BDM Interfacefor Motorola 683xx M CU
Usage with GDB Debugger

Pavel Pisa (pisa@cmp.felk.cvut.cz)

2003.5.30.

i:NO ~PATENTS

Please, consider sgning of petition againg spreading of patent nightmare.

Abstract

The BDM Interface can supply more expengve I CEs (In Circuit Emulator) for Motorola 683xx
family of processors based on the CPU32 core (68332, 68333, 68334, 68336, 68376 and 68340).
This document tries to describe the CPU32 BDM interface and its usage with GNU debugger under
the Linux operating system. Some newer members of Motorola MCUs use amilar, but not compatible
BDM interfaces, aswdl. Last sectiontries to summearize information about these interfaces.

Important notice, we are preparing to move development into SourceForge CVS. Please, look to
http://sourceforge. net/projects/bdm.

My persona pageht t p: //cnp. fel k. cvut. cz/ ~pi sa/ andthispagehttp://

cnp. fel k. cvut. cz/ ~pi sa/ n683xx/ bdm driver. ht m continuesto be updated to
hald latest information about Linux m683xx BDM support. The copy of the page and its source will be
probably moved into CV'S and SourceForge as well.

Contents

1 BDM Oveview

2 Hardware and BDM Protocol

3 Cable Wiring and Logic

4 GDB and BDM Driver for Linux

5 GDB withBDM Setup

6 GDB with BDM Usage

7 Detalled GDB Invocation

8 Chipsdects Initidization

9 Utility BDM-Load

10 Comparison of Different BDM Interfaces

1 BDM Overview

BDM mode of the CPU32 hdlts execution of a norma mechine code fetched from the memory and
sarts the internd M CU microcode to process commands received from a dedicated seria debug

interface. These commands can be used to view and modify dl CPU32 registers and to access into on-
chip and external memory locations.

The CPU32 processor mugt be started in a speciad mode to enable BDM interface. This is achieved by
halding the BKPT pin low during the reset time.

Switch to the BDM mode can be enforced by the fallowing tree ways:

o Driving the BKPT pin low when a fetch of an instruction occurs - the BDM mode is entered
after processing this indruction

e Inserting BGND ingruction (4AFAh) into the program memory
o Double bus fault, whichin a norma case leads to CPU hdt

Return from the BDM mode is initidized by the BDM command GO or CALL.

2 Hardware and BDM Protocol

Motorola has defined a standard pinout for the debug connector, which is compatible with most of the
development tools. Older versons have only eight pins and the newer ones add two additiona pins for
enforcing bus error and memory interface monitoring. Pins 2 to 10 of the new connector versonare
equivadent to the pins 1 to 8 of the older one.

™= 1 Jz | BER
aNn |2 Q14| BHPT DECLK
aNn [adl Cla| FREEE

AEEET (-1 Cim| IFETGHDEI

won |90 Cha| IAPEMED

Figure 1. Standard Ten Ain BDM Connector

Table 1 describes the function of these pins. Hardware dimensions of the connector are equivaent to
the jJumper array, which has 100 mils (2.54 mm) spacing.

AnNumber AinName Description

Data strobe fromtarget MCU.Not used in

. DS current interface circuitry

Bus error input to target. Allows development
2 BERR sysemto force bus error whentarget MCU
accesses invdid memory

3 VSS Ground reference fromtarget

Breakpoint input to target in normal
mode;development serid clock in BDM.Must
be held low on rigng edge of reset to enable
BDM

4 BKPT/DSCLK

5 VSS Ground reference fromtarget
Freeze 9gnd from target.High level indicates

6 FREEZE that target isin BDM
Reset 9gnd to/fromtarget. Must be held low
! RESET to force hardware reset
Used to track ingruction pipe in normal
8 IFETCH/DSI mode.Serial data input to target MCU in
BDM

