
Simulation of small autonomous

mobile robots

Axel Waggershauser

Dec 2002

Author: Axel Waggershauser

Supervisor: Prof. Dr. Thomas Bräunl, Prof. Dr. Ewald v. Puttkamer

Organisation: Universität Kaiserslautern

Fachbereich Informatik

AG Robotik und Prozeßrechentechnik

Postfach 3049

67653 Kaiserslautern

ii

Contents

1 Introduction 1

2 The model of the simulation 4

2.1 The structure of the simulator 4

2.2 The time model . 5

2.2.1 The virtual time . 6

2.2.2 The global simulation time 8
2.2.3 Synchronization of the robi programs 8

2.3 The multitasking simulation 10

2.3.1 The non-discrete task-switching model 12

2.3.2 The discrete task-switching model 13

2.4 The structure of the RoBIOS functions 16

2.5 The world model . 17
2.6 The robi model . 17

2.6.1 Geometrical model . 18

2.6.2 Dynamic model . 19

2.6.3 Graphical model . 19

2.6.4 Error model . 19

2.6.5 Remarks on the physical defects of the used model . . 20

3 The functional part of the simulation 21

3.1 vω-interface . 21

3.2 PSD sensors . 22
3.3 LCD display . 23

3.4 Key input . 23

3.5 OS, multithreading, timers and thread synchronization 24

3.6 Camera . 24

3.7 Radio communication . 25
3.8 RS232 . 26

3.9 The rest . 26

4 A brief manual 27

A Implementation details 31

iii

CONTENTS

B Configuration files 33

B.1 Simulator configuration (eyesim.ini) 33
B.2 Robi description (*.robi) . 34
B.3 Simulation description (*.sim) 35

iv

Chapter 1

Introduction

The EyeBot controller is developed to be a very versatile module, suitable
to build lots of different applications in the context of autonomous mobile
robots, like small 2-wheel robots, omni directional robots, more leg robots
or humanoids. An overview of the capabilities and the different applications
of the EyeBot controller is presented in [1] and [2]. One popular application
is the soccer playing robots. A typical soccer robot is a small (about 10 cm
diameter) 2-wheel robot, equipped with different sensors like distance giving
infrared sensors (PSD), binary infrared obstacle detection sensors, possibly
bumpers, a small color CMOS camera. Besides the sensors, it is equipped
with a set of servos as actors, which are used to pan and tilt the camera
and to implement a kicker mechanism to kick the ball. Figure 1.1 shows an
example of the current hardware.

Figure 1.1: A real-world soccer robot

The simulation environment, which this thesis is about, deals with ex-

1

INTRODUCTION

actly this application. This type of (soccer) robot will be called “robi” in
the following. Please note that for convenience sometimes “robi” is also used
for the program executed on the robot. The aim of this research was to de-
velop a system, that allows one to execute a program, written for a robi,
as is, in a simulation environment, capable of simulating all different sensor
inputs including the camera. As a simulation without being able to monitor
its progress is quite useless, the system has of course to enable the user to
monitor the simulation including the movements of the robis and the content
of their LCD display. An important feature of particular interest is to be
able to simulate multiple robots simultaneously in one simulation, interact-
ing with each other, which is obviously essential for the soccer application.
“As is” means, that the source code of the program can be used without
any changes or restrictions. So this simulator can be used, as a developing
and testing environment for higher level control programs and provides all
advantages of a usual simulation environment:

• slow motion and time laps effects

• the ability of debugging with a usual debugger on the host machine

• simulating an arbitrary number of robis (limited only by the perfor-
mance of the host system)

• creating arbitrary environments, in which the robis act

• simulating with the absence of (or arbitrary) sensor errors

The application programming interface, to control the EyeBot is the
RoBIOS. The word RoBIOS is an abbreviation for Robot BIOS or Robot
basic input/output system. It is merely a set of (about 100) C functions, one
can think of it as a library. A program for the robi is a usual C program, that
can use standard C library functions and of course RoBIOS functions. To
achieve the goal of being able to simulate (execute) ordinary robi programs, it
is necessary to provide an implementation for the RoBIOS functions against
which the program can be linked. These functions are the only connection
between the program to simulate and the simulator. The only way for the
program to influence the environment is through the RoBIOS functions and
the only place for the simulator to influence the execution of the program is
the implementation of these functions.

In this thesis the underlying models and different aspects of the imple-
mentation of the simulator are described in detail. First the software struc-
ture is described, introducing the logical parts of the software and their inter
relationships. Then the time model, used in the simulator, is described. The
emphasis of this thesis lies in particular on this time model and the related
models for synchronization and multitasking, as these are identified to be

2

the crucial parts for achieving the goal of simulating multiple robis simul-
taneously. Then the models describing the world or environment and the
models describing the different aspects of the robis are described. Following
is a discussion of the simulation of the different functional parts (the sensor
and actor simulations). At the end a brief manual of the simulation software
and some implementation details are given.

3

Chapter 2

The model of the simulation

2.1 The structure of the simulator

The global structure of the simulator is client-server based with an object
oriented design. The central part of the server is one object of the class
called Core. The clients are objects of the class Robi. There is one Robi
object for each simulated robi. I will simply call these objects “robi” as well,
since there is a one-to-one correspondence. The robis communicate with
the core via a message passing interface, i.e. they exchange messages via a
bidirectional message channel.

The core has the following responsibilities:

• initializing the simulation and starting the robi clients

• maintaining the state of the world, including the current position of
all robis and the balls

• synchronizing the robi programs

• distributing inter-robi messages like the radio messages

• maintaining the speed of the simulation (time lapse and slow motion
effects)

• starting, stopping and pausing the simulation triggered from the user
monitor (GUI)

The clients are constructed with the aim in mind to minimize the nec-
essary communication with the core for better performance and to realize
a clear modularization and information hiding. So all RoBIOS functions
that can be simulated with locally, in the client available information, like
functions to retrieve the current time or the current speed, are implemented
without communicating with the core. Only if the client takes an action
that possibly influences the other clients, a message to the core has to be

4

2.2. THE TIME MODEL

core

robi 1 robi 2 robi 3

bidirectional message channel

guistate polls

Figure 2.1: The client server based structure of the simulator

sent. This includes changes of the robi’s velocity and sending radio mes-
sages to other robis. And of course for synchronization, there has to be sent
a message back and forth.

With each robi is associated a program, that should be simulated. There-
fore each robi client has to be an active component, capable of executing the
robi program. This could be a thread for each robi in one process or a single
process for each robi (or even a mixture of both).

The reason why I chose a client-server model with a message passing
interface is because it allows to easily separate the implementation of the
core and the robis in different processes with no shared memory. These
processes can be executed on different host machines communicating over a
network, so it is possible, for example to have two teams of robis playing
soccer with each team on a different computer.

The current implementation is based on threads instead of processes,
since threads have the advantage of easier handling during implementation
and using and the performance is probably better and definitely not worse.
As a matter of fact, it allowed me to take advantage of the shared memory as
well. Thus, there would be some work necessary, to remove the direct access
of the robi clients to the world state information, if one wanted to move from
the thread implementation to a process based implementation. Some more
details about the actual implementation can be found in chapter A.

The core is designed to be completely independent from the user monitor.
The simulation can principally run without the user monitor. The idea is
that the user interface can poll information from the core asynchronously,
this prevents a slow display method, e.g. with a complex scene and no
hardware accelerated graphics adapter, from unnecessarily slowing down the
simulation progress.

