, to ‘file.sched’.

‘v Dump after local register allocation, to ‘file.1reg’.

‘g’ Dump after global register allocation, to ‘file.greg’.

‘R’ Dump after the second instruction scheduling pass, to ‘file. sched?2’.

‘r Dump after last jump optimization, to ‘file. jump2’.

‘@’ Dump after delayed branch scheduling, to ‘file.dbr’.

‘%’ Dump after conversion from registers to stack, to ‘file.stack’.

‘a’ Produce all the dumps listed above.

‘m’ Print statistics on memory usage, at the end of the run, to standard
error.

‘p’ Annotate the assembler output with a comment indicating which

pattern and alternative was used.

-fpretend-float
When running a cross-compiler, pretend that the target machine uses the same
floating point format as the host machine. This causes incorrect output of the
actual floating constants, but the actual instruction sequence will probably be
the same as GNU CC would make when running on the target machine.

-save-temps
Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-c -save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’".

-print-file-name=library
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GNU CC does not
compile or link anything; it just prints the file name.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.
-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name

Chapter 4: GNU CC Command Options

-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem,
cannot exec cpp: No such file or directory’. To resolve this you either
need to put ‘cpp’ and the other compiler components where gcc expects to find
them, or you can set the environment variable GCC_EXEC_PREFIX to the direc-
tory where you installed them. Don’t forget the trailing ’/°. See Section 4.16
[Environment Variables], page 80.

4.8 Options That Control Optimization

These options control various sorts of optimizations:

-0
-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

Without ‘-0’, the compiler’s goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are independent:
if you stop the program with a breakpoint between statements, you can then
assign a new value to any variable or change the program counter to any other
statement in the function and get exactly the results you would expect from
the source code.

Without ‘-0’, the compiler only allocates variables declared register in reg-
isters. The resulting compiled code is a little worse than produced by PCC
without ‘-0’.

With ‘-0°, the compiler tries to reduce code size and execution time.

When you specify ‘-0°, the compiler turns on ‘-fthread-jumps’ and ‘-fdefer-pop’j
on all machines. The compiler turns on ‘-fdelayed-branch’ on machines that
have delay slots, and ‘-fomit-frame-pointer’ on machines that can support
debugging even without a frame pointer. On some machines the compiler also
turns on other flags.

-02 Optimize even more. GNU CC performs nearly all supported optimizations
that do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify ‘-02’. As compared to ‘-0’, this
option increases both compilation time and the performance of the generated
code.

‘-02’ turns on all optional optimizations except for loop unrolling and func-
tion inlining. It also turns on the ‘-fforce-mem’ option on all machines and
frame pointer elimination on machines where doing so does not interfere with
debugging.

-03 Optimize yet more. ‘-03’ turns on all optimizations specified by ‘-02’ and also
turns on the ‘inline-functions’ option.

-00 Do not optimize.

Using and Porting GNU CC

If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table
below, only one of the forms is listed—the one which is not the default. You can figure out
the other form by either removing ‘no-’ or adding it.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. For most programs, the excess precision does only good,
but a few programs rely on the precise definition of IEEE floating point. Use
‘~-ffloat-store’ for such programs.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-0’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load. The ‘-02’ option
turns on this option.

-fforce-addr
Force memory address constants to be copied into registers before doing arith-
metic on them. This may produce better code just as ‘-fforce-mem’ may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the Vax, this flag has no effect, because the standard
calling sequence automatically handles the frame pointer and nothing is saved
by pretending it doesn’t exist. The machine-description macro FRAME_POINTER_
REQUIRED controls whether a target machine supports this flag. See Section 17.5
[Registers], page 308.

Chapter 4: GNU CC Command Options

-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

-ffast-math
This option allows GCC to violate some ANSI or IEEE rules and/or specifica-
tions in the interest of optimizing code for speed. For example, it allows the
compiler to assume arguments to the sqrt function are non-negative numbers
and that no floating-point values are NaNs.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ANSI rules/specifications for math functions.

The following options control specific optimizations. The ‘-02’ option turns on all of
these optimizations except ‘-funroll-loops’ and ‘-funroll-all-loops’. On most ma-
chines, the ‘-0’ option turns on the ‘-fthread-jumps’ and ‘-fdelayed-branch’ options,
but specific machines may handle it differently.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to
be performed is desired.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of itera-
tion variables.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immedi-
ately following it, depending on whether the condition is known to be true or
false.

Using and Porting GNU CC

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been
performed.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

-fschedule-insns?2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is enabled by default on certain machines, usually those which have
no call-preserved registers to use instead.

-funroll-loops
Perform the optimization of loop unrolling. This is only done for loops
whose number of iterations can be determined at compile time or run time.

‘~-funroll-loop’implies both ‘-fstrength-reduce’and ‘-frerun-cse-after-loop’|]

Chapter 4: GNU CC Command Options

-funroll-all-loops
Perform the optimization of loop unrolling. This is done for all loops and
usually makes programs run more slowly. ‘-funroll-all-loops’ implies
‘~-fstrength-reduce’ as well as ‘-frerun-cse-after-loop’.

-fno-peephole
Disable any machine-specific peephole optimizations.

4.9 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these op-
tions make sense only together with ‘-E’ because they cause the preprocessor output to be
unsuitable for actual compilation.

-include file
Process file as input before processing the regular input file. In effect, the
contents of file are compiled first. Any ‘-D’ and ‘-U’ options on the command
line are always processed before ‘-include file’, regardless of the order in which
they are written. All the ‘-include’ and ‘-imacros’ options are processed in
the order in which they are written.

-imacros file
Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated from file is discarded, the only
effect of ‘-imacros file’ is to make the macros defined in file available for use
in the main input.

Any ‘-D’ and ‘-U’ options on the command line are always processed before
‘~imacros file’, regardless of the order in which they are written. All the
‘~include’ and ‘-imacros’ options are processed in the order in which they
are written.

-idirafter dir
Add the directory dir to the second include path. The directories on the second
include path are searched when a header file is not found in any of the directories
in the main include path (the one that ‘-I’ adds to).

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-iwithprefix’ options.

-iwithprefix dir
Add a directory to the second include path. The directory’s name is made
by concatenating prefix and dir, where prefix was specified previously with
‘~iprefix’. If you have not specified a prefix yet, the directory containing the
installed passes of the compiler is used as the default.

-iwithprefixbefore dir
Add a directory to the main include path. The directory’s name is made by
concatenating prefix and dir, as in the case of ‘-iwithprefix’.

Using and Porting GNU CC

-isystem dir

-nostdinc

-MM

-MD

-MMD
-MG

Add a directory to the beginning of the second include path, marking it as a
system directory, so that it gets the same special treatment as is applied to the
standard system directories.

Do not search the standard system directories for header files. Only the di-
rectories you have specified with ‘-I’ options (and the current directory, if
appropriate) are searched. See Section 4.12 [Directory Options], page 51, for
information on ‘-I’.

By using both ‘-nostdinc’ and ‘-I-’, you can limit the include-file search path
to only those directories you specify explicitly.

Do not predefine any nonstandard macros. (Including architecture flags).

Run only the C preprocessor. Preprocess all the C source files specified and
output the results to standard output or to the specified output file.

Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

Tell the preprocessor not to generate ‘#line’ directives. Used with the ‘-E’
option.

Tell the preprocessor to output a rule suitable for make describing the depen-
dencies of each object file. For each source file, the preprocessor outputs one
make-rule whose target is the object file name for that source file and whose
dependencies are all the #include header files it uses. This rule may be a single
line or may be continued with ‘\’-newline if it is long. The list of rules is printed
on standard output instead of the preprocessed C program.

‘~M* implies ‘-E’.

Another way to specify output of a make rule is by setting the environment
variable DEPENDENCIES_OUTPUT (see Section 4.16 [Environment Variables],
page 80).

Like ‘-M’ but the output mentions only the user header files included with
‘#include '"file'"’. System header files included with ‘¢include <file>’ are omit-
ted.

Like ‘-M’ but the dependency information is written to a file made by replacing
".c" with ".d" at the end of the input file names. This is in addition to compiling
the file as specified—‘-MD’ does not inhibit ordinary compilation the way ‘-M’
does.

In Mach, you can use the utility md to merge multiple dependency files into a
single dependency file suitable for using with the ‘make’ command.

Like ‘-MD’ except mention only user header files, not system header files.

Treat missing header files as generated files and assume they live in the same
directory as the source file. If you specify ‘-MG’, you must also specify either
‘~M or ‘-MM’. ‘-MG’ is not supported with ‘-MD’ or ‘-MMD’.

Print the name of each header file used, in addition to other normal activities.

Chapter 4: GNU CC Command Options

-Aquestion(answer)
Assert the answer answer for question, in case it is tested with a preprocess-
ing conditional such as ‘#if #question(answer)’. ‘-A-’ disables the standard

assertions that normally describe the target machine.
-Dmacro Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn
Define macro macro as defn. All instances of ‘-D’ on the command line are
processed before any ‘-U’ options.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’ options, but
before any ‘-include’ and ‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in
effect at the end of preprocessing. Used with the ‘-E’ option.

-dD Tell the preprocessing to pass all macro definitions into the output, in their
proper sequence in the rest of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are omitted. Only
‘#define name’ is included in the output.

-trigraphs
Support ANSI C trigraphs. The ‘-ansi’ option also has this effect.

-Wp, option
Pass option as an option to the preprocessor. If option contains commas, it is
split into multiple options at the commas.

4.10 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

4.11 Options for Linking

These options come into play when the compiler links object files into an executable
output file. They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 4.2 [Overall Options], page 24.

-1llibrary

-lobjc

Using and Porting GNU CC

Search the library named library when linking.

It makes a difference where in the command you write this option; the linker
searches processes libraries and object files in the order they are specified. Thus,
‘foo.0 -1z bar.o’ searches library ‘z’ after file ‘foo.0’ but before ‘bar.o’. If
‘par.o’ refers to functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-1’ option and specifying a file
name is that ‘-1’ surrounds library with ‘1ib’ and ‘.a’ and searches several
directories.

You need this special case of the ‘-1’ option in order to link an Objective C
program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless -nostdlib or -nodefaultlibs is used.

-nodefaultlibs

-nostdlib

-8

-static

Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used normally,
unless -nostartfiles is used.

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines that GNU CC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
Chapter 13 [Interfacing to GNU CC Output], page 197, for more discussion of
‘libgcc.a’.) In most cases, you need ‘libgcc.a’ even when you want to avoid
other standard libraries. In other words, when you specify ‘-nostdlib’ or
‘-nodefaultlibs’ you should usually specify ‘-1gcc’ as well. This ensures that
you have no unresolved references to internal GNU CC library subroutines.
(For example, ‘__main’, used to ensure C++ constructors will be called; see
Section 5.6 [collect2], page 112.)

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Chapter 4: GNU CC Command Options

-shared

-symbolic

Produce a shared object which can then be linked with other objects to form
an executable. Only a few systems support this option.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-Xlinker
-z -Xlinker defs’). Only a few systems support this option.

-Xlinker option

-W1l,option

-u symbol

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GNU CC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-X1inker’
twice, once for the option and once for the argument. For example, to
pass ‘-assert definitions’, you must write ‘-Xlinker -assert -Xlinker
definitions’. It does not work to write ‘-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what

the linker expects.

Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

4.12 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of
the compiler:

-Idir

Add the directory directory to the head of the list of directories to be searched
for header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. If you use more than one ‘-I’ option, the directories are scanned
in left-to-right order; the standard system directories come after.

Any directories you specify with ‘-I’ options before the ‘-I-’ option are searched
only for the case of ‘#include '"file"’; they are not searched for ‘#include
<file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-1’ direc-
tories are used this way.)

bl

In addition, the ‘~-I-’ option inhibits the use of the current directory (where the
current input file came from) as the first search directory for ‘#include "file"’.
There is no way to override this effect of ‘-I-’. With ‘-I.’ you can specify
searching the directory which was current when the compiler was invoked. That
is not exactly the same as what the preprocessor does by default, but it is often
satisfactory.

Using and Porting GNU CC

‘~I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

-Ldir Add directory dir to the list of directories to be searched for ‘-1’.

-Bprefix This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘cc1’,
‘as’ and ‘1d’. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/ version/’ (see Section 4.13 [Target Options]|, page 52).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix,

if any. If that name is not found, or if ‘-B’ was not specified, the driver tries two
standard prefixes, which are ‘/usr/1ib/gcc/’and ‘/usr/local/1ib/gcc-1ib/ .|}
If neither of those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your ‘PATH’ environment
variable.

‘-B’ prefixes that effectively specify directory names also apply to libraries in

the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into ‘-~isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The run-time support file ‘1ibgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those
means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-

ronment variable GCC_EXEC_PREFIX. See Section 4.16 [Environment Variables],
page 80.

4.13 Specifying Target Machine and Compiler Version

By default, GNU CC compiles code for the same type of machine that you are using.
However, it can also be installed as a cross-compiler, to compile for some other type of
machine. In fact, several different configurations of GNU CC, for different target machines,
can be installed side by side. Then you specify which one to use with the ‘-b’ option.

In addition, older and newer versions of GNU CC can be installed side by side. One of
them (probably the newest) will be the default, but you may sometimes wish to use another.

-b machine
The argument machine specifies the target machine for compilation. This is
useful when you have installed GNU CC as a cross-compiler.

The value to use for machine is the same as was specified as the machine
type when configuring GNU CC as a cross-compiler. For example, if a cross-
compiler was configured with ‘configure 1386v’, meaning to compile for an
80386 running System V, then you would specify ‘-b i386v’ to run that cross
compiler.

Chapter 4: GNU CC Command Options

When you do not specify ‘-b’, it normally means to compile for the same type
of machine that you are using.

-V version The argument version specifies which version of GNU CC to run. This is useful
when multiple versions are installed. For example, version might be ‘2.0’
meaning to run GNU CC version 2.0.

The default version, when you do not specify ‘-V’, is the last version of GNU
CC that you installed.

The ‘-b’ and ‘-V’ options actually work by controlling part of the file name used for the
executable files and libraries used for compilation. A given version of GNU CC, for a given
target machine, is normally kept in the directory ‘/usr/local/lib/gcc-1ib/machine/ version’.|]

Thus, sites can customize the effect of ‘-b’ or ‘-V’ either by changing the names of these
directories or adding alternate names (or symboliclinks). If in directory ‘/usr/local/lib/gcc-1ib/’}}
the file ‘80386’ is a link to the file ‘i386v’, then ‘-b 80386’ becomes an alias for ‘-b 1386v’.

In one respect, the ‘-b’ or ‘-V’ do not completely change to a different compiler: the
top-level driver program gcc that you originally invoked continues to run and invoke the
other executables (preprocessor, compiler per se, assembler and linker) that do the real
work. However, since no real work is done in the driver program, it usually does not matter
that the driver program in use is not the one for the specified target and version.

The only way that the driver program depends on the target machine is in the parsing
and handling of special machine-specific options. However, this is controlled by a file which
is found, along with the other executables, in the directory for the specified version and
target machine. As a result, a single installed driver program adapts to any specified target
machine and compiler version.

The driver program executable does control one significant thing, however: the default
version and target machine. Therefore, you can install different instances of the driver
program, compiled for different targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and that for version 2.1 is
installed as gcc, then the command gcc will use version 2.1 by default, while ogcc will use
2.0 by default. However, you can choose either version with either command with the ‘-V’
option.

4.14 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among different installed
compilers for completely different target machines, such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting
with ‘-m’, to choose among various hardware models or configurations—for example, 68010
vs 68020, floating coprocessor or none. A single installed version of the compiler can compile
for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.
These options are defined by the macro TARGET_SWITCHES in the machine description.

The default for the options is also defined by that macro, which enables you to change the
defaults.

Using and Porting GNU CC

4.14.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default values for these
options depends on which style of 68000 was selected when the compiler was configured;
the defaults for the most common choices are given below.

-m68000
-mc68000 Generate output for a 68000. This is the default when the compiler is configured
for 68000-based systems.

-m68020
-mc68020 Generate output for a 68020. This is the default when the compiler is configured
for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating point. This is the
default for most 68020 systems unless ‘-nfp’ was specified when the compiler
was configured.

-m68030 Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be emu-
lated by software on the 68040. If your 68040 does not have code to emulate
those instructions, use ‘-m68040°.

-m68020-40
Generate output for a 68040, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.

-mfpa Generate output containing Sun FPA instructions for floating point.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all m68k targets. Normally the facilities
of the machine’s usual C compiler are used, but this can’t be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘m68k-*-aout’
and ‘m68k-*-coff’ do provide software floating point support.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’ option implies ‘-mnobitfield’.]]

-mbitfield
Do use the bit-field instructions. The ‘-m68020° option implies ‘-mbitfield’.
This is the default if you use a configuration designed for a 68020.

Chapter 4: GNU CC Command Options

-mrtd

Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their argu-
ments while returning. This saves one instruction in the caller since there is no
need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020 processors, but not
by the 68000.

4.14.2 VAX Options

These ‘-m’ options are defined for the Vax:

-munix

-mgnu

-mg

Do not output certain jump instructions (aobleq and so on) that the Unix
assembler for the Vax cannot handle across long ranges.

Do output those jump instructions, on the assumption that you will assemble
with the GNU assembler.

Output code for g-format floating point numbers instead of d-format.

4.14.3 SPARC Options

These ‘-m’ switches are supported on the SPARC:

-mno-app-regs

-mapp-regs

-mfpu
-mhard-flo

-mno-fpu
-msoft-flo

Specify ‘-mapp-regs’ to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this
option.

at
Generate output containing floating point instructions. This is the default.

at

Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable

Using and Porting GNU CC

library functions for cross-compilation. The embedded targets ‘sparc-*-aout’
and ‘sparclite-#*-*’ do provide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particular,
you need to compile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating point instructions.

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating
point instructions. The functions called are those specified in the SPARC ABI.
This is the default.
As of this writing, there are no sparc implementations that have hardware
support for the quad-word floating point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the ‘-msoft-quad-float’
option is the default.

-mno-epilogue

-mepilogue
With ‘-mepilogue’ (the default), the compiler always emits code for function
exit at the end of each function. Any function exit in the middle of the function
(such as a return statement in C) will generate a jump to the exit code at the
end of the function.

With ‘-mno-epilogue’, the compiler tries to emit exit code inline at every
function exit.

-mno-flat

-mflat With ‘-mflat’, the compiler does not generate save/restore instructions and
will use a "flat" or single register window calling convention. This model uses
%i7 as the frame pointer and is compatible with the normal register window
model. Code from either may be intermixed although debugger support is still
incomplete. The local registers and the input registers (0-5) are still treated as
“call saved" registers and will be saved on the stack as necessary.

With ‘-mno-flat’ (the default), the compiler emits save/restore instructions
(except for leaf functions) and is the normal mode of operation.

-mno-unaligned-doubles
-munaligned-doubles
Assume that doubles have 8 byte alignment. This is the default.

With ‘-munaligned-doubles’, GNU CC assumes that doubles have 8 byte
alignment only if they are contained in another type, or if they have an ab-
solute address. Otherwise, it assumes they have 4 byte alignment. Specifying
this option avoids some rare compatibility problems with code generated by
other compilers. It is not the default because it results in a performance loss,
especially for floating point code.

Chapter 4: GNU CC Command Options

-mv8

-msparclite

-mcypress

These two options select variations on the SPARC architecture.

By default (unless specifically configured for the Fujitsu SPARClite), GCC gen-
erates code for the v7 variant of the SPARC architecture.

‘-mv8’ will give you SPARC v8 code. The only difference from v7 code is that
the compiler emits the integer multiply and integer divide instructions which

exist in SPARC v8 but not in SPARC v7.

‘-msparclite’ will give you SPARClite code. This adds the integer multiply,
integer divide step and scan (ffs) instructions which exist in SPARClite but
not in SPARC v7.

-msupersparc

These two options select the processor for which the code is optimised.

With ‘-mcypress’ (the default), the compiler optimizes code for the Cypress
CYT7C602 chip, as used in the SparcStation/SparcServer 3xx series. This is also
appropriate for the older SparcStation 1, 2, IPX etc.

With ‘-msupersparc’ the compiler optimizes code for the SuperSparc cpu, as
used in the SparcStation 10, 1000 and 2000 series. This flag also enables use of
the full SPARC v8 instruction set.

In a future version of GCC, these options will very likely be renamed to ‘-mcpu=cypress’
and ‘-mcpu=supersparc’.

These ‘-m’ switches are supported in addition to the above on SPARC V9 processors:

-mmedlow

-mmedany

-minté4
-mlong32

-mlong64
-mint32

Generate code for the Medium/Low code model: assume a 32 bit address space.
Programs are statically linked, PIC is not supported. Pointers are still 64 bits.

It is very likely that a future version of GCC will rename this option.

Generate code for the Medium/Anywhere code model: assume a 32 bit text
segment starting at offset 0, and a 32 bit data segment starting anywhere (de-
termined at link time). Programs are statically linked, PIC is not supported.
Pointers are still 64 bits.

It is very likely that a future version of GCC will rename this option.
Types long and int are 64 bits.
Types long and int are 32 bits.

Type long is 64 bits, and type int is 32 bits.

-mstack-bias
-mno-stack-bias

With ‘-mstack-bias’, GNU CC assumes that the stack pointer, and frame
pointer if present, are offset by -2047 which must be added back when making
stack frame references. Otherwise, assume no such offset is present.

Using and Porting GNU CC

4.14.4 Convex Options

These ‘-m’ options are defined for Convex:

-mcl

-mc2

-mc32

-mc34

-mc38

-margcount

Generate output for C1. The code will run on any Convex machine. The
preprocessor symbol __convex__c1__ is defined.

Generate output for C2. Uses instructions not available on C1. Scheduling and
other optimizations are chosen for max performance on C2. The preprocessor
symbol __convex_c2__ is defined.

Generate output for C32xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C32. The prepro-
cessor symbol __convex_c32__ is defined.

Generate output for C34xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C34. The prepro-
cessor symbol __convex_c34__ is defined.

Generate output for C38xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C38. The prepro-
cessor symbol __convex_c38__ is defined.

Generate code which puts an argument count in the word preceding each argu-
ment list. This is compatible with regular CC, and a few programs may need
the argument count word. GDB and other source-level debuggers do not need
it; this info is in the symbol table.

-mnoargcount

Omit the argument count word. This is the default.

-mvolatile-cache

Allow volatile references to be cached. This is the default.

-mvolatile-nocache

-mlong32
-mlong64

Volatile references bypass the data cache, going all the way to memory. This is
only needed for multi-processor code that does not use standard synchroniza-
tion instructions. Making non-volatile references to volatile locations will not
necessarily work.

Type long is 32 bits, the same as type int. This is the default.

Type long is 64 bits, the same as type long long. This option is useless, because
no library support exists for it.

4.14.5 AMD29K Options

These ‘-m’ options are defined for the AMD Am29000:

-mdw

-mndw

Generate code that assumes the DW bit is set, i.e., that byte and halfword
operations are directly supported by the hardware. This is the default.

Generate code that assumes the DW bit is not set.

Chapter 4: GNU CC Command Options

-mbw Generate code that assumes the system supports byte and halfword write
operations. This is the default.

-mnbw Generate code that assumes the systems does not support byte and halfword
write operations. ‘-mnbw’ implies ‘-mndw’.

-msmall Use a small memory model that assumes that all function addresses are either
within a single 256 KB segment or at an absolute address of less than 256k.
This allows the call instruction to be used instead of a const, consth, calli
sequence.

-mnormal Use the normal memory model: Generate call instructions only when calling
functions in the same file and calli instructions otherwise. This works if each
file occupies less than 256 KB but allows the entire executable to be larger than
256 KB. This is the default.

-mlarge Always use calli instructions. Specify this option if you expect a single file to
compile into more than 256 KB of code.

-m29050 Generate code for the Am29050.
-m29000 Generate code for the Am29000. This is the default.

-mkernel-registers
Generate references to registers gré4-gr95 instead of to registers gro6-gri127.
This option can be used when compiling kernel code that wants a set of global
registers disjoint from that used by user-mode code.

Note that when this option is used, register names in ‘-f’ flags must use the
normal, user-mode, names.

-muser-registers
Use the normal set of global registers, gro6-gr127. This is the default.

-mstack-check

-mno-stack-check
Insert (or do not insert) a call to
This is often used for kernel code.

_msp_check after each stack adjustment.

-mstorem-bug

-mno-storem-bug
‘-mstorem-bug’ handles 29k processors which cannot handle the separation of
a mtsrim insn and a storem instruction (most 29000 chips to date, but not the
29050).

-mno-reuse-arg-regs
-mreuse-arg-regs
‘-mno-reuse-arg-regs’ tells the compiler to only use incoming argument reg-
isters for copying out arguments. This helps detect calling a function with fewer
arguments than it was declared with.

-msoft-float
Generate output containing library calls for floating point. Warning: the requi-
site libraries are not part of GNU CC. Normally the facilities of the machine’s

Using and Porting GNU CC

usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

4.14.6 ARM Options

These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:
-m2
-m3 These options are identical. Generate code for the ARM2 and ARM3 proces-

sors. This option is the default. You should also use this option to generate
code for ARMG6 processors that are running with a 26-bit program counter.

-m6 Generate code for the ARMG6 processor when running with a 32-bit program
counter.

-mapcs Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execution
of the code.

-mbsd This option only applies to RISC iX. Emulate the native BSD-mode compiler.

This is the default if ‘-ansi’ is not specified.

-mxopen This option only applies to RISC iX. Emulate the native X/Open-mode com-
piler.

-mno-symrename
This option only applies to RISC iX. Do not run the assembler post-processor,
‘symrename’, after code has been assembled. Normally it is necessary to modify
some of the standard symbols in preparation for linking with the RISC iX C
library; this option suppresses this pass. The post-processor is never run when
the compiler is built for cross-compilation.

4.14.7 M88K Options

These ‘-m’ options are defined for Motorola 88k architectures:
-m88000 Generate code that works well on both the m88100 and the m88110.

-m88100 Generate code that works best for the m88100, but that also runs on the
m88110.

-m88110 Generate code that works best for the m88110, and may not run on the m88100.
-mbig-pic

Obsolete option to be removed from the next revision. Use ‘-fPIC’.
-midentify-revision

Include an ident directive in the assembler output recording the source file

name, compiler name and version, timestamp, and compilation flags used.

-mno-underscores
In assembler output, emit symbol names without adding an underscore charac-
ter at the beginning of each name. The default is to use an underscore as prefix
on each name.

Chapter 4: GNU CC Command Options

-mocs-debug-info

-mno-ocs-debug-info
Include (or omit) additional debugging information (about registers used in each
stack frame) as specified in the 88open Object Compatibility Standard, “OCS”.
This extra information allows debugging of code that has had the frame pointer
eliminated. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is to include
this information; other 88k configurations omit this information by default.

-mocs-frame-position
When emitting COFF debugging information for automatic variables and pa-
rameters stored on the stack, use the offset from the canonical frame address,
which is the stack pointer (register 31) on entry to the function. The DG/UX,
SVr4, Delta88 SVr3.2, and BCS configurations use ‘-mocs-frame-position’;
other 88k configurations have the default ‘-mno-ocs-frame-position’.

-mno-ocs-frame-position
When emitting COFF debugging information for automatic variables and pa-
rameters stored on the stack, use the offset from the frame pointer register
(register 30). When this option is in effect, the frame pointer is not eliminated
when debugging information is selected by the -g switch.

-moptimize-arg-area

-mno-optimize-arg-area
Control how function arguments are stored in stack frames. ‘-moptimize-arg-area’l
saves space by optimizing them, but this conflicts with the 88open specifi-
cations. The opposite alternative, ‘-mno-optimize-arg-area’, agrees with
88open standards. By default GNU CC does not optimize the argument area.

-mshort-data-num
Generate smaller data references by making them relative to r0, which allows
loading a value using a single instruction (rather than the usual two). You con-
trol which data references are affected by specifying num with this option. For
example, if you specify ‘-mshort-data-512’, then the data references affected
are those involving displacements of less than 512 bytes. ‘-mshort-data-num’
is not effective for num greater than 64k.

-mserialize-volatile

-mno-serialize-volatile
Do, or don’t, generate code to guarantee sequential consistency of volatile mem-
ory references. By default, consistency is guaranteed.

The order of memory references made by the MC88110 processor does not al-
ways match the order of the instructions requesting those references. In partic-
ular, a load instruction may execute before a preceding store instruction. Such
reordering violates sequential consistency of volatile memory references, when
there are multiple processors. When consistency must be guaranteed, GNU C
generates special instructions, as needed, to force execution in the proper order.
The MC88100 processor does not reorder memory references and so always pro-
vides sequential consistency. However, by default, GNU C generates the special
instructions to guarantee consistency even when you use ‘-m88100’, so that the

Using and Porting GNU CC

code may be run on an MC88110 processor. If you intend to run your code
only on the MC88100 processor, you may use ‘-mno-serialize-volatile’.

The extra code generated to guarantee consistency may affect the performance
of your application. If you know that you can safely forgo this guarantee, you
may use ‘-mno-serialize-volatile’.

-msvr4
-msvr3 Turn on (‘-msvr4’) or off (‘-msvr3’) compiler extensions related to System
V release 4 (SVr4). This controls the following:

1. Which variant of the assembler syntax to emit.

2. ‘-msvr4’ makes the C preprocessor recognize ‘#pragma weak’ that is used
on System V release 4.

3. ‘-msvr4’ makes GNU CC issue additional declaration directives used in

Svr4.

‘-msvr4’ is the default for the m88k-motorola-sysv4 and m88k-dg-dgux m88k
configurations. ‘-msvr3’ is the default for all other m88k configurations.

-mversion-03.00
This option is obsolete, and is ignored.

-mno-check-zero-division

-mcheck-zero-division
Do, or don’t, generate code to guarantee that integer division by zero will be
detected. By default, detection is guaranteed.

Some models of the MC88100 processor fail to trap upon integer division by
zero under certain conditions. By default, when compiling code that might be
run on such a processor, GNU C generates code that explicitly checks for zero-
valued divisors and traps with exception number 503 when one is detected. Use
of mno-check-zero-division suppresses such checking for code generated to run
on an MC88100 processor.

GNU C assumes that the MC88110 processor correctly detects all instances of
integer division by zero. When ‘-m88110’ is specified, both ‘-mcheck-zero-division’]]
and ‘-mno-check-zero-division’ are ignored, and no explicit checks for zero-
valued divisors are generated.

-muse-div-instruction
Use the div instruction for signed integer division on the MC88100 processor.
By default, the div instruction is not used.

On the MC88100 processor the signed integer division instruction div) traps
to the operating system on a negative operand. The operating system trans-
parently completes the operation, but at a large cost in execution time. By
default, when compiling code that might be run on an MC88100 processor,
GNU C emulates signed integer division using the unsigned integer division in-
struction divu), thereby avoiding the large penalty of a trap to the operating
system. Such emulation has its own, smaller, execution cost in both time and
space. To the extent that your code’s important signed integer division oper-

Chapter 4: GNU CC Command Options

-mtrap-lar
-mhandle-1

“mwarn-pas

ations are performed on two nonnegative operands, it may be desirable to use
the div instruction directly.

On the MC88110 processor the div instruction (also known as the divs instruc-
tion) processes negative operands without trapping to the operating system.
When ‘-m88110’ is specified, ‘-muse-div-instruction’is ignored, and the div
instruction is used for signed integer division.

Note that the result of dividing INT_MIN by -1 is undefined. In particular, the
behavior of such a division with and without ‘-muse-div-instruction’ may

differ.

ge-shift

arge-shift

Include code to detect bit-shifts of more than 31 bits; respectively, trap such
shifts or emit code to handle them properly. By default GNU CC makes no
special provision for large bit shifts.

sed-structs
Warn when a function passes a struct as an argument or result. Structure-
passing conventions have changed during the evolution of the C language, and
are often the source of portability problems. By default, GNU CC issues no
such warning.

4.14.8 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower
-Mno-power
-mpower2
-Mno-power
-mMpowWerpc
-Mno-power
-mpowerpc-
-Mno-power
-mpowerpc-
-Mno-power

2

pc
gpopt

pc-gpopt

gfxopt

pc-gfxopt

GNU CC supports two related instruction set architectures for the RS/6000
and PowerPC. The POWER instruction set are those instructions supported
by the ‘rios’ chip set used in the original RS/6000 systems and the PowerPC
instruction set is the architecture of the Motorola MPC6xx microprocessors.
The PowerPC architecture defines 64-bit instructions, but they are not sup-
ported by any current processors.

Neither architecture is a subset of the other. However there is a large com-
mon subset of instructions supported by both. An MQ register is included in
processors supporting the POWER, architecture.

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring

Using and Porting GNU CC

GNU CC. Specifying the ‘-mcpu=cpu_type’ overrides the specification of these
options. We recommend you use that option rather than these.

The ‘-mpower’ option allows GNU CC to generate instructions that are found
only in the POWER architecture and to use the MQ register. Specifying
‘-mpower2’ implies ‘-power’ and also allows GNU CC to generate instructions
that are present in the POWER?2 architecture but not the original POWER
architecture.

The ‘-mpowerpc’ option allows GNU CC to generate instructions that are
found only in the 32-bit subset of the PowerPC architecture. Specifying
‘-mpowerpc-gpopt’ implies ‘-mpowerpc’ and also allows GNU CC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying ‘-mpowerpc-gfxopt’ implies
‘-mpowerpc’ and also allows GNU CC to use the optional PowerP C architecture
instructions in the Graphics group, including floating-point select.

If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GNU CC will use only
the instructions in the common subset of both architectures plus some special
AIX common-mode calls, and will not use the MQ register. Specifying both
‘-mpower’ and ‘-mpowerpc’ permits GNU CC to use any instruction from either
architecture and to allow use of the MQ register; specify this for the Motorola
MPC601.

-mnew-mnemonics

-mold-mnemonics
Select which mnemonics to use in the generated assembler code. ‘-mnew-mnemonics’ll
requests output that uses the assembler mnemonics defined for the PowerPC
architecture, while ‘-mold-mnemonics’ requests the assembler mnemonics de-
fined for the POWER architecture. Instructions defined in only one architecture
have only one mnemonic; GNU CC uses that mnemonic irrespective of which
of these options is specified.

PowerPC assemblers support both the old and new mnemonics, as will later
POWER assemblers. Current POWER assemblers only support the old
mnemonics. Specify ‘-mnew-mnemonics’ if you have an assembler that sup-
ports them, otherwise specify ‘-mold-mnemonics’.

The default value of these options depends on how GNU CC was configured.
Specifying ‘-mcpu=cpu_type’ sometimes overrides the value of these option. Un-
less you are building a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead accept the de-
fault.

-mcpu=cpu ‘type
Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu_type. By default, cpu_type is the
target system defined when GNU CC was configured. Supported values for
cpu_type are ‘rios?’, ‘rios2’, ‘rsc’, ‘601’, ‘603’, ‘604’, ‘power’, ‘powerpc’,
‘403’, and ‘common’. ‘-mcpu=power’ and ‘-mcpu=powerpc’ specify generic
POWER and pure PowerPC (i.e., not MPC601) architecture machine types,
with an appropriate, generic processor model assumed for scheduling purposes.

Chapter 4: GNU CC Command Options

Specifying ‘-mcpu=riosl1’, ‘-mcpu=rios2’, ‘-mcpu=rsc’, or ‘-mcpu=power’ en-

ables the ‘-mpower’ option and disables the ‘-mpowerpc’ option; ‘-mcpu=601’
enables both the ‘-mpower’ and ‘-mpowerpc’ options; ‘-mcpu=603’, ‘-mcpu=604’,
‘-mcpu=403’, and ‘-mcpu=powerpc’ enable the ‘-mpowerpc’ option and dis-
able the ‘-mpower’ option; ‘-mcpu=common’ disables both the ‘-mpower’ and
‘-mpowerpc’ options.

To generate code that will operate on all members of the RS/6000 and PowerPC
families, specify ‘-mcpu=common’. In that case, GNU CC will use only the
instructions in the common subset of both architectures plus some special AIX
common-mode calls, and will not use the MQ register. GNU CC assumes a
generic processor model for scheduling purposes.

Specifying ‘-mcpu=rios?’, ‘-mcpu=rios2’, ‘-mcpu=rsc’, or ‘-mcpu=power’ also
disables the ‘new-mnemonics’ option. Specifying ‘-mcpu=601’, ‘-mcpu=603’,
‘-mcpu=604’, ‘403’, or ‘-mcpu=powerpc’ also enables the ‘new-mnemonics’ op-
tion.

-mfull-toc

-mno-fp-in-toc

-mno-sum-in-toc

-mminimal-toc
Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case,
GNU CC will allocate at least one TOC entry for each unique non-automatic
variable reference in your program. GNU CC will also place floating-point
constants in the TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the
available TOC space, you can reduce the amount of TOC space used with
the ‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’
prevents GNU CC from putting floating-point constants in the TOC and
‘-mno-sum-in-toc’ forces GNU CC to generate code to calculate the sum of
an address and a constant at run-time instead of putting that sum into the
TOC. You may specify one or both of these options. Each causes GNU CC to
produce very slightly slower and larger code at the expense of conserving TOC
space.

If you still run out of space in the TOC even when you specify both of these
options, specify ‘-mminimal-toc’ instead. This option causes GNU CC to make
only one TOC entry for every file. When you specify this option, GNU CC will
produce code that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that contain less frequently
executed code.

-msoft-float

-mhard-float
Generate code that does not use (uses) the floating-point register set. Software
floating point emulation is provided if you use the ‘-msoft-float’ option, and
pass the option to GNU CC when linking.

Using and Porting GNU CC

-mmultiple

-mno-multiple
Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated by
default on POWER systems, and not generated on PowerPC systems. Do not
use ‘-mmultiple’ on little endian PowerPC systems, since those instructions do
not work when the processor is in little endian mode.

-mstring

-mno-string
Generate code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block
moves. These instructions are generated by default on POWER systems, anod
not generated on PowerPC systems. Do not use ‘-mstring’ on little endian
PowerPC systems, since those instructions do not work when the processor is
in little endian mode.

-mno-bit-align

-mbit-align
On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit fields to be aligned to the base type of the bit field.

For example, by default a structure containing nothing but 8 unsigned bitfields
of length 1 would be aligned to a 4 byte boundary and have a size of 4 bytes. By
using ‘-mno-bit-align’, the structure would be aligned to a 1 byte boundary
and be one byte in size.

-mno-strict-align

-mstrict-align
On System V.4 and embedded PowerPC systems do not (do) assume that un-
aligned memory references will be handled by the system.

-mrelocatable

-mno-relocatable
On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime.

-mno-toc

-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that reg-
ister 2 contains a pointer to a global area pointing to the addresses used in the
program.

-mno-traceback

-mtraceback
On embedded PowerPC systems do not (do) generate a traceback tag before
the start of the function. This tag can be used by the debugger to identify
where the start of a function is.

-mlittle

-mlittle-endian
On System V.4 and embedded PowerPC systems compile code for the processor
in little endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

Chapter 4: GNU CC Command Options

-mbig

-mbig-endian
On System V.4 and embedded PowerPC systems compile code for the processor
in big endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless
you configured GCC using ‘powerpc-*-eabiaix’.

-mcall-aix
On System V.4 and embedded PowerPC systems compile code using calling
conventions that are similar to those used on AIX. This is the default if you
configured GCC using ‘powerpc-*-eabiaix’.

-mprototype

-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to vari-
able argument functions are properly prototyped. Otherwise, the compiler must
insert an instruction before every non prototyped call to set or clear bit 6
of the condition code register (CR) to indicate whether floating point values
were passed in the floating point registers in case the function takes a variable
arguments. With ‘-mprototype’, only calls to prototyped variable argument
functions will set or clear the bit.

4.14.9 IBM RT Options

These ‘-m’ options are defined for the IBM RT PC:

-min-line-mul
Use an in-line code sequence for integer multiplies. This is the default.

-mcall-lib-mul
Call 1mul$$ for integer multiples.

-mfull-fp-blocks
Generate full-size floating point data blocks, including the minimum amount of
scratch space recommended by IBM. This is the default.

-mminimum-fp-blocks
Do not include extra scratch space in floating point data blocks. This results
in smaller code, but slower execution, since scratch space must be allocated
dynamically.

-mfp-arg-in-fpregs
Use a calling sequence incompatible with the IBM calling convention in which
floating point arguments are passed in floating point registers. Note that
varargs.h and stdargs.h will not work with floating point operands if this
option is specified.

Using and Porting GNU CC

-mfp-arg-in-gregs
Use the normal calling convention for floating point arguments. This is the
default.

-mhc-struct-return
Return structures of more than one word in memory, rather than in a register.
This provides compatibility with the MetaWare HighC (hc) compiler. Use the
option ‘-fpcc-struct-return’ for compatibility with the Portable C Compiler
(pec).

-mnohc-struct-return
Return some structures of more than one word in registers, when convenient.
This is the default. For compatibility with the IBM-supplied compilers, use the
option ‘-fpcc-struct-return’ or the option ‘-mhc-struct-return’.

4.14.10 MIPS Options

These ‘-m’ options are defined for the MIPS family of computers:

-mcpu=cpu type
Assume the defaults for the machine type cpu type when scheduling instruc-
tions. The choices for cpu type are ‘r2000°, ‘r3000°, ‘r4000’, ‘r4400’, ‘r4600’,
and ‘r6000’. While picking a specific cpu type will schedule things appropri-
ately for that particular chip, the compiler will not generate any code that does
not meet level 1 of the MIPS ISA (instruction set architecture) without the
‘-mips2’ or ‘-mips3’ switches being used.

-mips1i Issue instructions from level 1 of the MIPS ISA. This is the default. ‘r3000’ is
the default cpu type at this ISA level.

-mips?2 Issue instructions from level 2 of the MIPS ISA (branch likely, square root
instructions). ‘r6000’ is the default cpu type at this ISA level.

-mips3 Issue instructions from level 3 of the MIPS ISA (64 bit instructions). ‘r4000’
is the default cpu type at this ISA level. This option does not change the sizes
of any of the C data types.

-mfp32 Assume that 32 32-bit floating point registers are available. This is the default.

-mfp64 Assume that 32 64-bit floating point registers are available. This is the default
when the ‘-mips3’ option is used.

-mgp32 Assume that 32 32-bit general purpose registers are available. This is the de-
fault.

-mgp64 Assume that 32 64-bit general purpose registers are available. This is the default
when the ‘-mips3’ option is used.

-mint64 Types long, int, and pointer are 64 bits. This works only if ‘-mips3’ is also
specified.

-mlong64 Types long and pointer are 64 bits, and type int is 32 bits. This works only if
‘-mips3’ is also specified.

Chapter 4: GNU CC Command Options

-mmips-as
Generate code for the MIPS assembler, and invoke ‘mips-tfile’ to add nor-
mal debug information. This is the default for all platforms except for the
OSF/1 reference platform, using the OSF /rose object format. If the either of
the ‘-gstabs’ or ‘-gstabs+’ switches are used, the ‘mips-tfile’ program will
encapsulate the stabs within MIPS ECOFF.

-mgas Generate code for the GNU assembler. This is the default on the OSF /1 refer-
ence platform, using the OSF /rose object format.

-mrnames

-mno-rnames
The ‘-mrnames’ switch says to output code using the MIPS software names for
the registers, instead of the hardware names (ie, a0 instead of $4). The only
known assembler that supports this option is the Algorithmics assembler.

-mgpopt

-mno-gpopt
The ‘-mgpopt’ switch says to write all of the data declarations before the in-
structions in the text section, this allows the MIPS assembler to generate one
word memory references instead of using two words for short global or static
data items. This is on by default if optimization is selected.

-mstats

-mno-stats
For each non-inline function processed, the ‘-mstats’ switch causes the compiler
to emit one line to the standard error file to print statistics about the program
(number of registers saved, stack size, etc.).

-mmemcpy

-MNo-memcpy
The ‘-mmemcpy’ switch makes all block moves call the appropriate string func-
tion (‘memcpy’ or ‘bcopy’) instead of possibly generating inline code.

-mmips-tfile

-mno-mips-tfile
The ‘-mno-mips-tfile’ switch causes the compiler not postprocess the object
file with the ‘mips-tfile’ program, after the MIPS assembler has generated it
to add debug support. If ‘mips-tfile’is not run, then no local variables will be
available to the debugger. In addition, ‘stage2’ and ‘stage3’ objects will have
the temporary file names passed to the assembler embedded in the object file,
which means the objects will not compare the same. The ‘-mno-mips-tfile’
switch should only be used when there are bugs in the ‘mips-tfile’ program
that prevents compilation.

-msoft-float
Generate output containing library calls for floating point. Warning: the requi-
site libraries are not part of GNU CC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

Using and Porting GNU CC

-mhard-float
Generate output containing floating point instructions. This is the default if
you use the unmodified sources.

-mabicalls

-mno-abicalls
Emit (or do not emit) the pseudo operations ‘.abicalls’, ‘.cpload’, and
‘.cprestore’ that some System V.4 ports use for position independent code.

4

-mlong-calls

-mno-long-calls
Do all calls with the ‘JALR’ instruction, which requires loading up a function’s
address into a register before the call. You need to use this switch, if you call
outside of the current 512 megabyte segment to functions that are not through
pointers.

-mhalf-pic

-mno-half-pic
Put pointers to extern references into the data section and load them up, rather
than put the references in the text section.

-membedded-pic

-mno-embedded-pic
Generate PIC code suitable for some embedded systems. All calls are made
using PC relative address, and all data is addressed using the $gp register.
This requires GNU as and GNU Id which do most of the work.

-membedded-data

-mno-embedded-data
Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.

-msingle-float

-mdouble-float
The ‘-msingle-float’ switch tells gcc to assume that the floating point copro-
cessor only supports single precision operations, as on the ‘r4650’ chip. The
‘-mdouble-float’ switch permits gcc to use double precision operations. This
is the default.

-mmad
-mno-mad Permit use of the ‘mad’, ‘madu’ and ‘mul’ instructions, as on the ‘r4650’ chip.

-m4650 Turns on ‘-msingle-float’, ‘-mmad’, and, at least for now, ‘-mcpu=r4650’.

-EL Compile code for the processor in little endian mode. The requisite libraries
are assumed to exist.

-EB Compile code for the processor in big endian mode. The requisite libraries are
assumed to exist.

Chapter 4: GNU CC Command Options

-G num Put global and static items less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss section. This allows the
assembler to emit one word memory reference instructions based on the global
pointer (gp or $28), instead of the normal two words used. By default, num is
8 when the MIPS assembler is used, and 0 when the GNU assembler is used.
The ‘-G num’ switch is also passed to the assembler and linker. All modules
should be compiled with the same ‘-G num’ value.

-nocpp Tell the MIPS assembler to not run it’s preprocessor over user assembler files
(with a ¢. s’ suffix) when assembling them.

These options are defined by the macro TARGET_SWITCHES in the machine description.
The default for the options is also defined by that macro, which enables you to change the
defaults.

4.14.11 Intel 386 Options

These ‘-m’ options are defined for the i386 family of computers:

-m486

-m386 Control whether or not code is optimized for a 486 instead of an 386. Code
generated for an 486 will run on a 386 and vice versa.

-mieee-fp

-mno-ieee-£fp
Control whether or not the compiler uses IEEE floating point comparisons.
These handle correctly the case where the result of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point. Warning: the requi-
site libraries are not part of GNU CC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

On machines where a function returns floating point results in the 80387 register
stack, some floating point opcodes may be emitted even if ‘-msoft-float’ is
used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.

The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt instructions for
the 387. Specify this option to avoid generating those instructions. This op-
tion is the default on FreeBSD. As of revision 2.6.1, these instructions are not
generated unless you also use the ‘-ffast-math’ switch.

Using and Porting GNU CC

-malign-double

-mno-align-double
Control whether GNU CC aligns double, long double, and long long vari-
ables on a two word boundary or a one word boundary. Aligning double vari-
ables on a two word boundary will produce code that runs somewhat faster on
a ‘Pentium’ at the expense of more memory.

Warning: if you use the ‘-malign-double’ switch, structures containing the

above types will be aligned differently than the published application binary
interface specifications for the 386.

-msvr3-shlib

-mno-svr3-shlib
Control whether GNU CC places uninitialized locals into bss or data. ‘-msvr3-shlib’}}
places these locals into bss. These options are meaningful only on System V
Release 3.

-mno-wide-multiply

-mwide-multiply
Control whether GNU CC uses the mul and imul that produce 64 bit results in
eax:edx from 32 bit operands to do long long multiplies and 32-bit division
by constants.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the ret num instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.

You can specify that an individual function is called with this calling sequence
with the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option
by using the function attribute ‘cdecl’. See Section 6.22 [Function Attributes],
page 129

Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

-mreg-alloc=regs
Control the default allocation order of integer registers. The string regs is a
series of letters specifying a register. The supported letters are: a allocate EAX;
b allocate EBX; c allocate ECX; d allocate EDX; S allocate ESI; D allocate EDI;
B allocate EBP.

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You

Chapter 4: GNU CC Command Options

can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 6.22 [Function Attributes], page 129

Warning: if you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-malign-loops=num
Align loops to a 2 raised to a num byte boundary. If ‘-malign-loops’ is not
specified, the default is 2.

-malign-jumps=num
Align instructions that are only jumped to to a 2 raised to a num byte boundary.
If ‘-malign-jumps’ is not specified, the default is 2 if optimizing for a 386, and
4 if optimizing for a 486.

-malign-functions=num
Align the start of functions to a 2 raised to num byte boundary. If ‘-malign-jumps’|]
is not specified, the default is 2 if optimizing for a 386, and 4 if optimizing for
a 486.

4.14.12 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

-mpa-risc-1-0
Generate code for a PA 1.0 processor.

-mpa-risc-1-1
Generate code for a PA 1.1 processor.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

-mmillicode-long-calls
Generate code which assumes millicode routines can not be reached by the
standard millicode call sequence, linker-generated long-calls, or linker-modified
millicode calls. In practice this should only be needed for dynamicly linked
executables with extremely large SHLIB_INFO sections.

-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is nec-
essary for compiling kernels which perform lazy context switching of floating
point registers. If you use this option and attempt to perform floating point
operations, the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

Using and Porting GNU CC

-mfast-indirect-calls
Generate code which performs faster indirect calls. Such code is suitable for
kernels and for static linking. The fast indirect call code will fail miserably if it’s
part of a dynamically linked executable and in the presense of nested functions.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu type
Schedule code according to the constraints for the machine type cpu type. The
choices for cpu type are ‘700’ for 7Tn0 machines, ‘7100’ for 7Tn5 machines, and
“7100’ for 7Tn2 machines. ‘700’ is the default for cpu type.

Note the ‘7100LC’ scheduling information is incomplete and using ‘7100LC’ often
leads to bad schedules. For now it’s probably best to use ‘7100’ instead of
“7100LC’ for the Tn2 machines.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded target ‘hppal.1-*-pro’
does provide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particular,
you need to compile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

4.14.13 Intel 960 Options

These ‘-m’ options are defined for the Intel 960 implementations:

-mcpu type
Assume the defaults for the machine type cpu type for some of the other options,
including instruction scheduling, floating point support, and addressing modes.
The choices for cpu type are ‘ka’, ‘kb’, ‘mc’, ‘ca’, ‘cf’, ‘sa’, and ‘sb’. The
default is ‘kb’.

-mnumerics

-msoft-float
The ‘-mnumerics’ option indicates that the processor does support floating-
point instructions. The ‘-msoft-float’ option indicates that floating-point
support should not be assumed.

-mleaf-procedures

-mno-leaf-procedures
Do (or do not) attempt to alter leaf procedures to be callable with the bal
instruction as well as call. This will result in more efficient code for explicit

Chapter 4: GNU CC Command Options

calls when the bal instruction can be substituted by the assembler or linker,
but less efficient code in other cases, such as calls via function pointers, or using
a linker that doesn’t support this optimization.

-mtail-call

-mno-tail-call
Do (or do not) make additional attempts (beyond those of the machine-
independent portions of the compiler) to optimize tail-recursive calls into
branches. You may not want to do this because the detection of cases where
this is not valid is not totally complete. The default is ‘-mno-tail-call’.

-mcomplex-addr

-mno-complex-addr
Assume (or do not assume) that the use of a complex addressing mode is a win
on this implementation of the i960. Complex addressing modes may not be
worthwhile on the K-series, but they definitely are on the C-series. The default
is currently ‘-mcomplex-addr’ for all processors except the CB and CC.

-mcode-align

-mno-code-align
Align code to 8-byte boundaries for faster fetching (or don’t bother). Currently
turned on by default for C-series implementations only.

-mic-compat
-mic2.0-compat
-mic3.0-compat
Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat
-mintel-asm
Enable compatibility with the iC960 assembler.

-mstrict-align
-mno-strict-align
Do not permit (do permit) unaligned accesses.

-mold-align
Enable structure-alignment compatibility with Intel’s gcc release version 1.3
(based on gec 1.37). Currently this is buggy in that ‘#pragma align 1’is always
assumed as well, and cannot be turned off.

4.14.14 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float

-msoft-float
Use (do not use) the hardware floating-point instructions for floating-point op-
erations. When -msoft-float is specified, functions in ‘libgccl.c’ will be
used to perform floating-point operations. Unless they are replaced by routines
that emulate the floating-point operations, or compiled in such a way as to call

Using and Porting GNU CC

such emulations routines, these routines will issue floating-point operations. If
you are compiling for an Alpha without floating-point operations, you must
ensure that the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required
to have floating-point registers.

-mfp-reg

-mno-fp-regs
Generate code that uses (does not use) the floating-point register set. -mno-
fp-regs implies -msoft-float. If the floating-point register set is not used,
floating point operands are passed in integer registers as if they were integers
and floating-point results are passed in $0 instead of $f0. This is a non-standard
calling sequence, so any function with a floating-point argument or return value
called by code compiled with -mno-fp-regs must also be compiled with that
option.
A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any floating-point registers.

4.14.15 Clipper Options

These ‘-m’ options are defined for the Clipper implementations:

-mc300 Produce code for a C300 Clipper processor. This is the default.
-mc400 Produce code for a C400 Clipper processor i.e. use floating point registers

18..f15.

4.14.16 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’. See section “1d and the H8/300” in Using Id, for a fuller
description.

-mh Generate code for the H8/300H.

4.14.17 Options for System V

These additional options are available on System V Release 4 for compatibility with
other compilers on those systems:

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler
directive in the output.

-Qn Refrain from adding .ident directives to the output file (this is the default).
-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-1’.

-Ym, dir Look in the directory dir to find the M4 preprocessor. The assembler uses this
option.

Chapter 4: GNU CC Command Options

4.15 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code gen-
eration.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather
than in registers. This convention is less efficient, but it has the advantage
of allowing intercallability between GNU CC-compiled files and files compiled
with other compilers.

The precise convention for returning structures in memory depends on the tar-
get configuration macros.

Short structures and unions are those whose size and alignment match that of
some integer type.

-freg-struct-return
Use the convention that struct and union values are returned in registers when
possible. This is more efficient for small structures than ‘-fpcc-struct-return’]]

If you specify neither ‘-fpcc-struct-return’nor its contrary ‘-freg-struct-return’,|
GNU CC defaults to whichever convention is standard for the target. If there is
no standard convention, GNU CC defaults to ‘-fpcc-struct-return’, except
on targets where GNU CC is the principal compiler. In those cases, we can
choose the standard, and we chose the more efficient register return alternative.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range
of possible values. Specifically, the enum type will be equivalent to the smallest
integer type which has enough room.

-fshort-double
Use the same size for double as for float.

-fshared-data
Requests that the data and non-const variables of this compilation be shared
data rather than private data. The distinction makes sense only on certain
operating systems, where shared data is shared between processes running the
same program, while private data exists in one copy per process.

-fno-common
Allocate even uninitialized global variables in the bss section of the object file,
rather than generating them as common blocks. This has the effect that if the
same variable is declared (without extern) in two different compilations, you
will get an error when you link them. The only reason this might be useful is
if you wish to verify that the program will work on other systems which always
work this way.

-fno-ident

Using and Porting GNU CC

Ignore the ‘#ident’ directive.

-fno-gnu-linker

Do not output global initializations (such as C++ constructors and destructors)
in the form used by the GNU linker (on systems where the GNU linker is the
standard method of handling them). Use this option when you want to use a
non-GNU linker, which also requires using the collect2 program to make sure
the system linker includes constructors and destructors. (collect2 is included
in the GNU CC distribution.) For systems which must use collect2, the
compiler driver gcc is configured to do this automatically.

-finhibit-size-directive

Don’t output a .size assembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at lo-
cations far apart in memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm

-fvolatile

Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need

to read the generated assembly code (perhaps while debugging the compiler
itself).

Consider all memory references through pointers to be volatile.

-fvolatile-global

-fpic

-fPIC

Consider all memory references to extern and global data items to be volatile.

Generate position-independent code (PIC) suitable for use in a shared library,
if supported for the target machine. Such code accesses all constant addresses
through a global offset table (GOT). If the GOT size for the linked executable
exceeds a machine-specific maximum size, you get an error message from the
linker indicating that ‘-fpic’ does not work; in that case, recompile with ‘-fPIC’
instead. (These maximums are 16k on the m88k, 8k on the Sparc, and 32k on

the m68k and RS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only
on certain machines. For the 386, GNU CC supports PIC for System V but
not for the Sun 386i. Code generated for the IBM RS/6000 is always position-
independent.

The GNU assembler does not fully support PIC. Currently, you must use some
other assembler in order for PIC to work. We would welcome volunteers to
upgrade GAS to handle this; the first part of the job is to figure out what the
assembler must do differently.

If supported for the target machine, emit position-independent code, suitable
for dynamic linking and avoiding any limit on the size of the global offset table.
This option makes a difference on the m68k, m88k and the Sparc.

Chapter 4: GNU CC Command Options

Position-independent code requires special support, and therefore works only
on certain machines.

-ffixed-reg

Treat the register named reg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other

fixed role).

reg must be the name of a register. The register names accepted are machine-
specific and are defined in the REGISTER_NAMES macro in the machine descrip-
tion macro file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg

Treat the register named reg as an allocatable register that is clobbered by
function calls. It may be allocated for temporaries or variables that do not live
across a call. Functions compiled this way will not save and restore the register
reg.

Use of this flag for a register that has a fixed pervasive role in the machine’s exe-
cution model, such as the stack pointer or frame pointer, will produce disastrous
results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg

Treat the register named reg as an allocatable register saved by functions.
It may be allocated even for temporaries or variables that live across a call.
Functions compiled this way will save and restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine’s exe-
cution model, such as the stack pointer or frame pointer, will produce disastrous
results.

A different sort of disaster will result from the use of this flag for a register in
which function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct

+e0
+el

Pack all structure members together without holes. Usually you would not
want to use this option, since it makes the code suboptimal, and the offsets of
structure members won’t agree with system libraries.

Control whether virtual function definitions in classes are used to generate code,
or only to define interfaces for their callers. (C++ only).

These options are provided for compatibility with cfront 1.x usage; the rec-
ommended alternative GNU C++ usage is in flux. See Section 7.4 [Declarations
and Definitions in One Header], page 151.

With ‘+e0’, virtual function definitions in classes are declared extern; the dec-
laration is used only as an interface specification, not to generate code for the
virtual functions (in this compilation).

Using and Porting GNU CC

With ‘+e1’, G++ actually generates the code implementing virtual functions
defined in the code, and makes them publicly visible.

4.16 Environment Variables Affecting GNU CC

This section describes several environment variables that affect how GNU CC operates.
They work by specifying directories or prefixes to use when searching for various kinds of

files.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and *-L’
(see Section 4.12 [Directory Options], page 51). These take precedence over places specified
using environment variables, which in turn take precedence over those specified by the
configuration of GNU CC. See Section 17.1 [Driver], page 293.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GNU CC
uses temporary files to hold the output of one stage of compilation which is to
be used as input to the next stage: for example, the output of the preprocessor,
which is the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the
subprograms executed by the compiler. No slash is added when this prefix is
combined with the name of a subprogram, but you can specify a prefix that
ends with a slash if you wish.

If GNU CC cannot find the subprogram using the specified prefix, it tries look-
ing in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is ‘prefix/1ib/gcc-1ib/’ where prefix
is the value of prefix when you ran the ‘configure’ script.

Other prefixes specified with ‘-B’ take precedence over this prefix.
This prefix is also used for finding files such as ‘crt0. 0o’ that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to
search for header files. For each of the standard directories whose name nor-
mally begins with ‘/usr/local/lib/gcc-1ib’ (more precisely, with the value of
GCC_INCLUDE_DIR), GNU CC tries replacing that beginning with the specified
prefix to produce an alternate directory name. Thus, with ‘-Bfoo/’, GNU CC
will search ‘foo/bar’ where it would normally search ‘/usr/local/lib/bar’.
These alternate directories are searched first; the standard directories come
next.

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of directories, much like
PATH. GNU CC tries the directories thus specified when searching for subpro-
grams, if it can’t find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of directories, much like
PATH. When configured as a native compiler, GNU CC tries the directories
thus specified when searching for special linker files, if it can’t find them using

Chapter 4: GNU CC Command Options

GCC_EXEC_PREFIX. Linking using GNU CC also uses these directories when
searching for ordinary libraries for the ‘-1’ option (but directories specified
with ‘-L’ come first).

C_INCLUDE_PATH

CPLUS_INCLUDE_PATH

OBJC_INCLUDE_PATH
These environment variables pertain to particular languages. Each variable’s
value is a colon-separated list of directories, much like PATH. When GNU CC
searches for header files, it tries the directories listed in the variable for the
language you are using, after the directories specified with ‘-I’ but before the
standard header file directories.

DEPENDENCIES_QUTPUT
If this variable is set, its value specifies how to output dependencies for Make
based on the header files processed by the compiler. This output looks much
like the output from the ‘-M’ option (see Section 4.9 [Preprocessor Options],
page 47), but it goes to a separate file, and is in addition to the usual results
of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the
Make rules are written to that file, guessing the target name from the source
file name. Or the value can have the form ‘file target’, in which case the rules
are written to file file using target as the target name.

4.17 Running Protoize

The program protoize is an optional part of GNU C. You can use it to add prototypes
to a program, thus converting the program to ANSI C in one respect. The companion
program unprotoize does the reverse: it removes argument types from any prototypes
that are found.

When you run these programs, you must specify a set of source files as command line
arguments. The conversion programs start out by compiling these files to see what functions
they define. The information gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all eligible to be converted;
any files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert
only source and header files in the current directory. You can specify additional directories
whose files should be converted with the ‘-d directory’ option. You can also specify partic-
ular files to exclude with the ‘-x file’ option. A file is converted if it is eligible, its directory
name matches one of the specified directory names, and its name within the directory has
not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and func-
tion declarations to specify the types of the arguments. The only ones not rewritten are
those for varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file,
to make them available for any calls that precede the function’s definition. Or it can insert
prototype declarations with block scope in the blocks where undeclared functions are called.

Using and Porting GNU CC

Basic conversion with unprotoize consists of rewriting most function declarations to
remove any argument types, and rewriting function definitions to the old-style pre-ANSI
form.

Both conversion programs print a warning for any function declaration or definition that

they can’t convert. You can suppress these warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source file. The original
file is renamed to a name ending with ¢.save’. If the ‘.save’ file already exists, then the
source file is simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the program and
collect information about the functions it uses. So neither of these programs will work until

GNU CC is installed.

Here is a table of the options you can use with protoize and unprotoize. Each option
works with both programs unless otherwise stated.

-B directory
Look for the file ‘SYSCALLS.c.X’ in directory, instead of the usual directory
(normally ‘/usr/local/1lib’). This file contains prototype information about
standard system functions. This option applies only to protoize.

-c compilation-options
Use compilation-options as the options when running gcc to produce the ¢.X’
files. The special option ‘-~aux-info’ is always passed in addition, to tell gcc
to write a ‘. X’ file.

Note that the compilation options must be given as a single argument to
protoize or unprotoize. If you want to specify several gcc options, you must
quote the entire set of compilation options to make them a single word in the

shell.

There are certain gcc arguments that you cannot use, because they would
produce the wrong kind of output. These include ‘-g’, ‘-0°, ‘-c’, *-3’, and ‘-0’
If you include these in the compilation-options, they are ignored.

-C Rename files to end in ¢.C’ instead of ¢.c’. This is convenient if you are con-
verting a C program to C++. This option applies only to protoize.

-g Add explicit global declarations. This means inserting explicit declarations at
the beginning of each source file for each function that is called in the file and
was not declared. These declarations precede the first function definition that
contains a call to an undeclared function. This option applies only to protoize.

-i string Indent old-style parameter declarations with the string string. This option
applies only to protoize.

unprotoize converts prototyped function definitions to old-style function def-
initions, where the arguments are declared between the argument list and the
initial ‘{’. By default, unprotoize uses five spaces as the indentation. If you
want to indent with just one space instead, use ‘-1 " ',

-k Keep the ¢.X’ files. Normally, they are deleted after conversion is finished.

Chapter 4: GNU CC Command Options

-1 Add explicit local declarations. protoize with ‘-1’ inserts a prototype dec-
laration for each function in each block which calls the function without any
declaration. This option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions
that would have been done without ‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted. Use this option
with caution.

-p program
Use the program program as the compiler. Normally, the name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.
-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s source files, then
you should generate that file’s ¢. X’ file specially, by running gcc on that source file with the
appropriate options and the option ‘-aux-info’. Then run protoize on the entire set of
files. protoize will use the existing ‘.X’ file because it is newer than the source file. For
example:

gcc -Dfoo=bar filel.c -aux-info
protoize *.c

You need to include the special files along with the rest in the protoize command, even
though their ‘. X’ files already exist, because otherwise they won’t get converted.

See Section 8.11 [Protoize Caveats], page 174, for more information on how to use
protoize successfully.

Using and Porting GNU CC

Chapter 5: Installing GNU CC

5 Installing GNU CC

Here is the procedure for installing GNU CC on a Unix system. See Section 5.5 [VMS
Install], page 109, for VMS systems. In this section we assume you compile in the same
directory that contains the source files; see Section 5.2 [Other Dir], page 103, to find out
how to compile in a separate directory on Unix systems.

You cannot install GNU C by itself on MSDOS; it will not compile under any MSDOS
compiler except itself. You need to get the complete compilation package DJGPP, which
includes binaries as well as sources, and includes all the necessary compilation tools and
libraries.

1. If you have built GNU CC previously in the same directory for a different target
machine, do ‘make distclean’ to delete all files that might be invalid. One of the
files this deletes is ‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does not
exist, it probably means that the directory is already suitably clean.

2. On a System V release 4 system, make sure ‘/usr/bin’ precedes ‘/usr/ucb’ in PATH.
The cc command in ‘/usr/ucb’ uses libraries which have bugs.

3. Specify the host, build and target machine configurations. You do this by running the
file ‘configure’.

The build machine is the system which you are using, the host machine is the system
where you want to run the resulting compiler (normally the build machine), and the
target machine is the system for which you want the compiler to generate code.

If you are building a compiler to produce code for the machine it runs on (a native
compiler), you normally do not need to specify any operands to ‘configure’; it will
try to guess the type of machine you are on and use that as the build, host and target
machines. So you don’t need to specify a configuration when building a native compiler
unless ‘configure’ cannot figure out what your configuration is or guesses wrong.

In those cases, specify the build machine’s configuration name with the ‘--build’
option; the host and target will default to be the same as the build machine. (If you
are building a cross-compiler, see Section 5.3 [Cross-Compiler], page 104.)

Here is an example:
./configure --build=sparc-sun-sunos4.1
A configuration name may be canonical or it may be more or less abbreviated.

A canonical configuration name has three parts, separated by dashes. It looks like this:
‘cpu-company-system’. (The three parts may themselves contain dashes; ‘configure’
can figure out which dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’
specifies a Sun 3.

You can also replace parts of the configuration by nicknames or aliases. For example,
‘sun3’ stands for ‘m68k-sun’, so ‘sun3-sunos4.1’ is another way to specify a Sun 3.
You can also use simply ‘sun3-sunos’, since the version of SunOS is assumed by default
to be version 4. ‘sun3-bsd’ also works, since ‘configure’ knows that the only BSD
variant on a Sun 3 is SunOS.

You can specify a version number after any of the system types, and some of the CPU
types. In most cases, the version is irrelevant, and will be ignored. So you might as
well specify the version if you know it.

Using and Porting GNU CC

See Section 5.1 [Configurations], page 91, for a list of supported configuration names
and notes on many of the configurations. You should check the notes in that section
before proceeding any further with the installation of GNU CC.

There are four additional options you can specify independently to describe variant
hardware and software configurations. These are ‘--with-gnu-as’, ‘--with-gnu-1d’,
‘--with-stabs’ and ‘--nfp’.

‘--with-gnu-as’
If you will use GNU CC with the GNU assembler (GAS), you should declare

this by using the ‘--with-gnu-as’ option when you run ‘configure’.

Using this option does not install GAS. It only modifies the output of GNU
CC to work with GAS. Building and installing GAS is up to you.

Conversely, if you do not wish to use GAS and do not specify ‘--with-gnu-as’]]
when building GNU CC, it is up to you to make sure that GAS is not
installed. GNU CC searches for a program named as in various directories;

if the program it finds is GAS, then it runs GAS. If you are not sure where
GNU CC finds the assembler it is using, try specifying ‘-v’ when you run

it.

The systems where it makes a difference whether you use GAS are
‘hppal.O-any-any’, ‘hppal.l-any-any’,‘i386-any-sysv’,‘i386-any-isc’ |}

‘1860-any-bsd’, ‘m68k-bull-sysv’, ‘m68k-hp-hpux’, ‘m68k-sony-bsd’,
‘m68k-altos-sysv’, ‘m68000-hp-hpux’, ‘m68000-att-sysv’, ‘any-1lynx-1lynxos’|]
and ‘mips-any’). On any other system, ‘--with-gnu-as’ has no effect.

On the systems listed above (except for the HP-PA, for ISC on the 386, and
for ‘mips-sgi-irix5.%*’), if you use GAS, you should also use the GNU
linker (and specify ‘--with-gnu-14d’).

‘--with-gnu-1d’
Specify the option ‘--with-gnu-14d’ if you plan to use the GNU linker with
GNU CC.

This option does not cause the GNU linker to be installed; it just modifies
the behavior of GNU CC to work with the GNU linker. Specifically, it
inhibits the installation of collect?2, a program which otherwise serves as
a front-end for the system’s linker on most configurations.

‘--with-stabs’
On MIPS based systems and on Alphas, you must specify whether you
want GNU CC to create the normal ECOFF debugging format, or to use
BSD-style stabs passed through the ECOFF symbol table. The normal
ECOFF debug format cannot fully handle languages other than C. BSD
stabs format can handle other languages, but it only works with the GNU
debugger GDB.

Normally, GNU CC uses the ECOFF debugging format by default; if you
prefer BSD stabs, specify ‘--with-stabs’ when you configure GNU CC.

Chapter 5: Installing GNU CC

No matter which default you choose when you configure GNU CC, the user
can use the ‘-gcoff’ and ‘-gstabs+’ options to specify explicitly the debug
format for a particular compilation.

‘--with-stabs’ is meaningful on the ISC system on the 386, also, if
‘--with-gas’is used. It selects use of stabs debugging information embed-
ded in COFF output. This kind of debugging information supports C++
well; ordinary COFF debugging information does not.

‘--with-stabs’ is also meaningful on 386 systems running SVR4. It se-
lects use of stabs debugging information embedded in ELF output. The
C++ compiler currently (2.6.0) does not support the DWARF debugging
information normally used on 386 SVR4 platforms; stabs provide a work-
able alternative. This requires gas and gdb, as the normal SVR4 tools can
not generate or interpret stabs.

‘=-nfp’ On certain systems, you must specify whether the machine has a floating
point unit. These systems include ‘m68k-sun-sunosn’and ‘m68k-isi-bsd’.
On any other system, ‘--nfp’ currently has no effect, though perhaps there
are other systems where it could usefully make a difference.

The ‘configure’ script searches subdirectories of the source directory for other com-
pilers that are to be integrated into GNU CC. The GNU compiler for C++, called G++
is in a subdirectory named ‘cp’. ‘configure’ inserts rules into ‘Makefile’ to build all
of those compilers.

Here we spell out what files will be set up by configure. Normally you need not be
concerned with these files.

o A file named ‘config.h’ is created that contains a ‘#include’ of the top-level
config file for the machine you will run the compiler on (see Chapter 18 [Config],
page 385). This file is responsible for defining information about the host machine.
It includes ‘tm.h’.

The top-level config file is located in the subdirectory ‘config’. Its name is always
‘xm-something.h’; usually ‘xm-machine.h’, but there are some exceptions.

If your system does not support symbolic links, you might want to set up
‘config.h’ to contain a ‘#include’ command which refers to the appropriate

file.

o A file named ‘tconfig.h’ is created which includes the top-level config file for
your target machine. This is used for compiling certain programs to run on that
machine.

e A file named ‘tm.h’ is created which includes the machine-description macro file
for your target machine. It should be in the subdirectory ‘config’ and its name
is often ‘machine.h’.

¢ The command file ‘configure’ also constructs the file ‘Makefile’ by adding some
text to the template file ‘Makefile.in’. The additional text comes from files in
the ‘config’ directory, named ‘t-target’ and ‘x-host’. If these files do not exist,
it means nothing needs to be added for a given target or host.

4. The standard directory for installing GNU CC is ‘/usr/local/lib’. If you want to
install its files somewhere else, specify ‘--prefix=dir’ when you run ‘configure’. Here

Using and Porting GNU CC

dir is a directory name to use instead of ‘/usr/local’ for all purposes with one excep-
tion: the directory ‘/usr/local/include’ is searched for header files no matter where
you install the compiler. To override this name, use the --local-prefix option below.

. Specify ‘--local-prefix=dir’if you want the compiler to search directory ‘dir/include’}]
for locally installed header files instead of ‘/usr/local/include’.

You should specify ‘--local-prefix’ only if your site has a different convention (not
‘/usr/local’) for where to put site-specific files.

Do not specify ‘/usr’ as the ‘--local-prefix’! The directory you use for ‘--local-prefix’j]
must not contain any of the system’s standard header files. If it did contain them,
certain programs would be miscompiled (including GNU Emacs, on certain tar-
gets), because this would override and nullify the header file corrections made by

the fixincludes script.

. Make sure the Bison parser generator is installed. (This is unnecessary if the Bison
output files ‘c-parse.c’ and ‘cexp.c’ are more recent than ‘c-parse.y’ and ‘cexp.y’
and you do not plan to change the ‘.y’ files.)

Bison versions older than Sept 8, 1988 will produce incorrect output for ‘c-parse.c’.

. If you have chosen a configuration for GNU CC which requires other GNU tools (such
as GAS or the GNU linker) instead of the standard system tools, install the required
tools in the build directory under the names ‘as’, ‘1d’ or whatever is appropriate.
This will enable the compiler to find the proper tools for compilation of the program
‘enquire’.

Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

. Build the compiler. Just type ‘make LANGUAGES=c’ in the compiler directory.

‘LANGUAGES=c’ specifies that only the C compiler should be compiled. The makefile
normally builds compilers for all the supported languages; currently, C, C++ and Ob-
jective C. However, C is the only language that is sure to work when you build with
other non-GNU C compilers. In addition, building anything but C at this stage is a
waste of time.

In general, you can specify the languages to build by typing the argument ‘LANGUAGES="1ist""]}
where list is one or more words from the list ‘c’, ‘c++’, and ‘objective-c’. If you have
any additional GNU compilers as subdirectories of the GNU CC source directory, you

may also specify their names in this list.

Ignore any warnings you may see about “statement not reached” in ‘insn-emit.c’;
they are normal. Also, warnings about “unknown escape sequence” are normal in
‘genopinit.c’ and perhaps some other files. Likewise, you should ignore warnings
about “constant is so large that it is unsigned” in ‘insn-emit.c’ and ‘insn-recog.c’
and a warning about a comparison always being zero in ‘enquire.o’. Any other com-
pilation errors may represent bugs in the port to your machine or operating system,
and should be investigated and reported (see Chapter 9 [Bugs], page 179).

Some commercial compilers fail to compile GNU CC because they have bugs or limi-
tations. For example, the Microsoft compiler is said to run out of macro space. Some
Ultrix compilers run out of expression space; then you need to break up the statement
where the problem happens.

Chapter 5: Installing GNU CC

10.

11.

12.

13.

14.

If you are building a cross-compiler, stop here. See Section 5.3 [Cross-Compiler],

page 104.

Move the first-stage object files and executables into a subdirectory with this command:
make stagel

The files are moved into a subdirectory named ‘stagel’. Once installation is complete,
you may wish to delete these files with rm -r stagel.

If you have chosen a configuration for GNU CC which requires other GNU tools (such
as GAS or the GNU linker) instead of the standard system tools, install the required
tools in the ‘stagel’ subdirectory under the names ‘as’, ‘1d’ or whatever is appropriate.
This will enable the stage 1 compiler to find the proper tools in the following stage.

Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.
Recompile the compiler with itself, with this command:

make CC='""stagel/xgcc -Bstagel/" CFLAGS='-g -02"
This is called making the stage 2 compiler.
The command shown above builds compilers for all the supported languages. If you
don’t want them all, you can specify the languages to build by typing the argument
‘LANGUAGES="Iist"’. list should contain one or more words from the list ‘c’, ‘c++’,
‘objective-c’, and ‘proto’. Separate the words with spaces. ‘proto’ stands for the
programs protoize and unprotoize; they are not a separate language, but you use
LANGUAGES to enable or disable their installation.
If you are going to build the stage 3 compiler, then you might want to build only the
C language in stage 2.
Once you have built the stage 2 compiler, if you are short of disk space, you can delete
the subdirectory ‘stagel’.

On a 68000 or 68020 system lacking floating point hardware, unless you have selected

a ‘tm.h’ file that expects by default that there is no such hardware, do this instead:
make CC='""stagel/xgcc -Bstagel/" CFLAGS='"-g -02 -msoft-float"

If you wish to test the compiler by compiling it with itself one more time, install

any other necessary GNU tools (such as GAS or the GNU linker) in the ‘stage2’
subdirectory as you did in the ‘stagel’ subdirectory, then do this:

make stage2
make CC='""stage2/xgcc -Bstage2/" CFLAGS='-g -02"
This is called making the stage 3 compiler. Aside from the ‘-B’ option, the compiler
options should be the same as when you made the stage 2 compiler. But the LANGUAGES
option need not be the same. The command shown above builds compilers for all the
supported languages; if you don’t want them all, you can specify the languages to build
by typing the argument ‘LANGUAGES="Iist"’, as described above.
If you do not have to install any additional GNU tools, you may use the command
make bootstrap LANGUAGES=language-list BOOT_CFLAGS=option-list
instead of making ‘stagel’, ‘stage2’, and performing the two compiler builds.

Then compare the latest object files with the stage 2 object files—they ought to be
identical, aside from time stamps (if any).

15.

16.

Using and Porting GNU CC

On some systems, meaningful comparison of object files is impossible; they always ap-
pear “different.” This is currently true on Solaris and some systems that use ELF object
file format. On some versions of Irix on SGI machines and DEC Unix (OSF/1) on Alpha
systems, you will not be able to compare the files without specifying ‘-save-temps’;
see the description of individual systems above to see if you get comparison failures.
You may have similar problems on other systems.

Use this command to compare the files:
make compare

This will mention any object files that differ between stage 2 and stage 3. Any differ-
ence, no matter how innocuous, indicates that the stage 2 compiler has compiled GNU
CC incorrectly, and is therefore a potentially serious bug which you should investigate
and report (see Chapter 9 [Bugs], page 179).

If your system does not put time stamps in the object files, then this is a faster way to
compare them (using the Bourne shell):

for file in *.o0; do

cmp $file stage2/$file

done
If you have built the compiler with the ‘-mno-mips-tfile’ option on MIPS machines,
you will not be able to compare the files.
Install the compiler driver, the compiler’s passes and run-time support with ‘make
install’. Use the same value for CC, CFLAGS and LANGUAGES that you used when
compiling the files that are being installed. One reason this is necessary is that some
versions of Make have bugs and recompile files gratuitously when you do this step. If
you use the same variable values, those files will be recompiled properly.

For example, if you have built the stage 2 compiler, you can use the following command:

make install CC="stage2/xgcc -Bstage2/" CFLAGS='"-g -0" LANGUAGES="list"|]

This copies the files ‘cc1’, ‘cpp’ and ‘libgcc.a’ to files ‘ccl’, ‘cpp’ and ‘libgcc.a’ in
the directory ‘/usr/local/lib/gcc-1ib/target/version’, which is where the compiler
driver program looks for them. Here target is the target machine type specified when
you ran ‘configure’, and version is the version number of GNU CC. This naming
scheme permits various versions and/or cross-compilers to coexist.

This also copies the driver program ‘xgcc’ into ‘/usr/local/bin/gcc’, so that it ap-
pears in typical execution search paths.

On some systems, this command causes recompilation of some files. This is usually
due to bugs in make. You should either ignore this problem, or use GNU Make.
Warning: there is a bug in alloca in the Sun library. To aveid this bug, be sure to
install the executables of GNU CC that were compiled by GNU CC. (That is, the
executables from stage 2 or 3, not stage 1.) They use alloca as a built-in function
and never the one in the library.

(It is usually better to install GNU CC executables from stage 2 or 3, since they usually
run faster than the ones compiled with some other compiler.)

If you’re going to use C++, it’s likely that you need to also install the libg++ distribution.
It should be available from the same place where you got the GNU C distribution. Just

Chapter 5: Installing GNU CC

as GNU C does not distribute a C runtime library, it also does not include a C++ run-
time library. All I/O functionality, special class libraries, etc., are available in the
libg++ distribution.

5.1 Configurations Supported by GNU CC

Here are the possible CPU types:

1750a, a29k, alpha, arm, cn, clipper, dspl6xx, elxsi, h8300, hppal.0, hppal.l,
1370, 1386, 1486, 1586, 1860, 1960, m68000, m68k, m88k, mips, mipsel, mips64,
mips64el, ns32k, powerpc, powerpcle, pyramid, romp, rs6000, sh, sparc, spar-
clite, sparc64, vax, we32k.

Here are the recognized company names. As you can see, customary abbreviations are

used rather than the longer official names.
acorn, alliant, altos, apollo, att, bull, cbm, convergent, convex, crds, dec, dg,
dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola,
ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the rest of the information
supplied is insufficient. You can omit it, writing just ‘cpu-system’, if it is not needed. For
example, ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:

386bsd, aix, acis, amigados, aos, aout, bosx, bsd, clix, coff, ctix, cxux, dgux,
dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, gnu/linux, hiux, hpux,
iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy,
ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi,
ultrix, unicos, uniplus, unos, vins, vsta, vxworks, winnt, xenix.
You can omit the system type; then ‘configure’ guesses the operating system from the
CPU and company.

You can add a version number to the system type; this may or may not make a dif-
ference. For example, you can write ‘bsd4.3’ or ‘bsd4.4’ to distinguish versions of BSD.
In practice, the version number is most needed for ‘sysv3’ and ‘sysv4’, which are often
treated differently.

If you specify an impossible combination such as ‘i860-dg-vms’, then you may get an
error message from ‘configure’, or it may ignore part of the information and do the best
it can with the rest. ‘configure’ always prints the canonical name for the alternative that
it used. GNU CC does not support all possible alternatives.

Often a particular model of machine has a name. Many machine names are recognized as
aliases for CPU/company combinations. Thus, the machine name ‘sun3’, mentioned above,
is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when
the name is popularly used for a particular machine. Here is a table of the known machine
names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn,
crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn,
hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, irisdd, iris, isi68, m3230, magnum, mer-
lin, miniframe, mmax, news-3600, news800, news, next, pbd, pcb32, pmax,

Using and Porting GNU CC

powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sund,
symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the company name. If you
want to install your own homemade configuration files, you can use ‘local’ as the company
name to access them. If you use configuration ‘cpu-local’, the configuration name without
the cpu prefix is used to form the configuration file names.

Thus, if you specify ‘m68k-1local’, configuration uses files ‘m68k .md’, ‘local.h’, ‘m68k.c’,
‘xm-local.h’, ‘t-local’, and ‘x-local’, all in the directory ‘config/mé8k’.

Here is a list of configurations that have special treatment or special things you must
know:

‘1750a-*-*’
MIL-STD-1750A processors.
Starting with GCC 2.6.1, the MIL-STD-1750A cross configuration no longer
supports the Tektronix Assembler, but instead produces output for as1750,
an assembler/linker available under the GNU Public License for the 1750A.
Contact kellogg@space.otn.dasa.de for more details on obtaining ‘as1750’. A
similarly licensed simulator for the 1750A is available from same address.

You should ignore a fatal error during the building of libgce (libgec is not yet
implemented for the 1750A.)

The as1750 assembler requires the file ‘ms1750.inc’, which is found in the
directory ‘config/1750a’.

GNU CC produced the same sections as the Fairchild F9450 C Compiler,
namely:

Normal The program code section.

Static The read/write (RAM) data section.

Konst The read-only (ROM) constants section.

Init Initialization section (code to copy KREL to SREL).

The smallest addressable unit is 16 bits (BITS_PER_UNIT is 16). This means
that type ‘char’ is represented with a 16-bit word per character. The 1750A’s
"Load/Store Upper/Lower Byte" instructions are not used by GNU CC.

‘alpha-*-osf1’
Systems using processors that implement the DEC Alpha architecture and are
running the DEC Unix (OSF/1) operating system, for example the DEC Alpha
AXP systems. (VMS on the Alpha is not currently supported by GNU CC.)

GNU CC writes a ‘.verstamp’ directive to the assembler output file unless it
is built as a cross-compiler. It gets the version to use from the system header
file ‘/usr/include/stamp.h’. If you install a new version of DEC Unix, you
should rebuild GCC to pick up the new version stamp.

Note that since the Alpha is a 64-bit architecture, cross-compilers from 32-bit
machines will not generate code as efficient as that generated when the compiler
is running on a 64-bit machine because many optimizations that depend on

Chapter 5: Installing GNU CC

being able to represent a word on the target in an integral value on the host
cannot be performed. Building cross-compilers on the Alpha for 32-bit machines
has only been tested in a few cases and may not work properly.

make compare may fail on old versions of DEC Unix unless you add ‘-save-temps’]]
to CFLAGS. On these systems, the name of the assembler input file is stored in
the object file, and that makes comparison fail if it differs between the stagel
and stage2 compilations. The option ‘-save-temps’ forces a fixed name to be
used for the assembler input file, instead of a randomly chosen name in ¢/tmp’.
Do not add ‘-save-temps’ unless the comparisons fail without that option. If
you add ‘-save-temps’, you will have to manually delete the ‘.1’ and ‘. s’ files
after each series of compilations.

GNU CC now supports both the native (ECOFF) debugging format used by
DBX and GDB and an encapsulated STABS format for use only with GDB.
See the discussion of the ‘--with-stabs’ option of ‘configure’ above for more
information on these formats and how to select them.

There is a bug in DEC’s assembler that produces incorrect line numbers for
ECOFF format when the ‘.align’ directive is used. To work around this prob-
lem, GNU CC will not emit such alignment directives while writing ECOFF
format debugging information even if optimization is being performed. Unfor-
tunately, this has the very undesirable side-effect that code addresses when ‘-0’
is specified are different depending on whether or not ‘-g’ is also specified.

To avoid this behavior, specify ‘-gstabs+’ and use GDB instead of DBX. DEC
is now aware of this problem with the assembler and hopes to provide a fix
shortly.

‘arm’ Advanced RISC Machines ARM-family processors. These are often used in
embedded applications. There are no standard Unix configurations. This con-
figuration corresponds to the basic instruction sequences and will produce a.out
format object modules.

You may need to make a variant of the file ‘arm.h’ for your particular configu-
ration.

‘arm-*-riscix’
The ARM?2 or ARMS3 processor running RISC iX, Acorn’s port of BSD Unix.
If you are running a version of RISC iX prior to 1.2 then you must specify the
version number during configuration. Note that the assembler shipped with
RISC iX does not support stabs debugging information; a new version of the
assembler, with stabs support included, is now available from Acorn.

‘a29k’ AMD Am29k-family processors. These are normally used in embedded ap-
plications. There are no standard Unix configurations. This configuration
corresponds to AMD’s standard calling sequence and binary interface and is
compatible with other 29k tools.

You may need to make a variant of the file ‘a29k .h’ for your particular config-
uration.

‘a29k-*-bsd’
AMD Am29050 used in a system running a variant of BSD Unix.

Using and Porting GNU CC

‘decstation-*’

DECstations can support three different personalities: Ultrix, DEC OSF/1, and
OSF/rose. To configure GCC for these platforms use the following configura-
tions:

‘decstation-ultrix’
Ultrix configuration.