+5V supply fromtarget. BDM interface drcuit
9 VCC draws power from this supply and aso

monitors 'target powered/not powered' status
10 IPIPE/DSO Tracks indruction pipe in normal mode.Seria

data output fromtarget MCU in BDM

Table 1: 10 Ain BDM Connector Description

BDM uses 17 hit serial synchronous communication with the CPU32 processor. All data and
command transfers are performed in an M SB firg format. An internd CPU32 receiver is implemented
by shift and latch registers. The CPU32 latches every input bit vaue onthe DSI line at the time of risng
edge detection of the DSCLK sgnd. Because of the DSCLK edge detectionis performed
synchronoudy with the system clock, the maximum DSCLK frequency is equa to one hdf of a system
clock frequency. A 17 bit input word is latched after 17 rigng edges on the DSCLK line thenthe
CPU32 microcode sequencer is started to perform ingtruction or process extensonwords. Tranamit
latch register is updated by the CPU32 continuoudy. The tranamit shift register and DSO pin reflect
changes of the latch register until the first low leve of 17 hit protocol is detected on the DSCLK line.
Then the state of the DSO line can be read as a M SB received hit. Thenthe tranamit shift register is
not updated by the tranamit latch register until dl 17 bits are read. The DSO line is changed only after
rigng edges of the DSCLK line during the rest of transfer.

15 10 9 g 7] 5 4 3 2 a
OFERATION | [¥] |R,fl;-.r | OF SIZE | [¥] | [¥] |A,l'D | FEGISTER
EXTENSION WORD(S)

Figure 2: Genera CPU32 BDM Command Format

Command and data transfers initiated by the development system should clear bit 16. The current
implementation ignores this bit; however, Motorola reserves the right to use this bit for future
enhancements. The CPU32 returns 17 bit Satus or vadue every time 17 bitsare send to it. The meaning
of 17 bit status is described in Table 2. Some commands except the first command word need an
additional address and data words. Figure 2 shows the genera BDM ingruction format without 16-th
bit.

Bit 16 Data Message Type

0 X Vvdid Data Trandfer
0 FFFF Commeand Complete; Status OK
1 0000 Not Ready withResponse; Come Agan

1 0001 BERR Terminated Bus Cyde; Data Invaid
[llegd Commeand

1 FFFF

Table 2: BDM Status or Vaues Returned by CPU32

Table 3 contains possble BDM commands for the CPU32 processors family. | have noticed, that the
new ColdFire family processors use same basic command set with additiond real-time commands.

Changed RSREG and WSREG commands need to address more registers and that iswhy an

additiona register address word is necessary for these indructions. Another big change can be seen

with ColdFire BDM cable, because of the ColdFire has sngle-stepping flip-flop built insde.

Commeand Mnemonic Code
Read D/A Regiger RREG 218r
Write D/A Regiser WREG 208r
Read SysemRegiser RSREG 258s
Write Sysem Regiser WSREG 248s
Read Memory
L ocation READ 19tt
Write Memory
L ocation WRITE 18tt
Dump Memory Block DUMP 1Dt t

Fll Memory Block FILL

Resume Execution GO

Patch User Code CALL

Reset Peripherds RST
Asserts RST
No Operation NOP

1Ctt

0CO00

0800

0400

0000

Additiond Words and Notices

recaive two words with vaue from
CPU32

send two words with vdue to CPU32

recaive two words with vaue from
CPU32

send two words with vdue to CPU32

send 2 word address and receive 1 or
2 words vaue

sond 2 word address and 1 or 2 words
vdue

receive 1 or 2 words vaue from next
memory |ocationto location selected by
previous READ command

send 1 or 2 words vaue for next
memory |ocationto |ocation selected by
previous WRITE command

Pipeisre-filed from RPC location

Current program counter is stacked at
the locationof the current stack pointer
and two additiona wordsdefine
subroutine start address

Asserts RESET for 512 clock
cycles,but the CPU is not reset by this
commeand

NOP performs no operation and may
beused as a null command

Table 3: CPU32 BDM Commands Summary

Table 4 describes the meanings of the last varidble nibble or byte vauesin command codes.

Symbol Vdue Mnemonic

Meaning

r 0to7 DOtoD7 Data Register

8toF AOto A7 Address Regigter
S 0 RPC Return Program Counter
points where execution will continue
1 PCC Current Ingtruction Program Counter

mo QO W@ >» © ©

tt 00
40
80

points to firg byte of last executed ingtruction
it contains 00000001 when double bus fault
appears immediatdy after reset

ATEMP Temporary Regiser A
FAR Fault Address Register
VBR Vector Base Register

SR Status Regiger
USsP User Stack Pointer
SSP Supervisor Stack Pointer

SFC Source dternate function type of bus cyde
MOVES ingructionand BDM memory transfers