2.2 The time model

This section discusses the way time is modeled in the simulation system.
There are two reasons why an appropriate modeling of time is a prerequisite
for building the described simulator. First of all, the simulation includes a
dynamical model for the movement of the robis, i.e. simply, that the robis
are moved by the program by specifying a linear and an angular velocity,

5

THE MODEL OF THE SIMULATION

according to which the robi has to be moved in the simulation over time. To
properly simulate one robi it is necessary to be able to determine the current
time, and hence, the current position, hence the sensor values, whenever they
are requested. A more detailed description of the used dynamic model will
be given later. Second of all, the robis are able to influence each other in
basically two ways, on one hand, they can influence each others simulated
sensor values by moving in the simulated world and on the other hand, they
can use radio communication to directly exchange messages between each
other. And here it gets clear, that not only a proper model of time for each
single robi is necessary, but also a model for synchronization of the single
robi programs. It has to be made sure, that every time two robis interact
with each other, they have to be at the same point in (simulation) time.
Otherwise messages from the future and similar inconsistencies would be
possible.

I distinguish between different concepts of time in this context, they are
listed next.

• virtual time (of a robi):
Each robi has its own virtual time associated to it, it is the “life time”
or the current time of the robi, the amount of simulated time, e.g. if
the virtual time of a robi is 10 seconds, then in the real world the start
of the program would have been 10 seconds ago.

• simulation/global time:
This is the current time of the whole simulation, it is analogous to the
virtual time associated to the robis. Actually it is just defined as the
virtual time of that robi with the smallest virtual time.

• real time:
This is the one, easiest to understand, it is simply the time that was
used to execute the simulation on the host computer, i.e. the time that
passed in the real world since the start of the simulation. If one wants
to have the simulation running as fast as the real robots would execute
the programs, then the real time and the simulation time would have
to be kept equal during the simulation.

2.2.1 The virtual time

For a correct simulation it is necessary to keep the virtual time of all robis
sufficiently synchronous. The virtual time of a robi is always then of impor-
tance, when the robi program calls a RoBIOS function, e.g. to perform a
sensor measurement. The following paragraphs will describe how the virtual
time of a robi is maintained.

The virtual time of a robi at a certain state of the control program execu-
tion is basically the time, that the robi’s CPU needed to execute the program

6

2.2. THE TIME MODEL

up to this point, i.e. virtual time increases during execution of machine code
and possibly during waiting for external events/interrupts while measuring
a sensor, for example. It is not necessary for the simulation to deal with this
low level. In the simulation there are only two different contributors to the
virtual time:

• the execution of a RoBIOS function,

• the execution of “normal” code, i.e. outside of a RoBIOS function.

The amount of time, that each RoBIOS function call needs on the real robot,
can be measured on the real robot and stored in a table for simple lookup
during the execution of the simulation. Every time the program calls a
RoBIOS function, there is a table lookup to determine the time, that this
call consumes and this time then gets added to the current virtual time of
this robi, which is simply stored in a variable for each robi.

The other contributor is more difficult to find out, since there is no direct
way to get the amount of time the robi CPU would need to execute a piece
of code, that the simulator does not even know (he can just execute it).

To clarify what is meant by this “piece of code” and for easier referring
to this in the future, I want to introduce another concept, the “program
segment”. As already mentioned, a control program for the robi is composed
of a sequence of RoBIOS function calls mixed with or embedded in “usual”,
computational code. From the point of view of the simulation environment,
the possibly complex structure, in terms of nested loops, etc., of the program,
can be seen as a simple sequence of alternately a RoBIOS function call and
what I call a “program segment”. One program segment is the possibly
empty set of machine code instructions, that has to be executed between
two consecutive RoBIOS function calls. The program segment is empty if
there is no other C-command between two successive RoBIOS function calls.
This is illustrated in figure 2.2.

An approximation for the time, that the robi CPU needs to execute such
a program segment, can be made by measuring the time, that the host CPU
needs to execute this program segment. This is done by starting a timer
on entry of a program segment, which is on exit of a RoBIOS function and
stopping on exit of this segment, which is on entry of the next RoBIOS
function. Then this time is passed to account with an appropriate factor,
that describes the ratio between the robi CPU speed and the host CPU
speed. It is only an approximation, because this ratio is not necessarily
definite, since the host might have a FPU but the robi has none and because
the usage of the host CPU time can only be gathered quite imprecise (for
this application). A typical resolution is a hundredth of a second (Linux
kernel 2.4.10, use of the function times() or getrusage()). With a ratio of
50 (25 MHz to 1.25 GHz), we only have a robi CPU time resolution of half
a second, which is quite useless. I believe I actually have to think about
another way to gather this virtual time contributor.

7

THE MODEL OF THE SIMULATION

main() {
 flaot v_speed = 0.1;
 char* s = "hallo";
 LCDPutString(s);
 if(
 KEYGet()
) {
 float w_speed = rand() / 10;
 VWSetSpeed(1, speed, 0);
 }
}

virtual timeprogram

program segment RoBiOS call

Figure 2.2: The program segment

2.2.2 The global simulation time

The global time, in contrary to the virtual time of each robi, increases in
discrete time steps of T seconds, in the current implementation T is set to
0.05 seconds. Thus the state of the world, including the information where
the robis are, gets updated every T seconds of simulated time. The virtual
time of a robi can be assigned a time slot ts(virtual time), which is the
biggest integer I, such that I ∗ T ≤ virtual time.

This discretization of the global simulated time has some potential con-
sequences for the simulation results that I want to point out. The state of
the world changes only every T seconds simulated time, so if a robi program
would, e.g. request two images from the camera interface within a time
interval of less than T seconds, the two images would be identical, since
the positions of the robis would not have been updated between the two
measurements. But since the capture process for one image takes about 0.3
seconds on the real robot and therefore in the simulation as well, this is
no problem. After the image capture RoBIOS call returns, the virtual time
of the robi has increased 0.3 seconds, so two successive calls of the capture
function are at least 0.3 seconds apart. The same applies to other measuring
processes depending on the state of the world. The distance giving PSD
measurement, for example, has an update rate of about 0.06 seconds.

2.2.3 Synchronization of the robi programs

As mentioned already, the only link between the simulated robi program
and the simulator is the set of RoBIOS function calls. So the simulator can
only suspend the robi program execution when it enters a RoBIOS function.
I.e. the execution of a program segment can not be interrupted, even if the
execution of this program segment takes a lot of virtual time. But this is no
problem, since the execution of the segment is not dependent on any external

8

2.2. THE TIME MODEL

data. In other words, the program segments are “atomic” but they can be
executed “in advance”, no matter how long their execution takes.

The synchronization of the robi programs is done by selectively stopping
the execution of the programs until all of them reached or over stepped a
certain virtual time, which is the current simulation time.

The realization is based on a bidirectional message exchange between the
different robi threads and the core of the simulator. Each robi has besides
his virtual time another time associated, the time of its last synchronization.
On each RoBIOS function entry, the current virtual time is determined and
compared with the last synchronization time. If the virtual time lies not
in the same global simulation time slot than the last synchronization time,
i.e. ts(last synchronization time) < ts(virtual time), then this robi thread
has to be synchronized with the simulation core. It sends a synchronization
message with the current virtual time as parameter to the core and waits for
a wakeup message before it proceeds.

The core maintains a list containing the virtual time of each robi. Each
time the core receives a synchronization message from one of the robi clients,
it updates the virtual time for that robi in its list and then finds the minimum
virtual time in the list (mvt). If ts(mvt) is bigger than the ts(current global time),
i.e. all robis passed the time global simulation time+T , then the simulation
proceeds one step: the global simulation time is set to ts(mvt) ∗T , the state
of the world gets updated, which means all robi positions have to be updated
for the new global simulation time, including the collision tests. Then the
core sends wakeup messages to all robis, whose virtual time is in the same
time slot than the new global simulation time. Thus, when the robi client
resumes, its robi’s virtual time is in the time slot of the global time and the
robi program is synchronized.