‘decstation-osfl’
Dec’s version of OSF/1.

‘decstation-osfrose’
Open Software Foundation reference port of OSF/1 which uses
the OSF /rose object file format instead of ECOFF. Normally, you
would not select this configuration.

The MIPS C compiler needs to be told to increase its table size for switch
statements with the ‘-Wf,-XNg1500’ option in order to compile ‘cp/parse.c’.
If you use the ‘-02’ optimization option, you also need to use ‘-01imit 3000’.
Both of these options are automatically generated in the ‘Makefile’ that the
shell script ‘configure’ builds. If you override the CC make variable and use
the MIPS compilers, you may need to add ‘-Wf,-XNg1500 -01imit 3000’

‘elxsi-elxsi-bsd’

‘dspl6xx’
‘h8300-*-*’

‘hppa*—*—*’

The Elxsi’s C compiler has known limitations that prevent it from compiling
GNU C. Please contact mrs@cygnus . com for more details.

A port to the AT&T DSP1610 family of processors.

The calling convention and structure layout has changed in release 2.6. All
code must be recompiled. The calling convention now passes the first three
arguments in function calls in registers. Structures are no longer a multiple of
2 bytes.

There are several variants of the HP-PA processor which run a variety of oper-
ating systems. GNU CC must be configured to use the correct processor type
and operating system, or GNU CC will not function correctly. The easiest way
to handle this problem is to not specify a target when configuring GNU CC,
the ‘configure’ script will try to automatically determine the right processor
type and operating system.

‘-g’ does not work on HP-UX, since that system uses a peculiar debugging
format which GNU CC does not know about. However, ‘-g’ will work if you
also use GAS and GDB in conjunction with GCC. We highly recommend using
GAS for all HP-PA configurations.

You should be using GAS-2.6 (or later) along with GDB-4.16 (or later). These
can be retrieved from all the traditional GNU ftp archive sites.
GAS will need to be installed into a directory before /bin, /usr/bin, and

/usr/ccs/bin in your search path. You should install GAS before you build
GNU CC.

Chapter 5: Installing GNU CC

4

To enable debugging, you must configure GNU CC with the
option before building.

--with-gnu-as’

‘1370-%-%’
This port is very preliminary and has many known bugs. We hope to have a
higher-quality port for this machine soon.

‘1386-*-1inuxoldld’
Use this configuration to generate a.out binaries on Linux-based GNU systems,
if you do not have gas/binutils version 2.5.2 or later installed. This is an obsolete
configuration.

1386--1linuxaout’
Use this configuration to generate a.out binaries on Linux-based GNU systems.
This configuration is being superseded. You must use gas/binutils version 2.5.2
or later.

1386--1linux’
Use this configuration to generate ELF binaries on Linux-based GNU systems.
You must use gas/binutils version 2.5.2 or later.

‘1386-*-sco’
Compilation with RCC is recommended. Also, it may be a good idea to link
with GNU malloc instead of the malloc that comes with the system.

‘1386-*-5co03.2v4’
Use this configuration for SCO release 3.2 version 4.

‘1386-*-isc’
It may be a good idea to link with GNU malloc instead of the malloc that
comes with the system.

In ISC version 4.1, ‘sed’ core dumps when building ‘deduced.h’. Use the version
of ‘sed’ from version 4.0.

‘1386-*-esix’
It may be good idea to link with GNU malloc instead of the malloc that comes
with the system.

‘1386-ibm-aix’
You need to use GAS version 2.1 or later, and and LD from GNU binutils
version 2.2 or later.

‘1386-sequent-bsd’
Go to the Berkeley universe before compiling. In addition, you probably
need to create a file named ‘string.h’ containing just one line: ‘#include
<strings.h>’.

‘1386-sequent-ptx1%’
Sequent DYNIX/ptx 1.x.

‘1386-sequent-ptx2%’
Sequent DYNIX/ptx 2.x.

Using and Porting GNU CC

‘1386-sun-sunos4’
You may find that you need another version of GNU CC to begin bootstrapping
with, since the current version when built with the system’s own compiler seems
to get an infinite loop compiling part of ‘libgcc2.c’. GNU CC version 2
compiled with GNU CC (any version) seems not to have this problem.

See Section 5.4 [Sun Install], page 109, for information on installing GNU CC
on Sun systems.

‘1[345]86-*-winnt3.5’

This version requires a GAS that has not let been released. Until it is, you can

get a prebuilt binary version via anonymous ftp from ‘cs . washington.edu:pub/gnat’j
or ‘cs.nyu.edu:pub/gnat’. You must also use the Microsoft header files from

the Windows NT 3.5 SDK. Find these on the CDROM in the ‘/mstools/h’
directory dated 9/4/94. You must use a fixed version of Microsoft linker made
especially for NT 3.5, which is also is available on the NT 3.5 SDK CDROM.

If you do not have this linker, can you also use the linker from Visual C/C++

1.0 or 2.0.

Installing GNU CC for NT builds a wrapper linker, called ‘1d.exe’, which
mimics the behaviour of Unix ‘1d’ in the specification of libraries (‘-L’ and ‘-1’).
‘1d.exe’ looks for both Unix and Microsoft named libraries. For example, if you
specify ‘-1foo’, ‘1d.exe’ will look first for ‘1ibfoo.a’ and then for ‘foo.1ib’.

You may install GNU CC for Windows NT in one of two ways, depending on
whether or not you have a Unix-like shell and various Unix-like utilities.

1. If you do not have a Unix-like shell and few Unix-like utilities, you will use
a DOS style batch script called ‘configure.bat’. Invoke it as configure
winnt from an MSDOS console window or from the program manager
dialog box. ‘configure.bat’ assumes you have already installed and have
in your path a Unix-like ‘sed’ program which is used to create a working
‘Makefile’ from ‘Makefile.in’.

‘Makefile’ uses the Microsoft Nmake program maintenance utility and
the Visual C/C++ V8.00 compiler to build GNU CC. You need only have
the utilities ‘sed’ and ‘touch’ to use this installation method, which only
automatically builds the compiler itself. You must then examine what
‘fixinc.winnt’ does, edit the header files by hand and build ‘libgcc.a’
manually.

2. The second type of installation assumes you are running a Unix-like shell,
have a complete suite of Unix-like utilities in your path, and have a previous
version of GNU CC already installed, either through building it via the
above installation method or acquiring a pre-built binary. In this case, use
the ‘configure’ script in the normal fashion.

‘1860-intel-osfl’
This is the Paragon. If you have version 1.0 of the operating system, see Sec-
tion 8.2 [Installation Problems], page 157, for special things you need to do to
compensate for peculiarities in the system.

Chapter 5: Installing GNU CC

‘¢-1lynx-lynxos’
LynxOS 2.2 and earlier comes with GNU CC 1.x already installed as ‘/bin/gcc’.
You should compile with this instead of ‘/bin/cc’. You can tell GNU CC to use
the GNU assembler and linker, by specifying ‘--with-gnu-as --with-gnu-1d’
when configuring. These will produce COFF format object files and executa-
bles; otherwise GNU CC will use the installed tools, which produce a.out format
executables.

‘m68000-hp-bsd’
HP 9000 series 200 running BSD. Note that the C compiler that comes with

this system cannot compile GNU CC; contact law@cs.utah.edu to get binaries
of GNU CC for bootstrapping.

‘m68k-altos’
Altos 3068. You must use the GNU assembler, linker and debugger. Also, you
must fix a kernel bug. Details in the file ‘README . ALTOS’.

‘m68k-att-sysv’
AT&T 3bl, a.k.a. 7300 PC. Special procedures are needed to compile GNU CC
with this machine’s standard C compiler, due to bugs in that compiler. You can
bootstrap it more easily with previous versions of GNU CC if you have them.

Installing GNU CC on the 3bl is difficult if you do not already have GNU
CC running, due to bugs in the installed C compiler. However, the following
procedure might work. We are unable to test it.
1. Comment out the ‘#include "config.h"’ line on line 37 of ‘cccp.c’ and
do ‘make cpp’. This makes a preliminary version of GNU cpp.

2. Save the old ‘/1ib/cpp’ and copy the preliminary GNU cpp to that file
name.

3. Undo your change in ‘cccp.c’, or reinstall the original version, and do
‘make cpp’ again.
4. Copy this final version of GNU cpp into ‘/1ib/cpp’.

5. Replace every occurrence of obstack_free in the file ‘tree.c’ with _
obstack_free.

6. Run make to get the first-stage GNU CC.
7. Reinstall the original version of ‘/1ib/cpp’.

8. Now you can compile GNU CC with itself and install it in the normal
fashion.

‘m68k-bull-sysv’
Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-2.01. GNU CC
works either with native assembler or GNU assembler. You can use GNU as-
sembler with native coff generation by providing ‘--with-gnu-as’ to the con-
figure script or use GNU assembler with dbx-in-coff encapsulation by providing
‘--with-gnu-as --stabs’. For any problem with native assembler or for avail-
ability of the DPX/2 port of GAS, contact F.Pierresteguy@frcl.bull.fr.

‘m68k-crds-unox’
Use ‘configure unos’ for building on Unos.

Using and Porting GNU CC

The Unos assembler is named casm instead of as. For some strange reason
linking ‘/bin/as’ to ‘/bin/casm’ changes the behavior, and does not work. So,
when installing GNU CC, you should install the following script as ‘as’ in the
subdirectory where the passes of GCC are installed:

#!/bin/sh

casm $*
The default Unos library is named ‘libunos.a’ instead of ‘libc.a’. To allow
GNU CC to function, either change all references to ‘-1c¢’in ‘gcc.c’ to ‘-lunos’
or link ‘/1ib/libc.a’ to ¢/1ib/libunos.a’.
When compiling GNU CC with the standard compiler, to overcome bugs in the
support of alloca, do not use ‘-0’ when making stage 2. Then use the stage
2 compiler with ‘-0’ to make the stage 3 compiler. This compiler will have
the same characteristics as the usual stage 2 compiler on other systems. Use
it to make a stage 4 compiler and compare that with stage 3 to verify proper
compilation.

(Perhaps simply defining ALLOCA in ‘x-crds’ as described in the comments there
will make the above paragraph superfluous. Please inform us of whether this
works.)

Unos uses memory segmentation instead of demand paging, so you will need
a lot of memory. 5 Mb is barely enough if no other tasks are running. If
linking ‘cc1’ fails, try putting the object files into a library and linking from
that library.

‘m68k-hp-hpux’

‘m68k-sun’

HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0 has a bug
in the assembler that prevents compilation of GNU CC. To fix it, get patch
PHCO _4484 from HP.

In addition, if you wish to use gas ‘--with-gnu-as’ you must use gas version
2.1 or later, and you must use the GNU linker version 2.1 or later. Earlier
versions of gas relied upon a program which converted the gas output into the
native HP /UX format, but that program has not been kept up to date. gdb
does not understand that native HP/UX format, so you must use gas if you
wish to use gdb.

4

Sun 3. We do not provide a configuration file to use the Sun FPA by default, be-
cause programs that establish signal handlers for floating point traps inherently
cannot work with the FPA.

See Section 5.4 [Sun Install], page 109, for information on installing GNU CC
on Sun systems.

‘m88k-*-svr3’

Motorola m88k running the AT&T /Unisoft /Motorola V.3 reference port. These
systems tend to use the Green Hills C, revision 1.8.5, as the standard C compiler.
There are apparently bugs in this compiler that result in object files differences
between stage 2 and stage 3. If this happens, make the stage 4 compiler and
compare it to the stage 3 compiler. If the stage 3 and stage 4 object files

Chapter 5: Installing GNU CC

are identical, this suggests you encountered a problem with the standard C
compiler; the stage 3 and 4 compilers may be usable.

It is best, however, to use an older version of GNU CC for bootstrapping if you
have one.

‘m88k-*-dgux’

Motorola m88k running DG/UX. To build 88open BCS native or cross com-
pilers on DG/UX, specify the configuration name as ‘m88k-*-dguxbcs’ and
build in the 88open BCS software development environment. To build ELF
native or cross compilers on DG/UX, specify ‘m88k-*-dgux’ and build in the
DG/UX ELF development environment. You set the software development en-
vironment by issuing ‘sde-target’ command and specifying either ‘m88kbcs’
or ‘m88kdguxelf’ as the operand.

If you do not specify a configuration name, ‘configure’ guesses the configura-
tion based on the current software development environment.

‘m88k-tektronix-sysv3’
Tektronix XD88 running UTekV 3.2e. Do not turn on optimization while build-
ing stagel if you bootstrap with the buggy Green Hills compiler. Also, The
bundled LAI System V NFS is buggy so if you build in an NFS mounted direc-
tory, start from a fresh reboot, or avoid NFS all together. Otherwise you may
have trouble getting clean comparisons between stages.

‘mips-mips-bsd’
MIPS machines running the MIPS operating system in BSD mode. It’s possible
that some old versions of the system lack the functions memcpy, memcmp, and
memset. If your system lacks these, you must remove or undo the definition of
TARGET_MEM_FUNCTIONS in ‘mips-bsd.h’.

The MIPS C compiler needs to be told to increase its table size for switch
statements with the ‘-Wf,-XNg1500’ option in order to compile ‘cp/parse.c’.
If you use the ‘-02’ optimization option, you also need to use ‘-01imit 3000’.
Both of these options are automatically generated in the ‘Makefile’ that the
shell script ‘configure’ builds. If you override the CC make variable and use
the MIPS compilers, you may need to add ‘-Wf,-XNg1500 -01imit 3000’
‘mips-mips-riscos*’

The MIPS C compiler needs to be told to increase its table size for switch
statements with the ‘-Wf,-XNg1500’ option in order to compile ‘cp/parse.c’.
If you use the ‘-02’ optimization option, you also need to use ‘-01imit 3000’.
Both of these options are automatically generated in the ‘Makefile’ that the
shell script ‘configure’ builds. If you override the CC make variable and use
the MIPS compilers, you may need to add ‘-Wf,-XNg1500 -01imit 3000’
MIPS computers running RISC-OS can support four different personalities:
default, BSD 4.3, System V.3, and System V.4 (older versions of RISC-OS
don’t support V.4). To configure GCC for these platforms use the following
configurations:

‘mips-mips-riscosrev’
Default configuration for RISC-OS, revision rev.

100

Using and Porting GNU CC

‘mips-mips-riscosrevbsd’
BSD 4.3 configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevsysv4’
System V.4 configuration for RISC-0S, revision rev.

‘mips-mips-riscosrevsysv’
System V.3 configuration for RISC-0S, revision rev.

The revision rev mentioned above is the revision of RISC-OS to use. You must
reconfigure GCC when going from a RISC-OS revision 4 to RISC-OS revision
5. This has the effect of avoiding a linker bug (see Section 8.2 [Installation
Problems], page 157, for more details).

‘mips-sgi-*’

In order to compile GCC on an SGI running IRIX 4, the "c.hdr.lib" option
must be installed from the CD-ROM supplied from Silicon Graphics. This is
found on the 2nd CD in release 4.0.1.

In order to compile GCC on an SGI running IRIX 5, the "compiler_dev.hdr"
subsystem must be installed from the IDO CD-ROM supplied by Silicon Graph-
ics.

make compare may fail on version 5 of IRIX unless you add ‘-save-temps’ to
CFLAGS. On these systems, the name of the assembler input file is stored in the
object file, and that makes comparison fail if it differs between the stagel and
stage2 compilations. The option ‘-save-temps’ forces a fixed name to be used
for the assembler input file, instead of a randomly chosen name in ‘/tmp’. Do
not add ‘-save-temps’ unless the comparisons fail without that option. If you
do you ‘-save-temps’, you will have to manually delete the ‘.i’ and ‘.5’ files
after each series of compilations.

The MIPS C compiler needs to be told to increase its table size for switch
statements with the ‘-Wf,-XNg1500’ option in order to compile ‘cp/parse.c’.
If you use the ‘-02’ optimization option, you also need to use ‘-01imit 3000’.
Both of these options are automatically generated in the ‘Makefile’ that the
shell script ‘configure’ builds. If you override the CC make variable and use
the MIPS compilers, you may need to add ‘-Wf,-XNg1500 -01imit 3000’

On Irix version 4.0.5F, and perhaps on some other versions as well, there is an
assembler bug that reorders instructions incorrectly. To work around it, specify
the target configuration ‘mips-sgi-irix4loser’. This configuration inhibits
assembler optimization.

In a compiler configured with target ‘mips-sgi-irix4’, you can turn off as-
sembler optimization by using the ‘-noasmopt’ option. This compiler option
passes the option ‘-00’ to the assembler, to inhibit reordering.

The ‘-noasmopt’ option can be useful for testing whether a problem is due
to erroneous assembler reordering. Even if a problem does not go away with
‘-noasmopt’, it may still be due to assembler reordering—perhaps GNU CC
itself was miscompiled as a result.

Chapter 5: Installing GNU CC 101

To enable debugging under Irix 5, you must use GNU as 2.5 or later, and use the
‘--with-gnu-as’ configure option when configuring gcc. GNU as is distributed
as part of the binutils package.

‘mips-sony-sysv’
Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2 (which uses
ELF instead of COFF). Support for 5.0.2 will probably be provided soon by
volunteers. In particular, the linker does not like the code generated by GCC
when shared libraries are linked in.

‘ns32k-encore’
Encore ns32000 system. Encore systems are supported only under BSD.

‘ns32k-*-genix’
National Semiconductor ns32000 system. Genix has bugs in alloca and
malloc; you must get the compiled versions of these from GNU Emacs.

‘ns32k-sequent’
Go to the Berkeley universe before compiling. In addition, you probably
need to create a file named ‘string.h’ containing just one line: ‘#include
<strings.h>’.

‘ns32k-utek’
UTEK ns32000 system (“merlin”). The C compiler that comes with this system

cannot compile GNU CC; contact ‘tektronix!reed!mason’ to get binaries of
GNU CC for bootstrapping.

‘romp-*-aos’

‘romp-*-mach’
The only operating systems supported for the IBM RT PC are AOS and MACH.
GNU CC does not support AIX running on the RT. We recommend you compile
GNU CC with an earlier version of itself; if you compile GNU CC with hc, the
Metaware compiler, it will work, but you will get mismatches between the stage
2 and stage 3 compilers in various files. These errors are minor differences in
some floating-point constants and can be safely ignored; the stage 3 compiler
is correct.

‘rs6000-*-aix’

‘powerpc-*-aix’
Various early versions of each release of the IBM XLC compiler will not boot-
strap GNU CC. Symptoms include differences between the stage2 and stage3
object files, and errors when compiling ‘libgcc.a’ or ‘enquire’. Known prob-
lematic releases include: xlc-1.2.1.8, xlc-1.3.0.0 (distributed with AIX 3.2.5),
and xlc-1.3.0.19. Both xlc-1.2.1.28 and xlc-1.3.0.24 (PTF 432238) are known to
produce working versions of GNU CC, but most other recent releases correctly
bootstrap GNU CC. Also, releases of AIX prior to AIX 3.2.4 include a version
of the IBM assembler which does not accept debugging directives: assembler
updates are available as PTFs. Also, if you are using AIX 3.2.5 or greater and
the GNU assembler, you must have a version modified after October 16th, 1995
in order for the GNU C compiler to build. See the file ‘README.RS6000’ for
more details on of these problems.

102 Using and Porting GNU CC

GNU CC does not yet support the 64-bit PowerPC instructions.

Objective C does not work on this architecture because it makes assumptions
that are incompatible with the calling conventions.

ATX on the RS/6000 provides support (NLS) for environments outside of the
United States. Compilers and assemblers use NLS to support locale-specific
representations of various objects including floating-point numbers ("." vs ","
for separating decimal fractions). There have been problems reported where
the library linked with GNU CC does not produce the same floating-point
formats that the assembler accepts. If you have this problem, set the LANG
environment variable to "C" or "En_US".

Due to changes in the way that GNU CC invokes the binder (linker) for AIX
4.1, you may now receive warnings of duplicate symbols from the link step that
were not reported before. The assembly files generated by GNU CC for AIX
have always included multiple symbol definitions for certain global variable and
function declarations in the original program. The warnings should not prevent
the linker from producing a correct library or runnable executable.

‘powerpc-*-elf’
‘powerpc-*-sysvéd’
PowerPC system in big endian mode, running System V.4.
This configuration is currently under development.
‘powerpc-*-eabiaix’
Embedded PowerPC system in big endian mode with -mcall-aix selected as the
default. This system is currently under development.
‘powerpc-*-eabisim’
Embedded PowerPC system in big endian mode for use in running under the
PSIM simulator. This system is currently under development.
‘powerpc-*-eabi’
Embedded PowerPC system in big endian mode.
This configuration is currently under development.
‘powerpcle-*-elf’
‘powerpcle-*-sysv4’
PowerPC system in little endian mode, running System V.4.
This configuration is currently under development.
‘powerpcle-*-sysv4’
Embedded PowerPC system in little endian mode.
This system is currently under development.
‘powerpcle-*-eabisim’
Embedded PowerPC system in little endian mode for use in running under the
PSIM simulator.

This system is currently under development.

‘powerpcle-*-eabi’
Embedded PowerPC system in little endian mode.

Chapter 5: Installing GNU CC 103

This configuration is currently under development.

‘vax-dec-ultrix’

Don’t try compiling with Vax C (vcc). It produces incorrect code in some cases
(for example, when alloca is used).

Meanwhile, compiling ‘cp/parse.c’ with pcc does not work because of an inter-
nal table size limitation in that compiler. To avoid this problem, compile just
the GNU C compiler first, and use it to recompile building all the languages
that you want to run.

‘sparc-sun-*’

See Section 5.4 [Sun Install], page 109, for information on installing GNU CC
on Sun systems.

‘vax-dec-vms’

‘we32k-*-x%’

See Section 5.5 [VMS Install], page 109, for details on how to install GNU CC
on VMS.

These computers are also known as the 3b2, 3b5, 3b20 and other similar names.
(However, the 3b1 is actually a 68000; see Section 5.1 [Configurations], page 91.)

Don’t use ‘-g’ when compiling with the system’s compiler. The system’s linker
seems to be unable to handle such a large program with debugging information.

The system’s compiler runs out of capacity when compiling ‘stmt.c’ in GNU
CC. You can work around this by building ‘cpp’in GNU CC first, then use that
instead of the system’s preprocessor with the system’s C compiler to compile
‘stmt.c’. Here is how:

mv /lib/cpp /lib/cpp.att

cp cpp /1ib/cpp.gnu

echo ’/lib/cpp.gnu -traditional ${1+"$e"}’> > /lib/cpp

chmod +x /lib/cpp
The system’s compiler produces bad code for some of the GNU CC optimization
files. So you must build the stage 2 compiler without optimization. Then build
a stage 3 compiler with optimization. That executable should work. Here are
the necessary commands:

make LANGUAGES=c CC=stagel/xgcc CFLAGS='-Bstagel/ -g"

make stage2

make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -0"

You may need to raise the ULIMIT setting to build a C++ compiler, as the file
‘cclplus’ is larger than one megabyte.

5.2 Compilation in a Separate Directory

If you wish to build the object files and executables in a directory other than the one
containing the source files, here is what you must do differently:

1. Make sure you have a version of Make that supports the VPATH feature. (GNU Make

support

s it, as do Make versions on most BSD systems.)

104 Using and Porting GNU CC

2. If you have ever run ‘configure’ in the source directory, you must undo the configu-
ration. Do this by running:

make distclean
3. Go to the directory in which you want to build the compiler before running ‘configure’:
mkdir gcc-sun3
cd gcc-sun3
On systems that do not support symbolic links, this directory must be on the same file
system as the source code directory.
4. Specify where to find ‘configure’ when you run it:
../gcc/configure ...
This also tells configure where to find the compiler sources; configure takes the

directory from the file name that was used to invoke it. But if you want to be sure,
you can specify the source directory with the ‘--srcdir’ option, like this:

../gcc/configure --srcdir=../gcc other options

The directory you specify with ‘--srcdir’ need not be the same as the one that
configure is found in.

Now, you can run make in that directory. You need not repeat the configuration steps
shown above, when ordinary source files change. You must, however, run configure again
when the configuration files change, if your system does not support symbolic links.

5.3 Building and Installing a Cross-Compiler

GNU CC can function as a cross-compiler for many machines, but not all.

¢ Cross-compilers for the Mips as target using the Mips assembler currently do not work,
because the auxiliary programs ‘mips-tdump.c’ and ‘mips-tfile.c’ can’t be compiled
on anything but a Mips. It does work to cross compile for a Mips if you use the GNU
assembler and linker.

¢ Cross-compilers between machines with different floating point formats have not all
been made to work. GNU CC now has a floating point emulator with which these can
work, but each target machine description needs to be updated to take advantage of it.

e Cross-compilation between machines of different word sizes is somewhat problematic
and sometimes does not work.

Since GNU CC generates assembler code, you probably need a cross-assembler that GNU
CC can run, in order to produce object files. If you want to link on other than the target
machine, you need a cross-linker as well. You also need header files and libraries suitable
for the target machine that you can install on the host machine.

5.3.1 Steps of Cross-Compilation

To compile and run a program using a cross-compiler involves several steps:

¢ Run the cross-compiler on the host machine to produce assembler files for the target
machine. This requires header files for the target machine.

Chapter 5: Installing GNU CC 105

e Assemble the files produced by the cross-compiler. You can do this either with an
assembler on the target machine, or with a cross-assembler on the host machine.

¢ Link those files to make an executable. You can do this either with a linker on the
target machine, or with a cross-linker on the host machine. Whichever machine you
use, you need libraries and certain startup files (typically ‘crt....o’) for the target
machine.

It is most convenient to do all of these steps on the same host machine, since then you
can do it all with a single invocation of GNU CC. This requires a suitable cross-assembler
and cross-linker. For some targets, the GNU assembler and linker are available.

5.3.2 Configuring a Cross-Compiler

To build GNU CC as a cross-compiler, you start out by running ‘configure’. Use the
‘--target=target’ to specify the target type. If ‘configure’ was unable to correctly identify
the system you are running on, also specify the ‘--build=build’ option. For example, here
is how to configure for a cross-compiler that produces code for an HP 68030 system running
BSD on a system that ‘configure’ can correctly identify:

./configure --target=m68k-hp-bsd4.3

5.3.3 Tools and Libraries for a Cross-Compiler

If you have a cross-assembler and cross-linker available, you should install them now.
Put them in the directory ‘/usr/local/target/bin’. Here is a table of the tools you should
put in this directory:

‘as’ This should be the cross-assembler.
‘1’ This should be the cross-linker.
‘ar’ This should be the cross-archiver: a program which can manipulate archive files

(linker libraries) in the target machine’s format.
‘ranlib’ This should be a program to construct a symbol table in an archive file.

The installation of GNU CC will find these programs in that directory, and copy or link
them to the proper place to for the cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils package and GAS. Configure
them with the same ‘--host’ and ‘--target’ options that you use for configuring GNU CC,
then build and install them. They install their executables automatically into the proper
directory. Alas, they do not support all the targets that GNU CC supports.

If you want to install libraries to use with the cross-compiler, such as a standard C
library, put them in the directory ‘/usr/local/target/1ib’; installation of GNU CC copies
all all the files in that subdirectory into the proper place for GNU CC to find them and link
with them. Here’s an example of copying some libraries from a target machine:

ftp target-machine

lcd /usr/local/target/lib
cd /1ib

get libc.a

106 Using and Porting GNU CC

cd /usr/lib

get libg.a

get libm.a

quit
The precise set of libraries you’ll need, and their locations on the target machine, vary
depending on its operating system.

Many targets require “start files” such as ‘crt0.0’ and ‘crtn.o’ which are linked into
each executable; these too should be placed in ‘/usr/local/target/1ib’. There may be
several alternatives for ‘crt0.0’, for use with profiling or other compilation options. Check
your target’s definition of STARTFILE_SPEC to find out what start files it uses. Here’s an
example of copying these files from a target machine:

ftp target-machine

lcd /usr/local/target/lib
prompt

cd /1ib

mget *crt*.o

cd /usr/lib

mget *crt*.o

quit

5.3.4 ‘libgcc.a’ and Cross-Compilers

Code compiled by GNU CC uses certain runtime support functions implicitly. Some
of these functions can be compiled successfully with GNU CC itself, but a few cannot be.
These problem functions are in the source file ‘1ibgcci.c’; the library made from them is
called ‘libgccl.a’.

When you build a native compiler, these functions are compiled with some other
compiler—the one that you use for bootstrapping GNU CC. Presumably it knows how to
open code these operations, or else knows how to call the run-time emulation facilities that
the machine comes with. But this approach doesn’t work for building a cross-compiler.
The compiler that you use for building knows about the host system, not the target system.

So, when you build a cross-compiler you have to supply a suitable library ‘1ibgccl.a’

that does the job it is expected to do.

To compile ‘1ibgccl.c’ with the cross-compiler itself does not work. The functions in
this file are supposed to implement arithmetic operations that GNU CC does not know how
to open code for your target machine. If these functions are compiled with GNU CC itself,
they will compile into infinite recursion.

On any given target, most of these functions are not needed. If GNU CC can open
code an arithmetic operation, it will not call these functions to perform the operation. It
is possible that on your target machine, none of these functions is needed. If so, you can
supply an empty library as ‘1ibgccl.a’.

Many targets need library support only for multiplication and division. If you are linking
with a library that contains functions for multiplication and division, you can tell GNU CC
to call them directly by defining the macros MULSI3_LIBCALL, and the like. These macros
need to be defined in the target description macro file. For some targets, they are defined

Chapter 5: Installing GNU CC 107

already. This may be sufficient to avoid the need for libgccl.a; if so, you can supply an
empty library.

Some targets do not have floating point instructions; they need other functions in
‘libgccl.a’, which do floating arithmetic. Recent versions of GNU CC have a file which
emulates floating point. With a certain amount of work, you should be able to construct
a floating point emulator that can be used as ‘libgccl.a’. Perhaps future versions will
contain code to do this automatically and conveniently. That depends on whether someone
wants to implement it.

Some embedded targets come with all the necessary ‘libgccl.a’ routines written in C
or assembler. These targets build ‘libgccl.a’ automatically and you do not need to do
anything special for them. Other embedded targets do not need any ‘libgccl.a’ routines
since all the necessary operations are supported by the hardware.

If your target system has another C compiler, you can configure GNU CC as a native
compiler on that machine, build just ‘libgccl.a’ with ‘make 1ibgccl.a’ on that machine,
and use the resulting file with the cross-compiler. To do this, execute the following on the
target machine:

cd target-build-dir
./configure --host=sparc --target=sun3
make libgccl.a

And then this on the host machine:

ftp target-machine

binary

cd target-build-dir

get libgccl.a

quit

Another way to provide the functions youneed in ‘1ibgccl.a’is to define the appropriate

perform_... macros for those functions. If these definitions do not use the C arithmetic
operators that they are meant to implement, you should be able to compile them with the
cross-compiler you are building. (If these definitions already exist for your target file, then
you are all set.)

To build ‘1ibgccl.a’ using the perform macros, use ‘LIBGCC1=1ibgccl.a OLDCC=. /xgcc’]]
when building the compiler. Otherwise, you should place your replacement library under
the name ‘libgccl.a’ in the directory in which you will build the cross-compiler, before
you run make.

5.3.5 Cross-Compilers and Header Files

If you are cross-compiling a standalone program or a program for an embedded system,
then you may not need any header files except the few that are part of GNU CC (and those
of your program). However, if you intend to link your program with a standard C library
such as ‘libc.a’, then you probably need to compile with the header files that go with the
library you use.

The GNU C compiler does not come with these files, because (1) they are system-specific,
and (2) they belong in a C library, not in a compiler.

108 Using and Porting GNU CC

If the GNU C library supports your target machine, then you can get the header files
from there (assuming you actually use the GNU library when you link your program).

If your target machine comes with a C compiler, it probably comes with suitable header
files also. If you make these files accessible from the host machine, the cross-compiler can
use them also.

Otherwise, you’re on your own in finding header files to use when cross-compiling.

When you have found suitable header files, put them in ‘/usr/local/target/include’,
before building the cross compiler. Then installation will run fixincludes properly and install
the corrected versions of the header files where the compiler will use them.

Provide the header files before you build the cross-compiler, because the build stage
actually runs the cross-compiler to produce parts of ‘libgcc.a’. (These are the parts that
can be compiled with GNU CC.) Some of them need suitable header files.

Here’s an example showing how to copy the header files from a target machine. On the
target machine, do this:

(cd /usr/include; tar cf - .) > tarfile
Then, on the host machine, do this:

ftp target-machine

lcd /usr/local/target/include
get tarfile

quit

tar xf tarfile

5.3.6 Actually Building the Cross-Compiler

Now you can proceed just as for compiling a single-machine compiler through the step
of building stage 1. If you have not provided some sort of ‘1ibgccl.a’, then compilation
will give up at the point where it needs that file, printing a suitable error message. If you
do provide ‘libgccl.a’, then building the compiler will automatically compile and link a
test program called ‘1ibgccil-test’; if you get errors in the linking, it means that not all
of the necessary routines in ‘libgccl.a’ are available.

You must provide the header file ‘float.h’. One way to do this is to compile ‘enquire’
and run it on your target machine. The job of ‘enquire’ is to run on the target machine and
figure out by experiment the nature of its floating point representation. ‘enquire’ records
its findings in the header file ‘float.h’. If you can’t produce this file by running ‘enquire’
on the target machine, then you will need to come up with a suitable ‘float.h’ in some
other way (or else, avoid using it in your programs).

Do not try to build stage 2 for a cross-compiler. It doesn’t work to rebuild GNU CC as
a cross-compiler using the cross-compiler, because that would produce a program that runs
on the target machine, not on the host. For example, if you compile a 386-t0-68030 cross-
compiler with itself, the result will not be right either for the 386 (because it was compiled
into 68030 code) or for the 68030 (because it was configured for a 386 as the host). If you
want to compile GNU CC into 68030 code, whether you compile it on a 68030 or with a
cross-compiler on a 386, you must specify a 68030 as the host when you configure it.

To install the cross-compiler, use ‘make install’, as usual.

Chapter 5: Installing GNU CC 109

5.4 Installing GNU CC on the Sun

On Solaris (version 2.1), do not use the linker or other tools in ‘/usr/ucb’ to build GNU
CC. Use /usr/ccs/bin.

Make sure the environment variable FLOAT_OPTION is not set when you compile
‘libgcc.a’. If this option were set to £68881 when ‘libgcc.a’ is compiled, the result-
ing code would demand to be linked with a special startup file and would not link properly
without special pains.

There is a bug in alloca in certain versions of the Sun library. To avoid this bug, install
the binaries of GNU CC that were compiled by GNU CC. They use alloca as a built-in
function and never the one in the library.

Some versions of the Sun compiler crash when compiling GNU CC. The problem is
a segmentation fault in cpp. This problem seems to be due to the bulk of data in the
environment variables. You may be able to avoid it by using the following command to

compile GNU CC with Sun CC:
make CC="TERMCAP=x 0BJS=x LIBFUNCS=x STAGESTUFF=x cc"

5.5 Installing GNU CC on VMS

The VMS version of GNU CC is distributed in a backup saveset containing both source
code and precompiled binaries.

To install the ‘gcc’ command so you can use the compiler easily, in the same manner as
you use the VMS C compiler, you must install the VMS CLD file for GNU CC as follows:

1. Define the VMS logical names ‘GNU_CC’ and ‘GNU_CC_INCLUDE’ to point to the directo-
ries where the GNU CC executables (‘gcc-cpp.exe’, ‘gcc-ccl.exe’, etc.) and the C
include files are kept respectively. This should be done with the commands:

$ assign /system /translation=concealed -
disk: [gcc.] gnu_cc
$ assign /system /translation=concealed -
disk: [gcc.include.] gnu_cc_include
with the appropriate disk and directory names. These commands can be placed in your
system startup file so they will be executed whenever the machine is rebooted. You
may, if you choose, do this via the ‘GCC_INSTALL.COM’ script in the ‘[GCC]’ directory.

2. Install the ‘GCC’ command with the command line:

$ set command /table=sys$common: [syslibldcltables -
/output=sys$common: [syslibldcltables gnu_cc:[000000]gcc
$ install replace sys$common: [syslibldcltables

3. To install the help file, do the following:
$ library/help sys$library:helplib.hlb gcc.hlp
Now you can invoke the compiler with a command like ‘gcc /verbose file.c’, which

is equivalent to the command ‘gcc -v -c file.c’ in Unix.

If you wish to use GNU C++ you must first install GNU CC, and then perform the
following steps:

110 Using and Porting GNU CC

1. Define the VMS logical name ‘GNU_GXX_INCLUDE’ to point to the directory where the
preprocessor will search for the C++ header files. This can be done with the command:
$ assign /system /translation=concealed -
disk: [gcc.gxx_include.] gnu_gxx_include
with the appropriate disk and directory name. If you are going to be using libg++, this
is where the libg++ install procedure will install the libg++ header files.

2. Obtain the file ‘gcc-cclplus. exe’, and place this in the same directory that ‘gcc-ccl.exe’]]
is kept.
The GNU C++ compiler can be invoked with a command like ‘gcc /plus /verbose
file.cc’, which is equivalent to the command ‘g++ -v -c file.cc’ in Unix.

We try to put corresponding binaries and sources on the VMS distribution tape. But
sometimes the binaries will be from an older version than the sources, because we don’t
always have time to update them. (Use the ‘/version’ option to determine the version
number of the binaries and compare it with the source file ‘version.c’ to tell whether this
is so.) In this case, you should use the binaries you get to recompile the sources. If you
must recompile, here is how:

1. Execute the command procedure ‘vmsconfig.com’to set up the files ‘tm.h’, ‘config.h’,
‘aux-output.c’, and ‘md.’, and to create files ‘tconfig.h’ and ‘hconfig.h’. This
procedure also creates several linker option files used by ‘make-ccl.com’ and a data
file used by ‘make-12.com’.

$ @vmsconfig.com

2. Setup the logical names and command tables as defined above. In addition, define
the VMS logical name ‘GNU_BISON’ to point at the to the directories where the Bison
executable is kept. This should be done with the command:

$ assign /system /translation=concealed -
disk: [bison.] gnu_bison

You may, if you choose, use the ‘INSTALL_BISON.COM’ script in the ‘[BISON]’ directory.
3. Install the ‘BISON’ command with the command line:
$ set command /table=sys$common: [syslibldcltables -
/output=sys$common: [syslibldcltables -

gnu_bison: [000000]bison
$ install replace sys$common: [syslibldcltables

4. Type ‘@make-gcc’ to recompile everything (alternatively, submit the file ‘make-gcc . com’]
to a batch queue). If you wish to build the GNU C++ compiler as well as the GNU CC
compiler, you must first edit ‘make-gcc.com’ and follow the instructions that appear
in the comments.

5. In order to use GCC, you need a library of functions which GCC compiled code will
call to perform certain tasks, and these functions are defined in the file ‘1ibgcc2.c’.
To compile this you should use the command procedure ‘make-12.com’, which will
generate the library ‘libgcc2.0lb’. ‘1ibgcc2.01b’ should be built using the compiler
built from the same distribution that ‘1ibgcc2.c’ came from, and ‘make-gcc.com’ will
automatically do all of this for you.

To install the library, use the following commands:

Chapter 5: Installing GNU CC 111

$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)

$ library gnu_cc:[000000]gcclib/delete=L_x

$ library libgcc2/extract=*/output=1libgcc2.obj

$ library gnu_cc:[000000]gcclib 1libgcc2.0obj
The first command simply removes old modules that will be replaced with modules
from ‘libgcc2’ under different module names. The modules new and eprintf may not
actually be present in your ‘gcclib.olb’—if the VMS librarian complains about those
modules not being present, simply ignore the message and continue on with the next
command. The second command removes the modules that came from the previous
version of the library ‘libgcc2.c’.

Whenever you update the compiler on your system, you should also update the library
with the above procedure.

6. You may wish to build GCC in such a way that no files are written to the directory
where the source files reside. An example would be the when the source files are on
a read-only disk. In these cases, execute the following DCL commands (substituting
your actual path names):
$ assign dual:[gcc.build_dir.]/translation=concealed, -

dual: [gcc.source_dir.]/translation=concealed gcc_build
$ set default gcc_build: [000000]

where the directory ‘dual:[gcc.source_dir]’ contains the source code, and the di-
rectory ‘dua0: [gcc.build_dir]’ is meant to contain all of the generated object files
and executables. Once you have done this, you can proceed building GCC as described
above. (Keep in mind that ‘gcc_build’ is a rooted logical name, and thus the device
names in each element of the search list must be an actual physical device name rather
than another rooted logical name).

7. If you are building GNU CC with a previous version of GNU CC, you also should
check to see that you have the newest version of the assembler. In particular, GNU
CC version 2 treats global constant variables slightly differently from GNU CC version
1, and GAS version 1.38.1 does not have the patches required to work with GCC version
2. If you use GAS 1.38.1, then extern const variables will not have the read-only bit
set, and the linker will generate warning messages about mismatched psect attributes
for these variables. These warning messages are merely a nuisance, and can safely be
ignored.

If you are compiling with a version of GNU CC older than 1.33, specify ‘/DEFINE=("inline=")’}}
as an option in all the compilations. This requires editing all the gcc commands in
‘make-ccl.com’. (The older versions had problems supporting inline.) Once you

have a working 1.33 or newer GNU CC, you can change this file back.

8. If you want to build GNU CC with the VAX C compiler, you will need to make
minor changes in ‘make-cccp.com’ and ‘make-ccl.com’ to choose alternate defini-
tions of CC, CFLAGS, and LIBS. See comments in those files. However, you must also
have a working version of the GNU assembler (GNU as, aka GAS) as it is used as
the back-end for GNU CC to produce binary object modules and is not included in
the GNU CC sources. GAS is also needed to compile ‘1ibgcc2’ in order to build
‘gcclib’ (see above); ‘make-12.com’ expects to be able to find it operational in
‘gnu_cc: [000000] gnu-as.exe’.

112 Using and Porting GNU CC

To use GNU CC on VMS, you need the VMS driver programs ‘gcc.exe’, ‘gcc. com’,
and ‘gcc.cld’. They are distributed with the VMS binaries (‘gcc-vms’) rather than
the GNU CC sources. GAS is also included in ‘gcc-vms’, as is Bison.

Once you have successfully built GNU CC with VAX C, you should use the resulting
compiler to rebuild itself. Before doing this, be sure to restore the CC, CFLAGS, and LIBS
definitions in ‘make-cccp.com’ and ‘make-ccl.com’. The second generation compiler
will be able to take advantage of many optimizations that must be suppressed when
building with other compilers.

Under previous versions of GNU CC, the generated code would occasionally give strange
results when linked with the sharable ‘VAXCRTL’ library. Now this should work.

Even with this version, however, GNU CC itself should not be linked with the sharable
‘VAXCRTL’. The version of gsort in ‘VAXCRTL’ has a bug (known to be present in VMS
versions V4.6 through V5.5) which causes the compiler to fail.

The executables are generated by ‘make-ccl.com’ and ‘make-cccp.com’ use the object
library version of ‘VAXCRTL’ in order to make use of the gsort routine in ‘gcclib.olb’. If
you wish to link the compiler executables with the shareable image version of ‘VAXCRTL’,
you should edit the file ‘tm.h’ (created by ‘vmsconfig.com’) to define the macro QSORT_
WORKAROUND.

QSORT_WORKARQUND is always defined when GNU CC is compiled with VAX C, to avoid
a problem in case ‘gcclib.olb’ is not yet available.

5.6 collect?

Many target systems do not have support in the assembler and linker for “constructors”—
initialization functions to be called before the official “start” of main. On such systems,
GNU CC uses a utility called collect2 to arrange to call these functions at start time.

The program collect2 works by linking the program once and looking through the linker
output file for symbols with particular names indicating they are constructor functions. If
it finds any, it creates a new temporary ¢.c’ file containing a table of them, compiles it, and
links the program a second time including that file.

The actual calls to the constructors are carried out by a subroutine called __main, which
is called (automatically) at the beginning of the body of main (provided main was compiled
with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking
C and C++ object code together. (If you use ‘-nostdlib’, you get an unresolved reference
to __main, since it’s defined in the standard GCC library. Include ‘-1gcc’ at the end of
your compiler command line to resolve this reference.)

The program collect2 is installed as 1d in the directory where the passes of the compiler
are installed. When collect2 needs to find the real 1d, it tries the following file names:

e ‘real-1d’ in the directories listed in the compiler’s search directories.
e ‘real-14d’in the directories listed in the environment variable PATH.
o The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.

e ‘1d’ in the compiler’s search directories, except that collect2 will not execute itself
recursively.

Chapter 5: Installing GNU CC 113

e ‘14’ in PATH.

“The compiler’s search directories” means all the directories where gcc searches for
passes of the compiler. This includes directories that you specify with ‘-B’.
Cross-compilers search a little differently:
e ‘real-1d’ in the compiler’s search directories.
e ‘target-real-1d’in PATH.
o The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.
e ‘1d’ in the compiler’s search directories.

e ‘target-1d’ in PATH.

collect?2 explicitly avoids running 1d using the file name under which collect2 itself
was invoked. In fact, it remembers up a list of such names—in case one copy of collect2
finds another copy (or version) of collect2 installed as 1d in a second place in the search
path.

collect?2 searches for the utilities nm and strip using the same algorithm as above for
1d.

5.7 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GNU CC
stores its private include files, and also where GNU CC stores the fixed include files. A
cross compiled GNU CC runs fixincludes on the header files in ‘§ (tooldir)/include’.
(If the cross compilation header files need to be fixed, they must be installed before GNU
CC is built. If the cross compilation header files are already suitable for ANSI C and GNU
CC, nothing special need be done).

GPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++ looks
first for header files. 1ibg++ installs only target independent header files in that directory.

LOCAL_INCLUDE_DIRis used only for a native compiler. It is normally ‘/usr/local/include’]
GNU CC searches this directory so that users can install header files in ‘/usr/local/include’.]]

CROSS_INCLUDE_DIR is used only for a cross compiler. GNU CC doesn’t install anything
there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other
packages to install header files that GNU CC will use. For a cross-compiler, this is the
equivalent of ‘/usr/include’. When you build a cross-compiler, fixincludes processes
any header files in this directory.

114 Using and Porting GNU CC

Chapter 6: Extensions to the C Language Family 115

6 Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard C. (The
‘-pedantic’ option directs GNU CC to print a warning message if any of these features is
used.) To test for the availability of these features in conditional compilation, check for a
predefined macro __GNUC__, which is always defined under GNU CC.

These extensions are available in C and Objective C. Most of them are also available in
C++. See Chapter 7 [Extensions to the C++ Language]|, page 149, for extensions that apply
only to C++.

6.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C.
This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in
this construct, parentheses go around the braces. For example:

({ int y = foo (); int z;
if (y >0) z = y;
else z = - y;

z; 1)

is a valid (though slightly more complex than necessary) expression for the absolute value
of foo ().

The last thing in the compound statement should be an expression followed by a semi-
colon; the value of this subexpression serves as the value of the entire construct. (If you use
some other kind of statement last within the braces, the construct has type void, and thus
effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined
as a macro in standard C as follows:

#define max(a,b) ((a) > () 7 (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side
effects. In GNU C, if you know the type of the operands (here let’s assume int), you can
define the macro safely as follows:

#define maxint(a,b) \
({int _,a=(a), _.b=(b); _,a> _b? _a: _b; })

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use
typeof (see Section 6.7 [Typeof], page 120) or type naming (see Section 6.6 [Naming Types],
page 120).

116 Using and Porting GNU CC

6.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be declared. A local label
is simply an identifier; you can jump to it with an ordinary goto statement, but only from
within the statement expression it belongs to.

A local label declaration looks like this:
__label__ Iabel;
or
__label__ labell, label2, ...;

Local label declarations must come at the beginning of the statement expression, right
after the ‘({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the label itself. You
must do this in the usual way, with label:, within the statements of the statement expres-
sion.

The local label feature is useful because statement expressions are often used in macros.
If the macro contains nested loops, a goto can be useful for breaking out of them. However,
an ordinary label whose scope is the whole function cannot be used: if the macro can be
expanded several times in one function, the label will be multiply defined in that function.
A local label avoids this problem. For example:

#define SEARCH(array, target) \
{ \

__label__ found;

typeof (target) _SEARCH_target = (target);

typeof (*(array)) *_SEARCH_array = (array);

int 1, j;

int value;

for (i = 0; 1 < max; i++)

for (j = 0; j < max; j++)
if (_SEARCH_array[i][j] == _SEARCH_target)
{ value = i; goto found; } \

value = -1;
found:

value;

H

P il i

o

6.3 Labels as Values

You can get the address of a label defined in the current function (or a containing
function) with the unary operator ‘¢&’. The value has type void *. This value is a constant
and can be used wherever a constant of that type is valid. For example:

void *ptr;

ptr = &&foo;

Chapter 6: Extensions to the C Language Family 117

To use these values, you need to be able to jump to one. This is done with the computed
goto statement', goto *exp;. For example,

goto *ptr;
Any expression of type void * is allowed.
One way of using these constants is in initializing a static array that will serve as a jump
table:
static void *array[] = { &&foo, &&bar, &&hack };
Then you can select a label with indexing, like this:
goto *array[i];
Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.
Such an array of label values serves a purpose much like that of the switch statement.
The switch statement is cleaner, so use that rather than an array unless the problem does
not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You can use this mechanism to jump to code in a different function. If you do that,
totally unpredictable things will happen. The best way to avoid this is to store the label
address only in automatic variables and never pass it as an argument.

6.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are
not supported for GNU C++.) The nested function’s name is local to the block where it is
defined. For example, here we define a nested function named square, and call it twice:

foo (double a, double b)
{

double square (double z) { return z * z; }

return square (a) + square (b);
}
The nested function can access all the variables of the containing function that are visible
at the point of its definition. This is called lexical scoping. For example, here we show a
nested function which uses an inherited variable named offset:

bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return array[index + offset]; }
int i;

! The analogous feature in Fortran is called an assigned goto, but that name seems in-
appropriate in C, where one can do more than simply store label addresses in label
variables.

118 Using and Porting GNU CC

for (i = 0; 1 < size; i++)
. access (array, 1) ...

Nested function definitions are permitted within functions in the places where variable
definitions are allowed; that is, in any block, before the first statement in the block.

It is possible to call the nested function from outside the scope of its name by storing
its address or passing the address to another function:

hack (int *array, int size)
{
void store (int index, int value)
{ arrayl[index] = value; }

intermediate (store, size);

¥

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array. But
this technique works only so long as the containing function (hack, in this example) does
not exit.

If you try to call the nested function through its address after the containing function
has exited, all hell will break loose. If you try to call it after a containing scope level has
exited, and if it refers to some of the variables that are no longer in scope, you may be
lucky, but it’s not wise to take the risk. If, however, the nested function does not refer to
anything that has gone out of scope, you should be safe.

GNU CC implements taking the address of a nested function using a technique called
trampolines. A paper describing them is available from ‘maya.idiap.ch’ in directory
‘pub/tmb’, file ‘usenix88-lexic.ps.Z’.

A nested function can jump to a label inherited from a containing function, provided
the label was explicitly declared in the containing function (see Section 6.2 [Local Labels],
page 116). Such a jump returns instantly to the containing function, exiting the nested
function which did the goto and any intermediate functions as well. Here is an example:

Chapter 6: Extensions to the C Language Family

bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;
return arraylindex + offset];

¥

int i;

for (i = 0; 1 < size; i++)
. access (array, 1) ...

return O;

/* Control comes here from access
if it detects an error. */

failure:

return -1;

¥

119

A nested function always has internal linkage. Declaring one with extern is erroneous.
If you need to declare the nested function before its definition, use auto (which is otherwise

meaningless for function declarations).

bar (int *array, int offset, int size)
{

__label__ failure;

auto int access (int *, int);

int access (int *array, int index)
{
if (index > size)
goto failure;
return arraylindex + offset];

¥

6.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function
received, and call another function with the same arguments, without knowing the number

or types of the arguments.

You can also record the return value of that function call, and later return that value,
without knowing what data type the function tried to return (as long as your caller expects

that data type).

120 Using and Porting GNU CC

__builtin_apply_args ()
This built-in function returns a pointer of type void * to data describing how to
perform a call with the same arguments as were passed to the current function.

The function saves the arg pointer register, structure value address, and all
registers that might be used to pass arguments to a function into a block of
memory allocated on the stack. Then it returns the address of that block.

__builtin_apply (function, arguments, size)
This built-in function invokes function (type void (x) ()) with a copy of the
parameters described by arguments (type void *) and size (type int).

The value of arguments should be the value returned by __builtin_apply_
args. The argument size specifies the size of the stack argument data, in bytes.

This function returns a pointer of type void * to data describing how to return
whatever value was returned by function. The data is saved in a block of
memory allocated on the stack.

It is not always simple to compute the proper value for size. The value is used
by __builtin_apply to compute the amount of data that should be pushed on
the stack and copied from the incoming argument area.

__builtin_return (result)
This built-in function returns the value described by result from the containing
function. You should specify, for result, a value returned by __builtin_apply.

6.6 Naming an Expression’s Type

You can give a name to the type of an expression using a typedef declaration with an
initializer. Here is how to define name as a type name for the type of exp:

typedef name = exp;

This is useful in conjunction with the statements-within-expressions feature. Here is
how the two together can be used to define a safe “maximum” macro that operates on any
arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb
_ta _a = (a); _tb _b =
_,a> b7 _a: _b; P

The reason for using names that start with underscores for the local variables is to avoid
conflicts with variable names that occur within the expressions that are substituted for a
and b. Eventually we hope to design a new form of declaration syntax that allows you to
declare variables whose scopes start only after their initializers; this will be a more reliable
way to prevent such conflicts.

®); N\
)

(b \

6.7 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using
of this keyword looks like sizeof, but the construct acts semantically like a type name
defined with typedef.

Chapter 6: Extensions to the C Language Family 121

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of the
functions.

Here is an example with a typename as the argument:
typeof (int *)
Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ANSI C programs, write
__typeof__ instead of typeof. See Section 6.34 [Alternate Keywords|, page 146.

A typeof-construct can be used anywhere a typedef name could be used. For example,
you can use it in a declaration, in a cast, or inside of sizeof or typeof.

e This declares y with the type of what x points to.
typeof (*x) y;

¢ This declares y as an array of such values.
typeof (*x) y[4];

e This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;
Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

6.8 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lvalues provided
their operands are lvalues. This means that you can take their addresses or store values
into them.

Standard C++ allows compound expressions and conditional expressions as lvalues, and
permits casts to reference type, so use of this extension is deprecated for C++ code.

For example, a compound expression can be assigned, provided the last expression in
the sequence is an lvalue. These two expressions are equivalent:

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken. These two expressions

are equivalent:

122 Using and Porting GNU CC

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and the true and false

branches are both valid lvalues. For example, these two expressions are equivalent:
(a?b:c)=5
(a?b=5: (c =5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand
side is a cast works by converting the right-hand side first to the specified type, then to the
type of the inner left-hand side expression. After this is stored, the value is converted back
to the specified type to become the value of the assignment. Thus, if a has type char *,
the following two expressions are equivalent:

(int)a = 5
(int) (a = (char *)(int)5)

An assignment-with-arithmetic operation such as ‘+=" applied to a cast performs the
arithmetic using the type resulting from the cast, and then continues as in the previous
case. Therefore, these two expressions are equivalent:

(int)a += 5
(int) (a = (char *)(int) ((int)a + 5))

bl

You cannot take the address of an lvalue cast, because the use of its address would not
work out coherently. Suppose that &(int)f were permitted, where f has type float. Then
the following statement would try to store an integer bit-pattern where a floating point
number belongs:

*&(int)f = 1;
This is quite different from what (int)f = 1 would do—that would convert 1 to floating

point and store it. Rather than cause this inconsistency, we think it is better to prohibit
use of ‘&’ on a cast.

If you really do want an int * pointer with the address of £, you can simply write (int
*x)&f.

6.9 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand
is nonzero, its value is the value of the conditional expression.

Therefore, the expression
X ?7:y
has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to
X?7x 5y
In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain a
side effect. Then repeating the operand in the middle would perform the side effect twice.

Omitting the middle operand uses the value already computed without the undesirable
effects of recomputing it.

Chapter 6: Extensions to the C Language Family 123

6.10 Double-Word Integers

GNU C supports data types for integers that are twice as long as long int. Simply write
long long int for a signed integer, or unsigned long long int for an unsigned integer. To
make an integer constant of type long long int, add the suffix LL to the integer. To make
an integer constant of type unsigned long long int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction,
and bitwise boolean operations on these types are open-coded on all types of machines.
Multiplication is open-coded if the machine supports fullword-to-doubleword a widening
multiply instruction. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special library routines that

come with GNU CC.

There may be pitfalls when you use long long types for function arguments, unless you
declare function prototypes. If a function expects type int for its argument, and you pass
a value of type long long int, confusion will result because the caller and the subroutine
will disagree about the number of bytes for the argument. Likewise, if the function expects
long long int and you pass int. The best way to avoid such problems is to use prototypes.

6.11 Complex Numbers

GNU C supports complex data types. You can declare both complex integer types and
complex floating types, using the keyword __complex__.

For example, ‘__complex__ double x;’ declares x as a variable whose real part and

imaginary part are both of type double. ‘__complex__ short int y;’ declares y to have
real and imaginary parts of type short int; this is not likely to be useful, but it shows that
the set of complex types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one;
they are equivalent). For example, 2.5f1i has type __complex__ float and 3i has type
__complex__ int. Such a constant always has a pure imaginary value, but you can form
any complex value you like by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write __real__ exp. Like-

_imag__ to extract the imaginary part.

wise, use

(~

The operator
type.

GNU CC can allocate complex automatic variables in a noncontiguous fashion; it’s even
possible for the real part to be in a register while the imaginary part is on the stack (or vice-
versa). None of the supported debugging info formats has a way to represent noncontiguous
allocation like this, so GNU CC describes a noncontiguous complex variable as if it were
two separate variables of noncomplex type. If the variable’s actual name is foo, the two
fictitious variables are named foo$real and foo$imag. You can examine and set these two
fictitious variables with your debugger.

> performs complex conjugation when used on a value with a complex

A future version of GDB will know how to recognize such pairs and treat them as a
single variable with a complex type.

124 Using and Porting GNU CC

6.12 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a
structure which is really a header for a variable-length object:
struct line {
int length;
char contents[0];

s
{
struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
+

In standard C, you would have to give contents a length of 1, which means either you
waste space or complicate the argument to malloc.

6.13 Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are declared like
any other automatic arrays, but with a length that is not a constant expression. The storage
is allocated at the point of declaration and deallocated when the brace-level is exited. For
example:

FILE %
concat_fopen (char *s1, char *s2, char #*mode)

{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

¥

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The
function alloca is available in many other C implementations (but not in all). On the
other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca
exists until the containing function returns. The space for a variable-length array is deal-
located as soon as the array name’s scope ends. (If you use both variable-length arrays
and alloca in the same function, deallocation of a variable-length array will also deallocate
anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{

Chapter 6: Extensions to the C Language Family 125

¥

The length of an array is computed once when the storage is allocated and is remembered
for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward
declaration in the parameter list—another GNU extension.

struct entry
tester (int len; char datal[len][len], int len)

{
}...

The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the
purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter
list. They can be separated by commas or semicolons, but the last one must end with a
semicolon, which is followed by the “real” parameter declarations. Each forward declaration
must match a “real” declaration in parameter name and data type.

6.14 Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much as a function
can. The syntax for defining the macro looks much like that used for a function. Here is
an example:

#define eprintf(format, args...) \
fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as many as the call
contains. All of them plus the commas between them form the value of args, which is
substituted into the macro body where args is used. Thus, we have this expansion:

eprintf ("Y%s:%d: ", input_file_name, line_number)

—

fprintf (stderr, "¥s:%d: " , input_file_name, line_number)
Note that the comma after the string constant comes from the definition of eprintf, whereas
the last comma comes from the value of args.

The reason for using ‘##’ is to handle the case when args matches no arguments at all.
In this case, args has an empty value. In this case, the second comma in the definition
becomes an embarrassment: if it got through to the expansion of the macro, we would get
something like this:

fprintf (stderr, "success!\n" ,)
which is invalid C syntax. ‘##’ gets rid of the comma, so we get the following instead:
fprintf (stderr, '"success!'\n")

This is a special feature of the GNU C preprocessor: ‘##’ before a rest argument that
is empty discards the preceding sequence of non-whitespace characters from the macro
definition. (If another macro argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of the last preceding
sequence of non-whitespace characters; in fact, we may someday change this feature to do

126 Using and Porting GNU CC

so. We advise you to write the macro definition so that the preceding sequence of non-
whitespace characters is just a single token, so that the meaning will not change if we
change the definition of this feature.

6.15 Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary ‘&’ operator
is not. For example, this is valid in GNU C though not valid in other C dialects:

struct foo {int al4];};
struct foo f();

bar (int index)

{

return f£().al[index];

¥

6.16 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and
on pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and
returns 1.

The option ‘-Wpointer-arith’ requests a warning if these extensions are used.

6.17 Non-Constant Initializers

As in standard C++, the elements of an aggregate initializer for an automatic variable
are not required to be constant expressions in GNU C. Here is an example of an initializer
with run-time varying elements:

foo (float f, float g)

{
float beat_freqs[2] = { f-g, f+g };

6.18 Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast containing an
initializer. Its value is an object of the type specified in the cast, containing the elements
specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo and structure are
declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

Chapter 6: Extensions to the C Language Family 127

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:
{
struct foo temp = {x + y, ’a’, O};
structure = temp;

}

You can also construct an array. If all the elements of the constructor are (made up of)
simple constant expressions, suitable for use in initializers, then the constructor is an lvalue
and can be coerced to a pointer to its first element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Array constructors whose elements are not simple constants are not very useful, because
the constructor is not an lvalue. There are only two valid ways to use it: to subscript it, or
initialize an array variable with it. The former is probably slower than a switch statement,
while the latter does the same thing an ordinary C initializer would do. Here is an example
of subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also allowed, but then

the constructor expression is equivalent to a cast.

6.19 Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed order, the same
as the order of the elements in the array or structure being initialized.

In GNU C you can give the elements in any order, specifying the array indices or structure
field names they apply to. This extension is not implemented in GNU C++.
To specify an array index, write ‘[index]’ or ‘[index] =’ before the element value. For
example,
int a[6]

{ [4] 29, [2] = 15 };
is equivalent to
int a[6]

{0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being initialized is auto-
matic.

To initialize a range of elements to the same value, write ‘[first ... last] = value’. For
example,
int widths[] = { [0 ... 9] =1, [10 ... 99] = 2, [100] = 3 };

Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with ‘fieldname:’ before
the element value. For example, given the following structure,

struct point { int x, y; };
the following initialization
struct point p = { y: yvalue, x: xvalue };

is equivalent to

128 Using and Porting GNU CC

struct point p = { xvalue, yvalue };
Another syntax which has the same meaning is ‘. fieldname =’., as shown here:
struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or the period-equal
syntax) when initializing a union, to specify which element of the union should be used.
For example,

union foo { int i; double d; };

union foo £ = { d: 4 };

will convert 4 to a double to store it in the union using the second element. By contrast,
casting 4 to type union foo would store it into the union as the integer i, since it is an
integer. (See Section 6.21 [Cast to Union], page 129.)

You can combine this technique of naming elements with ordinary C initialization of
successive elements. Each initializer element that does not have a label applies to the next
consecutive element of the array or structure. For example,

{ [1] = vi, v2, [4] = v4 };

int al[6]

is equivalent to

int al[6] {0, vi, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are
characters or belong to an enum type. For example:

int whitespace[256]
={ []=1, \¢v] =1, [’\h’] =1,
C\E’] =1, D\n’] =1, D\r’] =1 3}

6.20 Case Ranges

You can specify a range of consecutive values in a single case label, like this:
case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer
value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:
case A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when
you use it with integer values. For example, write this:

case 1 ... 5:
rather than this:

case 1...5:

Chapter 6: Extensions to the C Language Family 129

6.21 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union
type. You can specify the type either with union tag or with a typedef name. A cast to
union is actually a constructor though, not a cast, and hence does not yield an lvalue like
normal casts. (See Section 6.18 [Constructors], page 126.)

The types that may be cast to the union type are those of the members of the union.
Thus, given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union type is
equivalent to storing in a member of the union:

union foo u;

u.i =x
u.d =y

(union foo) x
(union foo) y

u
u

You can also use the union cast as a function argument:

void hack (union foo);

hack ((union foo) x);

6.22 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help
the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute specification inside double parentheses.
Eight attributes, noreturn, const, format, section, constructor, destructor, unused
and weak are currently defined for functions. Other attributes, including section are
supported for variables declarations (see Section 6.28 [Variable Attributes], page 134) and
for types (see Section 6.29 [Type Attributes], page 137).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __noreturn__ instead of noreturn.

noreturn A few standard library functions, such as abort and exit, cannot return. GNU
CC knows this automatically. Some programs define their own functions that
never return. You can declare them noreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));

void
fatal (...)

130

const

Using and Porting GNU CC

{

... /* Print error message. */ ...
exit (1);
}
The noreturn keyword tells the compiler to assume that fatal cannot return.
It can then optimize without regard to what would happen if fatal ever did
return. This makes slightly better code. More importantly, it helps avoid
spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored before
calling the noreturn function.

It does not make sense for a noreturn function to have a return type other
than void.

The attribute noreturn is not implemented in GNU C versions earlier than 2.5.
An alternative way to declare that a function does not return, which works in
the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

Many functions do not examine any values except their arguments, and have
no effects except the return value. Such a function can be subject to common
subexpression elimination and loop optimization just as an arithmetic operator
would be. These functions should be declared with the attribute const. For
example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call fewer times than the
program says.
The attribute const is not implemented in GNU C versions earlier than 2.5.

An alternative way to declare that a function has no side effects, which works
in the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the ‘const’ must be attached to the return value.

Note that a function that has pointer arguments and examines the data pointed
to must not be declared const. Likewise, a function that calls a non-const
function usually must not be const. It does not make sense for a const function
to return void.

format (archetype, string-index, first-to-check)

The format attribute specifies that a function takes printf or scanf style
arguments which should be type-checked against a format string. For example,
the declaration:

extern int

Chapter 6: Extensions to the C Language Family 131

my_printf (void *my_object, const char #*my_format, ...)
__attribute__ ((format (printf, 2, 3)));
causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and
should be either printf or scanf. The parameter string-index specifies which
argument is the format string argument (starting from 1), while first-to-check is
the number of the first argument to check against the format string. For func-
tions where the arguments are not available to be checked (such as vprintf),
specify the third parameter as zero. In this case the compiler only checks the
format string for consistency.

In the example above, the format string (my_format) is the second argument
of the function my_print, and the arguments to check start with the third
argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take for-
mat strings as arguments, so that GNU CC can check the calls to these functions
for errors. The compiler always checks formats for the ANSI library functions
printf, fprintf, sprintf, scanf, fscanf, sscanf, vprintf, vfprintf and
vsprintf whenever such warnings are requested (using ‘-Wformat’), so there
is no need to modify the header file ‘stdio.h’.

section ("section-name")
Normally, the compiler places the code it generates in the text section. Some-
times, however, you need additional sections, or you need certain particular
functions to appear in special sections. The section attribute specifies that a
function lives in a particular section. For example, the declaration:

extern void foobar (void) __attribute__ ((section ("bar")));
puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

constructor

destructor
The constructor attribute causes the function to be called automatically be-
fore execution enters main (). Similarly, the destructor attribute causes the
function to be called automatically after main () has completed or exit () has
been called. Functions with these attributes are useful for initializing data that
will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective C.

unused This attribute, attached to a function, means that the function is meant to be
possibly unused. GNU CC will not produce a warning for this function.

weak The weak attribute causes the declaration to be emitted as a weak symbol
rather than a global. This is primarily useful in defining library functions which
can be overridden in user code, though it can also be used with non-function

132 Using and Porting GNU CC

declarations. Weak symbols are supported for ELF targets, and also for a.out
targets when using the GNU assembler and linker.

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,
void __f () { /* do something */; }
void £ () __attribute__ ((weak, alias ("__£f")));
declares ‘f’ to be a weak alias for ‘__f’. In C++, the mangled name for the
target must be used.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass up to
number integer arguments in registers EAX, EDX, and ECX instead of on the
stack. Functions that take a variable number of arguments will continue to be
passed all of their arguments on the stack.

stdcall On the Intel 386, the stdcall attribute causes the compiler to assume that
the called function will pop off the stack space used to pass arguments, unless
it takes a variable number of arguments.

cdecl On the Intel 386, the cdecl attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless it
takes a variable number of arguments. This is useful to override the effects of
the ‘-mrtd’ switch.

You can specify multiple attributes in a declaration by separating them by commas
within the double parentheses or by immediately following an attribute declaration with
another attribute declaration.

Some people object to the __attribute__ feature, suggesting that ANSI C’s #pragma
should be used instead. There are two reasons for not doing this.

1. It is impossible to generate #pragma commands from a macro.
2. There is no telling what the same #pragma might mean in another compiler.

These two reasons apply to almost any application that might be proposed for #pragma.
It is basically a mistake to use #pragma for anything.

6.23 Prototypes and Old-Style Function Definitions

GNU C extends ANSI C to allow a function prototype to override a later old-style
non-prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__

#define P(x) x

#else

#define P(x) ()

#endif

/* Prototype function declaration. */

Chapter 6: Extensions to the C Language Family 133

int isroot P((uid_t));

/* Old-style function definition. */

int
isroot (x) /% 777 lossage here 777 x*/
uid_t x;
{
return x == 0;
b

Suppose the type uid_t happens to be short. ANSI C does not allow this example,
because subword arguments in old-style non-prototype definitions are promoted. Therefore
in this example the function definition’s argument is really an int, which does not match
the prototype argument type of short.

This restriction of ANSI C makes it hard to write code that is portable to traditional C
compilers, because the programmer does not know whether the uid_t type is short, int,
or long. Therefore, in cases like these GNU C allows a prototype to override a later old-
style definition. More precisely, in GNU C, a function prototype argument type overrides
the argument type specified by a later old-style definition if the former type is the same as
the latter type before promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);

int
isroot (uid_t x)
{

return x == 0;
}

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

6.24 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’ and continue until
the end of the line. Many other C implementations allow such comments, and they are
likely to be in a future C standard. However, C++ style comments are not recognized if you
specify ‘-ansi’ or ‘-traditional’, since they are incompatible with traditional constructs
like dividend//*comment*/divisor.

6.25 Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is because many traditional
C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify ‘-traditional’.
On a few systems they are allowed by default, even if you do not use ‘-traditional’. But
they are never allowed if you specify ‘-ansi’.

There are certain ANSI C programs (obscure, to be sure) that would compile incorrectly
if dollar signs were permitted in identifiers. For example:

134 Using and Porting GNU CC

#define foo(a) #a
#define lose(b) foo (b)
#define test$

lose (test)

6.26 The Character in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII

character (ESC).

6.27 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the
minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte
boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On
more traditional machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type
even at an odd addresses. For these machines, __alignof__ reports the recommended
alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type, the value is the
largest alignment that the lvalue is known to have. It may have this alignment as a result of
its data type, or because it is part of a structure and inherits alignment from that structure.
For example, after this declaration:

struct foo { int x; char y; } fool;

the value of __alignof__ (fool.y) is probably 2 or 4, the same as __alignof__ (int),
even though the data type of fool.y does not itself demand any alignment.

A related feature which lets you specify the alignment of an object is __attribute__
((aligned (alignment))); see the following section.

6.28 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or
structure fields. This keyword is followed by an attribute specification inside double paren-
theses. Eight attributes are currently defined for variables: aligned, mode, nocommon,
packed, section, transparent_union, unused, and weak. Other attributes are available
for functions (see Section 6.22 [Function Attributes], page 129) and for types (see Sec-
tion 6.29 [Type Attributes], page 137).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __aligned__ instead of aligned.

aligned (alignment)
This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:

Chapter 6: Extensions to the C Language Family 135

int x __attribute__ ((aligned (16))) = 0O;

causes the compiler to allocate the global variable x on a 16-byte boundary. On
a 68040, this could be used in conjunction with an asm expression to access the
movel6 instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to create a
double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces
the union to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment of func-
tions is determined by the machine’s requirements and cannot be changed. You
cannot specify alignment for a typedef name because such a name is just an
alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given variable or structure field. Alter-
natively, you can leave out the alignment factor and just ask the compiler to
align a variable or field to the maximum useful alignment for the target machine
you are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the declared variable or
field to the largest alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables or fields
that you have aligned this way.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

mode (mode)
This attribute specifies the data type for the declaration—whichever type cor-
responds to the mode mode. This in effect lets you request an integer or floating
point type according to its width.

You may also specify a mode of ‘byte’ or ‘__byte__’ to indicate the mode
corresponding to a one-byte integer, ‘word’ or ‘__word__’ for the mode of a one-
word integer, and ‘pointer’ or ‘__pointer__’ for the mode used to represent
pointers.

136

nocommon

packed

Using and Porting GNU CC

This attribute specifies requests GNU CC not to place a variable “common”
but instead to allocate space for it directly. If you specify the ‘-fno-common’

flag, GNU CC will do this for all variables.

Specifying the nocommon attribute for a variable provides an initialization of
zeros. A variable may only be initialized in one source file.

The packed attribute specifies that a variable or structure field should have
the smallest possible alignment—one byte for a variable, and one bit for a field,
unless you specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately follows
a:

struct foo
{

char a;

int x[2] __attribute__ ((packed));
}s

section ("section-name")

Normally, the compiler places the objects it generates in sections like data and
bss. Sometimes, however, you need additional sections, or you need certain
particular variables to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable (or function) lives

in a particular section. For example, this small program uses several specific
section names:

struct duart a __attribute__ ((section ("DUART_A"))) {0 };
struct duart b __attribute__ ((section ("DUART_B"))) {0 };
char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };

int init_data_copy __attribute__ ((section ("INITDATACOPY"))) = O;}}

main()

{
/* Initialize stack pointer */
init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data_copy, &data, &edata - &data);

/* Turn on the serial ports */
init_duart (&a);
init_duart (&b);

+

Use the section attribute with an initialized definition of a global variable, as
shown in the example. GNU CC issues a warning and otherwise ignores the
section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global definition
because of the way linkers work. The linker requires each object be defined once,
with the exception that uninitialized variables tentatively go in the common (or

Chapter 6: Extensions to the C Language Family 137

bss) section and can be multiply "defined". You can force a variable to be
initialized with the ‘-fno-common’ flag or the nocommon attribute.

Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

transparent_union
This attribute, attached to a function argument variable which is a union, means
to pass the argument in the same way that the first union member would be
passed. You can also use this attribute on a typedef for a union data type;
then it applies to all function arguments with that type.

unused This attribute, attached to a variable, means that the variable is meant to be
possibly unused. GNU CC will not produce a warning for this variable.

weak The weak attribute is described in See Section 6.22 [Function Attributes],
page 129.

To specify multiple attributes, separate them by commas within the double parentheses:
for example, ‘__attribute__ ((aligned (16), packed))’.

6.29 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and
union types when you define such types. This keyword is followed by an attribute specifica-
tion inside double parentheses. Three attributes are currently defined for types: aligned,
packed, and transparent_union. Other attributes are defined for functions (see Sec-
tion 6.22 [Function Attributes], page 129) and for variables (see Section 6.28 [Variable
Attributes], page 134).

You may also specify any one of these attributes with ‘__’ preceding and following its
keyword. This allows you to use these attributes in header files without being concerned
about a possible macro of the same name. For example, you may use __aligned__ instead
of aligned.

You may specify the aligned and transparent_union attributes either in a typedef
declaration or just past the closing curly brace of a complete enum, struct or union type
definition and the packed attribute only past the closing brace of a definition.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for variables of the
specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8));
typedef int more_aligned_int __attribute__ ((aligned (8));

force the compiler to insure (as fas as it can) that each variable whose type
is struct S or more_aligned_int will be allocated and aligned at least on a
8-byte boundary. On a Sparc, having all variables of type struct S aligned to
8-byte boundaries allows the compiler to use the 1dd and std (doubleword load
and store) instructions when copying one variable of type struct S to another,
thus improving run-time efficiency.

138

packed

Using and Porting GNU CC

Note that the alignment of any given struct or union type is required by the
ANSI C standard to be at least a perfect multiple of the lowest common multiple
of the alignments of all of the members of the struct or union in question. This
means that you can effectively adjust the alignment of a struct or union type
by attaching an aligned attribute to any one of the members of such a type,
but the notation illustrated in the example above is a more obvious, intuitive,
and readable way to request the compiler to adjust the alignment of an entire
struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given struct or union type. Alterna-
tively, you can leave out the alignment factor and just ask the compiler to
align a type to the maximum useful alignment for the target machine you are
compiling for. For example, you could write:
struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the type to the largest
alignment which is ever used for any data type on the target machine you are
compiling for. Doing this can often make copy operations more efficient, be-
cause the compiler can use whatever instructions copy the biggest chunks of
memory when performing copies to or from the variables which have types that
you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the
entire struct S type is 6 bytes. The smallest power of two which is greater
than or equal to that is 8, so the compiler sets the alignment for the entire
struct S type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient alignment
for a given type and then declare only individual stand-alone objects of that
type, the compiler’s ability to select a time-efficient alignment is primarily useful
only when you plan to create arrays of variables having the relevant (efficiently
aligned) type. If you declare or use arrays of variables of an efficiently-aligned
type, then it is likely that your program will also be doing pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the relevant type,
and the code that the compiler generates for these pointer arithmetic operations
will often be more efficient for efficiently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

This attribute, attached to an enum, struct, or union type definition, specified
that the minimum required memory be used to represent the type.

Chapter 6: Extensions to the C Language Family 139

Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members. Specifying
the ‘-fshort-enums’ flag on the line is equivalent to specifying the packed
attribute on all enum definitions.

You may only specify this attribute after a closing curly brace on an enum
definition, not in a typedef declaration.

transparent_union
This attribute, attached to a union type definition, indicates that any variable
having that union type should, if passed to a function, be passed in the same
way that the first union member would be passed. For example:

union foo

{

char a;
int x[2];
} __attribute__ ((transparent_union));

To specify multiple attributes, separate them by commas within the double parentheses:
for example, ‘__attribute__ ((aligned (16), packed))’.

6.30 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate that function’s
code into the code for its callers. This makes execution faster by eliminating the function-
call overhead; in addition, if any of the actual argument values are constant, their known
values may permit simplifications at compile time so that not all of the inline function’s
code needs to be included. The effect on code size is less predictable; object code may
be larger or smaller with function inlining, depending on the particular case. Inlining of
functions is an optimization and it really “works” only in optimizing compilation. If you
don’t use ‘-0’, no function is really inline.

To declare a function inline, use the inline keyword in its declaration, like this:
inline int
inc (int *a)
{
(xa)++;
}
(If you are writing a header file to be included in ANSI C programs, write __inline__
instead of inline. See Section 6.34 [Alternate Keywords], page 146.)

You can also make all “simple enough” functions inline with the option ‘-finline-functions’.]
Note that certain usages in a function definition can make it unsuitable for inline substitu-
tion.

Note that in C and Objective C, unlike C++, the inline keyword does not affect the
linkage of the function.

GNU CC automatically inlines member functions defined within the class body of C++
programs even if they are not explicitly declared inline. (You can override this with
‘-fno-default-inline’; see Section 4.5 [Options Controlling C++ Dialect], page 29.)

140 Using and Porting GNU CC

When a function is both inline and static, if all calls to the function are integrated
into the caller, and the function’s address is never used, then the function’s own assembler
code is never referenced. In this case, GNU CC does not actually output assembler code for
the function, unless you specify the option ‘-fkeep-inline-functions’. Some calls cannot
be integrated for various reasons (in particular, calls that precede the function’s definition
cannot be integrated, and neither can recursive calls within the definition). If there is a
nonintegrated call, then the function is compiled to assembler code as usual. The function
must also be compiled as usual if the program refers to its address, because that can’t be
inlined.

When an inline function is not static, then the compiler must assume that there may be
calls from other source files; since a global symbol can be defined only once in any program,
the function must not be defined in the other source files, so the calls therein cannot be
integrated. Therefore, a non-static inline function is always compiled on its own in the
usual fashion.

If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you refer
to its address explicitly. Such an address becomes an external reference, as if you had only
declared the function, and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to
use it is to put a function definition in a header file with these keywords, and put another
copy of the definition (lacking inline and extern) in a library file. The definition in the
header file will cause most calls to the function to be inlined. If any uses of the function
remain, they will refer to the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear whether it is
better to inline or not, in this case, but we found that a correct implementation when not
optimizing was difficult. So we did the easy thing, and turned it off.

6.31 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can now specify the operands of the instruction
using C expressions. This means no more guessing which registers or memory locations will
contain the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%40" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output
operand. Each has ‘"f"’ as its operand constraint, saying that a floating point register
is required. The ‘=’ in ‘=f’ indicates that the operand is an output; all output operands’
constraints must use ‘=". The constraints use the same language used in the machine
description (see Section 16.6 [Constraints], page 249).

Each operand is described by an operand-constraint string followed by the C expression
in parentheses. A colon separates the assembler template from the first output operand, and
another separates the last output operand from the first input, if any. Commas separate

Chapter 6: Extensions to the C Language Family 141

output operands and separate inputs. The total number of operands is limited to ten or to
the maximum number of operands in any instruction pattern in the machine description,
whichever is greater.

If there are no output operands, and there are input operands, then there must be two
consecutive colons surrounding the place where the output operands would go.

Output operand expressions must be lvalues; the compiler can check this. The input
operands need not be lvalues. The compiler cannot check whether the operands have data
types that are reasonable for the instruction being executed. It does not parse the assembler
instruction template and does not know what it means, or whether it is valid assembler
input. The extended asm feature is most often used for machine instructions that the
compiler itself does not know exist. If the output expression cannot be directly addressed
(for example, it is a bit field), your constraint must allow a register. In that case, GNU CC
will use the register as the output of the asm, and then store that register into the output.

The output operands must be write-only; GNU CC will assume that the values in these
operands before the instruction are dead and need not be generated. Extended asm does
not support input-output or read-write operands. For this reason, the constraint character
‘+’. which indicates such an operand, may not be used.

When the assembler instruction has a read-write operand, or an operand in which only
some of the bits are to be changed, you must logically split its function into two separate
operands, one input operand and one write-only output operand. The connection between
them is expressed by constraints which say they need to be in the same location when the
instruction executes. You can use the same C expression for both operands, or different
expressions. For example, here we write the (fictitious) ‘combine’ instruction with bar as
its read-only source operand and foo as its read-write destination:

asm ("combine %2,%40" : "=r" (foo) : "O" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same location as operand
0. A digit in constraint is allowed only in an input operand, and it must refer to an output
operand.

Only a digit in the constraint can guarantee that one operand will be in the same place
as another. The mere fact that foo is the value of both operands is not enough to guarantee
that they will be in the same place in the generated assembler code. The following would
not work:

asm ("combine %2,%40" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different regis-
ters; GNU CC knows no reason not to do so. For example, the compiler might find a copy
of the value of foo in one register and use it for operand 1, but generate the output operand
0 in a different register (copying it afterward to foo’s own address). Of course, since the
register for operand 1 is not even mentioned in the assembler code, the result will not work,

but GNU CC can’t tell that.

Some instructions clobber specific hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given as
strings). Here is a realistic example for the Vax:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */

142 Using and Porting GNU CC

Ilgll (from) s Ilgll (to) s Ilgll (Count)
Ilroll’ Ilrlll’ I|r2ll’ Ilrsll’ I|r4ll’ Ilr5ll);

If you refer to a particular hardware register from the assembler code, then you will
probably have to list the register after the third colon to tell the compiler that the register’s
value is modified. In many assemblers, the register names begin with ‘}’; to produce one
‘%’ in the assembler code, you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register, add ‘cc’ to the list of
clobbered registers. GNU CC on some machines represents the condition codes as a specific
hardware register; ‘cc’ serves to name this register. On other machines, the condition code
is handled differently, and specifying ‘cc’ has no effect. But it is valid no matter what the
machine.

If your assembler instruction modifies memory in an unpredictable fashion, add ‘memory’
to the list of clobbered registers. This will cause GNU CC to not keep memory values cached
in registers across the assembler instruction.

You can put multiple assembler instructions together in a single asm template, separated
either with newlines (written as ‘\n’) or with semicolons if the assembler allows such semi-
colons. The GNU assembler allows semicolons and all Unix assemblers seem to do so. The
input operands are guaranteed not to use any of the clobbered registers, and neither will
the output operands’ addresses, so you can read and write the clobbered registers as many
times as you like. Here is an example of multiple instructions in a template; it assumes that
the subroutine _foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9;movl %1,r10;call _foo"
: /* no outputs */
Ilgll (from) s Ilgll (to)
Ilrgll’ Ilrloll);

Unless an output operand has the ‘&’ constraint modifier, GNU CC may allocate it in
the same register as an unrelated input operand, on the assumption that the inputs are
consumed before the outputs are produced. This assumption may be false if the assembler
code actually consists of more than one instruction. In such a case, use ‘¢’ for each output
operand that may not overlap an input. See Section 16.6.4 [Modifiers], page 254.

If you want to test the condition code produced by an assembler instruction, you must
include a branch and a label in the asm construct, as follows:

asm ("clr %0;frob %1;beq Of;mov #1,%0;0:"
"g" (result)
"g" (input));
This assumes your assembler supports local labels, as the GNU assembler and most Unix
assemblers do.

Speaking of labels, jumps from one asm to another are not supported. The compiler’s
optimizers do not know about these jumps, and therefore they cannot take account of them
when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

Chapter 6: Extensions to the C Language Family 143

asm ("fsinx %1,%40": "=f" (__value): "f" (__arg)); \
__value; })

Here the variable __arg is used to make sure that the instruction operates on a proper

double value, and to accept only those arguments x which can convert automatically to a
double.

Another way to make sure the instruction operates on the correct data type is to use
a cast in the asm. This is different from using a variable __arg in that it converts more
different types. For example, if the desired type were int, casting the argument to int
would accept a pointer with no complaint, while assigning the argument to an int variable
named __arg would warn about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GNU CC assumes for optimization purposes that the
instruction has no side effects except to change the output operands. This does not mean
that instructions with a side effect cannot be used, but you must be careful, because the
compiler may eliminate them if the output operands aren’t used, or move them out of loops,
or replace two with one if they constitute a common subexpression. Also, if your instruction
does have a side effect on a variable that otherwise appears not to change, the old value of
the variable may be reused later if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved significantly, or combined,
by writing the keyword volatile after the asm. For example:
#define set_priority(x) \
asm volatile ("set_priority %0": /* no outputs */ : "g" (x))
An instruction without output operands will not be deleted or moved significantly, regard-
less, unless it is unreachable.

Note that even a volatile asm instruction can be moved in ways that appear insignificant
to the compiler, such as across jump instructions. You can’t expect a sequence of volatile
asm instructions to remain perfectly consecutive. If you want consecutive output, use a
single asm.

It is a natural idea to look for a way to give access to the condition code left by the
assembler instruction. However, when we attempted to implement this, we found no way
to make it work reliably. The problem is that output operands might need reloading,
which would result in additional following “store” instructions. On most machines, these
instructions would alter the condition code before there was time to test it. This problem
doesn’t arise for ordinary “test” and “compare” instructions because they don’t have any
output operands.

If you are writing a header file that should be includable in ANSI C programs, write
__asm__ instead of asm. See Section 6.34 [Alternate Keywords], page 146.

6.32 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable
by writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm ("myfoo'") = 2;
This specifies that the name to be used for the variable foo in the assembler code should
be ‘myfoo’ rather than the usual ‘_foo’.

144 Using and Porting GNU CC

On systems where an underscore is normally prepended to the name of a C function or
variable, this feature allows you to define names for the linker that do not start with an
underscore.

You cannot use asm in this way in a function definition; but you can get the same effect
by writing a declaration for the function before its definition and putting asm there, like
this:

extern func () asm ("FUNC");

func (x, y)
int x, v;

It is up to you to make sure that the assembler names you choose do not conflict with
any other assembler symbols. Also, you must not use a register name; that would produce
completely invalid assembler code. GNU CC does not as yet have the ability to store static
variables in registers. Perhaps that will be added.

6.33 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You
can also specify the register in which an ordinary register variable should be allocated.

¢ Global register variables reserve registers throughout the program. This may be useful
in programs such as programming language interpreters which have a couple of global
variables that are accessed very often.

¢ Local register variables in specific registers do not reserve the registers. The compiler’s
data flow analysis is capable of determining where the specified registers contain live
values, and where they are available for other uses.