DFC Dedtination aternate function of bus cyde
MOVES ingructionand BDM memory transfers

BYTE 8 hit datainleast 9gnificant byte of one word
WORD 16 bit data transferred in one word
LONG 32 bit data transferred in two words

Table 4: Vdues Ored with BDM Commands

3 CableWiringand Logic

There exist two standard wirings of a cable between the CPU32 BDM interface and standard PC
printer port. The firg is public domain interface (PD_BDM). It was published by Motorola (its
support BBS) and can be used with free BD32 (bd32v122.zp) debugger and BDM library example
implementation (bdm-v090.zp). Both are writted by Scott Howard. The second cable is provided
with Motorola commercid sysems and is known as ICD_BDM cable. This cable can be used with
both above mentioned programs and with the free TPU debugger and downloader (tpubug.zip).

The schemdtic diagram of one of possble PD cable implementations isinfigure 3. It isa Smple
implementation with 8 pin cable only, but it works for me without serious problems with 1 m cable

from PC and 20 cm cable to MC68332.

T 7AHCTd

BT Baclkgcound Boda Comiactoc

1 1
1
[1
1 |
FT Peintac Poct | 1
31 | !
1 +£0 DECLL 1 r== DEeCL), I L
11 +C1 RETOUT f":?l-l | RET_irT 51 FRaaat :
. — 1
15 -53 FPELIE i 4~ R : FFLLIE 1| TFcasaa [
1
16 -C3 DEI e ' 1 % Del I ! IFat=hiDEI 1
17 +C3 STEF_OOT b 1| 108 sTRR_ooT ! ;
t
1 5 1
1 11
: = 0.001 wF F * |
1 1
| ! 1 I
= | 1] |
| 1 D | |
o | oo :
1
o | 1 T | 1
10 -56 PUR_DH D?'n 1 ! P Ve :
T T + 1
11 -E7 ¥2 e e R Lo 1] aa |
Ay T 1
17 +55 Do K : nip | i
a | 13 ! |
i3 | 11 = }
e "I"' 3 JI 13 B! IFipamEn !
DEIS Mal Ly 1
"o o FEHC132 : ;
1
1 1 I
e 1
Cabla &= BC ETS i i
£ R i
I
i 13 pia |t
a 1,
o.1 uf 1L
h:A
TT 74H074 FC Compatibla IST to CPUIY Backoeound Poct
5:ﬂ|D:v|:'|.|mr_1£ Hurmbac T
I
Tats: WoramDwc 5, 1007 [Ehaat T =F

Figure 3: Possble BDM PD Implementation

The cable compatible with Motorola | CD32 system can be seeninfigure 4. | have seen an origind
schematic for ICD32 cable, but | do not have this cable, so GAL16V8 functionis only my own
solution. In my experience, it works with dl free software | have (Linux BDM driver, DB32, BDM
library and TPU debugger). | am not sure about legd state of this cable, but it can be used with free
Motorola software and free source for BDM library describes its function, so it should be free. This
cable works better than the previous one for the following three reasons:

« logic levds of dl agnds are sharped by GAL16V8

e bidirectiona CPU32 DSI/IFETCH dgnd is controlled by tristate buffer

e breakpoint and step logic use better level controlled mechanism

QOFRL file defimition

bagin de Einit ion
gﬂlll:'n:\vl- aanleva
”Es:n- OO L¥m 3, AREAK= 4, FESET= 5, 0=, b _FREE fB=T,H_[=SC0=a, Sh= 0, AXFR=1 1;
autputa loand
W_PMEFR=lp, b_CmCLKmla, Cmom LG, FREEE =] 4, Had o= L2;
Earchac |=am?
P_[= Im LT, H_FESET= 13, F¥_ARELK=l3;
and deEinitian
begin sgnations
H_p=ImC Iy H_DEI. semb_FRERIRLOR:
H_P=CLX=CSC LELTT _AREAK & TE =ET
F¥_FFELN=ARELY | | FF_BFELKL |u_;rnn::l|u_p=:|::- i
H_FESET=FESET; bH_FESET.qs= FESET
bH_AEFR='HERF; H_AEFF .os=HBEFF
m:ln-u_;r:nn::l D=Omb_ D=0 L Forhin luHl
and sqoatiane