The time lapse and slow motion effects for the user monitor are realized
by synchronizing the scaled simulation time with the real time, by simply
suspending the core for an appropriate amount of time every time before
the wakeup messages are sent. To guarantee a smooth update of the user
monitor, the above described algorithm has to be slightly modified. If the
step from the old to the new global simulation time would be to big, there are
intermediate steps inserted, the world updated and synchronized with the
real-time. To illustrate the problem an example is given. If the user sets the
simulation speed to real-time and there is only one robi in the simulation and
this robi’s program executes a turn command, that takes 2 seconds, then,
on the next synchronization of the robi thread, the core would increase the
global simulation time at about 2 seconds, then sleep for about 2 seconds and
then update the display when the robi already finished the turn command.
So on the monitor, nothing happens for about 2 seconds, then suddenly the
robi has turned.

9

THE MODEL OF THE SIMULATION

2.3 The multitasking simulation

After having described the process of synchronizing the virtual time of several
robis, this chapter is about the synchronization of several tasks performed
on a single robi. First a short description of the multitasking capabilities of
the RoBIOS is given, including a description of the problems occuring with
the simulation of multiple tasks per robi. The two following sub chapters
give a detailed discussion of two different approaches to a solution of these
problems.

The RoBIOS supports multitasking programs, both preemptive and co-
operative multitasking. The usual steps to establish a running multitasking
system with the RoBIOS are: first the initialization of the multitasking sys-
tem with the specification of the mode to use, then the setup of all threads
that should be executed. Each thread has to be added to the thread queue,
providing the thread function address, the priority, a name, the stack-size
and a user id. The thread state has to be set to READY, this is necessary,
since the threads are initially suspended. The next step is to initiate the ac-
tual task switching. In case of cooperative multitasking, this is done with the
reschedule command and in case of the preemptive multitasking, this is done
with the permit command, which permits the preemptive task-switching and
at last there is usually a subsequent wait call, to keep the CPU busy until
a timer-irq occurs, which in turn will perform the task-switch. The main
thread, i.e. the context of the main() function, plays a special role. It is not
a usual thread like the spawned ones. It does not get rescheduled until all
other threads are done or suspended. Normal threads can be killed by them-
self or by other threads, they can be suspended and resumed by any thread,
they can temporarily suspend themself (sleep), they can use semaphores for
secure inter thread communication. Another feature, related to the multi-
threading, is the presence of timers. A timer in this context is, like a thread,
a separate function. Unlike a thread, it has to be executed periodically after
a specified time interval. Since it is in fact a hardware timer irq handler it
can not be interrupted, it simply occupies the CPU until it is done. The
simulation environment has to be able to achieve all this functionality.

The biggest problem is the correct modeling and handling of the virtual
time of the robi. The question is, if we have multiple threads running on one
robi, especially if we operate in preemptive multitasking mode, what is the
appropriate virtual time when a RoBIOS function is entered by one of the
threads. The problem will get more obvious after thinking a bit about the
possibilities of modeling the robi threads in the simulation. It is suggesting
to establish, for each thread to be simulated, a thread on our host machine.
To prevent further confusion, I will clearly distinguish between threads in
the context of the robi on one hand, i.e. threads, which are executed in
a robi and shall be simulated in the simulation. I will call these threads
the “robi threads”. And on the other hand threads in the context of the

10

2.3. THE MULTITASKING SIMULATION

simulation, i.e. the entities, that model the robi threads and that are to be
executed on the host system. These threads will be called simulation threads,
host threads or simply threads. It is therefore suggesting to use threads on
the host to simulate robi threads, because they are able to perform context
switches, but that is actually pretty much all we can expect from them.
At first sight, there is not much to be said against using one host thread
for each robi thread, letting them independently execute the appropriate
code, maintaining one virtual time for each robi and when it comes to the
point, where a thread has to determine/process the virtual time, it simply
accesses its associates robi’s virtual time, using mutual exclusion with the
other threads regarding the access. But since we can not rely on a fair
dispatching by the system’s scheduler, we can not simply proceed like this
without proper synchronization to guarantee that 1) the threads get robi
(CPU) time according to their priority and even more important 2) that
the time slices are reasonable. It is not acceptable that one thread gets a
virtual time slice of more than a few hundredth of a second. Exactly for this
reason, it is necessary, to think about a model of synchronization, that the
simulation of the multitasking feature has to based on.

The idea here is the same as with the synchronization of the virtual time
between the robis. We can always execute a complete program segment
without having to worry about synchronization. The definition of a program
segment of a thread is just the same as before. We have to think about
synchronization at the moment we enter a RoBIOS function. At the date
of the RoBIOS function entrance, we would like to determine the just valid
virtual time (of this thread) to be able to interact with the environment
appropriately. The problem is that we are not necessarily able to do this
at this date, since the time passed by during the execution of the program
segment depends on the other threads running in parallel. They might got
assigned some robi CPU time or might not. And we are not able to determine
this until we actually executed all of them until they passed this time, too.
How this problem can be solved is described in the next chapter.

But first some remarks about the “static” modeling used: I use a coopera-
tive multitasking model to simulate preemptive (and cooperative) multitask-
ing on the robi. Each preemptive (or cooperative) robi thread is represented
by one cooperative simulation thread. As already mentioned earlier, the
robi threads can be influenced in several ways, like suspending and resum-
ing them, letting them sleep, blocking them by semaphores, etc. All these
features have to be covered by the model. I try to simplify the handling
of all this by distinguishing only between two different functionalities, the
indefinitely suspending of a thread (like the usual suspending or blocking a
thread with a semaphore) and the finitely suspending (sleep). Timers shall
be excluded from the model at the moment.

Following are two chapters about two different task-switching models.
Of importance for the final simulator is only the second one. The first is

11

THE MODEL OF THE SIMULATION

more like an intermediate step I made while thinking about a solution for
the problem. I include it anyway, since it describes what I have done and
might be of interest for future simulator projects.

2.3.1 The non-discrete task-switching model

The idea to calculate the virtual time is based on an inductive model: the
induction hypothesis is, we have N threads that just entered a RoBIOS call
and we know for every thread the virtual time when its last program segment
execution started and the consumed CPU time for this segment. Now the
induction step, we can determine the current virtual time for exactly one
single thread (how to do this - later), then we store the virtual time of this
thread as the start time of the following segment and execute this segment
until an other RoBIOS call is made then we determine the CPU time, used for
the execution of this segment and end up with a fulfilled induction hypothesis
and we can start over. The induction start is easy, the virtual time of each
thread is 0 and the CPU time for the first segment is simply measured.

Now I still owe the reader an explanation how to determine the virtual
time of the mentioned one thread and how to find this thread at all. We
want to find the thread that has the smallest virtual time, I will call it the
last thread. We choose this thread, because its virtual time can not be
influenced any more by the program executed in any of the other threads,
so we can determine its virtual time. To simplify the model I assume the
scheduled time slices are infinitesimal and the time cost of a task switch is
zero, furthermore the finitely suspension of a thread and thread priorities are
excluded. Then the virtual time of the last thread is its last known virtual
time + the consumed robi CPU time of its last program segment times the
number of currently running threads. We find this thread by finding the
minimum of this values of all running threads. Then we set the current
virtual time of the last thread to the just determined value. In case that the
last entered RoBIOS call of the last thread changes the number of running
threads, e.g. by suspending (indefinitely or finitely) or resuming a thread,
we have to update the virtual time values and the robi CPU time values of
all other threads, i.e. their current virtual time has to be set to the current
virtual time of the last thread and their consumed robi CPU time has to be
decreased accordingly.