These local variables are sometimes convenient for use with the extended asm feature
(see Section 6.31 [Extended Asm]|, page 140), if you want to write one output of the
assembler instruction directly into a particular register. (This will work provided the
register you specify fits the constraints specified for that operand in the asm.)

6.33.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is
normally saved and restored by function calls on your machine, so that library routines will
not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your
program according to cpu type. The register a5 would be a good choice on a 68000 for a
variable of pointer type. On machines with register windows, be sure to choose a “global”
register that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they name the
registers; then you would need additional conditionals. For example, some 68000 operating
systems call this register ¥a5.

Chapter 6: Extensions to the C Language Family 145

Eventually there may be a way of asking the compiler to choose a register automatically,
but first we need to figure out how it should choose and how to enable you to guide the
choice. No solution is evident.

Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that was compiled without knowledge of this
variable (i.e. in a different source file in which the variable wasn’t declared). This is because
lose might save the register and put some other value there. For example, you can’t expect
a global register variable to be available in the comparison-function that you pass to gqsort,
since gsort might have put something else in that register. (If you are prepared to recompile
gsort with the same global register variable, you can solve this problem.)

If you want to recompile gsort or other source files which do not actually use your
global register variable, so that they will not use that register for any other purpose, then
it suffices to specify the compiler option ‘-ffixed-reg’. You need not actually add a global
register declaration to their source code.

A function which can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the caller
expects to find there on return. Therefore, the function which is the entry point into the
part of the program that uses the global register variable must explicitly save and restore
the value which belongs to its caller.

On most machines, longjmp will restore to each global register variable the value it had
at the time of the setjmp. On some machines, however, longjmp will not change the value
of global register variables. To be portable, the function that called setjmp should make
other arrangements to save the values of the global register variables, and to restore them
in a longjmp. This way, the same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such
a declaration could appear after function definitions, the declaration would be too late to
prevent the register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no
means to supply initial contents for a register.

On the Sparc, there are reports that g3 ... g7 are suitable registers, but certain library
functions, such as getwd, as well as the subroutines for division and remainder, modify g3
and g4. gl and g2 are local temporaries.

On the 68000, a2 ... ab should be suitable, as should d2 ... d7. Of course, it will not do
to use more than a few of those.

146 Using and Porting GNU CC

6.33.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this is the same syntax
used for defining global register variables, but for a local variable it would appear within a
function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific
registers are most often useful with explicit assembler instructions (see Section 6.31 [Ex-
tended Asm]|, page 140). Both of these things generally require that you conditionalize your
program according to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the
registers; then you would need additional conditionals. For example, some 68000 operating
systems call this register ¥a5.

Eventually there may be a way of asking the compiler to choose a register automatically,
but first we need to figure out how it should choose and how to enable you to guide the
choice. No solution is evident.

Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable’s value is not live. However,
these registers are made unavailable for use in the reload pass. I would not be surprised if
excessive use of this feature leaves the compiler too few available registers to compile certain
functions.

6.34 Alternate Keywords

The option ‘-traditional’ disables certain keywords; ‘-ansi’ disables certain others.
This causes trouble when you want to use GNU C extensions, or ANSI C features, in
a general-purpose header file that should be usable by all programs, including ANSI C
programs and traditional ones. The keywords asm, typeof and inline cannot be used since
they won’t work in a program compiled with ‘-ansi’, while the keywords const, volatile,
signed, typeof and inline won’t work in a program compiled with ‘-traditional’.

The way to solve these problems is to put ‘__’ at the beginning and end of each prob-
lematical keyword. For example, use __asm__ instead of asm, __const__ instead of const,
and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you want to compile with
another compiler, you can define the alternate keywords as macros to replace them with
the customary keywords. It looks like this:

#ifndef __GNUC__

#tdefine __asm__ asm
#tendif

‘-pedantic’ causes warnings for many GNU C extensions. You can prevent such warn-
ings within one expression by writing __extension__ before the expression. __extension__
has no effect aside from this.

Chapter 6: Extensions to the C Language Family 147

6.35 Incomplete enum Types

You can define an enum tag without specifying its possible values. This results in an
incomplete type, much like what you get if you write struct foo without describing the
elements. A later declaration which does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is incomplete. However,
you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum more consistent
with the way struct and union are handled.

This extension is not supported by GNU C++.

6.36 Function Names as Strings

GNU CC predefines two string variables to be the name of the current function. The
variable __FUNCTION__ is the name of the function as it appears in the source. The variable
__PRETTY_FUNCTION__ is the name of the function pretty printed in a language specific
fashion.

These names are always the same in a C function, but in a C++ function they may be
different. For example, this program:

extern "C" {
extern int printf (char *, ...);

¥

class a {
public:
sub (int i)
{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
}
}s

int

main (void)

{
a ax;
ax.sub (0);
return O;

+
gives this output:
__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)

These names are not macros: they are predefined string variables. For example, ‘#ifdef
__FUNCTION__’ does not have any special meaning inside a function, since the preprocessor
does not do anything special with the identifier __FUNCTION__.

148 Using and Porting GNU CC

Chapter 7: Extensions to the C*tt+“tt4+ Language 149

7 Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also
use most of the C language extensions in your C++ programs). If you want to write code
that checks whether these features are available, you can test for the GNU compiler the
same way as for C programs: check for a predefined macro __GNUC__. You can also use
__GNUG__ to test specifically for GNU C++ (see section “Standard Predefined Macros” in
The C Preprocessor).

7.1 Named Return Values in C++

GNU C++ extends the function-definition syntax to allow you to specify a name for the
result of a function outside the body of the definition, in C++ programs:

type
functionname (args) return resultname;

{
body
o

You can use this feature to avoid an extra constructor call when a function result has a
class type. For example, consider a function m, declared as ‘X v =m () ;’, whose result is of
class X:

X
m O
{
X b;
b.a = 23;
return b;
}

Although m appears to have no arguments, in fact it has one implicit argument: the
address of the return value. At invocation, the address of enough space to hold v is sent
in as the implicit argument. Then b is constructed and its a field is set to the value 23.
Finally, a copy constructor (a constructor of the form ‘X(X&)’) is applied to b, with the
(implicit) return value location as the target, so that v is now bound to the return value.

But this is wasteful. The local b is declared just to hold something that will be copied
right out. While a compiler that combined an “elision” algorithm with interprocedural data
flow analysis could conceivably eliminate all of this, it is much more practical to allow you to
assist the compiler in generating efficient code by manipulating the return value explicitly,
thus avoiding the local variable and copy constructor altogether.

Using the extended GNU C++ function-definition syntax, you can avoid the temporary
allocation and copying by naming r as your return value at the outset, and assigning to its
a field directly:

X
m () return r;

150 Using and Porting GNU CC

The declaration of r is a standard, proper declaration, whose effects are executed before
any of the body of m.

Functions of this type impose no additional restrictions; in particular, you can execute
return statements, or return implicitly by reaching the end of the function body (“falling
off the edge”). Cases like

X
m () return r (23);

{

return;
+
(or even ‘X m () return r (23); { }’) are unambiguous, since the return value r has been
initialized in either case. The following code may be hard to read, but also works predictably:

X
m () return r;

{
X b;
return b;

¥

The return value slot denoted by r is initialized at the outset, but the statement ‘return
b;’ overrides this value. The compiler deals with this by destroying r (calling the destructor
if there is one, or doing nothing if there is not), and then reinitializing r with b.

This extension is provided primarily to help people who use overloaded operators, where
there is a great need to control not just the arguments, but the return values of functions.
For classes where the copy constructor incurs a heavy performance penalty (especially in
the common case where there is a quick default constructor), this is a major savings. The
disadvantage of this extension is that you do not control when the default constructor for
the return value is called: it is always called at the beginning.

7.2 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum” or the “maximum”
of two arguments. In GNU C++ (but not in GNU C),

a<?h is the minimum, returning the smaller of the numeric values a and b;
a>?h is the maximum, returning the larger of the numeric values a and b.

These operations are not primitive in ordinary C++, since you can use a macro to return
the minimum of two things in C++, as in the following example.
#define MIN(X,Y) ((X) < (¥) 7 : (X) : (Y))
You might then use ‘int min = MIN (i, j);’ to set min to the minimum value of variables
i and j.
However, side effects in X or Y may cause unintended behavior. For example, MIN (i++,
j++) will fail, incrementing the smaller counter twice. A GNU C extension allows you to

Chapter 7: Extensions to the C*tt+“tt4+ Language 151

write safe macros that avoid this kind of problem (see Section 6.6 [Naming an Expression’s
Type], page 120). However, writing MIN and MAX as macros also forces you to use function-
call notation notation for a fundamental arithmetic operation. Using GNU C++ extensions,
you can write ‘int min = i <7 j;’ instead.

Since <7 and >7 are built into the compiler, they properly handle expressions with side-
effects; ‘int min = i++ <7 j++;’ works correctly.

7.3 goto and Destructors in GNU C++

In C++ programs, you can safely use the goto statement. When you use it to exit a block
which contains aggregates requiring destructors, the destructors will run before the goto
transfers control. (In ANSI C++, goto is restricted to targets within the current block.)

The compiler still forbids using goto to enter a scope that requires constructors.

7.4 Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source code will need
two kinds of things for each object that you use across more than one source file. First, you
need an interface specification, describing its structure with type declarations and function
prototypes. Second, you need the implementation itself. It can be tedious to maintain a
separate interface description in a header file, in parallel to the actual implementation. It
is also dangerous, since separate interface and implementation definitions may not remain
parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For the nonce, you
must use one of two #pragma commands; in a future release of GNU C++, an
alternative mechanism will make these #pragma commands unnecessary.

The header file contains the full definitions, but is marked with ‘#pragma interface’
in the source code. This allows the compiler to use the header file only as an interface
specification when ordinary source files incorporate it with #include. In the single source
file where the full implementation belongs, you can use either a naming convention or
‘#pragma implementation’ to indicate this alternate use of the header file.

#pragma interface

#pragma interface "subdir/objects.h"
Use this directive in header files that define object classes, to save space in
most of the object files that use those classes. Normally, local copies of certain
information (backup copies of inline member functions, debugging information,
and the internal tables that implement virtual functions) must be kept in each
object file that includes class definitions. You can use this pragma to avoid such
duplication. When a header file containing ‘#pragma interface’ is included in
a compilation, this auxiliary information will not be generated (unless the main
input source file itself uses ‘#pragma implementation’). Instead, the object
files will contain references to be resolved at link time.

152 Using and Porting GNU CC

The second form of this directive is useful for the case where you have multiple
headers with the same name in different directories. If you use this form, you
must specify the same string to ‘#pragma implementation’.

#pragma implementation

#pragma implementation "objects.h"
Use this pragma in a main input file, when you want full output from included
header files to be generated (and made globally visible). The included header
file, in turn, should use ‘#pragma interface’. Backup copies of inline member
functions, debugging information, and the internal tables used to implement
virtual functions are all generated in implementation files.

If you use ‘#pragma implementation’ with no argument, it applies to an include
file with the same basename! as your source file. For example, in ‘allclass.cc’,
‘#pragma implementation’ by itself is equivalent to ‘#pragma implementation
"allclass.h'’.

In versions of GNU C++ prior to 2.6.0 ‘allclass.h’ was treated as an im-
plementation file whenever you would include it from ‘allclass.cc’ even if
you never specified ‘#pragma implementation’. This was deemed to be more
trouble than it was worth, however, and disabled.

If you use an explicit ‘#pragma implementation’, it must appear in your source
file before you include the affected header files.

Use the string argument if you want a single implementation file to include code
from multiple header files. (You must also use ‘#include’ to include the header
file; ‘#pragma implementation’ only specifies how to use the file—it doesn’t
actually include it.)

There is no way to split up the contents of a single header file into multiple
implementation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an effect on function
inlining.

If you define a class in a header file marked with ‘#pragma interface’, the effect on
a function defined in that class is similar to an explicit extern declaration—the compiler

emits no code at all to define an independent version of the function. Its definition is used
only for inlining with its callers.

Conversely, when you include the same header file in a main source file that declares it
as ‘#pragma implementation’, the compiler emits code for the function itself; this defines
a version of the function that can be found via pointers (or by callers compiled without
inlining). If all calls to the function can be inlined, you can avoid emitting the function
by compiling with ‘-fno-implement-inlines’. If any calls were not inlined, you will get
linker errors.

1 A file’s basename was the name stripped of all leading path information and of trailing

suffixes, such as *.h’ or *.C’ or ‘.cc’.

Chapter 7: Extensions to the C*tt4-*“tt4 Language 153

7.5 Where’s the Template?

C++ templates are the first language feature to require more intelligence from the en-

vironment than one usually finds on a UNIX system. Somehow the compiler and linker
have to make sure that each template instance occurs exactly once in the executable if it is
needed, and not at all otherwise. There are two basic approaches to this problem, which I
will refer to as the Borland model and the Cfront model.

Borland model

Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; template instances are emitted in
each translation unit that uses them, and they are collapsed together at run
time. The advantage of this model is that the linker only has to consider the
object files themselves; there is no external complexity to worry about. This
disadvantage is that compilation time is increased because the template code
is being compiled repeatedly. Code written for this model tends to include
definitions of all member templates in the header file, since they must be seen
to be compiled.

Cfront model

The AT&T C++ translator, Cfront, solved the template instantiation problem
by creating the notion of a template repository, an automatically maintained
place where template instances are stored. As individual object files are built,
notes are placed in the repository to record where templates and potential type
arguments were seen so that the subsequent instantiation step knows where to
find them. At link time, any needed instances are generated and linked in. The
advantages of this model are more optimal compilation speed and the ability to
use the system linker; to implement the Borland model a compiler vendor also
needs to replace the linker. The disadvantages are vastly increased complexity,
and thus potential for error; theoretically, this should be just as transparent,
but in practice it has been very difficult to build multiple programs in one
directory and one program in multiple directories using Cfront. Code written
for this model tends to separate definitions of non-inline member templates
into a separate file, which is magically found by the link preprocessor when a
template needs to be instantiated.

Currently, g++ implements neither automatic model. In the mean time, you have three

options for dealing with template instantiations:

1.

Do nothing. Pretend g++ does implement automatic instantiation management. Code
written for the Borland model will work fine, but each translation unit will contain
instances of each of the templates it uses. In a large program, this can lead to an
unacceptable amount of code duplication.

Add ‘#pragma interface’ to all files containing template definitions. For each of these
files, add ‘#pragma implementation "filename"’ to the top of some ‘.C’ file which
‘#include’s it. Then compile everything with -fexternal-templates. The templates
will then only be expanded in the translation unit which implements them (i.e. has
a ‘#pragma implementation’ line for the file where they live); all other files will use

154 Using and Porting GNU CC

external references. If you’re lucky, everything should work properly. If you get unde-
fined symbol errors, you need to make sure that each template instance which is used
in the program is used in the file which implements that template. If you don’t have
any use for a particular instance in that file, you can just instantiate it explicitly, using
the syntax from the latest C++ working paper:

template class A<int>;

template ostream& operator << (ostream&, const A<int>&);

This strategy will work with code written for either model. If you are using code
written for the Cfront model, the file containing a class template and the file containing
its member templates should be implemented in the same translation unit.

A slight variation on this approach is to use the flag -falt-external-templates instead;
this flag causes template instances to be emitted in the translation unit that implements
the header where they are first instantiated, rather than the one which implements the
file where the templates are defined. This header must be the same in all translation
units, or things are likely to break.

See Section 7.4 [Declarations and Definitions in One Header], page 151, for more dis-
cussion of these pragmas.

3. Explicitly instantiate all the template instances you use, and compile with -fno-implicit-
templates. This is probably your best bet; it may require more knowledge of exactly
which templates you are using, but it’s less mysterious than the previous approach,
and it doesn’t require any ‘#pragma’s or other g++-specific code. You can scatter
the instantiations throughout your program, you can create one big file to do all the
instantiations, or you can create tiny files like

#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;

for each instance you need, and create a template instantiation library from those. I'm
partial to the last, but your mileage may vary. If you are using Cfront-model code, you
can probably get away with not using -fno-implicit-templates when compiling files that
don’t ‘#include’ the member template definitions.

7.6 Type Abstraction using Signatures

In GNU C++, you can use the keyword signature to define a completely abstract
class interface as a datatype. You can connect this abstraction with actual classes us-
ing signature pointers. If you want to use signatures, run the GNU compiler with the
‘-fhandle-signatures’ command-line option. (With this option, the compiler reserves a
second keyword sigof as well, for a future extension.)

Roughly, signatures are type abstractions or interfaces of classes. Some other languages
have similar facilities. C++ signatures are related to ML’s signatures, Haskell’s type classes,
definition modules in Modula-2, interface modules in Modula-3, abstract types in Emerald,
type modules in Trellis/Owl, categories in Scratchpad II, and types in POOL-I. For a more
detailed discussion of signatures, see Signatures: A Language Extension for Improving
Type Abstraction and Subtype Polymorphism in C++ by Gerald Baumgartner and Vincent

Chapter 7: Extensions to the C*tt4-*“tt4 Language 155

F. Russo (Tech report CSD-TR-95-051, Dept. of Computer Sciences, Purdue University,
August 1995, a slightly improved version appeared in Software—Practice & Experience,
25(8), pp. 863-889, August 1995). You can get the tech report by anonymous FTP from
ftp.cs.purdue.eduin ‘pub/gb/Signature-design.ps.gz’.

Syntactically, a signature declaration is a collection of member function declarations and
nested type declarations. For example, this signature declaration defines a new abstract
type S with member functions ‘int foo ()’ and ‘int bar (int)”:

signature S

{
int foo ();
int bar (int);
};
Since signature types do not include implementation definitions, you cannot write an
instance of a signature directly. Instead, you can define a pointer to any class that contains
the required interfaces as a signature pointer. Such a class implements the signature type.

To use a class as an implementation of S, you must ensure that the class has public
member functions ‘int foo ()’ and ‘int bar (int)’. The class can have other member
functions as well, public or not; as long as it offers what’s declared in the signature, it is
suitable as an implementation of that signature type.

For example, suppose that C is a class that meets the requirements of signature S (C
conforms to S). Then
C obj;
S * p = &obj;
defines a signature pointer p and initializes it to point to an object of type C. The member
function call ‘int i = p->foo ();’ executes ‘obj.foo ().

Abstract virtual classes provide somewhat similar facilities in standard C++. There are
two main advantages to using signatures instead:

1. Subtyping becomes independent from inheritance. A class or signature type T is a sub-
type of a signature type S independent of any inheritance hierarchy as long as all the
member functions declared in S are also found in T. So you can define a subtype hier-
archy that is completely independent from any inheritance (implementation) hierarchy,
instead of being forced to use types that mirror the class inheritance hierarchy.

2. Signatures allow you to work with existing class hierarchies as implementations of a
signature type. If those class hierarchies are only available in compiled form, you’re out
of luck with abstract virtual classes, since an abstract virtual class cannot be retrofitted
on top of existing class hierarchies. So you would be required to write interface classes
as subtypes of the abstract virtual class.

There is one more detail about signatures. A signature declaration can contain member
function definitions as well as member function declarations. A signature member function
with a full definition is called a default implementation; classes need not contain that
particular interface in order to conform. For example, a class C can conform to the signature

signature T

{
int £ (int);

156 Using and Porting GNU CC

int fO0 () { return £ (0); };
};
whether or not C implements the member function ‘int £0 ()’. If you define C::f0, that
definition takes precedence; otherwise, the default implementation S: :£0 applies.

Chapter 8: Known Causes of Trouble with GNU CC 157

8

Known Causes of Trouble with GNU CC

This section describes known problems that affect users of GNU CC. Most of these are

not GNU CC bugs per se—if they were, we would fix them. But the result for a user may
be like the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that

are too much work to add, and some are places where people’s opinions differ as to what is
best.

8.1 Actual Bugs We Haven’t Fixed Yet

The fixincludes script interacts badly with automounters; if the directory of system
header files is automounted, it tends to be unmounted while fixincludes is running.
This would seem to be a bug in the automounter. We don’t know any good way to
work around it.

The fixproto script will sometimes add prototypes for the sigsetjmp and siglongjmp
functions that reference the jmp_buf type before that type is defined. To work around
this, edit the offending file and place the typedef in front of the prototypes.

There are several obscure case of mis-using struct, union, and enum tags that are not
detected as errors by the compiler.

When ‘-pedantic-errors’ is specified, GNU C will incorrectly give an error message
when a function name is specified in an expression involving the comma operator.

Loop unrolling doesn’t work properly for certain C++ programs. This is a bug in the
C++ front end. It sometimes emits incorrect debug info, and the loop unrolling code is
unable to recover from this error.

8.2 Imnstallation Problems

This is a list of problems (and some apparent problems which don’t really mean anything

is wrong) that show up during installation of GNU CC.

On certain systems, defining certain environment variables such as CC can interfere
with the functioning of make.

If you encounter seemingly strange errors when trying to build the compiler in a direc-
tory other than the source directory, it could be because you have previously configured
the compiler in the source directory. Make sure you have done all the necessary prepa-
rations. See Section 5.2 [Other Dir], page 103.

If you build GNU CC on a BSD system using a directory stored in a System V file
system, problems may occur in running fixincludes if the System V file system doesn’t
support symbolic links. These problems result in a failure to fix the declaration of size_
t in ‘sys/types.h’. If you find that size_t is a signed type and that type mismatches
occur, this could be the cause.

The solution is not to use such a directory for building GNU CC.

158

Using and Porting GNU CC

In previous versions of GNU CC, the gcc driver program looked for as and 1d in various
places; for example, in files beginning with ‘/usr/local/lib/gcc-’. GNU CC version
2 looks for them in the directory ‘/usr/local/lib/gcc-1ib/target/ version’.

Thus, to use a version of as or 1d that is not the system default, for example gas
or GNU 1d, you must put them in that directory (or make links to them from that
directory).

Some commands executed when making the compiler may fail (return a non-zero status)
and be ignored by make. These failures, which are often due to files that were not found,
are expected, and can safely be ignored.

It is normal to have warnings in compiling certain files about unreachable code and
about enumeration type clashes. These files’ names begin with ‘insn-’. Also, ‘real.c’
may get some warnings that you can ignore.

Sometimes make recompiles parts of the compiler when installing the compiler. In one
case, this was traced down to a bug in make. Either ignore the problem or switch to

GNU Make.

If you have installed a program known as purify, you may find that it causes errors
while linking enquire, which is part of building GNU CC. The fix is to get rid of the
file real-1d which purify installs—so that GNU CC won’t try to use it.

On SLS 1.01, a Linux-based GNU system, there is a problem with ‘1ibc.a’: it does not
contain the obstack functions. However, GNU CC assumes that the obstack functions
are in ‘libc.a’ when it is the GNU C library. To work around this problem, change
the __GNU_LIBRARY__ conditional around line 31 to ‘#if 1°.

On some 386 systems, building the compiler never finishes because enquire hangs due
to a hardware problem in the motherboard—it reports floating point exceptions to the
kernel incorrectly. You can install GNU CC except for ‘float.h’ by patching out the
command to run enquire. You may also be able to fix the problem for real by getting a
replacement motherboard. This problem was observed in Revision E of the Micronics
motherboard, and is fixed in Revision F. It has also been observed in the MYLEX
MXA-33 motherboard.

If you encounter this problem, you may also want to consider removing the FPU from
the socket during the compilation. Alternatively, if you are running SCO Unix, you
can reboot and force the FPU to be ignored. To do this, type ‘hd(40)unix auto
ignorefpu’.

On some 386 systems, GNU CC crashes trying to compile ‘enquire.c’. This happens
on machines that don’t have a 387 FPU chip. On 386 machines, the system kernel is
supposed to emulate the 387 when you don’t have one. The crash is due to a bug in
the emulator.

One of these systems is the Unix from Interactive Systems: 386/ix. On this system, an
alternate emulator is provided, and it does work. To use it, execute this command as
super-user:

1n /etc/emulator.rell /etc/emulator

and then reboot the system. (The default emulator file remains present under the name
‘emulator.dflt’.)

Try using ‘/etc/emulator.att’, if you have such a problem on the SCO system.

Chapter 8: Known Causes of Trouble with GNU CC 159

Another system which has this problem is Esix. We don’t know whether it has an
alternate emulator that works.

On NetBSD 0.8, a similar problem manifests itself as these error messages:
enquire.c: In function ‘fprop’:
enquire.c:2328: floating overflow

¢ On SCO systems, when compiling GNU CC with the system’s compiler, do not use
‘-0’. Some versions of the system’s compiler miscompile GNU CC with ‘-0°.

e Sometimes on a Sun 4 you may observe a crash in the program genflags or genoutput
while building GNU CC. This is said to be due to a bug in sh. You can probably get
around it by running genflags or genoutput manually and then retrying the make.

¢ On Solaris 2, executables of GNU CC version 2.0.2 are commonly available, but they
have a bug that shows up when compiling current versions of GNU CC: undefined
symbol errors occur during assembly if you use ‘-g’.

The solution is to compile the current version of GNU CC without ‘-g’. That makes a
working compiler which you can use to recompile with ‘-g’.

¢ Solaris 2 comes with a number of optional OS packages. Some of these packages are
needed to use GNU CC fully. If you did not install all optional packages when installing
Solaris, you will need to verify that the packages that GNU CC needs are installed.

To check whether an optional package is installed, use the pkginfo command. To add
an optional package, use the pkgadd command. For further details, see the Solaris
documentation.

For Solaris 2.0 and 2.1, GNU CC needs six packages: ‘SUNWarc’, ‘SUNWbtool’,
‘SUNWesu’, ‘SUNWhea’, ‘SUNW1libm’, and ‘SUNWtoo’.

For Solaris 2.2, GNU CC needs an additional seventh package: ‘SUNWsprot’.

e On Solaris 2, trying to use the linker and other tools in */usr/ucb’ to install GNU CC
has been observed to cause trouble. For example, the linker may hang indefinitely. The
fix is to remove ‘/usr/ucb’ from your PATH.

e If you use the 1.31 version of the MIPS assembler (such as was shipped with Ultrix
3.1), you will need to use the -fno-delayed-branch switch when optimizing floating point
code. Otherwise, the assembler will complain when the GCC compiler fills a branch
delay slot with a floating point instruction, such as add.d.

o If on a MIPS system you get an error message saying “does not have gp sections for
all it’s [sic] sectons [sic|”, don’t worry about it. This happens whenever you use GAS
with the MIPS linker, but there is not really anything wrong, and it is okay to use the
output file. You can stop such warnings by installing the GNU linker.

It would be nice to extend GAS to produce the gp tables, but they are optional, and
there should not be a warning about their absence.

e In Ultrix 4.0 on the MIPS machine, ‘stdio.h’ does not work with GNU CC at all
unless it has been fixed with fixincludes. This causes problems in building GNU
CC. Once GNU CC is installed, the problems go away.

To work around this problem, when making the stage 1 compiler, specify this option
to Make:

160

Using and Porting GNU CC

GCC_FOR_TARGET="./xgcc -B./ -I./include"
When making stage 2 and stage 3, specify this option:
CFLAGS="-g -I./include"
Users have reported some problems with version 2.0 of the MIPS compiler tools that

were shipped with Ultrix 4.1. Version 2.10 which came with Ultrix 4.2 seems to work
fine.

Users have also reported some problems with version 2.20 of the MIPS compiler tools
that were shipped with RISC/os 4.x. The earlier version 2.11 seems to work fine.
Some versions of the MIPS linker will issue an assertion failure when linking code that
uses alloca against shared libraries on RISC-0S 5.0, and DEC’s OSF/1 systems. This
is a bug in the linker, that is supposed to be fixed in future revisions. To protect against
this, GNU CC passes ‘-non_shared’ to the linker unless you pass an explicit ‘-shared’
or ‘-call_shared’ switch.

On System V release 3, you may get this error message while linking:

1d fatal: failed to write symbol name something
in strings table for file whatever

This probably indicates that the disk is full or your ULIMIT won’t allow the file to be
as large as it needs to be.

This problem can also result because the kernel parameter MAXUMEM is too small. If so,
you must regenerate the kernel and make the value much larger. The default value is
reported to be 1024; a value of 32768 is said to work. Smaller values may also work.
On System V, if you get an error like this,
/usr/local/lib/bison.simple: In function ‘yyparse’:
/usr/local/lib/bison.simple:625: virtual memory exhausted
that too indicates a problem with disk space, ULIMIT, or MAXUMEM.

Current GNU CC versions probably do not work on version 2 of the NeXT operating
system.

On NeXTStep 3.0, the Objective C compiler does not work, due, apparently, to a kernel
bug that it happens to trigger. This problem does not happen on 3.1.

On the Tower models 4n0 and 6n0, by default a process is not allowed to have more than
one megabyte of memory. GNU CC cannot compile itself (or many other programs)
with ‘-0’ in that much memory.

To solve this problem, reconfigure the kernel adding the following line to the configu-
ration file:

MAXUMEM = 4096
On HP 9000 series 300 or 400 running HP-UX release 8.0, there is a bug in the assembler

that must be fixed before GNU CC can be built. This bug manifests itself during the
first stage of compilation, while building ‘libgcc2.a’

_floatdistf
ccl: warning: ‘-g’ option not supported on this version of GCC
ccl: warning: ‘-gl’ option not supported on this version of GCC

./xgcc: Internal compiler error: program as got fatal signal 11

Chapter 8: Known Causes of Trouble with GNU CC 161

A patched version of the assembler is available by anonymous ftp from altdorf.ai.mit.edul]
as the file ‘archive/cph/hpux-8.0-assembler’. If you have HP software support, the
patch can also be obtained directly from HP, as described in the following note:

This is the patched assembler, to patch SR#1653-010439, where the as-

sembler aborts on floating point constants.

The bug is not really in the assembler, but in the shared library version

of the function “cvtnum(3c)”. The bug on “cvtnum(3c)” is SR#4701-

078451. Anyway, the attached assembler uses the archive library version

of “cvtnum(3c)” and thus does not exhibit the bug.
This patch is also known as PHCQ_4484.

¢ On HP-UX version 8.05, but not on 8.07 or more recent versions, the fixproto shell
script triggers a bug in the system shell. If you encounter this problem, upgrade your
operating system or use BASH (the GNU shell) to run fixproto.

e Some versions of the Pyramid C compiler are reported to be unable to compile GNU
CC. You must use an older version of GNU CC for bootstrapping. One indication of
this problem is if you get a crash when GNU CC compiles the function muldi3 in file
‘libgcec2.c¢’.

You may be able to succeed by getting GNU CC version 1, installing it, and using it
to compile GNU CC version 2. The bug in the Pyramid C compiler does not seem to
affect GNU CC version 1.

¢ There may be similar problems on System V Release 3.1 on 386 systems.

¢ On the Intel Paragon (an i860 machine), if you are using operating system version 1.0,
you will get warnings or errors about redefinition of va_arg when you build GNU CC.

If this happens, then you need to link most programs with the library ‘iclib.a’. You
must also modify ‘stdio.h’ as follows: before the lines

#if defined(__i860__) && 'defined(_VA_LIST)
#include <va_list.h>

insert the line
#if __PGC

and after the lines

extern int vprintf(const char *, va_list);
extern int vsprintf(char *, const char *, va_list);
#endif
insert the line
#endif /x __PGC__ */
These problems don’t exist in operating system version 1.1.
¢ On the Altos 3068, programs compiled with GNU CC won’t work unless you fix a kernel
bug. This happens using system versions V.2.2 1.0gT1 and V.2.2 1.0e and perhaps later
versions as well. See the file ‘README . ALTOS’.
¢ You will get several sorts of compilation and linking errors on the we32k if you don’t
follow the special instructions. See Section 5.1 [Configurations|, page 91.

¢ A bug in the HP-UX 8.05 (and earlier) shell will cause the fixproto program to report
an error of the form:

162 Using and Porting GNU CC

./fixproto: sh internal 1K buffer overflow
To fix this, change the first line of the fixproto script to look like:
#!/bin/ksh

8.3 Cross-Compiler Problems

You may run into problems with cross compilation on certain machines, for several
reasons.

¢ Cross compilation can run into trouble for certain machines because some target ma-
chines’ assemblers require floating point numbers to be written as integer constants in
certain contexts.

The compiler writes these integer constants by examining the floating point value as
an integer and printing that integer, because this is simple to write and independent of
the details of the floating point representation. But this does not work if the compiler
is running on a different machine with an incompatible floating point format, or even
a different byte-ordering.

In addition, correct constant folding of floating point values requires representing them
in the target machine’s format. (The C standard does not quite require this, but in
practice it is the only way to win.)

It is now possible to overcome these problems by defining macros such as REAL_VALUE_
TYPE. But doing so is a substantial amount of work for each target machine. See
Section 17.18 [Cross-compilation], page 376.

e At present, the program ‘mips-tfile’ which adds debug support to object files on
MIPS systems does not work in a cross compile environment.

8.4 Interoperation

This section lists various difficulties encountered in using GNU C or GNU C++ together
with other compilers or with the assemblers, linkers, libraries and debuggers on certain
systems.

e Objective C does not work on the RS/6000.

¢ GNU C++ does not do name mangling in the same way as other C++ compilers. This
means that object files compiled with one compiler cannot be used with another.

This effect is intentional, to protect you from more subtle problems. Compilers differ
as to many internal details of C++ implementation, including: how class instances are
laid out, how multiple inheritance is implemented, and how virtual function calls are
handled. If the name encoding were made the same, your programs would link against
libraries provided from other compilers—but the programs would then crash when run.
Incompatible libraries are then detected at link time, rather than at run time.

¢ QOlder GDB versions sometimes fail to read the output of GNU CC version 2. If you
have trouble, get GDB version 4.4 or later.

¢ DBX rejects some files produced by GNU CC, though it accepts similar constructs in
output from PCC. Until someone can supply a coherent description of what is valid

Chapter 8: Known Causes of Trouble with GNU CC 163

DBX input and what is not, there is nothing I can do about these problems. You are
on your own.

¢ The GNU assembler (GAS) does not support PIC. To generate PIC code, you must
use some other assembler, such as ‘/bin/as’.

¢ On some BSD systems, including some versions of Ultrix, use of profiling causes static
variable destructors (currently used only in C++) not to be run.

e Use of ‘-I/usr/include’ may cause trouble.

Many systems come with header files that won’t work with GNU CC unless corrected
by fixincludes. The corrected header files go in a new directory; GNU CC searches
this directory before ‘/usr/include’. If you use ‘-I/usr/include’, this tells GNU CC
to search ‘/usr/include’ earlier on, before the corrected headers. The result is that
you get the uncorrected header files.

Instead, you should use these options (when compiling C programs):
-I/usr/local/lib/gcc-1ib/target/version/include -I/usr/include

For C++ programs, GNU CC also uses a special directory that defines C++ interfaces to
standard C subroutines. This directory is meant to be searched before other standard
include directories, so that it takes precedence. If you are compiling C++ programs
and specifying include directories explicitly, use this option first, then the two options
above:

-I/usr/local/lib/g++-include

¢ On some SGI systems, when you use ‘-1gl_s’ as an option, it gets translated magically
to ‘-1gl_s -1X11_s -1lc_s’. Naturally, this does not happen when you use GNU CC.
You must specify all three options explicitly.

¢ On a Sparc, GNU CC aligns all values of type double on an 8-byte boundary, and it
expects every double to be so aligned. The Sun compiler usually gives double values
8-byte alignment, with one exception: function arguments of type double may not be
aligned.

As a result, if a function compiled with Sun CC takes the address of an argument of
type double and passes this pointer of type double * to a function compiled with GNU
CC, dereferencing the pointer may cause a fatal signal.

One way to solve this problem is to compile your entire program with GNU CC. Another
solution is to modify the function that is compiled with Sun CC to copy the argument
into a local variable; local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the following function
access_double instead of directly with ‘*’:

inline double
access_double (double *unaligned_ptr)

{
union d2i { double d; int i[2]; I};

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.if[0] = p->i[0];

164

Using and Porting GNU CC

u.if[1] = p->i[1];

return u.d;

+
Storing into the pointer can be done likewise with the same union.

On Solaris, the malloc function in the ‘libmalloc.a’ library may allocate memory
that is only 4 byte aligned. Since GNU CC on the Sparc assumes that doubles are 8
byte aligned, this may result in a fatal signal if doubles are stored in memory allocated
by the ‘libmalloc.a’ library.

The solution is to not use the ‘libmalloc.a’ library. Use instead malloc and related
functions from ‘libc.a’; they do not have this problem.

Sun forgot to include a static version of ‘1ibdl.a’ with some versions of SunOS (mainly
4.1). This results in undefined symbols when linking static binaries (that is, if you use
‘-static’). If you see undefined symbols _dlclose, _dlsym or _dlopen when linking,
compile and link against the file ‘mit/util/misc/dlsym.c’ from the MIT version of X
windows.

The 128-bit long double format that the Sparc port supports currently works by using
the architecturally defined quad-word floating point instructions. Since there is no
hardware that supports these instructions they must be emulated by the operating
system. Long doubles do not work in Sun OS versions 4.0.3 and earlier, because the
kernel emulator uses an obsolete and incompatible format. Long doubles do not work
in Sun OS version 4.1.1 due to a problem in a Sun library. Long doubles do work on
Sun OS versions 4.1.2 and higher, but GNU CC does not enable them by default. Long
doubles appear to work in Sun OS 5.x (Solaris 2.x).

On HP-UX version 9.01 on the HP PA, the HP compiler cc does not compile GNU CC
correctly. We do not yet know why. However, GNU CC compiled on earlier HP-UX
versions works properly on HP-UX 9.01 and can compile itself properly on 9.01.

On the HP PA machine, ADB sometimes fails to work on functions compiled with
GNU CC. Specifically, it fails to work on functions that use alloca or variable-size
arrays. This is because GNU CC doesn’t generate HP-UX unwind descriptors for such
functions. It may even be impossible to generate them.

Debugging (‘-g’) is not supported on the HP PA machine, unless you use the prelimi-
nary GNU tools (see Chapter 5 [Installation], page 85).

Taking the address of a label may generate errors from the HP-UX PA assembler. GAS
for the PA does not have this problem.

Using floating point parameters for indirect calls to static functions will not work when
using the HP assembler. There simply is no way for GCC to specify what registers hold
arguments for static functions when using the HP assembler. GAS for the PA does not
have this problem.

In extremely rare cases involving some very large functions you may receive errors from
the HP linker complaining about an out of bounds unconditional branch offset. This
used to occur more often in previous versions of GNU CC, but is now exceptionally
rare. If you should run into it, you can work around by making your function smaller.

Chapter 8: Known Causes of Trouble with GNU CC 165

¢ GNU CC compiled code sometimes emits warnings from the HP-UX assembler of the
form:

(warning) Use of GR3 when
frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.

o The current version of the assembler (‘/bin/as’) for the RS/6000 has certain problems
that prevent the ‘-g’ option in GCC from working. Note that ‘Makefile.in’ uses ‘-g’
by default when compiling ‘libgcc2.c’.

IBM has produced a fixed version of the assembler. The upgraded assembler unfortu-
nately was not included in any of the AIX 3.2 update PTF releases (3.2.2, 3.2.3, or
3.2.3e). Users of AIX 3.1 should request PTF U403044 from IBM and users of AIX 3.2
should request PTF U416277. See the file ‘README .RS6000° for more details on these
updates.

You can test for the presense of a fixed assembler by using the command
as -u < /dev/null

If the command exits normally, the assembler fix already is installed. If the assembler
complains that "-u" is an unknown flag, you need to order the fix.

e On the IBM RS/6000, compiling code of the form

extern int foo;
. foo ...

static int foo;

will cause the linker to report an undefined symbol foo. Although this behavior differs
from most other systems, it is not a bug because redefining an extern variable as
static is undefined in ANSI C.

e AIX on the RS/6000 provides support (NLS) for environments outside of the United
States. Compilers and assemblers use NLS to support locale-specific representations
of various objects including floating-point numbers ("." vs "," for separating decimal
fractions). There have been problems reported where the library linked with GCC does
not produce the same floating-point formats that the assembler accepts. If you have
this problem, set the LANG environment variable to "C" or "En_US".

e Even if you specify ‘-fdollars-in-identifiers’, you cannot successfully use ‘$’ in
identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports
these identifiers.

e On the RS/6000, XLC version 1.3.0.0 will miscompile ‘jump.c’. XLC version 1.3.0.1 or
later fixes this problem. You can obtain XLC-1.3.0.2 by requesting PTF 421749 from
IBM.

o There is an assembler bug in versions of DG/UX prior to 5.4.2.01 that occurs when
the ‘f1dcr’ instruction is used. GNU CC uses ‘f1dcr’ on the 88100 to serialize volatile
memory references. Use the option ‘-mno-serialize-volatile’ if your version of the
assembler has this bug.

166

Using and Porting GNU CC

On VMS, GAS versions 1.38.1 and earlier may cause spurious warning messages from
the linker. These warning messages complain of mismatched psect attributes. You can
ignore them. See Section 5.5 [VMS Install], page 109.

On NewsOS version 3, if you include both of the files ‘stddef .h’ and ‘sys/types.h’,
you get an error because there are two typedefs of size_t. You should change
‘sys/types.h’ by adding these lines around the definition of size_t:

#ifndef _SIZE_T
#define _SIZE_T
actual typedef here
#endif

On the Alliant, the system’s own convention for returning structures and unions is
unusual, and is not compatible with GNU CC no matter what options are used.

On the IBM RT PC, the MetaWare HighC compiler (hc) uses a different convention
for structure and union returning. Use the option ‘-mhc-struct-return’ to tell GNU
CC to use a convention compatible with it.

On Ultrix, the Fortran compiler expects registers 2 through 5 to be saved by function
calls. However, the C compiler uses conventions compatible with BSD Unix: registers
2 through 5 may be clobbered by function calls.

GNU CC uses the same convention as the Ultrix C compiler. You can use these options
to produce code compatible with the Fortran compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

On the WE32k, you may find that programs compiled with GNU CC do not work with
the standard shared C library. You may need to link with the ordinary C compiler. If
you do so, you must specify the following options:

-L/usr/local/lib/gcc-lib/we32k-att-sysv/2.7.1 -1lgcc -lc_s
The first specifies where to find the library ‘1ibgcc.a’ specified with the ‘-1gcc’ option.

GNU CC does linking by invoking 1d, just as cc does, and there is no reason why it
should matter which compilation program you use to invoke 1d. If someone tracks this
problem down, it can probably be fixed easily.

On the Alpha, you may get assembler errors about invalid syntax as a result of floating
point constants. This is due to a bug in the C library functions ecvt, fcvt and gevt.
Given valid floating point numbers, they sometimes print ‘Nal’.

On Irix 4.0.5F (and perhaps in some other versions), an assembler bug sometimes
reorders instructions incorrectly when optimization is turned on. If you think this may
be happening to you, try using the GNU assembler; GAS version 2.1 supports ECOFF
on Irix.

Or use the ‘-noasmopt’ option when you compile GNU CC with itself, and then again
when you compile your program. (This is a temporary kludge to turn off assembler
optimization on Irix.) If this proves to be what you need, edit the assembler spec in the
file ‘specs’ so that it unconditionally passes ‘-00’ to the assembler, and never passes
‘-02’ or ‘-03".

Chapter 8: Known Causes of Trouble with GNU CC 167

8.5 Problems Compiling Certain Programs

Certain programs have problems compiling.

o Parse errors may occur compiling X11 on a Decstation running Ultrix 4.2 because of
problems in DEC’s versions of the X11 header files ‘’X11/X1ib.h’ and ‘X11/Xutil.h’.
People recommend adding ‘-I/usr/include/mit’ to use the MIT versions of the header
files, using the ‘-traditional’ switch to turn off ANSI C, or fixing the header files by
adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes O
#endif

¢ If you have trouble compiling Perl on a SunOS 4 system, it may be because Perl specifies
‘~-I/usr/ucbinclude’. This accesses the unfixed header files. Perl specifies the options
-traditional -Dvolatile=__volatile__
-I/usr/include/sun -I/usr/ucbinclude
-fpcc-struct-return
most of which are unnecessary with GCC 2.4.5 and newer versions. You can make a
properly working Perl by setting ccflags to ‘-fwritable-strings’ (implied by the
‘-traditional’ in the original options) and cppflags to empty in ‘config.sh’, then
typing ¢./doSH; make depend; make’.
¢ On various 386 Unix systems derived from System V, including SCO, ISC, and ESIX,
you may get error messages about running out of virtual memory while compiling
certain programs.

You can prevent this problem by linking GNU CC with the GNU malloc (which thus
replaces the malloc that comes with the system). GNU malloc is available as a separate
package, and also in the file ‘src/gmalloc.c’ in the GNU Emacs 19 distribution.

If you have installed GNU malloc as a separate library package, use this option when

you relink GNU CC:
MALLOC=/usr/local/lib/libgmalloc.a

Alternatively, if you have compiled ‘gmalloc.c’ from Emacs 19, copy the object file to
‘gmalloc.o’ and use this option when you relink GNU CC:

MALLOC=gmalloc.o

8.6 Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and most existing (non-
ANSI) versions of C. The ‘-traditional’ option eliminates many of these incompatibilities,
but not all, by telling GNU C to behave like the other C compilers.

¢ GNU CC normally makes string constants read-only. If several identical-looking string
constants are used, GNU CC stores only one copy of the string.

One consequence is that you cannot call mktemp with a string constant argument. The
function mktemp always alters the string its argument points to.

168

Using and Porting GNU CC

Another consequence is that sscanf does not work on some systems when passed a
string constant as its format control string or input. This is because sscanf incorrectly
tries to write into the string constant. Likewise fscanf and scanf.

The best solution to these problems is to change the program to use char-array variables
with initialization strings for these purposes instead of string constants. But if this is
not possible, you can use the ‘-fwritable-strings’ flag, which directs GNU CC to
handle string constants the same way most C compilers do. ‘-traditional’ also has
this effect, among others.

-2147483648 is positive.

This is because 2147483648 cannot fit in the type int, so (following the ANSI C rules)
its data type is unsigned long int. Negating this value yields 2147483648 again.

GNU CC does not substitute macro arguments when they appear inside of string
constants. For example, the following macro in GNU CC

#define foo(a) "a"
will produce output "a" regardless of what the argument a is.

The ‘-traditional’ option directs GNU CC to handle such cases (among others) in
the old-fashioned (non-ANSI) fashion.

When you use setjmp and longjmp, the only automatic variables guaranteed to re-
main valid are those declared volatile. This is a consequence of automatic register
allocation. Consider this function:

jmp_buf j;

foo ()
{

int a, b;

a = funl ;
if (setjmp (j))
return a;

a = fun2);
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

+
Here a may or may not be restored to its first value when the longjmp occurs. If a is

allocated in a register, then its first value is restored; otherwise, it keeps the last value
stored in it.

If you use the ‘-W’ option with the ‘-0’ option, you will get a warning when GNU CC
thinks such a problem might be possible.

The ‘-traditional’ option directs GNU C to put variables in the stack by default,
rather than in registers, in functions that call setjmp. This results in the behavior
found in traditional C compilers.

Programs that use preprocessing directives in the middle of macro arguments do not
work with GNU CC. For example, a program like this will not work:

Chapter 8: Known Causes of Trouble with GNU CC 169

foobar (
#tdefine luser
hack)

ANSI C does not permit such a construct. It would make sense to support it when
‘~traditional’is used, but it is too much work to implement.

e Declarations of external variables and functions within a block apply only to the block
containing the declaration. In other words, they have the same scope as any other
declaration in the same place.

In some other C compilers, a extern declaration affects all the rest of the file even if
it happens within a block.

The ‘-traditional’ option directs GNU C to treat all extern declarations as global,
like traditional compilers.

¢ In traditional C, you can combine long, etc., with a typedef name, as shown here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers require an explicit int.
Because this criterion is expressed by Bison grammar rules rather than C code, the
‘~traditional’ flag cannot alter it.

¢ PCC allows typedef names to be used as function parameters. The difficulty described
immediately above applies here too.

¢ PCC allows whitespace in the middle of compound assignment operators such as ‘+=".
GNU CC, following the ANSI standard, does not allow this. The difficulty described

immediately above applies here too.

¢ GNU CC complains about unterminated character constants inside of preprocessing
conditionals that fail. Some programs have English comments enclosed in conditionals
that are guaranteed to fail; if these comments contain apostrophes, GNU CC will
probably report an error. For example, this code would produce an error:
#if O
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment
delimited by ¢/*...*%/’. However, ‘-traditional’ suppresses these error messages.

¢ Many user programs contain the declaration ‘long time () ;’. In the past, the system
header files on many systems did not actually declare time, so it did not matter what
type your program declared it to return. But in systems with ANSI C headers, time is
declared to return time_t, and if that is not the same as long, then ‘long time () ;’
is erroneous.

The solution is to change your program to use time_t as the return type of time.
¢ When compiling functions that return float, PCC converts it to a double. GNU CC

actually returns a float. If you are concerned with PCC compatibility, you should
declare your functions to return double; you might as well say what you mean.

¢ When compiling functions that return structures or unions, GNU CC output code
normally uses a method different from that used on most versions of Unix. As a result,

170 Using and Porting GNU CC

code compiled with GNU CC cannot call a structure-returning function compiled with
PCC, and vice versa.

The method used by GNU CC is as follows: a structure or union which is 1, 2, 4 or 8
bytes long is returned like a scalar. A structure or union with any other size is stored
into an address supplied by the caller (usually in a special, fixed register, but on some
machines it is passed on the stack). The machine-description macros STRUCT_VALUE
and STRUCT_INCOMING_VALUE tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by
copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory
area to the place where the value is wanted. GNU CC does not use this method because
it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union
returning. GNU CC on most of these machines uses a compatible convention when
returning structures and unions in memory, but still returns small structures and unions
in registers.

You can tell GNU CC to use a compatible convention for all structure and union
returning with the option ‘-fpcc-struct-return’.

¢ GNU C complains about program fragments such as ‘0x74ae-0x4000’ which appear to
be two hexadecimal constants separated by the minus operator. Actually, this string
is a single preprocessing token. Each such token must correspond to one token in C.
Since this does not, GNU C prints an error message. Although it may appear obvious
that what is meant is an operator and two values, the ANSI C standard specifically
requires that this be treated as erroneous.

A preprocessing token is a preprocessing number if it begins with a digit and is followed
by letters, underscores, digits, periods and ‘e+’, ‘e-’, ‘E+’, or ‘E-’ character sequences.

To make the above program fragment valid, place whitespace in front of the minus
sign. This whitespace will end the preprocessing number.

8.7 Fixed Header Files

GNU CC needs to install corrected versions of some system header files. This is because
most target systems have some header files that won’t work with GNU CC unless they are
changed. Some have bugs, some are incompatible with ANSI C, and some depend on special
features of other compilers.

Installing GNU CC automatically creates and installs the fixed header files, by running
a program called fixincludes (or for certain targets an alternative such as fixinc.svr4).
Normally, you don’t need to pay attention to this. But there are cases where it doesn’t do
the right thing automatically.

¢ If you update the system’s header files, such as by installing a new system version,
the fixed header files of GNU CC are not automatically updated. The easiest way to
update them is to reinstall GNU CC. (If you want to be clever, look in the makefile
and you can find a shortcut.)

Chapter 8: Known Causes of Trouble with GNU CC 171

¢ On some systems, in particular SunOS 4, header file directories contain machine-specific
symbolic links in certain places. This makes it possible to share most of the header
files among hosts running the same version of SunOS 4 on different machine models.

The programs that fix the header files do not understand this special way of using
symbolic links; therefore, the directory of fixed header files is good only for the machine
model used to build it.

In SunOS 4, only programs that look inside the kernel will notice the difference between
machine models. Therefore, for most purposes, you need not be concerned about this.

It is possible to make separate sets of fixed header files for the different machine models,
and arrange a structure of symbolic links so as to use the proper set, but you’ll have

to do this by hand.

¢ On Lynxos, GNU CC by default does not fix the header files. This is because bugs in
the shell cause the fixincludes script to fail.

This means you will encounter problems due to bugs in the system header files. It may
be no comfort that they aren’t GNU CC’s fault, but it does mean that there’s nothing
for us to do about them.

8.8 Standard Libraries

GNU CC by itself attempts to be what the ISO/ANSI C standard calls a conforming
freestanding implementation. This means all ANSI C language features are available, as
well as the contents of ‘float.h’, ‘limits.h’, ‘stdarg.h’, and ‘stddef.h’. The rest of
the C library is supplied by the vendor of the operating system. If that C library doesn’t
conform to the C standards, then your programs might get warnings (especially when using
‘-Wall’) that you don’t expect.

For example, the sprintf function on SunOS 4.1.3 returns char * while the C standard
says that sprintf returns an int. The fixincludes program could make the prototype
for this function match the Standard, but that would be wrong, since the function will still
return char *.

If you need a Standard compliant library, then you need to find one, as GNU CC does not
provide one. The GNU C library (called glibc) has been ported to a number of operating

systems, and provides ANSI/ISO, POSIX, BSD and SystemV compatibility. You could also
ask your operating system vendor if newer libraries are available.

8.9 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around
them.

¢ Certain local variables aren’t recognized by debuggers when you compile with opti-
mization.

This occurs because sometimes GNU CC optimizes the variable out of existence. There
is no way to tell the debugger how to compute the value such a variable “would have
had”, and it is not clear that would be desirable anyway. So GNU CC simply does not
mention the eliminated variable when it writes debugging information.

172

Using and Porting GNU CC

You have to expect a certain amount of disagreement between the executable and your
source code, when you use optimization.

Users often think it is a bug when GNU CC reports an error for code like this:

int foo (struct mumble *);
struct mumble { ... };

int foo (struct mumble *x)

{...}

This code really is erroneous, because the scope of struct mumble in the prototype
is limited to the argument list containing it. It does not refer to the struct mumble
defined with file scope immediately below—they are two unrelated types with similar
names in different scopes.

But in the definition of foo, the file-scope type is used because that is available to be
inherited. Thus, the definition and the prototype do not match, and you get an error.

This behavior may seem silly, but it’s what the ANSI standard specifies. It is easy
enough for you to make your code work by moving the definition of struct mumble
above the prototype. It’s not worth being incompatible with ANSI C just to avoid an
error for the example shown above.

Accesses to bitfields even in volatile objects works by accessing larger objects, such as
a byte or a word. You cannot rely on what size of object is accessed in order to read or
write the bitfield; it may even vary for a given bitfield according to the precise usage.

If you care about controlling the amount of memory that is accessed, use volatile but
do not use bitfields.

GNU CC comes with shell scripts to fix certain known problems in system header
files. They install corrected copies of various header files in a special directory where
only GNU CC will normally look for them. The scripts adapt to various systems by
searching all the system header files for the problem cases that we know about.

If new system header files are installed, nothing automatically arranges to update the
corrected header files. You will have to reinstall GNU CC to fix the new header files.
More specifically, go to the build directory and delete the files ‘stmp-fixinc’ and
‘stmp-headers’, and the subdirectory include; then do ‘make install’ again.

On 68000 systems, you can get paradoxical results if you test the precise values of
floating point numbers. For example, you can find that a floating point value which is
not a NaN is not equal to itself. This results from the fact that the the floating point
registers hold a few more bits of precision than fit in a double in memory. Compiled
code moves values between memory and floating point registers at its convenience, and
moving them into memory truncates them.

‘-ffloat-store’ option (see Sec-

You can partially avoid this problem by using the
tion 4.8 [Optimize Options], page 43).

On the MIPS, variable argument functions using ‘varargs.h’ cannot have a floating
point value for the first argument. The reason for this is that in the absence of a
prototype in scope, if the first argument is a floating point, it is passed in a floating

point register, rather than an integer register.

Chapter 8: Known Causes of Trouble with GNU CC 173

If the code is rewritten to use the ANSI standard ‘stdarg.h’ method of variable ar-
guments, and the prototype is in scope at the time of the call, everything will work
fine.

8.10 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard definition (the ANSI
C++ draft standard) is also evolving. As a result, your C++ compiler may occasionally
surprise you, even when its behavior is correct. This section discusses some areas that
frequently give rise to questions of this sort.

8.10.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the static member;
you must also define it. For example:

class Foo

{

void method();
static int bar;
};

This declaration only establishes that the class Foo has an int named Foo: :bar, and a
member function named Foo: :method. But you still need to define both method and bar
elsewhere. According to the draft ANSI standard, you must supply an initializer in one
(and only one) source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result,
when you switch to g++ from one of these compilers, you may discover that a program
that appeared to work correctly in fact does not conform to the standard: g++ reports as
undefined symbols any static data members that lack definitions.

8.10.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The
compiler may very well delete the object before you expect it to, leaving a pointer to
garbage. The most common place where this problem crops up is in classes like the libg++
String class, that define a conversion function to type char * or const char *. However,
any class that returns a pointer to some internal structure is potentially subject to this
problem.

For example, a program may use a function strfunc that returns String objects, and
another function charfunc that operates on pointers to char:

String strfunc ();

void charfunc (const char *);
In this situation, it may seem natural to write ‘charfunc (strfunc ());’ based on the
knowledge that class String has an explicit conversion to char pointers. However, what re-
ally happens is akin to ‘charfunc (strfunc ().convert ());’, where the convert method

174 Using and Porting GNU CC

is a function to do the same data conversion normally performed by a cast. Since the last
use of the temporary String object is the call to the conversion function, the compiler may
delete that object before actually calling charfunc. The compiler has no way of knowing
that deleting the String object will invalidate the pointer. The pointer then points to
garbage, so that by the time charfunc is called, it gets an invalid argument.

Code like this may run successfully under some other compilers, especially those that
delete temporaries relatively late. However, the GNU C++ behavior is also standard-
conforming, so if your program depends on late destruction of temporaries it is not portable.

If you think this is surprising, you should be aware that the ANSI C++ committee
continues to debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the temporary a name, which
forces it to remain until the end of the scope of the name. For example:

String& tmp = strfunc ();
charfunc (tmp);

8.11 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source file
in a way that won’t work unless you rearrange it.

e protoize can insert references to a type name or type tag before the definition, or in
a file where they are not defined.

If this happens, compiler error messages should show you where the new references are,
so fixing the file by hand is straightforward.

o There are some C constructs which protoize cannot figure out. For example, it can’t
determine argument types for declaring a pointer-to-function variable; this you must
do by hand. protoize inserts a comment containing ‘777’ each time it finds such a
variable; so you can find all such variables by searching for this string. ANSI C does
not require declaring the argument types of pointer-to-function types.

¢ Using unprotoize can easily introduce bugs. If the program relied on prototypes
to bring about conversion of arguments, these conversions will not take place in the
program without prototypes. One case in which you can be sure unprotoize is safe
is when you are removing prototypes that were made with protoize; if the program
worked before without any prototypes, it will work again without them.

You can find all the places where this problem might occur by compiling the pro-
gram with the ‘-Wconversion’ option. It prints a warning whenever an argument is
converted.

¢ Both conversion programs can be confused if there are macro calls in and around the
text to be converted. In other words, the standard syntax for a declaration or definition
must not result from expanding a macro. This problem is inherent in the design of C
and cannot be fixed. If only a few functions have confusing macro calls, you can easily
convert them manually.

e protoize cannot get the argument types for a function whose definition was not actu-
ally compiled due to preprocessing conditionals. When this happens, protoize changes

Chapter 8: Known Causes of Trouble with GNU CC 175

nothing in regard to such a function. protoize tries to detect such instances and warn
about them.

You can generally work around this problem by using protoize step by step, each
time specifying a different set of ‘-D’ options for compilation, until all of the functions
have been converted. There is no automatic way to verify that you have got them all,
however.

e Confusion may result if there is an occasion to convert a function declaration or def-
inition in a region of source code where there is more than one formal parameter list
present. Thus, attempts to convert code containing multiple (conditionally compiled)
versions of a single function header (in the same vicinity) may not produce the desired
(or expected) results.

If you plan on converting source files which contain such code, it is recommended
that you first make sure that each conditionally compiled region of source code which
contains an alternative function header also contains at least one additional follower
token (past the final right parenthesis of the function header). This should circumvent
the problem.

e unprotoize can become confused when trying to convert a function definition or dec-
laration which contains a declaration for a pointer-to-function formal argument which
has the same name as the function being defined or declared. We recommand you avoid
such choices of formal parameter names.

¢ You might also want to correct some of the indentation by hand and break long lines.
(The conversion programs don’t write lines longer than eighty characters in any case.)

8.12 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which we do not make
because we think GNU CC is better without them.

¢ Checking the number and type of arguments to a function which has an old-fashioned
definition and no prototype.

Such a feature would work only occasionally—only for calls that appear in the same
file as the called function, following the definition. The only way to check all calls
reliably is to add a prototype for the function. But adding a prototype eliminates the
motivation for this feature. So the feature is not worthwhile.

¢ Warning about using an expression whose type is signed as a shift count.

Shift count operands are probably signed more often than unsigned. Warning about
this would cause far more annoyance than good.

¢ Warning about assigning a signed value to an unsigned variable.

Such assignments must be very common; warning about them would cause more an-
noyance than good.

¢ Warning about unreachable code.

It’s very common to have unreachable code in machine-generated programs. For ex-
ample, this happens normally in some files of GNU C itself.

176

Using and Porting GNU CC

Warning when a non-void function value is ignored.

Coming as I do from a Lisp background, I balk at the idea that there is something
dangerous about discarding a value. There are functions that return values which
some callers may find useful; it makes no sense to clutter the program with a cast to
void whenever the value isn’t useful.

Assuming (for optimization) that the address of an external symbol is never zero.
This assumption is false on certain systems when ‘#pragma weak’ is used.
Making ‘-fshort-enums’ the default.

This would cause storage layout to be incompatible with most other C compilers. And
it doesn’t seem very important, given that you can get the same result in other ways.
The case where it matters most is when the enumeration-valued object is inside a
structure, and in that case you can specify a field width explicitly.

Making bitfields unsigned by default on particular machines where “the ABI standard”
says to do so.

The ANSI C standard leaves it up to the implementation whether a bitfield declared
plain int is signed or not. This in effect creates two alternative dialects of C.

The GNU C compiler supports both dialects; you can specify the signed dialect with
‘-fsigned-bitfields’ and the unsigned dialect with ‘-funsigned-bitfields’. How-
ever, this leaves open the question of which dialect to use by default.

Currently, the preferred dialect makes plain bitfields signed, because this is simplest.
Since int is the same as signed int in every other context, it is cleanest for them to
be the same in bitfields as well.

Some computer manufacturers have published Application Binary Interface standards
which specify that plain bitfields should be unsigned. It is a mistake, however, to say
anything about this issue in an ABI. This is because the handling of plain bitfields
distinguishes two dialects of C. Both dialects are meaningful on every type of machine.
Whether a particular object file was compiled using signed bitfields or unsigned is of
no concern to other object files, even if they access the same bitfields in the same data
structures.

A given program is written in one or the other of these two dialects. The program
stands a chance to work on most any machine if it is compiled with the proper dialect.
It is unlikely to work at all if compiled with the wrong dialect.

Many users appreciate the GNU C compiler because it provides an environment that is
uniform across machines. These users would be inconvenienced if the compiler treated
plain bitfields differently on certain machines.

Occasionally users write programs intended only for a particular machine type. On
these occasions, the users would benefit if the GNU C compiler were to support by
default the same dialect as the other compilers on that machine. But such applications
are rare. And users writing a program to run on more than one type of machine cannot
possibly benefit from this kind of compatibility.

This is why GNU CC does and will treat plain bitfields in the same fashion on all types
of machines (by default).

Chapter 8: Known Causes of Trouble with GNU CC 177

There are some arguments for making bitfields unsigned by default on all machines. If,
for example, this becomes a universal de facto standard, it would make sense for GNU
CC to go along with it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should indicate explicitly in each
bitfield whether it is signed or not. In this way, they write programs which have the
same meaning in both C dialects.)

¢ Undefining __STDC__ when ‘-ansi’ is not used.

Currently, GNU CC defines __STDC__ as long as you don’t use ‘-traditional’. This
provides good results in practice.

Programmers normally use conditionals on __STDC__ to ask whether it is safe to use
certain features of ANSI C, such as function prototypes or ANSI token concatenation.
Since plain ‘gcc’ supports all the features of ANSI C, the correct answer to these
questions is “yes”.

Some users try to use __STDC__ to check for the availability of certain library facil-
ities. This is actually incorrect usage in an ANSI C program, because the ANSI C
standard says that a conforming freestanding implementation should define __STDC__
even though it does not have the library facilities. ‘gcc -ansi -pedantic’ is a con-
forming freestanding implementation, and it is therefore required to define __STDC__,
even though it does not come with an ANSI C library.

Sometimes people say that defining __STDC__ in a compiler that does not completely
conform to the ANSI C standard somehow violates the standard. This is illogical.
The standard is a standard for compilers that claim to support ANSI C, such as ‘gcc
-ansi’—not for other compilers such as plain ‘gcc’. Whatever the ANSI C standard
says is relevant to the design of plain ‘gcc’ without ‘-ansi’ only for pragmatic reasons,
not as a requirement.

¢ Undefining __STDC__ in C++.

Programs written to compile with C++-to-C translators get the value of __STDC__ that
goes with the C compiler that is subsequently used. These programs must test __STDC_
_ to determine what kind of C preprocessor that compiler uses: whether they should
concatenate tokens in the ANSI C fashion or in the traditional fashion.

These programs work properly with GNU C++ if __STDC__ is defined. They would not
work otherwise.

In addition, many header files are written to provide prototypes in ANSI C but not
in traditional C. Many of these header files can work without change in C++ provided
__STDC__ is defined. If __STDC__ is not defined, they will all fail, and will all need to
be changed to test explicitly for C++ as well.

¢ Deleting “empty” loops.

GNU CC does not delete “empty” loops because the most likely reason you would put
one in a program is to have a delay. Deleting them will not make real programs run
any faster, so it would be pointless.

It would be different if optimization of a nonempty loop could produce an empty one.
But this generally can’t happen.

178 Using and Porting GNU CC

e Making side effects happen in the same order as in some other compiler.

It is never safe to depend on the order of evaluation of side effects. For example, a
function call like this may very well behave differently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++4);
There is no guarantee (in either the C or the C++ standard language definitions) that the
increments will be evaluated in any particular order. Either increment might happen
first. func might get the arguments ‘2, 3’, or it might get ‘3, 2’, or even ‘2, 2°.
¢ Not allowing structures with volatile fields in registers.

Strictly speaking, there is no prohibition in the ANSI C standard against allowing
structures with volatile fields in registers, but it does not seem to make any sense and
is probably not what you wanted to do. So the compiler will give an error message in
this case.

8.13 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each
kind has a different purpose:

Errors report problems that make it impossible to compile your program. GNU CC
reports errors with the source file name and line number where the problem is apparent.

Warnings report other unusual conditions in your code that may indicate a problem,
although compilation can (and does) proceed. Warning messages also report the source
file name and line number, but include the text ‘warning:’ to distinguish them from
error messages.

Warnings may indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of nonstan-
dard features of GNU C or C++. Many warnings are issued only if you ask for them, with
one of the ‘-W’ options (for instance, ‘-Wall’ requests a variety of useful warnings).

GNU CC always tries to compile your program if possible; it never gratuitously rejects
a program whose meaning is clear merely because (for instance) it fails to conform to a
standard. In some cases, however, the C and C++ standards specify that certain extensions
are forbidden, and a diagnostic must be issued by a conforming compiler. The ‘-pedantic’
option tells GNU CC to issue warnings in such cases; ‘-pedantic-errors’ says to make
them errors instead. This does not mean that all non-ANSI constructs get warnings or
errors.

See Section 4.6 [Options to Request or Suppress Warnings|, page 33, for more detail on
these and related command-line options.

Chapter 9: Reporting Bugs 179

9 Reporting Bugs

Your bug reports play an essential role in making GNU CC reliable.

When you encounter a problem, the first thing to do is to see if it is already known. See
Chapter 8 [Trouble|, page 157. If it isn’t known, then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem, or it may not. (If
it does not, look in the service directory; see Chapter 10 [Service|, page 187.) In any case,
the principal function of a bug report is to help the entire community by making the next
version of GNU CC work better. Bug reports are your contribution to the maintenance of

GNU CC.

Since the maintainers are very overloaded, we cannot respond to every bug report. How-
ever, if the bug has not been fixed, we are likely to send you a patch and ask you to tell us
whether it works.

In order for a bug report to serve its purpose, you must include the information that
makes for fixing the bug.

9.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

o If the compiler gets a fatal signal, for any input whatever, that is a compiler bug.
Reliable compilers never crash.

o If the compiler produces invalid assembly code, for any input whatever (except an
asm statement), that is a compiler bug, unless the compiler reports errors (not just
warnings) which would ordinarily prevent the assembler from being run.

e If the compiler produces valid assembly code that does not correctly execute the input
source code, that is a compiler bug.

However, you must double-check to make sure, because you may have run into an
incompatibility between GNU C and traditional C (see Section 8.6 [Incompatibilities],
page 167). These incompatibilities might be considered bugs, but they are inescapable
consequences of valuable features.

Or you may have a program whose behavior is undefined, which happened by chance
to give the desired results with another C or C++ compiler.

For example, in many nonoptimizing compilers, you can write ‘x;’ at the end of a
function instead of ‘return x;’, with the same results. But the value of the function
is undefined if return is omitted; it is not a bug when GNU CC produces different
results.

Problems often result from expressions with two increment operators, as in £ (*p++,
*p++). Your previous compiler might have interpreted that expression the way you
intended; GNU CC might interpret it another way. Neither compiler is wrong. The
bug is in your code.

After you have localized the error to a single source line, it should be easy to check for
these things. If your program is correct and well defined, you have found a compiler

bug.

180 Using and Porting GNU CC

o If the compiler produces an error message for valid input, that is a compiler bug.

o If the compiler does not produce an error message for invalid input, that is a compiler
bug. However, you should note that your idea of “invalid input” might be my idea of
“an extension” or “support for traditional practice”.

¢ If you are an experienced user of C or C++ compilers, your suggestions for improvement
of GNU CC or GNU C++ are welcome in any case.

9.2 Where to Report Bugs

Send bug reports for GNU C to ‘bug-gcc@prep.ai.mit.edu’.

Send bug reports for GNU C++ to ‘bug-g++@prep.ai.mit.edu’. If your bug involves
the C++ class library libg++, send mail to ‘bug-1ib-g++@prep.ai.mit.edu’. If you’re not
sure, you can send the bug report to both lists.

Do not send bug reports to ‘help-gcc@prep.ai.mit.edu’ or to the newsgroup ‘gnu.gcc.help’.
Most users of GNU CC do not want to receive bug reports. Those that do, have asked to
be on ‘bug-gcc’ and/or ‘bug-g++.

The mailing lists ‘bug-gcc’ and ‘bug-g++’ both have newsgroups which serve as re-
peaters: ‘gnu.gcc.bug’ and ‘gnu.g++.bug’. Each mailing list and its newsgroup carry
exactly the same messages.

Often people think of posting bug reports to the newsgroup instead of mailing them. This
appears to work, but it has one problem which can be crucial: a newsgroup posting does
not contain a mail path back to the sender. Thus, if maintainers need more information,
they may be unable to reach you. For this reason, you should always send bug reports by
mail to the proper mailing list.

As a last resort, send bug reports on paper to:

GNU Compiler Bugs
Free Software Foundation

59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

9.3 How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
they conclude that some details don’t matter. Thus, you might assume that the name of
the variable you use in an example does not matter. Well, probably it doesn’t, but one
cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from
the location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the compiler into doing the right thing despite the bug.
Play it safe and give a specific, complete example. That is the easiest thing for you to do,
and the most helpful.

Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it
is not known. It isn’t very important what happens if the bug is already known. Therefore,
always write your bug reports on the assumption that the bug is not known.

Chapter 9: Reporting Bugs 181

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot
help us fix a bug, so it is basically useless. We respond by asking for enough details to
enable us to investigate. You might as well expedite matters by sending them to begin
with.

Try to make your bug report self-contained. If we have to ask you for more information, it
is best if you include all the previous information in your response, as well as the information
that was missing.

Please report each bug in a separate message. This makes it easier for us to track which
bugs have been fixed and to forward your bugs reports to the appropriate maintainer.

Do not compress and encode any part of your bug report using programs such as
‘uuencode’. If you do so it will slow down the processing of your bug. If you must submit
multiple large files, use ‘shar’, which allows us to read your message without having to run
any decompression programs.

To enable someone to investigate the bug, you should include all these things:
o The version of GNU CC. You can get this by running it with the ‘-v’ option.

Without this, we won’t know whether there is any point in looking for the bug in the
current version of GNU CC.

¢ A complete input file that will reproduce the bug. If the bug is in the C preprocessor,
send a source file and any header files that it requires. If the bug is in the compiler
proper (‘cc1’), run your source file through the C preprocessor by doing ‘gcc -E source-
file > outfile’, then include the contents of outfile in the bug report. (When you do this,
use the same ‘-I’, ‘-D’ or ‘-U’ options that you used in actual compilation.)

A single statement is not enough of an example. In order to compile it, it must be
embedded in a complete file of compiler input; and the bug might depend on the details
of how this is done.

Without a real example one can compile, all anyone can do about your bug report is
wish you luck. It would be futile to try to guess how to provoke the bug. For example,
bugs in register allocation and reloading frequently depend on every little detail of the
function they happen in.

Even if the input file that fails comes from a GNU program, you should still send
the complete test case. Don’t ask the GNU CC maintainers to do the extra work of
obtaining the program in question—they are all overworked as it is. Also, the problem
may depend on what is in the header files on your system; it is unreliable for the
GNU CC maintainers to try the problem with the header files available to them. By
sending CPP output, you can eliminate this source of uncertainty and save us a certain
percentage of wild goose chases.

¢ The command arguments you gave GNU CC or GNU C++ to compile that example
and observe the bug. For example, did you use ‘-0’7 To guarantee you won’t omit
something important, list all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we
would not encounter the bug.

¢ The type of machine you are using, and the operating system name and version number.

¢ The operands you gave to the configure command when you installed the compiler.

182

Using and Porting GNU CC

A complete list of any modifications you have made to the compiler source. (We don’t
promise to investigate the bug unless it happens in an unmodified compiler. But if
you’ve made modifications and don’t tell us, then you are sending us on a wild goose
chase.)

Be precise about these changes. A description in English is not enough—send a context

diff for them.

Adding files of your own (such as a machine description for a machine we don’t support)
is a modification of the compiler source.

Details of any other deviations from the standard procedure for installing GNU CC.

A description of what behavior you observe that you believe is incorrect. For example,
“The compiler gets a fatal signal,” or, “The assembler instruction at line 208 in the
output is incorrect.”

Of course, if the bug is that the compiler gets a fatal signal, then one can’t miss it.
But if the bug is incorrect output, the maintainer might not notice unless it is glaringly
wrong. None of us has time to study all the assembler code from a 50-line C program
just on the chance that one instruction might be wrong. We need you to do this part!

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of the compiler is out of
synch, or you have encountered a bug in the C library on your system. (This has
happened!) Your copy might crash and the copy here would not. If you said to expect
a crash, then when the compiler here fails to crash, we would know that the bug was not
happening. If you don’t say to expect a crash, then we would not know whether the bug
was happening. We would not be able to draw any conclusion from our observations.

If the problem is a diagnostic when compiling GNU CC with some other compiler, say
whether it is a warning or an error.

Often the observed symptom is incorrect output when your program is run. Sad to say,
this is not enough information unless the program is short and simple. None of us has
time to study a large program to figure out how it would work if compiled correctly,
much less which line of it was compiled wrong. So you will have to do that. Tell us
which source line it is, and what incorrect result happens when that line is executed.
A person who understands the program can find this as easily as finding a bug in the
program itself.

If you send examples of assembler code output from GNU CC or GNU C++, please use
‘-g’ when you make them. The debugging information includes source line numbers
which are essential for correlating the output with the input.

If you wish to mention something in the GNU CC source, refer to it by context, not
by line number.

The line numbers in the development sources don’t match those in your sources. Your
line numbers would convey no useful information to the maintainers.

Additional information from a debugger might enable someone to find a problem on
a machine which he does not have available. However, you need to think when you
collect this information if you want it to have any chance of being useful.

For example, many people send just a backtrace, but that is never useful by itself. A
simple backtrace with arguments conveys little about GNU CC because the compiler

Chapter 9: Reporting Bugs 183

is largely data-driven; the same functions are called over and over for different RTL
insns, doing different things depending on the details of the insn.

Most of the arguments listed in the backtrace are useless because they are pointers to
RTL list structure. The numeric values of the pointers, which the debugger prints in
the backtrace, have no significance whatever; all that matters is the contents of the
objects they point to (and most of the contents are other such pointers).

In addition, most compiler passes consist of one or more loops that scan the RTL insn
sequence. The most vital piece of information about such a loop—which insn it has
reached—is usually in a local variable, not in an argument.

What you need to provide in addition to a backtrace are the values of the local variables
for several stack frames up. When a local variable or an argument is an RTX, first
print its value and then use the GDB command pr to print the RTL expression that it
points to. (If GDB doesn’t run on your machine, use your debugger to call the function
debug_rtx with the RTX as an argument.) In general, whenever a variable is a pointer,
its value is no use without the data it points to.

Here are some things that are not necessary:
¢ A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. You might as well save your time for something
else.

Of course, if you can find a simpler example to report instead of the original one,
that is a convenience. Errors in the output will be easier to spot, running under
the debugger will take less time, etc. Most GNU CC bugs involve just one function,
so the most straightforward way to simplify an example is to delete all the function
definitions except the one where the bug occurs. Those earlier in the file may be
replaced by external declarations if the crucial function depends on them. (Exception:
inline functions may affect compilation of functions defined later in the file.)

However, simplification is not vital; if you don’t want to do this, report the bug anyway
and send the entire test case you used.

e In particular, some people insert conditionals ‘#ifdef BUG’ around a statement which,
if removed, makes the bug not happen. These are just clutter; we won’t pay any
attention to them anyway. Besides, you should send us cpp output, and that can’t
have conditionals.

¢ A patch for the bug.

A patch for the bug is useful if it is a good one. But don’t omit the necessary informa-
tion, such as the test case, on the assumption that a patch is all we need. We might
see problems with your patch and decide to fix the problem another way, or we might
not understand it at all.

Sometimes with a program as complicated as GNU CC it is very hard to construct an
example that will make the program follow a certain path through the code. If you

184 Using and Porting GNU CC

don’t send the example, we won’t be able to construct one, so we won’t be able to
verify that the bug is fixed.

And if we can’t understand what bug you are trying to fix, or why your patch should
be an improvement, we won’t install it. A test case will help us to understand.

See Section 9.4 [Sending Patches|, page 184, for guidelines on how to make it easy for
us to understand and install your patches.

e A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even I can’t guess right about such things without
first using the debugger to find the facts.

e A core dump file.

We have no way of examining a core dump for your type of machine unless we have
an identical system—and if we do have one, we should be able to reproduce the crash
ourselves.

9.4 Sending Patches for GNU CC

If you would like to write bug fixes or improvements for the GNU C compiler, that is very
helpful. Send suggested fixes to the bug report mailing list, bug-gcc@prep.ai.mit.edu.

Please follow these guidelines so we can study your patches efficiently. If you don’t follow
these guidelines, your information might still be useful, but using it will take extra work.
Maintaining GNU C is a lot of work in the best of circumstances, and we can’t keep up
unless you do your best to help.

¢ Send an explanation with your changes of what problem they fix or what improvement
they bring about. For a bug fix, just include a copy of the bug report, and explain why
the change fixes the bug.

(Referring to a bug report is not as good as including it, because then we will have to
look it up, and we have probably already deleted it if we’ve already fixed the bug.)

¢ Always include a proper bug report for the problem you think you have fixed. We need
to convince ourselves that the change is right before installing it. Even if it is right, we
might have trouble judging it if we don’t have a way to reproduce the problem.

¢ Include all the comments that are appropriate to help people reading the source in the
future understand why this change was needed.

¢ Don’t mix together changes made for different reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them
both. We might want to install just one. If you send them all jumbled together in a
single set of diffs, we have to do extra work to disentangle them—to figure out which
parts of the change serve which purpose. If we don’t have time for this, we might have
to ignore your changes entirely.

If you send each change as soon as you have written it, with its own explanation, then
the two changes never get tangled up, and we can consider each one properly without
any extra work to disentangle them.

Ideally, each change you send should be impossible to subdivide into parts that we
might want to consider separately, because each of its parts gets its motivation from
the other parts.

Chapter 9: Reporting Bugs 185

¢ Send each change as soon as that change is finished. Sometimes people think they are
helping us by accumulating many changes to send them all together. As explained
above, this is absolutely the worst thing you could do.

Since you should send each change separately, you might as well send it right away.
That gives us the option of installing it immediately if it is important.

e Use ‘diff -c¢’ to make your diffs. Diffs without context are hard for us to install
reliably. More than that, they make it hard for us to study the diffs to decide whether
we want to install them. Unidiff format is better than contextless diffs, but not as easy
to read as ‘-¢’ format.

If you have GNU diff, use ‘diff -cp’, which shows the name of the function that each
change occurs in.

o Write the change log entries for your changes. We get lots of changes, and we don’t
have time to do all the change log writing ourselves.

Read the ‘Changelog’ file to see what sorts of information to put in, and to learn the
style that we use. The purpose of the change log is to show people where to find what
was changed. So you need to be specific about what functions you changed; in large
functions, it’s often helpful to indicate where within the function the change was.

On the other hand, once you have shown people where to find the change, you need
not explain its purpose. Thus, if you add a new function, all you need to say about it
is that it is new. If you feel that the purpose needs explaining, it probably does—but
the explanation will be much more useful if you put it in comments in the code.

If you would like your name to appear in the header line for who made the change,
send us the header line.

¢ When you write the fix, keep in mind that we can’t install a change that would break
other systems.

People often suggest fixing a problem by changing machine-independent files such as
‘toplev.c’ to do something special that a particular system needs. Sometimes it is
totally obvious that such changes would break GNU CC for almost all users. We can’t
possibly make a change like that. At best it might tell us how to write another patch
that would solve the problem acceptably.

Sometimes people send fixes that might be an improvement in general—but it is hard
to be sure of this. It’s hard to install such changes because we have to study them very
carefully. Of course, a good explanation of the reasoning by which you concluded the
change was correct can help convince us.

The safest changes are changes to the configuration files for a particular machine. These
are safe because they can’t create new bugs on other machines.

Please help us keep up with the workload by designing the patch in a form that is good
to install.

186 Using and Porting GNU CC

Chapter 10: How To Get Help with GNU CC 187

10 How To Get Help with GNU CC

If you need help installing, using or changing GNU CC, there are two ways to find it:
¢ Send a message to a suitable network mailing list. First try bug-gcc@prep.ai.mit.edu,
and if that brings no response, try help-gcc@prep.ai.mit.edu.

¢ Look in the service directory for someone who might help you for a fee. The service
directory is found in the file named ‘SERVICE’ in the GNU CC distribution.

188 Using and Porting GNU CC

Chapter 11: Using GNU CC on VMS 189

11 Using GNU CC on VMS

Here is how to use GNU CC on VMS.

11.1 Include Files and VMS

Due to the differences between the filesystems of Unix and VMS, GNU CC attempts to
translate file names in ‘#include’ into names that VMS will understand. The basic strategy
is to prepend a prefix to the specification of the include file, convert the whole filename to
a VMS filename, and then try to open the file. GNU CC tries various prefixes one by one
until one of them succeeds:

1. The first prefix is the ‘GNU_CC_INCLUDE:’ logical name: this is where GNU C header
files are traditionally stored. If you wish to store header files in non-standard locations,
then you can assign the logical ‘GNU_CC_INCLUDE’ to be a search list, where each element
of the list is suitable for use with a rooted logical.

2. The next prefix tried is ‘SYS$SYSROOT: [SYSLIB.]1’. This is where VAX-C header files
are traditionally stored.

3. If the include file specification by itself is a valid VMS filename, the preprocessor then
uses this name with no prefix in an attempt to open the include file.

4. If the file specification is not a valid VMS filename (i.e. does not contain a device or

a directory specifier, and contains a ¢/’ character), the preprocessor tries to convert it
from Unix syntax to VMS syntax.
Conversion works like this: the first directory name becomes a device, and the rest
of the directories are converted into VMS-format directory names. For example, the
name ‘X11/foobar.h’ is translated to ‘X11:[000000]foobar.h’ or ‘X11:foobar.h’,
whichever one can be opened. This strategy allows you to assign a logical name to
point to the actual location of the header files.

5. If none of these strategies succeeds, the ‘#include’ fails.

Include directives of the form:
#include foobar
are a common source of incompatibility between VAX-C and GNU CC. VAX-C treats this
much like a standard #include <foobar.h> directive. That is incompatible with the ANSI
C behavior implemented by GNU CC: to expand the name foobar as a macro. Macro
expansion should eventually yield one of the two standard formats for #include:
#include '"file"
#include <file>
If you have this problem, the best solution is to modify the source to convert the
#include directives to one of the two standard forms. That will work with either com-
piler. If you want a quick and dirty fix, define the file names as macros with the proper
expansion, like this:
#define stdio <stdio.h>
This will work, as long as the name doesn’t conflict with anything else in the program.

Another source of incompatibility is that VAX-C assumes that:

190 Using and Porting GNU CC

#include "foobar"

is actually asking for the file ‘foobar.h’. GNU CC does not make this assumption, and
instead takes what you ask for literally; it tries to read the file ‘foobar’. The best way to
avoid this problem is to always specify the desired file extension in your include directives.

GNU CC for VMS is distributed with a set of include files that is sufficient to compile
most general purpose programs. Even though the GNU CC distribution does not contain
header files to define constants and structures for some VMS system-specific functions, there
is no reason why you cannot use GNU CC with any of these functions. You first may have
to generate or create header files, either by using the public domain utility UNSDL (which
can be found on a DECUS tape), or by extracting the relevant modules from one of the
system macro libraries, and using an editor to construct a C header file.

A #include file name cannot contain a DECNET node name. The preprocessor reports
an I/0O error if you attempt to use a node name, whether explicitly, or implicitly via a
logical name.

11.2 Global Declarations and VMS

GNU CC does not provide the globalref, globaldef and globalvalue keywords of
VAX-C. You can get the same effect with an obscure feature of GAS, the GNU assembler.
(This requires GAS version 1.39 or later.) The following macros allow you to use this feature
in a fairly natural way:

#ifdef GNUC__

#define GLOBALREF(TYPE,NAME) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)

#define GLOBALDEF(TYPE,NAME,VALUE) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOLS" #NAME) \

= VALUE

#define GLOBALVALUEREF(TYPE,NAME) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUES" #NAME) \

= {VALUE}

#else

#define GLOBALREF (TYPE,NAME) \
globalref TYPE NAME

#define GLOBALDEF(TYPE,NAME,VALUE) \
globaldef TYPE NAME = VALUE

#define GLOBALVALUEDEF (TYPE,NAME,VALUE) \
globalvalue TYPE NAME = VALUE

#define GLOBALVALUEREF(TYPE,NAME) \
globalvalue TYPE NAME

#endif

Chapter 11: Using GNU CC on VMS 191

(The _$$PsectAttributes_GLOBALSYMBOL prefix at the start of the name is removed by the
assembler, after it has modified the attributes of the symbol). These macros are provided
in the VMS binaries distribution in a header file ‘GNU_HACKS .H’. An example of the usage
is:

GLOBALREF (int, ijk);

GLOBALDEF (int, jk1, 0);

The macros GLOBALREF and GLOBALDEF cannot be used straightforwardly for arrays,
since there is no way to insert the array dimension into the declaration at the right place.
However, you can declare an array with these macros if you first define a typedef for the
array type, like this:

typedef int intvector[10];
GLOBALREF (intvector, foo);

Array and structure initializers will also break the macros; you can define the initializer
to be a macro of its own, or you can expand the GLOBALDEF macro by hand. You may find
a case where you wish to use the GLOBALDEF macro with a large array, but you are not
interested in explicitly initializing each element of the array. In such cases you can use an
initializer like: {0, 7}, which will initialize the entire array to 0.

A shortcoming of this implementation is that a variable declared with GLOBALVALUEREF
or GLOBALVALUEDEF is always an array. For example, the declaration:

GLOBALVALUEREF (int, ijk);

declares the variable ijk as an array of type int [1]. This is done because a globalvalue
is actually a constant; its “value” is what the linker would normally consider an address.
That is not how an integer value works in C, but it is how an array works. So treating the
symbol as an array name gives consistent results—with the exception that the value seems
to have the wrong type. Don’t try to access an element of the array. It doesn’t have any
elements. The array “address” may not be the address of actual storage.

The fact that the symbol is an array may lead to warnings where the variable is used.
Insert type casts to avoid the warnings. Here is an example; it takes advantage of the ANSI
C feature allowing macros that expand to use the same name as the macro itself.