-]
i FE
P Framt#c Part :E:R:R:R:R:R:RI et
|a'r::1.::1 oo oo
C
I
Lex

aul
1 +m i UEECEER
1s 12l ""-H:“':i A [
= 404 osI I ‘ol 1 Fa T4
13 —=3 B P Tt * 1ax
1: +0l D=CLE o | : LHTE ol
E -2z e, B
L DX EREX l::': I | pagn | = | :fuz.ol H BEEE_ I
1T o2 T I SCLE 3| 3a puga [HPSCOLX I]
2 +03 FE=ET e Ll IEEaE = = P =
iHiF : T L= Fe=rr 3] 17 .03 F—ern l.l:'“'JI b _AE TR
o s B CR T i oo
e e =l E 5 ron EEEE 1 ae s W‘ng,
—t=F 1 P FFERIE T| 5 IMOE | s
T +03 LED i 1 d Fiagmr BO 8l o paer M2 o =¥
pom =M P| 1a Iiom [T weazo o0 02 no 19 =
a2 +0E MEFR L . L) Dﬂlrﬂ DEEE 11| \og
e - A I —
ﬂ-]-. : I A=z b
o |3 —
lo -sE FREREE e LI 1 aIaR
ol
11l -=T pma o I ! Rl
el T
1z +=n o_'f‘;' : ! aTam
13 +m4 e 1+ — —— Jao oz oL
B, L_- rRTox Los Aee % T
= ca
O3 bals 7 l T o ml:F.'T qu:’
1 =
LED
! oT) ju' oa o4 £ an ao
1 = AL Tor lognr 1
| xo 1 T T alo
Cabls ta PO
WARMING e, aip ao ao Hatarala ILC conpatibls O0H cabls
This im naot abicial schenatic and QAL deEinitian. =1z+ [Cacument Llumbec EH
QAL debBinitian im my aun, I havs nat had mmy ariginal ITD cabls . i i
[Cats: =eptanbec 15, loow Ehast T ae

Figure 4: 1CD32 Compatible Cable

4 GDB and BDM Driver for Linux

GNU debugger is used in many native and cross development tool-chains in UNIX type environment.
It is a very powerfull debugger controlled fromits command line. There exist many interactive menu-
driven and mouse-driven user interfaces for this debugger, too (for example GDBTK, DDD, Rhide
and XXGDB). This debugger is very wel suited for the cross-development for 32 bit embedded
targets. It recognize mogt of the Motorola MCUs with CPU32 and ColdFire processor cores. These
targets may be connected by the serid line usng Motorola board ROM monitor or specid protocols
for some operating systems (for example VxWorks). Such target debugging can be achieved by the
GDB remote target debugging by any usua serial stream connection (RS-232 or TCP/IP
connection).

To use BDM interface by GDB, two problems must be solved. Firt, it is not good practice to directly
meanipulate by ports under UNIX systems. It means that the kernel mode BDM driver should be
writtento implement the BDM character device. Such device can accept and perform regular read/
write system cdls and for special action (for example sngle step) use IOCTL interface. The second
part must be done to enable GDB to understand and send BDM commands by read/write interface to
the BDM driver and controll target state through the driver IOCTL interface.

In future, such two layer implementation can be ussfull for GDB independence on the host system,
because only the BDM driver will be host specific. Recently, this driver exisis for Linux operating
system. Patch filesfor GDB versons 4.16 till GDB-5.1.1 exis to use this driver. The authors of the
BDM driver and GDB target interface are stated bellow

e Scott Howard, origind author of Motorola BDM library and utilities, Feb 93

e M. Schraut, origind author of BDM driver

o Gunter Magin magin AT skil.camedot.de, maintainer of BDM and GDB

o W. Eric Norum eric AT skatter.usask.ca, who did enhancements and Next- Step-Port in Jun 95

o Pavel PisapisaAT cmp.fek.cvut.cz, some enhancements and GDB-4.17 patch update May 98,
working on upgradesto current GDB-5.1.1

 Peter Shoebridge peter AT zeecube.com, wrote Windows N T version of driver for CPU32 and
ColFirein Jan 99

The origind version of GDB patches and BDM driver are stored in Gunter Magin's archive[1]. My
modified patches for GDB with Linux BDM driver source can be found under name gdb- 5. 1. 1-
bdm patches-pil.tar.gz.