We previously excluded the functionality of finitely suspension of a thread
and this deficiency should me remedied now. The necessary modification to
the above described algorithm is that the latest thread might be one, that
was suspended and should be woken up by the scheduler now. Therefore we
have to compare the smallest virtual timefound by the old algorithm with
the smallest wakeup time of all currently finitely suspended threads. In case,
one of the finitely suspended threads wins, we have to update all virtual time,
since this resuming obviously changes the number of running threads. This

12

2.3. THE MULTITASKING SIMULATION

resumed thread is going to be executed next.

The timer functionality is quite easy to implement, since it is an interrupt
and not a scheduled thread. Its consumed robi CPU time gets simply added
to each threads virtual time. And since it is an interrupt handler, the timer
function gets just executed until it returns. We probably have to forbid some
of the RoBIOS calls to be executed within the timer interrupt (e.g. OSWait,
OSYield, MTSem*).

Next thing to think about is the simulation of semaphores on the robi.
The basic idea is to reduce the problem to this of suspending a thread. If
one thread wants to get (perform the V operation) a blocked semaphore, it
will simply mark itself as waiting for the semaphore in a FIFO and then get
suspended. When the semaphore gets released, the first thread in the FIFO
waiting queue will be resumed.

The described algorithm has two major disadvantages. First of all there
is no modeling of proper scheduling time slices, i.e. not infinitesimal ones,
and also no modeling of the cost (in terms of time) of a task-switch. Well, one
might think this is an unimportant issue and is probably right. But second
of all the performance of the simulation could get quite bad because of a
vast number of necessary task-switches in the simulator, e.g. we have two
threads doing the same, just keeping on calling a RoBIOS function, which
has negligible robi CPU time consumption; the algorithm would switch the
current task after every call of this function, because the latest thread keeps
on alternating after each RoBIOS call. Trying to solve these problems I
thought about the idea of introducing simulated time slices and ended up
with an almost completely different, but therefor simpler algorithm.

2.3.2 The discrete task-switching model

The idea is to directly simulate the robi scheduler, which is almost just the
execution of the scheduler code itself. The RoBIOS scheduler has a fixed
time slice length of a hundredth of a second, I will call this time TS = 0.01s
(for time slice) and a (preemptive) reschedule happens always at a multiple
of a hundredth of a second. Opposed to the old version, we maintain 1)
only one virtual time for the robi, instead of one for each simulated thread,
plus 2) the time of the next task switch (NTST), which is simply the next
multiple of TS larger than the virtual time of the last task switch, plus 3)
the not yet assigned, but already used, robi CPU time for each simulated
thread (NY AT).

Given any situation during the simulation, we have one currently sched-
uled thread, whose robi CPU time consumption increases the virtual time
of the robi. As soon as this thread enters a RoBIOS call and the robi’s
current virtual time at this date is greater or equal to NTST , we set the
NY AT of the current thread to current virtual time − NTST and reset
the virtual time of the robi to NTST . Then we find the next task to be

13

THE MODEL OF THE SIMULATION

0 1 2 3 4 5

Thread 1

Thread 2

RoBiOS entry (in thread context 1)

t [TS]

vtNTST
 task switch

RoBiOS exit (in thread context 2)

0 1 2 3 4 5

Thread 1

Thread 2

t [TS]

vt NTST

not yet
assigned time

assigned time

Figure 2.3: The virtual time handling during a (non-virtual) pre-
emptive task switch

executed, using whichever, possibly priority based selection we like. We
update the NTST , in this case it’s just NTST+ = TS. We increase
the virtual time by the new threads NY AT and if the virtual time is less
than NTST , we perform the context switch and thereby go on (see fig-
ure 2.3). But if the NY AT of the new selected thread is larger than
TS then the virtual time >= NTST , hence we don’t need to perform
the task switch, we merely perform a “virtual” task switch, meaning, we
only update all virtual time related variables in the same way, as described
above, i.e.: NY AT = virtual time − NTST (complying with NY AT− =
TS), virtual time = NTST (complying with virtual time+ = TS) and
NTST+ = TS. We keep on repeating this (selection of new thread plus
performing virtual task switches) until virtual time < NTST and we actu-
ally perform a real task switch.

To support finitely and indefinitely suspension of threads and timer-
irqs we need to complement the algorithm. The indefinitely suspension and
resumption of a thread is very easy, we simply mark the thread as suspended,
so that the selection algorithm will skip it or unmark it for resumption
respectively.

To implement the finitely suspension, we maintain a wakeup time for
each thread and when this time is smaller than the current virtual time, the
thread is executable, otherwise we skip it in the selection algorithm.

The timer-irq feature needs some more work to be supported. The timer-
irq handlers get executed on a multiple of TS like the preemptive task switch-
ing, in fact the preemptive task switching mechanism is realized on the robi

14

2.3. THE MULTITASKING SIMULATION

with one additional timer-irq handler. To accomplish this functionality we
need two things, a list of all timer-irq handlers that should be executed and
a variable, that stores the next timer interrupt time NTIT . If the virtual
time gets greater or equal to NTIT the timer-irq handlers in the queue have
to be executed. For easier understanding, we treat the two cases of the
preemptive and the cooperative multitasking mode separately.

In the preemptive mode the queue has to be processed whenever a task
switch is performed, either a real or a virtual one. After the virtual time is
set to NTST , which equals NTIT in this case, it is sufficient to execute all
timer-irq handlers once, thereby keeping track of the consumed robi CPU
time and add this time to the virtual time before the we go on with the real
or virtual task-switch. At this point we can easily check, if the timer-irq
handlers have consumed more than TS seconds, which would mean we get
an other interrupt while the handling of the old one is still in progress. (If
this happens in the current implementation, the simulation continues in an
undefined state in terms of the virtual time.) During execution of the irq
handlers we have to set a special flag, that indicates the irq handler context
for any RoBIOS function call made by the handler, so that we don’t try to
make, for example, task switches inside the irq handler.

When the mode is cooperative multitasking, it is a bit more difficult.
On each RoBIOS function entry it has to be checked if virtual time >=
NTIT . Since the robi CPU time consumed by the last executed program
segment could be a multiple of TS, it is possibly necessary to execute the irq
handlers more often than once viz for each multiple of TS between NTIT
and virtual time. After each execution of the irq handlers NTIT gets
increased by TS. Before the execution of the irq handlers the virtual time
has to be set back to NTIT , so its current value has to be saved and since
the execution of the handlers consumes robi CPU time, too, it also has to
be corrected, which means increased by the amount of time the handlers
consume. At this it has to be minded that the handlers actually have to be
executed for each multiple of TS until NTIT is greater than the corrected
virtual time. This could be illustrated with an example: let the virtual time
on the entry of a RoBIOS function be NTIT ′ + TS/2 and the execution
of the timer-irq handlers takes TS/2 seconds, then the handlers have to be
executed twice, the first time with the virtual time set to NTIT and the
second time with NTIT ′ + TS, since after the first execution the corrected
virtual time is NTIT ′+TS. After the second execution, the corrected virtual
time is NTIT ′ + 1, 5 ∗ TS and the new NTIT = NTIT ′ + 2 ∗ TS.

A pseudo code fragment would look like this:

cvt = vt;

while(cvt >= ntit)

{

vt = ntit;

15

THE MODEL OF THE SIMULATION

process_handlers(); /* this modifies vt */

time t = vt - ntit;

if(t > ts)

warning();

cvt += t;

ntit += ts;

}

vt = cvt;

2.4 The structure of the RoBIOS functions

The following section summarizes the presented algorithms for the multi-
tasking simulation and the synchronization and describes how and where
they are embedded in the simulator implementation.