GLOBALVALUEREF (int, ss$_normal);
GLOBALVALUEDEF (int, xyzzy,123);
#ifdef __GNUC__

#define ss$_normal ((int) ss$_normal)
#define xyzzy ((int) xyzzy)

#endif

Don’t use globaldef or globalref with a variable whose type is an enumeration type;
this is not implemented. Instead, make the variable an integer, and use a globalvaluedef
for each of the enumeration values. An example of this would be:

#ifdef __GNUC__

GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else

enum globaldef color {RED, BLUE, GREEN = 3};

192 Using and Porting GNU CC

#tendif

11.3 Other VMS Issues

GNU CC automatically arranges for main to return 1 by default if you fail to specify an
explicit return value. This will be interpreted by VMS as a status code indicating a normal
successful completion. Version 1 of GNU CC did not provide this default.

GNU CC on VMS works only with the GNU assembler, GAS. You need version 1.37 or
later of GAS in order to produce value debugging information for the VMS debugger. Use
the ordinary VMS linker with the object files produced by GAS.

Under previous versions of GNU CC, the generated code would occasionally give strange
results when linked to the sharable ‘VAXCRTL’ library. Now this should work.

A caveat for use of const global variables: the const modifier must be specified in every
external declaration of the variable in all of the source files that use that variable. Otherwise
the linker will issue warnings about conflicting attributes for the variable. Your program
will still work despite the warnings, but the variable will be placed in writable storage.

Although the VMS linker does distinguish between upper and lower case letters in global
symbols, most VMS compilers convert all such symbols into upper case and most run-time
library routines also have upper case names. To be able to reliably call such routines, GNU
CC (by means of the assembler GAS) converts global symbols into upper case like other
VMS compilers. However, since the usual practice in C is to distinguish case, GNU CC
(via GAS) tries to preserve usual C behavior by augmenting each name that is not all lower
case. This means truncating the name to at most 23 characters and then adding more
characters at the end which encode the case pattern of those 23. Names which contain at
least one dollar sign are an exception; they are converted directly into upper case without
augmentation.

Name augmentation yields bad results for programs that use precompiled libraries (such
as Xlib) which were generated by another compiler. You can use the compiler option
‘/NOCASE_HACK’ to inhibit augmentation; it makes external C functions and variables case-
independent as is usual on VMS. Alternatively, you could write all references to the functions
and variables in such libraries using lower case; this will work on VMS, but is not portable
to other systems. The compiler option ‘/NAMES’ also provides control over global name

handling.

Function and variable names are handled somewhat differently with GNU C++. The
GNU C++ compiler performs name mangling on function names, which means that it adds
information to the function name to describe the data types of the arguments that the
function takes. One result of this is that the name of a function can become very long.
Since the VMS linker only recognizes the first 31 characters in a name, special action is
taken to ensure that each function and variable has a unique name that can be represented
in 31 characters.

If the name (plus a name augmentation, if required) is less than 32 characters in length,
then no special action is performed. If the name is longer than 31 characters, the assembler
(GAS) will generate a hash string based upon the function name, truncate the function
name to 23 characters, and append the hash string to the truncated name. If the ‘/VERBOSE’

Chapter 11: Using GNU CC on VMS 193

compiler option is used, the assembler will print both the full and truncated names of each
symbol that is truncated.

The ¢‘/NOCASE_HACK’ compiler option should not be used when you are compiling pro-
grams that use libg++. libg++ has several instances of objects (i.e. Filebuf and filebuf)
which become indistinguishable in a case-insensitive environment. This leads to cases where
you need to inhibit augmentation selectively (if you were using libg++ and Xlib in the same
program, for example). There is no special feature for doing this, but you can get the result
by defining a macro for each mixed case symbol for which you wish to inhibit augmentation.
The macro should expand into the lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

These macro definitions can be placed in a header file to minimize the number of changes
to your source code.

194 Using and Porting GNU CC

Chapter 12: GNU CC and Portability 195

12 GNU CC and Portability

The main goal of GNU CC was to make a good, fast compiler for machines in the class
that the GNU system aims to run on: 32-bit machines that address 8-bit bytes and have
several general registers. Elegance, theoretical power and simplicity are only secondary.

GNU CC gets most of the information about the target machine from a machine de-
scription which gives an algebraic formula for each of the machine’s instructions. This is
a very clean way to describe the target. But when the compiler needs information that is
difficult to express in this fashion, I have not hesitated to define an ad-hoc parameter to
the machine description. The purpose of portability is to reduce the total work needed on
the compiler; it was not of interest for its own sake.

GNU CC does not contain machine dependent code, but it does contain code that
depends on machine parameters such as endianness (whether the most significant byte has
the highest or lowest address of the bytes in a word) and the availability of autoincrement
addressing. In the RTL-generation pass, it is often necessary to have multiple strategies for
generating code for a particular kind of syntax tree, strategies that are usable for different
combinations of parameters. Often I have not tried to address all possible cases, but only
the common ones or only the ones that I have encountered. As a result, a new target may
require additional strategies. You will know if this happens because the compiler will call
abort. Fortunately, the new strategies can be added in a machine-independent fashion, and
will affect only the target machines that need them.

196 Using and Porting GNU CC

Chapter 13: Interfacing to GNU CC Output 197

13 Interfacing to GNU CC Output

GNU CC is normally configured to use the same function calling convention normally in
use on the target system. This is done with the machine-description macros described (see
Chapter 17 [Target Macros], page 293).

However, returning of structure and union values is done differently on some target
machines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GNU CC, and vice versa. This does not cause trouble often
because few Unix library routines return structures or unions.

GNU CC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GNU CC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The machine-description macros
STRUCT_VALUE and STRUCT_INCOMING_VALUE tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GNU CC,
and fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GNU CC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GNU CC uses the system’s standard convention for passing arguments. On some ma-
chines, the first few arguments are passed in registers; in others, all are passed on the stack.
It would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you are
switching to GNU CC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GNU CC.

On some machines (particularly the Sparc), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ANSI C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GNU
CC promises to do, because it is very difficult to restore register variables correctly, and
one of GNU CC’s features is that it can put variables in registers without your asking it to.

If you want a variable to be unaltered by longjmp, and you don’t want to write volatile
because old C compilers don’t accept it, just take the address of the variable. If a variable’s
address is ever taken, even if just to compute it and ignore it, then the variable cannot go
in a register:

{

int careful;

198 Using and Porting GNU CC

&careful;

}...

Code compiled with GNU CC may call certain library routines. Most of them handle
arithmetic for which there are no instructions. This includes multiply and divide on some
machines, and floating point operations on any machine for which floating point support
is disabled with ‘-msoft-float’. Some standard parts of the C library, such as bcopy or
memcpy, are also called automatically. The usual function call interface is used for calling
the library routines.

These library routines should be defined in the library ‘libgcc.a’, which GNU CC
automatically searches whenever it links a program. On machines that have multiply and
divide instructions, if hardware floating point is in use, normally ‘1ibgcc.a’ is not needed,
but it is searched just in case.

Each arithmetic function is defined in ‘1ibgccl.c’ to use the corresponding C arithmetic
operator. As long as the file is compiled with another C compiler, which supports all the
C arithmetic operators, this file will work portably. However, ‘1libgccl.c’ does not work
if compiled with GNU CC, because each arithmetic function would compile into a call to
itself!

Chapter 14: Passes and Files of the Compiler 199

14 Passes and Files of the Compiler

The overall control structure of the compiler is in ‘toplev.c’. This file is responsible for
initialization, decoding arguments, opening and closing files, and sequencing the passes.

The parsing pass is invoked only once, to parse the entire input. The RTL intermediate
code for a function is generated as the function is parsed, a statement at a time. Each
statement is read in as a syntax tree and then converted to RTL; then the storage for
the tree for the statement is reclaimed. Storage for types (and the expressions for their
sizes), declarations, and a representation of the binding contours and how they nest, remain
until the function is finished being compiled; these are all needed to output the debugging
information.

Each time the parsing pass reads a complete function definition or top-level declara-
tion, it calls either the function rest_of_compilation, or the function rest_of_decl_
compilation in ‘toplev.c’, which are responsible for all further processing necessary, end-
ing with output of the assembler language. All other compiler passes run, in sequence,
within rest_of _compilation. When that function returns from compiling a function defi-
nition, the storage used for that function definition’s compilation is entirely freed, unless it
is an inline function (see Section 6.30 [An Inline Function is As Fast As a Macro], page 139).

Here is a list of all the passes of the compiler and their source files. Also included is a
description of where debugging dumps can be requested with ‘-d’ options.

e Parsing. This pass reads the entire text of a function definition, constructing partial
syntax trees. This and RTL generation are no longer truly separate passes (formerly
they were), but it is easier to think of them as separate.

The tree representation does not entirely follow C syntax, because it is intended to
support other languages as well.

Language-specific data type analysis is also done in this pass, and every tree node
that represents an expression has a data type attached. Variables are represented as
declaration nodes.

Constant folding and some arithmetic simplifications are also done during this pass.

The language-independent source files for parsing are ‘stor-layout.c’, ‘fold-const.c’]
and ‘tree.c’. There are also header files ‘tree.h’ and ‘tree.def’ which define the
format of the tree representation.

The source files to parse C are ‘c-parse.in’,‘c-decl.c’, ‘c-typeck.c’, ‘c-aux-info.c’,|]
‘c-convert.c’, and ‘c-lang.c’ along with header files ‘c-1lex.h’, and ‘c-tree.h’.

The source files for parsing C++ are ‘cp-parse.y’, ‘cp-class.c’,

‘cp-cvt.c’, ‘cp-decl.c’, ‘cp-decl2.c’, ‘cp-dem.c’, ‘cp-except.c’,

‘cp-expr.c’, ‘cp-init.c’, ‘cp-lex.c’, ‘cp-method.c’, ‘cp-ptree.c’,

‘cp-search.c’, ‘cp-tree.c’, ‘cp-type2.c’, and ‘cp-typeck.c’, along with header files
‘cp-tree.def’, ‘cp-tree.h’, and ‘cp-decl.h’.

The special source files for parsing Objective C are ‘objc-parse.y’, ‘objc-actions.c’,
‘objc-tree.def’, and ‘objc-actions.h’. Certain C-specific files are used for this as
well.

The file ‘c-common. ¢’ is also used for all of the above languages.

200

Using and Porting GNU CC

RTL generation. This is the conversion of syntax tree into RTL code. It is actually
done statement-by-statement during parsing, but for most purposes it can be thought
of as a separate pass.

This is where the bulk of target-parameter-dependent code is found, since often it is
necessary for strategies to apply only when certain standard kinds of instructions are
available. The purpose of named instruction patterns is to provide this information to
the RTL generation pass.

Optimization is done in this pass for if-conditions that are comparisons, boolean oper-
ations or conditional expressions. Tail recursion is detected at this time also. Decisions
are made about how best to arrange loops and how to output switch statements.

The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’,
generated from the machine description by the program genemit, is used in this pass.
The header file ‘expr.h’ is used for communication within this pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

Aside from debugging information output, none of the following passes refers to the
tree structure representation of the function (only part of which is saved).

The decision of whether the function can and should be expanded inline in its sub-
sequent callers is made at the end of rtl generation. The function must meet certain
criteria, currently related to the size of the function and the types and number of pa-
rameters it has. Note that this function may contain loops, recursive calls to itself
(tail-recursive functions can be inlined!), gotos, in short, all constructs supported by
GNU CC. The file ‘integrate.c’ contains the code to save a function’s rtl for later in-
lining and to inline that rtl when the function is called. The header file ‘integrate.h’
is also used for this purpose.

The option ‘-dr’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.rtl’ to the input file name.

Jump optimization. This pass simplifies jumps to the following instruction, jumps
across jumps, and jumps to jumps. It deletes unreferenced labels and unreachable code,
except that unreachable code that contains a loop is not recognized as unreachable in
this pass. (Such loops are deleted later in the basic block analysis.) It also converts
some code originally written with jumps into sequences of instructions that directly set
values from the results of comparisons, if the machine has such instructions.

Jump optimization is performed two or three times. The first time is immediately
following RTL generation. The second time is after CSE, but only if CSE says re-
peated jump optimization is needed. The last time is right before the final pass. That
time, cross-jumping and deletion of no-op move instructions are done together with the
optimizations described above.

The source file of this pass is ‘jump.c’.

The option ‘-dj’ causes a debugging dump of the RTL code after this pass is run for
the first time. This dump file’s name is made by appending ‘. jump’ to the input file
name.

Chapter 14: Passes and Files of the Compiler 201

o Register scan. This pass finds the first and last use of each register, as a guide for
common subexpression elimination. Its source is in ‘regclass.c’.

e Jump threading. This pass detects a condition jump that branches to an identical
or inverse test. Such jumps can be ‘threaded’ through the second conditional test.
The source code for this pass is in ‘jump.c’. This optimization is only performed if
‘~-fthread-jumps’ is enabled.

¢ Common subexpression elimination. This pass also does constant propagation. Its
source file is ‘cse.c’. If constant propagation causes conditional jumps to become un-
conditional or to become no-ops, jump optimization is run again when CSE is finished.

The option ‘-ds’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.cse’ to the input file name.

e Loop optimization. This pass moves constant expressions out of loops, and optionally
does strength-reduction and loop unrolling as well. Its source files are ‘loop.c’ and
‘unroll.c’, plus the header ‘loop.h’ used for communication between them. Loop
unrolling uses some functions in ‘integrate.c’ and the header ‘integrate.h’.

The option ‘-dL’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.1loop’ to the input file name.

o If ‘~frerun-cse-after-loop’ was enabled, a second common subexpression elimina-
tion pass is performed after the loop optimization pass. Jump threading is also done
again at this time if it was specified.

The option ‘-dt’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.cse2’ to the input file name.

e Stupid register allocation is performed at this point in a nonoptimizing compilation.
It does a little data flow analysis as well. When stupid register allocation is in use,
the next pass executed is the reloading pass; the others in between are skipped. The
source file is ‘stupid.c’.

¢ Data flow analysis (‘flow.c’). This pass divides the program into basic blocks (and
in the process deletes unreachable loops); then it computes which pseudo-registers are
live at each point in the program, and makes the first instruction that uses a value
point at the instruction that computed the value.

This pass also deletes computations whose results are never used, and combines memory
references with add or subtract instructions to make autoincrement or autodecrement
addressing.

The option ‘-df’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.flow’ to the input file name. If stupid register
allocation is in use, this dump file reflects the full results of such allocation.

¢ Instruction combination (‘combine.c’). This pass attempts to combine groups of two
or three instructions that are related by data flow into single instructions. It combines
the RTL expressions for the instructions by substitution, simplifies the result using
algebra, and then attempts to match the result against the machine description.

The option ‘-dc’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.combine’ to the input file name.

¢ Instruction scheduling (‘sched.c’). This pass looks for instructions whose output will
not be available by the time that it is used in subsequent instructions. (Memory loads

202

Using and Porting GNU CC

and floating point instructions often have this behavior on RISC machines). It re-orders
instructions within a basic block to try to separate the definition and use of items that
otherwise would cause pipeline stalls.

Instruction scheduling is performed twice. The first time is immediately after instruc-
tion combination and the second is immediately after reload.

The option ‘-dS’ causes a debugging dump of the RTL code after this pass is run for
the first time. The dump file’s name is made by appending ¢.sched’ to the input file
name.

Register class preferencing. The RTL code is scanned to find out which register class
is best for each pseudo register. The source file is ‘regclass.c’.

Local register allocation (‘local-alloc.c’). This pass allocates hard registers to
pseudo registers that are used only within one basic block. Because the basic block is
linear, it can use fast and powerful techniques to do a very good job.

The option ‘-d1’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.1reg’ to the input file name.

Global register allocation (‘global.c’). This pass allocates hard registers for the re-
maining pseudo registers (those whose life spans are not contained in one basic block).

Reloading. This pass renumbers pseudo registers with the hardware registers numbers
they were allocated. Pseudo registers that did not get hard registers are replaced
with stack slots. Then it finds instructions that are invalid because a value has failed
to end up in a register, or has ended up in a register of the wrong kind. It fixes
up these instructions by reloading the problematical values temporarily into registers.
Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instructions to
save and restore call-clobbered registers around calls.

Source files are ‘reload.c’ and ‘reloadl.c’, plus the header ‘reload.h’ used for com-
munication between them.

The option ‘-dg’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.greg’ to the input file name.

Instruction scheduling is repeated here to try to avoid pipeline stalls due to memory
loads generated for spilled pseudo registers.

The option ‘-dR’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.sched2’ to the input file name.

Jump optimization is repeated, this time including cross-jumping and deletion of no-op
move instructions.

The option ‘-dJ’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘. jump2’ to the input file name.

Delayed branch scheduling. This optional pass attempts to find instructions that can
go into the delay slots of other instructions, usually jumps and calls. The source file
name is ‘reorg.c’.

The option ‘-dd’ causes a debugging dump of the RTL code after this pass. This dump
file’s name is made by appending ‘.dbr’ to the input file name.

Chapter 14: Passes and Files of the Compiler 203

¢ Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The source file name is ‘reg-stack.c’.

The options ‘-dk’ causes a debugging dump of the RTL code after this pass. This
dump file’s name is made by appending ¢.stack’ to the input file name.

e Final. This pass outputs the assembler code for the function. It is also responsible
for identifying spurious test and compare instructions. Machine-specific peephole opti-
mizations are performed at the same time. The function entry and exit sequences are
generated directly as assembler code in this pass; they never exist as RTL.

The source files are ‘final.c’ plus ‘insn-output.c’; the latter is generated auto-
matically from the machine description by the tool ‘genoutput’. The header file
‘conditions.h’is used for communication between these files.

¢ Debugging information output. This is run after final because it must output the
stack slot offsets for pseudo registers that did not get hard registers. Source files are
‘dbxout.c’ for DBX symbol table format, ‘sdbout.c’ for SDB symbol table format,
and ‘dwarfout.c’ for DWARF symbol table format.

Some additional files are used by all or many passes:
e Every pass uses ‘machmode.def’ and ‘machmode.h’ which define the machine modes.

o Several passes use ‘real.h’, which defines the default representation of floating point
constants and how to operate on them.

o All the passes that work with RTL use the header files ‘rt1.h’ and ‘rtl.def’, and
subroutines in file ‘rtl.c’. The tools gen* also use these files to read and work with
the machine description RTL.

o Several passes refer to the header file ‘insn-config.h’ which contains a few parameters
(C macro definitions) generated automatically from the machine description RTL by
the tool genconfig.

o Several passes use the instruction recognizer, which consists of ‘recog.c’ and ‘recog.h’,
plus the files ‘insn-recog.c’ and ‘insn-extract.c’ that are generated automatically
from the machine description by the tools ‘genrecog’ and ‘genextract’.

o Several passes use the header files ‘regs.h’ which defines the information recorded
about pseudo register usage, and ‘basic-block.h’ which defines the information
recorded about basic blocks.

¢ ‘hard-reg-set.h’ defines the type HARD_REG_SET, a bit-vector with a bit for each hard
register, and some macros to manipulate it. This type is just int if the machine has few
enough hard registers; otherwise it is an array of int and some of the macros expand
into loops.

e Several passes use instruction attributes. A definition of the attributes defined for
a particular machine is in file ‘insn-attr.h’, which is generated from the machine
description by the program ‘genattr’. The file ‘insn-attrtab.c’ contains subroutines
to obtain the attribute values for insns. It is generated from the machine description
by the program ‘genattrtab’.

204 Using and Porting GNU CC

Chapter 15: RTL Representation 205

15 RTL Representation

Most of the work of the compiler is done on an intermediate representation called register
transfer language. In this language, the instructions to be output are described, pretty much
one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

15.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is
an integral object whose type is HOST_WIDE_INT (see Chapter 18 [Config], page 385); their
written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

A vector contains an arbitrary number of pointers to expressions. The number of ele-
ments in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (‘[...]") surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression
code is a name defined in ‘rtl.def’, which is also (in upper case) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of
an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,
newcode).

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what
kind of object it is. Instead, you must know from its context—from the expression code of
the containing expression. For example, in an expression of code subreg, the first operand
is to be regarded as an expression and the second operand as an integer. In an expression
of code plus, there are two operands, both of which are to be regarded as expressions. In
a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its
flags and machine mode if any, and then the operands of the expression (separated by
spaces).

206 Using and Porting GNU CC

Expression code names in the ‘md’ file are written in lower case, but when they appear
in C code they are written in upper case. In this manual, they are shown as follows:
const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

15.2 Access to Operands

For each expression type ‘rtl.def’ specifies the number of contained objects and their
kinds, with four possibilities: ‘e’ for expression (actually a pointer to an expression), ‘i’ for
integer, ‘w’ for wide integer, ‘s’ for string, and ‘E’ for vector of expressions. The sequence
of letters for an expression code is called its format. Thus, the format of subreg is ‘ei’.

A few other format characters are used occasionally:

u ‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps.
It is used for pointers to insns.

n ‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps.
It is used for the line number or code number of a note insn.

S ‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is
equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.

v ‘v’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is
equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value
of this operand may be omitted. An omitted vector is effectively the same as a
vector of no elements.

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands, the format, and the class of an expres-
sion code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

GET_RTX_CLASS (code)
A single character representing the type of RTX operation that code code per-
forms.

The following classes are defined:

o An RTX code that represents an actual object, such as reg or mem.
subreg is not in this class.

Chapter 15: RTL Representation 207

< An RTX code for a comparison. The codes in this class are NE, EQ,
LE, LT, GE, GT, LEU, LTU, GEU, GTU.

1 An RTX code for a unary arithmetic operation, such as neg.

c An RTX code for a commutative binary operation, other than NE

and EQ (which have class ‘<’).

2 An RTX code for a noncommutative binary operation, such as
MINUS.

b An RTX code for a bitfield operation, either ZERO_EXTRACT or
SIGN_EXTRACT.

3 An RTX code for other three input operations, such as IF_THEN_
ELSE.

i An RTX code for a machine insn (INSN, JUMP_INSN, and CALL_
INSN).

m An RTX code for something that matches in insns, such as MATCH_
DUP.

X All other RTX codes.

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR.
Each of these macros takes two arguments: an expression-pointer (RTX) and an operand
number (counting from zero). Thus,

XEXP (x, 2)
accesses operand 2 of expression x, as an expression.

XINT (x, 2)
accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must
choose the correct method of access for the kind of value actually stored in the operand.
You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

For example, if x is a subreg expression, you know that it has two operands which can
be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would
get the address of the expression operand but cast as an integer; that might occasionally
be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also
compile without error, and would return the second, integer operand cast as an expression
pointer, which would probably result in a crash when accessed. Nothing stops you from
writing XEXP (x, 28) either, but this will access memory past the end of the expression
with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC
to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.

208 Using and Porting GNU CC

XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN
(exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

15.3 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bitfields) that are used in certain types of
expression. Most often they are accessed with the following macros:

MEM_VOLATILE_P (x)
In mem expressions, nonzero for volatile memory references. Stored in the
volatil field and printed as ‘/v’.

MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure, union or array,
or to a component of one. Zero for references to a scalar variable or through a
pointer to a scalar. Stored in the in_struct field and printed as ‘/s’.

REG_LOOP_TEST_P
In reg expressions, nonzero if this register’s entire life is contained in the exit
test code for some loop. Stored in the in_struct field and printed as ‘/s’.

REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user’s source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil field and printed as ‘/v’.

REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function’s value is going to be
returned. (This happens only in a hard register.) Stored in the integrated
field and printed as ‘/i’.

The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

SUBREG_PROMOTED_VAR_P

Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 17.3 [Storage Layout], page 300). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct field and printed as ¢/s’.

Chapter 15: RTL Representation 209

SUBREG_PROMOTED_UNSIGNED_P
Nonzero in a subreg that has SUBREG_PROMOTED_VAR_P nonzero if the object
being referenced is kept zero-extended and zero if it is kept sign-extended.
Stored in the unchanging field and printed as ‘/u’.

RTX_UNCHANGING_P (x)
Nonzero in a reg or mem if the value is not changed. (This flag is not set for
memory references via pointers to constants. Such pointers only guarantee that
the object will not be changed explicitly by the current function. The object
might be changed by other functions or by aliasing.) Stored in the unchanging
field and printed as ‘/u’.

RTX_INTEGRATED_P (insn)
Nonzero in an insn if it resulted from an in-line function call. Stored in the
integrated field and printed as ‘/i’. This may be deleted; nothing currently
depends on it.

SYMBOL_REF_USED (x)
In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used field.

SYMBOL_REF_FLAG (x)
In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in
the volatil field and printed as ‘/v’.

LABEL_OUTSIDE_LOOP_P
In label_ref expressions, nonzero if this is a reference to a label that is outside
the innermost loop containing the reference to the label. Stored in the in_
struct field and printed as ‘/s’.

INSN_DELETED_P (insn)
In an insn, nonzero if the insn has been deleted. Stored in the volatil field
and printed as ‘/v’.

INSN_ANNULLED_BRANCH_P (insn)
In an insn in the delay slot of a branch insn, indicates that an annulling
branch should be used. See the discussion under sequence below. Stored
in the unchanging field and printed as ‘/u’.

INSN_FROM_TARGET_P (insn)
In an insn in a delay slot of a branch, indicates that the insn is from the target
of the branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn
should only be executed if the branch is taken. For annulled branches with this
bit clear, the insn should be executed only if the branch is not taken. Stored in
the in_struct field and printed as ‘/s’.

CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current function’s “constants
pool”. These are addresses close to the beginning of the function, and GNU
CC assumes they can be addressed directly (perhaps with the help of base
registers). Stored in the unchanging field and printed as ‘/u’.

210

Using and Porting GNU CC

CONST_CALL_P (x)

In a call_insn, indicates that the insn represents a call to a const function.
Stored in the unchanging field and printed as ‘/u’.

LABEL_PRESERVE_P (x)

In a code_label, indicates that the label can never be deleted. Labels refer-
enced by a non-local goto will have this bit set. Stored in the in_struct field
and printed as ‘/s’.

SCHED_GROUP_P (insn)

During instruction scheduling, in an insn, indicates that the previous insn must
be scheduled together with this insn. This is used to ensure that certain groups
of instructions will not be split up by the instruction scheduling pass, for exam-
ple, use insns before a call_insn may not be separated from the call_insn.
Stored in the in_struct field and printed as ‘/s’.

These are the fields which the above macros refer to:

used

volatil

in_struct

Normally, this flag is used only momentarily, at the end of RTL generation
for a function, to count the number of times an expression appears in insns.
Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 15.17 [Sharing], page 239).

In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.

In a reg, it is used by the leaf register renumbering code to ensure that each
register is only renumbered once.

This flag is used in mem, symbol_ref and reg expressions and in insns. In RTL
dump files, it is printed as ‘/v’.

In a mem expression, it is 1 if the memory reference is volatile. Volatile memory
references may not be deleted, reordered or combined.

In a symbol_ref expression, it is used for machine-specific purposes.
In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.

In an insn, 1 means the insn has been deleted.

In mem expressions, it is 1 if the memory datum referred to is all or part of a
structure or array; 0 if it is (or might be) a scalar variable. A reference through
a C pointer has 0 because the pointer might point to a scalar variable. This
information allows the compiler to determine something about possible cases of
aliasing.

In an insn in the delay slot of a branch, 1 means that this insn is from the
target of the branch.

During instruction scheduling, in an insn, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.

In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.

Chapter 15: RTL Representation 211

In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos.

In an RTL dump, this flag is represented as ‘/s’.

unchanging
In reg and mem expressions, 1 means that the value of the expression never
changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.

In an insn, 1 means that this is an annulling branch.

In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constants pool.

In a call_insn, 1 means that this instruction is a call to a const function.

In an RTL dump, this flag is represented as ‘/u’.

integrated
In some kinds of expressions, including insns, this flag means the rtl was pro-
duced by procedure integration.

In a reg expression, this flag indicates the register containing the value to
be returned by the current function. On machines that pass parameters in
registers, the same register number may be used for parameters as well, but
this flag is not set on such uses.

15.4 Machine Modes

A machine mode describes a size of data object and the representation used for it. In
the C code, machine modes are represented by an enumeration type, enum machine_mode,
defined in ‘machmode.def’. Each RTL expression has room for a machine mode and so do
certain kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters ‘mode’ which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at

all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_
PER_UNIT bits (see Section 17.3 [Storage Layout], page 300).

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

212

PSImode

SImode

PDImode

DImode
TImode

SFmode

DFmode

XFmode

TFmode

CCmode

BLKmode

V0IDmode

Using and Porting GNU CC

“Partial Single Integer” mode represents an integer which occupies four bytes
but which doesn’t really use all four. On some machines, this is the right mode
to use for pointers.

“Single Integer” mode represents a four-byte integer.

“Partial Double Integer” mode represents an integer which occupies eight bytes
but which doesn’t really use all eight. On some machines, this is the right mode
to use for certain pointers.

“Double Integer” mode represents an eight-byte integer.
“Tetra Integer” (?) mode represents a sixteen-byte integer.

“Single Floating” mode represents a single-precision (four byte) floating point
number.

“Double Floating” mode represents a double-precision (eight byte) floating
point number.

“Extended Floating” mode represents a triple-precision (twelve byte) floating
point number. This mode is used for IEEE extended floating point. On some
systems not all bits within these bytes will actually be used.

“Tetra Floating” mode represents a quadruple-precision (sixteen byte) floating
point number.

“Condition Code” mode represents the value of a condition code, which is a
machine-specific set of bits used to represent the result of a comparison oper-
ation. Other machine-specific modes may also be used for the condition code.
These modes are not used on machines that use ccO (see see Section 17.12
[Condition Code], page 346).

“Block” mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

Void mode means the absence of a mode or an unspecified mode. For example,
RTL expressions of code const_int have mode VO0IDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, v0IDmode is expressed by the absence of any mode.

SCmode, DCmode, XCmode, TCmode

These modes stand for a complex number represented as a pair of floating point
values. The floating point values are in SFmode, DFmode, XFmode, and TFmode,
respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode

These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, and 0Imode,
respectively.

Chapter 15: RTL Representation 213

The machine description defines Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, FLOAT _TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler
will attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class defined in ‘machmode.h’.
The possible mode classes are:

MODE_INT Integer modes. By default these are QImode, HImode, SImode, DImode, and
TImode.

MODE_PARTIAL_INT
The “partial integer” modes, PSImode and PDImode.

MODE_FLOAT
floating point modes. By default these are SFmode, DFmode, XFmode and TFmode.

MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).

MODE_COMPLEX _FLOAT
Complex floating point modes. By default these are SCmode, DCmode, XCmode,
and TCmode.

MODE_FUNCTION
Algol or Pascal function variables including a static chain. (These are not
currently implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any modes
listed in the EXTRA_CC_MODES macro. See Section 16.10 [Jump Patterns],
page 271, also see Section 17.12 [Condition Code], page 346.

MODE_RANDOM
This is a catchall mode class for modes which don’t fit into the above classes.
Currently V0IDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES
Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

214 Using and Porting GNU CC

GET_MODE_NAME (m)
Returns the name of mode m as a string.

GET_MODE_CLASS (m)
Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_
WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.

GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m))
Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (i)
Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (im)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (¢)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_
INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

15.5 Constant Expression Types
The simplest RTL expressions are those that represent constant values.

(const_int 1)
This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,
0).
There is only one expression object for the integer value zero; it is the value
of the variable constO_rtx. Likewise, the only expression for integer value one
is found in constl_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found

Chapter 15: RTL Representation 215

in constml_rtx. Any attempt to create an expression of code const_int
and value zero, one, two or negative one will return constO_rtx, constl_rtx,
const2_rtx or constml_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and const1_rtx will point to the same object. If STORE_FLAG_VALUE
is -1, const_true_rtx and constml_rtx will point to the same object.

(const_double:m addr i0 il ...)
Represents either a floating-point constant of mode m or an integer constant too
large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within
twice that number of bits (GNU CC does not provide a mechanism to represent
even larger constants). In the latter case, m will be VOIDmode.

addr is used to contain the mem expression that corresponds to the location in
memory that at which the constant can be found. If it has not been allocated
a memory location, but is on the chain of all const_double expressions in this
compilation (maintained using an undisplayed field), addr contains constO_
rtx. If it is not on the chain, addr contains ccO_rtx. addr is customarily
accessed with the macro CONST_DOUBLE_MEM and the chain field via CONST_
DOUBLE_CHATIN.

If m is VOIDmode, the bits of the value are stored in i0 and il. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision), then the number of
integers used to store the value depends on the size of REAL_VALUE_TYPE (see
Section 17.18 [Cross-compilation|, page 376). The integers represent a float-
ing point number, but not precisely in the target machine’s or host machine’s
floating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 17.16.2 [Data Output], page 356).

The macro CONSTO_RTX (mode) refers to an expression with value 0 in mode
mode. If mode mode is of mode class MODE_INT, it returns constO_rtx. Other-
wise, it returns a CONST_DOUBLE expression in mode mode. Similarly, the macro
CONST1_RTX (mode) refers to an expression with value 1 in mode mode and
similarly for CONST2_RTX.

(const_string str)
Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 16.15 [Insn Attributes], page 282) since constant strings
in C are placed in memory.

(symbol_ref:mode symbol)
Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a ‘*’, the label is
the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually
prefixed with ‘_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

216

Using and Porting GNU CC

(label_ref label)

Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label that appears in the instruction
sequence to identify the place where the label should go.

The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.

(const:m exp)

Represents a constant that is the result of an assembly-time arithmetic com-
putation. The operand, exp, is an expression that contains only constants
(const_int, symbol_ref and label_ref expressions) combined with plus and
minus. However, not all combinations are valid, since the assembler cannot do
arbitrary arithmetic on relocatable symbols.

m should be Pmode.

(high:m exp)

Represents the high-order bits of exp, usually a symbol_ref. The number of
bits is machine-dependent and is normally the number of bits specified in an
instruction that initializes the high order bits of a register. It is used with lo_
sum to represent the typical two-instruction sequence used in RISC machines
to reference a global memory location.

m should be Pmode.

15.6 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main

Iemory.

(reg:m n)

For small values of the integer n (those that are less than FIRST_PSEUDO_
REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.

m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a floating point
number of various precisions.

Even for a register that the machine can access in only one mode, the mode
must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be
general registers. All the machine registers that can be used for storage of data

Chapter 15: RTL Representation 217

are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that
mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that specifies more than one word
of data may actually stand for several consecutive registers. If in addition the
register number specifies a hardware register, then it actually represents several
consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by
a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_
REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation
phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are

defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.

When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined, this points to immediately
above the first variable on the stack. Otherwise, it points to the
first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the reg-
ister given by FRAME_POINTER_REGNUM and the value STARTING_
FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).

218 Using and Porting GNU CC

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m reg wordnum)
subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-word reg that actually
refers to several registers.

Each pseudo-register has a natural mode. If it is necessary to operate on it
in a different mode—for example, to perform a fullword move instruction on
a pseudo-register that contains a single byte—the pseudo-register must be en-
closed in a subreg. In such a case, wordnum is zero.

Usually m is at least as narrow as the mode of reg, in which case it is restricting
consideration to only the bits of reg that are in m.

Sometimes m is wider than the mode of reg. These subreg expressions are
often called paradoxical. They are used in cases where we want to refer to an
object in a wider mode but do not care what value the additional bits have. The
reload pass ensures that paradoxical references are only made to hard registers.

The other use of subreg is to extract the individual registers of a multi-register
value. Machine modes such as DImode and TImode can indicate values longer
than a word, values which usually require two or more consecutive registers.
To access one of the registers, use a subreg with mode SImode and a wordnum
that says which register.

Storing in a non-paradoxical subreg has undefined results for bits belonging to
the same word as the subreg. This laxity makes it easier to generate efficient
code for such instructions. To represent an instruction that preserves all the
bits outside of those in the subreg, use strict_low_part around the subreg.

The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that word num-
ber zero is the most significant part; otherwise, it is the least significant part.

Between the combiner pass and the reload pass, it is possible to have a paradox-
ical subreg which contains a mem instead of a reg as its first operand. After the
reload pass, it is also possible to have a non-paradoxical subreg which contains
a mem; this usually occurs when the mem is a stack slot which replaced a pseudo
register.

Note that it is not valid to access a DFmode value in SFmode using a subreg.
On some machines the most significant part of a DFmode value does not have
the same format as a single-precision floating value.

It is also not valid to access a single word of a multi-word value in a hard register
when less registers can hold the value than would be expected from its size. For
example, some 32-bit machines have floating-point registers that can hold an
entire DFmode value. If register 10 were such a register (subreg:SI (reg:DF
10) 1) would be invalid because there is no way to convert that reference to a
single machine register. The reload pass prevents subreg expressions such as
these from being formed.

Chapter 15: RTL Representation 219

The first operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_WORD macro.

(scratch:m)

(cc0)

This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 15.12 [Side
Effects], page 226).

This refers to the machine’s condition code register. It has no operands and
may not have a machine mode. There are two ways to use it:

¢ To stand for a complete set of condition code flags. This is best on most
machines, where each comparison sets the entire series of flags.

With this technique, (ccO) may be validly used in only two contexts: as
the destination of an assignment (in test and compare instructions) and in
comparison operators comparing against zero (const_int with value zero;
that is to say, constO_rtx).

¢ To stand for a single flag that is the result of a single condition. This is
useful on machines that have only a single flag bit, and in which comparison
instructions must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the
source is a comparison operator, and as the first operand of if_then_else
(in a conditional branch).

There is only one expression object of code ccO; it is the value of the variable
ccO_rtx. Any attempt to create an expression of code ccO will return ccO_rtx.

Instructions can set the condition code implicitly. On many machines, nearly
all instructions set the condition code based on the value that they compute or
store. It is not necessary to record these actions explicitly in the RTL because
the machine description includes a prescription for recognizing the instructions
that do so (by means of the macro NOTICE_UPDATE_CC). See Section 17.12
[Condition Code], page 346. Only instructions whose sole purpose is to set
the condition code, and instructions that use the condition code, need mention
(cc0).

On some machines, the condition code register is given a register number and
a reg is used instead of (cc0). This is usually the preferable approach if only
a small subset of instructions modify the condition code. Other machines store
condition codes in general registers; in such cases a pseudo register should be
used.

Some machines, such as the Sparc and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This
is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and

220 Using and Porting GNU CC

sets the condition code register (which would not be (cc0) in this case). For
examples, search for ‘addcc’ and ‘andcc’ in ‘sparc.md’.

(pc) This represents the machine’s program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain specific
contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

(mem:m addr)
This RTX represents a reference to main memory at an address represented by
the expression addr. m specifies how large a unit of memory is accessed.

15.7 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:mx y)
Represents the sum of the values represented by x and y carried out in machine
mode m.

(lo_sum:m x y)
Like plus, except that it represents that sum of x and the low-order bits of
y. The number of low order bits is machine-dependent but is normally the
number of bits in a Pmode item minus the number of bits set by the high code
(see Section 15.5 [Constants], page 214).

m should be Pmode.

(minus:m x y)
Like plus but represents subtraction.

(compare:m x y)
Represents the result of subtracting y from x for purposes of comparison. The
result is computed without overflow, as if with infinite precision.

Of course, machines can’t really subtract with infinite precision. However, they
can pretend to do so when only the sign of the result will be used, which is
the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in the
condition codes.

The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. If (ccO) is used, it is VOIDmode. Otherwise it is
some mode in class MODE_CC, often CCmode. See Section 17.12 [Condition Code],
page 346.

Chapter 15: RTL Representation 221

(neg:m x)

Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode V0IDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.

A compare specifying two V0IDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the first operand must be loaded into
a register while its mode is still known.

Represents the negation (subtraction from zero) of the value represented by x,
carried out in mode m.

(mult:mx y)

Represents the signed product of the values represented by x and y carried out
in machine mode m.

Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))
where m is wider than the modes of x and y, which need not be the same.

Write patterns for unsigned widening multiplication similarly using zero_
extend.

(divimx y)

Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a floating point mode, it represents the exact quotient; otherwise,
the integerized quotient.

Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:ml (div:m2 x (sign_extend:m2 y)))

(udiv:imx y)

Like div but represents unsigned division.

(mod:m x y)
(umod:m x y)

Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)
(smax:mx y)

Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed integers in mode m.

(umin:m x y)
(umax:mx y)

Like smin and smax, but the values are interpreted as unsigned integers.

222 Using and Porting GNU CC

(not:m x)
Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a fixed-point machine mode.

(and:mx y)

Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point machine mode.

(ior:mx y)
Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(xor:mx y)
Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(ashift:m x c¢)
Represents the result of arithmetically shifting x left by ¢ places. x have mode
m, a fixed-point machine mode. ¢ be a fixed-point mode or be a constant
with mode VOIDmode; which mode is determined by the mode called for in the
machine description entry for the left-shift instruction. For example, on the
Vax, the mode of ¢ is QImode regardless of m.

(1shiftrt:m x c)

(ashiftrt:m x c)
Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

(rotate:m x c¢)
(rotatert:m x c)
Similar but represent left and right rotate. If c¢ is a constant, use rotate.

(abs:m x)
Represents the absolute value of x, computed in mode m.

(sqrt:m x)
Represents the square root of x, computed in mode m. Most often m will be a
floating point mode.

(ffs:m x)
Represents one plus the index of the least significant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x need
not be m; depending on the target machine, various mode combinations may

be valid.

15.8 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 17.19 [Misc], page 378) if the relation holds, or zero if it does not. The
mode of the comparison operation is independent of the mode of the data being compared.

Chapter 15: RTL Representation 223

If the comparison operation is being tested (e.g., the first operand of an if_then_else),
the mode must be V0IDmode. If the comparison operation is producing data to be stored in
some variable, the mode must be in class MODE_INT. All comparison operations producing
data must use the same mode, which is machine-specific.

There are two ways that comparison operations may be used. The comparison operators
may be used to compare the condition codes (ccO) against zero, as in (eq (cc0) (const_
int 0)). Such a construct actually refers to the result of the preceding instruction in which
the condition codes were set. The instructing setting the condition code must be adjacent
to the instruction using the condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode
of the comparison is determined by the operands; they must both be valid for a common
machine mode. A comparison with both operands constant would be invalid as the machine
mode could not be deduced from it, but such a comparison should never exist in RTL due
to constant folding.

In the example above, if (ccO) were last set to (compare x y), the comparison operation
is identical to (eq x y). Usually only one style of comparisons is supported on a particular
machine, but the combine pass will try to merge the operations to produce the eq shown
in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce
different results for the same pair of integer values: for example, 1 is signed greater-than -1
but not unsigned greater-than, because -1 when regarded as unsigned is actually Oxffffffff
which is greater than 1.

The signed comparisons are also used for floating point values. Floating point compar-
isons are distinguished by the machine modes of the operands.

(eq:mx y)

1 if the values represented by x and y are equal, otherwise 0.
(ne:mxy)

1 if the values represented by x and y are not equal, otherwise 0.

(gt:mxy)
1 if the x is greater than y. If they are fixed-point, the comparison is done in
a signed sense.

(gtu:mx y)
Like gt but does unsigned comparison, on fixed-point numbers only.

(1t:mx y)
(ltu:mx y)
Like gt and gtu but test for “less than”.

(geemx y)
(geu:mx y)
Like gt and gtu but test for “greater than or equal”.
(le:mx y)
(leu:mx y)
Like gt and gtu but test for “less than or equal”.

224 Using and Porting GNU CC

(if _then_else cond then else)
This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the
value represented by then and the one represented by else.

On most machines, if _then_else expressions are valid only to express condi-
tional jumps.

(cond [testl valuel test2 value2 ...] default)
Similar to if_then_else, but more general. Each of testl, test2, ... is per-
formed in turn. The result of this expression is the value corresponding to the
first non-zero test, or default if none of the tests are non-zero expressions.

This is currently not valid for instruction patterns and is supported only for
insn attributes. See Section 16.15 [Insn Attributes], page 282.

15.9 Bit Fields

Special expression codes exist to represent bitfield instructions. These types of expres-
sions are lvalues in RTL; they may appear on the left side of an assignment, indicating
insertion of a value into the specified bit field.

(sign_extract:m loc size pos)
This represents a reference to a sign-extended bit field contained or starting in
loc (a memory or register reference). The bit field is size bits wide and starts
at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the
memory unit pos counts from.

If loc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is specified by the operand of the insv or extv pattern
(see Section 16.7 [Standard Names], page 260) and is usually a full-word integer
mode.

The mode of pos is machine-specific and is also specified in the insv or extv
pattern.

The mode m is the same as the mode that would be used for loc if it were a
register.

(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit field. The
same sequence of bits are extracted, but they are filled to an entire word with
zeros instead of by sign-extension.

15.10 Conversions

All conversions between machine modes must be represented by explicit conversion op-
erations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in

Chapter 15: RTL Representation 225

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))
The conversion operation is not a mere placeholder, because there may be more than
one way of converting from a given starting mode to the desired final mode. The conversion
operation code says how to do it.

For all conversion operations, x must not be V0OIDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(zero_extend:m x)
Represents the result of zero-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(float_extend:m x)
Represents the result of extending the value x to machine mode m. m must be
a floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a fixed-point mode and x a fixed-point value of a mode wider than m.

(float_truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a floating point mode and x a floating point value of a mode wider than m.

(float:m x)
Represents the result of converting fixed point value x, regarded as signed, to
floating point mode m.

(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded as unsigned,
to floating point mode m.

(fix:m x)
When m is a fixed point mode, represents the result of converting floating point
value x to mode m, regarded as signed. How rounding is done is not specified, so
this operation may be used validly in compiling C code only for integer-valued
operands.

(unsigned_fix:m x)
Represents the result of converting floating point value x to fixed point mode
m, regarded as unsigned. How rounding is done is not specified.

(fix:m x)
When m is a floating point mode, represents the result of converting floating
point value x (valid for mode m) to an integer, still represented in floating point
mode m, by rounding towards zero.

226 Using and Porting GNU CC

15.11 Declarations

Declaration expression codes do not represent arithmetic operations but rather state
assertions about their operands.

(strict_low_part (subreg:m (reg:nr) 0))
This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of mode m, is not to be altered. Normally,
an assignment to such a subreg is allowed to have undefined effects on the rest
of the register when m is less than a word.

15.12 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine in-
structions never produce values; they are meaningful only for their side effects on the state
of the machine. Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described
above, which represent values, appear only as the operands of these.

(set Ival x)
Represents the action of storing the value of x into the place represented by
Ival. lval must be an expression representing a place that can be stored in: reg
(or subreg or strict_low_part), mem, pc or ccO.

If Ival is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.

If Ival is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register specified by the machine mode is
given the specified value and the rest of the register receives an undefined value.
Likewise, if Ival is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an undefined way.

If Ival is a strict_low_part of a subreg, then the part of the register specified
by the machine mode of the subreg is given the value x and the rest of the
register is not changed.

If Ival is (cc0), it has no machine mode, and x may be either a compare ex-
pression or a value that may have any mode. The latter case represents a
“test” instruction. The expression (set (cc0) (reg:m n)) is equivalent to
(set (ccO) (compare (reg:mn) (const_int 0))). Use the former expres-
sion to save space during the compilation.

If Ival is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an
if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem

Chapter 15: RTL Representation 227

(return)

or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.

If Ival is neither (cc0O) nor (pc), the mode of Ival must not be V0IDmode and
the mode of x must be valid for the mode of Ival.

Ival is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as Vaxes.
On machines where a multi-instruction “epilogue” must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.

Inside an if_then_else expression, represents the value to be placed in pc to
return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc)
(return)), but the latter form is never used.

(call function nargs)

Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.

Each machine has a standard machine mode which function must have. The
machine description defines macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)

Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch or mem expression.

One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values
that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)), it means that all memory locations must be
presumed clobbered.

Note that the machine description classifies certain hard registers as “call-
clobbered”. All function call instructions are assumed by default to clobber
these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 16.3 [RTL Template],
page 242) expressions, the combiner phase can add the appropriate clobber

228

(use x)

(parallel

Using and Porting GNU CC

expressions to an insn it has constructed when doing so will cause a pattern to
be matched.

This feature can be used, for example, on a machine that whose multiply and
add instructions don’t use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other
side effects, the register allocator guarantees that the register is unoccupied
both before and after that insn. However, the reload phase may allocate a
register used for one of the inputs unless the ‘@’ constraint is specified for the
selected alternative (see Section 16.6.4 [Modifiers], page 254). You can clobber
either a specific hard register, a pseudo register, or a scratch expression; in the
latter two cases, GNU CC will allocate a hard register that is available there
for use as a temporary.

For instructions that require a temporary register, you should use scratch
instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
..)). If you do clobber a pseudo register, use one which appears nowhere
else—generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In
this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only effect is to store a value in x. x must be a reg expression.

During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

[x0 x1...0)

Represents several side effects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, xI and so
on are individual side effect expressions—expressions of code set, call, return,
clobber or use.

“In parallel” means that first all the values used in the individual side-effects are
computed, and second all the actual side-effects are performed. For example,
(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))]1)

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.

Chapter 15: RTL Representation 229

It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:

(parallel [(set (ccO) (reg:SI 34))
(set (pc) (if_then_else
(eq (ccO0) (const_int 0))
(label_ref ...)
(pcd D

But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set
by this instruction.

Peephole optimization, which takes place together with final assembly code
output, can produce insns whose patterns consist of a parallel whose elements
are the operands needed to output the resulting assembler code—often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is ok then because no further optimization remains to be
done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must
deal with such insns if you define any peephole optimizations.

(sequence [insns ...])
Represents a sequence of insns. Each of the insns that appears in the vector is
suitable for appearing in the chain of insns, so it must be an insn, jump_insn,
call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation.
It represents the sequence of insns that result from a define_expand before
those insns are passed to emit_insn to insert them in the chain of insns. When
actually inserted, the individual sub-insns are separated out and the sequence
is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the first insn in the vector; subsequent insns are to be placed in
the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the effect of the insns
in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn
is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 16.15.7 [Delay Slots], page 290.

These expression codes appear in place of a side effect, as the body of an insn, though
strictly speaking they do not always describe side effects as such:

(asm_input s)
Represents literal assembler code as described by the string s.

230 Using and Porting GNU CC

(unspec [operands ...] index)

(unspec_volatile [operands ...] index)
Represents a machine-specific operation on operands. index selects between
multiple machine-specific operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.

(addr_vec:m [Ir0 Ir1 ...])
Represents a table of jump addresses. The vector elements Ir0, etc., are 1abel_
ref expressions. The mode m specifies how much space is given to each address;
normally m would be Pmode.

(addr_diff_vec:m base [Ir0 Irl ...])
Represents a table of jump addresses expressed as offsets from base. The vector
elements Ir0, etc., are label_ref expressions and so is base. The mode m
specifies how much space is given to each address-difference.

15.13 Embedded Side-Effects on Addresses

Four special side-effect expression codes appear as memory addresses.

(pre_dec:m x)
Represents the side effect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or
mem, but most machines allow only a reg. m must be the machine mode for
pointers on the machine in use. The amount x is decremented by is the length
in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:
(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)
Represents the same side effect as pre_dec but a different value. The value
represented here is the value x has before being decremented.

(post_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

These embedded side effect expressions must be used with care. Instruction patterns
may not use them. Until the ‘flow’ pass of the compiler, they may occur only to represent
pushes onto the stack. The ‘flow’ pass finds cases where registers are incremented or
decremented in one instruction and used as an address shortly before or after; these cases
are then transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are

Chapter 15: RTL Representation 231

not permitted within the same insn as a use in an embedded side effect expression because
such insns behave differently on different machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side effect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

15.14 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (xz));

is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:
(set rtx-for-outputvar
(asm_operands "foo %1,%2,%40" "a" 0
[rtx-for-addition-result rtx-for-*z]
[(asm_input:ml "g")
(asm_input:m2 "di")]1))

Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands
specified, a vector of input operand RTX’s, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s
inside of a parallel. Each set contains a asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
... for successive output operands.

15.15 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects
called insns. Insns are expressions with special codes that are used for no other purpose.
Some insns are actual instructions; others represent dispatch tables for switch statements;
others represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three fields occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

232 Using and Porting GNU CC

INSN_UID (i)
Accesses the unique id of insn i.

PREV_INSN (i)
Accesses the chain pointer to the insn preceding i. If i is the first insn, this is
a null pointer.

NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the first insn,

NEXT_INSN (PREV_INSN (insn)) == insn
is always true and if insn is not the last insn,

PREV_INSN (NEXT_INSN (insn)) == insn
is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions,
which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence
expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN
(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN
(NEXT_INSN (insn)) is insn is the last insn in the sequence expression. You can use these
expressions to find the containing sequence expression.

Every insn has one of the following six expression codes:

insn The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory
ones listed above. These four are described in a table below.

jump_insn
The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions). If there is an instruction
to return from the current function, it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field JUMP_LABEL which is defined once jump
optimization has completed.

For simple conditional and unconditional jumps, this field contains the code_
label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; the only
way to find the others is to scan the entire body of the insn.

Chapter 15: RTL Representation 233

call_insn

code_label

barrier

note

Return insns count as jumps, but since they do not refer to any labels, they
have zero in the JUMP_LABEL field.

The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.

call_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which con-
tains a list (chain of expr_list expressions) containing use and clobber ex-
pressions that denote hard registers used or clobbered by the called function.
A register specified in a clobber in this list is modified after the execution of
the call_insn, while a register in a clobber in the body of the call_insn
is clobbered before the insn completes execution. clobber expressions in this
list augment registers specified in CALL_USED_REGISTERS (see Section 17.5.1
[Register Basics], page 308).

A code_label insn represents a label that a jump insn can jump to. It con-
tains two special fields of data in addition to the three standard ones. CODE_
LABEL_NUMBER is used to hold the label number, a number that identifies this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln’ where n is the label number.

When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.

The field LABEL_NUSES is only defined once the jump optimization phase is
completed and contains the number of times this label is referenced in the
current function.

Barriers are placed in the instruction stream when control cannot flow past
them. They are placed after unconditional jump instructions to indicate that
the jumps are unconditional and after calls to volatile functions, which do
not return (e.g., exit). They contain no information beyond the three standard

fields.

note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard fields, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source file name that the line came from.
These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

234

Using and Porting GNU CC

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END
These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_LOOP_BEG

NOTE_INSN_LOOP_END
These types of notes indicate the position of the beginning and end
of a while or for loop. They enable the loop optimizer to find
loops quickly.

NOTE_INSN_LOOP_CONT
Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP
This note indicates the place in a loop where the exit test begins
for those loops in which the exit test has been duplicated. This
position becomes another virtual start of the loop when considering
loop invariants.

NOTE_INSN_FUNCTION_END
Appears near the end of the function body, just before the label that
return statements jump to (on machine where a single instruction
does not suffice for returning). This note may be deleted by jump
optimization.

NOTE_INSN_SETJMP
Appears following each call to setjmp or a related function.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes; for example, the reload pass sets it to HImode if the insn needs reloading
but not register elimination and QImode if both are required. The common subexpression
elimination pass sets the mode of an insn to QImode when it is the first insn in a block that
has already been processed.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)

An expression for the side effect performed by this insn. This must be one of
the following codes: set, call, use, clobber, return, asm_input, asm_output,
addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel, or
sequence. If it is a parallel, each element of the parallel must be one these
codes, except that parallel expressions cannot be nested and addr_vec and
addr_diff_vec are not permitted inside a parallel expression.

INSN_CODE (i)

An integer that says which pattern in the machine description matches this
insn, or -1 if the matching has not yet been attempted.

Chapter 15: RTL Representation 235

Such matching is never attempted and this field remains -1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.

Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the ‘md’ file as some small positive or
negative offset from a named pattern.

LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about dependencies
between instructions within a basic block. Neither a jump nor a label may come
between the related insns.

REG_NOTES (i)
A list (chain of expr_list and insn_list expressions) giving miscellaneous
information about the insn. It is often information pertaining to the registers
used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has
two operands: the first is an insn, and the second is another insn_list expression (the
next one in the chain). The last insn_list in the chain has a null pointer as second
operand. The significant thing about the chain is which insns appear in it (as first operands
of insn_list expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination.
For each insn, the flow analysis pass adds a link to insns which store into registers values
that are used for the first time in this insn. The instruction scheduling pass adds extra
links so that every dependence will be represented. Links represent data dependencies,
antidependencies and output dependencies; the machine mode of the link distinguishes
these three types: antidependencies have mode REG_DEP_ANTI, output dependencies have
mode REG_DEP_OUTPUT, and data dependencies have mode VOIDmode.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes
expr_list expressions in addition to insn_list expressions. There are several kinds of
register notes, which are distinguished by the machine mode, which in a register note is
really understood as being an enum reg_note. The first operand op of the note is data
whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not affect the future behavior of the program.

236

REG_INC

REG_NONNEG

Using and Porting GNU CC

This does not necessarily mean that the register op has no useful value after
this insn since it may also be an output of the insn. In such a case, however,
a REG_DEAD note would be redundant and is usually not present until after the
reload pass, but no code relies on this fact.

The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side effect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

The register op is known to have a nonnegative value when this insn is reached.
This is used so that decrement and branch until zero instructions, such as the
m68k dbra, can be matched.

The REG_NONNEG note is added to insns only if the machine description has a
‘decrement_and_branch_until_zero’ pattern.

REG_NO_CONFLICT

REG_LABEL

This insn does not cause a conflict between op and the item being set by this
insn even though it might appear that it does. In other words, if the destination
register and op could otherwise be assigned the same register, this insn does
not prevent that assignment.

Insns with this note are usually part of a block that begins with a clobber insn
specifying a multi-word pseudo register (which will be the output of the block),
a group of insns that each set one word of the value and have the REG_NO_
CONFLICT note attached, and a final insn that copies the output to itself with
an attached REG_EQUAL note giving the expression being computed. This block
is encapsulated with REG_LIBCALL and REG_RETVAL notes on the first and last
insns, respectively.

This insn uses op, a code_label, but is not a jump_insn. The presence of this
note allows jump optimization to be aware that op is, in fact, being used.

The following notes describe attributes of outputs of an insn:

REG_EQUIV
REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that
that register will be equal to op at run time; the scope of this equivalence differs
between the two types of notes. The value which the insn explicitly copies into
the register may look different from op, but they will be equal at run time. If
the output of the single set is a strict_low_part expression, the note refers
to the register that is contained in SUBREG_REG of the subreg expression.

For REG_EQUIV, the register is equivalent to op throughout the entire function,
and could validly be replaced in all its occurrences by op. (“Validly” here refers
to the data flow of the program; simple replacement may make some insns
invalid.) For example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.

Chapter 15: RTL Representation 237

REG_UNUSED

REG_WAS_O

When a parameter is copied into a pseudo-register at entry to a function, a note
of this kind records that the register is equivalent to the stack slot where the
parameter was passed. Although in this case the register may be set by other
insns, it is still valid to replace the register by the stack slot throughout the
function.

In the case of REG_EQUAL, the register that is set by this insn will be equal
to op at run time at the end of this insn but not necessarily elsewhere in the
function. In this case, op is typically an arithmetic expression. For example,
when a sequence of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces or copies the
final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL
is used by passes prior to register allocation (such as common subexpression
elimination and loop optimization) to tell them how to think of that value.
REG_EQUIV notes are used by register allocation to indicate that there is an
available substitute expression (either a constant or a mem expression for the
location of a parameter on the stack) that may be used in place of a register if
insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note
and are not useful to the early optimization passes and pseudo registers that
are equivalent to a memory location throughout there entire life, which is not
detected until later in the compilation, all equivalences are initially indicated
by an attached REG_EQUAL note. In the early stages of register allocation, a
REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the
insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_
EQUAL notes and passes subsequent to register allocation need only check for
REG_EQUIV notes.

The register op being set by this insn will not be used in a subsequent insn.
This differs from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

The single output of this insn contained zero before this insn. op is the insn
that set it to zero. You can rely on this note if it is present and op has not
been deleted or turned into a note; its absence implies nothing.

These notes describe linkages between insns. They occur in pairs: one insn has one of a
pair of notes that points to a second insn, which has the inverse note pointing back to the

first insn.

REG_RETVAL

This insn copies the value of a multi-insn sequence (for example, a library call),
and op is the first insn of the sequence (for a library call, the first insn that was
generated to set up the arguments for the library call).

238 Using and Porting GNU CC

Loop optimization uses this note to treat such a sequence as a single opera-
tion for code motion purposes and flow analysis uses this note to delete such
sequences whose results are dead.

A REG_EQUAL note will also usually be attached to this insn to provide the
expression being computed by the sequence.

REG_LIBCALL
This is the inverse of REG_RETVAL: it is placed on the first insn of a multi-insn
sequence, and it points to the last one.

REG_CC_SETTER

REG_CC_USER
On machines that use cc0O, the insns which set and use ccO set and use ccO are
adjacent. However, when branch delay slot filling is done, this may no longer
be true. In this case a REG_CC_USER note will be placed on the insn setting ccO
to point to the insn using ccO and a REG_CC_SETTER note will be placed on the
insn using ccO to point to the insn setting ccO.

These values are only used in the LOG_LINKS field, and indicate the type of dependency
that each link represents. Links which indicate a data dependence (a read after write
dependence) do not use any code, they simply have mode V0IDmode, and are printed without
any descriptive text.

REG_DEP_ANTI
This indicates an anti dependence (a write after read dependence).

REG_DEP_QUTPUT
This indicates an output dependence (a write after write dependence).

For convenience, the machine mode in an insn_list or expr_list is printed using these
symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the
first operand of an insn_list is assumed to be an insn and is printed in debugging dumps
as the insn’s unique id; the first operand of an expr_list is printed in the ordinary way as
an expression.

15.16 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must
satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:

(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being
passed to the subroutine, fin is a machine mode (which must equal as the definition of the
FUNCTION_MODE macro in the machine description) and addr represents the address of the
subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire
body of the insn, except that the insn might also contain use or clobber expressions.

Chapter 15: RTL Representation 239

For a subroutine that returns a value whose mode is not BLKmode, the value is returned
in a hard register. If this register’s number is r, then the body of the call insn looks like
this:

(set (reg:m r)
(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register
receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine
the address of a place to store the value. So the call insn itself does not “return” any value,
and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to
contain the return address. call_insn insns on these machines should have a body which
is a parallel that contains both the call expression and clobber expressions that indicate
which registers are destroyed. Similarly, if the call instruction requires some register other
than the stack pointer that is not explicitly mentioned it its RTL, a use subexpression
should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration
macro CALL_USED_REGISTERS (see Section 17.5.1 [Register Basics], page 308) and, with the
exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate
which registers contain inputs to the function. Similarly, if registers other than those
in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single
clobber follow immediately after the call to indicate which registers.

15.17 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not
exist two distinct objects representing the same value. In other cases, it makes an opposite
assumption: that no RTL expression object of a certain kind appears in more than one
place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe
global variables and external functions, and a few standard objects such as small integer
constants, no RTL objects are common to two functions.

¢ Each pseudo-register has only a single reg object to represent it, and therefore only a
single machine mode.
¢ For any symbolic label, there is only one symbol_ref object referring to it.

e There is only one const_int expression with value 0, only one with value 1, and only
one with value —1. Some other integer values are also stored uniquely.

o There is only one pc expression.
e There is only one ccO expression.

e There is only one const_double expression with value 0 for each floating point mode.
Likewise for values 1 and 2.

240 Using and Porting GNU CC

e No label_ref or scratch appears in more than one place in the RTL structure; in
other words, it is safe to do a tree-walk of all the insns in the function and assume that
each time a label_ref or scratch is seen it is distinct from all others that are seen.

e Only one mem object is normally created for each static variable or stack slot, so these
objects are frequently shared in all the places they appear. However, separate but equal
objects for these variables are occasionally made.

¢ When a single asm statement has multiple output operands, a distinct asm_operands
expression is made for each output operand. However, these all share the vector which
contains the sequence of input operands. This sharing is used later on to test whether
two asm_operands expressions come from the same statement, so all optimizations
must carefully preserve the sharing if they copy the vector at all.

¢ No RTL object appears in more than one place in the RTL structure except as described
above. Many passes of the compiler rely on this by assuming that they can modify
RTL objects in place without unwanted side-effects on other insns.

¢ During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl
in ‘emit-rtl.c’, after which the above rules are guaranteed to be followed.

¢ During the combiner pass, shared structure within an insn can exist temporarily. How-
ever, the shared structure is copied before the combiner is finished with the insn. This
is done by calling copy_rtx_if _shared, which is a subroutine of unshare_all_rtI.

15.18 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream,
and returns a single RTL object.

Reading RTL from a file is very slow. This is not currently a problem since reading RTL
occurs only as part of building the compiler.

People frequently have the idea of using RTL stored as text in a file as an interface
between a language front end and the bulk of GNU CC. This idea is not feasible.

GNU CC was designed to use RTL internally only. Correct RTL for a given program is
very dependent on the particular target machine. And the RTL does not contain all the
information about the program.

The proper way to interface GNU CC to a new language front end is with the “tree”
data structure. There is no manual for this data structure, but it is described in the files
‘tree.h’ and ‘tree.def’.

Chapter 16: Machine Descriptions 241

16 Machine Descriptions

A machine description has two parts: a file of instruction patterns (‘.md’ file) and a C
header file of macro definitions.

The ¢.md’ file for a target machine contains a pattern for each instruction that the target
machine supports (or at least each instruction that is worth telling the compiler about).
It may also contain comments. A semicolon causes the rest of the line to be a comment,
unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

16.1 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled
in later, operand constraints that restrict how the pieces can be filled in, and an output
pattern or C code to generate the assembler output, all wrapped up in a define_insn
expression.

A define_insn is an RTL expression containing four or five operands:

1. An optional name. The presence of a name indicate that this instruction pattern can
perform a certain standard job for the RTL-generation pass of the compiler. This pass
knows certain names and will use the instruction patterns with those names, if the
names are defined in the machine description.

The absence of a name is indicated by writing an empty string where the name should
go. Nameless instruction patterns are never used for generating RTL code, but they
may permit several simpler insns to be combined later on.

Names that are not thus known and used in RTL-generation have no effect; they are
equivalent to no name at all.

2. The RTL template (see Section 16.3 [RTL Template], page 242) is a vector of incomplete
RTL expressions which show what the instruction should look like. It is incomplete
because it may contain match_operand, match_operator, and match_dup expressions
that stand for operands of the instruction.

If the vector has only one element, that element is the template for the instruction
pattern. If the vector has multiple elements, then the instruction pattern is a parallel
expression containing the elements described.

3. A condition. This is a string which contains a C expression that is the final test to
decide whether an insn body matches this pattern.

For a named pattern, the condition (if present) may not depend on the data in the insn
being matched, but only the target-machine-type flags. The compiler needs to test these
conditions during initialization in order to learn exactly which named instructions are
available in a particular run.

For nameless patterns, the condition is applied only when matching an individual insn,
and only after the insn has matched the pattern’s recognition template. The insn’s
operands may be found in the vector operands.

242 Using and Porting GNU CC

4. The output template: a string that says how to output matching insns as assembler
code. ‘}’ in this string specifies where to substitute the value of an operand. See
Section 16.4 [Output Template], page 246.

When simple substitution isn’t general enough, you can specify a piece of C code to
compute the output. See Section 16.5 [Output Statement], page 248.

5. Optionally, a vector containing the values of attributes for insns matching this pattern.
See Section 16.15 [Insn Attributes], page 282.

16.2 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.

(define_insn "tstsi"
[(set (ccO)

(match_operand:SI O 'general_operand" "rm"))]
nn

II*
{ if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";
return \"cmpl #0,%0\"; }")

This is an instruction that sets the condition codes based on the value of a general
operand. It has no condition, so any insn whose RTL description has the form shown may
be handled according to this pattern. The name ‘tstsi’ means “test a SImode value” and
tells the RTL generation pass that, when it is necessary to test such a value, an insn to do
so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to
return based on the kind of operand and the specific type of CPU for which code is being
generated.

““rm"’ is an operand constraint. Its meaning is explained below.

16.3 RTL Template

The RTL template is used to define which insns match the particular pattern and how
to find their operands. For named patterns, the RTL template also says how to construct
an insn from specified operands.

Construction involves substituting specified operands into a copy of the template. Match-
ing involves determining the values that serve as the operands in the insn being matched.
Both of these activities are controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)
This expression is a placeholder for operand number n of the insn. When
constructing an insn, operand number n will be substituted at this point. When
matching an insn, whatever appears at this position in the insn will be taken
as operand number n; but it must satisfy predicate or this instruction pattern
will not match at all.

Chapter 16: Machine Descriptions 243

Operand numbers must be chosen consecutively counting from zero in each
instruction pattern. There may be only one match_operand expression in the
pattern for each operand number. Usually operands are numbered in the order
of appearance in match_operand expressions.

predicate is a string that is the name of a C function that accepts two arguments,
an expression and a machine mode. During matching, the function will be called
with the putative operand as the expression and m as the mode argument (if
m is not specified, VOIDmode will be used, which normally causes predicate to
accept any mode). If it returns zero, this instruction pattern fails to match.
predicate may be an empty string; then it means no test is to be done on the
operand, so anything which occurs in this position is valid.

Most of the time, predicate will reject modes other than m—but not always.
For example, the predicate address_operand uses m as the mode of memory
ref that the address should be valid for. Many predicates accept const_int
nodes even though their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for
a value, as explained later (see Section 16.6 [Constraints], page 249).

People are often unclear on the difference between the constraint and the predi-
cate. The predicate helps decide whether a given insn matches the pattern. The
constraint plays no role in this decision; instead, it controls various decisions in
the case of an insn which does match.

On CISC machines, the most common predicate is "general_operand". This
function checks that the putative operand is either a constant, a register or a
memory reference, and that it is valid for mode m.

For an operand that must be a register, predicate should be "register_
operand”. Using "general_operand" would be valid, since the reload pass
would copy any non-register operands through registers, but this would make
GNU CC do extra work, it would prevent invariant operands (such as constant)
from being removed from loops, and it would prevent the register allocator from
doing the best possible job. On RISC machines, it is usually most efficient to
allow predicate to accept only objects that the constraints allow.

For an operand that must be a constant, you must be sure to either use
"immediate_operand" for predicate, or make the instruction pattern’s extra
condition require a constant, or both. You cannot expect the constraints to
do this work! If the constraints allow only constants, but the predicate allows
something else, the compiler will crash when that case arises.

(match_scratch:m n constraint)
This expression is also a placeholder for operand number n and indicates that
operand must be a scratch or reg expression.

When matching patterns, this is equivalent to
(match_operand:m n "scratch_operand" pred)

but, when generating RTL, it produces a (scratch:m) expression.

244 Using and Porting GNU CC

If the last few expressions in a parallel are clobber expressions whose
operands are either a hard register or match_scratch, the combiner can add
or delete them when necessary. See Section 15.12 [Side Effects|, page 226.

(match_dup n)
This expression is also a placeholder for operand number n. It is used when the
operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is sub-
stituted into the insn being constructed. But in matching, match_dup behaves
differently. It assumes that operand number n has already been determined by
a match_operand appearing earlier in the recognition template, and it matches
only an identical-looking expression.

(match_operator:m n predicate [operands...])
This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression
code is taken from that of operand n, and whose operands are constructed from
the patterns operands.

When matching an expression, it matches an expression if the function predi-
cate returns nonzero on that expression and the patterns operands match the
operands of the expression.

Suppose that the function commutative_operator is defined as follows, to
match any expression whose operator is one of the commutative arithmetic
operators of RTL and whose mode is mode:

int

commutative_operator (x, mode)
rtx x;
enum machine_mode mode;

{

enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) !'= mode)
return O;
return (GET_RTX_CLASS (code) == ’¢’
Il code == EQ || code == NE);
}
Then the following pattern will match any RTL expression consisting of a com-
mutative operator applied to two general operands:
(match_operator:SI 3 "commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 'general_operand" "g")])
Here the vector [operands...] contains two patterns because the expressions
to be matched all contain two operands.

When this pattern does match, the two operands of the commutative operator
are recorded as operands 1 and 2 of the insn. (This is done by the two instances
of match_operand.) Operand 3 of the insn will be the entire commutative
expression: use GET_CODE (operands[3]) to see which commutative operator
was used.

Chapter 16: Machine Descriptions 245

The machine mode m of match_operator works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.

When constructing an insn, argument 3 of the gen-function will specify the
operation (i.e. the expression code) for the expression to be made. It should
be an RTL expression, whose expression code is copied into a new expression
whose operands are arguments 1 and 2 of the gen-function. The subexpressions
of argument 3 are not used; only its expression code matters.

When match_operatoris used in a pattern for matching an insn, it usually best
if the operand number of the match_operator is higher than that of the actual
operands of the insn. This improves register allocation because the register
allocator often looks at operands 1 and 2 of insns to see if it can do register
tying.

There is no way to specify constraints in match_operator. The operand of
the insn which corresponds to the match_operator never has any constraints
because it is never reloaded as a whole. However, if parts of its operands are
matched by match_operand patterns, those parts may have constraints of their
own.

(match_op_dup:m nloperands...])
Like match_dup, except that it applies to operators instead of operands. When
constructing an insn, operand number n will be substituted at this point. But in
matching, match_op_dup behaves differently. It assumes that operand number
n has already been determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking expression.

(match_parallel n predicate [subpat...])
This pattern is a placeholder for an insn that consists of a parallel expression
with a variable number of elements. This expression should only appear at the
top level of an insn pattern.

When constructing an insn, operand number n will be substituted at this point.
When matching an insn, it matches if the body of the insn is a parallel
expression with at least as many elements as the vector of subpat expressions
in the match_parallel, if each subpat matches the corresponding element of
the parallel, and the function predicate returns nonzero on the parallel
that is the body of the insn. It is the responsibility of the predicate to validate
elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expres-
sions, which can contain a variable number of elements in a parallel. For
example,

(define_insn """
[(match_parallel O "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand' "=r")
P gp g-0p
(match_operand:SI 2 "memory_operand" "m'))
p y-op
(use (reg:SI 179))

246

Using and Porting GNU CC

(clobber (reg:SI 179))]1)]

nn
"loadm 0,0,%1,%2")

This example comes from ‘a29k .md’. The function load_multiple_operations]]
is defined in ‘a29k.c’ and checks that subsequent elements in the parallel are
the same as the set in the pattern, except that they are referencing subsequent
registers and memory locations.

An insn that matches this pattern might look like:

(parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)
(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))
(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)
(const_int 8))))1)

(match_par_dup n [subpat...])

Like match_op_dup, but for match_parallel instead of match_operator.

(address (match_operand:m n "address_operand'" ""))

This complex of expressions is a placeholder for an operand number n in a
“load address” instruction: an operand which specifies a memory location in
the usual way, but for which the actual operand value used is the address of
the location, not the contents of the location.

address expressions never appear in RTL code, only in machine descriptions.
And they are used only in machine descriptions that do not use the operand
constraint feature. When operand constraints are in use, the letter ‘p’ in the
constraint serves this purpose.

m is the machine mode of the memory location being addressed, not the ma-
chine mode of the address itself. That mode is always the same on a given
target machine (it is Pmode, which normally is SImode), so there is no point in
mentioning it; thus, no machine mode is written in the address expression. If
some day support is added for machines in which addresses of different kinds of
objects appear differently or are used differently (such as the PDP-10), different
formats would perhaps need different machine modes and these modes might
be written in the address expression.

16.4 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for
an instruction pattern. Most of the template is a fixed string which is output literally.
The character)’ is used to specify where to substitute an operand; it can also be used to
identify places where different variants of the assembler require different syntax.

Chapter 16: Machine Descriptions 247

In the simplest case, a ‘)’ followed by a digit n says to output operand n at that point
in the string.

‘% followed by a letter and a digit says to output an operand in an alternate fashion.
Four letters have standard, built-in meanings described below. The machine description
macro PRINT_OPERAND can define additional letters with nonstandard meanings.

“%cdigit’ can be used to substitute an operand that is a constant value without the syntax
that normally indicates an immediate operand.

“hndigit’ is like ‘%cdigit’ except that the value of the constant is negated before printing.

‘hadigit’ can be used to substitute an operand as if it were a memory reference, with
the actual operand treated as the address. This may be useful when outputting a “load
address” instruction, because often the assembler syntax for such an instruction requires
you to write the operand as if it were a memory reference.

“%ldigit’ is used to substitute a label_ref into a jump instruction.

‘%=’ outputs a number which is unique to each instruction in the entire compilation.
This is useful for making local labels to be referred to more than once in a single template
that generates multiple assembler instructions.

‘%’ followed by a punctuation character specifies a substitution that does not use an
operand. Only one case is standard: ‘}%’ outputs a ‘)’ into the assembler code. Other
nonstandard cases can be defined in the PRINT_OPERAND macro. You must also define
which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the
instructions, with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each
other, the output template must refer only to the lower-numbered operand. Matching
operands are not always identical, and the rest of the compiler arranges to put the proper
RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following %’ is to distinguish between
different assembler languages for the same machine; for example, Motorola syntax versus
MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while
MIT syntax does not. For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in
Motorola syntax. The same file of patterns is used for both kinds of output syntax, but
the character sequence ‘).’ is used in each place where Motorola syntax wants a period.
The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period;
the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler
to first split the insn, and then output the resulting instructions separately. This helps
eliminate redundancy in the output templates. If you have a define_insn that needs
to emit multiple assembler instructions, and there is an matching define_split already
defined, then you can simply use # as the output template instead of writing an output
template that emits the multiple assembler instructions.

If ASSEMBLER_DIALECT is defined, you can use ‘{optionO|optionl|option2}’ constructs
in the templates. These describe multiple variants of assembler language syntax. See
Section 17.16.7 [Instruction Output], page 366.

248 Using and Porting GNU CC

16.5 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code
for all the cases that are recognized by a single instruction pattern. For example, the opcodes
may depend on the kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a ‘@’, then it is actually a series of templates, each
on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates
correspond to the pattern’s constraint alternatives (see Section 16.6.2 [Multi-Alternative],
page 253). For example, if a target machine has a two-address add instruction ‘addr’ to
add into a register and another ‘addm’ to add a register to memory, you might write this
pattern:

(define_insn "addsi3"
[(set (match_operand:SI O "general_operand” "=r,m")
P g P
(plus:SI (match_operand:SI 1 '"general_operand" "0,0")
(match_operand:SI 2 "general_operand” "g,r")))]

nn
II@
addr %2,%0
addm %2,%0")
If the output control string starts with a ‘+’, then it is not an output template but rather
a piece of C program that should compute a template. It should execute a return statement
to return the template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these doublequote characters in
the string, prefix each one with ‘\’.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select different ways of generating assembler code based on whether
an immediate operand is within a certain range. Be careful when doing this, because the
result of INTVAL is an integer on the host machine. If the host machine has more bits in an
int than the target machine has in the mode in which the constant will be used, then some
of the bits you get from INTVAL will be superfluous. For proper results, you must carefully
disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute
more of them, using the subroutine output_asm_insn. This receives two arguments: a
template-string and a vector of operands. The vector may be operands, or it may be
another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code can test the variable which_alternative, which is the ordinal number of
the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and

‘clrmem’ for memory locations. Here is how a pattern could use which_alternative to
choose between them:

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r,m")

Chapter 16: Machine Descriptions 249

(const_int 0))]

nn
II*
return (which_alternative ==
? \"clrreg %4O\" : \"clrmem %O\");
II)

The example above, where the assembler code to generate was solely determined by the
alternative, could also have been specified as follows, having the output control string start
with a ‘@”:

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r,m")
(const_int 0))]

nn

II@

clrreg %0
clrmem %0")

16.6 Operand Constraints

Each match_operand in an instruction pattern can specify a constraint for the type of
operands allowed. Constraints can say whether an operand may be in a register, and which
kinds of register; whether the operand can be a memory reference, and which kinds of
address; whether the operand may be an immediate constant, and which possible values it
may have. Constraints can also require two operands to match.

16.6.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one
kind of operand that is permitted. Here are the letters that are allowed:

m A memory operand is allowed, with any kind of address that the machine sup-
ports in general.

o A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the
target machine has predecrement addressing) and >’ (if the target machine has
preincrement addressing).

250

Cv7

C<7

C>7

Cr7

‘d,, Ca7, ‘f,, .

‘I,, ‘J,, ‘K,, .

‘E,

‘F,
‘G,, ‘H,

Using and Porting GNU CC

A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.

A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.

A register operand is allowed provided that it is in a general register.

Other letters can be defined in machine-dependent fashion to stand for partic-
ular classes of registers. ‘d’, ‘a’ and ‘f’ are defined on the 68000/68020 to stand
for data, address and floating point registers.

An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time.

An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.

P

Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

An immediate floating operand (expression code const_double) is allowed.

‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘1’7 Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between -128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range -128 to 127”7, and then specifying ‘Ks’ in the operand constraints.

Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

Chapter 16: Machine Descriptions 251

Cx7

Co7, C17, C27, .
(p7

‘Q,, ‘R,, Cs7, ..

Any operand whatsoever is allowed, even if it does not satisfy general_
operand. This is normally used in the constraint of a match_scratch when
certain alternatives will not actually require a scratch register.

9

An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.

This is called a matching constraint and what it really means is that the as-
sembler has only a single operand that fills two roles considered separate in the
RTL insn. For example, an add insn has two input operands and one output
operand in the RTL, but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases specific kinds of dissimi-
larity are allowed. For example, *x as an input operand will match *x++ as an
output operand. For proper results in such cases, the output template should
always use the output-operand’s number when printing the operand.

An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.

‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

‘U,
Letters in the range ‘Q’ through ‘U’ may be defined in a machine-dependent
fashion to stand for arbitrary operand types. The machine description macro

EXTRA_CONSTRAINT is passed the operand as its first argument and the con-
straint letter as its second operand.

A typical use for this would be to distinguish certain types of memory references
that affect other insn operands.

Do not define these constraint letters to accept register references (reg); the
reload pass does not expect this and would not handle it properly.

In order to have valid assembler code, each operand must satisfy its constraint. But a
failure to do so does not prevent the pattern from applying to an insn. Instead, it directs
the compiler to modify the code so that the constraint will be satisfied. Usually this is done
by copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:

252 Using and Porting GNU CC

(define_insn """
[(set (match_operand:SI 0 "general_operand" "=r")
P g P
(plus:SI (match_dup 0)

(match_operand:SI 1 "general_operand” "r")))]
nn

n‘”n)

which has two operands, one of which must appear in two places, and
(define_insn ""
[(set (match_operand:SI O "general_operand" "=r")
(plus:SI (match_operand:SI 1 '"general_operand" "O")
(match_operand:SI 2 "general_operand” "r")))]

II‘ . ‘II)

which has three operands, two of which are required by a constraint to be identical. If we
are considering an insn of the form
(insn n prev next
(set (reg:SI 3)
(plus:SI (reg:SI 6) (reg:SI 109)))
)
the first pattern would not apply at all, because this insn does not contain two identical
subexpressions in the right place. The pattern would say, “That does not look like an
add instruction; try other patterns.” The second pattern would say, “Yes, that’s an add
instruction, but there is something wrong with it.” It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The results might look
like this:
(insn n2 prev n
(set (reg:SI 3) (reg:SI 6))
)

(insn n n2 next
(set (reg:SI 3)
(plus:SI (reg:SI 3) (reg:SI 109)))
)

It is up to you to make sure that each operand, in each pattern, has constraints that
can handle any RTL expression that could be present for that operand. (When multiple
alternatives are in use, each pattern must, for each possible combination of operand expres-
sions, have at least one alternative which can handle that combination of operands.) The
constraints don’t need to allow any possible operand—when this is the case, they do not
constrain—but they must at least point the way to reloading any possible operand so that
it will fit.

e If the constraint accepts whatever operands the predicate permits, there is no problem:
reloading is never necessary for this operand.
For example, an operand whose constraints permit everything except registers is safe
provided its predicate rejects registers.
An operand whose predicate accepts only constant values is safe provided its constraints
include the letter ‘i’. If any possible constant value is accepted, then nothing less than

Chapter 16: Machine Descriptions 253

‘1’ will do; if the predicate is more selective, then the constraints may also be more
selective.

¢ Any operand expression can be reloaded by copying it into a register. So if an operand’s
constraints allow some kind of register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register into another register of
the proper class in order to make an instruction valid.

¢ A nonoffsettable memory reference can be reloaded by copying the address into a
register. So if the constraint uses the letter ‘o’, all memory references are taken care

of.

¢ A constant operand can be reloaded by allocating space in memory to hold it as preini-
tialized data. Then the memory reference can be used in place of the constant. So if
the constraint uses the letters ‘o’ or ‘m’, constant operands are not a problem.

o If the constraint permits a constant and a pseudo register used in an insn was not
allocated to a hard register and is equivalent to a constant, the register will be replaced
with the constant. If the predicate does not permit a constant and the insn is re-
recognized for some reason, the compiler will crash. Thus the predicate must always
recognize any objects allowed by the constraint.

If the operand’s predicate can recognize registers, but the constraint does not permit
them, it can make the compiler crash. When this operand happens to be a register, the
reload pass will be stymied, because it does not know how to copy a register temporarily
into memory.

16.6.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For
example, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.
Here is how it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"
[(set (match_operand:SI O "general_operand" "=m,d")
(ior:SI (match_operand:SI 1 'general_operand" "}0,0")
(match_operand:SI 2 'general_operand" "dKs,dmKs")))]
)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it
must match operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data
register) for operand 0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=" and ‘)’ in the
constraints apply to all the alternatives; their meaning is explained in the next section (see
Section 16.6.3 [Class Preferences|, page 254).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands

254 Using and Porting GNU CC

so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?” and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code for writing the assembler code can use the variable which_alternative,
which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1
for the second alternative, etc.). See Section 16.5 [Output Statement], page 248.

16.6.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which
kind of hardware register a pseudo register is best allocated to. The compiler examines the
constraints that apply to the insns that use the pseudo register, looking for the machine-
dependent letters such as ‘d’ and ‘a’ that specify classes of registers. The pseudo register
is put in whichever class gets the most “votes”. The constraint letters ‘g’ and ‘r’ also vote:
they vote in favor of a general register. The machine description says which registers are
considered general.

Of course, on some machines all registers are equivalent, and no register classes are
defined. Then none of this complexity is relevant.

16.6.4 Constraint Modifier Characters

Here are constraint modifier characters.

Means that this operand is write-only for this instruction: the previous value
is discarded and replaced by output data.

‘4 Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. ‘=’ identifies an output; ‘+’ identifies an operand that is both input and
output; all other operands are assumed to be input only.

‘&’ Means (in a particular alternative) that this operand is written before the in-
struction is finished using the input operands. Therefore, this operand may not
lie in a register that is used as an input operand or as part of any memory
address.

‘¢’ applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘¢’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.

Chapter 16: Machine Descriptions 255

C%’

C#’

C*7

‘%’ does not obviate the need to write ‘=’.

Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. This is often
used in patterns for addition instructions that really have only two operands:
the result must go in one of the arguments. Here for example, is how the 68000
halfword-add instruction is defined:

(define_insn "addhi3"
[(set (match_operand:HI O "general_operand" "=m,r")
(plus:HI (match_operand:HI 1 "general_operand'" "%0,0")
p P g P
(match_operand:HI 2 'general_operand" "di,g")))]

.2

Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are significant only for choosing register preferences.

Says that the following character should be ignored when choosing register
preferences. ‘*’ has no effect on the meaning of the constraint as a constraint,
and no effect on reloading.

Here is an example: the 68000 has an instruction to sign-extend a halfword
in a data register, and can also sign-extend a value by copying it into an ad-
dress register. While either kind of register is acceptable, the constraints on
an address-register destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, ‘*’ is used so that the ‘d’ con-
straint letter (for data register) is ignored when computing register preferences.

(define_insn "extendhisi2"
[(set (match_operand:SI O "general_operand" "=xd,a")
(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]

16.6.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm argu-

ments, since they will convey meaning more readily to people reading your code. Failing
that, use the constraint letters that usually have very similar meanings across architectures.
The most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose reg-
isters respectively; see Section 16.6.1 [Simple Constraints|, page 249), and ‘I’, usually the
letter indicating the most common immediate-constant format.

For each machine architecture, the ‘config/machine.h’ file defines additional con-

straints. These constraints are used by the compiler itself for instruction generation, as well
as for asm statements; therefore, some of the constraints are not particularly interesting for
asm. The constraints are defined through these macros:

REG_CLASS_FROM_LETTER

Register class constraints (usually lower case).

256 Using and Porting GNU CC

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point constants of word size
or smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point constants and for con-
stants of greater than word size precision (usually upper case).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not required, and is only
defined for some machines.

Inspecting these macro definitions in the compiler source for your machine is the best
way to be certain you have the right constraints. However, here is a summary of the
machine-dependent constraints available on some particular machines.