Gunter Magin started to develop new version of the ICD compatible cable withispGAL22V8, bt it is
not finished. Patches for GDB-5.1.1 are compatible with standard GAL16V 8 cable as wdll.

The latest version of the patches for gdb-5.1.1 based on Magin's and my code is stored in archive
gdb-5.1. 1-bdm patches-pi 1.tar. gz. Thisversoncontans dl my changes for support
of the Linux kernels 2.2.x and 2.4.x, faster and better timing (at least | hope so) and flash
programming support. This version can be found in the archive. There is aninitid version of the
iIPGAL22V8 based EFICD, aswdll.

5 GDB with BDM Setup

To start debugging session, next things must be set-up correctly. The board with one of the Motorola
MC683xx processors mugt be connected to a PC printer port by one of debugging cables mentioned
above (1CD32 or PD cable). The BDM driver mugt be compiled for a correct Linux kernel version
(provided driver sources should work with 2.2.xx and 2.4.xx kernds, versonfor gdb-5.1.1 was
tested with 2.4.7 kernd). The sources of BDM driver can be found in “"gdb-5.1.1-bdm- patches-
pil.tar.gz'. Next commands can be used to compile driver.

cd /ug/src

tar -xzf gdb-5.1.1.tar.gz

cd gdb-5.1.1-bdm-patches/lbdm _driver
make

Therearetwo Makef i | esinthe driver source directory Makef i | e- dev and Makefi | e-
nod. The firg one is manly for development and uses manua kernel compiler options editing, the

second one (Makef i | e- nod) uses automatic kernel module build process. Selected one should be
symlinked to name Makef i | e and checked or edited before compilation Lines of highest
importance are

INTERFACE+=-D PD_INTERFACE

INTERFACE+=-D ICD_INTERFACE

AUTOLOADING=-DMODVERSIONS

#BDM_DEFS +=-D BDM_TRY_RESYNCHRO

#CFLAGS+=-D__SMP__
Every line can be commented out by ~#" character. The firgt two lines enables both possible cable
types. The third line is needed if kernel is compiled with kernel symbols versons. The fourth line can
help if there are lost of BDM sync after Sngle-stepping and breaks. The lagt line is needed for SMP
kernds.
The compiled BDM driver ““bdm.o" should placed to ™ /lib/modules’kernel_version/misc” directory.
The driver mugt be inserted into the kernel whenmodulesare used (# 1 nsnod bdm). When
kernd autoloading of missing modulesis used (kmd or kerneld), next line can be inserted into file ~/
etc/modules.conf™.

dias char-mgor-53 bdm
Then "depnod - a" mus be run. No manud insertion of the BDM driver is needed in such case.
Specia character filesmugt be created. Standard names for above described cables and driver sources
arepd_bdmO, 1, 2 and icd_bdmO, 1, 2 (specid files can be created by provided MAKEDEV
seript). Ending numbers of special files select used printer port base address (0..378h, 1..278h,
2..0x3BCh). Specid files sdlect between public domain (pd_bdmx) and ICD32 cable (icd_bdmx).
In mogt cases, only one target processor is used, so it isa good practice to make symbalic link bdmto

the used interface specid file (for examplel n -s / dev/ pd_bdnD / dev/ bdm).

Patched version of the GDB must be compiled. Next command sequence can be used to prepare and
compile the GDB.

cd /ug/sric

tar -xzf gdb-5.1.1.tar.gz

patch -p <gdb-5.1.1-bdm-patches-pil/gdb-5.1.1-bdm.patch- 1
cd gdb-5.1.1

Jconfigure - -target=m68k- bdm- coff

--enable-targets=m68Kk- linux-df,m68k- coff, m68k- a.out- linux

make

make intd|

This procedure should ingal m68k-bdm-coff-gdb executable into /usr/loca/bin, but no warranty is
given The best way is to check results after each step and inddl gdb manudly.