As mentioned in the introduction, the only way for the simulator to influ-
ence the execution of the robi programs or the robi threads, respectively, is
through the implementation of the RoBIOS functions. The implementation
of all RoBIOS functions has the same general structure, each is composed
of three parts:

1. the entry part:
This part is equal for each RoBIOS function. The first thing that
is done here, is to stop the timer, that keeps track of the used host
CPU time for the last program segment and to add the measured time
multiplied with the earlier described factor to the virtual time of the
robi, that called this function. If the robi is in preemptive multitasking
mode and its virtual time ≥ NTST and the context is not a timer
irq-handler then the timer irq-handlers are processed and all virtual
task-switches and possibly one real task-switch is performed. For more
detailed information about how the real task switch is performed, see
the implementation details chapter (A). If the multitasking mode is
not preemptive, there are no task switches performed, but the timer
irq-handers are processed in case virtual time ≥ NTIT .

Now the current virtual time of this robi is determined and it has to be
checked if a synchronization with the core is necessary, i.e. check if the
time slot of the last synchronization time is an other than the time slot
of the current virtual time. The synchronization has to be established
before the execution of the functional part, since there happens the
interaction with the environment, including the other robis.

2. the functional part:
This is the actual implementation of the function, i.e. the function
specific code. Details about the different functional groups and their
implementation are presented in chapter 3.

16

2.5. THE WORLD MODEL

3. the exit part:
Two things have to be done in this part, first the increment of the vir-
tual time by the amount of time that the function needs to be executed
on the real robot, which has to be looked up in a table. The other thing
is the restarting of the timer to measure the used host CPU time used
for the execution of the next program segment. The exit part is also
the same for every RoBIOS function.

2.5 The world model

This chapter is about the model used to specify the world or the environment
in which the robis are acting. For all interesting simulations it is sufficient
to use a finite, closed, two-dimensional plane. The only additional necessary
entities are walls on this plane, so it is possible to create mazes or a soccer
field, which is just the plane and some surrounding walls. The walls are not
really three dimensional, since they have no width, all the same height and
they are perpendicular to the ground plane. So all information, necessary
for describing a world, is a set of two two-dimensional points, each point pair
describes a wall segment. Other than the walls it is of course necessary to
specify the start position of the robis inside the world. And for the soccer
application, the ball (or the balls) have to be positioned as well.

There are two file formats supported to specify a world. The so called
“world format”, which is simply a plane text file, each line containing 4
numeric values, specifying the beginning and the end of a wall segment.
Each robi is specified in a separate line, starting with the string “position”
followed by three numeric values, the x-y position and the angle between
the positive x-axis and the front of the robi (the orientation). The balls are
identified by the string “ball”, followed by the x and y-coordinate.

The other format is also text based and is called the “maze-format”. It
is supported, since it is intuitive and wide spread. Basically it is a graphical
representation of the walls in ASCII using only the characters ‘−‘ and ‘|‘. So
the world can only contain either horizontal or vertical wall segments and
they all have the same length. Of course several segments can be connected
to a longer wall. This format is extended to support the specification of robi
and ball positions, by introducing other characters like “lrudb”.

More precise information about how to create a valid maze or world file
can be found on the web pages [5] and [6].

2.6 The robi model

In this chapter I want to describe the way the robi is modeled in the simu-
lator. There are different aspects of the model:

17

THE MODEL OF THE SIMULATION

• geometrical model:
This aspect describes what geometry the robi has in the context of
the environment or the world, in which the robi is acting. This also
includes the question of collision detection between the robi and the
walls or other robis.

• dynamic model:
This aspect is about the dynamics of the robi when it moves inside his
environment. What movements are possible and what happens if the
robi collides with obstacles?

• graphical model:
This aspect is about the graphical representation of the robi within
the environment as seen by other robis.

• error model:
The error model describes which errors, occurring in the real world,
like sensor errors, etc. are simulated and how.

In the following sections I will discuss these different models, but first
of all I have to point out, that the used model was not properly developed.
I started with a very simple model and had to extend that from time to
time, to support new features or fix conceptual bugs (like robis tunneling
through walls etc.). The result of this process is far from ideal and it should
be considered to redesign this part of the simulator properly.

2.6.1 Geometrical model

The robi is simply modeled as a circle with a specified center point within
the environment and a fixed, predefined radius.

Hence, the collision detection between a robi and a wall or between two
robis respectively is rather simple: Two robis collide if and only if the dis-
tance between their center points is less than the sum of their radiuses. A
robi collides with a wall segment if and only if either one of the wall seg-
ments end points is inside the robi circle or the plumbline of the robi center
to the wall segment line traverses the wall segment line between the two wall
segment confining points.

This simple model was used, because it is easy to implement and collision
detection can be performed fast. The disadvantages are, that this simplicity
could not be preserved for the ball-interaction model, it does not represent
the real geometry very accurate and it is different from the graphical rep-
resentation. The problem with the ball-interaction model is, that the robis
should be able to actively manipulate the ball, like kicking it or “tripping”
it. Therefore the circle-model of the robis is insufficient. So for this aspect
of the simulation, I changed the robi model to a square instead of the circle.

18

2.6. THE ROBI MODEL

So a more sophisticated geometric model for the robi would improve
the simulation results and the overall simplicity by having one consistent
geometric model.

2.6.2 Dynamic model

As already mentioned, the robi is a two wheel robot. Each wheel is driven
by a separate motor. The angular velocity of the wheels can be controlled
independently. With this setup the robi is basically capable of driving strait
lines, circles or turning on the spot.

These movements can be parameterized with the standard vω-interface.
The RoBIOS allows to access the drive directly but also provides the vω-
interface. For the simulator, it was not of interest to implement a low-level
access method, since all higher-level control algorithms use the vω-interface
anyway.

The robis have no mass in the simulation, so we do not simulate bouncing
of robis against walls or other robis. If a robi collides with an obstacle, it
will simply be stopped. No mass also implies that the acceleration of a
robi is infinite, if the robi program sets a new velocity, the robi immediately
reaches that velocity. This is obviously not very realistic and could falsify the
simulation results crucially, so this should be improved in a future version.

A rather simple approach to remedy this defect would be to introduce
some kind of velocity slope: instead of jumping from one velocity to another,
the simulation could blend from the old velocity to the new one.

2.6.3 Graphical model

The graphical model of the robi is of minor interest. It is only to provide some
input for the camera simulation of the robis and the user interface monitor of
the simulation. The generation of the image data in the camera simulation
is based on a 3D graphics library, where the whole world, including the
robis, the walls and the balls is modeled as a 3D scene. Therefore the robis
need to be modeled as 3D objects. The implementation is based on the
OpenInventor interface which allows the user of the simulator to specify its
own 3D model for the robis. This model is completely independent from
the geometrical model of the robis, but the shape and the size of the model
should roughly resemble the robi circle to prevent graphic artifacts like robis
penetrating walls or each other.

2.6.4 Error model

In the real world, there are above all two kinds of errors relevant for programs
executed on the robis:

19

THE MODEL OF THE SIMULATION

1. sensor errors:
Sensor errors occur always when a physical device is used to perform
measurements of some quantity, so for the distance giving PSD sensor.
When measuring a given distance more than one time, the results will
more or less differ. These errors have noise character.

2. odometer errors:
The real robi’s odometer is not perfectly accurate, since it relies on
the measurement of the distance, covered by the robi’s wheels and
the presumption, that the wheels don’t slide on the ground. Besides,
the used algorithm is a numerical integration of the covered way and
this numeric is another source of errors, in terms of rounding and
discretization errors. This results in errors in the prediction of the
robi’s position.

In the simulation both types of errors are simulated by the addition of
pseudo random numbers. The question is which statistical distribution the
pseudo random numbers should be based on. An ad hoc answer to this
question is the gauss distribution. For most measurement processes this is
the real distribution. I simply used it, without an analysis of the real errors.
Please see the next section for a justification of this lax policy.

The user can parameterize the produced errors by specifying the standard
deviation of the gauss distribution, separately for each error variable. In the
case of the PSD values, the error is just added to the correct value. To
simulate the error in the odometer, I simply add a random number to the
linear and the angular velocity when the program calls a drive command.