ARM family—‘arm.h’

f Floating-point register

F One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or
10.0

G Floating-point constant that would satisfy the constraint ‘F’ if it

were negated

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

J Integer in the range -4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

L Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register

(“m” is preferable for asm statements)
R An item in the constant pool
S A symbol in the text segment of the current file
AMD 29000 family—‘a29k .h’

Local register 0
Byte Pointer (‘BP’) register
‘Q’ register

Special purpose register

= = R o} o

First accumulator register

Chapter 16: Machine Descriptions 257

o = = = =~ - — H]

[}

IBM RS6000—‘rs6000.
b

£
h
q

(= O

"

Q2 Y o = = -°/| "R 4 H o<

Other accumulator register

Floating point register

Constant greater than 0, less than 0x100
Constant greater than 0, less than 0x10000
Constant whose high 24 bits are on (1)

16 bit constant whose high 8 bits are on (1)
32 bit constant whose high 16 bits are on (1)
32 bit negative constant that fits in 8 bits

The constant 0x80000000 or, on the 29050, any 32 bit constant
whose low 16 bits are 0.

16 bit negative constant that fits in 8 bits

A floating point constant (in asm statements, use the machine in-
dependent ‘E’ or ‘F’ instead)

n’
Address base register

Floating point register

‘MQ’, ‘CTR’, or ‘LINK’ register

‘MQ’ register

‘CTR’ register

‘LINK’ register

‘CR’ register (condition register) number 0

‘CR’ register (condition register)

Signed 16 bit constant

Constant whose low 16 bits are 0

Constant whose high 16 bits are 0

Constant suitable as a mask operand

Constant larger than 31

Exact power of 2

Zero

Constant whose negation is a signed 16 bit constant

Floating point constant that can be loaded into a register with one
instruction per word

258

Intel 386—°1386.h’

O

Q= =2 -0/ R 4o H n o oo

Intel 960—°19260 .0’
f

Q N 4 H o o

H

MIPS—mips.h’
d

Using and Porting GNU CC

Memory operand that is an offset from a register (‘m’ is preferable
for asm statements)

‘a’, b, ¢, or d register

‘a’, or d register (for 64-bit ints)

Floating point register

First (top of stack) floating point register
Second floating point register

‘a’ register

‘b’ register

‘c’ register

‘d’ register

‘di’ register

‘si’ register

Constant in range 0 to 31 (for 32 bit shifts)
Constant in range 0 to 63 (for 64 bit shifts)
‘oxff’

‘Oxffff’

0, 1, 2, or 3 (shifts for lea instruction)
Constant in range 0 to 255 (for out instruction)

Standard 80387 floating point constant

Floating point register (£p0 to £p3)
Local register (r0 to r15)

Global register (g0 to g15)

Any local or global register
Integers from 0 to 31

0

Integers from -31 to 0

Floating point 0

Floating point 1

General-purpose integer register

Chapter 16: Machine Descriptions 259

o

N

= B = 4 H

o @ v oo o=

Motorola 680x0—m68k

a

d

= R o4 Hd

Floating-point register (if available)

‘Hi’ register

‘Lo’ register

‘Hi’ or ‘Lo’ register

General-purpose integer register

Floating-point status register

Signed 16 bit constant (for arithmetic instructions)

Zero

Zero-extended 16-bit constant (for logic instructions)
Constant with low 16 bits zero (can be loaded with 1ui)

32 bit constant which requires two instructions to load (a constant
which is not ‘I’, ‘K’, or ‘L’)

Negative 16 bit constant
Exact power of two
Positive 16 bit constant
Floating point zero

Memory reference that can be loaded with more than one instruc-
tion (‘m’ is preferable for asm statements)

Memory reference that can be loaded with one instruction (‘m’ is
preferable for asm statements)

Memory reference in external OSF /rose PIC format (‘m’ is prefer-
able for asm statements)

.h’

Address register

Data register

68881 floating-point register, if available

Sun FPA (floating-point) register, if available

First 16 Sun FPA registers, if available

Integer in the range 1 to 8

16 bit signed number

Signed number whose magnitude is greater than 0x80
Integer in the range -8 to -1

Floating point constant that is not a 68881 constant

Floating point constant that can be used by Sun FPA

260 Using and Porting GNU CC

SPARC—‘sparc.h’

f Floating-point register

I Signed 13 bit constant

J Zero

K 32 bit constant with the low 12 bits clear (a constant that can be

loaded with the sethi instruction)

G Floating-point zero

H Signed 13 bit constant, sign-extended to 32 or 64 bits

Q Memory reference that can be loaded with one instruction (‘m’ is
more appropriate for asm statements)

S Constant, or memory address

T Memory address aligned to an 8-byte boundary

U Even register

16.6.6 Not Using Constraints

Some machines are so clean that operand constraints are not required. For example,
on the Vax, an operand valid in one context is valid in any other context. On such a
machine, every operand constraint would be ‘g’, excepting only operands of “load address”
instructions which are written as if they referred to a memory location’s contents but actual
refer to its address. They would have constraint ‘p’.

For such machines, instead of writing ‘g’ and ‘p’ for all the constraints, you can choose
to write a description with empty constraints. Then you write ‘"""’ for the constraint in
every match_operand. Address operands are identified by writing an address expression
around the match_operand, not by their constraints.

When the machine description has just empty constraints, certain parts of compilation
are skipped, making the compiler faster. However, few machines actually do not need
constraints; all machine descriptions now in existence use constraints.

16.7 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation
pass of the compiler. Giving one of these names to an instruction pattern tells the RTL
generation pass that it can use the pattern in to accomplish a certain task.

‘movm’ Here m stands for a two-letter machine mode name, in lower case. This instruc-
tion pattern moves data with that machine mode from operand 1 to operand
0. For example, ‘movsi’ moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode is wider
than m, the effect of this instruction is to store the specified value in the part of

Chapter 16: Machine Descriptions 261

the register that corresponds to mode m. The effect on the rest of the register
is undefined.

This class of patterns is special in several ways. First of all, each of these names
must be defined, because there is no other way to copy a datum from one place
to another.

Second, these patterns are not used solely in the RTL generation pass. Even
the reload pass can generate move insns to copy values from stack slots into
temporary registers. When it does so, one of the operands is a hard register
and the other is an operand that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must generate RTL
which needs no reloading and needs no temporary registers—no registers other
than the operands. For example, if you support the pattern with a define_
expand, then in such a case the define_expand mustn’t call force_reg or any
other such function which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where
fetching those modes from memory normally requires several insns and some
temporary registers. Look in ‘spur.md’ to see how the requirement can be
satisfied.

During reload a memory reference with an invalid address may be passed as
an operand. Such an address will be replaced with a valid address later in the
reload pass. In this case, nothing may be done with the address except to use
it as it stands. If it is copied, it will not be replaced with a valid address. No
attempt should be made to make such an address into a valid address and no
routine (such as change_address) that will do so may be called. Note that
general_operand will fail when applied to such an address.

The global variable reload_in_progress (which must be explicitly declared if
required) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine
description, but typically on a RISC machine these can only be pseudo regis-
ters that did not get hard registers, while on other machines explicit memory
references will get optional reloads.

If a scratch register is required to move an object to or from memory, it can
be allocated using gen_reg_rtx prior to reload. But this is impossible during
and after reload. If there are cases needing scratch registers after reload, you
must define SECONDARY_INPUT_RELOAD_CLASS and perhaps also SECONDARY_
OUTPUT_RELOAD_CLASS to detect them, and provide patterns ‘reload_inm’ or
‘reload_outm’ to handle them. See Section 17.6 [Register Classes], page 314.

The constraints on a ‘movem’ must permit moving any hard register to any
other hard register provided that HARD_REGNO_MODE_OK permits mode min both
registers and REGISTER_MOVE_COST applied to their classes returns a value of 2.

It is obligatory to support floating point ‘movem’ instructions into and out of
any registers that can hold fixed point values, because unions and structures
(which have modes SImode or DImode) can be in those registers and they may
have floating point members.

262

Using and Porting GNU CC

There may also be a need to support fixed point ‘movem’ instructions in and
out of floating point registers. Unfortunately, I have forgotten why this was
so, and I don’t know whether it is still true. If HARD_REGNO_MODE_OK rejects
fixed point values in floating point registers, then the constraints of the fixed
point ‘movem’ instructions must be designed to avoid ever trying to reload into
a floating point register.

‘reload_inm’
‘reload_outm’

Like ‘movm’, but used when a scratch register is required to move between
operand 0 and operand 1. Operand 2 describes the scratch register. See the
discussion of the SECONDARY_RELOAD_CLASS macro in see Section 17.6 [Register
Classes]|, page 314.

‘movstrictm’

Like ‘movm’ except that if operand 0 is a subreg with mode m of a register
whose natural mode is wider, the ‘movstrictm’ instruction is guaranteed not
to alter any of the register except the part which belongs to mode m.

‘load_multiple’

Load several consecutive memory locations into consecutive registers. Operand
0 is the first of the consecutive registers, operand 1 is the first memory location,
and operand 2 is a constant: the number of consecutive registers.

Define this only if the target machine really has such an instruction; do not
define this if the most efficient way of loading consecutive registers from memory
is to do them one at a time.

On some machines, there are restrictions as to which consecutive registers can
be stored into memory, such as particular starting or ending register numbers
or only a range of valid counts. For those machines, use a define_expand (see
Section 16.13 [Expander Definitions|, page 277) and make the pattern fail if the
restrictions are not met.

Write the generated insn as a parallel with elements being a set of one register
from the appropriate memory location (you may also need use or clobber
elements). Use a match_parallel (see Section 16.3 [RTL Template|, page 242)
to recognize the insn. See ‘a29k.md’ and ‘rs6000.md’ for examples of the use
of this insn pattern.

‘store_multiple’

‘addm3’

Similar to ‘load_multiple’, but store several consecutive registers into con-
secutive memory locations. Operand 0 is the first of the consecutive memory
locations, operand 1 is the first register, and operand 2 is a constant: the
number of consecutive registers.

Add operand 2 and operand 1, storing the result in operand 0. All operands
must have mode m. This can be used even on two-address machines, by means
of constraints requiring operands 1 and 0 to be the same location.

Chapter 16: Machine Descriptions 263

‘subm3’, ‘mulm3’
‘divm3’, ‘udivm3’, ‘modm3’, ‘umodm3’
‘sminm3’, ‘smaxm3’, ‘uminm3’, ‘umaxm3’
‘andm3’, ‘iorm3’, ‘xorm3’
Similar, for other arithmetic operations.

‘mulhisi3’
Multiply operands 1 and 2, which have mode HImode, and store a SImode
product in operand 0.

‘mulqihi3’, ‘mulsidi3’
Similar widening-multiplication instructions of other widths.

‘umulqihi3’, ‘umulhisi3’; ‘umulsidid’
Similar widening-multiplication instructions that do unsigned multiplication.

‘mulm3_highpart’
Perform a signed multiplication of operands 1 and 2, which have mode m, and
store the most significant half of the product in operand 0. The least significant
half of the product is discarded.

‘umulm3_highpart’
Similar, but the multiplication is unsigned.

‘divmodm4’
Signed division that produces both a quotient and a remainder. Operand 1 is
divided by operand 2 to produce a quotient stored in operand 0 and a remainder
stored in operand 3.

For machines with an instruction that produces both a quotient and a remain-
der, provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’
and ‘modm3’. This allows optimization in the relatively common case when
both the quotient and remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is
more efficient than the instruction that produces both, write the output routine
of ‘divmodm4’ to call find_reg_note and look for a REG_UNUSED note on the
quotient or remainder and generate the appropriate instruction.

‘udivmodm4’
Similar, but does unsigned division.

‘ashlm3’ Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and
store the result in operand 0. Here m is the mode of operand 0 and operand 1;
operand 2’s mode is specified by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction.

‘ashrm3’, ‘1shrm3’, ‘rot1lm3’, ‘rotrms3’
Other shift and rotate instructions, analogous to the ashlma3 instructions.

‘negm?2’ Negate operand 1 and store the result in operand 0.

‘absm?2’ Store the absolute value of operand 1 into operand 0.

264

‘sqrtm?2’

‘ffsm?2’

Using and Porting GNU CC

Store the square root of operand 1 into operand 0.

The sqrt built-in function of C always uses the mode which corresponds to the
C data type double.

Store into operand 0 one plus the index of the least significant 1-bit of operand
1. If operand 1 is zero, store zero. m is the mode of operand 0; operand 1’s
mode is specified by the instruction pattern, and the compiler will convert the
operand to that mode before generating the instruction.

The f£fs built-in function of C always uses the mode which corresponds to the
C data type int.

‘one_cmplm?2’

‘cmpm’

‘tstm’

‘movstrm’

‘cmpstrm’

‘floatmn?2’

Store the bitwise-complement of operand 1 into operand 0.

Compare operand 0 and operand 1, and set the condition codes. The RTL
pattern should look like this:

(set (ccO0) (compare (match_operand:m O ...)
(match_operand:m 1 ...)))

Compare operand 0 against zero, and set the condition codes. The RTL pattern

should look like this:
(set (ccO0) (match_operand:m O ...))

‘tstm’ patterns should not be defined for machines that do not use (cc0).
Doing so would confuse the optimizer since it would no longer be clear which
set operations were comparisons. The ‘cmpm’ patterns should be used instead.

Block move instruction. The addresses of the destination and source strings are
the first two operands, and both are in mode Pmode. The number of bytes to
move is the third operand, in mode m.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

These patterns need not give special consideration to the possibility that the
source and destination strings might overlap.

Block compare instruction, with five operands. Operand 0 is the output; it
has mode m. The remaining four operands are like the operands of ‘movstrm’.
The two memory blocks specified are compared byte by byte in lexicographic
order. The effect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

Compute the length of a string, with three operands. Operand 0 is the result
(of mode m), operand 1 is a mem referring to the first character of the string,
operand 2 is the character to search for (normally zero), and operand 3 is a
constant describing the known alignment of the beginning of the string.

Convert signed integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

Chapter 16: Machine Descriptions 265

‘floatunsmn?2’
Convert unsigned integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘fixmn2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as a
signed number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘fixunsmn?2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as an
unsigned number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘ftruncm?2’
Convert operand 1 (valid for floating point mode m) to an integer value, still
represented in floating point mode m, and store it in operand 0 (valid for floating
point mode m).

‘fix_truncmn?2’
Like ‘fixmn2’ but works for any floating point value of mode m by converting
the value to an integer.

‘fixuns_truncmn2’
Like ‘fixunsmn2’ but works for any floating point value of mode m by convert-
ing the value to an integer.

‘truncmn’ Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be fixed point or both floating point.

‘extendmn’
Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point or both floating point.

‘zero_extendmn’
Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point.

‘extv’ Extract a bit field from operand 1 (a register or memory operand), where
operand 2 specifies the width in bits and operand 3 the starting bit, and store
it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have
mode byte_mode or word_mode; often word_mode is allowed only for registers.
Operands 2 and 3 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for
operands 2 and 3.

The bit-field value is sign-extended to a full word integer before it is stored in

operand 0.
‘extzv’ Like ‘extv’ except that the bit-field value is zero-extended.
‘insv’ Store operand 3 (which must be valid for word_mode) into a bit field in operand

0, where operand 1 specifies the width in bits and operand 2 the starting bit.

266

Using and Porting GNU CC

Operand 0 may have mode byte_mode or word_mode; often word_mode is al-
lowed only for registers. Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for
operands 1 and 2.

‘movmodecc’

‘scond’

‘becond’

Conditionally move operand 2 or operand 3 into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise operand 3 is moved.

The mode of the operands being compared need not be the same as the operands
being moved. Some machines, sparc64 for example, have instructions that
conditionally move an integer value based on the floating point condition codes
and vice versa.

If the machine does not have conditional move instructions, do not define these
patterns.

Store zero or nonzero in the operand according to the condition codes. Value
stored is nonzero iff the condition cond is true. cond is the name of a comparison
operation expression code, such as eq, 1t or leu.

You specify the mode that the operand must have when you write the match_
operand expression. The compiler automatically sees which mode you have
used and supplies an operand of that mode.

The value stored for a true condition must have 1 as its low bit, or else must
be negative. Otherwise the instruction is not suitable and you should omit it
from the machine description. You describe to the compiler exactly which value
is stored by defining the macro STORE_FLAG_VALUE (see Section 17.19 [Misc],
page 378). If a description cannot be found that can be used for all the ‘scond’
patterns, you should omit those operations from the machine description.

These operations may fail, but should do so only in relatively uncommon cases;
if they would fail for common cases involving integer comparisons, it is best to
omit these patterns.

If these operations are omitted, the compiler will usually generate code that
copies the constant one to the target and branches around an assignment of
zero to the target. If this code is more efficient than the potential instructions
used for the ‘scond’ pattern followed by those required to convert the result
into a 1 or a zero in SImode, you should omit the ‘scond’ operations from the
machine description.

Conditional branch instruction. Operand 0 is a label_ref that refers to the
label to jump to. Jump if the condition codes meet condition cond.

Some machines do not follow the model assumed here where a comparison in-
struction is followed by a conditional branch instruction. In that case, the
‘cmpm’ (and ‘tstm’) patterns should simply store the operands away and gen-
erate all the required insns in a define_expand (see Section 16.13 [Expander
Definitions], page 277) for the conditional branch operations. All calls to ex-
pand ‘bcond’ patterns are immediately preceded by calls to expand either a
‘cmpm’ pattern or a ‘tstm’ pattern.

Chapter 16: Machine Descriptions 267

‘call’

Machines that use a pseudo register for the condition code value, or where the
mode used for the comparison depends on the condition being tested, should
also use the above mechanism. See Section 16.10 [Jump Patterns], page 271

The above discussion also applies to the ‘movmodecc’ and ‘scond’ patterns.

Subroutine call instruction returning no value. Operand 0 is the function to
call; operand 1 is the number of bytes of arguments pushed (in mode SImode,
except it is normally a const_int); operand 2 is the number of registers used
as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is
supplied for the sake of some RISC machines which need to put this information
into the assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function.
Note, however, that this address can be a symbol_ref expression even if it
would not be a legitimate memory address on the target machine. If it is also
not a valid argument for a call instruction, the pattern for this operation should
be a define_expand (see Section 16.13 [Expander Definitions|, page 277) that
places the address into a register and uses that register in the call instruction.

‘call_value’

Subroutine call instruction returning a value. Operand 0 is the hard register in
which the value is returned. There are three more operands, the same as the
three operands of the ‘call’ instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the ‘call’ insn.

‘call_pop’, ‘call_value_pop’

Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_
ARGS is non-zero. They should emit a parallel that contains both the function
call and a set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be non-zero, the use of these pat-
terns increases the number of functions for which the frame pointer can be
eliminated, if desired.

‘untyped_call’

‘return’

Subroutine call instruction returning a value of any type. Operand 0 is the
function to call; operand 1 is a memory location where the result of calling the
function is to be stored; operand 2 is a parallel expression where each element
is a set expression that indicates the saving of a function return value into the
result block.

This instruction pattern should be defined to support __builtin_apply on
machines where special instructions are needed to call a subroutine with ar-
bitrary arguments or to save the value returned. This instruction pattern is
required on machines that have multiple registers that can hold a return value
(i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).

Subroutine return instruction. This instruction pattern name should be defined
only if a single instruction can do all the work of returning from a function.

268

Using and Porting GNU CC

Like the ‘movm’ patterns, this pattern is also used after the RTL generation
phase. In this case it is to support machines where multiple instructions are
usually needed to return from a function, but some class of functions only re-
quires one instruction to implement a return. Normally, the applicable functions
are those which do not need to save any registers or allocate stack space.

For such machines, the condition specified in this pattern should only be true
when reload_completed is non-zero and the function’s epilogue would only be
a single instruction. For machines with register windows, the routine leaf_
function_p may be used to determine if a register window push is required.

Machines that have conditional return instructions should define patterns such
as

(define_insn ""
[(set (pc)
(if _then_else (match_operator
0 "comparison_operator"
[(ccO0) (const_int 0)])
(return)

(pc)))]

"condition"

n‘”n)

where condition would normally be the same condition specified on the named
‘return’ pattern.

‘untyped_return’

4

nop

bl

Untyped subroutine return instruction. This instruction pattern should be
defined to support __builtin_return on machines where special instructions
are needed to return a value of any type.

Operand 0 is a memory location where the result of calling a function with
__builtin_apply is stored; operand 1 is a parallel expression where each
element is a set expression that indicates the restoring of a function return
value from the result block.

No-op instruction. This instruction pattern name should always be defined to
output a no-op in assembler code. (const_int 0) will do as an RTL pattern.

‘indirect_jump’

‘casesi’

An instruction to jump to an address which is operand zero. This pattern name
is mandatory on all machines.

Instruction to jump through a dispatch table, including bounds checking. This
instruction takes five operands:

1. The index to dispatch on, which has mode SImode.

2. The lower bound for indices in the table, an integer constant.

3. The total range of indices in the table—the largest index minus the smallest
one (both inclusive).

4. A label that precedes the table itself.

Chapter 16: Machine Descriptions 269

5. A label to jump to if the index has a value outside the bounds. (If the
machine-description macro CASE_DROPS_THROUGH is defined, then an out-
of-bounds index drops through to the code following the jump table instead
of jumping to this label. In that case, this label is not actually used by the
‘casesi’ instruction, but it is always provided as an operand.)

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number
of elements in the table is one plus the difference between the upper bound and
the lower bound.

‘tablejump’
Instruction to jump to a variable address. This is a low-level capability which
can be used to implement a dispatch table when there is no ‘casesi’ pattern.

This pattern requires two operands: the address or offset, and a label which
should immediately precede the jump table. If the macro CASE_VECTOR_PC_
RELATIVE is defined then the first operand is an offset which counts from the
address of the table; otherwise, it is an absolute address to jump to. In either
case, the first operand has mode Pmode.

The ‘tablejump’ insn is always the last insn before the jump table it uses. Its
assembler code normally has no need to use the second operand, but you should
incorporate it in the RTL pattern so that the jump optimizer will not delete
the table as unreachable code.

‘save_stack_block’

‘save_stack_function’

‘save_stack_nonlocal’

‘restore_stack_block’

‘restore_stack_function’

‘restore_stack_nonlocal’
Most machines save and restore the stack pointer by copying it to or from an
object of mode Pmode. Do not define these patterns on such machines.

Some machines require special handling for stack pointer saves and restores. On
those machines, define the patterns corresponding to the non-standard cases by
using a define_expand (see Section 16.13 [Expander Definitions], page 277)
that produces the required insns. The three types of saves and restores are:

1. ‘save_stack_block’ saves the stack pointer at the start of a block that
allocates a variable-sized object, and ‘restore_stack_block’ restores the
stack pointer when the block is exited.

2. ‘save_stack_function’ and ‘restore_stack_function’ do a similar job
for the outermost block of a function and are used when the function al-
locates variable-sized objects or calls alloca. Only the epilogue uses the
restored stack pointer, allowing a simpler save or restore sequence on some
machines.

3. ‘save_stack_nonlocal’isused in functions that contain labels branched to
by nested functions. It saves the stack pointer in such a way that the inner
function can use ‘restore_stack_nonlocal’ to restore the stack pointer.
The compiler generates code to restore the frame and argument pointer

270 Using and Porting GNU CC

registers, but some machines require saving and restoring additional data
such as register window information or stack backchains. Place insns in
these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the
stack pointer. The mode used to allocate the save area is the mode of operand
0. You must specify an integral mode, or VOIDmode if no save area is needed
for a particular type of save (either because no save is needed or because a
machine-specific save area can be used). Operand 0 is the stack pointer and
operand 1 is the save area for restore operations. If ‘save_stack_block’ is
defined, operand 0 must not be V0IDmode since these saves can be arbitrarily
nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx
when the stack pointer is saved for use by nonlocal gotos and a reg in the other
two cases.

‘allocate_stack’
Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 0 from the
stack pointer to create space for dynamically allocated data.

Do not define this pattern if all that must be done is the subtraction. Some
machines require other operations such as stack probes or maintaining the back
chain. Define this pattern to emit those operations in addition to updating the
stack pointer.

16.8 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that
appears first in the machine description is the one used. Therefore, more specific patterns
(patterns that will match fewer things) and faster instructions (those that will produce
better code when they do match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it
is not valid. For example, the 68000 has an instruction for converting a fullword to floating
point and another for converting a byte to floating point. An instruction converting an
integer to floating point could match either one. We put the pattern to convert the fullword
first to make sure that one will be used rather than the other. (Otherwise a large integer
might be generated as a single-byte immediate quantity, which would not work.) Instead
of using this pattern ordering it would be possible to make the pattern for convert-a-byte
smart enough to deal properly with any constant value.

16.9 Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch
names ‘bcond’. The recognition template must always have the form
(set (pc)
(if_then_else (cond (ccO) (const_int 0))
(label_ref (match_operand O "" ""))

Chapter 16: Machine Descriptions 271

(pc)))
In addition, every machine description must have an anonymous pattern for each of the
possible reverse-conditional branches. Their templates look like

(set (pc)
(if_then_else (cond (cc0) (const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))

They are necessary because jump optimization can turn direct-conditional branches into
reverse-conditional branches.

It is often convenient to use the match_operator construct to reduce the number of
patterns that must be specified for branches. For example,

(define_insn ""
[(set (pc)
(if_then_else (match_operator O "comparison_operator"
[(ccO0) (const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))}))]
"condition"

II‘ . ‘II)

In some cases machines support instructions identical except for the machine mode of
one or more operands. For example, there may be “sign-extend halfword” and “sign-extend
byte” instructions whose patterns are

(set (match_operand:SI O ...)
(extend:SI (match_operand:HI 1 ...)))

(set (match_operand:SI O ...)
(extend:SI (match_operand:QI 1 ...)))

Constant integers do not specify a machine mode, so an instruction to extend a constant
value could match either pattern. The pattern it actually will match is the one that appears
first in the file. For correct results, this must be the one for the widest possible mode
(HImode, here). If the pattern matches the QImode instruction, the results will be incorrect
if the constant value does not actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized
away, but they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with
a constant permitted by the constraint in some cases. Similarly for memory references.
Because of this substitution, you should not provide separate patterns for increment and
decrement instructions. Instead, they should be generated from the same pattern that sup-
ports register-register add insns by examining the operands and generating the appropriate
machine instruction.

16.10 Defining Jump Instruction Patterns

For most machines, GNU CC assumes that the machine has a condition code. A com-
parison insn sets the condition code, recording the results of both signed and unsigned

272 Using and Porting GNU CC

comparison of the given operands. A separate branch insn tests the condition code and
branches or not according its value. The branch insns come in distinct signed and unsigned
flavors. Many common machines, such as the Vax, the 68000 and the 32000, work this way.

Some machines have distinct signed and unsigned compare instructions, and only one
set of conditional branch instructions. The easiest way to handle these machines is to treat
them just like the others until the final stage where assembly code is written. At this time,
when outputting code for the compare instruction, peek ahead at the following branch using
next_ccO_user (insn). (The variable insn refers to the insn being output, in the output-
writing code in an instruction pattern.) If the RTL says that is an unsigned branch, output
an unsigned compare; otherwise output a signed compare. When the branch itself is output,
you can treat signed and unsigned branches identically.

The reason you can do this is that GNU CC always generates a pair of consecutive RTL
insns, possibly separated by note insns, one to set the condition code and one to test it,
and keeps the pair inviolate until the end.

To go with this technique, you must define the machine-description macro NOTICE_
UPDATE_CC to do CC_STATUS_INIT; in other words, no compare instruction is superfluous.

Some machines have compare-and-branch instructions and no condition code. A similar
technique works for them. When it is time to “output” a compare instruction, record its
operands in two static variables. When outputting the branch-on-condition-code instruction
that follows, actually output a compare-and-branch instruction that uses the remembered
operands.

It also works to define patterns for compare-and-branch instructions. In optimizing
compilation, the pair of compare and branch instructions will be combined according to
these patterns. But this does not happen if optimization is not requested. So you must use
one of the solutions above in addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition code and there
may not even be a separate condition code register. On these machines, the restriction
that the definition and use of the condition code be adjacent insns is not necessary and can
prevent important optimizations. For example, on the IBM RS/6000, there is a delay for
taken branches unless the condition code register is set three instructions earlier than the
conditional branch. The instruction scheduler cannot perform this optimization if it is not
permitted to separate the definition and use of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition
code. If there is a specific condition code register in the machine, use a hard register. If
the condition code or comparison result can be placed in any general register, or if there
are multiple condition registers, use a pseudo register.

On some machines, the type of branch instruction generated may depend on the way the
condition code was produced; for example, on the 68k and Sparc, setting the condition code
directly from an add or subtract instruction does not clear the overflow bit the way that a
test instruction does, so a different branch instruction must be used for some conditional
branches. For machines that use (cc0), the set and use of the condition code must be
adjacent (separated only by note insns) allowing flags in cc_status to be used. (See
Section 17.12 [Condition Code], page 346.) Also, the comparison and branch insns can be
located from each other by using the functions prev_ccO_setter and next_ccO_user.

Chapter 16: Machine Descriptions 273

However, this is not true on machines that do not use (cc0). On those machines, no
assumptions can be made about the adjacency of the compare and branch insns and the
above methods cannot be used. Instead, we use the machine mode of the condition code
register to record different formats of the condition code register.

Registers used to store the condition code value should have a mode that is in class MODE_
CC. Normally, it will be CCmode. If additional modes are required (as for the add example
mentioned above in the Sparc), define the macro EXTRA_CC_MODES to list the additional
modes required (see Section 17.12 [Condition Code|, page 346). Also define EXTRA_CC_
NAMES to list the names of those modes and SELECT_CC_MODE to choose a mode given an
operand of a compare.

If it is known during RTL generation that a different mode will be required (for example,
if the machine has separate compare instructions for signed and unsigned quantities, like
most IBM processors), they can be specified at that time.

If the cases that require different modes would be made by instruction combination, the
macro SELECT_CC_MODE determines which machine mode should be used for the comparison
result. The patterns should be written using that mode. To support the case of the add on
the Sparc discussed above, we have the pattern

(define_insn ""
[(set (reg:CC_NOOV 0)
(compare:CC_NOOV
(plus:SI (match_operand:SI 0 '"register_operand" "Yr")
(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]

II‘ . ‘II)

The SELECT_CC_MODE macro on the Sparc returns CC_NOOVmode for comparisons whose
argument is a plus.

16.11 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation
performed by a single machine instruction. This situation is most commonly encountered
with logical, branch, and multiply-accumulate instructions. In such cases, the compiler
attempts to convert these multiple RTL expressions into a single canonical form to reduce
the number of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:

e For commutative and comparison operators, a constant is always made the second
operand. If a machine only supports a constant as the second operand, only patterns
that match a constant in the second operand need be supplied.

For these operators, if only one operand is a neg, not, mult, plus, or minus expression,
it will be the first operand.

e For the compare operator, a constant is always the second operand on machines where
ccO is used (see Section 16.10 [Jump Patterns|, page 271). On other machines, there are
rare cases where the compiler might want to construct a compare with a constant as the
first operand. However, these cases are not common enough for it to be worthwhile to

274 Using and Porting GNU CC

provide a pattern matching a constant as the first operand unless the machine actually
has such an instruction.

An operand of neg, not, mult, plus, or minus is made the first operand under the
same conditions as above.

¢ (minus x (const_int n)) is converted to (plus x (const_int -n)).

¢ Within address computations (i.e., inside mem), a left shift is converted into the appro-
priate multiplication by a power of two.

De‘Morgan’s Law is used to move bitwise negation inside a bitwise logical-and or logical-
or operation. If this results in only one operand being a not expression, it will be the
first one.

A machine that has an instruction that performs a bitwise logical-and of one operand
with the bitwise negation of the other should specify the pattern for that instruction
as

(define_insn ""
[(set (match_operand:m O ...)
(and:m (not:m (match_operand:m 1 ...))
(match_operand:m 2 ...)))]

II‘ . ‘II
II‘ . ‘II)
Similarly, a pattern for a “NAND?” instruction should be written

(define_insn ""
[(set (match_operand:m O ...)
(ior:m (not:m (match_operand:m 1 ...))
(not:m (match_operand:m 2 ...))))]

II‘ . ‘II)

In both cases, it is not necessary to include patterns for the many logically equivalent
RTL expressions.

¢ The only possible RTL expressions involving both bitwise exclusive-or and bitwise
negation are (xor:m x y) and (not:m (xor:m x y)).

e The sum of three items, one of which is a constant, will only appear in the form
(plus:m (plus:m x y) constant)
¢ On machines that do not use cc0O, (compare x (const_int 0)) will be converted to x.

¢ Equality comparisons of a group of bits (usually a single bit) with zero will be written
using zero_extract rather than the equivalent and or sign_extract operations.

16.12 Machine-Specific Peephole Optimizers

In addition to instruction patterns the ‘md’ file may contain definitions of machine-specific
peephole optimizations.

The combiner does not notice certain peephole optimizations when the data flow in the
program does not suggest that it should try them. For example, sometimes two consecutive
insns related in purpose can be combined even though the second one does not appear to

Chapter 16: Machine Descriptions 275

use a register computed in the first one. A machine-specific peephole optimizer can detect
such opportunities.

A definition looks like this:

(define_peephole
Linsn-pattern-1
insn-pattern-2
..
"condition"
“template"
“optional insn-attributes")

The last string operand may be omitted if you are not using any machine-specific information
in this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The
optimization applies to a sequence of insns when insn-pattern-1 matches the first one, insn-
pattern-2 matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are
checked only at the last stage just before code generation, and only optionally. Therefore,
any insn which would match a peephole but no define_insn will cause a crash in code
generation in an unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and
match_dup, as usual. What is not usual is that the operand numbers apply to all the insn
patterns in the definition. So, you can check for identical operands in two insns by using
match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect
on the applicability of the peephole, but they will be validated afterward, so make sure your
constraints are general enough to apply whenever the peephole matches. If the peephole
matches but the constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write
constraints which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the condition is checked. This is a C
expression which makes the final decision whether to perform the optimization (we do so
if the expression is nonzero). If condition is omitted (in other words, the string is empty)
then the optimization is applied to every sequence of insns that matches the patterns.

The defined peephole optimizations are applied after register allocation is complete.
Therefore, the peephole definition can check which operands have ended up in which kinds
of registers, just by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand
number i (as matched by (match_operandi...)). Use the variable insn to refer to the
last of the insns being matched; use prev_active_insn to find the preceding insns.

When optimizing computations with intermediate results, you can use condition to match
only when the intermediate results are not used elsewhere. Use the C expression dead_or_
set_p (insn, op), where insn is the insn in which you expect the value to be used for the
last time (from the value of insn, together with use of prev_nonnote_insn), and op is the
intermediate value (from operands[i]).

276 Using and Porting GNU CC

Applying the optimization means replacing the sequence of insns with one new insn.
The template controls ultimate output of assembler code for this combined insn. It works
exactly like the template of a define_insn. Operand numbers in this template are the
same ones used in matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn
patterns in the machine description; it does not even have an opportunity to match them.
The peephole optimizer definition itself serves as the insn pattern to control how the insn
is output.

Defined peephole optimizers are run as assembler code is being output, so the insns they
produce are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:

(define_peephole
[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
(set (match_operand:DF O 'register_operand" "=f")
(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
II*
{
rtx xoperands[2];
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
#ifdef MOTOROLA
output_asm_insn (\'"move.l %1, (sp)\", xoperands);
output_asm_insn (\'"move.l %1,-(sp)\", operands);
return \"fmove.d (sp)+,%0\";
#else
output_asm_insn (\'"movel %1,sp@\", xoperands);
output_asm_insn (\'"movel %1,sp@-\", operands);
return \"fmoved sp@+,%0\";
#endif
}
II)
The effect of this optimization is to change
jbsr _foobar
addql #4,sp
movel d1,sp@-
movel d40,sp@-
fmoved sp@+,fp0
into
jbsr _foobar
movel d1,sp@
movel d40,sp@-
fmoved sp@+,fp0
insn-pattern-1 and so on look almost like the second operand of define_insn. There
is one important difference: the second operand of define_insn consists of one or more
RTX’s enclosed in square brackets. Usually, there is only one: then the same action can
be written as an element of a define_peephole. But when there are multiple actions in a

Chapter 16: Machine Descriptions 277

define_insn, they are implicitly enclosed in a parallel. Then you must explicitly write
the parallel, and the square brackets within it, in the define_peephole. Thus, if an insn
pattern looks like this,

(define_insn "divmodsi4"

[(set (match_operand:SI O "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand” "dmsK")))

(set (match_operand:SI 3 ‘'general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]

"TARGET_68020"

"divsl%.1 %2,%3:%0")

then the way to mention this insn in a peephole is as follows:

(define_peephole
[...
(parallel
[(set (match_operand:SI O "general_operand" "=d")
(div:SI (match_operand:SI 1 'general_operand" "O")
(match_operand:SI 2 'general_operand" "dmsK")))
(set (match_operand:SI 3 "general_operand'" "=d")
(mod:SI (match_dup 1) (match_dup 2)))1)
o]
.2

16.13 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be
handled with single insn, but a sequence of RTL insns can represent them. For these target
machines, you can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but,
unlike the latter, a define_expand is used only for RTL generation and it can produce
more than one RTL insn.

A define_expand RTX has four operands:

¢ The name. Each define_expand must have a name, since the only use for it is to refer
to it by name.

¢ The RTL template. This is just like the RTL template for a define_peephole in that
it is a vector of RTL expressions each being one insn.

¢ The condition, a string containing a C expression. This expression is used to express
how the availability of this pattern depends on subclasses of target machine, selected
by command-line options when GNU CC is run. This is just like the condition of a
define_insn that has a standard name. Therefore, the condition (if present) may
not depend on the data in the insn being matched, but only the target-machine-type
flags. The compiler needs to test these conditions during initialization in order to learn
exactly which named instructions are available in a particular run.

¢ The preparation statements, a string containing zero or more C statements which are
to be executed before RTL code is generated from the RTL template.

278 Using and Porting GNU CC

Usually these statements prepare temporary registers for use as internal operands in
the RTL template, but they can also generate RTL insns directly by calling routines
such as emit_insn, etc. Any such insns precede the ones that come from the RTL
template.

Every RTL insn emitted by a define_expand must match some define_insn in the
machine description. Otherwise, the compiler will crash when trying to generate code for
the insn or trying to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes
the operands that need to be specified when this pattern is used. In particular, it gives a
predicate for each operand.

A true operand, which needs to be specified in order to generate RTL from the pattern,
should be described with a match_operand in its first occurrence in the RTL template. This
enters information on the operand’s predicate into the tables that record such things. GNU
CC uses the information to preload the operand into a register if that is required for valid
RTL code. If the operand is referred to more than once, subsequent references should use
match_dup.

The RTL template may also refer to internal “operands” which are temporary registers
or labels used only within the sequence made by the define_expand. Internal operands are
substituted into the RTL template with match_dup, never with match_operand. The values
of the internal operands are not passed in as arguments by the compiler when it requests
use of this pattern. Instead, they are computed within the pattern, in the preparation
statements. These statements compute the values and store them into the appropriate
elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and
FAIL. Use them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the pattern. The only RTL
insns resulting from the pattern on this occasion will be those already emitted
by explicit calls to emit_insn within the preparation statements; the RTL
template will not be generated.

FATL Make the pattern fail on this occasion. When a pattern fails, it means that the
pattern was not truly available. The calling routines in the compiler will try
other strategies for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting,
etc.) and bitfield (extv, extzv, and insv) operations.

Here is an example, the definition of left-shift for the SPUR. chip:

(define_expand "ashlsi3"
[(set (match_operand:SI O "register_operand" "")
(ashift:SI
(match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "nonmemory_operand" "'")))]
nn

Chapter 16: Machine Descriptions 279

{
if (GET_CODE (operands[2]) != CONST_INT
Il (unsigned) INTVAL (operands[2]) > 3)
FAIL;

IR
This example uses define_expand so that it can generate an RTL insn for shifting when the
shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns
aren’t available. When it fails, the compiler tries another strategy using different patterns
(such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names,
then it would be possible to use a define_insn in that case. Here is another case (zero-
extension on the 68000) which makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"
[(set (match_operand:SI O "general_operand" "")
(const_int 0))
(set (strict_low_part

(subreg:HI
(match_dup 0)
0))

(match_operand:HI 1 "general_operand" ""))]

"operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand and the other
to copy the input operand into its low half. This sequence is incorrect if the input operand
refers to [the old value of] the output operand, so the preparation statement makes sure this
isn’t so. The function make_safe_from copies the operands[1] into a temporary register
if it refers to operands[0]. It does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the
SPUR chip is done by and-ing the result against a halfword mask. But this mask cannot
be represented by a const_int because the constant value is too large to be legitimate on
this machine. So it must be copied into a register with force_reg and then the register
used in the and.

(define_expand "zero_extendhisi2"
[(set (match_operand:SI O "register_operand" "")
(and:SI (subreg:SI
(match_operand:HI 1 "register_operand" "")
0)
(match_dup 2)))]
nn
"operands [2]
= force_reg (SImode, gen_rtx (CONST_INT,
V0IDmode, 65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic
operation or a bitfield operation, then the last insn it generates must not be a code_label,
barrier or note. It must be an insn, jump_insn or call_insn. If you don’t need a real

280 Using and Porting GNU CC

insn at the end, emit an insn to copy the result of the operation into itself. Such an insn
will generate no code, but it can avoid problems in the compiler.

16.14 Defining How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns.
On machines that have instructions requiring delay slots (see Section 16.15.7 [Delay Slots],
page 290) or that have instructions whose output is not available for multiple cycles (see
Section 16.15.8 [Function Units], page 291), the compiler phases that optimize these cases
need to be able to move insns into one-instruction delay slots. However, some insns may
generate more than one machine instruction. These insns cannot be placed into a delay
slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to
one machine instruction. The disadvantage of doing so is that it will cause the compilation
to be slower and require more space. If the resulting insns are too complex, it may also
suppress some optimizations. The compiler splits the insn if there is a reason to believe
that it might improve instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one
insn with a complex expression that cannot be matched by some define_insn pattern,
the combiner phase attempts to split the complex pattern into two insns that are recog-
nized. Usually it can break the complex pattern into two patterns by splitting out some
subexpression. However, in some other cases, such as performing an addition of a large
constant in two insns on a RISC machine, the way to split the addition into two insns is
machine-dependent.

The define_split definition tells the compiler how to split a complex insn into several
simpler insns. It looks like this:
(define_split

Linsn-pattern]
"condition"

[new-insn-pattern-1

new-insn-pattern-2

.|

“preparation statements")

insn-pattern is a pattern that needs to be split and condition is the final condition to be
tested, as in a define_insn. When an insn matching insn-pattern and satisfying condition
is found, it is replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-
pattern-2, etc.

The preparation statements are similar to those statements that are specified for define_
expand (see Section 16.13 [Expander Definitions|, page 277) and are executed before the
new RTL is generated to prepare for the generated code or emit some insns whose pattern
is not fixed. Unlike those in define_expand, however, these statements must not generate
any new pseudo-registers. Once reload has completed, they also must not allocate any space
in the stack frame.

Patterns are matched against insn-pattern in two different circumstances. If an insn
needs to be split for delay slot scheduling or insn scheduling, the insn is already known

Chapter 16: Machine Descriptions 281

to be valid, which means that it must have been matched by some define_insn and, if
reload_completed is non-zero, is known to satisfy the constraints of that define_insn. In
that case, the new insn patterns must also be insns that are matched by some define_insn
and, if reload_completed is non-zero, must also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following example from
‘a29k .md’, which splits a sign_extend from HImode to SImode into a pair of shift insns:
(define_split
[(set (match_operand:SI O "gen_reg_operand" "")
(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]

[(set (match_dup 0)
(ashift:SI (match_dup 1)
(const_int 16)))
(set (match_dup 0)
(ashiftrt:SI (match_dup 0)
(const_int 16)))]

n
{ operands[1] = gen_lowpart (SImode, operands[1]); }")

When the combiner phase tries to split an insn pattern, it is always the case that the
pattern is not matched by any define_insn. The combiner pass first tries to split a single
set expression and then the same set expression inside a parallel, but followed by a
clobber of a pseudo-reg to use as a scratch register. In these cases, the combiner expects
exactly two new insn patterns to be generated. It will verify that these patterns match
some define_insn definitions, so you need not do this test in the define_split (of course,
there is no point in writing a define_split that will never produce insns that match).

Here is an example of this use of define_split, taken from ‘rs6000.md’:

(define_split
[(set (match_operand:SI O "gen_reg_operand" "")
(plus:SI (match_operand:SI 1 '"gen_reg_operand" "")
(match_operand:SI 2 "non_add_cint_operand" "")))]
nn
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

int low = INTVAL (operands[2]) & Oxffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)
high++, low |= Oxffff0000;

operands[3] = gen_rtx (CONST_INT, VOIDmode, high << 186);
operands[4] = gen_rtx (CONST_INT, VOIDmode, low);
i)

Here the predicate non_add_cint_operand matches any const_int that is not a valid
operand of a single add insn. The add with the smaller displacement is written so that it
can be substituted into the address of a subsequent operation.

282 Using and Porting GNU CC

An example that uses a scratch register, from the same file, generates an equality com-
parison of a register and a large constant:

(define_split
[(set (match_operand:CC O "cc_reg_operand" "")
(compare:CC (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 '"non_short_cint_operand" "")))
(clobber (match_operand:SI 3 '"gen_reg_operand" ""))]
"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]

/* Get the constant we are comparing against, C, and see what it
looks like sign-extended to 16 bits. Then see what constant
could be XOR’ed with C to get the sign-extended value. */

int ¢ = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;

int xorv = ¢ sextc;

operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv);
operands[5] gen_rtx (CONST_INT, VOIDmode, sextc);
IR
To avoid confusion, don’t write a single define_split that accepts some insns that
match some define_insn as well as some insns that don’t. Instead, write two separate
define_split definitions, one for the insns that are valid and one for the insns that are
not valid.

16.15 Instruction Attributes

In addition to describing the instruction supported by the target machine, the ‘md’ file
also defines a group of attributes and a set of values for each. Every generated insn is
assigned a value for each attribute. One possible attribute would be the effect that the insn
has on the machine’s condition code. This attribute can then be used by NOTICE_UPDATE_CC
to track the condition codes.

16.15.1 Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target
machine. It looks like:

(define_attr name list-of-values default)
name is a string specifying the name of the attribute being defined.

list-of-values is either a string that specifies a comma-separated list of values that can
be assigned to the attribute, or a null string to indicate that the attribute takes numeric
values.

Chapter 16: Machine Descriptions 283

default is an attribute expression that gives the value of this attribute for insns that
match patterns whose definition does not include an explicit value for this attribute. See
Section 16.15.4 [Attr Example], page 287, for more information on the handling of defaults.
See Section 16.15.6 [Constant Attributes], page 289, for information on attributes that do
not depend on any particular insn.

For each defined attribute, a number of definitions are written to the ‘insn-attr.h’
file. For cases where an explicit set of values is specified for an attribute, the following are

defined:
e A ‘#define’ is written for the symbol ‘HAVE_ATTR_name’.

e An enumeral class is defined for ‘attr_name’ with elements of the form ‘upper-
name_upper-value’ where the attribute name and value are first converted to upper
case.

o A function ‘get_attr_name’is defined that is passed an insn and returns the attribute
value for that insn.

For example, if the following is present in the ‘md’ file:
(define_attr "type" "branch,fp,load,store,arith" ...)
the following lines will be written to the file ‘insn-attr.h’.

#define HAVE_ATTR_type

enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
TYPE_STORE, TYPE_ARITH};

extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be defined and the function to
obtain the attribute’s value will return int.

16.15.2 Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few
specific to attribute definitions, to be discussed below. Attribute value expressions must
have one of the following forms:

(const_int 1)
The integer i specifies the value of a numeric attribute. i must be non-negative.

The value of a numeric attribute can be specified either with a const_int or as
an integer represented as a string in const_string, eq_attr (see below), and
set_attr (see Section 16.15.3 [Tagging Insns|, page 286) expressions.

(const_string value)
The string value specifies a constant attribute value. If value is specified as
‘%" it means that the default value of the attribute is to be used for the
insn containing this expression. ‘"'*'"’ obviously cannot be used in the default
expression of a define_attr.

If the attribute whose value is being specified is numeric, value must be a string
containing a non-negative integer (normally const_int would be used in this
case). Otherwise, it must contain one of the valid values for the attribute.

284

Using and Porting GNU CC

(if _then_else test true-value false-value)

test specifies an attribute test, whose format is defined below. The value of this
expression is true-value if test is true, otherwise it is false-value.

(cond [testl valuel ...] default)

The first operand of this expression is a vector containing an even number of
expressions and consisting of pairs of test and value expressions. The value
of the cond expression is that of the value corresponding to the first true test
expression. If none of the test expressions are true, the value of the cond
expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)

(not test)

This test is true if i is non-zero and false otherwise.

(ior testl test2)
(and testl test2)

These tests are true if the indicated logical function is true.

(match_operand:m n pred constraints)

This test is true if operand n of the insn whose attribute value is being de-
termined has mode m (this part of the test is ignored if m is V0IDmode) and
the function specified by the string pred returns a non-zero value when passed
operand n and mode m (this part of the test is ignored if pred is the null string).

The constraints operand is ignored and should be the null string.

(1e arithl arith2)
(1leu arithl arith2)
(1t arithl arith2)
(1tu arithl arith2)
(gt arithl arith2)
(gtu arithl arith2)
(ge arithl arith2)
(geu arithl arith2)
(ne arithl arith2)
(eq arithl arith2)

These tests are true if the indicated comparison of the two arithmetic expres-
sions is true. Arithmetic expressions are formed with plus, minus, mult, div,
mod, abs, neg, and, ior, xor, not, ashift, 1shiftrt, and ashiftrt expres-
sions.

const_int and symbol_ref are always valid terms (see Section 16.15.5 [Insn
Lengths|, page 288,for additional forms). symbol_ref is a string denoting a C
expression that yields an int when evaluated by the ‘get_attr_...’ routine. It
should normally be a global variable.

(eq_attr name value)

name is a string specifying the name of an attribute.

Chapter 16: Machine Descriptions 285

value is a string that is either a valid value for attribute name, a comma-
separated list of values, or ‘!’ followed by a value or list. If value does not
begin with a ‘!’ this test is true if the value of the name attribute of the
current insn is in the list specified by value. If value begins with a ‘!’ this test
is true if the attribute’s value is not in the specified list.

For example,

(eq_attr "type" '"load,store")
is equivalent to

(ior (eq_attr "type" "load") (eq_attr '"type" '"store"))
If name specifies an attribute of ‘alternative’, it refers to the value of the
compiler variable which_alternative (see Section 16.5 [Output Statement],
page 248) and the values must be small integers. For example,

(eq_attr "alternative' '"2,3")
is equivalent to

(ior (eq (symbol_ref "which_alternative") (const_int 2))

(eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simplified in cases where the
value of the attribute being tested is known for all insns matching a particular
pattern. This is by far the most common case.

(attr_flag name)
The value of an attr_flag expression is true if the flag specified by name is
true for the insn currently being scheduled.

name is a string specifying one of a fixed set of flags to test. Test the flags
forward and backward to determine the direction of a conditional branch. Test
the flags very_likely, likely, very_unlikely, and unlikely to determine if
a conditional branch is expected to be taken.

If the very_likely flag is true, then the 1ikely flag is also true. Likewise for
the very_unlikely and unlikely flags.

This example describes a conditional branch delay slot which can be nullified for
forward branches that are taken (annul-true) or for backward branches which
are not taken (annul-false).
(define_delay (eq_attr '"type" 'cbranch")
[(eq_attr "in_branch_delay" '"true")
(and (eq_attr "in_branch_delay" "true'")
(attr_flag "forward"))
(and (eq_attr "in_branch_delay" "true'")
(attr_flag "backward"))])
The forward and backward flags are false if the current insn being scheduled
is not a conditional branch.
The very_likely and likely flags are true if the insn being scheduled is not
a conditional branch. The The very_unlikely and unlikely flags are false if
the insn being scheduled is not a conditional branch.
attr_flag is only used during delay slot scheduling and has no meaning to
other passes of the compiler.

286 Using and Porting GNU CC

16.15.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is
matched by that insn (or which define_peephole generated it). Every define_insn and
define_peephole can have an optional last argument to specify the values of attributes for
matching insns. The value of any attribute not specified in a particular insn is set to the
default value for that attribute, as specified in its define_attr. Extensive use of default
values for attributes permits the specification of the values for only one or two attributes
in the definition of most insn patterns, as seen in the example in the next section.

The optional last argument of define_insn and define_peephole is a vector of ex-
pressions, each of which defines the value for a single attribute. The most general way of
assigning an attribute’s value is to use a set expression whose first operand is an attr
expression giving the name of the attribute being set. The second operand of the set is
an attribute expression (see Section 16.15.2 [Expressions|, page 283) giving the value of the
attribute.

When the attribute value depends on the ‘alternative’ attribute (i.e., which is the
applicable alternative in the constraint of the insn), the set_attr_alternative expression
can be used. It allows the specification of a vector of attribute expressions, one for each
alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_
attr expression can be used, which allows specifying a string giving either a single attribute
value or a list of attribute values, one for each alternative.

The form of each of the above specifications is shown below. In each case, name is a
string specifying the attribute to be set.

(set_attr name value-string)
value-string is either a string giving the desired attribute value, or a string
containing a comma-separated list giving the values for succeeding alternatives.
The number of elements must match the number of alternatives in the constraint
of the insn pattern.

Note that it may be useful to specify ‘*’ for some alternative, in which case the
attribute will assume its default value for insns matching that alternative.

(set_attr_alternative name [valuel value2 ...])
Depending on the alternative of the insn, the value will be one of the specified
values. This is a shorthand for using a cond with tests on the ‘alternative’
attribute.

(set (attr name) value)
The first operand of this set must be the special RTL expression attr, whose
sole operand is a string giving the name of the attribute being set. value is the
value of the attribute.

The following shows three different ways of representing the same attribute value speci-
fication:

(set_attr "type" "load,store,arith")

Chapter 16: Machine Descriptions 287

(set_attr_alternative "type"
[(const_string "load") (const_string "store")
(const_string "arith")])

(set (attr "type")
(cond [(eq_attr "alternative" "1") (const_string "load")
(eq_attr "alternative" "2") (const_string "store')]
(const_string "arith")))
The define_asm_attributes expression provides a mechanism to specify the attributes
assigned to insns produced from an asm statement. It has the form:

(define_asm_attributes [attr-sets])

where attr-sets is specified the same as for both the define_insn and the define_peephole
expressions.

These values will typically be the “worst case” attribute values. For example, they might
indicate that the condition code will be clobbered.

A specification for a length attribute is handled specially. The way to compute the
length of an asm insn is to multiply the length specified in the expression define_asm_
attributes by the number of machine instructions specified in the asm statement, deter-
mined by counting the number of semicolons and newlines in the string. Therefore, the
value of the length attribute specified in a define_asm_attributes should be the maxi-
mum possible length of a single machine instruction.

16.15.4 Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typ-
ically, insns are divided into types and an attribute, customarily called type, is used to
represent this value. This attribute is normally used only to define the default value for
other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word
operations are performed in registers. Let us assume that we can divide all insns into loads,
stores, (integer) arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition
code and will limit ourselves to the following possible effects: The condition code can be set
unpredictably (clobbered), not be changed, be set to agree with the results of the operation,
or only changed if the item previously set into the condition code has been modified.

Here is part of a sample ‘md’ file for such a machine:

(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0O"
(cond [(eq_attr "type" '"load")
(const_string "change0")
(eq_attr "type" "store,branch")
(const_string "unchanged")
(eq_attr "type" "arith")
(if_then_else (match_operand:SI O '"" ")

288 Using and Porting GNU CC

(const_string "set")
(const_string "clobber'))]
(const_string "clobber")))

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r,r,m")

(match_o erand:SI 1 "general_operand" "r,m,r"))]
nn

II@

move %0,%1

load %0,%1

store %0,%1"

[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on
quantities smaller than a machine word clobber the condition code since they will set the
condition code to a value corresponding to the full-word result.

16.15.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different
length branch displacements. In most cases, the assembler will choose the correct instruction
to use. However, when the assembler cannot do so, GCC can when a special attribute, the
‘length’ attribute, is defined. This attribute must be defined to have numeric values by
specifying a null string in its define_attr.

In the case of the ‘length’ attribute, two additional forms of arithmetic terms are allowed
in test expressions:

(match_dup n)
This refers to the address of operand n of the current insn, which must be a
label_ref.

(pc) This refers to the address of the current insn. It might have been more consistent
with other usage to make this the address of the next insn but this would be
confusing because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the ‘length’ attribute. In the
case of addr_vec and addr_diff_vec insn patterns, the length is computed as the number
of vectors multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).

The following macros can be used to refine the length computation:

FIRST_INSN_ADDRESS
When the length insn attribute is used, this macro specifies the value to be
assigned to the address of the first insn in a function. If not specified, 0 is used.

ADJUST_INSN_LENGTH (insn, length)
If defined, modifies the length assigned to instruction insn as a function of
the context in which it is used. length is an lvalue that contains the initially

Chapter 16: Machine Descriptions 289

computed length of the insn and should be updated with the correct length of
the insn. If updating is required, insn must not be a varying-length insn.

This macro will normally not be required. A case in which it is required is the
ROMP. On this machine, the size of an addr_vec insn must be increased by
two to compensate for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be
used by the output routine to determine the form of the branch instruction to be written,
as the example below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If
we adopt the convention that a register will be set to the starting address of a function, we
can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we need
a six-byte sequence to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:

(define_insn " jump"

[(set (pc)
(label_ref (match_operand O "' "")))]
II*
{
return (get_attr_length (insn) ==
7 \"b 4L0\" : \"1 r15,=a(%10); br ri15\");
}II

[(set (attr "length") (if_then_else (1t (match_dup 0) (const_int 4096))|]
(const_int 4)
(const_int 6)))])

16.15.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const
expression, indicates an attribute that is constant for a given run of the compiler. Constant
attributes may be used to specify which variety of processor is used. For example,

(define_attr "cpu" '"m88100,m88110,m88000"
(const
(cond [(symbol_ref "TARGET_88100") (const_string "m88100")
(symbol_ref "TARGET_88110") (const_string "m88110")]
(const_string "m88000"))))

(define_attr "memory" "fast,slow"
(const
(if_then_else (symbol_ref "TARGET_FAST_MEM")
(const_string "fast")
(const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend
on any particular insn. RTL expressions used to define the value of a constant attribute
may use the symbol_ref form, but may not use either the match_operand form or eq_attr
forms involving insn attributes.

290 Using and Porting GNU CC

16.15.7 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if
any, on a target machine. An instruction is said to require a delay slot if some instructions
that are physically after the instruction are executed as if they were located before it. Classic
examples are branch and call instructions, which often execute the following instruction
before the branch or call is performed.

On some machines, conditional branch instructions can optionally annul instructions in
the delay slot. This means that the instruction will not be executed for certain branch
outcomes. Both instructions that annul if the branch is true and instructions that annul if
the branch is false are supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an
instruction needs a delay slot is dependent only on the type of instruction being generated,
not on data flow between the instructions. See the next section for a discussion of data-
dependent instruction scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_
delay expression. It has the following form:

(define_delay test
[delay-1 annul-true-1 annul-false-1
delay-2 annul-true-2 annul-false-2

D

test is an attribute test that indicates whether this define_delay applies to a particular
insn. If so, the number of required delay slots is determined by the length of the vector
specified as the second argument. An insn placed in delay slot n must satisfy attribute
test delay-n. annul-true-n is an attribute test that specifies which insns may be annulled
if the branch is true. Similarly, annul-false-n specifies which insns in the delay slot may
be annulled if the branch is false. If annulling is not supported for that delay slot, (nil)
should be coded.

For example, in the common case where branch and call insns require a single delay slot,
which may contain any insn other than a branch or call, the following would be placed in
the ‘md’ file:

(define_delay (eq_attr "type" 'branch,call')
[(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be specified. In this case, each such expression
specifies different delay slot requirements and there must be no insn for which tests in two
define_delay expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for
calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot
for the branch can be annulled if the branch is true, we might represent this as follows:

(define_delay (eq_attr '"type" "branch")
[(eq_attr "type" "!branch,call")

(eq_attr "type" "!branch,call")
(nil)1)

(define_delay (eq_attr "type" '"call")

Chapter 16: Machine Descriptions 291

[(eq_attr "type" "!branch,call") (nil) (nil)
(eq_attr "type" "!branch,call") (nil) (nil)])

16.15.8 Specifying Function Units

On most RISC machines, there are instructions whose results are not available for a
specific number of cycles. Common cases are instructions that load data from memory. On
many machines, a pipeline stall will result if the data is referenced too soon after the load
instruction.

In addition, many newer microprocessors have multiple function units, usually one for
integer and one for floating point, and often will incur pipeline stalls when a result that is
needed is not yet ready.

The descriptions in this section allow the specification of how much time must elapse
between the execution of an instruction and the time when its result is used. It also
allows specification of when the execution of an instruction will delay execution of similar
instructions due to function unit conflicts.

For the purposes of the specifications in this section, a machine is divided into func-
tion units, each of which execute a specific class of instructions in first-in-first-out order.
Function units that accept one instruction each cycle and allow a result to be used in the
succeeding instruction (usually via forwarding) need not be specified. Classic RISC micro-
processors will normally have a single function unit, which we can call ‘memory’. The newer
“superscalar” processors will often have function units for floating point operations, usually
at least a floating point adder and multiplier.

Each usage of a function units by a class of insns is specified with a define_function_
unit expression, which looks like this:

(define_function_unit name multiplicity simultaneity
test ready-delay issue-delay
Lconflict-list])

name is a string giving the name of the function unit.

multiplicity is an integer specifying the number of identical units in the processor. If more
than one unit is specified, they will be scheduled independently. Only truly independent
units should be counted; a pipelined unit should be specified as a single unit. (The only
common example of a machine that has multiple function units for a single instruction class
that are truly independent and not pipelined are the two multiply and two increment units

of the CDC 6600.)

simultaneity specifies the maximum number of insns that can be executing in each
instance of the function unit simultaneously or zero if the unit is pipelined and has no limit.

All define_function_unit definitions referring to function unit name must have the
same name and values for multiplicity and simultaneity.

test is an attribute test that selects the insns we are describing in this definition. Note
that an insn may use more than one function unit and a function unit may be specified in
more than one define_function_unit.

ready-delay is an integer that specifies the number of cycles after which the result of the
instruction can be used without introducing any stalls.

292 Using and Porting GNU CC

issue-delay is an integer that specifies the number of cycles after the instruction matching
the test expression begins using this unit until a subsequent instruction can begin. A cost of
N indicates an N-1 cycle delay. A subsequent instruction may also be delayed if an earlier
instruction has a longer ready-delay value. This blocking effect is computed using the
simultaneity, ready-delay, issue-delay, and conflict-list terms. For a normal non-pipelined
function unit, simultaneity is one, the unit is taken to block for the ready-delay cycles of
the executing insn, and smaller values of issue-delay are ignored.

conflict-list is an optional list giving detailed conflict costs for this unit. If specified,
it is a list of condition test expressions to be applied to insns chosen to execute in name
following the particular insn matching test that is already executing in name. For each insn
in the list, issue-delay specifies the conflict cost; for insns not in the list, the cost is zero. If
not specified, conflict-list defaults to all instructions that use the function unit.

Typical uses of this vector are where a floating point function unit can pipeline either
single- or double-precision operations, but not both, or where a memory unit can pipeline
loads, but not stores, etc.

As an example, consider a classic RISC machine where the result of a load instruction
is not available for two cycles (a single “delay” instruction is required) and where only one
load instruction can be executed simultaneously. This would be specified as:

(define_function_unit "memory" 1 1 (eq_attr "type'" "load") 2 0)

For the case of a floating point function unit that can pipeline either single or double
precision, but not both, the following could be specified:
(define_function_unit
"fp'" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")1)
(define_function_unit
"fp'" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")]1)
Note: The scheduler attempts to avoid function unit conflicts and uses all the specifica-
tions in the define_function_unit expression. It has recently come to our attention that
these specifications may not allow modeling of some of the newer “superscalar” processors
that have insns using multiple pipelined units. These insns will cause a potential conflict
for the second unit used during their execution and there is no way of representing that
conflict. We welcome any examples of how function unit conflicts work in such processors
and suggestions for their representation.

Chapter 17: Target Description Macros 293

17 Target Description Macros

In addition to the file ‘machine.md’, a machine description includes a C header file
conventionally given the name ‘machine.h’. This header file defines numerous macros that
convey the information about the target machine that does not fit into the scheme of the
‘.md’ file. The file ‘tm.h’ should be a link to ‘machine.h’. The header file ‘config.h’
includes ‘tm.h’ and most compiler source files include ‘config.h’.

17.1 Controlling the Compilation Driver, ‘gcc’
You can control the compilation driver.

SWITCH_TAKES_ARG (char)
A C expression which determines whether the option ‘-char’ takes arguments.
The value should be the number of arguments that option takes—zero, for many
options.
By default, this macro is defined to handle the standard options properly. You
need not define it unless you wish to add additional options which take argu-
ments.

WORD_SWITCH_TAKES_ARG (name)
A C expression which determines whether the option ‘-name’ takes arguments.
The value should be the number of arguments that option takes—zero, for many
options. This macro rather than SWITCH_TAKES_ARG is used for multi-character
option names.
By default, this macro is defined as DEFAULT_WORD_SWITCH_TAKES_ARG, which
handles the standard options properly. You need not define WORD_SWITCH_
TAKES_ARG unless you wish to add additional options which take arguments.
Any redefinition should call DEFAULT_WORD_SWITCH_TAKES_ARG and then check
for additional options.

SWITCHES_NEED_SPACES
A string-valued C expression which is nonempty if the linker needs a space
between the ‘-L’ or ‘-0’ option and its argument.

If this macro is not defined, the default value is 0.

CPP_SPEC A C string constant that tells the GNU CC driver program options to pass to
CPP. It can also specify how to translate options you give to GNU CC into
options for GNU CC to pass to the CPP.

Do not define this macro if it does not need to do anything.

NO_BUILTIN_SIZE_TYPE
If this macro is defined, the preprocessor will not define the builtin macro __
SIZE_TYPE__. The macro __SIZE_TYPE__ must then be defined by CPP_SPEC
instead.

This should be defined if SIZE_TYPE depends on target dependent flags which
are not accessible to the preprocessor. Otherwise, it should not be defined.

294 Using and Porting GNU CC

NO_BUILTIN_PTRDIFF_TYPE
If this macro is defined, the preprocessor will not define the builtin macro
_PTRDIFF_TYPE__. The macro __PTRDIFF_TYPE_
CPP_SPEC instead.

This should be defined if PTRDIFF_TYPE depends on target dependent flags
which are not accessible to the preprocessor. Otherwise, it should not be de-

fined.

must then be defined by

SIGNED_CHAR_SPEC
A C string constant that tells the GNU CC driver program options to pass to
CPP. By default, this macrois defined to pass the option ‘-D__CHAR_UNSIGNED__’}}
to CPP if char will be treated as unsigned char by ccl.

Do not define this macro unless you need to override the default definition.

CC1_SPEC A C string constant that tells the GNU CC driver program options to pass to
ccl. It can also specify how to translate options you give to GNU CC into
options for GNU CC to pass to the ccl.

Do not define this macro if it does not need to do anything.

CC1PLUS_SPEC
A C string constant that tells the GNU CC driver program options to pass to
cciplus. It can also specify how to translate options you give to GNU CC into
options for GNU CC to pass to the cciplus.

Do not define this macro if it does not need to do anything.

ASM_SPEC A C string constant that tells the GNU CC driver program options to pass to
the assembler. It can also specify how to translate options you give to GNU
CC into options for GNU CC to pass to the assembler. See the file ‘sun3.h’ for
an example of this.

Do not define this macro if it does not need to do anything.

ASM_FINAL_SPEC
A C string constant that tells the GNU CC driver program how to run any
programs which cleanup after the normal assembler. Normally, this is not
needed. See the file ‘mips.h’ for an example of this.

Do not define this macro if it does not need to do anything.
LINK_SPEC
A C string constant that tells the GNU CC driver program options to pass to

the linker. It can also specify how to translate options you give to GNU CC
into options for GNU CC to pass to the linker.

Do not define this macro if it does not need to do anything.
LIB_SPEC Another C string constant used much like LINK_SPEC. The difference between
the two is that LIB_SPEC is used at the end of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C
library from the usual place. See ‘gcc.c’.

Chapter 17: Target Description Macros 295

LIBGCC_SPEC
Another C string constant that tells the GNU CC driver program how and
when to place a reference to ‘libgcc.a’ into the linker command line. This
constant is placed both before and after the value of LIB_SPEC.

If this macro is not defined, the GNU CC driver provides a default that passes
the string ‘-1gcc’ to the linker unless the ‘-shared’ option is specified.

STARTFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between
the two is that STARTFILE_SPEC is used at the very beginning of the command
given to the linker.

If this macro is not defined, a default is provided that loads the standard C
startup file from the usual place. See ‘gcc.c’.

ENDFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between
the two is that ENDFILE_SPEC is used at the very end of the command given to
the linker.

Do not define this macro if it does not need to do anything.

LINK_LIBGCC_SPECIAL
Define this macro if the driver program should find the library ‘libgcc.a’ itself
and should not pass ‘-L’ options to the linker. If you do not define this macro,
the driver program will pass the argument ‘-1gcc’ to tell the linker to do the
search and will pass ‘-L’ options to it.

LINK_LIBGCC_SPECIAL_1
Define this macro if the driver program should find the library ‘1ibgcc.a’.
If you do not define this macro, the driver program will pass the argument
‘-1gcc’ to tell the linker to do the search. This macro is similar to LINK_
LIBGCC_SPECIAL, except that it does not affect ‘-L’ options.

MULTILIB_DEFAULTS
Define this macro as a C expression for the initializer of an array of string to
tell the driver program which options are defaults for this target and thus do
not need to be handled specially when using MULTILIB_OPTIONS.

Do not define this macro if MULTILIB_OPTIONS is not defined in the target
makefile fragment or if none of the options listed in MULTILIB_OPTIONS are set
by default. See Section 19.1 [Target Fragment], page 389.

RELATIVE_PREFIX_NOT_LINKDIR
Define this macro to tell gcc that it should only translate a ‘-B’ prefix into a
‘L’ linker option if the prefix indicates an absolute file name.

STANDARD_EXEC_PREFIX
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/lib/gcc-1ib/’ as the default prefix to try when search-
ing for the executable files of the compiler.

296 Using and Porting GNU CC

MD_EXEC_PREFIX
If defined, this macro is an additional prefix to try after STANDARD_EXEC_
PREFIX. MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or
the compiler is built as a cross compiler.

STANDARD_STARTFILE_PREFIX
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/lib/’ as the default prefix to try when searching for
startup files such as ‘crt0.0’.

MD_STARTFILE_PREFIX
If defined, this macro supplies an additional prefix to try after the standard
prefixes. MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or
when the compiler is built as a cross compiler.

MD_STARTFILE_PREFIX_1
If defined, this macro supplies yet another prefix to try after the standard
prefixes. It is not searched when the ‘-b’ option is used, or when the compiler
is built as a cross compiler.

INIT_ENVIRONMENT
Define this macro as a C string constant if you with to set environment variables
for programs called by the driver, such as the assembler and loader. The driver
passes the value of this macro to putenv to initialize the necessary environment
variables.

LOCAL_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/local/include’ as the default prefix to try when searching for
local header files. LOCAL_INCLUDE_DIR comes before SYSTEM_INCLUDE_DIR in
the search order.

Cross compilers do not use this macro and do not search either ‘/usr/local/include’}]
or its replacement.

SYSTEM_INCLUDE_DIR
Define this macro as a C string constant if you wish to specify a system-specific
directory to search for header files before the standard directory. SYSTEM_
INCLUDE_DIR comes before STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the directory specified.

STANDARD_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard
choice of ‘/usr/include’ as the default prefix to try when searching for header

files.

Cross compilers do not use this macro and do not search either ‘/usr/include’
or its replacement.

INCLUDE_DEFAULTS
Define this macro if you wish to override the entire default search path for
include files. The default search path includes GCC_INCLUDE_DIR, LOCAL_

Chapter 17: Target Description Macros 297

INCLUDE_DIR, SYSTEM_INCLUDE_DIR, GPLUSPLUS_INCLUDE_DIR,and STANDARD_J}
INCLUDE_DIR. In addition, GPLUSPLUS_INCLUDE_DIR and GCC_INCLUDE_DIR are
defined automatically by ‘Makefile’; and specify private search areas for GCC.
The directory GPLUSPLUS_INCLUDE_DIR is used only for C++ programs.

The definition should be an initializer for an array of structures. Each array
element should have two elements: the directory name (a string constant) and
a flag for C++-only directories. Mark the end of the array with a null element.
For example, here is the definition used for VMS:

#define INCLUDE_DEFAULTS \
{
{ "GNU_GXX_INCLUDE:", 1},
{ "GNU_CC_INCLUDE:", 0},
{ "SYS$SYSROOT: [SYSLIB.]", 0O},
{ n.n, O},
{0, 0O}

Pl

¥

Here is the order of prefixes tried for exec files:
Any prefixes specified by the user with ‘-B’.
The environment variable GCC_EXEC_PREFIX, if any.
The directories specified by the environment variable COMPILER_PATH.
The macro STANDARD_EXEC_PREFIX.
‘/usr/lib/gcc/’.
The macro MD_EXEC_PREFIX, if any.

S O A~ W N =

Here is the order of prefixes tried for startfiles:
1. Any prefixes specified by the user with ‘-B’.
2. The environment variable GCC_EXEC_PREFIX, if any.

(%]

The directories specified by the environment variable LIBRARY_PATH (native only, cross
compilers do not use this).

The macro STANDARD_EXEC_PREFIX.
‘/usr/lib/gcc/’.

The macro MD_EXEC_PREFIX, if any.

The macro MD_STARTFILE_PREFIX, if any.
The macro STANDARD_STARTFILE_PREFIX.
“/1lib/’.

10. “/usr/lib/’.

O 00 = & Ot W~

17.2 Run-time Target Specification

Here are run-time target specifications.

298

Using and Porting GNU CC

CPP_PREDEFINES

extern int

TARGET_...

Define this to be a string constant containing ‘-D’ options to define the pre-
defined macros that identify this machine and system. These macros will be
predefined unless the ‘-ansi’ option is specified.

In addition, a parallel set of macros are predefined, whose names are made
by appending ‘__’ at the beginning and at the end. These ‘__’ macros are
permitted by the ANSI standard, so they are predefined regardless of whether

‘-ansi’ is specified.
For example, on the Sun, one can use the following value:
"-Dmc68000 -Dsun -Dunix"

The result is to define the macros __mc68000__, __sun__ and __unix__ un-

conditionally, and the macros mc68000, sun and unix provided ‘-ansi’ is not
specified.

target_flags,
This declaration should be present.

This series of macros is to allow compiler command arguments to enable or
disable the use of optional features of the target machine. For example, one
machine description serves both the 68000 and the 68020; a command argument
tells the compiler whether it should use 68020-only instructions or not. This
command argument works by means of a macro TARGET_68020 that tests a bit
in target_flags.

Define a macro TARGET _featurename for each such option. Its definition should
test a bit in target_flags; for example:

#define TARGET_68020 (target_flags & 1)

One place where these macros are used is in the condition-expressions of in-
struction patterns. Note how TARGET_68020 appears frequently in the 68000
machine description file, ‘m68k .md’. Another place they are used is in the defi-
nitions of the other macros in the ‘machine.h’ file.

TARGET_SWITCHES

This macro defines names of command options to set and clear bits in target_
flags. Its definition is an initializer with a subgrouping for each command
option.

Each subgrouping contains a string constant, that defines the option name, and
a number, which contains the bits to set in target_flags. A negative number
says to clear bits instead; the negative of the number is which bits to clear. The
actual option name is made by appending ‘-m’ to the specified name.

One of the subgroupings should have a null string. The number in this grouping
is the default value for target_flags. Any target options act starting with that
value.

Here is an example which defines ‘-m68000’ and ‘-m68020° with opposite mean-
ings, and picks the latter as the default:

Chapter 17: Target Description Macros 299

#define TARGET_SWITCHES \

{ { "e8020", 1}, \
{ "e8000", -1}, \
{ nn s 1}}

TARGET_OPTIONS
This macro is similar to TARGET_SWITCHES but defines names of command op-
tions that have values. Its definition is an initializer with a subgrouping for
each command option.

Each subgrouping contains a string constant, that defines the fixed part of the
option name, and the address of a variable. The variable, type char *, is set
to the variable part of the given option if the fixed part matches. The actual
option name is made by appending ‘-m’ to the specified name.

Here is an example which defines ‘-mshort-data-number’. If the given option

is ‘-mshort-data-512’, the variable m88k_short_data will be set to the string
I1512II‘
extern char *m88k_short_data;

#define TARGET_OPTIONS \
{ { "short-data-", &m88k_short_data } }

TARGET _VERSION
This macrois a C statement to print on stderr a string describing the particular
machine description choice. Every machine description should define TARGET_
VERSION. For example:
#ifdef MOTOROLA
#define TARGET_VERSION \
fprintf (stderr, " (68k, Motorola syntax)");
#else
#define TARGET_VERSION \
fprintf (stderr, " (68k, MIT syntax)");
#endif

OVERRIDE_OPTIONS
Sometimes certain combinations of command options do not make sense on
a particular target machine. You can define a macro OVERRIDE_OPTIONS to
take account of this. This macro, if defined, is executed once just after all the
command options have been parsed.

Don’t use this macro to turn on various extra optimizations for ‘-0’. That is
what OPTIMIZATION_OPTIONS is for.

OPTIMIZATION_OPTIONS (level)

Some machines may desire to change what optimizations are performed for
various optimization levels. This macro, if defined, is executed once just after
the optimization level is determined and before the remainder of the command
options have been parsed. Values set in this macro are used as the default
values for the other command line options.

level is the optimization level specified; 2 if ‘-02’ is specified, 1 if ‘-0’ is specified,
and 0 if neither is specified.

300 Using and Porting GNU CC

You should not use this macro to change options that are not machine-specific.
These should uniformly selected by the same optimization level on all supported
machines. Use this macro to enable machbine-specific optimizations.

Do not examine write_symbols in this macro! The debugging options are not
supposed to alter the generated code.

CAN_DEBUG_WITHOUT_FP
Define this macro if debugging can be performed even without a frame pointer.
If this macro is defined, GNU CC will turn on the ‘-fomit-frame-pointer’
option whenever ‘-0’ is specified.

17.3 Storage Layout

Note that the definitions of the macros in this table which are sizes or alignments mea-
sured in bits do not need to be constant. They can be C expressions that refer to static
variables, such as the target_flags. See Section 17.2 [Run-time Target], page 297.

BITS_BIG_ENDIAN
Define this macro to have the value 1 if the most significant bit in a byte has
the lowest number; otherwise define it to have the value zero. This means that
bit-field instructions count from the most significant bit. If the machine has
no bit-field instructions, then this must still be defined, but it doesn’t matter
which value it is defined to. This macro need not be a constant.

This macro does not affect the way structure fields are packed into bytes or
words; that is controlled by BYTES_BIG_ENDIAN.

BYTES_BIG_ENDIAN
Define this macro to have the value 1 if the most significant byte in a word has
the lowest number. This macro need not be a constant.

WORDS_BIG_ENDIAN
Define this macro to have the value 1 if, in a multiword object, the most signif-
icant word has the lowest number. This applies to both memory locations and
registers; GNU CC fundamentally assumes that the order of words in memory
is the same as the order in registers. This macro need not be a constant.

LIBGCC2_WORDS_BIG_ENDIAN
Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
constant value with the same meaning as WORDS_BIG_ENDIAN, which will
be used only when compiling libgcc2.c. Typically the value will be set based on
preprocessor defines.

FLOAT_WORDS_BIG_ENDIAN
Define this macro to have the value 1 if DFmode, XFmode or TFmode floating
point numbers are stored in memory with the word containing the sign bit at
the lowest address; otherwise define it to have the value 0. This macro need
not be a constant.

You need not define this macro if the ordering is the same as for multi-word
integers.

Chapter 17: Target Description Macros 301

BITS_PER_UNIT
Define this macro to be the number of bits in an addressable storage unit (byte);
normally 8.

BITS_PER_WORD
Number of bits in a word; normally 32.

MAX_BITS_PER_WORD
Maximum number of bits in a word. If this is undefined, the default is BITS_
PER_WORD. Otherwise, it is the constant value that is the largest value that
BITS_PER_WORD can have at run-time.

UNITS_PER_WORD
Number of storage units in a word; normally 4.

MIN_UNITS_PER_WORD
Minimum number of units in a word. If this is undefined, the default is UNITS_
PER_WORD. Otherwise, it is the constant value that is the smallest value that
UNITS_PER_WORD can have at run-time.

POINTER_SIZE
Width of a pointer, in bits. You must specify a value no wider than the width
of Pmode. If it is not equal to the width of Pmode, you must define POINTERS_
EXTEND_UNSIGNED.

POINTERS_EXTEND_UNSIGNED
A C expression whose value is nonzero if pointers that need to be extended from
being POINTER_SIZE bits wide to Pmode are sign-extended and zero if they are
zero-extended.

You need not define this macro if the POINTER_SIZE is equal to the width of
Pmode.

PROMOTE_MODE (m, unsignedp, type)
A macro to update m and unsignedp when an object whose type is type and
which has the specified mode and signedness is to be stored in a register. This
macro is only called when type is a scalar type.

On most RISC machines, which only have operations that operate on a full reg-
ister, define this macro to set m to word_mode if m is an integer mode narrower
than BITS_PER_WORD. In most cases, only integer modes should be widened be-
cause wider-precision floating-point operations are usually more expensive than
their narrower counterparts.

For most machines, the macro definition does not change unsignedp. However,
some machines, have instructions that preferentially handle either signed or
unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
loads from memory and 32-bit add instructions sign-extend the result to 64
bits. On such machines, set unsignedp according to which kind of extension is
more efficient.

Do not define this macro if it would never modify m.

302 Using and Porting GNU CC

PROMOTE_FUNCTION_ARGS
Define this macro if the promotion described by PROMOTE_MODE should also be
done for outgoing function arguments.

PROMOTE_FUNCTION_RETURN
Define this macro if the promotion described by PROMOTE_MODE should also be
done for the return value of functions.

If this macro is defined, FUNCTION_VALUE must perform the same promotions
done by PROMOTE_MODE.

PROMOTE_FOR_CALL_ONLY
Define this macro if the promotion described by PROMOTE_MODE should only be
performed for outgoing function arguments or function return values, as speci-
fied by PROMOTE_FUNCTION_ARGS and PROMOTE_FUNCTION_RETURN, respectively.

PARM_BOUNDARY
Normal alignment required for function parameters on the stack, in bits. All
stack parameters receive at least this much alignment regardless of data type.
On most machines, this is the same as the size of an integer.

STACK_BOUNDARY

Define this macro if you wish to preserve a certain alignment for the stack
pointer. The definition is a C expression for the desired alignment (measured
in bits).

If PUSH_ROUNDING is not defined, the stack will always be aligned to the specified
boundary. If PUSH_ROUNDING is defined and specifies a less strict alignment
than STACK_BOUNDARY, the stack may be momentarily unaligned while pushing
arguments.

FUNCTION_BOUNDARY
Alignment required for a function entry point, in bits.

BIGGEST_ALIGNMENT
Biggest alignment that any data type can require on this machine, in bits.

BIGGEST_FIELD_ALIGNMENT
Biggest alignment that any structure field can require on this machine, in bits.
If defined, this overrides BIGGEST_ALIGNMENT for structure fields only.

MAX_OFILE_ALIGNMENT
Biggest alignment supported by the object file format of this machine. Use this
macro to limit the alignment which can be specified using the __attribute_
_ ((aligned (n))) construct. If not defined, the default value is BIGGEST_
ALTIGNMENT.

DATA_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a static variable. type is
the data type, and basic-align is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to align the
object.

If this macro is not defined, then basic-align is used.

Chapter 17: Target Description Macros 303

One use of this macro is to increase alignment of medium-size data to make it all
fit in fewer cache lines. Another is to cause character arrays to be word-aligned
so that strcpy calls that copy constants to character arrays can be done inline.

CONSTANT_ALIGNMENT (constant, basic-align)
If defined, a C expression to compute the alignment given to a constant that
is being placed in memory. constant is the constant and basic-align is the
alignment that the object would ordinarily have. The value of this macro is
used instead of that alignment to align the object.

If this macro is not defined, then basic-align is used.

The typical use of this macro is to increase alignment for string constants to be
word aligned so that strcpy calls that copy constants can be done inline.

EMPTY_FIELD_BOUNDARY
Alignment in bits to be given to a structure bit field that follows an empty field
such as int : 0;.

Note that PCC_BITFIELD_TYPE_MATTERS also affects the alignment that results
from an empty field.

STRUCTURE_SIZE_BOUNDARY
Number of bits which any structure or union’s size must be a multiple of. Each
structure or union’s size is rounded up to a multiple of this.

If you do not define this macro, the default is the same as BITS_PER_UNIT.

STRICT_ALIGNMENT
Define this macro to be the value 1 if instructions will fail to work if given data
not on the nominal alignment. If instructions will merely go slower in that case,
define this macro as 0.

PCC_BITFIELD_TYPE_MATTERS
Define this if you wish to imitate the way many other C compilers handle
alignment of bitfields and the structures that contain them.

The behavior is that the type written for a bitfield (int, short, or other integer
type) imposes an alignment for the entire structure, as if the structure really did
contain an ordinary field of that type. In addition, the bitfield is placed within
the structure so that it would fit within such a field, not crossing a boundary
for it.

Thus, on most machines, a bitfield whose type is written as int would not
cross a four-byte boundary, and would force four-byte alignment for the whole
structure. (The alignment used may not be four bytes; it is controlled by the
other alignment parameters.)

If the macro is defined, its definition should be a C expression; a nonzero value
for the expression enables this behavior.

Note that if this macro is not defined, or its value is zero, some bitfields may
cross more than one alignment boundary. The compiler can support such ref-
erences if there are ‘insv’, ‘extv’, and ‘extzv’ insns that can directly reference
memory.

304 Using and Porting GNU CC

The other known way of making bitfields work is to define STRUCTURE_SIZE_
BOUNDARY as large as BIGGEST_ALIGNMENT. Then every structure can be ac-
cessed with fullwords.

Unless the machine has bitfield instructions or you define STRUCTURE_SIZE_
BOUNDARY that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a
nonzero value.

If your aim is to make GNU CC use the same conventions for laying out bitfields
as are used by another compiler, here is how to investigate what the other
compiler does. Compile and run this program:

struct fool

{

char x;

char :0;
char y;

};

struct foo2

{

char x;
int :0;
char y;

};

main ()

{
printf ("Size of fool is %d\n",
sizeof (struct fool));
printf ("Size of foo2 is %d\n",
sizeof (struct foo2));
exit (0);
}
If this prints 2 and 5, then the compiler’s behavior is what you would get from
PCC_BITFIELD_TYPE_MATTERS.

BITFIELD_NBYTES_LIMITED
Like PCC BITFIELD TYPE MATTERS except that its effect is limited to
aligning a bitfield within the structure.

ROUND_TYPE_SIZE (struct, size, align)
Define this macro as an expression for the overall size of a structure (given by
struct as a tree node) when the size computed from the fields is size and the
alignment is align.

The default is to round size up to a multiple of align.

ROUND_TYPE_ALIGN (struct, computed, specified)
Define this macro as an expression for the alignment of a structure (given by
struct as a tree node) if the alignment computed in the usual way is computed
and the alignment explicitly specified was specified.

Chapter 17: Target Description Macros 305

The default is to use specified if it is larger; otherwise, use the smaller of
computed and BIGGEST_ALIGNMENT

MAX_FIXED_MODE_SIZE
An integer expression for the size in bits of the largest integer machine mode
that should actually be used. All integer machine modes of this size or smaller
can be used for structures and unions with the appropriate sizes. If this macro
is undefined, GET_MODE_BITSIZE (DImode) is assumed.

CHECK_FLOAT_VALUE (mode, value, overflow)
A C statement to validate the value value (of type double) for mode mode. This
means that you check whether value fits within the possible range of values for
mode mode on this target machine. The mode mode is always a mode of class
MODE_FLOAT. overflow is nonzero if the value is already known to be out of
range.