6 GDB with BDM Usage

The compiled GDB executable mugt be start and the target must be connected. Setting up of the BDM
interface can be prepared as a GDB script or automatic initidization script. For the target without on-
board memory setup code, chipselects and system integration module (SIM) mugt be initidized (from
gdb .init script or .bdmmb file). A step by step manud initidizationfrom GDB prompt is shown in the
next example

target bdm /dev/bdm

Set remotecache off

bdm_timetocomeup 600000

bdm autoreset off

bdm setdelay 70

bdm reset

set $c=5

set $dfc=5
The firg line connects GDB to BDM driver. The second one disables caching of retrieved vauesin
GDB (better for initid tests). Next lines select wait for memory and SIM initidization by on-board
ROM monitor after reset, setting speed of BDM driver communication withthe CPU32 and reset of
target, which enables the background debug mode. Setting of SFC and DFC registersto 5 means, that
next BDM accesses to the memory will be done in the supervisor privileged memory space mode.
The latest versgons of BDM driver has support for bdm _set del ay 0, whichenablesfast mode
with automeatic waiting for target memory access finish This mode should not be used for initid SIM
module settings for targets without on-board setup code or other targets, where direct GDB initiated
freeze is used immediatdly after reset (bdm _t i met ocomeup 0), because target clock oscillator
and PLL multiplier can be ungtable at that time. Delay can be set to zero after SIM setup.

If you have compiled target memory image with debug information (for example RTEMS system
absolute COFF or ELF imege) you can start it by the following commands.

file spOl.exe
break main

run

Y ouwill be asked for download of image into the target and after your answer and successful start
breakpoint in function main is reached and the GDB message and prompt appear. All GDB
wonderland is ready for you now!

7 Detailed GDB Invocation

Next paragraphs give expanded description of GDB initidization and fird steps withBDM. It is
mentioned for user with troubles and is based on my mail exchange with them.

Start GDB fird. If it is compiled and inddled right, GDB can be started from shel prompt by
command “n68k- bdm cof f - gdb". Check, that BDM target is compiled in. Ligt of included
GDB targetsis obtained by typing "hel p t ar get " ater GDB prompt "(gdb) ". Result is
something like next output for GDB configured for m68k-bdm-coff

Ligt of target subcommands.

target bdm -- Debug with the Background Debug Mode

target cpu32bug -- Debug via the CPU32Bug monitor

target exec -- Use an executable file as a target

target extended-remote -- Use aremote computer viaa serid line

target remote -- Use a remote computer via a sexrid line
There is some more explanation of command “'t ar get " before this lig. Y ou can use something like
“hel p target bdm' for more hdp about soecific target. BDM specific command starts with
“bdm_" prefix. If youtype "bdm " without enter and press ~ Tab" key, GDB tries to complete
commeand or to offer possible aternatives starting with this typed text . Y ouwill see

(gdb) bdm_

bdm_autoreset bdm_entry bdm release bdm_status bdm_checkcable bdm init

bdm reset bdm_timetocomeup bdm_debug_driver bdm_logbdm setdelay

(gdb) bdm_
More info about every command can be obtained after typing “hel p <cnd_nanme>".
Y ou need to insert the BDM driver module into the Linux kernel to open connectionto BDM target.
Section 5 explains that. Some message should be seenin ™ var/fadmsydog'. There may be problems,
when BDM and printer drivers compete for same parald port. Removing of | p" module by
“modprobe -r | p parport_pc" should hdp insuchcase.
Next step isto connect GDB to the target board. Y ou need the cable (PD or ICD) and 6833x

(CPU32) board. | suggest to connect RS232 cable to board and PC firg, then connect BDM cable.
It protects BDM pins and PC printer port againgt damege (at least CPU32 BDM pins are very

sensitive to overvoltage). Youcantype't ar get bdm / dev/ bdni' (it expects link /dev/bdm
pointing to used icd_bdm? or pd_bdm? device as suggested above). Y ou should set speed of BDM
communicaionby "bdm _set del ay 75" or more for beginning. If you have no problems later,
you can et little delay. (1 can use fast mode with delay 0 on my Duron 600MHz ZX7 mainboard with
onboard PP and on some more 686, 586 and 486 configurations with above described |CD
compatible cable.) If your 6833x board has onboard EPROM with initidization of chipsdects, you
canset "bdm ti met oconeup 600000" or to what necessary for intidize. If thereisno
onboard initidizationthen"bdm t i met oconeup 0" will be reasonable. "bdm r eset " should
be entered for safety. Y ou should be able to read accessble memory after that by "x / 1001 x
0x1234" command. If range is accessible and EPROM is mapped there, you should see its contents.
If RAM isintested range, youcantry"p * (i nt *) 0x1234=0xAA55BB66"then"x /| X
0x1234" should confirmthat vdue was stored and read again. If range is not mapped to some
interna chipselect and externa circuitry does not acknowledge access, message "Er r or
accessing nmenory address 0x1234 : Unknown error 616" or amilar should
appear. Y ou need not to have loaded any program for this test.