2.6.5 Remarks on the physical defects of the used model

The aim of the simulator was not to simulate physical processes in the envi-
ronment of robis. It was rather to simulate programs written for these robis.
Of course, the simulated robis should behave more or less like the real ones
do, but as long as the executed program does not have a more sophisticated
physical model about how the robis and their environment should behave
than the simulator has, there is no need to implement a more realistic model.

20

Chapter 3

The functional part of the
simulation

The RoBIOS functions can be divided in different functional groups, like
the vω-interface related functions or the camera functions. In this section
I will provide an overview of the different function groups and how their
simulation is realized.

3.1 vω-interface

The vω-interface of the RoBIOS is a high level interface for controlling the
two connected motors. It allows to specify a linear and an angular velocity
component. Both may be negative or positive in a range depending an
the physical properties of the system. The RoBIOS interface allows even
more: it is possible to specify a drive command, consisting of the v and ω
velocity and a time after which the robi should automatically stop. Instead
of the time, usually the equivalent value of the distance which is to cover,
is specified. In case the command is a turn command, where the linear
distance is always zero, the angle, around which the robi should turn, is
given. After initiating such a drive command, the program can ask the
RoBIOS if the drive command is done, i.e. the desired distance is covered
and the robi has stopped. There is also a blocking function to wait for the last
drive command to complete and a function to get the remaining distance.
The implementation of these commands on the real robi depends on an
internal odometer. This odometer functionality can be utilized through the
RoBIOSes interface as well. It allows to specify an arbitrary position in an
x-y-α-coordinate system and to retrieve the updated position at a later time.

I thought about two possible approaches for the calculation model used
in the simulation of the robi dynamics. The first is a time step based,
integration method, where the robi’s dynamic is represented in a state vector
containing the current time t, the position p, the velocity v (and possibly the

21

THE FUNCTIONAL PART OF THE SIMULATION

acceleration). The state at the next time step t+∆t would be calculated by
the equations of motion defined by the current state, evaluated at the time
∆t. This is a fairly simple and flexible method but has the disadvantage,
that rounding errors accumulate over time.

The other approach is similar, it can be given an account of an extension.
Instead of updating the position on every time step, it is updated only when a
new velocity is set, i.e. when a new vω-command is executed by the program.
The state vector in this solution consists of: 1) the time t1 when the current
vω-command was initiated, 2) the position p, the robi was at, at the time
t1, 3) the v and ω component and 4) the time t2, when this vω-command is
done. Please note, that t2 might have the value ∞. This information allows
to define the equation of motion, describing the robi’s movements. In a
simplified notation this equation is just position(t) = p+vω(min(t, t2)− t1),
describing the position of the robi at an arbitrary time t ≥ t1.

With this solution, there is no accumulation of rounding errors, as long
as the velocity is not changed. For example, if the robi should drive a circle,
with this method, he will end up exactly where he started.

When a new vω-command is set at the time t′, the state vector has to be
update. The new value for p is the position of the robi at the time t′ based
on the old sate, the new time t1 is t′ and values for t2, v and ω are just taken
over.

In case the robi collides with an obstacle, the time of the collision is
calculated and the velocity is set to 0, hence, the robi stops directly in front
of the obstacle.

The implementation of the odometer functionality is based on the same
algorithm. There exists a separate instantiation of vω-state information
for the robi internal odometer. If the robi program initializes its internal
position, this position is used as the start position p. Every subsequent call
of a drive command updates both instantiations of the state information.
The get function for the position calculates the position at the current virtual
time , based on the internal odometers state.

3.2 PSD sensors

The Position Sensitive Detectors (PSD) use infrared beams to measure dis-
tance. The EyeBot controller can handle up to 8 connected PSD sensors.
Usually a robi has three sensors connected, on pointing to the front, the oth-
ers to the left and right. They can be operated in two different modes: the
single measuring mode or the continuous measuring mode. They take about
60 ms to perform one measurement. In the continuous measuring mode,
they start the next measuring automatically when the last one is done. The
RoBIOS interface allows to initialize and release the sensors, to start and
stop a measurement (cycle), to check for a valid value and to get the value.

22

3.3. LCD DISPLAY

The in the simulation it is possible to place the sensors at arbitrary po-
sitions relative to the robi center. This is specified in a description file for
the robi. The value returned by a sensor is calculated by intersecting its
“measure beam” with every wall segment and every other robi. The nearest
intersection with any obstacle gives the distance value. As mentioned, a
single measurement takes about 60 ms on the real robi, but the function to
get the value is much faster, it simply returns the last measured value or an
undefined value, in case the first measuring cycle is not yet complete. Thus,
in the simulation a new value is only calculated everytime the world state
gets updated, i.e. every 50 ms simulated time. There is no differentiation
in the implementation of the single measurement mode and the continu-
ous measurement mode, since the values are calculated only when they are
demanded by the get function anyway.

3.3 LCD display

The LCD of a standard EyeBot controller is a 128 pixel width and 64 pixel
height black/white display. The RoBIOS provides three ways to manipulate
the content of the display:

• drawing characters or text

• drawing simple shapes like lines and filled areas

• fill the display with an image, e.g. an image grabbed from the camera

The simulator maintains two buffers for each robi, representing the con-
tents of the display. One is a text buffer, where the text, to be printed,
is stored. The other buffer stores the image information in a pixel based
bitmap. But in contrast to the real LCD the image buffer contains col-
ored pixels, since this requires even less effort to be implemented on the host
machine and the additional information can be used for debugging purposes.

In case the user wants to see the content of the display, he can enable
the console window in the simulator for that robi.

3.4 Key input

The keyboard of the EyeBot controller has 4 keys. The RoBIOS allows to
read the keyboard buffer non-blocking or to wait for a specific key or any
key to be pressed.

To make a keyboard input, the user has to display the robi console win-
dow and focus this windows, then all key strokes for the keys ’1’ to ’4’ from
the host machines keyboard are sent to the simulated robi’s keyboard buffer.
The implementation for the wait-function is rather simple: for the non multi
threaded case, I used a busy loop just waiting for the keyboard input from

23

THE FUNCTIONAL PART OF THE SIMULATION

the user, in the multi-threaded case, the wait routine reschedules until a key
is pressed.

3.5 OS, multithreading, timers and thread syn-

chronization

The “OS” group contains some simple functions for retrieving information
like the ID of the robi, its name or the current time. There implementation
is strait forward.

The other functions build the core functionality of the simulator. Their
implementation has been discussed in detail in chapter 2.3.

3.6 Camera

The EyeBot controller supports the control of one or more digital color cam-
eras connected to the controller. The camera interface in the RoBIOS version
4.5, which was the current version when I wrote the simulator, supports only
one camera. The interface is fairly simple, just an initialize and a release
function and two functions for grabbing an image, one to get a grey-scale
image, the other to get a color image. Both grabbing functions are blocking,
i.e. they return after the new image is fully grabbed. There is an other
function as well, for setting camera parameters like brightness and contrast,
but it has no relevancy for the simulator.

The image generation is based on the same 3D library like the user mon-
itor. The only difference is that an offscreen renderer is used, instead of
displaying the data to the screen. The renderer gets an OpenInventor scene
graph as input. This scene graph contains the graphical representation of
the world, containing of the floor and the walls, as well as the balls and robis
at their current position. To get an image from the point of view of the robi,
each robi has to use its own camera position for the rendering. The used
position is the robi’s current position plus an offset, the relative position of
the camera to the robi’s center.