If value is not valid or if overflow is nonzero, you should set overflow to 1 and
then assign some valid value to value. Allowing an invalid value to go through
the compiler can produce incorrect assembler code which may even cause Unix
assemblers to crash.

This macro need not be defined if there is no work for it to do.

TARGET _FLOAT_FORMAT
A code distinguishing the floating point format of the target machine. There
are three defined values:

IEEE_FLOAT_FORMAT
This code indicates IEEE floating point. It is the default; there is
no need to define this macro when the format is IEEE.

VAX_FLOAT_FORMAT
This code indicates the peculiar format used on the Vax.

UNKNOWN_FLOAT_FORMAT
This code indicates any other format.

The value of this macro is compared with HOST_FLOAT_FORMAT (see Chapter 18
[Config|, page 385) to determine whether the target machine has the same for-
mat as the host machine. If any other formats are actually in use on supported
machines, new codes should be defined for them.

The ordering of the component words of floating point values stored in memory
is controlled by FLOAT_WORDS_BIG_ENDIAN for the target machine and HOST_
FLOAT_WORDS_BIG_ENDIAN for the host.

17.4 Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types
used in programs being compiled. Unlike the macros in the previous section, these apply to
specific features of C and related languages, rather than to fundamental aspects of storage
layout.

306 Using and Porting GNU CC

INT_TYPE_SIZE
A C expression for the size in bits of the type int on the target machine. If
you don’t define this, the default is one word.

MAX_INT_TYPE_SIZE
Maximum number for the size in bits of the type int on the target machine. If
this is undefined, the default is INT_TYPE_SIZE. Otherwise, it is the constant
value that is the largest value that INT_TYPE_SIZE can have at run-time. This
is used in cpp.

SHORT_TYPE_SIZE
A C expression for the size in bits of the type short on the target machine. If
you don’t define this, the default is half a word. (If this would be less than one
storage unit, it is rounded up to one unit.)

LONG_TYPE_SIZE
A C expression for the size in bits of the type long on the target machine. If
you don’t define this, the default is one word.

MAX_LONG_TYPE_SIZE
Maximum number for the size in bits of the type long on the target machine. If
this is undefined, the default is LONG_TYPE_SIZE. Otherwise, it is the constant
value that is the largest value that LONG_TYPE_SIZE can have at run-time. This
is used in cpp.

LONG_LONG_TYPE_SIZE
A C expression for the size in bits of the type long long on the target machine.
If you don’t define this, the default is two words. If you want to support GNU
Ada on your machine, the value of macro must be at least 64.

CHAR_TYPE_SIZE
A C expression for the size in bits of the type char on the target machine. If
you don’t define this, the default is one quarter of a word. (If this would be
less than one storage unit, it is rounded up to one unit.)

MAX_CHAR_TYPE_SIZE
Maximum number for the size in bits of the type char on the target machine. If
this is undefined, the default is CHAR_TYPE_SIZE. Otherwise, it is the constant
value that is the largest value that CHAR_TYPE_SIZE can have at run-time. This
is used in cpp.

FLOAT_TYPE_SIZE
A C expression for the size in bits of the type float on the target machine. If
you don’t define this, the default is one word.

DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type double on the target machine.
If you don’t define this, the default is two words.

LONG_DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type long double on the target ma-
chine. If you don’t define this, the default is two words.

Chapter 17: Target Description Macros 307

DEFAULT_SIGNED_CHAR
An expression whose value is 1 or 0, according to whether the type char should
be signed or unsigned by default. The user can always override this default
with the options ‘-fsigned-char’ and ‘-funsigned-char’.

DEFAULT_SHORT_ENUMS
A C expression to determine whether to give an enum type only as many bytes
as it takes to represent the range of possible values of that type. A nonzero
value means to do that; a zero value means all enum types should be allocated
like int.

If you don’t define the macro, the default is 0.

SIZE_TYPE
A C expression for a string describing the name of the data type to use for size
values. The typedef name size_t is defined using the contents of the string.

The string can contain more than one keyword. If so, separate them with spaces,
and write first any length keyword, then unsigned if appropriate, and finally
int. The string must exactly match one of the data type names defined in the
function init_decl_processing in the file ‘c-decl.c’. You may not omit int
or change the order—that would cause the compiler to crash on startup.

If you don’t define this macro, the default is "long unsigned int".

PTRDIFF_TYPE
A C expression for a string describing the name of the data type to use for
the result of subtracting two pointers. The typedef name ptrdiff_t is defined
using the contents of the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "long int".

WCHAR_TYPE
A C expression for a string describing the name of the data type to use for
wide characters. The typedef name wchar_t is defined using the contents of
the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "int".

WCHAR_TYPE_SIZE
A C expression for the size in bits of the data type for wide characters. This is
used in cpp, which cannot make use of WCHAR_TYPE.

MAX_WCHAR_TYPE_SIZE
Maximum number for the size in bits of the data type for wide characters. If
this is undefined, the default is WCHAR_TYPE_SIZE. Otherwise, it is the constant
value that is the largest value that WCHAR_TYPE_SIZE can have at run-time. This
is used in cpp.

OBJC_INT_SELECTORS
Define this macro if the type of Objective C selectors should be int.

If this macro is not defined, then selectors should have the type struct objc_
selector *.

308 Using and Porting GNU CC

OBJC_SELECTORS_WITHOUT_LABELS
Define this macro if the compiler can group all the selectors together into a
vector and use just one label at the beginning of the vector. Otherwise, the
compiler must give each selector its own assembler label.

On certain machines, it is important to have a separate label for each selector
because this enables the linker to eliminate duplicate selectors.

TARGET _BELL
A C constant expression for the integer value for escape sequence ‘\a’.

TARGET_BS

TARGET_TAB

TARGET _NEWLINE
C constant expressions for the integer values for escape sequences ‘\b’, ‘\t’ and
‘\n’.

TARGET_VT

TARGET_FF

TARGET_CR
C constant expressions for the integer values for escape sequences ‘\v’, ‘\f’ and
‘\r’.

17.5 Register Usage

This section explains how to describe what registers the target machine has, and how
(in general) they can be used.

The description of which registers a specific instruction can use is done with register
classes; see Section 17.6 [Register Classes|, page 314. For information on using registers
to access a stack frame, see Section 17.7.2 [Frame Registers], page 321. For passing values
in registers, see Section 17.7.5 [Register Arguments|, page 326. For returning values in
registers, see Section 17.7.6 [Scalar Return], page 329.

17.5.1 Basic Characteristics of Registers
Registers have various characteristics.

FIRST_PSEUDO_REGISTER
Number of hardware registers known to the compiler. They receive numbers
0 through FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register’s number
really is assigned the number FIRST_PSEUDO_REGISTER.

FIXED_REGISTERS
An initializer that says which registers are used for fixed purposes all throughout
the compiled code and are therefore not available for general allocation. These
would include the stack pointer, the frame pointer (except on machines where
that can be used as a general register when no frame pointer is needed), the
program counter on machines where that is considered one of the addressable
registers, and any other numbered register with a standard use.

Chapter 17: Target Description Macros 309

This information is expressed as a sequence of numbers, separated by commas
and surrounded by braces. The nth number is 1 if register n is fixed, 0 otherwise.

The table initialized from this macro, and the table initialized by the following
one, may be overridden at run time either automatically, by the actions of
the macro CONDITIONAL_REGISTER_USAGE, or by the user with the command
options ‘-ffixed-reg’, ‘-fcall-used-reg’ and ‘-fcall-saved-reg’.

CALL_USED_REGISTERS
Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general)
by function calls as well as for fixed registers. This macro therefore identifies
the registers that are not available for general allocation of values that must
live across function calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it
on function entry and restores it on function exit, if the register is used within
the function.

CONDITIONAL_REGISTER_USAGE
Zero or more C statements that may conditionally modify two variables fixed_
regs and call_used_regs (both of type char []) after they have been initial-
ized from the two preceding macros.

This is necessary in case the fixed or call-clobbered registers depend on target

flags.
You need not define this macro if it has no work to do.

If the usage of an entire class of registers depends on the target flags, you may
indicate this to GCC by using this macro to modify fixed_regs and call_
used_regs to 1 for each of the registers in the classes which should not be used
by GCC. Also define the macro REG_CLASS_FROM_LETTER to return NO_REGS if
it is called with a letter for a class that shouldn’t be used.

(However, if this class is not included in GENERAL_REGS and all of the insn pat-
terns whose constraints permit this class are controlled by target switches, then
GCC will automatically avoid using these registers when the target switches
are opposed to them.)

NON_SAVING_SETJMP
If this macro is defined and has a nonzero value, it means that setjmp and
related functions fail to save the registers, or that longjmp fails to restore them.
To compensate, the compiler avoids putting variables in registers in functions
that use setjmp.

INCOMING_REGNO (out)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the called function corresponding to the
register number out as seen by the calling function. Return out if register
number out is not an outbound register.

OUTGOING_REGNO (in)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the calling function corresponding to the

310 Using and Porting GNU CC

register number in as seen by the called function. Return in if register number
in is not an inbound register.

17.5.2 Order of Allocation of Registers

Registers are allocated in order.

REG_ALLOC_ORDER
If defined, an initializer for a vector of integers, containing the numbers of hard
registers in the order in which GNU CC should prefer to use them (from most
preferred to least).

If this macro is not defined, registers are used lowest numbered first (all else
being equal).

One use of this macro is on machines where the highest numbered registers
must always be saved and the save-multiple-registers instruction supports only
sequences of consecutive registers. On such machines, define REG_ALLOC_ORDER
to be an initializer that lists the highest numbered allocatable register first.

ORDER_REGS_FOR_LOCAL_ALLOC
A C statement (sans semicolon) to choose the order in which to allocate hard
registers for pseudo-registers local to a basic block.

Store the desired register order in the array reg_alloc_order. Element 0
should be the register to allocate first; element 1, the next register; and so on.

The macro body should not assume anything about the contents of reg_alloc_
order before execution of the macro.

On most machines, it is not necessary to define this macro.

17.5.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (specifically, which
machine modes) each register can hold, and how many consecutive registers are needed for
a given mode.

HARD_REGNO_NREGS (regno, mode)
A C expression for the number of consecutive hard registers, starting at register
number regno, required to hold a value of mode mode.

On a machine where all registers are exactly one word, a suitable definition of
this macro is

#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD))

HARD_REGNO_MODE_OK (regno, mode)
A C expression that is nonzero if it is permissible to store a value of mode mode
in hard register number regno (or in several registers starting with that one).
For a machine where all registers are equivalent, a suitable definition is

Chapter 17: Target Description Macros 311

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

It is not necessary for this macro to check for the numbers of fixed registers,
because the allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register
pairs. The way to implement that is to define this macro to reject odd register
numbers for such modes.

The minimum requirement for a mode to be OK in a register is that the
‘movmode’ instruction pattern support moves between the register and any
other hard register for which the mode is OK; and that moving a value into the
register and back out not alter it.

Since the same instruction used to move SImode will work for all narrower
integer modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to
distinguish between these modes, provided you define patterns ‘movhi’, etc.,
to take advantage of this. This is useful because of the interaction between
HARD_REGNO_MODE_OK and MODES_TIEABLE_P; it is very desirable for all integer
modes to be tieable.

Many machines have special registers for floating point arithmetic. Often people
assume that floating point machine modes are allowed only in floating point
registers. This is not true. Any registers that can hold integers can safely hold
a floating point machine mode, whether or not floating arithmetic can be done
on it in those registers. Integer move instructions can be used to move the
values.

On some machines, though, the converse is true: fixed-point machine modes
may not go in floating registers. This is true if the floating registers normalize
any value stored in them, because storing a non-floating value there would
garble it. In this case, HARD_REGNO_MODE_OK should reject fixed-point machine
modes in floating registers. But if the floating registers do not automatically
normalize, if you can store any bit pattern in one and retrieve it unchanged
without a trap, then any machine mode may go in a floating register, so you
can define this macro to say so.

The primary significance of special floating registers is rather that they are the
registers acceptable in floating point arithmetic instructions. However, this is
of no concern to HARD_REGNO_MODE_OK. You handle it by writing the proper
constraints for those instructions.

On some machines, the floating registers are especially slow to access, so that
it is better to store a value in a stack frame than in such a register if floating
point arithmetic is not being done. As long as the floating registers are not
in class GENERAL_REGS, they will not be used unless some pattern’s constraint
asks for one.

MODES_TIEABLE_P (model, mode2)
A C expression that is nonzero if it is desirable to choose register allocation so
as to avoid move instructions between a value of mode model and a value of
mode mode2.

312 Using and Porting GNU CC

If HARD_REGNO_MODE_OK (r, model) and HARD_REGNO_MODE_OK (r, mode2)
are ever different for any r, then MODES_TIEABLE_P (model, mode2) must be
zero.

17.5.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently
if it does not make its own register window. Often this means it is required to receive its
arguments in the registers where they are passed by the caller, instead of the registers where
they would normally arrive.

The special treatment for leaf functions generally applies only when other conditions
are met; for example, often they may use only those registers for its own variables and
temporaries. We use the term “leaf function” to mean a function that is suitable for this
special handling, so that functions with no calls are not necessarily “leaf functions”.

GNU CC assigns register numbers before it knows whether the function is suitable for
leaf function treatment. So it needs to renumber the registers in order to output a leaf
function. The following macros accomplish this.

LEAF_REGISTERS
A C initializer for a vector, indexed by hard register number, which contains 1
for a register that is allowable in a candidate for leaf function treatment.

If leaf function treatment involves renumbering the registers, then the registers
marked here should be the ones before renumbering—those that GNU CC would
ordinarily allocate. The registers which will actually be used in the assembler
code, after renumbering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to optimize the treat-
ment of leaf functions.

LEAF_REG_REMAP (regno)
A C expression whose value is the register number to which regno should be
renumbered, when a function is treated as a leaf function.

If regno is a register number which should not appear in a leaf function before
renumbering, then the expression should yield -1, which will cause the compiler
to abort.

Define this macro only if the target machine offers a way to optimize the treat-
ment of leaf functions, and registers need to be renumbered to do this.

Normally, FUNCTION_PROLOGUE and FUNCTION_EPILOGUE must treat leaf functions spe-
cially. It can test the C variable leaf _function which is nonzero for leaf functions. (The
variable leaf_function is defined only if LEAF_REGISTERS is defined.)

17.5.5 Registers That Form a Stack

There are special features to handle computers where some of the “registers” form a
stack, as in the 80387 coprocessor for the 80386. Stack registers are normally written by
pushing onto the stack, and are numbered relative to the top of the stack.

Chapter 17:

Target Description Macros 313

Currently, GNU CC can only handle one group of stack-like registers, and they must be

consecutivel

STACK_REGS

FIRST_STAC

LAST_STACK

y numbered.

Define this if the machine has any stack-like registers.

K_REG
The number of the first stack-like register. This one is the top of the stack.

_REG
The number of the last stack-like register. This one is the bottom of the stack.

17.5.6 Obsolete Macros for Controlling Register Usage

These features do not work very well. They exist because they used to be required to
generate correct code for the 80387 coprocessor of the 80386. They are no longer used by
that machine description and may be removed in a later version of the compiler. Don’t use

them!

OVERLAPPIN

INSN_CLOBB

PRESERVE_D

G_REGNO_P (regno)

If defined, this is a C expression whose value is nonzero if hard register number
regno is an overlapping register. This means a hard register which overlaps
a hard register with a different number. (Such overlap is undesirable, but
occasionally it allows a machine to be supported which otherwise could not
be.) This macro must return nonzero for all the registers which overlap each
other. GNU CC can use an overlapping register only in certain limited ways. It
can be used for allocation within a basic block, and may be spilled for reloading;
that is all.

If this macro is not defined, it means that none of the hard registers overlap
each other. This is the usual situation.

ERS_REGNO_P (insn, regno)

If defined, this is a C expression whose value should be nonzero if the insn insn
has the effect of mysteriously clobbering the contents of hard register num-
ber regno. By “mysterious” we mean that the insn’s RTL expression doesn’t
describe such an effect.

If this macro is not defined, it means that no insn clobbers registers mysteri-
ously. This is the usual situation; all else being equal, it is best for the RTL
expression to show all the activity.

EATH_INFO_REGNO_P (regno)

If defined, this is a C expression whose value is nonzero if accurate REG_DEAD
notes are needed for hard register number regno at the time of outputting the
assembler code. When this is so, a few optimizations that take place after
register allocation and could invalidate the death notes are not done when this
register is involved.

You would arrange to preserve death info for a register when some of the code
in the machine description which is executed to write the assembler code looks
at the death notes. This is necessary only when the actual hardware feature

314 Using and Porting GNU CC

which GNU CC thinks of as a register is not actually a register of the usual
sort. (It might, for example, be a hardware stack.)

If this macro is not defined, it means that no death notes need to be preserved.
This is the usual situation.

17.6 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain
registers may not be allowed for indexed addressing; certain registers may not be allowed in
some instructions. These machine restrictions are described to the compiler using register
classes.

You define a number of register classes, giving each one a name and saying which of the
registers belong to it. Then you can specify register classes that are allowed as operands to
particular instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named
ALL_REGS and contain all the registers. Another class must be named NO_REGS and contain
no registers. Often the union of two classes will be another class; however, this is not
required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about
the name, but the operand constraint letters ‘r’ and ‘g’ specify this class. If GENERAL_REGS
is the same as ALL_REGS, just define it as a macro which expands to ALL_REGS.

Order the classes so that if class x is contained in class y then x has a lower class number
than y.

The way classes other than GENERAL _REGS are specified in operand constraints is through
machine-dependent operand constraint letters. You can define such letters to correspond
to various classes, then use them in operand constraints.

You should define a class for the union of two classes whenever some instruction allows
both classes. For example, if an instruction allows either a floating point (coprocessor)
register or a general register for a certain operand, you should define a class FLOAT_OR_
GENERAL_REGS which includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the register classes: for each
class, which classes contain it and which ones are contained in it; for each pair of classes,
the largest class contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all
the registers used must belong to that class. Therefore, register classes cannot be used to
enforce a requirement for a register pair to start with an even-numbered register. The way
to specify this requirement is with HARD_REGNO_MODE_0XK.

Register classes used for input-operands of bitwise-and or shift instructions have a special
requirement: each such class must have, for each fixed-point machine mode, a subclass whose
registers can transfer that mode to or from memory. For example, on some machines, the
operations for single-byte values (QImode) are limited to certain registers. When this is so,
each register class that is used in a bitwise-and or shift instruction must have a subclass
consisting of registers from which single-byte values can be loaded or stored. This is so that
PREFERRED_RELOAD_CLASS can always have a possible value to return.

Chapter 17: Target Description Macros 315

enum reg_class
An enumeral type that must be defined with all the register class names as
enumeral values. NO_REGS must be first. ALL_REGS must be the last register
class, followed by one more enumeral value, LIM_REG_CLASSES, which is not a
register class but rather tells how many classes there are.

Each register class has a number, which is the value of casting the class name
to type int. The number serves as an index in many of the tables described
below.

N_REG_CLASSES
The number of distinct register classes, defined as follows:

#define N_REG_CLASSES (int) LIM_REG_CLASSES

REG_CLASS_NAMES
An initializer containing the names of the register classes as C string constants.
These names are used in writing some of the debugging dumps.

REG_CLASS_CONTENTS
An initializer containing the contents of the register classes, as integers which
are bit masks. The nth integer specifies the contents of class n. The way the
integer mask is interpreted is that register r is in the class if mask & (1 << r)
is 1.
When the machine has more than 32 registers, an integer does not suffice.
Then the integers are replaced by sub-initializers, braced groupings containing

several integers. Fach sub-initializer must be suitable as an initializer for the
type HARD_REG_SET which is defined in ‘hard-reg-set.h’.

REGNO_REG_CLASS (regno)
A C expression whose value is a register class containing hard register regno.
In general there is more than one such class; choose a class which is minimal,
meaning that no smaller class also contains the register.

BASE_REG_CLASS
A macro whose definition is the name of the class to which a valid base register
must belong. A base register is one used in an address which is the register
value plus a displacement.

INDEX_REG_CLASS
A macro whose definition is the name of the class to which a valid index register
must belong. An index register is one used in an address where its value is either
multiplied by a scale factor or added to another register (as well as added to a
displacement).

REG_CLASS_FROM_LETTER (char)
A C expression which defines the machine-dependent operand constraint letters
for register classes. If char is such a letter, the value should be the register class
corresponding to it. Otherwise, the value should be NO_REGS. The register letter
‘r’, corresponding to class GENERAL_REGS, will not be passed to this macro; you
do not need to handle it.

316 Using and Porting GNU CC

REGNO_OK_FOR_BASE_P (num)
A C expression which is nonzero if register number num is suitable for use as a
base register in operand addresses. It may be either a suitable hard register or
a pseudo register that has been allocated such a hard register.

REGNO_OK_FOR_INDEX_P (num)
A C expression which is nonzero if register number num is suitable for use as an
index register in operand addresses. It may be either a suitable hard register
or a pseudo register that has been allocated such a hard register.

The difference between an index register and a base register is that the index
register may be scaled. If an address involves the sum of two registers, neither
one of them scaled, then either one may be labeled the “base” and the other the
“index”; but whichever labeling is used must fit the machine’s constraints of
which registers may serve in each capacity. The compiler will try both labelings,
looking for one that is valid, and will reload one or both registers only if neither
labeling works.

PREFERRED_RELOAD_CLASS (x, class)
A C expression that places additional restrictions on the register class to use
when it is necessary to copy value x into a register in class class. The value
is a register class; perhaps class, or perhaps another, smaller class. On many
machines, the following definition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code. For example,
on the 68000, when x is an integer constant that is in range for a ‘moveq’
instruction, the value of this macro is always DATA_REGS as long as class includes
the data registers. Requiring a data register guarantees that a ‘moveq’ will be
used.

If x is a const_double, by returning NO_REGS you can force x into a memory
constant. This is useful on certain machines where immediate floating values
cannot be loaded into certain kinds of registers.

PREFERRED_OUTPUT_RELOAD_CLASS (x, class)
Like PREFERRED _RELOAD_CLASS, but for output reloads instead of input reloads.
If you don’t define this macro, the default is to use class, unchanged.

LIMIT_RELOAD_CLASS (mode, class)
A C expression that places additional restrictions on the register class to use
when it is necessary to be able to hold a value of mode mode in a reload register
for which class class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are
certain modes that simply can’t go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don’t define this macro unless the target machine has limitations which require
the macro to do something nontrivial.

Chapter 17: Target Description Macros 317

SECONDARY_RELOAD_CLASS (class, mode, x)

SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)

SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)
Many machines have some registers that cannot be copied directly to or from
memory or even from other types of registers. An example is the ‘MQ’ register,
which on most machines, can only be copied to or from general registers, but
not memory. Some machines allow copying all registers to and from memory,
but require a scratch register for stores to some memory locations (e.g., those
with symbolic address on the RT, and those with certain symbolic address on
the Sparc when compiling PIC). In some cases, both an intermediate and a
scratch register are required.

You should define these macros to indicate to the reload phase that it may
need to allocate at least one register for a reload in addition to the register to
contain the data. Specifically, if copying x to a register class in mode requires
an intermediate register, you should define SECONDARY_INPUT_RELOAD_CLASS to
return the largest register class all of whose registers can be used as intermediate
registers or scratch registers.

If copying a register class in mode to x requires an intermediate or scratch reg-
ister, SECONDARY_OUTPUT_RELOAD_CLASS should be defined to return the largest
register class required. If the requirements for input and output reloads are the
same, the macro SECONDARY_RELOAD_CLASS should be used instead of defining
both macros identically.

The values returned by these macros are often GENERAL_REGS. Return NO_REGS
if no spare register is needed; i.e., if x can be directly copied to or from a register
of class in mode without requiring a scratch register. Do not define this macro
if it would always return NO_REGS.

If a scratch register is required (either with or without an intermediate register),
you should define patterns for ‘reload_inm’ or ‘reload_outm’, as required (see
Section 16.7 [Standard Names|, page 260. These patterns, which will normally
be implemented with a define_expand, should be similar to the ‘movm’ pat-
terns, except that operand 2 is the scratch register.

Define constraints for the reload register and scratch register that contain a
single register class. If the original reload register (whose class is class) can
meet the constraint given in the pattern, the value returned by these macros
is used for the class of the scratch register. Otherwise, two additional reload
registers are required. Their classes are obtained from the constraints in the
insn pattern.

x might be a pseudo-register or a subreg of a pseudo-register, which could
either be in a hard register or in memory. Use true_regnum to find out; it will
return -1 if the pseudo is in memory and the hard register number if it is in a
register.

These macros should not be used in the case where a particular class of registers
can only be copied to memory and not to another class of registers. In that case,
secondary reload registers are not needed and would not be helpful. Instead, a
stack location must be used to perform the copy and the movm pattern should

318

Using and Porting GNU CC

use memory as a intermediate storage. This case often occurs between floating-
point and general registers.

SECONDARY_MEMORY_NEEDED (class1, class2, m)

Certain machines have the property that some registers cannot be copied to
some other registers without using memory. Define this macro on those ma-
chines to be a C expression that is non-zero if objects of mode m in registers
of classl can only be copied to registers of class class2 by storing a register of
class1 into memory and loading that memory location into a register of class2.

Do not define this macro if its value would always be zero.

SECONDARY_MEMORY_NEEDED_RTX (mode)

Normally when SECONDARY_MEMORY_NEEDED is defined, the compiler allocates
a stack slot for a memory location needed for register copies. If this macro is
defined, the compiler instead uses the memory location defined by this macro.

Do not define this macro if you do not define SECONDARY_ _MEMORY _NEEDED.

SECONDARY_MEMORY_NEEDED_MODE (mode)

When the compiler needs a secondary memory location to copy between two
registers of mode mode, it normally allocates sufficient memory to hold a quan-
tity of BITS_PER_WORD bits and performs the store and load operations in a
mode that many bits wide and whose class is the same as that of mode.

This is right thing to do on most machines because it ensures that all bits of the
register are copied and prevents accesses to the registers in a narrower mode,
which some machines prohibit for floating-point registers.

However, this default behavior is not correct on some machines, such as the
DEC Alpha, that store short integers in floating-point registers differently than
in integer registers. On those machines, the default widening will not work
correctly and you must define this macro to suppress that widening in some
cases. See the file ‘alpha.h’ for details.

Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED or if
widening mode to a mode that is BITS_PER_WORD bits wide is correct for your
machine.

SMALL _REGISTER_CLASSES

Normally the compiler avoids choosing registers that have been explicitly men-
tioned in the rtl as spill registers (these registers are normally those used to
pass parameters and return values). However, some machines have so few reg-
isters of certain classes that there would not be enough registers to use as spill
registers if this were done.

Define SMALL_REGISTER_CLASSES on these machines. When it is defined, the
compiler allows registers explicitly used in the rtl to be used as spill registers
but avoids extending the lifetime of these registers.

It is always safe to define this macro, but if you unnecessarily define it, you will
reduce the amount of optimizations that can be performed in some cases. If
you do not define this macro when it is required, the compiler will run out of
spill registers and print a fatal error message. For most machines, you should
not define this macro.

Chapter 17: Target Description Macros 319

CLASS_LIKELY_SPILLED_P (class)
A C expression whose value is nonzero if pseudos that have been assigned to
registers of class class would likely be spilled because registers of class are needed
for spill registers.

The default value of this macro returns 1 if class has exactly one register and
zero otherwise. On most machines, this default should be used. Only define this
macro to some other expression if pseudo allocated by ‘local-alloc.c’ end up
in memory because their hard registers were needed for spill registers. If this
macro returns nonzero for those classes, those pseudos will only be allocated
by ‘global.c’, which knows how to reallocate the pseudo to another register.
If there would not be another register available for reallocation, you should not
change the definition of this macro since the only effect of such a definition
would be to slow down register allocation.

CLASS_MAX_NREGS (class, mode)
A C expression for the maximum number of consecutive registers of class class
needed to hold a value of mode mode.

This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of
the macro CLASS_MAX_NREGS (class, mode) should be the maximum value of
HARD_REGNO_NREGS (regno, mode) for all regno values in the class class.

This macro helps control the handling of multiple-word values in the reload
pass.

CLASS_CANNOT_CHANGE_SIZE
If defined, a C expression for a class that contains registers which the compiler
must always access in a mode that is the same size as the mode in which it
loaded the register.

For the example, loading 32-bit integer or floating-point objects into floating-
point registers on the Alpha extends them to 64-bits. Therefore loading a 64-bit
object and then storing it as a 32-bit object does not store the low-order 32-bits,
as would be the case for a normal register. Therefore, ‘alpha.h’ defines this
macro as FLOAT_REGS.

Three other special macros describe which operands fit which constraint letters.

CONST_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand constraint letters
that specify particular ranges of integer values. If c is one of those letters, the
expression should check that value, an integer, is in the appropriate range and
return 1 if so, 0 otherwise. If ¢ is not one of those letters, the value should be
0 regardless of value.

CONST_DOUBLE_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand constraint letters
that specify particular ranges of const_double values.

If ¢ is one of those letters, the expression should check that value, an RTX of
code const_double, is in the appropriate range and return 1 if so, 0 otherwise.
If ¢ is not one of those letters, the value should be 0 regardless of value.

320 Using and Porting GNU CC

const_double is used for all floating-point constants and for DImode fixed-point
constants. A given letter can accept either or both kinds of values. It can use
GET_MODE to distinguish between these kinds.

EXTRA_CONSTRAINT (value, c)

A C expression that defines the optional machine-dependent constraint letters
that can be used to segregate specific types of operands, usually memory refer-
ences, for the target machine. Normally this macro will not be defined. If it is
required for a particular target machine, it should return 1 if value corresponds
to the operand type represented by the constraint letter c. If ¢ is not defined
as an extra constraint, the value returned should be 0 regardless of value.

For example, on the ROMP, load instructions cannot have their output in r0
if the memory reference contains a symbolic address. Constraint letter ‘Q’ is
defined as representing a memory address that does not contain a symbolic
address. An alternative is specified with a ‘Q’ constraint on the input and ‘r’
on the output. The next alternative specifies ‘m’ on the input and a register
class that does not include r0 on the output.

17.7 Stack Layout and Calling Conventions

This describes the stack layout and calling conventions.

17.7.1 Basic Stack Layout

Here is the basic stack layout.

STACK_GROWS_DOWNWARD
Define this macro if pushing a word onto the stack moves the stack pointer to
a smaller address.
When we say, “define this macro if ...,” it means that the compiler checks this
macro only with #ifdef so the precise definition used does not matter.

FRAME_GROWS_DOWNWARD
Define this macro if the addresses of local variable slots are at negative offsets
from the frame pointer.

ARGS_GROW_DOWNWARD
Define this macro if successive arguments to a function occupy decreasing ad-
dresses on the stack.

STARTING_FRAME_OFFSET
Offset from the frame pointer to the first local variable slot to be allocated.

If FRAME_GROWS_DOWNWARD, find the next slot’s offset by subtracting the first
slot’s length from STARTING_FRAME_OFFSET. Otherwise, it is found by adding
the length of the first slot to the value STARTING_FRAME_OFFSET.

STACK_POINTER_OFFSET
Offset from the stack pointer register to the first location at which outgoing
arguments are placed. If not specified, the default value of zero is used. This
is the proper value for most machines.

Chapter 17: Target Description Macros 321

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location
at which outgoing arguments are placed.

FIRST_PARM_OFFSET (fundecl)
Offset from the argument pointer register to the first argument’s address. On
some machines it may depend on the data type of the function.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argu-
ment’s address.

STACK_DYNAMIC_OFFSET (fundecl)
Offset from the stack pointer register to an item dynamically allocated on the
stack, e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the length
of the outgoing arguments. The default is correct for most machines. See
‘function.c’ for details.

DYNAMIC_CHAIN_ADDRESS (frameaddr)
A C expression whose value is RTL representing the address in a stack frame
where the pointer to the caller’s frame is stored. Assume that frameaddr is an
RTL expression for the address of the stack frame itself.

If you don’t define this macro, the default is to return the value of frameaddr—
that is, the stack frame address is also the address of the stack word that points
to the previous frame.

SETUP_FRAME_ADDRESSES ()
If defined, a C expression that produces the machine-specific code to setup the
stack so that arbitrary frames can be accessed. For example, on the Sparc, we
must flush all of the register windows to the stack before we can access arbitrary
stack frames. This macro will seldom need to be defined.

RETURN_ADDR_RTX (count, frameaddr)
A C expression whose value is RTL representing the value of the return address
for the frame count steps up from the current frame. frameaddr is the frame
pointer of the count frame, or the frame pointer of the count — 1 frame if
RETURN_ADDR_IN_PREVIOQUS_FRAME is defined.

RETURN_ADDR_IN_PREVIOUS_FRAME
Define this if the return address of a particular stack frame is accessed from the
frame pointer of the previous stack frame.

17.7.2 Registers That Address the Stack Frame

This discusses registers that address the stack frame.

STACK_POINTER_REGNUM
The register number of the stack pointer register, which must also be a fixed
register according to FIXED_REGISTERS. On most machines, the hardware de-
termines which register this is.

322 Using and Porting GNU CC

FRAME_POINTER_REGNUM
The register number of the frame pointer register, which is used to access auto-
matic variables in the stack frame. On some machines, the hardware determines
which register this is. On other machines, you can choose any register you wish
for this purpose.

HARD_FRAME_POINTER_REGNUM

On some machines the offset between the frame pointer and starting offset of the
automatic variables is not known until after register allocation has been done
(for example, because the saved registers are between these two locations). On
those machines, define FRAME_POINTER_REGNUM the number of a special, fixed
register to be used internally until the offset is known, and define HARD_FRAME _
POINTER_REGNUM to be actual the hard register number used for the frame
pointer.

You should define this macro only in the very rare circumstances when it is not
possible to calculate the offset between the frame pointer and the automatic
variables until after register allocation has been completed. When this macro
is defined, you must also indicate in your definition of ELIMINABLE_REGS how
to eliminate FRAME_POINTER_REGNUM into either HARD_FRAME_POINTER_REGNUM
or STACK_POINTER_REGNUM.

Do not define this macro if it would be the same as FRAME_POINTER_REGNUM.

ARG_POINTER_REGNUM

The register number of the arg pointer register, which is used to access the
function’s argument list. On some machines, this is the same as the frame
pointer register. On some machines, the hardware determines which register
this is. On other machines, you can choose any register you wish for this
purpose. If this is not the same register as the frame pointer register, then you
must mark it as a fixed register according to FIXED_REGISTERS, or arrange to
be able to eliminate it (see Section 17.7.3 [Elimination], page 323).

STATIC_CHAIN_REGNUM

STATIC_CHAIN_INCOMING_REGNUM
Register numbers used for passing a function’s static chain pointer. If reg-
ister windows are used, the register number as seen by the called function is
STATIC_CHAIN_INCOMING_REGNUM, while the register number as seen by the call-
ing function is STATIC_CHAIN_REGNUM. If these registers are the same, STATIC_
CHAIN_INCOMING_REGNUM need not be defined.

The static chain register need not be a fixed register.

If the static chain is passed in memory, these macros should not be defined;
instead, the next two macros should be defined.

STATIC_CHAIN

STATIC_CHAIN_INCOMING
If the static chain is passed in memory, these macros provide rtx giving mem
expressions that denote where they are stored. STATIC_CHAIN and STATIC_
CHAIN_INCOMING give the locations as seen by the calling and called functions,

Chapter 17: Target Description Macros 323

respectively. Often the former will be at an offset from the stack pointer and
the latter at an offset from the frame pointer.

The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_
rtx will have been initialized prior to the use of these macros and should be
used to refer to those items.

If the static chain is passed in a register, the two previous macros should be
defined instead.

17.7.3 Eliminating Frame Pointer and Arg Pointer
This is about eliminating the frame pointer and arg pointer.

FRAME_POINTER_REQUIRED
A C expression which is nonzero if a function must have and use a frame pointer.
This expression is evaluated in the reload pass. If its value is nonzero the
function will have a frame pointer.

The expression can in principle examine the current function and decide ac-
cording to the facts, but on most machines the constant 0 or the constant 1
suffices. Use 0 when the machine allows code to be generated with no frame
pointer, and doing so saves some time or space. Use 1 when there is no possible
advantage to avoiding a frame pointer.

In certain cases, the compiler does not know how to produce valid code without
a frame pointer. The compiler recognizes those cases and automatically gives
the function a frame pointer regardless of what FRAME_POINTER_REQUIRED says.
You don’t need to worry about them.

In a function that does not require a frame pointer, the frame pointer register
can be allocated for ordinary usage, unless you mark it as a fixed register. See
FIXED_REGISTERS for more information.

INITIAL_FRAME_POINTER_OFFSET (depth-var)
A C statement to store in the variable depth-var the difference between the
frame pointer and the stack pointer values immediately after the function pro-
logue. The value would be computed from information such as the result of
get_frame_size () and the tables of registers regs_ever_live and call_
used_regs.

If ELIMINABLE_REGS is defined, this macro will be not be used and need not
be defined. Otherwise, it must be defined even if FRAME_POINTER_REQUIRED is
defined to always be true; in that case, you may set depth-var to anything.

ELIMINABLE_REGS
If defined, this macro specifies a table of register pairs used to eliminate un-
needed registers that point into the stack frame. If it is not defined, the only
elimination attempted by the compiler is to replace references to the frame
pointer with references to the stack pointer.

The definition of this macro is a list of structure initializations, each of which
specifies an original and replacement register.

324 Using and Porting GNU CC

On some machines, the position of the argument pointer is not known until the
compilation is completed. In such a case, a separate hard register must be used
for the argument pointer. This register can be eliminated by replacing it with
either the frame pointer or the argument pointer, depending on whether or not
the frame pointer has been eliminated.
In this case, you might specify:

#define ELIMINABLE_REGS \

{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \

{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is
specified first since that is the preferred elimination.

CAN_ELIMINATE (from-reg, to-reg)
A C expression that returns non-zero if the compiler is allowed to try to replace
register number from-reg with register number to-reg. This macro need only be
defined if ELIMINABLE_REGS is defined, and will usually be the constant 1, since
most of the cases preventing register elimination are things that the compiler
already knows about.

INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)
This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It specifies the ini-
tial difference between the specified pair of registers. This macro must be
defined if ELIMINABLE_REGS is defined.

LONGJMP_RESTORE_FROM_STACK
Define this macro if the longjmp function restores registers from the stack
frames, rather than from those saved specifically by setjmp. Certain quantities
must not be kept in registers across a call to setjmp on such machines.

17.7.4 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the
following section for other macros that control passing certain arguments in registers.

PROMOTE_PROTOTYPES
Define this macro if an argument declared in a prototype as an integral type
smaller than int should actually be passed as an int. In addition to avoiding
errors in certain cases of mismatch, it also makes for better code on certain
machines.

PUSH_ROUNDING (npushed)
A C expression that is the number of bytes actually pushed onto the stack when
an instruction attempts to push npushed bytes.

If the target machine does not have a push instruction, do not define this
macro. That directs GNU CC to use an alternate strategy: to allocate the
entire argument block and then store the arguments into it.

On some machines, the definition

Chapter 17: Target Description Macros 325

#define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to push one byte
actually push two bytes in an attempt to maintain alignment. Then the defini-
tion should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

ACCUMULATE_OUTGOING_ARGS
If defined, the maximum amount of space required for outgoing arguments will
be computed and placed into the variable current_function_outgoing_args_
size. No space will be pushed onto the stack for each call; instead, the function
prologue should increase the stack frame size by this amount.

Defining both PUSH_ROUNDING and ACCUMULATE_OUTGOING_ARGS is not proper.

REG_PARM_STACK_SPACE (fndecl)
Define this macro if functions should assume that stack space has been allocated
for arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments
passed in registers for the function represented by fndecl.

This space can be allocated by the caller, or be a part of the machine-dependent
stack frame: OUTGOING_REG_PARM_STACK_SPACE says which.

MAYBE_REG_PARM_STACK_SPACE

FINAL_REG_PARM_STACK_SPACE (const size, var'size)
Define these macros in addition to the one above if functions might allocate
stack space for arguments even when their values are passed in registers. These
should be used when the stack space allocated for arguments in registers is not
a simple constant independent of the function declaration.

The value of the first macro is the size, in bytes, of the area that we should
initially assume would be reserved for arguments passed in registers.

The value of the second macro is the actual size, in bytes, of the area that will
be reserved for arguments passed in registers. This takes two arguments: an
integer representing the number of bytes of fixed sized arguments on the stack,
and a tree representing the number of bytes of variable sized arguments on the
stack.

When these macros are defined, REG_PARM_STACK_SPACE will only be called for
libcall functions, the current function, or for a function being called when it is
known that such stack space must be allocated. In each case this value can be
easily computed.

When deciding whether a called function needs such stack space, and how much
space to reserve, GNU CC uses these two macros instead of REG_PARM_STACK_
SPACE.

OUTGOING_REG_PARM_STACK_SPACE
Define this if it is the responsibility of the caller to allocate the area reserved
for arguments passed in registers.

326 Using and Porting GNU CC

If ACCUMULATE _OUTGOING_ARGSis defined, this macro controls whether the space
for these arguments counts in the value of current_function_outgoing_args_
size.

STACK_PARMS_IN_REG_PARM_AREA
Define this macro if REG_PARM_STACK_SPACE is defined, but the stack parame-
ters don’t skip the area specified by it.

Normally, when a parameter is not passed in registers, it is placed on the stack
beyond the REG_PARM_STACK_SPACE area. Defining this macro suppresses this
behavior and causes the parameter to be passed on the stack in its natural
location.

RETURN_POPS_ARGS (fundecl, funtype, stack-size)
A C expression that should indicate the number of bytes of its own arguments
that a function pops on returning, or 0 if the function pops no arguments and
the caller must therefore pop them all after the function returns.

fundecl is a C variable whose value is a tree node that describes the func-
tion in question. Normally it is a node of type FUNCTION_DECL that de-
scribes the declaration of the function. From this it is possible to obtain the

DECL MACHINE_ATTRIBUTES of the function.

funtype is a C variable whose value is a tree node that describes the function
in question. Normally it is a node of type FUNCTION_TYPE that describes the
data type of the function. From this it is possible to obtain the data types of
the value and arguments (if known).

When a call to a library function is being considered, funtype will contain an
identifier node for the library function. Thus, if you need to distinguish among
various library functions, you can do so by their names. Note that “library
function” in this context means a function used to perform arithmetic, whose
name is known specially in the compiler and was not mentioned in the C code
being compiled.

stack-size is the number of bytes of arguments passed on the stack. If a variable
number of bytes is passed, it is zero, and argument popping will always be the
responsibility of the calling function.

On the Vax, all functions always pop their arguments, so the definition of this
macro is stack-size. On the 68000, using the standard calling convention, no
functions pop their arguments, so the value of the macro is always 0 in this case.
But an alternative calling convention is available in which functions that take
a fixed number of arguments pop them but other functions (such as printf)
pop nothing (the caller pops all). When this convention is in use, funtype is
examined to determine whether a function takes a fixed number of arguments.

17.7.5 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments
are passed in registers or how they are arranged in the stack.

Chapter 17: Target Description Macros 327

FUNCTION_ARG (cum, mode, type, named)
A C expression that controls whether a function argument is passed in a register,
and which register.

The arguments are cum, which summarizes all the previous arguments; mode,
the machine mode of the argument; type, the data type of the argument as
a tree node or 0 if that is not known (which happens for C support library
functions); and named, which is 1 for an ordinary argument and 0 for nameless
arguments that correspond to °..." in the called function’s prototype.

The value of the expression should either be a reg RTX for the hard register
in which to pass the argument, or zero to pass the argument on the stack.

For machines like the Vax and 68000, where normally all arguments are pushed,
zero suffices as a definition.

The usual way to make the ANSI library ‘stdarg.h’ work on a machine where
some arguments are usually passed in registers, is to cause nameless arguments
to be passed on the stack instead. This is done by making FUNCTION_ARG return
0 whenever named is 0.

You may use the macro MUST_PASS_IN_STACK (mode, type) in the definition
of this macro to determine if this argument is of a type that must be passed in
the stack. If REG_PARM_STACK_SPACE is not defined and FUNCTION_ARG returns
non-zero for such an argument, the compiler will abort. If REG_PARM_STACK_
SPACE is defined, the argument will be computed in the stack and then loaded
into a register.

FUNCTION_INCOMING_ARG (cum, mode, type, named)
Define this macro if the target machine has “register windows”, so that the
register in which a function sees an arguments is not necessarily the same as
the one in which the caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller
passes the value, and FUNCTION_INCOMING_ARG should be defined in a similar
fashion to tell the function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both purposes.

FUNCTION_ARG_PARTIAL_NREGS (cum, mode, type, named)
A C expression for the number of words, at the beginning of an argument,
must be put in registers. The value must be zero for arguments that are passed
entirely in registers or that are entirely pushed on the stack.

On some machines, certain arguments must be passed partially in registers
and partially in memory. On these machines, typically the first n words of
arguments are passed in registers, and the rest on the stack. If a multi-word
argument (a double or a structure) crosses that boundary, its first few words
must be passed in registers and the rest must be pushed. This macro tells the
compiler when this occurs, and how many of the words should go in registers.

FUNCTION_ARG for these arguments should return the first register to be used by
the caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called
function.

328 Using and Porting GNU CC

FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named)
A C expression that indicates when an argument must be passed by reference.
If nonzero for an argument, a copy of that argument is made in memory and a
pointer to the argument is passed instead of the argument itself. The pointer
is passed in whatever way is appropriate for passing a pointer to that type.

On machines where REG_PARM_STACK_SPACE is not defined, a suitable definition
of this macro might be

#define FUNCTION_ARG_PASS_BY_REFERENCE\
(CUM, MODE, TYPE, NAMED) \
MUST_PASS_IN_STACK (MODE, TYPE)

FUNCTION_ARG_CALLEE_COPIES (cum, mode, type, named)

If defined, a C expression that indicates when it is the called function’s respon-
sibility to make a copy of arguments passed by invisible reference. Normally,
the caller makes a copy and passes the address of the copy to the routine being
called. When FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero,
the caller does not make a copy. Instead, it passes a pointer to the “live” value.
The called function must not modify this value. If it can be determined that
the value won’t be modified, it need not make a copy; otherwise a copy must
be made.

CUMULATIVE_ARGS
A C type for declaring a variable that is used as the first argument of FUNCTION_
ARG and other related values. For some target machines, the type int suffices
and can hold the number of bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the arguments
that have been passed on the stack. The compiler has other variables to keep
track of that. For target machines on which all arguments are passed on the
stack, there is no need to store anything in CUMULATIVE_ARGS; however, the
data structure must exist and should not be empty, so use int.

INIT_CUMULATIVE_ARGS (cum, fntype, libname)
A C statement (sans semicolon) for initializing the variable cum for the state at
the beginning of the argument list. The variable has type CUMULATIVE_ARGS.
The value of fntype is the tree node for the data type of the function which will
receive the args, or 0 if the args are to a compiler support library function.

When processing a call to a compiler support library function, libname identifies
which one. It is a symbol_ref rtx which contains the name of the function,
as a string. libname is 0 when an ordinary C function call is being processed.
Thus, each time this macro is called, either libname or fntype is nonzero, but
never both of them at once.

INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)
Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the
arguments for the function being compiled. If this macro is undefined, INIT_
CUMULATIVE_ARGS is used instead.

Chapter 17: Target Description Macros 329

The value passed for libname is always 0, since library routines with special
calling conventions are never compiled with GNU CC. The argument libname
exists for symmetry with INIT_CUMULATIVE_ARGS.

FUNCTION_ARG_ADVANCE (cum, mode, type, named)
A C statement (sans semicolon) to update the summarizer variable cum to
advance past an argument in the argument list. The values mode, type and
named describe that argument. Once this is done, the variable cum is suitable
for analyzing the following argument with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was passed on
the stack. The compiler knows how to track the amount of stack space used for
arguments without any special help.

FUNCTION_ARG_PADDING (mode, type)
If defined, a C expression which determines whether, and in which direction,
to pad out an argument with extra space. The value should be of type enum
direction: either upward to pad above the argument, downward to pad below,
or none to inhibit padding.

The amount of padding is always just enough to reach the next multiple of
FUNCTION_ARG_BOUNDARY; this macro does not control it.

This macro has a default definition which is right for most systems. For little-
endian machines, the default is to pad upward. For big-endian machines, the
default is to pad downward for an argument of constant size shorter than an
int, and upward otherwise.

FUNCTION_ARG_BOUNDARY (mode, type)
If defined, a C expression that gives the alignment boundary, in bits, of an
argument with the specified mode and type. If it is not defined, PARM_BOUNDARY
is used for all arguments.

FUNCTION_ARG_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in
which function arguments are sometimes passed. This does not include implicit
arguments such as the static chain and the structure-value address. On many
machines, no registers can be used for this purpose since all function arguments
are pushed on the stack.

17.7.6 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values—values that
can fit in registers.

TRADITIONAL_RETURN_FLOAT
Define this macro if ‘-traditional’ should not cause functions declared to
return float to convert the value to double.

FUNCTION_VALUE (valtype, func)
A C expression to create an RTX representing the place where a function re-
turns a value of data type valtype. valtype is a tree node representing a data

330 Using and Porting GNU CC

type. Write TYPE_MODE (valtype) to get the machine mode used to represent
that type. On many machines, only the mode is relevant. (Actually, on most
machines, scalar values are returned in the same place regardless of mode).

If PROMOTE_FUNCTION_RETURN is defined, you must apply the same promotion
rules specified in PROMOTE_MODE if valtype is a scalar type.

If the precise function being called is known, func is a tree node (FUNCTION_
DECL) for it; otherwise, func is a null pointer. This makes it possible to use
a different value-returning convention for specific functions when all their calls
are known.

FUNCTION_VALUE is not used for return vales with aggregate data types, because
these are returned in another way. See STRUCT_VALUE_REGNUM and related
macros, below.

FUNCTION_OUTGOING_VALUE (valtype, func)
Define this macro if the target machine has “register windows” so that the
register in which a function returns its value is not the same as the one in
which the caller sees the value.

For such machines, FUNCTION_VALUE computes the register in which the caller
will see the value. FUNCTION_OUTGOING_VALUE should be defined in a similar
fashion to tell the function where to put the value.

If FUNCTION_OUTGOING_VALUE is not defined, FUNCTION_VALUE serves both pur-
poses.

FUNCTION_QUTGOING_VALUE is not used for return vales with aggregate data
types, because these are returned in another way. See STRUCT_VALUE_REGNUM
and related macros, below.

LIBCALL_VALUE (mode)

A C expression to create an RTX representing the place where a library function
returns a value of mode mode. If the precise function being called is known,
func is a tree node (FUNCTION_DECL) for it; otherwise, func is a null pointer.
This makes it possible to use a different value-returning convention for specific
functions when all their calls are known.

Note that “library function” in this context means a compiler support routine,
used to perform arithmetic, whose name is known specially by the compiler and
was not mentioned in the C code being compiled.

The definition of LIBRARY_VALUE need not be concerned aggregate data types,
because none of the library functions returns such types.

FUNCTION_VALUE_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in which
the values of called function may come back.

A register whose use for returning values is limited to serving as the second of
a pair (for a value of type double, say) need not be recognized by this macro.
So for most machines, this definition suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

Chapter 17: Target Description Macros 331

If the machine has register windows, so that the caller and the called function
use different registers for the return value, this macro should recognize only the
caller’s register numbers.

APPLY_RESULT_SIZE
Define this macro if ‘untyped_call’ and ‘untyped_return’ need more space
than is implied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbi-
trary return value.

17.7.7 How Large Values Are Returned

When a function value’s mode is BLKmode (and in some other cases), the value is not
returned according to FUNCTION_VALUE (see Section 17.7.6 [Scalar Return], page 329). In-
stead, the caller passes the address of a block of memory in which the value should be
stored. This address is called the structure value address.

This section describes how to control returning structure values in memory.

RETURN_IN_MEMORY (type)
A C expression which can inhibit the returning of certain function values in
registers, based on the type of value. A nonzero value says to return the function
value in memory, just as large structures are always returned. Here type will
be a C expression of type tree, representing the data type of the value.

Note that values of mode BLKmode must be explicitly handled by this macro.
Also, the option ‘-fpcc-struct-return’ takes effect regardless of this macro.
On most systems, it is possible to leave the macro undefined; this causes a
default definition to be used, whose value is the constant 1 for BLKmode values,
and 0 otherwise.

Do not use this macro to indicate that structures and unions should always be
returned in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to
indicate this.

DEFAULT_PCC_STRUCT_RETURN
Define this macro to be 1 if all structure and union return values must be in
memory. Since this results in slower code, this should be defined only if needed
for compatibility with other compilers or with an ABI. If you define this macro

to be 0, then the conventions used for structure and union return values are
decided by the RETURN_IN_MEMORY macro.

If not defined, this defaults to the value 1.

STRUCT _VALUE_REGNUM
If the structure value address is passed in a register, then STRUCT _VALUE_REGNUM
should be the number of that register.

STRUCT_VALUE
If the structure value address is not passed in a register, define STRUCT_VALUE
as an expression returning an RTX for the place where the address is passed.
If it returns 0, the address is passed as an “invisible” first argument.

332 Using and Porting GNU CC

STRUCT_VALUE_INCOMING_REGNUM
On some architectures the place where the structure value address is found by
the called function is not the same place that the caller put it. This can be due
to register windows, or it could be because the function prologue moves it to a
different place.

If the incoming location of the structure value address is in a register, define
this macro as the register number.

STRUCT_VALUE_INCOMING
If the incoming location is not a register, then you should define STRUCT_VALUE_
INCOMING as an expression for an RTX for where the called function should find
the value. If it should find the value on the stack, define this to create a mem
which refers to the frame pointer. A definition of 0 means that the address is
passed as an “invisible” first argument.

PCC_STATIC_STRUCT_RETURN
Define this macro if the usual system convention on the target machine for
returning structures and unions is for the called function to return the address
of a static variable containing the value.

Do not define this if the usual system convention is for the caller to pass an
address to the subroutine.

This macro has effect in ‘-fpcc-struct-return’ mode, but it does nothing
when you use ‘-freg-struct-return’ mode.

17.7.8 Caller-Saves Register Allocation

If you enable it, GNU CC can save registers around function calls. This makes it possible
to use call-clobbered registers to hold variables that must live across calls.

DEFAULT_CALLER_SAVES
Define this macro if function calls on the target machine do not preserve any
registers; in other words, if CALL_USED_REGISTERS has 1 for all registers. This
macro enables ‘-fcaller-saves’ by default. Eventually that option will be
enabled by default on all machines and both the option and this macro will be
eliminated.

CALLER_SAVE_PROFITABLE (refs, calls)
A C expression to determine whether it is worthwhile to consider placing a
pseudo-register in a call-clobbered hard register and saving and restoring it
around each function call. The expression should be 1 when this is worth
doing, and 0 otherwise.

If you don’t define this macro, a default is used which is good on most machines:
4 x calls < refs.

17.7.9 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epi-
logue) code.

Chapter 17: Target Description Macros 333

FUNCTION_PROLOGUE (file, size)
A C compound statement that outputs the assembler code for entry to a func-
tion. The prologue is responsible for setting up the stack frame, initializing the
frame pointer register, saving registers that must be saved, and allocating size
additional bytes of storage for the local variables. size is an integer. file is a
stdio stream to which the assembler code should be output.

The label for the beginning of the function need not be output by this macro.
That has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_
ever_live: element r is nonzero if hard register r is used anywhere within the
function. This implies the function prologue should save register r, provided
it is not one of the call-used registers. (FUNCTION_EPILOGUE must likewise use
regs_ever_live.)

On machines that have “register windows”, the function entry code does not
save on the stack the registers that are in the windows, even if they are supposed
to be preserved by function calls; instead it takes appropriate steps to “push”
the register stack, if any non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function
entry code must vary accordingly; it must set up the frame pointer if one is
wanted, and not otherwise. To determine whether a frame pointer is in wanted,
the macro can refer to the variable frame_pointer_needed. The variable’s
value will be 1 at run time in a function that needs a frame pointer. See
Section 17.7.3 [Elimination], page 323.

The function entry code is responsible for allocating any stack space required
for the function. This stack space consists of the regions listed below. In most
cases, these regions are allocated in the order listed, with the last listed region
closest to the top of the stack (the lowest address if STACK_GROWS_DOWNWARD is
defined, and the highest address if it is not defined). You can use a different
order for a machine if doing so is more convenient or required for compatibility
reasons. Except in cases where required by standard or by a debugger, there
is no reason why the stack layout used by GCC need agree with that used by
other compilers for a machine.

o Aregion of current_function_pretend_args_size bytes of uninitialized
space just underneath the first argument arriving on the stack. (This may
not be at the very start of the allocated stack region if the calling sequence
has pushed anything else since pushing the stack arguments. But usually,
on such machines, nothing else has been pushed yet, because the function
prologue itself does all the pushing.) This region is used on machines where
an argument may be passed partly in registers and partly in memory, and,
in some cases to support the features in ‘varargs.h’ and ‘stdargs.h’.

¢ An area of memory used to save certain registers used by the function.
The size of this area, which may also include space for such things as the
return address and pointers to previous stack frames, is machine-specific
and usually depends on which registers have been used in the function.
Machines with register windows often do not require a save area.

334 Using and Porting GNU CC

o A region of at least size bytes, possibly rounded up to an allocation bound-
ary, to contain the local variables of the function. On some machines, this
region and the save area may occur in the opposite order, with the save
area closer to the top of the stack.

¢ Optionally, when ACCUMULATE_OUTGOING_ARGS is defined, a region of
current_function_outgoing_args_size bytes to be used for outgoing
argument lists of the function. See Section 17.7.4 [Stack Arguments],
page 324.

Normally, it is necessary for the macros FUNCTION_PROLOGUE and FUNCTION_
EPILOGUE to treat leaf functions specially. The C variable leaf _function is
nonzero for such a function.

EXIT_IGNORE_STACK
Define this macro as a C expression that is nonzero if the return instruction or
the function epilogue ignores the value of the stack pointer; in other words, if it
is safe to delete an instruction to adjust the stack pointer before a return from
the function.

Note that this macro’s value is relevant only for functions for which frame
pointers are maintained. It is never safe to delete a final stack adjustment in a
function that has no frame pointer, and the compiler knows this regardless of
EXIT_IGNORE_STACK.

FUNCTION_EPILOGUE (file, size)
A C compound statement that outputs the assembler code for exit from a
function. The epilogue is responsible for restoring the saved registers and stack
pointer to their values when the function was called, and returning control
to the caller. This macro takes the same arguments as the macro FUNCTION_
PROLOGUE, and the registers to restore are determined from regs_ever_live
and CALL_USED_REGISTERS in the same way.

On some machines, there is a single instruction that does all the work of re-
turning from the function. On these machines, give that instruction the name
‘return’ and do not define the macro FUNCTION_EPILOGUE at all.

Do not define a pattern named ‘return’ if you want the FUNCTION_EPILOGUE
to be used. If you want the target switches to control whether return instruc-
tions or epilogues are used, define a ‘return’ pattern with a validity condition
that tests the target switches appropriately. If the ‘return’ pattern’s validity
condition is false, epilogues will be used.

On machines where functions may or may not have frame-pointers, the function
exit code must vary accordingly. Sometimes the code for these two cases is
completely different. To determine whether a frame pointer is wanted, the
macro can refer to the variable frame_pointer_needed. The variable’s value
will be 1 when compiling a function that needs a frame pointer.

Normally, FUNCTION_PROLOGUE and FUNCTION_EPILOGUE must treat leaf func-
tions specially. The C variable leaf_function is nonzero for such a function.
See Section 17.5.4 [Leaf Functions], page 312.

Chapter 17: Target Description Macros 335

On some machines, some functions pop their arguments on exit while others
leave that for the caller to do. For example, the 68020 when given ‘-mrtd’ pops
arguments in functions that take a fixed number of arguments.

Your definition of the macro RETURN_POPS_ARGS decides which functions pop
their own arguments. FUNCTION_EPILOGUE needs to know what was decided.
The variable that is called current_function_pops_args is the number of
bytes of its arguments that a function should pop. See Section 17.7.6 [Scalar
Return], page 329.

DELAY_SLOTS_FOR_EPILOGUE
Define this macro if the function epilogue contains delay slots to which instruc-
tions from the rest of the function can be “moved”. The definition should be a
C expression whose value is an integer representing the number of delay slots
there.

ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)
A C expression that returns 1 if insn can be placed in delay slot number n of
the epilogue.

The argument n is an integer which identifies the delay slot now being considered
(since different slots may have different rules of eligibility). It is never negative
and is always less than the number of epilogue delay slots (what DELAY_SLOTS_
FOR_EPILOGUE returns). If you reject a particular insn for a given delay slot, in
principle, it may be reconsidered for a subsequent delay slot. Also, other insns
may (at least in principle) be considered for the so far unfilled delay slot.

The insns accepted to fill the epilogue delay slots are put in an RTL list made
with insn_list objects, stored in the variable current_function_epilogue_
delay_list. The insn for the first delay slot comes first in the list. Your
definition of the macro FUNCTION_EPILOGUE should fill the delay slots by out-
putting the insns in this list, usually by calling final _scan_insn.

You need not define this macro if you did not define DELAY_SLOTS_FOR_
EPILOGUE.

17.7.10 Generating Code for Profiling

These macros will help you generate code for profiling.

FUNCTION_PROFILER (file, labelno)
A C statement or compound statement to output to file some assembler code
to call the profiling subroutine mcount. Before calling, the assembler code must
load the address of a counter variable into a register where mcount expects to
find the address. The name of this variable is ‘LP’ followed by the number
labelno, so you would generate the name using ‘LP%d’ in a fprintf.

The details of how the address should be passed to mcount are determined
by your operating system environment, not by GNU CC. To figure them out,
compile a small program for profiling using the system’s installed C compiler
and look at the assembler code that results.

336 Using and Porting GNU CC

PROFILE_BEFORE_PROLOGUE
Define this macro if the code for function profiling should come before the
function prologue. Normally, the profiling code comes after.

FUNCTION_BLOCK_PROFILER (file, labelno)
A C statement or compound statement to output to file some assembler code to
initialize basic-block profiling for the current object module. This code should
call the subroutine __bb_init_func once per object module, passing it as its

sole argument the address of a block allocated in the object module.
The name of the block is a local symbol made with this statement:
ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 0);

Of course, since you are writing the definition of ASM_GENERATE_INTERNAL_
LABEL as well as that of this macro, you can take a short cut in the definition
of this macro and use the name that you know will result.

The first word of this block is a flag which will be nonzero if the object module
has already been initialized. So test this word first, and do not call __bb_init_
func if the flag is nonzero.

BLOCK_PROFILER (file, blockno)
A C statement or compound statement to increment the count associated with
the basic block number blockno. Basic blocks are numbered separately from
zero within each compilation. The count associated with block number blockno
is at index blockno in a vector of words; the name of this array is a local symbol
made with this statement:

ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 2);

Of course, since you are writing the definition of ASM_GENERATE_INTERNAL_
LABEL as well as that of this macro, you can take a short cut in the definition
of this macro and use the name that you know will result.

BLOCK_PROFILER_CODE
A C function or functions which are needed in the library to support block
profiling.

17.8 Implementing the Varargs Macros

GNU CC comes with an implementation of ‘varargs.h’ and ‘stdarg.h’ that work with-
out change on machines that pass arguments on the stack. Other machines require their
own implementations of varargs, and the two machine independent header files must have
conditionals to include it.

ANSI ‘stdarg.h’ differs from traditional ‘varargs .h’ mainly in the calling convention for
va_start. The traditional implementation takes just one argument, which is the variable
in which to store the argument pointer. The ANSI implementation of va_start takes an
additional second argument. The user is supposed to write the last named argument of the
function here.

However, va_start should not use this argument. The way to find the end of the named
arguments is with the built-in functions described below.

Chapter 17: Target Description Macros 337

__builtin_saveregs ()
Use this built-in function to save the argument registers in memory so that
the varargs mechanism can access them. Both ANSI and traditional versions
of va_start must use __builtin_saveregs, unless you use SETUP_INCOMING_
VARARGS (see below) instead.

On some machines, __builtin_saveregs is open-coded under the control of
the macro EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine
written in assembler language, found in ‘libgcc2.c’.

Code generated for the call to __builtin_saveregs appears at the beginning of
the function, as opposed to where the call to __builtin_saveregs is written,
regardless of what the code is. This is because the registers must be saved
before the function starts to use them for its own purposes.

__builtin_args_info (category)
Use this built-in function to find the first anonymous arguments in registers.

In general, a machine may have several categories of registers used for argu-
ments, each for a particular category of data types. (For example, on some
machines, floating-point registers are used for floating-point arguments while
other arguments are passed in the general registers.) To make non-varargs
functions use the proper calling convention, you have defined the CUMULATIVE_
ARGS data type to record how many registers in each category have been used
so far

__builtin_args_info accesses the same data structure of type CUMULATIVE_
ARGS after the ordinary argument layout is finished with it, with category spec-
ifying which word to access. Thus, the value indicates the first unused register
in a given category.

Normally, you would use __builtin_args_info in the implementation of va_
start, accessing each category just once and storing the value in the va_list
object. This is because va_list will have to update the values, and there is no
way to alter the values accessed by __builtin_args_info.

__builtin_next_arg (lastarg)
This is the equivalent of __builtin_args_info, for stack arguments. It re-
turns the address of the first anonymous stack argument, as type void *. If
ARGS_GROW_DOWNWARD, it returns the address of the location above the first
anonymous stack argument. Use it in va_start to initialize the pointer for
fetching arguments from the stack. Also use it in va_start to verify that the
second parameter lastarg is the last named argument of the current function.

__builtin_classify_type (object)
Since each machine has its own conventions for which data types are passed
in which kind of register, your implementation of va_arg has to embody these
conventions. The easiest way to categorize the specified data type is to use
__builtin_classify_type together with sizeof and __alignof__.
__builtin_classify_type ignores the value of object, considering only its

data type. It returns an integer describing what kind of type that is—integer,
floating, pointer, structure, and so on.

338 Using and Porting GNU CC

The file ‘typeclass.h’ defines an enumeration that you can use to interpret
the values of __builtin_classify_type.

These machine description macros help implement varargs:

EXPAND_BUILTIN_SAVEREGS (args)
If defined, is a C expression that produces the machine-specific code for a call
to __builtin_saveregs. This code will be moved to the very beginning of
the function, before any parameter access are made. The return value of this
function should be an RTX that contains the value to use as the return of
__builtin_saveregs.

The argument args is a tree_list containing the arguments that were passed
to __builtin_saveregs.

If this macro is not defined, the compiler will output an ordinary call to the
library function ‘__builtin_saveregs’.

SETUP_INCOMING_VARARGS (args’sofar, mode, type,
pretend_args_size, second_time) This macro offers an alternative to using __
builtin_saveregs and defining the macro EXPAND_BUILTIN_SAVEREGS. Use
it to store the anonymous register arguments into the stack so that all the
arguments appear to have been passed consecutively on the stack. Once this
is done, you can use the standard implementation of varargs that works for
machines that pass all their arguments on the stack.

The argument args_so_far is the CUMULATIVE_ARGS data structure, containing
the values that obtain after processing of the named arguments. The arguments
mode and type describe the last named argument—its machine mode and its
data type as a tree node.

The macro implementation should do two things: first, push onto the stack all
the argument registers not used for the named arguments, and second, store
the size of the data thus pushed into the int-valued variable whose name is
supplied as the argument pretend_args_size. The value that you store here will
serve as additional offset for setting up the stack frame.

Because you must generate code to push the anonymous arguments at compile
time without knowing their data types, SETUP_INCOMING_VARARGS is only useful
on machines that have just a single category of argument register and use it
uniformly for all data types.

If the argument second_time is nonzero, it means that the arguments of the
function are being analyzed for the second time. This happens for an inline
function, which is not actually compiled until the end of the source file. The
macro SETUP_INCOMING_VARARGS should not generate any instructions in this
case.

STRICT_ARGUMENT_NAMING
Define this macro if the location where a function argument is passed depends
on whether or not it is a named argument.
This macro controls how the named argument to FUNCTION_ARG is set for
varargs and stdarg functions. With this macro defined, the named argument is

Chapter 17: Target Description Macros 339

always true for named arguments, and false for unnamed arguments. If this is
not defined, but SETUP_INCOMING_VARARGS is defined, then all arguments are
treated as named. Otherwise, all named arguments except the last are treated
as named.

17.9 Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address
of a nested function is taken. It normally resides on the stack, in the stack frame of the
containing function. These macros tell GNU CC how to generate code to allocate and
initialize a trampoline.

The instructions in the trampoline must do two things: load a constant address into
the static chain register, and jump to the real address of the nested function. On CISC
machines such as the m68k, this requires two instructions, a move immediate and a jump.
Then the two addresses exist in the trampoline as word-long immediate operands. On RISC
machines, it is often necessary to load each address into a register in two parts. Then pieces
of each address form separate immediate operands.

The code generated to initialize the trampoline must store the variable parts—the static
chain value and the function address—into the immediate operands of the instructions. On
a CISC machine, this is simply a matter of copying each address to a memory reference at
the proper offset from the start of the trampoline. On a RISC machine, it may be necessary
to take out pieces of the address and store them separately.

TRAMPOLINE_TEMPLATE (file)
A C statement to output, on the stream file, assembler code for a block of data
that contains the constant parts of a trampoline. This code should not include
a label—the label is taken care of automatically.

TRAMPOLINE_SECTION
The name of a subroutine to switch to the section in which the trampoline
template is to be placed (see Section 17.14 [Sections], page 351). The default
is a value of ‘readonly_data_section’, which places the trampoline in the
section containing read-only data.

TRAMPOLINE_SIZE
A C expression for the size in bytes of the trampoline, as an integer.

TRAMPOLINE_ALIGNMENT
Alignment required for trampolines, in bits.

If you don’t define this macro, the value of BIGGEST_ALIGNMENT is used for
aligning trampolines.

INITIALIZE_TRAMPOLINE (addr, fnaddr, static'chain)
A C statement to initialize the variable parts of a trampoline. addr is an RTX
for the address of the trampoline; fnaddr is an RTX for the address of the
nested function; static_chain is an RTX for the static chain value that should
be passed to the function when it is called.

340 Using and Porting GNU CC

ALLOCATE_TRAMPOLINE (fp)
A C expression to allocate run-time space for a trampoline. The expression
value should be an RTX representing a memory reference to the space for the
trampoline.

If this macro is not defined, by default the trampoline is allocated as a stack slot.
This default is right for most machines. The exceptions are machines where it
is impossible to execute instructions in the stack area. On such machines, you
may have to implement a separate stack, using this macro in conjunction with
FUNCTION_PROLOGUE and FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes the compi-
lation status of the immediate containing function of the function which the
trampoline is for. Normally (when ALLOCATE_TRAMPOLINE is not defined), the
stack slot for the trampoline is in the stack frame of this containing function.
Other allocation strategies probably must do something analogous with this
information.

Implementing trampolines is difficult on many machines because they have separate
instruction and data caches. Writing into a stack location fails to clear the memory in the
instruction cache, so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache
whenever a trampoline is set up. The other is to make all trampolines identical, by having
them jump to a standard subroutine. The former technique makes trampoline execution
faster; the latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following
macros which describe the shape of the cache.

INSN_CACHE_SIZE
The total size in bytes of the cache.

INSN_CACHE_LINE_WIDTH
The length in bytes of each cache line. The cache is divided into cache lines
which are disjoint slots, each holding a contiguous chunk of data fetched from
memory. Each time data is brought into the cache, an entire line is read at
once. The data loaded into a cache line is always aligned on a boundary equal
to the line size.

INSN_CACHE_DEPTH
The number of alternative cache lines that can hold any particular memory
location.

Alternatively, if the machine has system calls or instructions to clear the instruction
cache directly, you can define the following macro.

CLEAR_INSN_CACHE (BEG, END)
If defined, expands to a C expression clearing the instruction cache in the
specified interval. If it is not defined, and the macro INSN_CACHE SIZE is
defined, some generic code is generated to clear the cache. The definition of
this macro would typically be a series of asm statements. Both BEG and END
are both pointer expressions.

Chapter 17: Target Description Macros 341

To use a standard subroutine, define the following macro. In addition, you must make
sure that the instructions in a trampoline fill an entire cache line with identical instructions,
or else ensure that the beginning of the trampoline code is always aligned at the same point
in its cache line. Look in ‘m68k.h’ as a guide.

TRANSFER_FROM_TRAMPOLINE
Define this macro if trampolines need a special subroutine to do their work. The
macro should expand to a series of asm statements which will be compiled with
GNU CC. They go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C
function when you jump to the subroutine, you can do so by placing a special
label of your own in the assembler code. Use one asm statement to generate an
assembler label, and another to make the label global. Then trampolines can
use that label to jump directly to your special assembler code.

17.10 Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

MULSI3_LIBCALL
A C string constant giving the name of the function to call for multiplication
of one signed full-word by another. If you do not define this macro, the default

name is used, which is __mulsi3, a function defined in ‘libgcc.a’.

DIVSI3_LIBCALL
A C string constant giving the name of the function to call for division of one
signed full-word by another. If you do not define this macro, the default name

is used, which is __divsi3, a function defined in ‘1ibgcc.a’.

UDIVSI3_LIBCALL
A C string constant giving the name of the function to call for division of one
unsigned full-word by another. If you do not define this macro, the default
name is used, which is __udivsi3, a function defined in ‘libgcc.a’.

MODSI3_LIBCALL
A C string constant giving the name of the function to call for the remainder
in division of one signed full-word by another. If you do not define this macro,
the default name is used, which is __modsi3, a function defined in ‘1ibgcc.a’.

UMODSI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one unsigned full-word by another. If you do not define this macro,
the default name is used, which is __umodsi3, a function defined in ‘1ibgcc.a’.

MULDI3_LIBCALL
A C string constant giving the name of the function to call for multiplication of
one signed double-word by another. If you do not define this macro, the default
name is used, which is __muldi3, a function defined in ‘libgcc.a’.

342 Using and Porting GNU CC

DIVDI3_LIBCALL
A C string constant giving the name of the function to call for division of one
signed double-word by another. If you do not define this macro, the default
name is used, which is __divdi3, a function defined in ‘libgcc.a’.

UDIVDI3_LIBCALL
A C string constant giving the name of the function to call for division of one
unsigned full-word by another. If you do not define this macro, the default
name is used, which is __udivdi3, a function defined in ‘libgcc.a’.

MODDI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one signed double-word by another. If you do not define this macro,
the default name is used, which is __moddi3, a function defined in ‘1ibgcc.a’.

UMODDI3_LIBCALL
A C string constant giving the name of the function to call for the remainder in
division of one unsigned full-word by another. If you do not define this macro,
the default name is used, which is __umoddi3, a function defined in ‘1ibgcc.a’.

INIT_TARGET_OPTABS
Define this macro as a C statement that declares additional library routines
renames existing ones. init_optabs calls this macro after initializing all the
normal library routines.

TARGET _EDOM
The value of EDOM on the target machine, as a C integer constant expression. If
you don’t define this macro, GNU CC does not attempt to deposit the value of
EDOM into errno directly. Look in ‘/usr/include/errno.h’ to find the value
of EDOM on your system.

If you do not define TARGET_EDOM, then compiled code reports domain errors
by calling the library function and letting it report the error. If mathematical
functions on your system use matherr when there is an error, then you should
leave TARGET_EDOM undefined so that matherr is used normally.

GEN_ERRNO_RTX
Define this macro as a C expression to create an rtl expression that refers to
the global “variable” errno. (On certain systems, errno may not actually be
a variable.) If you don’t define this macro, a reasonable default is used.

TARGET _MEM_FUNCTIONS
Define this macro if GNU CC should generate calls to the System V (and ANSI
C) library functions memcpy and memset rather than the BSD functions bcopy
and bzero.

LIBGCC_NEEDS_DOUBLE
Define this macro if only float arguments cannot be passed to library routines
(so they must be converted to double). This macro affects both how library
calls are generated and how the library routines in ‘libgccl.c’ accept their
arguments. It is useful on machines where floating and fixed point arguments
are passed differently, such as the i860.

Chapter 17:

FLOAT_ARG_

Target Description Macros 343

TYPE
Define this macro to override the type used by the library routines to pick up
arguments of type float. (By default, they use a union of float and int.)

The obvious choice would be float—but that won’t work with traditional C
compilers that expect all arguments declared as float to arrive as double. To
avoid this conversion, the library routines ask for the value as some other type
and then treat it as a float.

On some systems, no other type will work for this. For these systems, you must
use LIBGCC_NEEDS_DOUBLE instead, to force conversion of the values double
before they are passed.

FLOATIFY (passed-value)

Define this macro to override the way library routines redesignate a float
argument as a float instead of the type it was passed as. The default is an
expression which takes the float field of the union.

FLOAT_VALUE_TYPE

Define this macro to override the type used by the library routines to return
values that ought to have type float. (By default, they use int.)

The obvious choice would be float—but that won’t work with traditional C
compilers gratuitously convert values declared as float into double.

INTIFY (float-value)

nongcc_SI_

Define this macro to override the way the value of a float-returning library
routine should be packaged in order to return it. These functions are actually
declared to return type FLOAT_VALUE_TYPE (normally int).

These values can’t be returned as type float because traditional C compilers
would gratuitously convert the value to a double.

A local variable named intify is always available when the macro INTIFY is
used. It is a union of a float field named £ and a field named i whose type is
FLOAT_VALUE_TYPE or int.

If you don’t define this macro, the default definition works by copying the value
through that union.

type
Define this macro as the name of the data type corresponding to SImode in the
system’s own C compiler.

You need not define this macro if that type is long int, as it usually is.

nongcc_word_type

Define this macro as the name of the data type corresponding to the word mode
in the system’s own C compiler.

You need not define this macro if that type is long int, as it usually is.

perform_...

Define these macros to supply explicit C statements to carry out various
arithmetic operations on types float and double in the library routines in
‘libgccl.c’. See that file for a full list of these macros and their arguments.

344 Using and Porting GNU CC

On most machines, you don’t need to define any of these macros, because the
C compiler that comes with the system takes care of doing them.

NEXT_OBJC_RUNTIME
Define this macro to generate code for Objective C message sending using the
calling convention of the NeXT system. This calling convention involves passing
the object, the selector and the method arguments all at once to the method-
lookup library function.

The default calling convention passes just the object and the selector to the
lookup function, which returns a pointer to the method.

17.11 Addressing Modes

This is about addressing modes.

HAVE_POST_INCREMENT
Define this macro if the machine supports post-increment addressing.

HAVE_PRE_INCREMENT
HAVE_POST_DECREMENT
HAVE_PRE_DECREMENT
Similar for other kinds of addressing.

CONSTANT_ADDRESS_P (x)
A C expression that is 1 if the RTX x is a constant which is a valid address.
On most machines, this can be defined as CONSTANT_P (x), but a few machines
are more restrictive in which constant addresses are supported.

CONSTANT_P accepts integer-values expressions whose values are not explicitly
known, such as symbol_ref, label_ref, and high expressions and const arith-
metic expressions, in addition to const_int and const_double expressions.

MAX_REGS_PER_ADDRESS
A number, the maximum number of registers that can appear in a valid memory
address. Note that it is up to you to specify a value equal to the maximum
number that GO_IF_LEGITIMATE_ADDRESS would ever accept.

GO_IF_LEGITIMATE_ADDRESS (mode, x, label)
A C compound statement with a conditional goto label; executed if x (an
RTX) is a legitimate memory address on the target machine for a memory
operand of mode mode.

It usually pays to define several simpler macros to serve as subroutines for this
one. Otherwise it may be too complicated to understand.

This macro must exist in two variants: a strict variant and a non-strict one. The
strict variant is used in the reload pass. It must be defined so that any pseudo-
register that has not been allocated a hard register is considered a memory
reference. In contexts where some kind of register is required, a pseudo-register
with no hard register must be rejected.

The non-strict variant is used in other passes. It must be defined to accept all
pseudo-registers in every context where some kind of register is required.

Chapter 17: Target Description Macros 345

Compiler source files that want to use the strict variant of this macro define the
macro REG_0K_STRICT. You should use an #ifdef REG_OK_STRICT conditional
to define the strict variant in that case and the non-strict variant otherwise.

Subroutines to check for acceptable registers for various purposes (one for base
registers, one for index registers, and so on) are typically among the subroutines
used to define GO_IF_LEGITIMATE_ADDRESS. Then only these subroutine macros
need have two variants; the higher levels of macros may be the same whether
strict or not.

Normally, constant addresses which are the sum of a symbol_ref and an integer
are stored inside a const RTX to mark them as constant. Therefore, there is
no need to recognize such sums specifically as legitimate addresses. Normally
you would simply recognize any const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that
are not marked with const. It assumes that a naked plus indicates indexing.
If so, then you must reject such naked constant sums as illegitimate addresses,
so that none of them will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends on the
section that the address refers to. On these machines, define the macro ENCODE_
SECTION_INFO to store the information into the symbol_ref, and then check
for it here. When you see a const, you will have to look inside it to find the
symbol_ref in order to determine the section. See Section 17.16 [Assembler
Format], page 354.

The best way to modify the name string is by adding text to the beginning,
with suitable punctuation to prevent any ambiguity. Allocate the new name in
saveable_obstack. You will have to modify ASM_OUTPUT_LABELREF to remove
and decode the added text and output the name accordingly, and define STRIP_
NAME_ENCODING to access the original name string.

You can check the information stored here into the symbol _ref in the definitions
of the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS.

REG_OK_FOR_BASE_P (x)
A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use
as a base register. For hard registers, it should always accept those which the
hardware permits and reject the others. Whether the macro accepts or rejects
pseudo registers must be controlled by REG_0K_STRICT as described above. This
usually requires two variant definitions, of which REG_0K_STRICT controls the
one actually used.

REG_OK_FOR_INDEX_P (x)
A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use
as an index register.

The difference between an index register and a base register is that the index
register may be scaled. If an address involves the sum of two registers, neither
one of them scaled, then either one may be labeled the “base” and the other the
“index”; but whichever labeling is used must fit the machine’s constraints of
which registers may serve in each capacity. The compiler will try both labelings,

346 Using and Porting GNU CC

looking for one that is valid, and will reload one or both registers only if neither
labeling works.

LEGITIMIZE_ADDRESS (x, oldx, mode, win)
A C compound statement that attempts to replace x with a valid memory
address for an operand of mode mode. win will be a C statement label elsewhere
in the code; the macro definition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
to avoid further processing if the address has become legitimate.

x will always be the result of a call to break_out_memory_refs, and oldx will
be the operand that was given to that function to produce x.

The code generated by this macro should not alter the substructure of x. If it
transforms x into a more legitimate form, it should assign x (which will always
be a C variable) a new value.

It is not necessary for this macro to come up with a legitimate address. The
compiler has standard ways of doing so in all cases. In fact, it is safe for this
macro to do nothing. But often a machine-dependent strategy can generate
better code.

GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)
A C statement or compound statement with a conditional goto label; executed
if memory address x (an RTX) can have different meanings depending on the
machine mode of the memory reference it is used for or if the address is valid
for some modes but not others.

Autoincrement and autodecrement addresses typically have mode-dependent
effects because the amount of the increment or decrement is the size of the
operand being addressed. Some machines have other mode-dependent ad-
dresses. Many RISC machines have no mode-dependent addresses.

You may assume that addr is a valid address for the machine.

LEGITIMATE_CONSTANT_P (x)
A C expression that is nonzero if x is a legitimate constant for an immediate
operand on the target machine. You can assume that x satisfies CONSTANT_P,
so you need not check this. In fact, ‘1’ is a suitable definition for this macro on
machines where anything CONSTANT_P is valid.

17.12 Condition Code Status

This describes the condition code status.

The file ‘conditions.h’ defines a variable cc_status to describe how the condition code
was computed (in case the interpretation of the condition code depends on the instruction
that it was set by). This variable contains the RTL expressions on which the condition code
is currently based, and several standard flags.

Sometimes additional machine-specific flags must be defined in the machine description
header file. It can also add additional machine-specific information by defining CC_STATUS_
MDEP.

Chapter 17: Target Description Macros 347

CC_STATUS_MDEP
C code for a data type which is used for declaring the mdep component of
cc_status. It defaults to int.

This macro is not used on machines that do not use ccO.

CC_STATUS_MDEP_INIT
A C expression to initialize the mdep field to “empty”. The default definition
does nothing, since most machines don’t use the field anyway. If you want to
use the field, you should probably define this macro to initialize it.

This macro is not used on machines that do not use ccO.

NOTICE_UPDATE_CC (exp, insn)
A C compound statement to set the components of cc_status appropriately
for an insn insn whose body is exp. It is this macro’s responsibility to recognize
insns that set the condition code as a byproduct of other activity as well as
those that explicitly set (cc0).

This macro is not used on machines that do not use ccO.

If there are insns that do not set the condition code but do alter other machine
registers, this macro must check to see whether they invalidate the expressions
that the condition code is recorded as reflecting. For example, on the 68000,
insns that store in address registers do not set the condition code, which means
that usually NOTICE_UPDATE_CC can leave cc_status unaltered for such insns.
But suppose that the previous insn set the condition code based on location
‘a4@(102)’ and the current insn stores a new value in ‘a4’. Although the con-
dition code is not changed by this, it will no longer be true that it reflects the
contents of ‘a4@(102)’. Therefore, NOTICE_UPDATE_CC must alter cc_status
in this case to say that nothing is known about the condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with the results
of peephole optimization: insns whose patterns are parallel RTXs containing
various reg, mem or constants which are just the operands. The RTL structure
of these insns is not sufficient to indicate what the insns actually do. What
NOTICE_UPDATE_CC should do when it sees one is just to run CC_STATUS_INIT.

A possible definition of NOTICE_UPDATE_CC is to call a function that looks at an
attribute (see Section 16.15 [Insn Attributes], page 282) named, for example,
‘cc’. This avoids having detailed information about patterns in two places, the
‘md’ file and in NOTICE_UPDATE_CC.

EXTRA_CC_MODES
A list of names to be used for additional modes for condition code values in
registers (see Section 16.10 [Jump Patterns], page 271). These names are added
to enum machine_mode and all have class MODE_CC. By convention, they should
start with ‘CC’ and end with ‘mode’.

You should only define this macro if your machine does not use ccO and only
if additional modes are required.
EXTRA_CC_NAMES

A list of C strings giving the names for the modes listed in EXTRA_CC_MODES.
For example, the Sparc defines this macro and EXTRA_CC_MODES as

348 Using and Porting GNU CC

#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
#define EXTRA_CC_NAMES "CC_NOOV", "CCFP'", "CCFPE"

This macro is not required if EXTRA_CC_MODES is not defined.

SELECT_CC_MODE (op, x, y)
Returns a mode from class MODE_CC to be used when comparison operation code
op is applied to rtx x and y. For example, on the Sparc, SELECT_CC_MODE is
defined as (see see Section 16.10 [Jump Patterns|, page 271 for a description of
the reason for this definition)

#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
|| GET_CODE (X) == NEG) \
? CC_NOOVmode : CCmode))

You need not define this macro if EXTRA_CC_MODES is not defined.

CANONICALIZE_COMPARISON (code, op0, opl)
One some machines not all possible comparisons are defined, but you can con-
vert an invalid comparison into a valid one. For example, the Alpha does not
have a GT comparison, but you can use an LT comparison instead and swap the
order of the operands.

On such machines, define this macro to be a C statement to do any required
conversions. code is the initial comparison code and op0 and opl are the left
and right operands of the comparison, respectively. You should modify code,
op0, and opl as required.

GNU CC will not assume that the comparison resulting from this macro is valid
but will see if the resulting insn matches a pattern in the ‘md’ file.

You need not define this macro if it would never change the comparison code
or operands.

REVERSIBLE_CC_MODE (mode)
A C expression whose value is one if it is always safe to reverse a comparison
whose mode is mode. If SELECT_CC_MODE can ever return mode for a floating-
point inequality comparison, then REVERSIBLE_CC_MODE (mode) must be zero.

You need not define this macro if it would always returns zero or if the floating-
point format is anything other than IEEE_FLOAT_FORMAT. For example, here is
the definition used on the Sparc, where floating-point inequality comparisons
are always given CCFPEmode:

#define REVERSIBLE_CC_MODE(MODE) ((MODE) '= CCFPEmode)
17.13 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target
machine.

Chapter 17: Target Description Macros 349

CONST_COSTS (x, code, outer'code)

A part of a C switch statement that describes the relative costs of constant
RTL expressions. It must contain case labels for expression codes const_int,
const, symbol_ref, label_ref and const_double. Each case must ultimately
reach a return statement to return the relative cost of the use of that kind of
constant value in an expression. The cost may depend on the precise value of
the constant, which is available for examination in x, and the rtx code of the
expression in which it is contained, found in outer_code.

code is the expression code—redundant, since it can be obtained with GET_CODE

(x).