Driver and BDM library (part of GDB) have full logging fadilities for finding of problems with both
software and hardware. Two logging commands can be entered at GDB prompt. The first one is
"bdm_| og {onof f }". Most of GDB-BDM driver activity islogged into file"odm dbg. | 0g"in
current directory, when"bdm | og" ison. Second command "bdm _debug_dri ver levd"is
designed for control of the kernel BDM driver logging. Level 0 mean no logging, 1 basic logging and 2
log dl driver activity. Driver logging messages are processed by k| ogd and sy sl ogd and in most
cases appearsinthe"/var / | og/ sysl og"file.

Command for GDB and BDM initidization can be stored into file. Y ou can invoke interpretation of this
fileby "sour ce <fil enanme>"fromGDB prompt. If script is stored under name ".gdbinit68"
(or ".gdbinit" - depends on configuration of GDB) in current directory, thenit isinvoked at every
GDB dtart.

The ingght graphica frontend to GDB can be build for BDM target same way as plain GDB. New
BDM target mugt be added tofilet ar get sel ecti on. i t b. Seefilei nsi ght-5. 1-

t ar get . pat ch. Link from/ dev/ bdmto right interface must be set for working of BDM target
selection. Right method for connecting to target isto use RUN as shown inthe picture 5.

=" Target Sekectlon
[T Zet breakpoint at 'main’

——Connection
Target : [E:DM ﬂ| 7 set bhreakpoint at 'exit'
Eaud Rate: ? 8401 - | et breakpoint at
R —) y
FOrL - | — v| J Display Downlload Dialog

J Use xterm as inferior's tty

= Fewer Options

—Run Options
Eun Method:
Eun Method

. attach to Target
“ Run FProgram

i Download Program we Contimie from Last Stop

Command to issue after attaching:

R

‘ OK Cancel

Figure 5: Ingght Target Selection

8 ChipselectsInitialization

Y ou should read this section, if you have 68332 board without onboard chipsdlect initidization It can
be useful to read next if you want to program your own CPU32 initidizationin " C" source code. |
expect, that everybody serioudy interested in 68332 have downloaded PDF or printed copy of [2]
and [3]. Examples are written such way, as they can be used in GDB stript file or typed after GDB
prompt. Another way will be described later at end of this section.
Essentid system control registers must be initidized first. The fird line in every example is register
address and its name. The second and third line contains definition of bitfiddsin register. Next is used
vaue in binary notation and last is GDB syntax.

#OXFFFAQO - SIMCR - SIM Configuration Register

#15 14 13 1211 109.87 6543 O

EXOFF FRZSW FRZBM 0 SLVEN 0 SHEN SUPV MM 00 IARB

#0 0 O O DATA110001 10011112

set * (short *)OxfffaD0=0x42cf

Disable watchdog

OXFFFA21 - SYPCR - System Protection Control Register
#7 6 543 2 10
#SWESWP SWTHMEBMEBMT
#1 MODCLK 000 0 0O
set * (char *)0xfffa21=0x06
We have watchdog disabled above, so no need to care abot it.
OXYFFA27 - SWSR - Software Service Register
write Ox55 OxAA for watchdog

Used source and frequency must be configured. Next example select PLL generated 16.7 MHz
system clock from 32.768 kHz crystal connected to 68332.

OXFFFAO4 - SYNCR Clock Synthesizer Control Register

#1514 13........ 87 654 3 2 1 O

#W XY EDIV 00 SLIMP SLOCK RSTEN STSIM STEXT

#001111110 OOU U O O O

set *(short *)Oxfffa04=0x7f00
Decide, which chipselect outputs will be used and which are left for another functions. The third line
describes which sgnd of data bus at RESET time presets configuration bit. Fifthis chipselect sgnd
and Sx are dterndive functions.