The soccer robot has the camera mounted on a pan-tilt unit controlled
with servos. Since the simulator does not simulate the servos directly, I had
to introduce a new function to the set of RoBIOS functions, provided by
the simulator. This functions sets the pan and tilt angle of the camera. It
is likely that a program for the real robot abstracts the servo interface in
the same way, so it is no problem to incorporate this extra function in the
program during the simulation. In case the reader is wondering: yes, this
undermines the demand, to be able to use exactly the same source code for
the simulation and the real world usage.

So the steps necessary to generate an image from the point of view of
the robi’s camera are: calculate the camera position using the robi’s current

24

3.7. RADIO COMMUNICATION

Figure 3.1: An example of an image, generated with the simu-
lated camera (left); The sceene from a birds view,
the active robi is marked red (right)

position, the camera offset and the current pan-tilt values then generating
an OpenInventor camera, with this coordinates and finally call the offscreen
renderer. For an example of an image, generated with the offscreen renderer,
see figure 3.1.

As hinted before, the new RoBIOS camera interface supports more than
one camera. This is yet to be implemented in the simulator, but it should
be no problem, since I have already prepared it. The only missing part is
the interface itself, because the exact signature was not decided then.

3.7 Radio communication

As mentioned before, the robis are capable of communicating with each other
through a radio communication interface. This interface is rather simple: it
allows to send a message to a specific robi or to all of them, to check if a
message is in the queue and to receive a message. The receive call is blocking
in case the message queue is empty. The messages are just variable length
data blocks, containing arbitrary binary data.

To realize this feature in the simulator, each robi client maintains a
message queue. Since the single robi clients do not know each other, they
have to send the message to the core. The core dispatches the message either
to the specified robi client or to all of them, if the message is a broadcast
message. The message is then stored in the message queue until the robi
program calls the receive function.

For simplicity (and because I had no time to make it better) I imple-
mented the receive function as a busy loop, exactly like the key wait function,
see section Key input (3.4).

25

THE FUNCTIONAL PART OF THE SIMULATION

3.8 RS232

The EyeBot controller has a RS232 interface for serial line communication
with a PC. This link is used for firmware updates and the transfer of the
program data. This functionality is not simulated since the firmware equiv-
alent is the simulator itself and the program binaries are specified in the
simulation description file. But the serial line can also be used to transfer
data back to the PC, e.g. to get some debug information or result of the
program like a generated map of the robi’s environment.

This is simulated by simply creating a text file on the host machine and
adding every character passed through the RS232 interface to that file. The
“get” function, to receive data form the PC as well as the control functions
to set transfer speed, etc. are merely dummy implementations.

3.9 The rest

The RoBIOS contains other functions not mentioned so far. These are func-
tions related to audio signal emitting, low level motor access, infra red com-
munication, electronic compass evaluation, servo control and others. All of
these functions have been classified as not important for simulation. Their
implementation is merely a stub or dummy implementation. If a value has
to be returned, then the “no error” value is used, thus allowing the user
to simulate programs using these functions without the necessity to modify
them. This, of course, works only for programs that don’t really rely on
these functions.

26

Chapter 4

A brief manual

I want to give a brief introduction to the usage of the simulation software,
interesting for someone, who wants to use the simulator.

To be able to simulate a robi program in the simulator, a simulation
environment has to be set up. The simulator needs certain information
about the robis to be simulated, the virtual world, in which the simulation
takes place and some other parameters like the simulation-to-real-time ratio
and the program(s) to be simulated. All this information has to be provided
in different files.

• simulator configuration (eyesim.ini file):
This file contains settings for global parameters in the simulation.
These include display parameters (display update rate, background
color, etc.), the error model parameters (see chapter 2.6.4), the parametriza-
tion of the ball simulation (ball radius, friction and reflection coeffi-
cients) and the maximum reach of the PSD sensors. All these pa-
rameters may be overwritten in the simulation description file. Some
of the parameters can be changed online during the execution of the
simulation.

• simulation description (.sim file):
This file describes the simulation, i.e. what world should be used and
which robis are involved. This is done by merely providing the path
for the robi description file and the world description file.

• robi configuration (.robi files):
This file provides the complete description of a robi, including a name,
the size, the maximum linear and angular velocity, further more the
specification of all PSD sensors and cameras with their relative posi-
tion. It also references two other files: the robi’s 3D-model and the
program code. In the current (Linux) implementation, the program
code has to be provided as a shared library (.so file), please see the
implementation details for more information on this topic.

27

A BRIEF MANUAL

Figure 4.1: The main window of the EyeSim program

• 3D-model for the robi (.iv file):
This file has to be in the OpenInventor file format (VRML 1.0). There
is a relatively basic model provided with the simulator demos but the
user may provide its own model. The unit to use for the model is 1
meter.

• world description (.wld/.maz file):
There are two file formats supported: the so called “world format”
and the “maze format”. Please see the “The world model” section for
more details about these formats.

There are sample files for the simulator, the simulation and the robi
description to be found in the appendix. These samples provide a description
for all possible parameters and sane default values.

Before the executable can be started, the user has to make sure, that the
environment variable LD LIBRARY PATH contains the path to the shared
library file(s) with the program(s) to be simulated. This may be the current
directory (“.”). The simulator configuration file (eyesim.ini) has to be placed
in the current directory. The simulator is started by executing “eyesim”, an
optional parameter is the name of the simulation description file.

The simulator main window is shown in figure 4.1. It is composed of two
main elements, the 3D viewer on the left and a list with some information
about all robis in the simulation on the right. The viewer is a standard
OpenInventor examiner viewer, it initially shows the world from a birds
view. The perspective can be changed with the mouse. The list with the
robis show their ID, their name as specified in the robi description and the
file name of the program they are executing.

28

Figure 4.2: The EyeBot controller with LCD and buttons (left); The
EyeSim console window, representing the LCD (right)

The simulation can be paused and stopped and a new one can be started
with the appropriate buttons.

The robis can be selected in the list, a selected robi is marked with a red
bounding box in the 3D viewer. Selected robis can be manually moved with
the ChangePos dialog. A double-click on a robi in the list opens its console
window. In case there is only one robi in the simulation, this window will
be opened automatically. An example of the console window can be seen in
figure 4.2.

The console window is the graphical representation of the robi’s LCD. In
the last text line is usually shown the menu of the program. The keyboard
input for the robis (see bottom of figure 4.2 left) can be generated by focusing
the console window and pressing they keys ’1’ to ’4’ on the host keyboard.

There is another dialog, the settings dialog, to change global settings,
like the error model parameters and the user monitor related parameters.

The GUI of the simulator can be considered to be subject to further
improvements. The most obvious improvements would be:

1. provide more information about the current state of the simulation,
like all the current sensor readings of the robis, the exact positions of
the robis and the balls

2. implement a graphical representation of the robi’s current drive com-
mand, e.g. establish some sort of an arc in the 3D-viewer, pointing
from each robi to its current driving destination

3. improve (restrict) the use of the OpenInventor examiner viewer - it
makes no sense to be able to change the viewport in a way that you
see nothing anymore

29

A BRIEF MANUAL

4. add some graphical representation of the robi keyboard to the console
window, enabling the user to use the mouse as an input device, too

30

Appendix A

Implementation details

For the case, one is interested in having a closer look to the implementation
of the simulator, I decided to collect some information and explanations
regarding this issue here.

I want to give some more details about the code structure of the core and
the robi clients. As described earlier the core functionality is provided by a
class called Core. The main class representing the client is the LocalRobi.
LocalRobi because there exists also a GlobalRobi class on the core side
with one instance for each robi in the simulation, handling state information
like current position, etc. The message passing interface is realized with
two classes, the Core2ClientMessages and the Client2CoreMessages. Both
clasess are interface classes describing the set of messages that can be passed
between the core and the clients. Their implementation is responsible for
delivering the messages. This abstraction allows a simple separation of the
core and the client code to be executed in their own processes, since the
only link is the message interface. In the thread based implementation, these
classes merely have to ensure the thread safety when several robi clients send
messages to the core simultaneously, but other than that they simply call
their corresponding methods. For simplicity this interface is currently not
complete, some RoBIOS function implementations have direct access to the
world state information, which is maintained by the core. These are the PSD
and camera related functions. To realize the process based implementation,
it would be necessary to replicate this information on the client side and add
messages to the interface to be able to synchronize the data. This has not
yet been done because of a lack of time.