RTX_COSTS (x, code, outer’'code)
Like CONST_COSTS but applies to nonconstant RTL expressions. This can be
used, for example, to indicate how costly a multiply instruction is. In writing
this macro, you can use the construct COSTS_N_INSNS (n) to specify a cost
equal to n fast instructions. outer_code is the code of the expression in which
x is contained.

This macro is optional; do not define it if the default cost assumptions are
adequate for the target machine.

ADDRESS_COST (address)
An expression giving the cost of an addressing mode that contains address. If
not defined, the cost is computed from the address expression and the CONST_
COSTS values.

For most CISC machines, the default cost is a good approximation of the true
cost of the addressing mode. However, on RISC machines, all instructions
normally have the same length and execution time. Hence all addresses will
have equal costs.

In cases where more than one form of an address is known, the form with the
lowest cost will be used. If multiple forms have the same, lowest, cost, the one
that is the most complex will be used.

For example, suppose an address that is equal to the sum of a register and
a constant is used twice in the same basic block. When this macro is not
defined, the address will be computed in a register and memory references will
be indirect through that register. On machines where the cost of the addressing
mode containing the sum is no higher than that of a simple indirect reference,
this will produce an additional instruction and possibly require an additional
register. Proper specification of this macro eliminates this overhead for such
machines.

Similar use of this macro is made in strength reduction of loops.
address need not be valid as an address. In such a case, the cost is not relevant
and can be any value; invalid addresses need not be assigned a different cost.

On machines where an address involving more than one register is as cheap as
an address computation involving only one register, defining ADDRESS_COST to
reflect this can cause two registers to be live over a region of code where only
one would have been if ADDRESS_COST were not defined in that manner. This

350

Using and Porting GNU CC

effect should be considered in the definition of this macro. Equivalent costs
should probably only be given to addresses with different numbers of registers
on machines with lots of registers.

This macro will normally either not be defined or be defined as a constant.

REGISTER_MOVE_COST (from, to)

A C expression for the cost of moving data from a register in class from to
one in class to. The classes are expressed using the enumeration values such as
GENERAL_REGS. A value of 4 is the default; other values are interpreted relative
to that.

It is not required that the cost always equal 2 when from is the same as to; on
some machines it is expensive to move between registers if they are not general
registers.

If reload sees an insn consisting of a single set between two hard registers, and
if REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does
not check to ensure that the constraints of the insn are met. Setting a cost of
other than 2 will allow reload to verify that the constraints are met. You should
do this if the ‘movm’ pattern’s constraints do not allow such copying.

MEMORY_MOVE_COST (m)

A C expression for the cost of moving data of mode m between a register and
memory. A value of 2 is the default; this cost is relative to those in REGISTER_
MOVE_COST.

If moving between registers and memory is more expensive than between two
registers, you should define this macro to express the relative cost.

BRANCH_COST

A C expression for the cost of a branch instruction. A value of 1 is the default;
other values are interpreted relative to that.

Here are additional macros which do not specify precise relative costs, but only that
certain actions are more expensive than GNU CC would ordinarily expect.

SLOW_BYTE_ACCESS

Define this macro as a C expression which is nonzero if accessing less than a
word of memory (i.e. a char or a short) is no faster than accessing a word of
memory, i.e., if such access require more than one instruction or if there is no
difference in cost between byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the
smallest containing object; when it is defined, a fullword load will be used if
alignment permits. Unless bytes accesses are faster than word accesses, using
word accesses is preferable since it may eliminate subsequent memory access if
subsequent accesses occur to other fields in the same word of the structure, but
to different bytes.

SLOW_ZERO_EXTEND

Define this macro if zero-extension (of a char or short to an int) can be done
faster if the destination is a register that is known to be zero.

Chapter 17: Target Description Macros 351

If you define this macro, you must have instruction patterns that recognize RTL
structures like this:

(set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)

and likewise for HImode.

SLOW_UNALIGNED_ACCESS
Define this macro to be the value 1 if unaligned accesses have a cost many
times greater than aligned accesses, for example if they are emulated in a trap

handler.

When this macro is non-zero, the compiler will act as if STRICT_ALIGNMENT were
non-zero when generating code for block moves. This can cause significantly
more instructions to be produced. Therefore, do not set this macro non-zero if
unaligned accesses only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined.

DONT_REDUCE_ADDR
Define this macro to inhibit strength reduction of memory addresses. (On some
machines, such strength reduction seems to do harm rather than good.)

MOVE_RATIO
The number of scalar move insns which should be generated instead of a string
move insn or a library call. Increasing the value will always make code faster,
but eventually incurs high cost in increased code size.

If you don’t define this, a reasonable default is used.

NO_FUNCTION_CSE
Define this macro if it is as good or better to call a constant function address
than to call an address kept in a register.

NO_RECURSIVE_FUNCTION_CSE
Define this macro if it is as good or better for a function to call itself with an
explicit address than to call an address kept in a register.

ADJUST_COST (insn, link, dep’insn, cost)
A C statement (sans semicolon) to update the integer variable cost based on the
relationship between insn that is dependent on dep_insn through the dependence
link. The default is to make no adjustment to cost. This can be used for example
to specify to the scheduler that an output- or anti-dependence does not incur
the same cost as a data-dependence.

17.14 Dividing the Output into Sections (Texts, Data, ...)

An object file is divided into sections containing different types of data. In the most
common case, there are three sections: the text section, which holds instructions and read-
only data; the data section, which holds initialized writable data; and the bss section, which
holds uninitialized data. Some systems have other kinds of sections.

The compiler must tell the assembler when to switch sections. These macros control what
commands to output to tell the assembler this. You can also define additional sections.

352 Using and Porting GNU CC

TEXT_SECTION_ASM_OP
A C expression whose value is a string containing the assembler operation that
should precede instructions and read-only data. Normally ".text" is right.

DATA_SECTION_ASM_OP
A C expression whose value is a string containing the assembler operation to
identify the following data as writable initialized data. Normally ".data" is
right.

SHARED_SECTION_ASM_OP
if defined, a C expression whose value is a string containing the assembler
operation to identify the following data as shared data. If not defined, DATA_
SECTION_ASM_0OP will be used.

INIT_SECTION_ASM_OP
if defined, a C expression whose value is a string containing the assembler
operation to identify the following data as initialization code. If not defined,
GNU CC will assume such a section does not exist.

EXTRA_SECTIONS
A list of names for sections other than the standard two, which are in_text and
in_data. You need not define this macro on a system with no other sections

(that GCC needs to use).

EXTRA_SECTION_FUNCTIONS
One or more functions to be defined in ‘varasm.c’. These functions should do
jobs analogous to those of text_sectionand data_section, for your additional
sections. Do not define this macro if you do not define EXTRA_SECTIONS.

READONLY_DATA_SECTION
On most machines, read-only variables, constants, and jump tables are placed
in the text section. If this is not the case on your machine, this macro should be
defined to be the name of a function (either data_section or a function defined
in EXTRA_SECTIONS) that switches to the section to be used for read-only items.

If these items should be placed in the text section, this macro should not be

defined.

SELECT_SECTION (exp, reloc)
A C statement or statements to switch to the appropriate section for output
of exp. You can assume that exp is either a VAR_DECL node or a constant
of some sort. reloc indicates whether the initial value of exp requires link-
time relocations. Select the section by calling text_section or one of the
alternatives for other sections.

Do not define this macro if you put all read-only variables and constants in the
read-only data section (usually the text section).

SELECT_RTX_SECTION (mode, rtx)
A C statement or statements to switch to the appropriate section for output
of rtx in mode mode. You can assume that rtx is some kind of constant in
RTL. The argument mode is redundant except in the case of a const_int rtx.

Chapter 17: Target Description Macros 353

Select the section by calling text_section or one of the alternatives for other
sections.

Do not define this macro if you put all constants in the read-only data section.

JUMP_TABLES_IN_TEXT_SECTION
Define this macro if jump tables (for tablejump insns) should be output in the
text section, along with the assembler instructions. Otherwise, the readonly
data section is used.

This macro is irrelevant if there is no separate readonly data section.

ENCODE_SECTION_INFO (decl)
Define this macro if references to a symbol must be treated differently depending
on something about the variable or function named by the symbol (such as what
section it is in).
The macro definition, if any, is executed immediately after the rtl for decl has
been created and stored in DECL_RTL (decl). The value of the rtl will be a mem
whose address is a symbol_ref.

The usual thing for this macro to do is to record a flag in the symbol_ref (such
as SYMBOL_REF_FLAG) or to store a modified name string in the symbol_ref (if
one bit is not enough information).

STRIP_NAME_ENCODING (var, sym name)
Decode sym_name and store the real name part in var, sans the characters
that encode section info. Define this macro if ENCODE_SECTION_INFO alters the
symbol’s name string.

17.15 Position Independent Code

This section describes macros that help implement generation of position independent
code. Simply defining these macros is not enough to generate valid PIC; you must also
add support to the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as
well as LEGITIMIZE_ADDRESS. You must modify the definition of ‘movsi’ to do something
appropriate when the source operand contains a symbolic address. You may also need to
alter the handling of switch statements so that they use relative addresses.

PIC_OFFSET_TABLE_REGNUM
The register number of the register used to address a table of static data ad-
dresses in memory. In some cases this register is defined by a processor’s “appli-
cation binary interface” (ABI). When this macro is defined, RTL is generated
for this register once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent files to allocate
such a register (if necessary).

PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is clob-
bered by calls. Do not define this macro if PPIC_OFFSET_TABLE_REGNUM is not
defined.

354 Using and Porting GNU CC

FINALIZE_PIC
By generating position-independent code, when two different programs (A and
B) share a common library (libC.a), the text of the library can be shared
whether or not the library is linked at the same address for both programs.
In some of these environments, position-independent code requires not only the
use of different addressing modes, but also special code to enable the use of
these addressing modes.

The FINALIZE_PIC macro serves as a hook to emit these special codes once the
function is being compiled into assembly code, but not before. (It is not done
before, because in the case of compiling an inline function, it would lead to
multiple PIC prologues being included in functions which used inline functions
and were compiled to assembly language.)

LEGITIMATE_PIC_OPERAND_P (x)
A C expression that is nonzero if x is a legitimate immediate operand on the
target machine when generating position independent code. You can assume
that x satisfies CONSTANT_P, so you need not check this. You can also assume
flag_pic is true, so you need not check it either. You need not define this
macro if all constants (including SYMBOL_REF) can be immediate operands when
generating position independent code.

17.16 Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write in-
structions in assembler language-rather than what the instructions do.

17.16.1 The Overall Framework of an Assembler File

This describes the overall framework of an assembler file.

ASM_FILE_START (stream)
A C expression which outputs to the stdio stream stream some appropriate text
to go at the start of an assembler file.

Normally this macro is defined to output a line containing ‘#NO_APP’, which is
a comment that has no effect on most assemblers but tells the GNU assembler
that it can save time by not checking for certain assembler constructs.

On systems that use SDB, it is necessary to output certain commands; see
‘attasm.h’.

ASM_FILE_END (stream)
A C expression which outputs to the stdio stream stream some appropriate text
to go at the end of an assembler file.
If this macro is not defined, the default is to output nothing special at the end
of the file. Most systems don’t require any definition.

On systems that use SDB, it is necessary to output certain commands; see
‘attasm.h’.

Chapter 17: Target Description Macros 355

ASM_IDENTIFY_GCC (file)
A C statement to output assembler commands which will identify the object
file as having been compiled with GNU CC (or another GNU compiler).

If you don’t define this macro, the string ‘gcc_compiled.:’ is output. This
string is calculated to define a symbol which, on BSD systems, will never be
defined for any other reason. GDB checks for the presence of this symbol when
reading the symbol table of an executable.

On non-BSD systems, you must arrange communication with GDB in some
other fashion. If GDB is not used on your system, you can define this macro
with an empty body.

ASM_COMMENT_START
A C string constant describing how to begin a comment in the target assembler
language. The compiler assumes that the comment will end at the end of the
line.

ASM_APP_ON
A C string constant for text to be output before each asm statement or group
of consecutive ones. Normally this is "#APP", which is a comment that has no
effect on most assemblers but tells the GNU assembler that it must check the
lines that follow for all valid assembler constructs.

ASM_APP_OFF
A C string constant for text to be output after each asm statement or group of
consecutive ones. Normally this is "#N0_APP", which tells the GNU assembler to
resume making the time-saving assumptions that are valid for ordinary compiler
output.

ASM_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output COFF information or DWARF debugging information
which indicates that filename name is the current source file to the stdio stream
stream.

This macro need not be defined if the standard form of output for the file format
in use is appropriate.

ASM_OUTPUT_SOURCE_LINE (stream, line)
A C statement to output DBX or SDB debugging information before code for
line number line of the current source file to the stdio stream stream.

This macro need not be defined if the standard form of debugging information
for the debugger in use is appropriate.

ASM_OUTPUT_IDENT (stream, string)
A C statement to output something to the assembler file to handle a ‘#ident’
directive containing the text string. If this macro is not defined, nothing is
output for a ‘#ident’ directive.

ASM_OUTPUT_SECTION_NAME (stream, decl, name)
A C statement to output something to the assembler file to switch to section
name for object decl which is either a FUNCTION_DECL, a VAR_DECL or NULL_

356 Using and Porting GNU CC

TREE. Some target formats do not support arbitrary sections. Do not define
this macro in such cases.

At present this macro is only used to support section attributes. When this
macro is undefined, section attributes are disabled.

0BJC_PROLOGUE
A C statement to output any assembler statements which are required to pre-
cede any Objective C object definitions or message sending. The statement is
executed only when compiling an Objective C program.

17.16.2 Output of Data

This describes data output.

ASM_OUTPUT_LONG_DOUBLE (stream, value)

ASM_OUTPUT_DOUBLE (stream, value)

ASM_OUTPUT_FLOAT (stream, value)

ASM_OUTPUT_THREE_QUARTER_FLOAT (stream, value)

ASM_OUTPUT_SHORT_FLOAT (stream, value)

ASM_OUTPUT_BYTE_FLOAT (stream, value)
A C statement to output to the stdio stream stream an assembler instruction
to assemble a floating-point constant of TFmode, DFmode, SFmode, TQFmode,
HFmode, or QFmode, respectively, whose value is value. value will be a C ex-
pression of type REAL_VALUE_TYPE. Macros such as REAL_VALUE_TO_TARGET_
DOUBLE are useful for writing these definitions.

ASM_OUTPUT_QUADRUPLE_INT (stream, exp)

ASM_OUTPUT_DOUBLE_INT (stream, exp)

ASM_QUTPUT_INT (stream, exp)

ASM_OUTPUT_SHORT (stream, exp)

ASM_OUTPUT_CHAR (stream, exp)
A C statement to output to the stdio stream stream an assembler instruction to
assemble an integer of 16, 8, 4, 2 or 1 bytes, respectively, whose value is value.
The argument exp will be an RTL expression which represents a constant value.
Use ‘output_addr_const (stream, exp)’ to output this value as an assembler
expression.

For sizes larger than UNITS_PER_WORD, if the action of a macro would be identi-
cal to repeatedly calling the macro corresponding to a size of UNITS_PER_WORD,
once for each word, you need not define the macro.

ASM_OUTPUT_BYTE (stream, value)
A C statement to output to the stdio stream stream an assembler instruction
to assemble a single byte containing the number value.

ASM_BYTE_OP
A C string constant giving the pseudo-op to use for a sequence of single-byte
constants. If this macro is not defined, the default is "byte".

Chapter 17: Target Description Macros 357

ASM_QUTPUT_ASCII (stream, ptr, len)
A C statement to output to the stdio stream stream an assembler instruction
to assemble a string constant containing the len bytes at ptr. ptr will be a C
expression of type char * and len a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assem-
bler, do not define the macro ASM_OUTPUT_ASCII.

ASM_OUTPUT_POOL_PROLOGUE (file funname fundecl size)
A C statement to output assembler commands to define the start of the constant
pool for a function. funname is a string giving the name of the function. Should
the return type of the function be required, it can be obtained via fundecl. size
is the size, in bytes, of the constant pool that will be written immediately after
this call.

If no constant-pool prefix is required, the usual case, this macro need not be

defined.

ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno, jumpto)
A C statement (with or without semicolon) to output a constant in the constant
pool, if it needs special treatment. (This macro need not do anything for RTL
expressions that can be output normally.)

The argument file is the standard I/O stream to output the assembler code on.
x is the RTL expression for the constant to output, and mode is the machine
mode (in case x is a ‘const_int’). align is the required alignment for the value
x; you should output an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for the address of
this pool entry. The definition of this macro is responsible for outputting the
label definition at the proper place. Here is how to do this:

ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label
jumpto. This will prevent the same pool entry from being output a second time
in the usual manner.

You need not define this macro if it would do nothing.

IS_ASM_LOGICAL_LINE_SEPARATOR (C)
Define this macro as a C expression which is nonzero if C is used as a logical
line separator by the assembler.

€.

If you do not define this macro, the default is that only the character ¢;’ is
treated as a logical line separator.

ASM_OPEN_PAREN

ASM_CLOSE_PAREN
These macros are defined as C string constant, describing the syntax in the
assembler for grouping arithmetic expressions. The following definitions are
correct for most assemblers:

#define ASM_OPEN_PAREN " ("
#define ASM_CLOSE_PAREN ")"

358 Using and Porting GNU CC

These macros are provided by ‘real .h’ for writing the definitions of ASM_0UTPUT_DOUBLE
and the like:

REAL_VALUE_TO_TARGET_SINGLE (x, I)

REAL_VALUE_TO_TARGET_DOUBLE (x, 1)

REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, I)
These translate x, of type REAL_VALUE_TYPE, to the target’s floating point rep-
resentation, and store its bit pattern in the array of long int whose address
is 1. The number of elements in the output array is determined by the size of
the desired target floating point data type: 32 bits of it go in each long int
array element. Each array element holds 32 bits of the result, even if long int
is wider than 32 bits on the host machine.

The array element values are designed so that you can print them out using
fprintf in the order they should appear in the target machine’s memory.

REAL_VALUE_TO_DECIMAL (x, format, string)
This macro converts x, of type REAL_VALUE_TYPE, to a decimal number and
stores it as a string into string. You must pass, as string, the address of a long
enough block of space to hold the result.

The argument format is a printf-specification that serves as a suggestion for
how to format the output string.

17.16.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single
uninitialized variable.

ASM_OUTPUT_COMMON (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a common-label named name whose size is size bytes. The
variable rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself;
before and after that, output the additional assembler syntax for defining the
name, and a newline.

This macro controls how the assembler definitions of uninitialized global vari-
ables are output.

ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)
Like ASM_OUTPUT_COMMON except takes the required alignment as a separate,
explicit argument. If you define this macro, it is used in place of ASM_0QUTPUT_
COMMON, and gives you more flexibility in handling the required alignment of
the variable. The alignment is specified as the number of bits.

ASM_OUTPUT_SHARED_COMMON (stream, name, size, rounded)
If defined, it is similar to ASM_0UTPUT_COMMON, except that it is used when name
is shared. If not defined, ASM_OQUTPUT_COMMON will be used.

ASM_OUTPUT_LOCAL (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a local-common-label named name whose size is size bytes.

Chapter 17: Target Description Macros 359

The variable rounded is the size rounded up to whatever alignment the caller
wants.

Use the expression assemble_name (stream, name) to output the name itself;
before and after that, output the additional assembler syntax for defining the
name, and a newline.

This macro controls how the assembler definitions of uninitialized static vari-
ables are output.

ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)
Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate,
explicit argument. If you define this macro, it is used in place of ASM_0QUTPUT_
LOCAL, and gives you more flexibility in handling the required alignment of the
variable. The alignment is specified as the number of bits.

ASM_OUTPUT_SHARED_LOCAL (stream, name, size, rounded)
If defined, it is similar to ASM_OUTPUT_LOCAL, except that it is used when name
is shared. If not defined, ASM_QOUTPUT_LOCAL will be used.

17.16.4 Output and Generation of Labels

This is about outputting labels.

ASM_OUTPUT_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream the as-
sembler definition of a label named name. Use the expression assemble_name
(stream, name) to output the name itself; before and after that, output the
additional assembler syntax for defining the name, and a newline.

ASM_DECLARE_FUNCTION_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name name of a function which is being defined.
This macro is responsible for outputting the label definition (perhaps using
ASM_OUTPUT_LABEL). The argument decl is the FUNCTION_DECL tree node rep-
resenting the function.

If this macro is not defined, then the function name is defined in the usual
manner as a label (by means of ASM_OUTPUT_LABEL).

ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the size of a function which is being defined. The argu-
ment name is the name of the function. The argument decl is the FUNCTION_
DECL tree node representing the function.

If this macro is not defined, then the function size is not defined.

ASM_DECLARE_OBJECT_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name name of an initialized variable which is being
defined. This macro must output the label definition (perhaps using ASM_
OUTPUT_LABEL). The argument decl is the VAR_DECL tree node representing the
variable.

360 Using and Porting GNU CC

If this macro is not defined, then the variable name is defined in the usual
manner as a label (by means of ASM_OUTPUT_LABEL).

ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)
A C statement (sans semicolon) to finish up declaring a variable name once
the compiler has processed its initializer fully and thus has had a chance to
determine the size of an array when controlled by an initializer. This is used on
systems where it’s necessary to declare something about the size of the object.

If you don’t define this macro, that is equivalent to defining it to do nothing.

ASM_GLOBALIZE_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream some
commands that will make the label name global; that is, available for reference
from other files. Use the expression assemble_name (stream, name) to output
the name itself; before and after that, output the additional assembler syntax
for making that name global, and a newline.

ASM_WEAKEN_LABEL
A C statement (sans semicolon) to output to the stdio stream stream some
commands that will make the label name weak; that is, available for reference
from other files but only used if no other definition is available. Use the ex-
pression assemble_name (stream, name) to output the name itself; before and
after that, output the additional assembler syntax for making that name weak,
and a newline.

If you don’t define this macro, GNU CC will not support weak symbols and
you should not define the SUPPORTS_WEAK macro.

SUPPORTS_WEAK
A C expression which evaluates to true if the target supports weak symbols.

If you don’t define this macro, ‘defaults.h’ provides a default definition. If
ASM_WEAKEN_LABEL is defined, the default definition is ‘1’; otherwise, it is ‘0’.
Define this macro if you want to control weak symbol support with a compiler
flag such as ‘-melf’.

ASM_OUTPUT_EXTERNAL (stream, decl, name)
A C statement (sans semicolon) to output to the stdio stream stream any text
necessary for declaring the name of an external symbol named name which is
referenced in this compilation but not defined. The value of decl is the tree
node for the declaration.

This macro need not be defined if it does not need to output anything. The
GNU assembler and most Unix assemblers don’t require anything.

ASM_QUTPUT_EXTERNAL_LIBCALL (stream, symref)
A C statement (sans semicolon) to output on stream an assembler pseudo-op
to declare a library function name external. The name of the library function
is given by symref, which has type rtx and is a symbol_ref.

This macro need not be defined if it does not need to output anything. The
GNU assembler and most Unix assemblers don’t require anything.

Chapter 17: Target Description Macros 361

ASM_OUTPUT_LABELREF (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a reference
in assembler syntax to a label named name. This should add ‘_’ to the front
of the name, if that is customary on your operating system, as it is in most
Berkeley Unix systems. This macro is used in assemble_name.

ASM_OUTPUT_INTERNAL_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a label whose name is
made from the string prefix and the number num.

It is absolutely essential that these labels be distinct from the labels used for
user-level functions and variables. Otherwise, certain programs will have name
conflicts with internal labels.

It is desirable to exclude internal labels from the symbol table of the object file.
Most assemblers have a naming convention for labels that should be excluded;
on many systems, the letter ‘L’ at the beginning of a label has this effect. You
should find out what convention your system uses, and follow it.

The usual definition of this macro is as follows:

fprintf (stream, "L}s%d:\n", prefix, num)

ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)
A C statement to store into the string string a label whose name is made from
the string prefix and the number num.

This string, when output subsequently by assemble_name, should produce the
output that ASM_OUTPUT_INTERNAL_LABEL would produce with the same prefix
and num.

If the string begins with ‘*’) then assemble_name will output the rest of the
string unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL
to use ‘*’ in this way. If the string doesn’t start with ‘*’, then ASM_QUTPUT_
LABELREF gets to output the string, and may change it. (Of course, ASM_
OUTPUT_LABELREF is also part of your machine description, so you should know
what it does on your machine.)

ASM_FORMAT_PRIVATE_NAME (outvar, name, number)
A C expression to assign to outvar (which is a variable of type char *) a newly
allocated string made from the string name and the number number, with some
suitable punctuation added. Use alloca to get space for the string.

The string will be used as an argument to ASM_0UTPUT_LABELREF to produce an
assembler label for an internal static variable whose name is name. Therefore,
the string must be such as to result in valid assembler code. The argument num-
ber is different each time this macro is executed; it prevents conflicts between
similarly-named internal static variables in different scopes.

Ideally this string should not be a valid C identifier, to prevent any conflict
with the user’s own symbols. Most assemblers allow periods or percent signs
in assembler symbols; putting at least one of these between the name and the
number will suffice.

362 Using and Porting GNU CC

ASM_OUTPUT_DEF (stream, name, value)
A C statement to output to the stdio stream stream assembler code which
defines (equates) the symbol name to have the value value.

If SET_ASM _OP is defined, a default definition is provided which is correct for
most systems.

0BJC_GEN_METHOD_LABEL (buf, is'inst, class'name, catname, sel’'name)
Define this macro to override the default assembler names used for Objective

C methods.

The default name is a unique method number followed by the name of the class
(e.g. ‘_1_Foo’). For methods in categories, the name of the category is also
included in the assembler name (e.g. ‘_1_Foo_Bar’).

These names are safe on most systems, but make debugging difficult since the
method’s selector is not present in the name. Therefore, particular systems
define other ways of computing names.

buf is an expression of type char * which gives you a buffer in which to store the
name; its length is as long as class_name, cat_name and sel name put together,
plus 50 characters extra.

The argument is_inst specifies whether the method is an instance method or
a class method; class_name is the name of the class; cat_name is the name of
the category (or NULL if the method is not in a category); and sel_name is the
name of the selector.

On systems where the assembler can handle quoted names, you can use this
macro to provide more human-readable names.

17.16.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization
routines)—functions to initialize data in the program when the program is started. These
functions need to be called before the program is “started”—that is to say, before main is

called.

Compiling some languages generates destructors (also called termination routines) that
should be called when the program terminates.

To make the initialization and termination functions work, the compiler must output
something in the assembler code to cause those functions to be called at the appropriate
time. When you port the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization
and termination functions. Each way has two variants. Much of the structure is common
to all four variations.

The linker must build two lists of these functions—a list of initialization functions, called
__CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, —1, or a
count of the function pointers after it, depending on the environment). This is followed
by a series of zero or more function pointers to constructors (or destructors), followed by a
function pointer containing zero.

Chapter 17: Target Description Macros 363

Depending on the operating system and its executable file format, either ‘crtstuff.c’
or ‘libgcc2.c’ traverses these lists at startup time and exit time. Constructors are called
in reverse order of the list; destructors in forward order.

The best way to handle static constructors works only for object file formats which
provide arbitrarily-named sections. A section is set aside for a list of constructors, and
another for a list of destructors. Traditionally these are called ‘. ctors’ and ‘.dtors’. Each
object file that defines an initialization function also puts a word in the constructor section
to point to that function. The linker accumulates all these words into one contiguous
‘.ctors’ section. Termination functions are handled similarly.

To use this method, you need appropriate definitions of the macros ASM_OUTPUT_
CONSTRUCTOR and ASM_OUTPUT_DESTRUCTOR. Usually you can get them by including
‘svr4.h’.

When arbitrary sections are available, there are two variants, depending upon how the
code in ‘crtstuff.c’ is called. On systems that support an init section which is executed
at program startup, parts of ‘crtstuff.c’ are compiled into that section. The program is
linked by the gcc driver like this:

1d -o output file crtbegin.o ... crtend.o -lgcc

The head of a function (__do_global_ctors) appears in the init section of ‘crtbegin.o’
the remainder of the function appears in the init section of ‘crtend.o’. The linker will pull
these two parts of the section together, making a whole function. If any of the user’s object
files linked into the middle of it contribute code, then that code will be executed as part of
the body of __do_global_ctors.

To use this variant, you must define the INIT_SECTION_ASM_OP macro properly.

If no init section is available, do not define INIT_SECTION_ASM_OP. Then __do_global_
ctors is built into the text section like all other functions, and resides in ‘libgcc.a’.
When GCC compiles any function called main, it inserts a procedure call to __main as
the first executable code after the function prologue. The __main function, also defined in
‘libgcc2.c’, simply calls ‘__do_global_ctors’.

In file formats that don’t support arbitrary sections, there are again two variants. In
the simplest variant, the GNU linker (GNU 1d) and an ‘a.out’ format must be used. In
this case, ASM_OUTPUT_CONSTRUCTOR is defined to produce a .stabs entry of type ‘N_SETT’,
referencing the name __CTOR_LIST__, and with the address of the void function containing
the initialization code as its value. The GNU linker recognizes this as a request to add the
value to a “set”; the values are accumulated, and are eventually placed in the executable as
a vector in the format described above, with a leading (ignored) count and a trailing zero
element. ASM_OUTPUT_DESTRUCTOR is handled similarly. Since no init section is available,
the absence of INIT_SECTION_ASM_OP causes the compilation of main to call __main as
above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable
when you want to do dynamic linking and when using file formats which the GNU linker does
not support, such as ‘ECOFF’. In this case, ASM_0UTPUT_CONSTRUCTOR does not produce
an N_SETT symbol; initialization and termination functions are recognized simply by their
names. This requires an extra program in the linkage step, called collect2. This program
pretends to be the linker, for use with GNU CC; it does its job by running the ordinary

364 Using and Porting GNU CC

linker, but also arranges to include the vectors of initialization and termination functions.
These functions are called via __main as described above.

Choosing among these configuration options has been simplified by a set of operating-
system-dependent files in the ‘config’ subdirectory. These files define all of the relevant
parameters. Usually it is sufficient to include one into your specific machine-dependent
configuration file. These files are:

‘aoutos.h’
For operating systems using the ‘a.out’ format.

‘next.h’ For operating systems using the ‘MachO’ format.
‘svr3.h’ For System V Release 3 and similar systems using ‘COFF’ format.
‘svr4.h’ For System V Release 4 and similar systems using ‘ELF’ format.

‘vms .k’ For the VMS operating system.

17.16.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination
functions:

INIT_SECTION_ASM_OP
If defined, a C string constant for the assembler operation to identify the fol-
lowing data as initialization code. If not defined, GNU CC will assume such
a section does not exist. When you are using special sections for initializa-
tion and termination functions, this macro also controls how ‘crtstuff.c’ and
‘libgcc2.c’ arrange to run the initialization functions.

HAS_INIT_SECTION
If defined, main will not call __main as described above. This macro should be
defined for systems that control the contents of the init section on a symbol-by-
symbol basis, such as OSF/1, and should not be defined explicitly for systems
that support INIT_SECTION_ASM_OP.

LD_INIT_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is an initialization routine.

LD_FINI_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is a finalization routine.

INVOKE__main
If defined, main will call __main despite the presence of INIT_SECTION_ASM_OP.
This macro should be defined for systems where the init section is not actually
run automatically, but is still useful for collecting the lists of constructors and
destructors.

ASM_OUTPUT_CONSTRUCTOR (stream, name)
Define this macro as a C statement to output on the stream stream the assem-
bler code to arrange to call the function named name at initialization time.

Chapter 17: Target Description Macros 365

Assume that name is the name of a C function generated automatically by
the compiler. This function takes no arguments. Use the function assemble_
name to output the name name; this performs any system-specific syntactic
transformations such as adding an underscore.

If you don’t define this macro, nothing special is output to arrange to call
the function. This is correct when the function will be called in some other
manner—for example, by means of the collect2 program, which looks through
the symbol table to find these functions by their names.

ASM_OUTPUT_DESTRUCTOR (stream, name)
This is like ASM_OUTPUT_CONSTRUCTOR but used for termination functions rather
than initialization functions.

If your system uses collect?2 as the means of processing constructors, then that program
normally uses nm to scan an object file for constructor functions to be called. On certain
kinds of systems, you can define these macros to make collect2 work faster (and, in some
cases, make it work at all):

OBJECT_FORMAT_COFF
Define this macro if the system uses COFF (Common Object File Format)
object files, so that collect2 can assume this format and scan object files
directly for dynamic constructor/destructor functions.

OBJECT_FORMAT_ROSE
Define this macro if the system uses ROSE format object files, so that collect?2
can assume this format and scan object files directly for dynamic construc-
tor/destructor functions.

These macros are effective only in a native compiler; collect2 as part of a
cross compiler always uses nm for the target machine.

REAL_NM_FILE_NAME
Define this macro as a C string constant containing the file name to use to
execute nm. The default is to search the path normally for nm.

If your system supports shared libraries and has a program to list the dynamic
dependencies of a given library or executable, you can define these macros to
enable support for running initialization and termination functions in shared
libraries:

LDD_SUFFIX
Define this macro to a C string constant containing the name of the program
which lists dynamic dependencies, like "1dd" under SunOS 4.

PARSE_LDD_OUTPUT (PTR)
Define this macro to be C code that extracts filenames from the output of the
program denoted by LDD_SUFFIX. PTR is a variable of type char * that points
to the beginning of a line of output from LDD_SUFFIX. If the line lists a dynamic
dependency, the code must advance PTR to the beginning of the filename on
that line. Otherwise, it must set PTR to NULL.

366

Using and Porting GNU CC

17.16.7 Output of Assembler Instructions

This describes assembler instruction output.

REGISTER_NAMES

A C initializer containing the assembler’s names for the machine registers, each
one as a C string constant. This is what translates register numbers in the
compiler into assembler language.

ADDITIONAL_REGISTER_NAMES

If defined, a C initializer for an array of structures containing a name and a
register number. This macro defines additional names for hard registers, thus
allowing the asm option in declarations to refer to registers using alternate
names.

ASM_OUTPUT_OPCODE (stream, ptr)

Define this macro if you are using an unusual assembler that requires different
names for the machine instructions.

The definition is a C statement or statements which output an assembler in-
struction opcode to the stdio stream stream. The macro-operand ptr is a vari-
able of type char * which points to the opcode name in its “internal” form—the
form that is written in the machine description. The definition should output
the opcode name to stream, performing any translation you desire, and incre-
ment the variable ptr to point at the end of the opcode so that it will not be
output twice.

In fact, your macro definition may process less than the entire opcode name,
or more than the opcode name; but if you want to process text that includes
“%’-sequences to substitute operands, you must take care of the substitution
yourself. Just be sure to increment ptr over whatever text should not be output
normally.

If you need to look at the operand values, they can be found as the elements of
recog_operand.

If the macro definition does nothing, the instruction is output in the usual way.

FINAL_PRESCAN_INSN (insn, opvec, noperands)

If defined, a C statement to be executed just prior to the output of assem-
bler code for insn, to modify the extracted operands so they will be output
differently.

Here the argument opvec is the vector containing the operands extracted from
insn, and noperands is the number of elements of the vector which contain
meaningful data for this insn. The contents of this vector are what will be
used to convert the insn template into assembler code, so you can change the
assembler output by changing the contents of the vector.

This macro is useful when various assembler syntaxes share a single file of in-
struction patterns; by defining this macro differently, you can cause a large class
of instructions to be output differently (such as with rearranged operands). Nat-
urally, variations in assembler syntax affecting individual insn patterns ought
to be handled by writing conditional output routines in those patterns.

Chapter 17: Target Description Macros 367

If this macro is not defined, it is equivalent to a null statement.

PRINT_OPERAND (stream, x, code)
A C compound statement to output to stdio stream stream the assembler syntax
for an instruction operand x. x is an RTL expression.

code is a value that can be used to specify one of several ways of printing
the operand. It is used when identical operands must be printed differently
depending on the context. code comes from the ‘%’ specification that was used
to request printing of the operand. If the specification was just ‘/digit’ then
code is 0; if the specification was ‘%ltr digit’ then code is the ASCII code for
Itr.

If x is a register, this macro should print the register’s name. The names can be
found in an array reg_names whose type is char *[]. reg_names is initialized
from REGISTER_NAMES.

When the machine description has a specification ‘%punct’ (a ‘%’ followed by a
punctuation character), this macro is called with a null pointer for x and the
punctuation character for code.

PRINT_OPERAND_PUNCT_VALID_P (code)
A C expression which evaluates to true if code is a valid punctuation character
for use in the PRINT_OPERAND macro. If PRINT _OPERAND_PUNCT_VALID_P is not
defined, it means that no punctuation characters (except for the standard one,
“%’) are used in this way.

PRINT_OPERAND_ADDRESS (stream, x)
A C compound statement to output to stdio stream stream the assembler syntax
for an instruction operand that is a memory reference whose address is x. x is
an RTL expression.

On some machines, the syntax for a symbolic address depends on the sec-
tion that the address refers to. On these machines, define the macro ENCODE_
SECTION_INFO to store the information into the symbol_ref, and then check
for it here. See Section 17.16 [Assembler Format|, page 354.

DBR_OUTPUT_SEQEND (file)
A C statement, to be executed after all slot-filler instructions have been output.
If necessary, call dbr_sequence_length to determine the number of slots filled
in a sequence (zero if not currently outputting a sequence), to decide how many
no-ops to output, or whatever.

Don’t define this macro if it has nothing to do, but it is helpful in reading
assembly output if the extent of the delay sequence is made explicit (e.g. with
white space).

Note that output routines for instructions with delay slots must be prepared to
deal with not being output as part of a sequence (i.e. when the scheduling pass
is not run, or when no slot fillers could be found.) The variable final_sequence
is null when not processing a sequence, otherwise it contains the sequence rtx
being output.

368 Using and Porting GNU CC

REGISTER_PREFIX

LOCAL_LABEL_PREFIX

USER_LABEL_PREFIX

IMMEDIATE_PREFIX
If defined, C string expressions to be used for the ‘4R’, ‘4L’ ‘4U’, and ‘4 I’ options
of asm_fprintf (see ‘final.c’). These are useful when a single ‘md’ file must
support multiple assembler formats. In that case, the various ‘tm.h’ files can
define these macros differently.

ASSEMBLER_DIALECT
If your target supports multiple dialects of assembler language (such as different
opcodes), define this macro as a C expression that gives the numeric index of
the assembler language dialect to use, with zero as the first variant.

If this macro is defined, you may use ‘{optionO|optionl|option2...}’ con-
structs in the output templates of patterns (see Section 16.4 [Output Template],
page 246) or in the first argument of asm_fprintf. This construct outputs
‘option0’, ‘optionl’ or ‘option2’, etc., if the value of ASSEMBLER_DIALECT is
zero, one or two, etc. Any special characters within these strings retain their
usual meaning.

If you do not define this macro, the characters ‘{’, ‘|’ and ‘}’ do not have any
special meaning when used in templates or operands to asm_fprintf.

Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_
PREFIX and IMMEDIATE_PREFIX if you can express the variations in assemble
language syntax with that mechanism. Define ASSEMBLER_DIALECT and use the
‘{optionO|option1}’ syntax if the syntax variant are larger and involve such
things as different opcodes or operand order.

ASM_OUTPUT_REG_PUSH (stream, regno)
A C expression to output to stream some assembler code which will push hard
register number regno onto the stack. The code need not be optimal, since this
macro is used only when profiling.

ASM_OUTPUT_REG_POP (stream, regno)
A C expression to output to stream some assembler code which will pop hard
register number regno off of the stack. The code need not be optimal, since
this macro is used only when profiling.

17.16.8 Output of Dispatch Tables

This concerns dispatch tables.

ASM_OUTPUT_ADDR_DIFF_ELT (stream, value, rel)
This macro should be provided on machines where the addresses in a dispatch
table are relative to the table’s own address.

The definition should be a C statement to output to the stdio stream stream an
assembler pseudo-instruction to generate a difference between two labels. value
and rel are the numbers of two internal labels. The definitions of these labels

Chapter 17: Target Description Macros 369

are output using ASM_OUTPUT_INTERNAL_LABEL, and they must be printed in
the same way here. For example,
fprintf (stream, "\t.word LYd-L%d\n",
value, rel)

ASM_OUTPUT_ADDR_VEC_ELT (stream, value)
This macro should be provided on machines where the addresses in a dispatch
table are absolute.

The definition should be a C statement to output to the stdio stream stream
an assembler pseudo-instruction to generate a reference to a label. value is
the number of an internal label whose definition is output using ASM_QUTPUT_
INTERNAL_LABEL. For example,

fprintf (stream, '"\t.word L}d\n", value)

ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)
Define this if the label before a jump-table needs to be output specially. The
first three arguments are the same as for ASM_OUTPUT_INTERNAL_LABEL; the
fourth argument is the jump-table which follows (a jump_insn containing an
addr_vec or addr_diff_vec).

This feature is used on system V to output a swbeg statement for the table.

If this macrois not defined, these labels are output with ASM_OUTPUT_INTERNAL_Jj
LABEL.

ASM_OUTPUT_CASE_END (stream, num, table)

Define this if something special must be output at the end of a jump-table. The
definition should be a C statement to be executed after the assembler code for
the table is written. It should write the appropriate code to stdio stream stream.
The argument table is the jump-table insn, and num is the label-number of the
preceding label.

If this macro is not defined, nothing special is output at the end of the jump-
table.

17.16.9 Assembler Commands for Alignment

This describes commands for alignment.

ASM_OUTPUT_ALIGN_CODE (file)
A C expression to output text to align the location counter in the way that is
desirable at a point in the code that is reached only by jumping.
This macro need not be defined if you don’t want any special alignment to be
done at such a time. Most machine descriptions do not currently define the
macro.

ASM_OUTPUT_LOOP_ALIGN (file)
A C expression to output text to align the location counter in the way that is
desirable at the beginning of a loop.
This macro need not be defined if you don’t want any special alignment to be
done at such a time. Most machine descriptions do not currently define the
macro.

370 Using and Porting GNU CC

ASM_QUTPUT_SKIP (stream, nbytes)
A C statement to output to the stdio stream stream an assembler instruction
to advance the location counter by nbytes bytes. Those bytes should be zero
when loaded. nbytes will be a C expression of type int.

ASM_NO_SKIP_IN_TEXT
Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
because it fails put zeros in the bytes that are skipped. This is true on many
Unix systems, where the pseudo—op to skip bytes produces no-op instructions
rather than zeros when used in the text section.

ASM_OUTPUT_ALIGN (stream, power)
A C statement to output to the stdio stream stream an assembler command to
advance the location counter to a multiple of 2 to the power bytes. power will
be a C expression of type int.

17.17 Controlling Debugging Information Format

This describes how to specify debugging information.

17.17.1 Macros Affecting All Debugging Formats

These macros affect all debugging formats.

DBX_REGISTER_NUMBER (regno)
A C expression that returns the DBX register number for the compiler register
number regno. In simple cases, the value of this expression may be regno itself.
But sometimes there are some registers that the compiler knows about and
DBX does not, or vice versa. In such cases, some register may need to have one
number in the compiler and another for DBX.

If two registers have consecutive numbers inside GNU CC, and they can be
used as a pair to hold a multiword value, then they must have consecutive
numbers after renumbering with DBX_REGISTER_NUMBER. Otherwise, debuggers
will be unable to access such a pair, because they expect register pairs to be
consecutive in their own numbering scheme.

If you find yourself defining DBX_REGISTER_NUMBER in way that does not pre-
serve register pairs, then what you must do instead is redefine the actual register
numbering scheme.

DEBUGGER_AUTO_OFFSET (x)
A C expression that returns the integer offset value for an automatic variable
having address x (an RTL expression). The default computation assumes that x
is based on the frame-pointer and gives the offset from the frame-pointer. This
is required for targets that produce debugging output for DBX or COFF-style
debugging output for SDB and allow the frame-pointer to be eliminated when
the ‘-g’ options is used.

DEBUGGER_ARG_OFFSET (offset, x)
A C expression that returns the integer offset value for an argument having
address x (an RTL expression). The nominal offset is offset.

Chapter 17: Target Description Macros 371

PREFERRED_DEBUGGING_TYPE
A C expression that returns the type of debugging output GNU CC produces
when the user specifies ‘-g’ or ‘-ggdb’. Define this if you have arranged for
GNU CC to support more than one format of debugging output. Currently, the
allowable values are DBX_DEBUG, SDB_DEBUG, DWARF_DEBUG, and XCOFF_DEBUG.

The value of this macro only affects the default debugging output; the user can
always get a specific type of output by using ‘-gstabs’, ‘-gcoff’, ‘-gdwarf’, or
‘-gxcoff’.

17.17.2 Specific Options for DBX Output

These are specific options for DBX output.

DBX_DEBUGGING_INFO
Define this macro if GNU CC should produce debugging output for DBX in
response to the ‘-g’ option.

XCOFF_DEBUGGING_INFO
Define this macro if GNU CC should produce XCOFF format debugging output
in response to the ‘-g’ option. This is a variant of DBX format.

DEFAULT_GDB_EXTENSIONS
Define this macro to control whether GNU CC should by default generate
GDB’s extended version of DBX debugging information (assuming DBX-format
debugging information is enabled at all). If you don’t define the macro, the de-
fault is 1: always generate the extended information if there is any occasion
to.

DEBUG_SYMS_TEXT
Define this macro if all .stabs commands should be output while in the text
section.

ASM_STABS_OP
A C string constant naming the assembler pseudo op to use instead of .stabs
to define an ordinary debugging symbol. If you don’t define this macro, .stabs
is used. This macro applies only to DBX debugging information format.

ASM_STABD_OP
A C string constant naming the assembler pseudo op to use instead of .stabd
to define a debugging symbol whose value is the current location. If you don’t
define this macro, .stabd is used. This macro applies only to DBX debugging
information format.

ASM_STABN_OP
A C string constant naming the assembler pseudo op to use instead of .stabn
to define a debugging symbol with no name. If you don’t define this macro,
.stabn is used. This macro applies only to DBX debugging information format.

DBX_NO_XREFS
Define this macro if DBX on your system does not support the construct
‘xstagname’. On some systems, this construct is used to describe a forward

372 Using and Porting GNU CC

reference to a structure named tagname. On other systems, this construct is
not supported at all.

DBX_CONTIN_LENGTH
A symbol name in DBX-format debugging information is normally continued
(split into two separate .stabs directives) when it exceeds a certain length
(by default, 80 characters). On some operating systems, DBX requires this
splitting; on others, splitting must not be done. You can inhibit splitting by
defining this macro with the value zero. You can override the default splitting-
length by defining this macro as an expression for the length you desire.

DBX_CONTIN_CHAR
Normally continuation is indicated by adding a ‘\’ character to the end of a
.stabs string when a continuation follows. To use a different character instead,
define this macro as a character constant for the character you want to use. Do
not define this macro if backslash is correct for your system.

DBX_STATIC_STAB_DATA_SECTION
Define this macro if it is necessary to go to the data section before outputting
the ‘.stabs’ pseudo-op for a non-global static variable.

DBX_TYPE_DECL_STABS_CODE
The value to use in the “code” field of the .stabs directive for a typedef. The
default is N_LSYM.

DBX_STATIC_CONST_VAR_CODE
The value to use in the “code” field of the .stabs directive for a static variable
located in the text section. DBX format does not provide any “right” way to
do this. The default is N_FUN.

DBX_REGPARM_STABS_CODE
The value to use in the “code” field of the .stabs directive for a parameter
passed in registers. DBX format does not provide any “right” way to do this.
The default is N_RSYM.

DBX_REGPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a parameter

passed in registers. DBX format does not customarily provide any way to do
this. The default is *P’.

DBX_MEMPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a stack parameter.
The default is ’p°.

DBX_FUNCTION_FIRST
Define this macro if the DBX information for a function and its arguments
should precede the assembler code for the function. Normally, in DBX format,
the debugging information entirely follows the assembler code.

DBX_LBRAC_FIRST
Define this macro if the N_LBRAC symbol for a block should precede the debug-
ging information for variables and functions defined in that block. Normally, in
DBX format, the N_LBRAC symbol comes first.

Chapter 17: Target Description Macros 373

DBX_BLOCKS_FUNCTION_RELATIVE
Define this macro if the value of a symbol describing the scope of a block (N_
LBRAC or N_RBRAC) should be relative to the start of the enclosing function.
Normally, GNU C uses an absolute address.

17.17.3 Open-Ended Hooks for DBX Format
These are hooks for DBX format.

DBX_OUTPUT_LBRAC (stream, name)
Define this macro to say how to output to stream the debugging information
for the start of a scope level for variable names. The argument name is the
name of an assembler symbol (for use with assemble_name) whose value is the
address where the scope begins.

DBX_OUTPUT_RBRAC (stream, name)
Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

DBX_OUTPUT_ENUM (stream, type)
Define this macro if the target machine requires special handling to output an
enumeration type. The definition should be a C statement (sans semicolon) to
output the appropriate information to stream for the type type.

DBX_OUTPUT_FUNCTION_END (stream, function)
Define this macro if the target machine requires special output at the end of the
debugging information for a function. The definition should be a C statement
(sans semicolon) to output the appropriate information to stream. function is
the FUNCTION_DECL node for the function.

DBX_OUTPUT_STANDARD_TYPES (syms)
Define this macro if you need to control the order of output of the standard data
types at the beginning of compilation. The argument syms is a tree which is
a chain of all the predefined global symbols, including names of data types.

Normally, DBX output starts with definitions of the types for integers and
characters, followed by all the other predefined types of the particular language
in no particular order.

On some machines, it is necessary to output different particular types first. To
do this, define DBX_OUTPUT_STANDARD_TYPES to output those symbols in the
necessary order. Any predefined types that you don’t explicitly output will be
output afterward in no particular order.

Be careful not to define this macro so that it works only for C. There are no
global variables to access most of the built-in types, because another language
may have another set of types. The way to output a particular type is to look
through syms to see if you can find it. Here is an example:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))
if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)),

374 Using and Porting GNU CC

"long int"))
dbxout_symbol (decl);

}
This does nothing if the expected type does not exist.

See the function init_decl_processing in ‘c-decl.c’ to find the names to
use for all the built-in C types.

Here is another way of finding a particular type:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))
if (TREE_CODE (decl) == TYPE_DECL
&& (TREE_CODE (TREE_TYPE (decl))
== INTEGER_CST)
&& TYPE_PRECISION (TREE_TYPE (decl)) == 16
&% TYPE_UNSIGNED (TREE_TYPE (decl)))
/* This must be unsigned short. */
dbxout_symbol (decl);

X
17.17.4 File Names in DBX Format

This describes file names in DBX format.

DBX_WORKING_DIRECTORY
Define this if DBX wants to have the current directory recorded in each object

file.

Note that the working directory is always recorded if GDB extensions are en-

abled.

DBX_OUTPUT_MAIN_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that file name is the main source file—the file speci-
fied as the input file for compilation. This macro is called only once, at the
beginning of compilation.
This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.
DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that the current directory during compilation is named
name.
This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.
DBX_OUTPUT_MAIN_SOURCE_FILE_END (stream, name)
A C statement to output DBX debugging information at the end of compilation
of the main source file name.

Chapter 17: Target Description Macros 375

If you don’t define this macro, nothing special is output at the end of compila-
tion, which is correct for most machines.

DBX_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio stream
stream which indicates that file name is the current source file. This out-
put is generated each time input shifts to a different source file as a result of
‘#include’, the end of an included file, or a ‘#line’ command.

This macro need not be defined if the standard form of output for DBX debug-
ging information is appropriate.

17.17.5 Macros for SDB and DWARF Output

Here are macros for SDB and DWARF output.

SDB_DEBUGGING_INFO
Define this macro if GNU CC should produce COFF-style debugging output
for SDB in response to the ‘-g’ option.

DWARF _DEBUGGING_INFO
Define this macro if GNU CC should produce dwarf format debugging output
in response to the ‘-g’ option.

PUT_SDB._...
Define these macros to override the assembler syntax for the special SDB assem-
bler directives. See ‘sdbout.c’ for a list of these macros and their arguments.
If the standard syntax is used, you need not define them yourself.

SDB_DELIM

Some assemblers do not support a semicolon as a delimiter, even between SDB
assembler directives. In that case, define this macro to be the delimiter to use
(usually ‘\n’). It is not necessary to define a new set of PUT_SDB_op macros if
this is the only change required.

SDB_GENERATE_FAKE
Define this macro to override the usual method of constructing a dummy name
for anonymous structure and union types. See ‘sdbout.c’ for more information.

SDB_ALLOW_UNKNOWN_REFERENCES
Define this macro to allow references to unknown structure, union, or enumer-

ation tags to be emitted. Standard COFF does not allow handling of unknown
references, MIPS ECOFF has support for it.

SDB_ALLOW_FORWARD_REFERENCES
Define this macro to allow references to structure, union, or enumeration tags
that have not yet been seen to be handled. Some assemblers choke if forward
tags are used, while some require it.

376 Using and Porting GNU CC

17.18 Cross Compilation and Floating Point

While all modern machines use 2’s complement representation for integers, there are a
variety of representations for floating point numbers. This means that in a cross-compiler
the representation of floating point numbers in the compiled program may be different from
that used in the machine doing the compilation.

Because different representation systems may offer different amounts of range and pre-
cision, the cross compiler cannot safely use the host machine’s floating point arithmetic.
Therefore, floating point constants must be represented in the target machine’s format.
This means that the cross compiler cannot use atof to parse a floating point constant; it
must have its own special routine to use instead. Also, constant folding must emulate the
target machine’s arithmetic (or must not be done at all).

The macros in the following table should be defined only if you are cross compiling
between different floating point formats.

Otherwise, don’t define them. Then default definitions will be set up which use double
as the data type, == to test for equality, etc.

You don’t need to worry about how many times you use an operand of any of these
macros. The compiler never uses operands which have side effects.

REAL_VALUE_TYPE
A macro for the C data type to be used to hold a floating point value in the
target machine’s format. Typically this would be a struct containing an array
of int.

REAL_VALUES_EQUAL (x, y)
A macro for a C expression which compares for equality the two values, x and
y, both of type REAL_VALUE_TYPE.

REAL_VALUES_LESS (x, y)
A macro for a C expression which tests whether x is less than y, both values
being of type REAL_VALUE_TYPE and interpreted as floating point numbers in
the target machine’s representation.

REAL_VALUE_LDEXP (x, scale)
A macro for a C expression which performs the standard library function 1dexp,
but using the target machine’s floating point representation. Both x and the
value of the expression have type REAL_VALUE_TYPE. The second argument,
scale, is an integer.

REAL_VALUE_FIX (x)
A macro whose definition is a C expression to convert the target-machine float-
ing point value x to a signed integer. x has type REAL_VALUE_TYPE.

REAL_VALUE_UNSIGNED_FIX (x)
A macro whose definition is a C expression to convert the target-machine float-
ing point value x to an unsigned integer. x has type REAL_VALUE_TYPE.

Chapter 17: Target Description Macros 377

REAL_VALUE_RNDZINT (x)
A macro whose definition is a C expression to round the target-machine floating
point value x towards zero to an integer value (but still as a floating point
number). x has type REAL_VALUE_TYPE, and so does the value.

REAL_VALUE_UNSIGNED_RNDZINT (x)
A macro whose definition is a C expression to round the target-machine floating
point value x towards zero to an unsigned integer value (but still represented as
a floating point number). x has type REAL_VALUE_TYPE, and so does the value.

REAL_VALUE_ATOF (string, mode)
A macro for a C expression which converts string, an expression of type char
*, into a floating point number in the target machine’s representation for mode
mode. The value has type REAL_VALUE_TYPE.

REAL_INFINITY
Define this macro if infinity is a possible floating point value, and therefore
division by 0 is legitimate.

REAL_VALUE_ISINF (x)
A macro for a C expression which determines whether x, a floating point value,
is infinity. The value has type int. By default, this is defined to call isinf.

REAL_VALUE_ISNAN (x)
A macro for a C expression which determines whether x, a floating point value,
is a “nan” (not-a-number). The value has type int. By default, this is defined
to call isnan.

Define the following additional macros if you want to make floating point constant folding
work while cross compiling. If you don’t define them, cross compilation is still possible, but
constant folding will not happen for floating point values.

REAL_ARITHMETIC (output, code, x, y)
A macro for a C statement which calculates an arithmetic operation of the two
floating point values x and y, both of type REAL_VALUE_TYPE in the target ma-
chine’s representation, to produce a result of the same type and representation
which is stored in output (which will be a variable).

The operation to be performed is specified by code, a tree code which will always
be one of the following: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX _
EXPR, MIN_EXPR.

The expansion of this macro is responsible for checking for overflow. If overflow
happens, the macro expansion should execute the statement return 0;, which
indicates the inability to perform the arithmetic operation requested.

REAL_VALUE_NEGATE (x)
A macro for a C expression which returns the negative of the floating point
value x. Both x and the value of the expression have type REAL_VALUE_TYPE
and are in the target machine’s floating point representation.
There is no way for this macro to report overflow, since overflow can’t happen
in the negation operation.

378 Using and Porting GNU CC

REAL_VALUE_TRUNCATE (mode, x)
A macro for a C expression which converts the floating point value x to mode
mode.

Both x and the value of the expression are in the target machine’s floating point
representation and have type REAL_VALUE_TYPE. However, the value should
have an appropriate bit pattern to be output properly as a floating constant
whose precision accords with mode mode.

There is no way for this macro to report overflow.

REAL_VALUE_TO_INT (low, high, x)
A macro for a C expression which converts a floating point value x into a
double-precision integer which is then stored into low and high, two variables
of type int.

REAL_VALUE_FROM_INT (x, low, high)
A macro for a C expression which converts a double-precision integer found in
low and high, two variables of type int, into a floating point value which is then
stored into x.

17.19 Miscellaneous Parameters

Here are several miscellaneous parameters.

PREDICATE_CODES
Define this if you have defined special-purpose predicates in the file ‘machine. c’.
This macro is called within an initializer of an array of structures. The first
field in the structure is the name of a predicate and the second field is an array
of rtl codes. For each predicate, list all rtl codes that can be in expressions
matched by the predicate. The list should have a trailing comma. Here is an
example of two entries in the list for a typical RISC machine:

#define PREDICATE_CODES \
{"gen_reg_rtx_operand", {SUBREG, REG}}, \
{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},

Defining this macro does not affect the generated code (however, incorrect def-
initions that omit an rtl code that may be matched by the predicate can cause
the compiler to malfunction). Instead, it allows the table built by ‘genrecog’
to be more compact and efficient, thus speeding up the compiler. The most
important predicates to include in the list specified by this macro are thoses
used in the most insn patterns.

CASE_VECTOR_MODE
An alias for a machine mode name. This is the machine mode that elements of
a jump-table should have.

CASE_VECTOR_PC_RELATIVE
Define this macro if jump-tables should contain relative addresses.

Chapter 17: Target Description Macros 379

CASE_DROPS_THROUGH
Define this if control falls through a case insn when the index value is out of
range. This means the specified default-label is actually ignored by the case
insn proper.

CASE_VALUES_THRESHOLD
Define this to be the smallest number of different values for which it is best
to use a jump-table instead of a tree of conditional branches. The default is
four for machines with a casesi instruction and five otherwise. This is best for
most machines.

WORD_REGISTER_OPERATIONS
Define this macro if operations between registers with integral mode smaller
than a word are always performed on the entire register. Most RISC machines
have this property and most CISC machines do not.

LOAD_EXTEND_OP (mode)
Define this macro to be a C expression indicating when insns that read memory
in mode, an integral mode narrower than a word, set the bits outside of mode
to be either the sign-extension or the zero-extension of the data read. Return
SIGN_EXTEND for values of mode for which the insn sign-extends, ZERO_EXTEND
for which it zero-extends, and NIL for other modes.

This macro is not called with mode non-integral or with a width greater than
or equal to BITS_PER_WORD, so you may return any value in this case. Do
not define this macro if it would always return NIL. On machines where this
macro is defined, you will normally define it as the constant SIGN_EXTEND or
ZERO_EXTEND.

IMPLICIT_FIX_EXPR
An alias for a tree code that should be used by default for conversion of floating
point values to fixed point. Normally, FIX_ROUND_EXPR is used.

FIXUNS_TRUNC_LIKE_FIX_TRUNC
Define this macro if the same instructions that convert a floating point number
to a signed fixed point number also convert validly to an unsigned one.

EASY_DIV_EXPR
An alias for a tree code that is the easiest kind of division to compile code
for in the general case. It may be TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_
DIV_EXPR or ROUND_DIV_EXPR. These four division operators differ in how they
round the result to an integer. EASY_DIV_EXPR is used when it is permissible to
use any of those kinds of division and the choice should be made on the basis
of efficiency.

MOVE_MAX The maximum number of bytes that a single instruction can move quickly from
memory to memory.

MAX_MOVE_MAX
The maximum number of bytes that a single instruction can move quickly from
memory to memory. If this is undefined, the default is MOVE_MAX. Otherwise,

380 Using and Porting GNU CC

it is the constant value that is the largest value that MOVE_MAX can have at
run-time.

SHIFT_COUNT_TRUNCATED

A C expression that is nonzero if on this machine the number of bits actually
used for the count of a shift operation is equal to the number of bits needed
to represent the size of the object being shifted. When this macro is non-zero,
the compiler will assume that it is safe to omit a sign-extend, zero-extend, and
certain bitwise ‘and’ instructions that truncates the count of a shift operation.
On machines that have instructions that act on bitfields at variable positions,
which may include ‘bit test’ instructions, a nonzero SHIFT_COUNT_TRUNCATED
also enables deletion of truncations of the values that serve as arguments to
bitfield instructions.

If both types of instructions truncate the count (for shifts) and position (for
bitfield operations), or if no variable-position bitfield instructions exist, you
should define this macro.

However, on some machines, such as the 80386 and the 680x0, truncation only
applies to shift operations and not the (real or pretended) bitfield operations.
Define SHIFT_COUNT_TRUNCATED to be zero on such machines. Instead, add
patterns to the ‘md’ file that include the implied truncation of the shift instruc-
tions.

You need not define this macro if it would always have the value of zero.

TRULY_NOOP_TRUNCATION (outprec, inprec)
A C expression which is nonzero if on this machine it is safe to “convert” an
integer of inprec bits to one of outprec bits (where outprec is smaller than
inprec) by merely operating on it as if it had only outprec bits.

On many machines, this expression can be 1.

When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes for which
MODES_TIEABLE_P is 0, suboptimal code can result. If this is the case, making
TRULY_NOOP_TRUNCATION return 0 in such cases may improve things.

STORE_FLAG_VALUE
A C expression describing the value returned by a comparison operator with
an integral mode and stored by a store-flag instruction (‘scond’) when the
condition is true. This description must apply to all the ‘scond’ patterns and
all the comparison operators whose results have a MODE_INT mode.

A value of 1 or -1 means that the instruction implementing the comparison
operator returns exactly 1 or -1 when the comparison is true and 0 when the
comparison is false. Otherwise, the value indicates which bits of the result are
guaranteed to be 1 when the comparison is true. This value is interpreted in
the mode of the comparison operation, which is given by the mode of the first
operand in the ‘scond’ pattern. Either the low bit or the sign bit of STORE_
FLAG_VALUE be on. Presently, only those bits are used by the compiler.

If STORE_FLAG_VALUE is neither 1 or -1, the compiler will generate code that
depends only on the specified bits. It can also replace comparison operators

Chapter 17: Target Description Macros 381

with equivalent operations if they cause the required bits to be set, even if the
remaining bits are undefined. For example, on a machine whose comparison
operators return an SImode value and where STORE_FLAG_VALUE is defined as
‘0x80000000’°, saying that just the sign bit is relevant, the expression

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))
can be converted to
(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign
bit.

There is no way to describe a machine that always sets the low-order bit for a
true value, but does not guarantee the value of any other bits, but we do not
know of any machine that has such an instruction. If you are trying to port
GNU CC to such a machine, include an instruction to perform a logical-and of
the result with 1 in the pattern for the comparison operators and let us know
(see Section 9.3 [How to Report Bugs], page 180).

Often, a machine will have multiple instructions that obtain a value from a
comparison (or the condition codes). Here are rules to guide the choice of value
for STORE_FLAG_VALUE, and hence the instructions to be used:

e Use the shortest sequence that yields a valid definition for STORE_FLAG_
VALUE. It is more efficient for the compiler to “normalize” the value (con-
vert it to, e.g., 1 or 0) than for the comparison operators to do so because
there may be opportunities to combine the normalization with other oper-
ations.

¢ For equal-length sequences, use a value of 1 or -1, with -1 being slightly
preferred on machines with expensive jumps and 1 preferred on other ma-
chines.

e As asecond choice, choose a value of ‘0x80000001” if instructions exist that
set both the sign and low-order bits but do not define the others.

e Otherwise, use a value of ‘0x80000000°.

Many machines can produce both the value chosen for STORE_FLAG_VALUE and
its negation in the same number of instructions. On those machines, you should
also define a pattern for those cases, e.g., one matching

(set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition code
values with less instructions than the corresponding ‘scond’ insn followed by
and or plus. On those machines, define the appropriate patterns. Use the
names incscc and decscc, respectively, for the the patterns which perform
plus or minus operations on condition code values. See ‘rs6000.md’ for some
examples. The GNU Superoptizer can be used to find such instruction sequences
on other machines.

You need not define STORE_FLAG_VALUE if the machine has no store-flag in-
structions.

382 Using and Porting GNU CC

FLOAT_STORE_FLAG_VALUE
A C expression that gives a non-zero floating point value that is returned when
comparison operators with floating-point results are true. Define this macro on
machine that have comparison operations that return floating-point values. If
there are no such operations, do not define this macro.

Pmode An alias for the machine mode for pointers. On most machines, define this to
be the integer mode corresponding to the width of a hardware pointer; SImode
on 32-bit machine or DImode on 64-bit machines. On some machines you must
define this to be one of the partial integer modes, such as PSImode.

The width of Pmode must be at least as large as the value of POINTER_SIZE.
If it is not equal, you must define the macro POINTERS_EXTEND_UNSIGNED to
specify how pointers are extended to Pmode.

FUNCTION_MODE
An alias for the machine mode used for memory references to functions being
called, in call RTL expressions. On most machines this should be QImode.

INTEGRATE_THRESHOLD (decl)
A C expression for the maximum number of instructions above which the func-
tion decl should not be inlined. decl is a FUNCTION_DECL node.

The default definition of this macro is 64 plus 8 times the number of arguments
that the function accepts. Some people think a larger threshold should be used
on RISC machines.

SCCS_DIRECTIVE
Define this if the preprocessor should ignore #sccs directives and print no error
message.

NO_IMPLICIT_EXTERN_C
Define this macro if the system header files support C++ as well as C. This
macro inhibits the usual method of using system header files in C++, which is
to pretend that the file’s contents are enclosed in ‘extern "C'" {...}".

HANDLE_PRAGMA (stream)
Define this macro if you want to implement any pragmas. If defined, it should
be a C statement to be executed when #pragma is seen. The argument stream
is the stdio input stream from which the source text can be read.

It is generally a bad idea to implement new uses of #pragma. The only reason
to define this macro is for compatibility with other compilers that do support
#pragma for the sake of any user programs which already use it.

VALID_MACHINE_DECL_ATTRIBUTE (decl, attributes, identifier, args)
If defined, a C expression whose value is nonzero if identifier with arguments
args is a valid machine specific attribute for decl. The attributes in attributes
have previously been assigned to decl.

VALID_MACHINE_TYPE_ATTRIBUTE (type, attributes, identifier, args)
If defined, a C expression whose value is nonzero if identifier with arguments
args is a valid machine specific attribute for type. The attributes in attributes
have previously been assigned to type.

Chapter 17: Target Description Macros 383

COMP_TYPE_ATTRIBUTES (typel, type2)
If defined, a C expression whose value is zero if the attributes on typel and
type2 are incompatible, one if they are compatible, and two if they are nearly
compatible (which causes a warning to be generated).

SET_DEFAULT_TYPE_ATTRIBUTES (type)
If defined, a C statement that assigns default attributes to newly defined type.

DOLLARS_IN_IDENTIFIERS
Define this macro to control use of the character ‘$’ in identifier names. The
value should be 0, 1, or 2. 0 means ‘$’ is not allowed by default; 1 means it is
allowed by default if ‘-traditional’ is used; 2 means it is allowed by default
provided ‘-ansi’ is not used. 1 is the default; there is no need to define this
macro in that case.

NO_DOLLAR_IN_LABEL
Define this macro if the assembler does not accept the character ‘$’ in label
names. By default constructors and destructors in G++ have ‘¢’ in the identi-

fiers. If this macro is defined, ¢.’ is used instead.
NO_DOT_IN_LABEL
Define this macro if the assembler does not accept the character .’ in label

names. By default constructors and destructors in G++ have names that use
‘.. If this macro is defined, these names are rewritten to avoid .’.

DEFAULT_MAIN_RETURN
Define this macro if the target system expects every program’s main function
to return a standard “success” value by default (if no other value is explicitly
returned).

The definition should be a C statement (sans semicolon) to generate the appro-
priate rtl instructions. It is used only when compiling the end of main.

HAVE_ATEXIT
Define this if the target system supports the function atexit from the ANSI
C standard. If this is not defined, and INIT_SECTION_ASM_OP is not defined, a
default exit function will be provided to support C++.

EXIT_BODY
Define this if your exit function needs to do something besides calling an
external function _cleanup before terminating with _exit. The EXIT_BODY
macro is only needed if netiher HAVE_ATEXIT nor INIT_SECTION_ASM_OP are
defined.

INSN_SETS_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to
use a resource set or clobbered in insn. insn is always a jump_insn or an insn;
GNU CC knows that every call_insn has this behavior. On machines where
some insn or jump_insn is really a function call and hence has this behavior,
you should define this macro.

You need not define this macro if it would always return zero.

384 Using and Porting GNU CC

INSN_REFERENCES_ARE_DELAYED (insn)

Define this macro as a C expression that is nonzero if it is safe for the delay
slot scheduler to place instructions in the delay slot of insn, even if they appear
to set or clobber a resource referenced in insn. insn is always a jump_insn or
an insn. On machines where some insn or jump_insn is really a function call
and its operands are registers whose use is actually in the subroutine it calls,
you should define this macro. Doing so allows the delay slot scheduler to move
instructions which copy arguments into the argument registers into the delay
slot of insn.

You need not define this macro if it would always return zero.

MACHINE_DEPENDENT_REORG (insn)
In rare cases, correct code generation requires extra machine dependent process-
ing between the second jump optimization pass and delayed branch scheduling.
On those machines, define this macro as a C statement to act on the code
starting at insn.

Chapter 18: The Configuration File 385

18 The Configuration File

The configuration file ‘xm-machine.h’ contains macro definitions that describe the ma-
chine and system on which the compiler is running, unlike the definitions in ‘machine.h’,
which describe the machine for which the compiler is producing output. Most of the values
in ‘xm-machine.h’ are actually the same on all machines that GNU CC runs on, so large
parts of all configuration files are identical. But there are some macros that vary:

UsG Define this macro if the host system is System V.
VMS Define this macro if the host system is VMS.

FATAL_EXIT_CODE
A C expression for the status code to be returned when the compiler exits after
serious errors.

SUCCESS_EXIT_CODE
A C expression for the status code to be returned when the compiler exits
without serious errors.

HOST_WORDS_BIG_ENDIAN
Defined if the host machine stores words of multi-word values in big-endian
order. (GNU CC does not depend on the host byte ordering within a word.)

HOST_FLOAT_WORDS_BIG_ENDIAN
Define this macro to be 1 if the host machine stores DFmode, XFmode or TFmode
floating point numbers in memory with the word containing the sign bit at the
lowest address; otherwise, define it to be zero.

This macro need not be defined if the ordering is the same as for multi-word
integers.

HOST_FLOAT_FORMAT
A numeric code distinguishing the floating point format for the host machine.
See TARGET_FLOAT_FORMAT in Section 17.3 [Storage Layout], page 300 for the
alternatives and default.

HOST_BITS_PER_CHAR
A C expression for the number of bits in char on the host machine.

HOST_BITS_PER_SHORT
A C expression for the number of bits in short on the host machine.

HOST_BITS_PER_INT
A C expression for the number of bits in int on the host machine.

HOST_BITS_PER_LONG
A C expression for the number of bits in long on the host machine.

ONLY_INT_FIELDS
Define this macro to indicate that the host compiler only supports int bit fields,
rather than other integral types, including enum, as do most C compilers.

386 Using and Porting GNU CC

OBSTACK_CHUNK_SIZE
A C expression for the size of ordinary obstack chunks. If you don’t define this,
a usually-reasonable default is used.

OBSTACK_CHUNK_ALLOC
The function used to allocate obstack chunks. If you don’t define this, xmalloc
is used.

OBSTACK_CHUNK_FREE
The function used to free obstack chunks. If you don’t define this, free is used.

USE_C_ALLOCA
Define this macro to indicate that the compiler is running with the alloca
implemented in C. This version of alloca can be found in the file ‘alloca.c’;
to use it, you must also alter the ‘Makefile’ variable ALLOCA. (This is done
automatically for the systems on which we know it is needed.)

If you do define this macro, you should probably do it as follows:
#ifndef GNUC__

#define USE_C_ALLOCA

#else

#define alloca __builtin_alloca
#endif

so that when the compiler is compiled with GNU CC it uses the more efficient
built-in alloca function.

FUNCTION_CONVERSION_BUG
Define this macro to indicate that the host compiler does not properly han-
dle converting a function value to a pointer-to-function when it is used in an
expression.

HAVE_VPRINTF
Define this if the library function vprintf is available on your system.

MULTIBYTE_CHARS
Define this macro to enable support for multibyte characters in the input to
GNU CC. This requires that the host system support the ANSI C library func-
tions for converting multibyte characters to wide characters.

HAVE_PUTENV
Define this if the library function putenv is available on your system.

POSIX Define this if your system is POSIX.1 compliant.

NO_SYS_SIGLIST
Define this if your system does not provide the variable sys_siglist.

DONT_DECLARE_SYS_SIGLIST
Define this if your system has the variable sys_siglist, and there is already
a declaration of it in the system header files.

USE_PROTOTYPES
Define this to be 1 if you know that the host compiler supports prototypes,
even if it doesn’t define _STDC__, or define it to be 0 if you do not want any

Chapter 18: The Configuration File 387

prototypes used in compiling GNU CC. If ‘USE_PROTOTYPES’ is not defined, it
will be determined automatically whether your compiler supports prototypes
by checking if ‘__STDC__’ is defined.

NO_MD_PROTOTYPES

Define this if you wish suppression of prototypes generated from the machine de-
scription file, but to use other prototypes within GNU CC. If ‘USE_PROTOTYPES’
is defined to be 0, or the host compiler does not support prototypes, this macro
has no effect.

MD_CALL_PROTOTYPES

NO_STAB_H

Define this if you wish to generate prototypes for the gen_call or gen_call_
value functions generated from the machine description file. If ‘USE_PROTOTYPES’}}
is defined to be 0, or the host compiler does not support prototypes, or
‘NO_MD_PROTOTYPES’ is defined, this macro has no effect. As soon as all of
the machine descriptions are modified to have the appropriate number of
arguments, this macro will be removed.

Some systems do provide this variable, but with a different name such as _sys_
siglist. On these systems, you can define sys_siglist as a macro which
expands into the name actually provided.

Define this if your system does not have the include file ‘stab.h’. If ‘USG’ is
defined, ‘NO_STAB_H’ is assumed.

PATH_SEPARATOR

Define this macro to be a C character constant representing the character used
to separate components in paths. The default value is. the colon character

DIR_SEPARATOR

If your system uses some character other than slash to separate directory names
within a file specification, define this macro to be a C character constant spec-
ifying that character. When GNU CC displays file names, the character you
specify will be used. GNU CC will test for both slash and the character you
specify when parsing filenames.

0BJECT_SUFFIX

Define this macro to be a C string representing the suffix for object files on your
machine. If you do not define this macro, GNU CC will use ‘.0’ as the suffix
for object files.

EXECUTABLE_SUFFIX

Define this macro to be a C string representing the suffix for executable files
on your machine. If you do not define this macro, GNU CC will use the null
string as the suffix for object files.

COLLECT_EXPORT_LIST

If defined, collect2 will scan the individual object files specified on its com-
mand line and create an export list for the linker. Define this macro for systems
like AIX, where the linker discards object files that are not referenced from main
and uses export lists.

388 Using and Porting GNU CC

In addition, configuration files for system V define bcopy, bzero and bcmp as aliases.
Some files define alloca as a macro when compiled with GNU CC, in order to take advan-
tage of the benefit of GNU CC’s built-in alloca.

Chapter 19: Makefile Fragments 389

19 Makefile Fragments

When you configure GNU CC using the ‘configure’ script (see Chapter 5 [Installation],
page 85), it will construct the file ‘Makefile’ from the template file ‘Makefile.in’. When
it does this, it will incorporate makefile fragment files from the ‘config’ directory, named
‘t-target’ and ‘x-host’. If these files do not exist, it means nothing needs to be added for
a given target or host.

19.1 The Target Makefile Fragment

The target makefile fragment, ‘t-target’, defines special target dependent variables and
targets used in the ‘Makefile’:

LIBGCC1 The rule to use to build ‘libgccil.a’. If your target does not need to use
the functions in ‘libgccl.a’, set this to empty. See Chapter 13 [Interface],
page 197.

CROSS_LIBGCC1
The rule to use to build ‘1ibgccl.a’ when building a cross compiler. If your
target does not need to use the functions in ‘libgccl.a’, set this to empty. See
Section 5.3.4 [Cross Runtime]|, page 106.

LIBGCC2_CFLAGS
Compiler flags to use when compiling ‘libgcc2.c’.

LIB2FUNCS_EXTRA
A list of source file names to be compiled or assembled and inserted into
‘libgcc.a’.

CRTSTUFF_T_CFLAGS
Special flags used when compiling ‘crtstuff.c’. See Section 17.16.5 [Initial-
ization|, page 362.

MULTILIB_OPTIONS
For some targets, invoking GNU CC in different ways produces objects that can
not be linked together. For example, for some targets GNU CC produces both
big and little endian code. For these targets, you must arrange for multiple
versions of ‘libgcc.a’ to be compiled, one for each set of incompatible options.
When GNU CC invokes the linker, it arranges to link in the right version of
‘libgcc.a’, based on the command line options used.

The MULTILIB_OPTIONS macro lists the set of options for which special versions
of ‘libgcc.a’ must be built. Write options that are mutually incompatible side
by side, separated by a slash. Write options that may be used together separated
by a space. The build procedure will build all combinations of compatible
options.

For example, if you set MULTILIB_OPTIONS to ‘m68000/m68020 msoft-float’,
‘Makefile’ will build special versions of ‘1ibgcc.a’ using the options ‘-m68000’,
‘-m68020’, ‘-msoft-float’, ‘*-m68000 -msoft-float’, and ‘-m68020 -msoft-float’.|]

390 Using and Porting GNU CC

MULTILIB_DIRNAMES
If MULTILIB_OPTIONS is used, this variable specifies the directory names that
should be used to hold the various libraries. Write one element in MULTILIB_
DIRNAMES for each element in MULTILIB_OPTIONS. If MULTILIB_DIRNAMES is
not used, the default value will be MULTILIB_OPTIONS, with all slashes treated
as spaces.

For example, if MULTILIB_OPTIONS is ‘m68000/m68020 msoft-float’, then the

default value of MULTILIB_DIRNAMES is ‘m68000 m68020 msoft-float’. You
may specify a different value if you desire a different set of directory names.

MULTILIB_MATCHES
Sometimes the same option may be written in two different ways. If an option is
listed in MULTILIB_OPTIONS, GNU CC needs to know about any synonyms. In
that case, set MULTILIB_MATCHES to a list of items of the form ‘option=option’
to describe all relevant synonyms. For example, ‘m68000=mc68000 m68020=mc68020".]]

19.2 The Host Makefile Fragment

The host makefile fragment, ‘x-host’, defines special host dependent variables and targets
used in the ‘Makefile’

cc The compiler to use when building the first stage.

CLIB Additional host libraries to link with.

OLDCC The compiler to use when building ‘1ibgcci.a’ for a native compilation.
OLDAR The version of ar to use when building ‘1ibgcci.a’ for a native compilation.

INSTALL The install program to use.

Index

Index

!