As described in the multitasking section, the used model for simulating
both, preemptive and cooperative multitasking, is a cooperative model, i.e.
(host) task switches are performed only explicitly. A C-library that sup-
ports coperative multitasking is described in [3]. However, since there was
no platform independent library available (including Windows support), the
implementation of the cooperative threads uses preemptive threads (see [4]).

31

IMPLEMENTATION DETAILS

To accomplish this “simulation” of cooperative threads with preemptive
threads, each thread has assigned one semaphore with an initial value of
0 and the first thing, that the thread routine does, is locking itself by wait-
ing for the semaphore. Starting the multitasking of one simulated roboi
means to resume the first of its threads by increasing the thread’s associated
semaphore. When a task-switch has to be performed, the one running thread
starts the next thread by releasing its semaphore and then blocks itself by
waiting for its own semaphore. To easily illustrate this, one can think of a
conservative petri-net, composed of a complete graph with only one token;
switching the task means passing the token to an other place.

32

Appendix B

Configuration files

B.1 Simulator configuration (eyesim.ini)

this is the global ini file for the EyeBot simulator 5.0. every value

has buid in standard value, that can be overwitten in this file. it is

also possible to specify any of these parameters in the simulation

description file (*.sim), which will overwrite it again.

the format is pretty obvious...

/** The rate with which all the user interface displays should be

* updatd. The unit is one second, i.e. it is the reciprocal of frames

* per second. The default is 0.2, which means at least 5 fps. */

displayUpdateRate 0.2

/** The ratio of simulated time to real time, e.g. a value of 1.0 means

* the simulation runs in "real time", a value of 2.0, that the

* simulation runns twice as fast. A value of 0.0 means "as fast as

* possible". */

simulationToRealTimeRatio 1

/** This value is the largest distance, that a robi has from an object

* after it collided with it, i.e. the ideal value would be 0, BUT this

* is not feasable. Default value will be set to one mm, since the

* accuracy of all distance giving sensors is just one mm. [m] */

collisionDistanceAccuracy 0.001

/** these are the parameters for the error model, which simply adds a

* random number of a gauss distribution with a standard deviation

* like specified to the corresponding value. The default value is 0,

* which means no error is added at all. [m]/[] */

psdStandardDeviation 0.0

vwLinearDistanceStandardDeviation 0.0

vwRotationalDistanceStandardDeviation 0.0

/* this is the deceleration factor of the ball movement, the balls velocity

* decreases by Ball::friction * t, where t is the simulated time */

Ball::friction 0.03

/* the ball will stop, when he reached this threshold velocity, so

* possible values are greater or equal to 0. */

Ball::thresholdVelocity 0.0

33

CONFIGURATION FILES

/** what could that possibly be? the default value is the radius of a

* golf ball in [m] */

Ball::radius 0.02125

/* the default values are the usual collision coefficients for an

* elastic impact (1, -1). the first coefficient gets multiplied with the

* component paralell to the wall, the second with the component

* perpendicular to the wall, i.e. the second component hast to be

* <= 0. */

Ball::wallReflectionCoefficients 0.8 -0.5

Ball::robiReflectionCoefficients 0.0 -0.1

/** the ratio between robi cpu speed and host cpu speed, e.g. 10 means

* the host cpu is 10 times faster than the robi cpu. This value is

* not really of any use at the moment, since the accuracy with which

* the host cpu time can be measured is not sufficient. */

robi2HostCPUSpeedFactor 10

/** the maximum distance the psd sensors can measure, values greater

* than maxReach are mapped to the constant PSD_OUT_OF_RANGE. */

PSD::maxReach 2.0

/** the background color used for the generation of the robi camera

* images, given as (r,g,b) in float format with values between 0 and

* 1. */

backgroundColor 0.3 0.3 0.3

B.2 Robi description (*.robi)

robi description file for the EyeBot simulator EyeSim 5.0

by Axel Waggershauser, UWA 2002

inspired by the parameter file for the old simulator by

Thomas Braunl - Ghee Ong - Nicholas Tay, UWA 1998

the format: valid lines contain a keyword followed by a list of

parameters seperated by white space. every line not starting with

a keyword is ignored.

every parameter describing a length is specified in milli meter

every parameter describing a angle is specified in degree

the name of the robi, the used string is the rest of the line

behind the keyword without the surrounding white space

name player

robot diameter mm

diameter 160

max linear velocity in mm/s

speed 600

max rotational velocity in deg/s

turn 300

the file name of the shared library containing the program to be

executed for this robi

program test.so

the file name of the OpenInventor model used for this robi

34

B.3. SIMULATION DESCRIPTION (*.SIM)

model robi.iv

axis is the distance between the center of the robi and the center of

the robis axis, e.g. a value of 0 means the axis is in the center of

the robi, if no value is given, it is set to 0.

#axis 60

psd sensor definition:

"psd", name, id-num, relative position to robi center, deviation angle

id-num has to match file "hdt.h"

psd PSD_FRONT -200 80 0 0

psd PSD_LEFT -205 0 80 90

psd PSD_RIGHT -210 0 -80 -90

psd PSD_BACK -212 -40 0 180

#psd PSD_FRONT2 -211 5 80 -5

#psd PSD_LEFTDIAG -203 45 80 0

#psd PSD_RIGHTDIAG -204 -45 80 0

color camera sensor definition:

"camera", relative position to the robi center (x,y,z), default

pan-tilt-anlge (pan, tilt), maximum image width and height in pixel

camera 80 0 50 0 0 80 60

camera 80 10 50 0 0 80 60

B.3 Simulation description (*.sim)
world description file (either one maze or one world)

world test.wld

maze test.maz

robi description file

robi test.robi

35

Bibliography

[1] Th. Bräunl, B. Graf, Small Robot Agents with On-Board Vision and
Local Intelligence, Advanced Robotics, vol. 14, no. 1, 2000, pp. 51-64
(14)

[2] Th. Bräunl, Scaling Down Mobile Robots - A Joint Project in Intelligent
Mini-Robot Research, Invited paper, 5th International Heinz Nixdorf
Symposium on Autonomous Minirobots for Research and Edutainment,
Paderborn, Oct. 2001, pp. (8)

[3] Ralf S. Engelschall, Portable Multithreading - The Signal Stack Trick
For User-Space Thread Creation, USENIX Annual Technical Confer-
ence, June 18-20 2000, San Diego, USA.

[4] GNU Common C++, GNU Common C++ is a C++ frame-
work offering portable support for threading, sockets, file access,
daemons, persistence, serial I/O, XML parsing, and system ser-
vices, initially started by David Sugar and Daniel Silverstone.
http://www.gnu.org/software/commonc++/CommonC++.html

[5] Th. Bräunl, EyeSim - Maze Format,
http://www.ee.uwa.edu.au/ braunl/eyebot/sim/maze.html

[6] Th. Bräunl, EyeSim - World Format,
http://www.ee.uwa.edu.au/ braunl/eyebot/sim/world.html

36

List of Figures

1.1 A real-world soccer robot . 1

2.1 The client server based structure of the simulator 5
2.2 The program segment . 8
2.3 The virtual time handling during a (non-virtual) preemptive

task switch . 14

3.1 An example of an image, generated with the simulated camera 25

4.1 The main window of the EyeSim program 28
4.2 The EyeBot/EyeSim console 29

37