‘Uinconstraint0 i, 254
‘in constraint 0 .. 255
#tintemplate.............. ... 247
BPragma ..ot 382
#pragma implementation,implied 152
#pragma, reason for not using................. 132
G 133
%

‘inconstraint i, 255
‘%intemplate.......... .. 246
‘’inconstraint 0 i, 254
9

L PP 169
(L) 206
%k

‘)7in constraint 255
*in template............ ...l 248
-1lgcc, use with -nodefaultlibs............... 50
-1lgcc, use with -nostdlib..................... 50
-nodefaultlibs and unresolved references..... 50
-nostdlib and unresolved references........... 50

PP RTLdump.....oooviiiiiiiiiian 208
Y’ RTLdumpcovvveiiii.L. 208, 209
Y’in RTLdumpoooviiiiiiiiiia, 209
YvVin RTLdumpooooviiiiiiiiin, 208
‘="in constraintoiiiiiiiiiiea, 254

391
?
‘P?inconstraint, 254
T eXteNSIONS .. vttt e 121, 122
?:sideeffect.........ooeeiiiiii i, 122
¢’ in variables in macros...................... 120
_bbainitfunc....... ..o 336
_builtinapply...oooviiii i 120
_builtinapply argscovvvviirrrnnn 119
_builtinargs_info.................oiuun. 337
_builtinclassifytype......coovvvvvinnnn. 337
_builtinmext arg............ooviunviinan, 337
_builtinreturn.....oovvuiiinniiiiiiieina, 120
_builtinsaveregscovvviiiiiinnnann 336
L CTOR LIST ettt ittt ie i 362
CDTOR LIST ittt cie i 362
7=« 112
+
‘“47inconstrainti i, 254
>
Slinconstrainti i, 250
D 150
A et e e 247
<
‘Cinconstraint ... 250
2 150
0
‘O’inconstraintovvveeveennennennn. 251
FoX 1o s A PPt 27, 195
A et e 27, 222
abs and attributes....................... ..., 284
absm? instruction pattern.................... 263
absolute value...............coiiiiiiiiaa... 222
access tooperands. ittt 206
ACCESSOTS + v v v vvevine e snnnesnnssnnonnessnnsss 206
ACCUMULATE OUTGOINGARGSo, 325

ACCUMULATE OUTGOING_ARGS and stack frames.. 334

392

ADDITIONAL REGISTERMNAMES 366
addma3 instruction pattern.................... 262
addrdiffvec.........oooiiiiiiiiiiii 230
addr diff vec,lengthof...................... 288
AddT Ve ot vt s 230
addr vec,length of oiiil, 288
AddresSsS covvt i s 246
address constraints 251
address of alabel.............. ...l 116
ADDRESS COST .. vttt i i cieieans 349
address_operand...........coiiiiiiiiiii, 251
addressing modes............ ..ot 344
ADJUST COST ..ottt i ie it i iecieineans 351
ADJUST_INSN LENGTH........oovvvniuninnnann. 288
aggregates as return values 331
alias attribute........... ..ot 132
aligned attribute................. 134, 137
alignment ...l 134
ALL REGS .t it cieiaeaas 314
Alliant ...ovvvin i 166
A110CA vttt e 27
allocaand SunOs..........cooiviiiiiinnnena.. 90
alloca vs variable-length arrays.............. 124
alloca,for SunOs.........ccvviiiiiiinnnnnn. 109
alloca,for Unoscoviiiiiiiinnnnnnnn. 98
allocate_stack instruction pattern........... 270
ALLOCATE_TRAMPOLINE, 339
alternate keywords 146
AMD29K options.c.vveviiiiiinnnnnnnn. 58
analysis, data flow............................ 201
AN L e 222
and and attributes................ ...l 284
and, canonicalization of 274
andma3 instruction pattern.................... 262
ANSI SUPPOrt «vvvvveeeeeeeiieeeeeennnnn 26
apostrophes i 169
APPLY RESULT SIZEciviiiiiiiiiin i 331
ARG POINTERREGNUM..........covviuninvnnnnn. 322
ARG POINTER REGNUM and virtual registers 217
argpointerrtx............ ..., 323
ARGS_GROWDOWNWARDovviininnan, 320
argument passing...........o.eeeevnuuneennnnns 197
arguments in frame (88k)...................... 61
arguments in registers0iiiaa.. 326
arguments on stack..............l 324
arithmetic libraries 198
arithmeticshift..................o, 222
arithmetic simplifications 199
arithmetic, in RTL, 220

ARM options.vvvruniiiieeeeennnnnnnnnns 60

Using and Porting GNU CC

arrays of length zero.......................... 124
arrays of variable length...................... 124
arrays, non-lvalue 126
ashift ... 222
ashift and attributes 284
ashiftrt......... ..o 222
ashiftrt and attributes...................... 284
ashlma3 instruction pattern................... 263
ashrma3 instruction pattern................... 263
ASIM EXPIeSSIONS « ¢ v v v v e v eeeeeeeeeeennnnnnnnnnns 140
ASM APP OFF .. 355
ASM APP ON ..t i i aas 355
ASMBYTE QP ..v i 356
ASM CLOSEPAREN ..o 357
ASM_COMMENT START ..o ve i iaeans 355
ASM DECLARE FUNCTIONNAME 359
ASM DECLARE FUNCTIONSIZE 359
ASM DECLARE OBJECTNAMEot 359
ASM FILEEND....ovv it iiiiininnnnnnn 354
ASM FILE START ...t 354
ASM FINALSPEC ...t 294
ASM_FINISHDECLARE OBJECTc.ouu.n. 360
ASM_FORMAT PRIVATENAME 361
asmfprintf..... ... 367
ASM_GENERATE INTERNAL LABEL................ 361
ASM GLOBALTIZELABELcovvvniiiiininnnnn, 360
ASM_IDENTIFY GCC ..ovniiiii i 354
asm_input ...l 229
ASM NOSKIPINTEXTovvniiiiiiinnnnn, 370
asmnoperands ...t 235
ASM OPENPAREN ...t 357
asm_operands, RTL sharing................... 240
asm_operands, USAZeo eerrrnneeenns 231
ASM_OUTPUT ADDRDIFFELT.........covvninn.n. 368
ASM_OUTPUT ADDRVECELT...........covvnia... 369
ASM OUTPUT ALIGNovviiiiiii i 370
ASM_OUTPUT ALIGNCODE.........ccvvvninnann.. 369
ASM_OUTPUT_ALIGNED COMMON 358
ASM_OUTPUT_ALIGNED LOCALcooun.... 359
ASM OUTPUT ASCII ..ot iieaeens 356
ASM OUTPUTBYTE ... 356
ASM OUTPUT CASEEND ... 369
ASM OUTPUT CASE LABEL.........covvuinnan... 369
ASMOUTPUT CHARot 356
ASM OUTPUT COMMONcovviiiin i 358
ASM_OUTPUT CONSTRUCTOR..........ccvvnvnnn.. 364
ASM OUTPUTDEF ... 361
ASM_OUTPUT DESTRUCTOR..........ccovvnvnn.n. 365
ASM OUTPUTDOUBLEcoviiiiiiinii e 356
ASM_ OUTPUT DOUBLE_INT.........ovvvuninnnnn.. 356

Index

ASM OUTPUT EXTERNAL........covvniiinnn.. 360
ASM_OUTPUT EXTERNAL LIBCALL 360
ASM OUTPUT FLOAT ...t 356
ASM OUTPUT_IDENTovvviiiiiiiiiniinennnn 355
ASM OUTPUT_INT ...vvii i ieeas 356
ASM_OUTPUT_INTERNALLABEL 361
ASM OUTPUT LABEL ... 359
ASM OUTPUT LABELREF oo, 360
ASM OUTPUT LOCAL ...t 358
ASM_OUTPUT LONGDOUBLE.........cvvvvuninnnn. 356
ASM_OUTPUT LOOPALIGN.......ovvvvnininnenn.. 369
ASM OUTPUT OPCODEvviiiii i iieiienens 366
ASM_OUTPUT POOLPROLOGUE.............cunn. 357
ASM_OUTPUT QUADRUPLEINTcovvnenn. 356
ASM OUTPUTREGPOP ..., 368
ASM OUTPUTREG PUSHcovvviiiinnnnn. 368
ASM_OUTPUT SECTIONNAME 355
ASM_OUTPUT _SHARED COMMON.............unn. 358
ASM_OUTPUT SHARED LOCALovvvnvninn.n. 359
ASM OUTPUTSHORT ... 356
ASMOUTPUT SKIP ...t 369
ASM_OUTPUT SOURCE FILENAME................. 355
ASM_OUTPUT SOURCELINE.........cvvuvvuninnnn. 355
ASM_OUTPUT SPECIAL POOL_ENTRY.............. 357
ASM SPEC ..t i e 294
ASM STABDOP ..ottt iie i 371
ASM STABNOP ...t iie i 371
ASM STABS OP ..ttt i iie i 371
ASM WEAKEN LABELcoviiniiiiiniinn., 360
assemblemameooiiiiiiiiiii e, 359
assembler formato 354
assembler instructionsl 140
assembler instructions in RTL 231
assembler names for identifiers................ 143
assembler syntax, 88k.......................... 62
ASSEMBLER DIALECT ..o, 368
assembly code, invalid 179
assigning attribute values to insns 286
asterisk in template 248
atof o 376
= P 286
attrflag.....oovviiiiiiiiiiiiii 285
attribute expressions 283
attribute of types............, 137
attribute of variables 134
attribute specifications 287
attribute specifications example............... 287
attributes, defining L 282
autoincrement addressing, availability......... 195
autoincrement/decrement addressing. 249

393
autoincrement/decrement analysis............ 201
automatic inline for C++ member fns........ 139
B
backslash............. ...l 247
backtrace for bug reports..................... 182
o3 T =3 o 233
BASE REG CLASS ...t 315
basic blocks ...t 201
DCIP ottt 388
bcond instruction pattern..................... 266
bcopy, implicit usageooviiiiiiii.., 342
BIGGEST ALIGNMENT.........covviiniuninnnnn, 302
BIGGEST FIELD ALIGNMENTcoouu.n. 302
Bison parser generator................. ... 88
bit fields ... 224
bit shift overflow (88k)...............l 63
BITFIELD NBYTES LIMITEDovvnvnn.n. 304
BITSBIGENDIANcovvtiiniiiiiiiinnnnn, 300
BITS_BIG_ENDIAN, effect on sign extract..... 224
BITS PERUNIT....c ottt 300
BITS PERMWORD.....ooviiiiiiii i 301
bitwise complement........................... 221
bitwise exclusive-or...........covvuiiiinan, 222
bitwise inclusive-orol 222
bitwise logical-and................... 222
BLEmode ... i 212
BLKmode, and function return values 238
BLOCK PROFILER ...t 336
BLOCK PROFILERCODE.........covvniuninnnnnn. 336
BRANCH COST...oiiiii ettt iie i 350
break_out memoryrefs................ 346
bug criteria...........coiiiiiiiiii 179
bug report mailing lists....................... 180
bugs .o 179
bugs, known............... ..ol 157
builtin functions...............c.ooiiiiiiii., 27
byte writes (29Kk) ... 59
bytemode........coiiiiiiiiiiii 214
BYTES BIGENDIANovviiiiiiiiniiin 300
DZEXO civ it 388
bzero, implicit usageooviuiiiii.a.. 342
C
C compilation options 19
C intermediate output, nonexistent 17
C language extensionscovuuuunn. 115
C language, traditional 27
C statements for assembler output............ 248

C_INCLUDE PATH........coiiiiiiiii i, 81

394

CH+commentsooovvnuiiinnnnneennnnn
C++ compilation options
C++ interface and implementation headers
C++ language extensions......................
C++ member fns, automatically inline.......
C++ misunderstandings
C++ named return value......................
C++ options, command line
C++ pragmas, effect on inlining
CH+signaturesoovvvvnnnnennnnnnnnennns
C++ source file suffixes.......................0.
C++ static data, declaring and defining........
C++ subtype polymorphism...................
C++ type abstractionoovvenen..

call instruction pattern......................
callusageovviviiiiiiiiii i i
call-clobbered register
call-saved registeroiiiiiiian,
call-used registercoiiiiiii..
call insn.....ovvniiiiiiiiii i
calliinsnand ‘/wcoviiiiiiinn...
CALL_INSN FUNCTIONUSAGE
call_pop instruction pattern..................
CALL USED REGISTERS......covviinininninnnnn.
callusedregsooviiiiiiinnnnnnnnnnnnnn,
call_value instruction pattern
call_value_pop instruction pattern...........
CALLER SAVE PROFITABLE..........ccovivun.n.
calling conventionscoiuiiinnn.
calling functions in RTL
CANDEBUGWITHOUT FP......covvivininnnnn.
CAN ELIMINATEottt
canonicalization of instructions
CANONICALIZE COMPARISON.........covvuvnn.n.
case labels in initializers......................
CASE TAILZES . oo vve e eennineennnnneennnunnnsss
case sensitivity and VMS
CASEDROPS_THROUGHcovvuiuiininnn.
CASE_VALUES THRESHOLDovvvuiunnn..
CASE_VECTORMODEovviiiiiiiiniinnnn,
CASE_VECTORPC RELATIVE
casesi instruction pattern....................
cast t0 A UNIOIL . . ovvvvvvie et
castsaslvalues................ ...l

Using and Porting GNU CC

CC_STATUS_MDEP_INIT.........covvivninnennn. 347
CCO ittt 219
ccO, RTL sharing..........coooviiiiaa., 239
CCO T X oot i i 219
CCLSPEC ..t i i i ci e 294
CCIPLUS SPEC ...ttt 294
COMOde .o v ittt i 212
CDImode ..ottt 212
change addressooviiiiiiiiiiiiiiin, 261
CHARTYPESIZEcoviiii i 306
CHECK_FLOAT VALUEot 305
CHImodecovviiiiiiiiin i 212
class definitions, register...................... 314
class preference constraints 254
CLASS LIKELY SPILLED P.......cvvviuninninnn. 318
CLASS MAXNREGS ... 319
classes of RTX codescooviiunn... 206
CLEAR_INSNCACHEcoiiiiiiiinnn.. 340
L 1 - P 390
Clobber vt e 227
cmpm instruction pattern..................... 264
cmpstrim instruction pattern.................. 264
code generation conventions 7
code generation RTL sequences............... 277
code MOtION ... ovvvvviiii i 201
codelabel....ooiiiiiiiiniiiiiini i 233
codedabeland “/i’......covviiiiiiii, 210
CODE_LABELNUMBERc.ciiiniiininnn. 233
codes, RTL expression...........covvvvuunnn.. 205
COImMOde ..ottt 212
COLLECT EXPORT LIST....ovviiiiiiiininnnnn. 387
COMbINEr PASS .. vvvvvrrrrrrrrnneeneeeeenenanan 218
command Options.ovviiiiiiieeiniiiia 19
comments, C++style..................oouan.. 133
common subexpression elimination............ 201
COMP_TYPE ATTRIBUTES.........ccvvviiunininnn. 382
COMPATE 1t vttt tvttseetrnninnseernnnseeennnnns 220
compare, canonicalization of 273
compilation in a separate directory 103
compiler bugs, reporting...................... 180
compiler compared to C++ preprocessor........ 17
compiler options, C++ 29
compiler passes and files...................... 199
compiler version, specifying.................... 52
COMPILER PATH ..o i 80
complement, bitwise...................... ..., 221
complex numbers..................., 123
compound expressions as lvalues.............. 121
computed gotos ...t 116
computing the length of aninsn 288

Index

Lo T 224
cond and attributes................. ... 284
condition code register.................. ... 219
condition code status......................... 346
condition codes..........oiiiiiiiiiiiiiiia 223
conditional expressions as lvalues............. 121
conditional expressions, extensions............ 122
CONDITIONAL REGISTERUSAGE................. 309
conditions, in patterns........................ 241
configuration filel 385
configurations supported by GNU CC.......... 91
conflicting types...........cooviiiiiiin..,. 172
const applied to function..................... 129
const function attribute...................... 130
CONST CALL P .viiit ettt iieeaannn 209
CONST COSTS ..ttt it i it iiennnn 348
constdouble............. il 215
const_double, RTL sharing................... 239
CONSTDOUBLE CHAIN.......cvvvniininninnnnnn. 215
CONSTDOUBLELOWovvvii i 215
CONSTDOUBLEMEMvvviiiiiiininiinenn, 215
CONST DOUBLE OK_FOR_LETTERP 319
const_int........oiiiiiiiii i 214
const_int and attribute tests................. 284
const_int and attributes..................... 283
const_int, RTL sharing 239
CONSTOK_FORLETTERPccovvuiunn... 319
const Stringoiiiiiiiiiiiiii 215
const_string and attributes.................. 283
consttruertXiiiiiiiiiiiin i, 215
constOTEX .o 214
CONSTO RTX .. ittt ittt i 215
constl rtX...ovini i 214
CONSTLI RTX ..it ittt i iaeannn 215
CONSt2 XEX.vvvin i 214
CONST2 RTX ittt ittt it 215
constant attributes................. 289
constant foldingol 199
constant folding and floating point............ 377
constant propagation..................c.ouun. 201
CONSTANT ADDRESS P ..o 344
CONSTANT ALIGNMENT.......ovvvuiininninnnnn. 303
CONSTANT P ..o i 344
CONSTANT POOL_ADDRESS Povvvivinnann.. 209
constants in constraints....................... 250
constmlrtX.....oooiiiiiiiiiii 214
constraint modifier characters................. 254
constraint, matching.................... 251
constraintso.viiiiiii e 249
constraints, machine specific.................. 255

395
constructing calls...............ol 119
CONStTUCtOr eXPressionsc.oeveeeeeenenenss 126
constructor function attribute............... 131
constructors vs goto................ia.., 151
constructors, automatic calls.................. 112
constructors, output of 362
contributorsot 9
controlling register usage 309
controlling the compilation driver............. 293
conventions, run-time......................... 197
COIVETSIONS &+ vt vvttteennineennnneennnunnns 224
Convex optionscovveeennnnnnnieennnnnnnnn. 58
copyrtx_if shared........... ..., 240
COTE dUINIP. ..ttt ttteiiieeeeennnneaaans 179
Lo T S 27
costs of instructionsoiiian, 348
COSTS N _INSNS. ..ottt it 349
CPLUS_INCLUDE PATHoiviiiiiiiiiinan, 81
CPP PREDEFINES ...t 297
CPP_SPEC .. i i e 293
(6] Yo Yo K=Y PP 212
cross compilation and floating point........... 376
cross compiling ..., 52
cross-compiler, installation.................... 104
CTOSS-JUINIPING + .+ ot v e vvineeennennaeennnnnsss 202
CROSS_LIBGCCL ..vii i i ie e ineann 389
CRTSTUFF.TCFLAGS ..ot 389
COIMOde ..ottt it 212
CTImOode ..ottt 212
CUMULATIVE ARGS .. .ot iieens 328
current function epilogue delaylist...... 335
current function outgoing args size....... 325
current functionpopsargs................. 335
current_functionpretend args size........ 333
D
‘A’ in constraintoiiiiiiiiiiiie.., 250
data flow analysisccovvvviiiiinn.. 201
DATAALIGNMENT ..o i iaeens 302
datasection............ooiiiiiiiiiiiiia, 352
DATASECTIONASM OPovviiiiiiie i 352
DBROUTPUT SEQENDcovviiniiiiinnnnn, 367
dbr_sequencelength................oviiuunn, 367
DBX 162
DBX BLOCKS FUNCTION RELATIVE............... 372
DBX_CONTINCHARoiviiiii i 372
DBX_CONTIN LENGTHcovviiniinininnennn. 372
DBX DEBUGGING INFO.......covvivvininninnnnn. 371
DBX_FUNCTIONFIRSTcovvviiiininninnnnn. 372

DBX_LBRAC FIRSToiviiiiiiiiiinnnns, 372

396
DBX MEMPARM STABS_LETTER................... 372
DBXNOXREFS....ovviii i, 371
DBX_OUTPUT_ENUM.........coviiniiniininnnnnn, 373
DBX_OUTPUT_FUNCTION_END................... 373
DBX_OUTPUT_LBRAC........ccviiiiiiiniiinnenn, 373
DBX_OUTPUT MAIN SOURCEDIRECTORY.......... 374
DBX_OUTPUT MAIN SOURCE FILEEND............ 374
DBX_OUTPUT MAIN SOURCE FILENAME............ 374
DBX_OUTPUT_RBRAC.........covviiiiiiiiinann, 373
DBX_OUTPUT SOURCE FILENAME................. 375
DBX_OUTPUT_STANDARD_TYPES 373
DBX REGISTERNUMBER.............coviinninn.. 370
DBX REGPARM STABS CODE.........cvvvvuninnnn. 372
DBX REGPARM STABS_LETTER 372
DBX_STATIC CONSTVARCODE 372
DBX_STATIC STABDATA SECTION............... 372
DBX_TYPE DECL STABS CODE.................... 372
DBX_WORKINGDIRECTORYcvvuiuninn.n. 374
DOmode ..vvviiiiii 212
De Morgan’slawooivviiiinn... 274
dead codeoovnviviiiiiiiii i 200
dead 0T Sel P .viurruruiiiiiiiiiiununnnnnnenns 275
deallocating variable length arrays............ 124
death notes..............ociiiiiiiiinn... 313
debug IrtX ..o 183
DEBUG SYMS TEXTcvvviiiiiiiiiiiniinenn 371
DEBUGGER ARG OFFSETcvvviiiinninnnn.. 370
DEBUGGER AUTOOFFSET........cvvviviiniinnn. 370
debugging information generation............. 203
debugging information options................. 39
debugging, 88k OCS ..., 61
declaration SCOpPeccvvvveeeeeniinnnnnnnn 169
declarations inside expressions 115
declarations, RTLt 226
declaring attributes of functions 129
declaring static data in C++ 173
default implementation, signature member
function ... 155
DEFAULT CALLERSAVES.......oiiiuiiiiinnnn, 332
DEFAULT GDB_EXTENSIONS.........cvvvnvunnn. 371
DEFAULT MAIN RETURN..........coiviuninnann.. 383
DEFAULT PCC_STRUCT RETURN 331
DEFAULT SHORT ENUMS........ccoviiiuninninn.. 307
DEFAULT SIGNED CHAR..........vvviuninnnn.. 306
define_asm_attributes............oivur.n.. 287
defineattr..........coiiiiiiiiiiiiiiiiia, 282
define_delay......coovviiiiiiiiiiiiiinnn, 290
define expandoouuuuiiiiiiiunnnninnnnens 277
define functionmumit........................ 291
definednsn..........coiiiiiiiiiiiiiiiia., 241

Using and Porting GNU CC

define insnexample......................... 242
define peepholeovvviiiiiiiininnnnnnnnns 277
definesplit............covvivnenin.... 280
defining attributes and their values 282
defining jump instruction patterns............ 271
defining peephole optimizers.................. 274
defining RTL sequences for code generation... 277
defining static data in C++.................... 173
delay slots, defining.L 290
DELAY SLOTS FOREPILOGUE................... 335
delayed branch scheduling.................... 202
dependencies for make as output............... 81
dependencies, make...................0oiiaa., 48
DEPENDENCIES OUTPUT.......covviuiininninnenn. 81
Dependent Patterns 270
destructor function attribute................ 131
destructors vs goto......... ...l 151
destructors, output of 362
detecting ‘~traditional’..............o.uinnn. 28
DFmode ...ovviiiiiiii i i 212
dialect options.oovviiiiiiiennnnniiia.. 26
digits in constraintiiiaa.., 251
DImode ..ot 212
DIRSEPARATOR...... ot 387
directory optionsovvvviiiiierrriieannnn 51
disabling certain registers..................... 309
dispatch table 368
iV oo 221
div and attributes................ ... 284
DIVDI3 LIBCALL covvviiii it iiiiiieinaans 341
divide instruction, 88k......................... 62
diVISION « v vttt 221
divma3 instruction pattern.................... 262
divmodm4 instruction pattern................. 263
DIVSI3 LIBCALL covvviiiiiie i iiiiieeeans 341
dollar signs in identifier names................ 133
DOLLARS_IN_IDENTIFIERSccvininn.. 383
DONE .ttt i i e 278
DONT DECLARE SYS SIGLIST........ccvnvvunnn.. 386
DONT REDUCEADDRoviiiiiiii i 351
double-word arithmetic....................... 123
DOUBLETYPE SIZEovviiiiiiiiiniinnnns 306
downward funargs.................ooiiiia, 117
AEIver .o 293
DW bit (29k).....ovnininiiiiiiiiiiiiia 58
DWARF DEBUGGING INFO........ccvvvvvninnnnann. 375
DYNAMIC CHAINADDRESScooviininninn.. 321
E

‘E’inconstraintccvviuuneeeennn. 250

Index

EASYDIVEXPR....ooviiii i 379
EDOM, implicit usagecovvuuvunernnnnn... 342
ELIGIBLE FOR EPILOGUEDELAY................ 335
ELIMINABLEREGS ...t 323
empty constraintseeeeeeeeiiiiiaann 260
EMPTY FIELD BOUNDARYcvvviiiiiinnn, 303
ENCODE SECTIONINFO.......vvvvnivvnninnenn.. 353
ENCODE_SECTION_INFO and address validation.. 345
ENCODE SECTION INFO usage..........oovuvenn. 367
ENDFILESPEC ..ot iie e 295
endiannessoiiuiiiiiiiiiii e 195
enum machinemode il 211
eNUM reg ClassS...ovvvrrirniirrnnrnnnsnnnnssss 315
enumeration clash warnings.................... 36
environment variables.................. 80
epilogueo 332
L= 223
eq and attributes.............. ... 284
egattr oo 284
equal.......... e 223
errno, implicit usage ..ol 342
ETTOT TMIESSAZES .« v v v et vnnneennnnseernnnnns 178
escape sequences, traditional 28
exclamation pointcoiiiiiiiiia.. 254
exclusive-or, bitwise ..o, 222
EXECUTABLESUFFIX.....coviiiiiiiiiininnenn.. 387
XA e e 27
exit status and VMS 192
EXIT BODY .ottt ittt cie i 383
EXIT_IGNORESTACKcvviiiiiiiiiin i, 334
EXPAND BUILTIN SAVEREGScoouu.n. 338
expander definitions 277
explicit register variables 144
exprlist ... 238
exXpression Codes.ovveerrrrrenennnneeaaanns 205
expressions containing statements............. 115
expressions, compound, as lvalues............. 121
expressions, conditional, as lvalues............ 121
expressions, constructor 126
extended asm............o i, 140
extendmn instruction pattern................. 265
extensible constraints......................... 251
eXteNSIONS, T2 o.uuurtiitereeiineaaaas 121, 122
extensions, C language 115
extensions, C++ language 149
extern int target_flags.................... 298
external declaration scope 169
EXTRA_CC_MODESt 347
EXTRA_CC_NAMESo, 347
EXTRA CONSTRAINToviiiiiii i, 320

397
EXTRA_SECTION FUNCTIONScvvvninn.n. 352
EXTRASSECTIONS ...oviii i ieens 352
extv instruction pattern...................... 265
extzv instruction pattern..................... 265
F
‘F>in constraintovviuuviinnnnnenn.. 250
=1 o1 27
I P 278
fatal signal ..., 179
FATALEXITCODE ..ot 385
features, optional, in system conventions...... 298
FES e e e 27, 222
ffem? instruction pattern.................... 264
file name suffixol 24
filenamesooviiiiiiiiii 49
files and passes of the compiler 199
final pass.........ccovviiiiiiiiiii i 203
FINAL PRESCANINSN.......covvuiniininnnnn, 366
FINAL REG PARM STACKSPACE 325
final scan insn..........ooviiiiiniiiiiinnn. 335
final sequencecoiiiiiiiiiiiiinn.. 367
FINALTIZEPIC ..ttt iiiin i 353
FIRST_INSNADDRESSo, 288
FIRST PARMOFFSETcovviiiii i 321
FIRST PARM OFFSET and virtual registers 217
FIRST PSEUDOREGISTERcovvuiuninnn. 308
FIRST STACKREGooviviiiiiiiiiinn, 313
FIRST VIRTUALREGISTER............coounn. 217
FiX o 225
fix_truncmn? instruction pattern............ 265
fixed registercoiiiniiiiiiiiiii 308
FIXED REGISTERSt 308
fixedregs.....ovvviiiiiiiiiiii 309
fixmn? instruction pattern................... 265
FIXUNS_TRUNC LIKE FIX_TRUNC................ 379
fixuns_truncmn?2 instruction pattern......... 265
fixunsmn?2 instruction pattern 265
flags in RTL expression..............cvvvnnn. 208
float cooiiii 225
float as function value type.................. 169
FLOAT ARG TYPEcoviiii i 342
floatextendoooiiiiiiiiiiiia, 225
FLOAT STORE FLAGVALUE............coiiinn. 381
float_truncate........... ...l 225
FLOAT TYPESIZE .. .ottt 306
FLOAT VALUETYPEot 343
FLOAT WORDS BIG ENDIAN..........ccoviiuninnn. 300
FLOATIFEY ot i it cie e 343

floating point and cross compilation........... 376

398
floatmn?2 instruction pattern................. 264
floatunsmn? instruction pattern............. 264
forcereg...ovviiiiiiiii 261
format function attribute..................... 130
forwarding calls ..., 119
frame layout............cooiiiiiiiii 320
FRAME GROWS DOWNWARD...........covvinnna.. 320
FRAME_GROWS DOWNWARD and virtual registers... 217
frame pointermeeded................ 333
FRAME POINTER REGNUM...........covviinninn.. 321
FRAME POINTER REGNUM and virtual registers... 217
FRAME POINTERREQUIRED...........cccoiun.n. 323
frame pointerrtx............ ..., 323
fscanf, and constant strings.................. 167
ftruncm? instruction pattern................. 265
function attributes 129
function call conventions...................... 197
function entry and exit 332
function pointers, arithmetic.................. 126
function prototype declarations............... 132
function units, for scheduling 291
function, size of pointer to.................... 126
function-call insnsl 238
FUNCTIONARG ...oiviii i 326
FUNCTION ARG ADVANCE.........ovvviuninninn.. 329
FUNCTION ARG BOUNDARYcovvvninnnn.. 329
FUNCTION_ARG_CALLEECOPIES................. 328
FUNCTION ARG PADDING.........ovvuvuninnann.. 329
FUNCTION_ ARG PARTIALNREGS 327
FUNCTION_ARG PASS BY REFERENCE............. 327
FUNCTIONARGREGNO Po, 329
FUNCTION BLOCK PROFILER............c.cuvu.. 336
FUNCTIONBOUNDARYcoviiiiiiiiiiin e 302
FUNCTION CONVERSIONBUG................u... 386
FUNCTION EPILOGUE........ccvvuiiiiniininnenn. 334
FUNCTION EPILOGUE and trampolines.......... 340
FUNCTION_INCOMINGARGcovvivninnann.. 327
FUNCTIONMODE ..ottt ieans 382
FUNCTION OUTGOINGVALUEciu... 330
FUNCTIONPROFILER........ccviuiinininnann. 335
FUNCTION PROLOGUE.......ccvvviiiiinnnnnn. 333
FUNCTION PROLOGUE and trampolines.......... 340
FUNCTION VALUE ... 329
FUNCTION VALUEREGNOP..........coviinnnn.. 330
functions in arbitrary sections 129
functions that are passed arguments in registers on
the 386ccoviiiiiiiiii.... 129, 132
functions that do not pop the argument stack on
the 386 ...t 129

Using and Porting GNU CC

functions that do pop the argument stack on the

386 i e e e e e 132
functions that have no side effects 129
functions that never return................... 129

functions that pop the argument stack on the 386

..................................... 129, 132
functions with printf or scanf style arguments
... 129
functions, leaf i il 312
G
‘g’in constrainto, 250
‘G’in constraint i, 250
= 26
GHb 17
Bt L XX 26
gt+older version oo 26
g++, separate compiler............ L. 26
GOC . 17
GCCEXECPREFIXoviviiiiiiiiiin, 80
= 223
ge and attributes........... o 284
GENERRNORTX.....ooviiiiiiiiiii i 342
gencodes ...t 200
genconfig......ooiiiiiiiiiiii 203
general operand..........oiiiiiiiiiiiiia., 243
GENERALREGSoiitiiiii i 314
generalized lvalues...................... 121
generating assembler output 248
generating NSNSo.vvvvvnnuneennnnnnneanns 242
genflags.......ooviiiiiiiiiiiiiiiii i 200
genflags,crashon Sun4..................... 159
getattr ... 284
get_attr_length............oooiiiiiiiiis, 289
GET_CLASS_NARROWESTMODE 214
GET CODE ...\ttt it 205
get frame size.............iiiiiii., 323
L= T 4 = = S 232
get last insn..........ooiiiiiiiiiiiiiiiaa., 232
GETMODE ...ttt 213
GET MODE_ALIGNMENTc.covvuiiinninn, 214
GET MODE BITSIZEciviiiiiiiiiiiiaennnn 214
GETMODE CLASS ...ttt 214
GETMODE MASK.....oiviiiiiii it 214
GETMODENAME. ...t 213
GETMODENUNITS ...t 214
GETMODE SIZE......coviiiiiiiiiiiiieinenns 214
GET MODEUNITSIZEvviiiiiiiiiiaennnns 214
GET MODEWIDERMODE.............ovvvinnann. 214

GET RTX CLASS .. o 206

Index

GETRTX FORMAT ..ot 206
GETRTX LENGTHovviiiiiiis, 206
=45 223
geu and attributes................ ... oL 284
global offset table......................L. 78
global register after longjmp.................. 145
global register allocation...................... 202
global register variables....................... 144
GLOBALDEF ... i 190
GLOBALREFo 190
GLOBALVALUEDEF........oviiiiiiiaeinss 190
GLOBALVALUEREF....... ..ot 190
GNU CC and portability 195
GNU CC command options.................... 19
GO_IF_LEGITIMATEADDRESS, 344
GO_IF MODE DEPENDENT_ADDRESS 346
gotoin C++....iiiiiii 151
goto with computed label..................... 116
gp-relative references (MIPS) 71
gPYOL 41
greater than................. .. i 223
Erouping OPtionS.vvvvuureinnnununeennnnns 19
B e e 223
gt and attributes...............ol 284
= 73 223
gtu and attributes................ol 284
H
‘B’ in constraintooiiiiiia 250
HANDLEPRAGMAot 382
hard registers...............ooiiiiiiiiiia, 216
HARD_FRAME POINTER REGNUM.................. 322
HARD REGNOMODEOKcvviiviinnnnnnn. 310
HARD REGNONREGSoiviiiiiiiienn, 310
hardware models and configurations, specifying
... 53
HAS_INIT SECTIONovvnviiniinnennnnnnns 364
HAVE ATEXIT .. .ot 383
HAVE POSTDECREMENTccovvuinnnn., 344
HAVE POST_INCREMENT.............oovuinnan.. 344
HAVE PRE DECREMENTcoovinian, 344
HAVE PRE_INCREMENToovvniin, 344
HAVEPUTENV..... ..o 386
HAVEVPRINTFot 386
header filesand VMS..................... ... 189
BAGN .« ottt e 216
HImode ...ovvvvirii e 211
HImode, I N8N «vvvvveerrrrrrenneeeeeeeeennns 234
host makefile fragment........................ 390
HOSTBITSPERCHARo, 385

399
HOSTBITS PER.INT ..o 385
HOSTBITS PERIONGcovviunininnnennn, 385
HOSTBITS PERSHORTcovvviviiinnnn, 385
HOST_FLOAT FORMAT ...t 385
HOST_FLOAT WORDS BIG ENDIAN 385
HOST_WORDS BIG ENDIAN...........covvninninn.. 385
HPPA Optionscoovviiiiiinnnnnninnnnnn. 73
I
‘1’in constraintiiiiiiiiiiiiie., 250
‘I’in constraintcoviiiuueiinnnnnenn.. 250
1386 OPtions. . ..vvvtieeiiiiieneaaaas 71
IBM RS/6000 and PowerPC Options. 63
IBM RT options.......coovviiiiiiennennnnnnnnns 67
IBMRTPC...oiii e 166
identifier names, dollar signsin............... 133
identifiers, names in assembler code........... 143
identifying source, compiler (88k).............. 60
IEEE_FLOAT FORMATcoviiiiiiin i 305
if thenelse.......ooiiiiiiiiiiiiiiinn., 223
if _then else and attributes.................. 283
if thenelsewusage..........coovvviiiinnnnnn.. 226
immediateoperand............iiiiiiiiii.., 243
IMMEDIATE PREFIX ..o vniii i 367
implicit argument: return value............... 149
IMPLICITFIXEXPR.....covviiiiiniin .. 379
implied #pragma implementation............. 152
indata...oooeiiiiiii i 352
IN_Struct .o 210
in_struct,in code label..........ccvvuunnn. 210
instruct,in insn..........c.ooeveeenn... 209, 210
in_struct,in labelref...................... 209
instruct, N memoouuuuunennnnnnnnnnnn. 208
in_struct,inreg..........ooiiiiiiiiii. 208
in_struct,in subreg............ ...l 208
InteXt oo 352
include files and VMS 189
INCLUDEDEFAULTS ..ot i 296
inclusive-or, bitwise.................ooiia... 222
INCOMINGREGNOovviiin i 309
incompatibilities f GNU CC................. 167
increment Operatorsoeeeeeeieeean... 179
INDEX REG CLASS ... 315
indirect_jump instruction pattern............ 268
INIT_CUMULATIVEARGS.......covviininiinnn.. 328
INIT_CUMULATIVE INCOMINGARGS.............. 328
INIT ENVIRONMENTccvniininiiiiniinnnn 296
INIT SECTIONASMOPcovvnvnnvnnnn. 352, 364
INIT_-TARGET OPTABS ... 342

INITIAL ELIMINATIONOFFSET................. 324

400

INITIAL FRAME POINTEROFFSET............... 323
initialization routines..................ouuu.. 362
initializations in expressions 126
INITIALIZE TRAMPOLINEo, 339
initializers with labeled elements.............. 127
initializers, non-constant...................... 126
inline automatic for C++ member fns........ 139
inline functions..............cooiiiiiiiia, 139
inline functions, omission of................... 139
inline, automaticoiieiiiiiiia, 200
inlining and C++ pragmas 152
i £ ¢ 232
insnand /1% ... 210
insnand /8. .. 209
insnand /W 209
insn attributes........... i, 282
insn canonicalization 273
insn lengths, computing 288
insn splitting, 280
insn-attr.h.......... o il 283
INSN_ANNULLEDBRANCHP..........covviinnn. 209
INSN_CACHEDEPTHcoiviiiiiiiininns 340
INSN_CACHE LINEWIDTH.........ccovviuninn.n. 340
INSN.CACHESIZE ...t 340
INSN_CLOBBERSREGNOP...........cooviuninn.n. 313
INSN_CODEcovii i it eieeeann 234
INSNDELETED P ..ot 209
INSN_FROM_TARGET Pcoiiviiniiiinnnn, 209
Insn list ..ot 238
INSN REFERENCES ARE DELAYED................ 383
INSN_SETS AREDELAYED........coovvviuninn.n. 383
I D 232
IIISIIS « 4t oee v ieee et i 231
INsns, generatingeevevnnuneennnnnens 242
INSNS, TECOGMIZING . . oot vt e enineennnnnnne.s 242
INSTALL e et i i e e eaeans 390
installation trouble 157
installing GNUCCo, 85
installing GNU CC on the Sun................ 109
installing GNU CCon VMS 109
instruction attributes................. 282
instruction combination 201
instruction patternscovuuenn. 241
instruction recogmizer..............c.ovuuuun... 203
instruction scheduling.................... 201, 202
instruction splittingo... 280
insv instruction pattern...................... 265
INT TYPE SIZE....oou it 305
INTEGRATE THRESHOLDcvviiniunvnnnn. 382
integrated........oiiiiiiiiiiii 211

Using and Porting GNU CC

integrated,in insn...........o 209
integrated,inreg..........o 208
integrating function code 139
Intel 386 Options............cvvvvveveeeennn... 71
Interdependence of Patterns 270
interface and implementation headers, C++.... 151
interfacing to GNU CC output................ 197
intermediate C version, nonexistent 17
) 343
invalid assembly code......................... 179
invalid input i 180
INVOKE_main.....oovvviiniinniiiinnneinnnnnn, 364
invoking g++......... i i 26
T 222
ior and attributes................ ..o 284
ior, canonicalization of 274
iorma3 instruction pattern.................... 262
IS_ASM_LOGICAL LINE_SEPARATOR.............. 357
Ising oo 377
IBMATL c ettt e 377
J

jump instruction patterns..................... 271
jump instructions and set.................... 226
jump optimization..................0iiii... 200
jump threading.................. ..o 201
JUMP NS .o v et i s 232
JUMP LABEL ..ot iieiaeans 232
JUMP_TABLES_IN_TEXT_SECTION 353
K

kernel and user registers (29k)................. 59
keywords, alternate........................... 146
known causes of trouble 157
L

LABEL NUSES ...ttt ittt it i iiecinnans 233
LABEL OUTSIDELOOP P.....cvvvviiininnnnnnn, 209
LABELPRESERVEPcoiviviiiiiniinnnn.. 210
label ref ... 215
labelrefand /s’ ..oovvviiiiiiinnnn... 209
label ref, RTL sharingcouut. 239
labeled elements in initializers 127
labels as values...............oooiiiiiiiiait, 116
1abs o e 27
language dialect options 26
large bit shifts (88k)..............cooovininiin.. 63
large return values............................ 331
LAST STACKREGovviiii i, 313

LAST VIRTUALREGISTER.................v..s. 217

Index

LD FINISWITCHcvvviiniiiiiiiiiininennn. 364
LD_INITSWITCHcovvviiiiiiiiiininnnnn. 364
LDD_SUFFIX .ttt ittt ie e 365
LA@XD vttt e 376
Lttt e i e 223
le and attributes................ .l 284
leaf functions.cooviiiiiiiiia, 312
leaf function...........covviiiiiiiiaa., 312
leaf functionp.......oovvviiiiiiiiiian., 268
LEAFREGREMAPoiiiiiiiiiiiininn, 312
LEAF REGISTERS .. oot 312
left rotateovvnn 222
left shift...........oooiiii s 222
LEGITIMATE CONSTANT Poovivivninnaa.. 346
LEGITIMATEPICOPERANDPcooiiun.n. 354
LEGITIMIZEADDRESS.. ...t 346
length-zero arrays ..o, 124
lessthan ..., 223
less than orequal....................oovuun.. 223
1 223
leu and attributes............. ..o, 284
LIBSPEC ..ttt 294
LIB2FUNCS EXTRAot 389
LIBCALLVALUEot 330
‘libgec.a oo 341
LIBGCCNEEDSDOUBLE.........covvniniuninnnnn. 342
LIBGCC SPEC .. .ottt 294
LIBGCOCT vttt i i it cie i iaaans 389
LIBGCC2 CFLAGS ..ot it iieens 389
LIBGCC2 WORDS BIGENDIANcovuu.n. 300
Librariescoovviiii i 49
library subroutine names 341
LIBRARY PATH....oiiii i iieians 80
LIMITRELOAD CLASS .. .t 316
link options0iiiiiiiiiiiiian... 49
LINK_LIBGCCSPECIAL.......ovviinininninnnnn. 295
LINK_LIBGCCSPECIAL 1.......cvvviunvninnnnn. 295
LINKSPEC ...ttt iieiieeaans 294
JoSUM .ttt i e 220
load address instruction 251
LOADEXTENDOP ..ot 379
load multiple instruction pattern............ 262
locallabels........coovviiiiiii i, 116
local register allocation....................... 202
local variables in macros...................... 120
local variables, specifying registers............ 146
LOCAL_INCLUDEDIRcovviiiiiiiiniinennns 296
LOCALLABEL PREFIX.....cooviiniininnininnn, 367
LOGLINKS ..ttt ittt it iieeaans 235
logical-and, bitwisecooiiii..n. 222

401
long long data types................ooiuie. 123
LONG DOUBLETYPESIZE........covviuniinnann. 306
LONG_LONG_TYPESIZEo, 306
LONG_TYPESSIZE ..o, 306
LONgIMP o vttt e 145
longjmp and automatic variables.......... 27,197
longjmp incompatibilities..................... 168
L1ongjmp Warmings.o.vvuueinuennnnennuennnens 36
LONGJMP RESTORE FROM_STACK 324
loop optimization..............covvuuuunennnn. 201
Ishiftrt... ..o 222
lshiftrt and attributes...................... 284
lshrma3 instruction pattern................... 263
1 223
1t and attributes................ .. il 284
1 223
lvalues, generalized 121
M
‘m’ in constraintiiiiiiiiiiie .., 249
M680x0 optionsoovvvvvereernennnnenennnn. 54
M88k options.covvvviiiiiiiiieeieiiiia, 60
machine dependent options 53
machine description macros................... 293
machine descriptions00, 241
machine mode conversions.................... 224
machine modes.................ooiiiiia, 211
machine specific constraints................... 255
MACHINE DEPENDENTREORGcooun.n. 384
macro with variable arguments 125
mMAacros containing asm........oovuuuuueennnnns 142
macros, inline alternative..................... 139
macros, local labels........................... 116
macros, local variablesin..................... 120
macros, statements in expressions............. 115
macros, target description 293
macros, types of arguments................... 120
main and the exit status...................... 192
make 48
make_safe from.........oooiiiiiiiiiiiiiin 279
makefile fragment 389
matchdup.............oooiiiiiiiiii 244
match dup and attributes..................... 288
match_op_dupooovviiiiiiiiiiiia, 245
matchoperand................oiiiiii, 242
match operand and attributes................. 284
match operator..............ooiiiiiiiiiiaa, 244
matchpardup.............oooiiiiiiiiiii 246
match_parallelooiiiiiniiinnn, 245

matchscratch..........ooiiiiniiiininennn. 243

402

matching constraint 251
matching operandsl 247
math libraries o 198
math,in RTL 220
MAXBITS PERWORDovvniniininnnn.. 301
MAX CHAR.TYPESIZE ..o, 306
MAX FIXEDMODE SIZEcvviiniininniinnnn. 305
MAX_INT TYPESIZEcciiviiiiiiininn.. 306
MAX_LONG_.TYPESIZE ..., 306
MAXMOVE MAX . oot it iieaeens 379
MAX OFILE ALIGNMENTcovviinininninnn, 302
MAX REGS PERADDRESScovivinina... 344
MAX WCHAR TYPE SIZEcviiiniiiiinnn, 307
INAXIMUN OPETALOT « « vt vvvvveeeeeeeennnannnns 150
maxma3 instruction pattern.................... 262
MAYBE REG PARM STACK SPACE 325
IMCOUNT tvv ettt it i 335
MD_CALL PROTOTYPES......cooviiniiiiinn.. 387
MDEXEC PREFIX ..., 295
MD_STARTFILEPREFIX.......covviinininninnn, 296
MD_STARTFILEPREFIX_ 1........ccvvuiununinn.n. 296
LT 220
memand /s’ ... 208
memand /U’ ... 209
memand /v’ ... 208
men, RTL sharingot 240
MEM_INSTRUCT P ..o 208
MEM_VOLATILEP ..ottt i 208
member fns, automatically inline............ 139
LT (13 (3 o S 27
LT (1) o3 27
mencpy, implicit usage 342
memory model (29k)l 59
memory reference, nonoffsettable 253
memory references in constraints.............. 249
MEMORY MOVE COST .. vvvii i iieieens 350
menset, implicit usageo 342
INESSAZES, WATTIE « vt vvieeeeennnnennnnnnss 33
messages, warning and €rror.................. 178
middle-operands, omitted..................... 122
MINUNITSPERWORDcovvniniiiiinnnn, 301
Minimum oOperator.o.ouuuueeunnnnnnn. 150
minma3 instruction pattern.................... 262
U 41 = 220
minus and attributes 284
minus, canonicalization of 273
MIPS options.covvvviiiinennenneneennnnn. 68
misunderstandings in C++.................... 173
nktemp, and constant strings.................. 167
MOd oottt 221

Using and Porting GNU CC

mod and attributes.................l 284
MODDI3 LIBCALL ..vvvi it iiiieiaeens 342
mode attribute............ ..., 135
mode classes ... 213
0] P 213
MODE_COMPLEX FLOAT ..o, 213
MODE_COMPLEX INTciiiiiiiiiiin i 213
MODE FLOAT ..ttt it i cieiaeens 213
MODE_FUNCTIONovviiit i iiiiiiiniinenans 213
0] o 213
MODE PARTTIAL INT ...vvtiiiii i 213
MODE RANDOM....coviiiit it iiieiieennennns 213
MODES.TIEABLEPcoiviiiiiiiiiiiinnn, 311
modifiers in constraints....................... 254
modma3 instruction pattern.................... 262
MODSI3 LIBCALL ..vvvi i ieiaeens 341
MOVE MAX o\t it i cie e 379
MOVE RATTIO ..o iv ittt it i iiiecieinaans 351
movm instruction pattern..................... 260
movmodecc instruction pattern 266
movstrictm instruction pattern 262
movstrm instruction pattern.................. 264
MULDI3 LIBCALL ..vvvi i iii i iaeans 341
mulhigi3 instruction pattern 263
mulma3 instruction pattern.................... 262
mulqihi3 instruction pattern................. 263
MULSI3 LIBCALL ..vvvi i ieiaeens 341
mulsidid instruction pattern 263
MULE o 221
mult and attributes.................l 284
mult, canonicalization of 273
MULTIBYTE CHARS ...t 386
MULTILIBDEFAULTS ...t 295
MULTILIBDIRNAMESot 389
MULTILIBMATCHES ..ot 390
MULTILIBOPTIONS ..ot innennns 389
multiple alternative constraints 253
multiplicationccvvetiiiiii.... 221
multiprecision arithmetic..................... 123
MUST_PASS_IN_STACK, and FUNCTIONARG....... 327
N

‘n’in constraintoiiiiiiiiiiie... 250
N REG CLASSES ...ttt i 315
name augmentation 192
named patterns and conditions 241
named return value in C++................... 149
names used in assembler code................. 143
names, pattern i, 260

naming convention, implementation headers... 152

Index

NAmMINg tyPes...oovvvnriiiniiieenennnnnnennns 120
4= 223
ne and attributes.............. ... ol 284
1T~ St 221
neg and attributes............ o 284
neg, canonicalization of, 273
negm? instruction pattern.................... 263
nested functions............. ..., 117
nested functions, trampolines for.............. 339
newline vs string constants 28
NEXt CCOUSOT vttt iiiiinanannns 272
NEXT_INSN ..ottt 232
NEXTOBJCRUNTIMEcovvriiniininninnnnnns 344
Ml . e, 206
1O CONSETAINGS « oot vvieteeiin e ennnenns 260
no-op move instructions 202
NOBUILTIN PTRDIFFTYPEcoiiiun.n. 293
NOBUILTINSIZETYPE.........cviuiinniinnn. 293
NODOLLARINLABELoovvviniiinnnn.. 383
NODOT IN_LABEL.....covvvniiiiiiiiiinininnns 383
NO_FUNCTIONCSE ..ot 351
NO_IMPLICITEXTERNC......covvvniuninninann. 382
NOMD_PROTOTYPES ..o 387
NORECURSIVE FUNCTIONCSEcovvunn. 351
NOREGS .t cie s 314
NOSTABH ..iii i i cie s 387
NOSYS SIGLIST ...ovvriiiiniiiiiin s 386
nocommon attributeol 136
non-constant initializers 126
non-static inline function 140
NON_SAVINGSETJMP ...ovvvi i iienens 309
nongcc ST type ..vvvviiiiiiiiiiiii 343
nongccword type ...ttt 343
nonoffsettable memory reference.............. 253
nop instruction pattern....................... 268
noreturn function attribute 129
NOT ottt e 221
not and attributes...............l 284
notequal............... i, 223
not using constraints iau.. 260
not, canonicalization of....................... 273
NOLE .ot 233
NOTE_INSNBLOCKBEGcovviniininninnn. 233
NOTE_INSNBLOCKENDcovviniininninnn. 233
NOTE_INSNDELETEDcvviiiiniiniinennns 233
NOTE_INSN FUNCTIONEND........covvuvuninnnn. 234
NOTE_INSNLOOPBEGo, 234
NOTE_INSN.LOOP_CONTcovniiniiinnnnn, 234
NOTE_INSNLOOPENDcovvniniiinenn.. 234
NOTE_INSN.LOOP.VTOPovviiiiiiiiin e 234

403
NOTE_INSN_SETJMPovviviiiiiiiniinnnnns 234
NOTE_LLINENUMBERcoiviiiiiiniiian, 233
NOTESOURCEFILEcovviiiiiiiiiniinnnns 233
NOTICE_UPDATE_CC......covvniiniiiiinnnenn. 347
NUMMACHINEMODESoivi it inens 213
O
‘o’ in constraintoiiiiiiiiiiiiie.., 249
OBJC_GEN METHOD LABEL.........coviuninnnn. 362
OBJC_INCLUDEPATHovviiiiiiiiiiiinnn., 81
OBJC_INT SELECTORScvvvriniiiiniinnnnns 307
OBJCPROLOGUE ..ottt iie e 356
0OBJC_SELECTORS_WITHOUT LABELS.............. 307
OBJECT FORMAT COFFo 365
OBJECT FORMAT ROSE ..o, 365
OBJECT SUFFIX ...ttt 387
Objective C...ovvvtttt i iiiiiiennnnn. 17
OBSTACK_CHUNK ALLOC.......covvniininninnnn.. 386
OBSTACK CHUNK FREEcooiviiiiinn, 386
OBSTACK CHUNK STIZEcoviuiiiniinnnan, 385
obstackfree.......ooiiiiiiiiiiiiiii, 97
OCS (88K) .ottt 61
offsettable address...................coiiuil, 249
old-style function definitions.................. 132
OLDAR et e e 390
[0 3 390
omitted middle-operands 122
one_cmplm? instruction pattern............... 264
ONLY_INT FIELDSccvviiiiiiiiiiiiininnns 385
OPen COdINEG .. vvvvvintt i niieeneanns 139
operand ACCESSuuurrrereenuuuunnneeneens 206
operand constraints...............oooeeeeeennn 249
operand substitution 246
OPErandS .o vt vvt it i 241
OPTIMIZATION OPTIONScvvniiniiiininnenn. 299
optimize Options.c.ovvieieeeniuinnnnnnans 43
optional hardware or system features 298
options to control warnings 33
options, CH+. ..o iiiiiiiiiin i iieeeeeannnneanns 29
options, code generationouuuun. T
options, debugging. ...t 39
options, dialect i, 26
options, directory search....................... 51
options, GNU CC command 19
options, Grouping.......covvuuveennnnuneennnnns 19
options, linking............o il 49
options, optimizationouuuuna.. 43
options, orderi ittt 19
OptioNS, PreProCESSOT .. vvvvvvnureeennnneenennns 47

order of evaluation, side effects 178

404

order of optionsoviiiiiiiiiiiiiia.. 19
order of register allocation.................... 310
ORDER REGS_FOR_LOCAL ALLOC 310
Ordering of Patterns 270
other directory, compilationin................ 103
OUTGOING REG PARM_STACK SPACE.............. 325
OUTGOINGREGNO ... 309
output fileoption..............coovvvia... 25
output of assembler code 354
output statements................. 248
output templates.....................iii... 246
output_addr const 356
output_asSm_INSN......ovvvivunineiirnnnnnnnn 248
overflow while constant folding................ 377
OVERLAPPINGREGNO Pcoovvinininnan. 313
overloaded virtual fn, warning 39
OVERRIDE OPTIONSoiviiiiiiii i 299
P

‘p’in constrainto 251
packed attribute............ ... i 136
parallel.......c.oiiiiiiiiiiiiiii i 228
parameter forward declaration................ 125
parameters, miscellaneous 378
PARMBOUNDARY . ..ot 302
PARSELDD OUTPUT ...t 365
parser generator, Bison 88
PATSIING PASS . ot vvrtteeenineennnneenennnuns 199
passes and files of the compiler 199
Passing argumentso.eeeeennuneennnnns 197
PATHSEPARATOR ...ttt 387
PATTERN ...ttt it ci i 234
pattern conditions..................o ..., 241
pattern names......... ..ot 260
Pattern Ordering ..., 270
patterns...... ..o e 241
P ittt s 220
pc and attributes............ ... i 288
pc, RTL sharingoovvviiiiiinan, 239
PCTEX ottt 220
PCCBITFIELD.TYPEMATTERS, 303
PCC_STATICSTRUCTRETURN................... 332
PDImode ... 212
peephole optimization 203
peephole optimization, RTL representation.... 229
peephole optimizer definitions 274
PErcent Signvvvvnnnniin i, 246
perform....... ... 343
PIC oottt e 78, 353

PIC_OFFSET_TABLE REG_CALL_CLOBBERED....... 353

Using and Porting GNU CC

PIC OFFSET_TABLEREGNUM.................... 353
PLUS « ot 220
plus and attributes................. ..ol 284
plus, canonicalization of...................... 273
Pmode ..o 382
pointer argumentsooviuuiiiiininan. 130
POINTERSIZE ..ottt it iie e 301
POINTERS EXTEND UNSIGNEDcuu.n. 301
portabilityooiiiiiiii 195
portions of temporary objects, pointers to..... 173
position independent code 353
POSTX (et e 386
postdec ... 230
POST_INC . .ot e 230
Pragmao.vvuuurinnnnniiiiiiiiiinnnnnnns 382
pragma, reason for not using.................. 132
pragmas in C++, effect on inlining............. 152
pragmas, interface and implementation 151
pPredec ... 230
PrecilC cvvvnn i it 230
predefined macroscovviiiiiiiiia.. 297
PREDICATE CODES ...ttt iieinnnns 378
PREFERRED DEBUGGING.TYPE................... 370
PREFERRED OUTPUT RELOAD CLASS.............. 316
PREFERRED RELOAD CLASS ..., 316
preprocessing numbers............ . 170
preprocessing tokens................ ... 170
preprocessor options........... ... 47
PRESERVE DEATH_INFOREGNOP 313
prev_active insn.......ovviiiiiiiiiiiiiiiin, 275
prevcclO setteroviiiiiiiiiiiiiia, 272
PREV_INSN ... cie i 232
PRINTOPERAND ..o 367
PRINT_OPERANDADDRESScvvvninninn.. 367
PRINT_OPERAND PUNCT VALIDP 367
processor selection (29k).............. 59
product 221
Prof « o 41
PROFILE BEFORE PROLOGUEouutn. 335
profiling, code generation..................... 335
Program COUnter............uuuinieevvnnnnnnnn 220
Prologue.ovuiii 332
PROMOTE FOR_CALLONLYcvvvvniuninnenn.. 302
PROMOTE FUNCTIONARGScovvvininninn.n. 301
PROMOTE FUNCTIONRETURNcovnvun.n. 302
PROMOTEMODEoiii i i ieens 301
PROMOTE PROTOTYPES.. ... oo 324
promotion of formal parameters............... 132
pseudo registers ... 216
PSImode ... 211

Index

PTRDIFF TYPE ..ot 307
push address instruction...................... 251
PUSHROUNDING......ovniiriiiininiiininnnnn, 324
PUSH_ROUNDING, interaction with STACK BOUNDARY
... 302
PUT CODE ..t cieeaeens 205
PUTMODE ..t cie e aas 213
PUTREGNOTEKINDovvviininnnnn. 235
PUT . SDB .ttt it it e i 375
PULEnNV . 386
Q
‘Q° in constraintcoieeiiiiiiiiia... 251
[(1T Y =S 211
QImode,in NS ..o vereeennnnnniiieeennnnnnnn 234
gsort, and global register variables 145
question mark........... ... i, 254
QUOtIENE . . v v ettt ettt ettt . 221
R
‘r’in constraint, 250
r0-relative references (88k)..................... 61
ranges in case statements..................... 128
read-only stringso, 167
READONLY DATASECTIONcovvvvninninnnn. 352
REAL ARITHMETIC ..ot 377
REAL_INFINITY ...ovuiriiiiiininiiiinnnnnn, 377
REALNM FILENAMEcoiiniinininnann, 365
REALVALUEATOF ..ot 377
REALVALUE FIX ...t 376
REAL_ VALUE FROM_INTcvvuiininninnn. 378
REALVALUE ISINFoviviiiiiiiiin i, 377
REAL VALUE ISNANoivniiiiiiiii ., 377
REALVALUELIDEXPovvniiiiiiiiiin ., 376
REAL VALUENEGATEcoiiiiiiiiniinnans 377
REAL_VALUE RNDZINTccoviiniinininnann. 376
REAL VALUE TODECIMAL.........covvvuinninn.. 358
REALVALUE TO_INTcovvniiiiiiniiinnnnnn 378
REAL_VALUE_TO_TARGETDOUBLE 358
REAL_VALUE_TO_TARGET LONGDOUBLE........... 358
REAL_VALUE_TO_TARGET SINGLE 358
REAL_ VALUE TRUNCATE..........covviuiinninn.. 377
REALVALUETYPE ... 376
REAL_VALUE UNSIGNED FIXc.oovun.n. 376
REAL_VALUE UNSIGNED RNDZINT................ 377
REAL VALUESEQUALot 376
REALVALUESLESS .. .ot 376
Tecog opPerandvuuuuiiiiiririiiiiiaas 366
TECOZNIZING INSNS v vvvvrnneneenneennnnnnns 242

405
regand /i’ i 208
regand /s’ .. i 208
regand /Wl 209
regand /v ... 208
reg, RTL sharing............ L 239
REGALLOCORDERcviiiiiiiiiiienn 310
REGCCSETTER........ovviiiiiiiiieiines 238
REGCCUSER ... 238
REG_CLASS_CONTENTS.........cvviiiiinnnnnnn, 315
REG_CLASS FROMLETTER..............ooovuna.. 315
REGCLASS NAMES ...t 315
REGDEAD ...ttt 235
REGDEP ANTI.....oovviiiiiiii i 238
REGDEP OUTPUTottt 238
REGEQUAL ..ot i 236
REGEQUIV.....ovii i 236
REG_FUNCTIONVALUE Pcoviviinn, 208
REG_INC ..ot it 236
REGLABEL ...ttt 236
REGLIBCALL.....ovtiiii i iinaenss 238
REGLOOP.TEST P.....viiiiiiiiiiinennenns 208
TOZMAMES ottt treesssinessnnnneenesannness 367
REGNO_CONFLICToviiviiiiiiiiiineennns 236
REGHNONNEG......ovtiiie i 236
REGNOTEKIND........cviiiiiiiiiiiie, 235
REGHOTES ...t i 235
REGOK.FORBASE P........cviiiiiiiiiins, 345
REGOK_FOR_INDEXP.......coiiviiiiiininnnn, 345
REGOK_STRICT.......oovviiiiiiiiieins, 344
REG PARM_STACKSPACEoiiviiiin, 325
REG_PARM_STACK _SPACE, and FUNCTION ARG..... 327
REGRETVALot 237
REGUNUSED......oviiiiii it iiie s 237
REGUSERVAR P ... 208
REGWAS O ..ot i 237
register allocationooiiuun. 202
register allocation order 310
register allocation, stupid..................... 201
register class definitions 314
register class preference constraints........... 254
register class preference pass.................. 202
TEGISEr PAITS . v vvvn it e e 311
register positions in frame (88k) 61
Register Transfer Language (RTL)............ 205
TEGISEr USAZE. .o vt tniie et innnneennnnns 308
register use analysisoual 200
register variable after longjmp................ 145
register-to-stack conversion................... 202
REGISTERMOVE COST........ovvviiiinnnnn, 350
REGISTERNAMES ...t 366

406

registeroperand...........oiiiiiiiiiiiia, 243
REGISTERPREFIX.........cooiiiiiiiin.s, 367
T aT] 2 S 140
registers arguments............veiiuiiiiana.. 326
registers for local variables.................... 146
registers in constraints........................ 250
registers, global allocation 144
registers, global variablesin................... 144
REGNOOK_FORBASEPcoiiiiiian, 315
REGNOOK_FOR_INDEX Pcoiviiinnninnn. 316
REGNOREG.CLASSt 315
regseverdive ..., 333
relative costsl 348
RELATIVE PREFIX_NOT_LINKDIR................ 295
reload pass 218
reload completed.............ooiiiiiiia.t, 268
reload_in instruction pattern................. 262
reload in progress.......ovvvviviiiiiiinnnnnns 261
reload_out instruction pattern 262
reloading ... 202
remainder ool 221
reordering, Warningo.oeveeeenuueennn. 36
reporting bugs..............oiiii, 179
representation of RTL 205
rest argument (in macro)..................... 125
rest_of _compilation......................... 199
rest_of_decl _compilation................... 199
restore_stack_block instruction pattern 269

restore stack_function instruction pattern.. 269
restore stacknonlocal instruction pattern.. 269

B 1= P ¢ R 227
return instruction pattern.................... 267
return value of main................ 192
return value, named, in C++.................. 149
return values in registers...................... 329
return, in C++ function header............... 149
RETURN_ADDR_IN_PREVIOUS FRAME.............. 321
RETURNADDRRTX ...ttt 321
RETURN_INMEMORYcovviviiiiiiininenn.. 331
RETURN POPS_ARGSovviiiiiiiii i 326
returning aggregate values.................... 331
returning structures and unions............... 197
REVERSIBLECCMODEccvvviininninvnnnnn. 348
right rotate........... ..., 222
right shift 222
rotateoviiiii 222
rotatert........ ...l 222
rotlma3 instruction pattern................... 263
rotrma3 instruction pattern................... 263
ROUND_TYPE ALIGNovvniiiiiiiniinnn., 304

Using and Porting GNU CC

ROUND_TYPESIZEcoiriiiiiiiiiiiininnnnn, 304
RS/6000 and PowerPC Options................ 63
RT optionsooviieiiiiiiiieean 67
RT PC .. e 166
RTL addition.........coovvviiiinnnnneinnnn... 220
RTL comparison...........coeeeeeuiiinnnennns 220
RTL comparison operations................... 222
RTL constant expression types................ 214
RTL constantscoovvvviiinnnnnennn. 214
RTL declarations...............coviviinnn.... 226
RTL differenceoovviiiiniinn... 220
RTL expression......c.ccoevviiiieeneeeeeennnnns 205
RTL expressions for arithmetic............... 220
RTL formatoovviiiniiiniiiiiinnn, 206
RTL format characters 206
RTL function-call insns....................... 238
RTL generationcoviuuviiinnnnen... 199
RTL insn template ..o, 242
RTL integers......oovvviinniiiiiiiniinnnnnn, 205
RTL memory expressionsceeeeeeenn 216
RTL object types........covvvvvveeeeiinn.... 205
RTL postdecrementccvvvvun.. 230
RTL postincrement 230
RTL predecrement 230
RTL preincrementccovvviiinnn.... 230
RTL register expressions.oovuuvennn. 216
RTL representation........................... 205
RTL side effect expressions 226
RTL stringsovvviviininniiiiinnnnn, 205
RTL structure sharing assumptions........... 239
RTL subtraction.............coovvviiinn... 220
RTLsum......covvniuiiiiiiiiiiiiaa, 220
RTL vectors......oovvviiinniiiiniiinnnnn, 205
RTX (See RTL) ...ovviniiiiiiiiiiii e 205
RTX COST S .ttt it i cie e 349
RTX_INTEGRATED Pciviiiiiiiniiian, 209
RTX UNCHANGING Povviiiiiiiniiian, 209
run-time conventionsiiiina.. 197
run-time options.ovvvveeiereiiieeannn. T
run-time target specification.................. 297

S

‘s’in constraintoiiiiiiiiiiiie.., 250
save_stack block instruction pattern......... 269
save_stack function instruction pattern 269
save_stackmnonlocal instruction pattern 269
saveableobstack............ ...l 345
scalars, returned as values 329
scanf, and constant strings................... 167

SCCSDIRECTIVEttt 382

Index

SCHED GROUP P.....oviiiiiii it i i 210
scheduling, delayed branch.................... 202
scheduling, instruction................... 201, 202
SCmode ..o vt 212
scond instruction pattern..................... 266
scope of a variable length array............... 124
scope of declaration 172
scope of external declarations................. 169
scratch......cooiiiii i 219
scratch operands 219
gcratch, RTL sharing 239
SDB_ALLOW _FORWARD REFERENCES............... 375
SDB_ALLOW UNKNOWN REFERENCES............... 375
SDB DEBUGGING_INFO.......covvuiininninnnnn. 375
SDB DELIM...oiviiiiiiie ittt iiiieiinnans 375
SDB GENERATE FAKE ..., 375
search path.................. ... 51
second include path............................ 47
SECONDARY INPUT RELOAD CLASS 316
SECONDARY MEMORY NEEDEDcuvu.. 318
SECONDARY MEMORY NEEDED MODE............... 318
SECONDARY MEMORY NEEDED RTX................ 318
SECONDARY OUTPUT RELOAD CLASS.............. 316
SECONDARY RELOAD CLASS ... 316
gsection function attribute.................... 131
gection variable attribute.................... 136
SELECT CCMODEoviiii i, 348
SELECT RTX SECTION.......covvuiininnininnn. 352
SELECT SECTION ...vviiiiiie i iieenen 352
separate directory, compilationin............. 103
SEOQUEILCE st v vt vies i iiiien et s 229
sequential consistency on 88k 61
SOt 226
F=X=1 AT) v i AN 286
set_attr_alternative..........oovvivnrnnnn. 286
SET DEFAULT TYPE_ATTRIBUTES................ 383
SET DEST ¢ttt it i cie e 227
SET SRC « vttt i e 227
SELIMP vttt 145
gsetjmp incompatibilities...................... 168
SETUP FRAME ADDRESSESovvivninnan.. 321
SETUP_INCOMING VARARGScooviuninnn. 338
SFmodeooviiiiiii 212
shared strings ..., 167
shared VMS run time system 192
SHARED SECTIONASM OP.......ovvvvvnvninnnn. 352
sharing of RTL components................... 239
shift. ... 222
SHIFT COUNT_-TRUNCATEDcovvvuinnenn.. 380

407
sideeffect in ?:o 122
side effects, macro argument.................. 115
side effects, order of evaluation 178
signextend......... ..o, 225
signextractooiiiiiiiiiiiiii, 224
sign_extract, canonicalization of 274
signature........coovvviiiiiiinnninnninnsnsnns 154
signature in C++, advantages................ 155
signature member function default implementation
... 155
signatures, C++........ ..o, 154
signed divisioncoviuiiiiiiiiiiian, 221
signed MAaXiIIMUITL . ..o vvninnneennnneennnnnnns 221
signed MINIMUIMovvvinnii e, 221
SIGNEDCHARSPECciviiiiiii s 294
SIMOde .vvviint it 212
simple constraints, 249
simplifications, arithmetic 199
=T 4T 27
SIZE TYPE .. i 307
sizeof .. 120
SLOWBYTE ACCESSo 350
SLOW_UNALIGNEDACCESScovivvinna... 351
SLOW ZEROEXTEND ..ot 350
SMALL REGISTERCLASSES0vviin.. 318
smaller data references (88k)................... 61
smaller data references (MIPS) 71
STMAX + vt veess e iiiene et s 221
=3 e 5 221
smulm3_highpart instruction pattern......... 263
SPARC options.oovvuuiiiieeeeiinnnnnnnns 55
specified registers.............. oot 144
specifying compiler version and target machine
... 52
specifying hardware config..................... 53
specifying machine version..................... 52
specifying registers for local variables......... 146
speed of instructions.......................... 348
splitting instructions.......................... 280
=T ' P 27, 222
gqrtm?2 instruction pattern................... 263
SQUATE TOOL . .ot e ittt ittt ineennnnan 222
gscanf, and constant strings.................. 167
stack arguments............. ... oL 324
stack checks (29k)........... ... 59
stack frame layout............................ 320
STACKBOUNDARY ...ttt 302
STACK DYNAMIC OFFSET............covvinnann. 321
STACK DYNAMIC OFFSET and virtual registers... 217
STACK_GROWS DOWNWARD..............coviunnts. 320

408

STACK PARMS_IN REG PARMAREA 326
STACK POINTER OFFSET............cvviiinan., 320
STACK POINTER OFFSET and virtual registers... 217
STACK POINTERREGNUM...............coovvnnt, 321
STACK POINTER REGNUM and virtual registers... 217
stackpointerrtx......... ...l 323
STACK REGSoiiti ittt 313
stagel ... 89
standard pattern names 260
STANDARD EXEC PREFIX.............cvviiinna., 295
STANDARD INCLUDEDIR..........ccovvvuinnaa.. 296
STANDARD STARTFILEPREFIX.................. 296
start files....... ... o o 106
STARTFILESPEC ...ttt iiieenss 295
STARTING FRAME OFFSETcoua.t, 320
STARTING FRAME OFFSET and virtual registers.. 217
statements inside expressions 115
static data in C++, declaring and defining 173
STATIC CHAIN ...ttt i 322
STATIC_CHAIN_INCOMINGcovvunivnnnn, 322
STATIC_CHAIN_INCOMING REGNUM............... 322
STATICCHAIN REGNUM...............ovvninn, 322
‘stdarg.h’ and register arguments............ 327
‘stdarg.h’and RTPC 67
storage layoutol 300
STOREFLAG.VALUEo, 380
‘storemultiple’ instruction pattern.......... 262
storem bug (29k) 59
S v oo (1« PP 27
=5 viate) o) A 27, 302
strength-reduction..................... ... 201
STRICT ALIGNMENT..........coviviiininnn.nn. 303
STRICT_ARGUMENT NAMING..................... 338
strictlowpartooiiiiiiiiiiiiia., 226
string constantsc.oiiiiiiiiiinia.., 167
string constants vs newline 28
STRIP NAME ENCODING..........oviviivnnnnnn. 353
= ol = 27
strlenm instruction pattern.................. 264
STRUCT VALUEotiii i 331
STRUCT VALUE_INCOMINGoovvuivunn., 332
STRUCT VALUE_INCOMING REGNUM............... 331
STRUCT VALUE REGNUM...............cviinn, 331
structure passing (88k)l 63
structure value address 331
STRUCTURE SIZE BOUNDARY, 303
structures i 169
structures, constructor expression............. 126
structures, returning. ..., 197
stupid register allocation 201

Using and Porting GNU CC

subma3 instruction pattern.................... 262
submodel optionsooiiiiiia., 53
BUDTEg vttt i e 218
subregand ‘/s’ i 208
subregand ‘/u’...... ...l 208
subreg, in strict lowpart 226
subreg, special reload handling 218
SUBREG _PROMOTED UNSIGNEDP 208
SUBREG PROMOTED VAR Pcovvvninninnann. 208
SUBREGREG......ooviiniiiiii i, 218
SUBREGWORD oviiiiiiii it 218
subscriptingoviiii i 126
subscripting and function values.............. 126
subtype polymorphism, C++.................. 154
SUCCESS EXITCODEovviviiiiiiiiiinnns 385
suffixes for C++ source.............oovviiinnnn. 25
Sun installationol 109
SUPPORTSMEAK ... o 360
SUPPIESSING WATTHIES .. oo vvvvnnreeennnnnnaennns 33
surprises in CH++ ...ttt 173
SVId oo e 62
SWITCHTAKES ARG ..., 293
SWITCHES NEED SPACES......covviiiniuninnnn. 293
symbol ref 215
gsymbol ref and “/u’......... .ol 209
gsymbol ref and “/v’..... ..ol 209
symbol ref, RTL sharing..................... 239
SYMBOLREF FLAGcoiviiiiiiiiiiinians 209
SYMBOL REF_FLAG, in ENCODE _SECTION_INFO.... 353
SYMBOLREFUSEDcovvniiiii i 209
symbolic label 239
syntax checking................. .. il 33
synthesized methods, warning.................. 39
syssiglist...viiiiiiiiiiiii i 387
SYSTEM_INCLUDEDIR.......ovviniiinininnnns 296
T

“hmtarget’ ... 389
tablejump instruction pattern................ 269
tagging INSNSoovruniiinneennnnnnennns 286
tail recursion optimization.................... 200
target description macros..................... 293
target machine, specifying 52
target makefile fragment...................... 389
target optionsoviiiiiiiiiiiiiiea 52
target specifications 297
target-parameter-dependent code 200
TARGET BELL.....covuiiii i 308
TARGET BS ..ot i cie i 308

TARGET CR ... i 308

Index

TARGET EDOM..... ..ot iieinnnns 342
TARGET FF ..o i i 308
TARGET FLOAT FORMATcovvivininann.. 305
TARGET MEM_FUNCTIONS........cvvviininniinnn. 342
TARGET NEWLINE ... 308
TARGET OPTIONS ...oviiii i eas 299
TARGET_SWITCHES.........coiiiiiniiniinnnn, 298
TARGET TAB ...ttt it i 308
TARGET VERSIONcovviiiiii i 299
TARGET VT ..o i cie i 308
TCmode ...t 212
BCOV .t 41
template debugging. 36
template instantiation........................ 153
temporaries, lifetime of 173
termination routines................ ool 362
textsection.............oiiiiiin i, 352
TEXT_SECTIONASM OPcovviiiininnn, 351
TFmode ...oviii 212
thunks ... i 117
TImode ..ot 212
“Gm. B’ MAacTos . ovvti e 293
TMPDIR ..ttt e ittt c i 80
top level of compiler.......................... 199
traditional C language 27
TRADITIONAL RETURN FLOATcovvun.n. 329
TRAMPOLINE ALIGNMENTcooviun.... 339
TRAMPOLINE SECTION........ovviiniininnennnn. 339
TRAMPOLINE SIZEiviii it 339
TRAMPOLINE TEMPLATEcooviniiiii i, 339
trampolines for nested functions 339
TRANSFER FROM_TRAMPOLINE 341
TRULY NOOP_TRUNCATIONcovvvunvnnnn. 380
truncate... ... i 225
truncmn instruction pattern.................. 265
tstm instruction pattern..................... 264
type abstraction, C++......................... 154
type alignmentol 134
type attributes i, 137
typedef names as function parameters......... 169
typeof oo 120
U

WALV .o s 221
UDIVDISLIBCALLovviiiiiiii i 342
udivma3 instruction pattern................... 262
udivmodm4 instruction pattern 263
UDIVSI3LIBCALLovviiiii i 341
Ultrix calling convention...................... 166
L0 L 221

409
umaxma3 instruction pattern................... 262
L0 4 221
uminma3 instruction pattern................... 262
WO .ot 221
UMODDIB LIBCALLot 342
umodm3 instruction pattern................... 262
UMODSI3LIBCALLt 341
umulhisi3 instruction pattern................ 263
umulm3_highpart instruction pattern......... 263
umulqihi3 instruction pattern................ 263
umulsidi3 instruction pattern................ 263
unchanging.......oovviiiiiiiiiiiiiiiiaaa, 211
unchanging,in callinsn.................... 209
unchanging,in insn.............. ..o, 209
unchanging,in regand mem 209
unchanging,in subreg...................o.... 208
unchanging, in symbolref 209
undefined behaviorl 179
undefined function value...................... 179
underscores in variables in macros............ 120
underscores, avoiding (88k).................... 60
union, casting to a.........ovviiininiiiiinan, 129
UTHLOTIS . o e vve e e eeee e eaaeennnananeennnnns 169
unions, returningiiiniiiiiiiania... 197
UNITS PERMWORD ...t 301
UNKNOWN FLOAT FORMATccovivnninaa., 305
unreachable codel 200
unresolved references and -nodefaultlibs..... 50
unresolved references and -nostdlib........... 50
unshareall rtl, 240
unsigned division............coiiiiiiiiiiin, 221
unsigned greater than 223
unsigned lessthan...................... 223
unsigned minimum and maximum 221
unsigned fixo, 225
unsignedfloatcoviiiiiiiiiiii., 225
L 473 oYY o 229
unspecvolatile..........ooiiiiiiiiiiii., 229
untyped_call instruction pattern............. 267
untyped return instruction pattern........... 268
L = 228
USE_CLALLOCAot 386
USEPROTOTYPESovi e 386
Used .o 210
used, in symbolref ...ttt 209
USER_LABEL PREFIXooiiiiiiiiin, 367
USG o 385
\Va
‘Vin constraintcovvviuiiiiiinnne.n.. 249

410

VALID MACHINE DECL ATTRIBUTE............... 382
VALID MACHINE TYPE ATTRIBUTE............... 382
value after longjmp.............. ..ot 145
values, returned by functions 329
varargs implementation....................... 336
‘varargs.h’and RTPC 67
variable alignment.................... 134
variable attributes................... 134
variable number of arguments................. 125
variable-length array scope 124
variable-length arrays......................... 124
variables in specified registers................. 144
variables, local, in macros..................... 120
Vax calling convention........................ 166
VAX options . ..oovveetiniiiinnneennneeeennnnn. 55
VAX_FLOAT FORMATovvi i 305
'7:9.06] 1§ IS 192
VIRTUAL INCOMING_ARGS REGNUM............... 217
VIRTUAL OUTGOING_ARGS REGNUM............... 217
VIRTUAL STACK DYNAMIC REGNUM............... 217
VIRTUAL STACK_VARS REGNUM.................. 217
VS 385
VMS and case sensitivity 192
VMS and include files 189
VMS installationcoviiiviiinun.., 109
void pointers, arithmetic...................... 126
void, size of pointer to........................ 126
VOIDmOde ..ttt 212
volatil...ovvuuiiii i 210
volatil,in inSm.....oovururernnnnnnnnnnnnn 209
volatil,inmem.....ovvvvvvvennnneeneeennnnns 208
volatil,inreg.....ovvviiniiiniiiiiinnninn, 208
volatil,in symbolref..........coouvvinnnnn. 209
volatile applied to function 129
volatile memory references.................... 210
voting between constraint alternatives 254
vprintf ... 386
%%

warning for enumeration conversions........... 36

warning for overloaded virtual fn............... 39

Using and Porting GNU CC

warning for reordering of member initializers... 36

warning for synthesized methods............... 39
WATITITE INESSAZES « vt v vt vvnneennnnneeeennnunsss 33
WATITITIES VS €TTOTS « oo vvvveevnnnineennnnneenns 178
WCHAR.TYPEo 307
WCHAR_.TYPESIZEo 307
weak attribute............. ... 131
which_alternative.........cvvvvirvnrrnnnnnss 248
whitespace 169
wordmode ...t 214
WORD_REGISTER OPERATIONScovuu.n. 379
WORD_SWITCHTAKES ARG..........covvniuninn.. 293
WORDS BIGENDIANcovviiiiiiiiin i 300
WORDS_BIG_ENDIAN, effect on subreg........... 218
X

‘X’in constraintcovvviuiiiiiiiiien.. 250
‘x=host’ ...t 390
X0mode ..ot 212
XCOFF DEBUGGING INFO.......ovvvnivninnnnnnn. 371
XEXP ot e 207
XFmode ..ovviiii 212
S L 207
‘xm-machine.h’............ ... i, 385
b 222
xor, canonicalization of 274
xorma3 instruction pattern.................... 262
D 207
AVEC ot e 207
XVECEXP oot i i i cie i 208
XVECLEN ..ot i i i 207
D 207
Z

zero division on 88k il 62
zero-length arraysol 124
zero_extend......... .ol 225
zero_extendmn instruction pattern........... 265
zero_extract il 224
zero_extract, canonicalization of............. 274

Short Contents

GNU GENERAL PUBLIC LICENSEciviiieenen.. 1
Contributors to GNU CC . . vt v it et ettt iiieenennns 9
1 Funding Free Softwarec.iiiiiin. 11
2 Protect Your Freedom—Fight “Look And Feel”.......... 13
3 Compile C, C++,0r Objective C. . .o v v v vnennnnn 17
4 GNU CC Command Options ... veveeeveoeeoeeesenn 19
5 Instaling GNU CC . vv vt iin it iniiiineieenneens 85
6 Extensions to the C Language Family................ 115
7 Extensions to the C++ Language . . c oo v v v v v v vnnnn. 149
8 Known Causes of Trouble with GNUCC 157
9 Reporting Bugs...ovvvvv it ennnneeeeenns 179
10 How To Get Help with GNUCC 187
11 Using GNUCCon VMS ..ot iiiininiieieneenns 189
12 GNU CC and Portability . ..o oo veeenneeeeiee... 195
13 Interfacing to GNU CC OQutputovvvvvo.n 197
14 Passes and Files of the Compiler 199
15 RTL Representation.oooeeeeeeeeeeeennnnnns 205
16 Machine Descriptions o o o o v oo v v v v e v v eeeeeooooenns 241
17 Target Description Macros « « v v o o v v v v v v v v v eevneonss 293
18 The Configuration File.o vviiin. 385
19 Makefile Fragments . . o v oo vt v vt i et ieeneenn. 389

ii

Using and Porting GNU CC

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble..... ... i 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION ...t 2
How to Apply These Terms to Your New Programs............. 6

Contributors to GNU CC 9

1 Funding Free Software 11

2 Protect Your Freedom—Fight “Look And
Feel”......coiiiiiiiii i, 13

3 Compile C, C++, or Objective C........... 17

4 GNU CC Command Options 19
4.1 Option Summary.........couuiieiiiin i inneennn.. 19
4.2 Options Controlling the Kind of Qutput 24
4.3 Compiling C++ Programsccoeiiiiiinniiinn.. 25
4.4 Options Controlling C Dialect.................ovoiiii... 26
4.5 Options Controlling C++ Dialect......................... 29
4.6 Options to Request or Suppress Warnings 33
4.7 Options for Debugging Your Program or GNU CC........ 39
4.8 Options That Control Optimization 43
4.9 Options Controlling the Preprocessor 47
4.10 Passing Options to the Assembler 49
4.11 Options for Linking ..., 49
4.12 Options for Directory Search........................... 51
4.13 Specifying Target Machine and Compiler Version 52
4.14 Hardware Models and Configurations 53

4.14.1 M680x0 Options........couiiiinneenn. .. 54
4.14.2 VAX Optionscooiiieuiiiiinniinnaa... 55
4.14.3 SPARC Options.......coooviiiiiiiinna... 55
4.14.4 Convex Optionsccoiiiiiuineenn .. 58
4.14.5 AMD29K Options ..ot 58
4.14.6 ARMOptionsccooiiiiiiiiiinnenn... 60
4.14.7 MS8SK Optionscouiieiiiiin ... 60
4.14.8 IBM RS/6000 and PowerPC Options........... 63
4.14.9 IBM RT Optionscooiiiiinen... 67

4.14.10 MIPS Options........ccoeiiiiinnnaoa... 68

iv Using and Porting GNU CC

4.14.11 Intel 386 Options..........c.ocviii. ... 71
4.14.12 HPPA Options ..., 73
4.14.13 Intel 960 Options 74
4.14.14 DEC Alpha Options 75
4.14.15 Clipper Optionsoiiiiiii... 76
4.14.16 H8/300 Optionsc.covevviuneeennnn.. 76
4.14.17 Options for System V........................ 76

4.15 Options for Code Generation Conventions............... 77
4.16 Environment Variables Affecting GNU CC.............. 80
4.17 Running Protoize il 81
5 Imstalling GNUCC....................... 85
5.1 Configurations Supported by GNU CC................... 91
5.2 Compilation in a Separate Directory 103
5.3 Building and Installing a Cross-Compiler................ 104
5.3.1 Steps of Cross-Compilation.................... 104

5.3.2 Configuring a Cross-Compiler 105

5.3.3 Tools and Libraries for a Cross-Compiler 105

5.3.4 ‘libgcc.a’ and Cross-Compilers............... 106

5.3.5 Cross-Compilers and Header Files.............. 107

5.3.6 Actually Building the Cross-Compiler 108

5.4 Installing GNUCConthe Sun......................... 109
5.5 Installing GNUCCon VMS ...ttt 109
BB COLLeCt 2. ittt i e 112
5.7 Standard Header File Directories 113
6 Extensions to the C Language Family..... 115
6.1 Statements and Declarations in Expressions 115
6.2 Locally Declared Labelso ..., 116
6.3 Labelsas Values i, 116
6.4 Nested Functions.............. ... i, 117
6.5 Constructing Function Calls, 119
6.6 Naming an Expression’s Type.............ciii... 120
6.7 Referring to a Type with typeoft . .. 120
6.8 Generalized Lvalues 121
6.9 Conditionals with Omitted Operands 122
6.10 Double-Word Integersccooviiviiiiiinnnn.. 123
6.11 Complex Numbers, 123
6.12 Arraysof Length Zero...............cooiiiiii e, 124
6.13 Arrays of Variable Length 124
6.14 Macros with Variable Numbers of Arguments........... 125
6.15 Non-Lvalue Arrays May Have Subscripts............... 126
6.16 Arithmetic on void- and Function-Pointers............. 126
6.17 Non-Constant Initializers 126
6.18 Constructor Expressionso..oiii. 126
6.19 Labeled Elements in Initializers 127
6.20 Case Ranges........cooviiiiiiiiiiiinniiiinnnn.. 128

6.21 Cast toa Union Typeooiiiiiiiiii .. 129

6.22 Declaring Attributes of Functions 129

6.23 Prototypes and Old-Style Function Definitions 132
6.24 C++ Style Comments ...t ... 133
6.25 Dollar Signs in Identifier Names....................... 133
6.26 The Character in Constants...................... 134
6.27 Inquiring on Alignment of Types or Variables 134
6.28 Specifying Attributes of Variables 134
6.29 Specifying Attributes of Types 137
6.30 An Inline Function is As Fast As a Macro.............. 139
6.31 Assembler Instructions with C Expression Operands 140
6.32 Controlling Names Used in Assembler Code............ 143
6.33 Variables in Specified Registers........................ 144
6.33.1 Defining Global Register Variables............ 144

6.33.2 Specifying Registers for Local Variables 146

6.34 Alternate Keywords 146
6.35 Incomplete enum Types..........coooiiiiii it 147
6.36 Function Names as Strings............... ..o, 147
7 Extensions to the C++ Language.......... 149
7.1 Named Return Valuesin C++ 149
7.2 Minimum and Maximum Operators in C++.............. 150
7.3 goto and Destructors in GNU C++..................... 151
7.4 Declarations and Definitions in One Header 151
7.5 Where’s the Template? 153
7.6 Type Abstraction using Signatures 154

8 Known Causes of Trouble with GNU CC.. 157

8.1 Actual Bugs We Haven’t Fixed Yet..................... 157
8.2 Installation Problems............ 157
8.3 Cross-Compiler Problems 162
8.4 Interoperationt 162
8.5 Problems Compiling Certain Programs.................. 167
8.6 Incompatibilities of GNU CC 167
8.7 Fixed Header Files, 170
8.8 Standard Libraries 171
8.9 Disappointments and Misunderstandings................ 171
8.10 Common Misunderstandings with GNU C++ 173
8.10.1 Declare and Define Static Members 173

8.10.2 Temporaries May Vanish Before You Expect... 173

8.11 Caveats of using protoize.........oovvviviiiiinnn.. 174
8.12 Certain Changes We Don’t Want to Make.............. 175
8.13 Warning Messages and Error Messages................. 178
9 Reporting Bugs 179
9.1 Have YouFound aBug?............ ...t 179
9.2 Whereto Report Bugs...............oooiiiiiii .. 180
9.3 HowtoReport Bugsooiiiiiiiiii., 180

9.4 Sending Patchesfor GNUCC...................0it. 184

vi Using and Porting GNU CC

10 How To Get Help with GNU CC........ 187
11 Using GNUCCon VMS................ 189
11.1 Include Filesand VMS 189

11.2 Global Declarationsand VMS......................... 190

11.3 Other VMS Issues........cooiiiiiiiiiiiiiiinnana... 192

12 GNU CC and Portability 195
13 Interfacing to GNU CC Output 197
14 Passes and Files of the Compiler 199
15 RTL Representation.................... 205
15.1 RTL Object Typesocvuunneiniiiiiieiianeennn. 205

15.2 Accessto Operands, 206

15.3 Flags in an RTL Expression.............ccovvvuunn.... 208

15.4 Machine Modesooi i 211

15.5 Constant Expression Types 214

15.6 Registers and Memory.........ccooviivniiennn.. 216

15.7 RTL Expressions for Arithmetic....................... 220

15.8 Comparison Operations.............ccooiiiiiieena... 222

15.9 Bit Fieldsoooiene e 224

15.10 Conversionscoeeeneeerineneenneennnneenn. 224

15.11 Declarationsccooiiiiiiiiiiii ... 226

15.12 Side Effect Expressionscooiiaa... 226

15.13 Embedded Side-Effects on Addresses 230

15.14 Assembler Instructions as Expressions 231

1515 InSDS. . oveni ittt e e 231

15.16 RTL Representation of Function-Call Insns............ 238

15.17 Structure Sharing Assumptions 239

15.18 Reading RTLccoiiiiiiiiiiiiiiii... 240

16 Machine Descriptions 241
16.1 Everything about Instruction Patterns................. 241

16.2 Example of define insn, 242

16.3 RTL Template...... 242

16.4 Qutput Templates and Operand Substitution........... 246

16.5 C Statements for Assembler Qutput 248

16.6 Operand Constraintst 249

16.6.1 Simple Constraints 249

16.6.2 Multiple Alternative Constraints.............. 253

16.6.3 Register Class Preferences.................... 254

16.6.4 Constraint Modifier Characters............... 254

16.6.5 Constraints for Particular Machines........... 255

16.6.6 Not Using Constraints 260

16.7 Standard Pattern Names For Generation............... 260
16.8 When the Order of Patterns Matters 270
16.9 Interdependence of Patterns 270
16.10 Defining Jump Instruction Patterns 271
16.11 Canonicalization of Instructions 273
16.12 Machine-Specific Peephole Optimizers 274
16.13 Defining RTL Sequences for Code Generation 277
16.14 Defining How to Split Instructions.................... 280
16.15 Instruction Attributes 282
16.15.1 Defining Attributes and their Values......... 282
16.15.2 Attribute Expressions....................... 283
16.15.3 Assigning Attribute Values to Insns.......... 286
16.15.4 Example of Attribute Specifications.......... 287
16.15.5 Computing the Length of an Insn............ 288
16.15.6 Constant Attributes........................ 289
16.15.7 Delay Slot Scheduling....................... 290
16.15.8 Specifying Function Units................... 291
17 Target Description Macros.............. 293
17.1 Controlling the Compilation Driver, ‘gec’.............. 293
17.2 Run-time Target Specification......................... 297
17.3 Storage Layoutccciviiiiiiiiiiiiiiiiiin... 300
17.4 Layout of Source Language Data Types................ 305
17.5 Register Usage..... ..o, 308
17.5.1 Basic Characteristics of Registers 308
17.5.2 Order of Allocation of Registers 310
17.5.3 How Values Fit in Registers.................. 310
17.5.4 Handling Leaf Functions 312
17.5.5 Registers That Form a Stack 312

17.5.6 Obsolete Macros for Controlling Register Usage
... 313
17.6 Register Classes.........covuiriniinnneiiiinnnn.. 314
17.7 Stack Layout and Calling Conventions................. 320
17.7.1 Basic Stack Layout 320
17.7.2 Registers That Address the Stack Frame 321
17.7.3 Eliminating Frame Pointer and Arg Pointer ... 323
17.7.4 Passing Function Arguments on the Stack..... 324
17.7.5 Passing Arguments in Registers............... 326
17.7.6 How Scalar Function Values Are Returned..... 329
17.7.7 How Large Values Are Returned.............. 331
17.7.8 Caller-Saves Register Allocation.............. 332
17.7.9 Function Entry and Exit 332
17.7.10 Generating Code for Profiling 335
17.8 Implementing the Varargs Macros..................... 336
17.9 Trampolines for Nested Functions 339
17.10 Implicit Calls to Library Routines.................... 341
17.11 Addressing Modes.........coviiiiiiiiiiiiiiin... 344

17.12 Condition Code Statuscvvvvvrvienenn... 346

vil

viii Using and Porting GNU CC

17.13 Describing Relative Costs of Operations 348
17.14 Dividing the Output into Sections (Texts, Data, ...)... 351
17.15 Position Independent Code 353
17.16 Defining the Output Assembler Language............. 354
17.16.1 The Overall Framework of an Assembler File.. 354

17.16.2 Output of Data 356
17.16.3 Output of Uninitialized Variables............ 358
17.16.4 Owutput and Generation of Labels............ 359
17.16.5 How Initialization Functions Are Handled 362
17.16.6 Macros Controlling Initialization Routines.... 364
17.16.7 Owutput of Assembler Instructions............ 366
17.16.8 Output of Dispatch Tables 368
17.16.9 Assembler Commands for Alignment......... 369

17.17 Controlling Debugging Information Format 370
17.17.1 Macros Affecting All Debugging Formats..... 370
17.17.2 Specific Options for DBX Qutput............ 371
17.17.3 Open-Ended Hooks for DBX Format......... 373
17.17.4 File Names in DBX Format................. 374
17.17.5 Macros for SDB and DWARF Output........ 375

17.18 Cross Compilation and Floating Point 376
17.19 Miscellaneous Parameters............................ 378
18 The Configuration File.................. 385
19 Makefile Fragments..................... 389
19.1 The Target Makefile Fragment 389
19.2 The Host Makefile Fragment 390