OXYFFA44 - CSPARO - Chip Select Pin Assgnment Register O

#15141312 1110 98 76 54 32 10

#0 0 CSPAQ[6] CSPAQ[5] CSPAO[4] CSPAO[3] CSPAO[2] CSPAQ[1] CSBOOT

#0 0 DATA21 DATA21 DATA21 DATA11 DATA11 DATA11l 1DATAO

CSH5 CH4 (CS3 CS2 CS1 CsO CsBOOT

FC2PC2 FC1PCl1l FCOPCO BGACK BG BR

#

00 Discrete Output

01 Alternate Function

#10 Chip Select (8-Bit Port)
#11 Chip Select (16-Bit Port)
#

set * (short *)Oxfffad4=0x3fff

OXFFFA46 - CSPAR1 - Chip Sdlect Pin Assgnment Regigter 1
#15141312111098 76 54 32 10
#0 0 0 0 0 O CSPA1[4] CSPA1[3] CSPA1[2] CSPA1[1] CSPA1[Q]

#0 0 0 0 0 O DATA71 DATA76 1 DATA75 1 DATA741DATA731

CS10 CS9 CS8 CS7 Cs6
A23 ECLK A22 PC6 A21 PC5 A20 PC4 A19 PC3
#

set * (short *) Oxfffad6=0x03ff
It is time to configure chipsdlect address range and access type. Ranges are divided between three
64 kB RAM regions (organized 32 kB x 16) and one 128 kB EPROM block (organized
64 kB x 16). Thereis one chipsdect for read enable of both bytes of every RAM region There are
two chipselect for write per region. One enables write to odd bytes second to even bytes of RAM. It
is necessary to define speed of access, refer to [2]. Chipselect can be used to acknowledge and
autovector IRQ requests too.

#

Chip selects configuration

#

OxFFFA48 - CSBARBT - Chip-Sdlect Base Address Register Boot ROM

OXFFFAAC..OXFFFA74 - CSBAR[10:0] - Chip-Select Base Address Registers

#1514 131211109 8 76 54320

#A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 BLKSZ

reset 0x0003 for CSBARBT and 0x0000 for CSBAR[10:0]

#

BLKSZ Sze Address Lines Compared

#000 2k ADDR[23:11]

#001 8k ADDR[23:13]

#010 16k ADDR[23:14]

#011 64k ADDR[23:16]

#100 128k ADDR[23:17]

#101 256k ADDR[23:18]

#110 512k ADDR[23:19]

#111 1M ADDR[23:20]

#

#

OXFFFA4A - CSORBT - Chip-Select Option Register Boot ROM
OXFFFA4E..OXFFFA76 - CSOR[10:0] - Chip-Select Option Registers
#15 1413 121110 9 654310

#MODEBYTE RW STRBDSACK SPACEIPL AVEC
#0 11 110 1101110000 -forCSORBT

#

#BYTE 00 Disable, 01 Lower Byte, 10 Upper Byte, 11 Both Bytes
#R/W 00 Reserved,01 Read Only, 10 Write Only, 11 Read/\Write
#SPACEQOOCPU, 01 User, 10 Supervisor, 11 Supervisor/User
#

set * (long *) Oxfffad8=0x0e04680b0

#BOOT ROM 0x0e0000 128k RO UL

set * (long *)Oxfffadc=0x0003503e

#CS0 RAM 0x000000 64k WRU

set * (long *)Oxfffa50=0x0003303¢e

#CS1 RAM 0x000000 64k WRL

set * (long *) Oxfffa54=0x0003683e

#CS2 RAM 0x000000 64k RO UL

set * (long *) Oxfffa58=0x02036870

#CS3 RAM 0x020000 64k RO UL

st * (long *) OxfffaSC=0xfff8680f

#CHA

set * (long *) OxfffaB0=0xffe8783f

#CS5

set * (long *)Oxfffa64=0x02033030

#CS6 RAM 0x020000 64k WRL

set * (long *)Oxfffa68=0x02035030
#CS7 RAM 0x020000 64k WR U
set * (long *)Oxffabc=0x01036870

CS8 RAM 0x010000 64k RO UL

set * (long *)Oxffa70=0x01033030

#CS9 RAM 0x010000 64k WRL

set * (long *)Oxfffa74=0x01035030

CS10 RAM 0x010000 64k WR U

The second way is to setup chipsalects from specia macro files They are processed through reset or
download to the target. If "bdm_aut or eset " is s&t, thenreset take place before every "r un™
command too. The filesmust be in same directory as your executable and should have names
"myexec. bdmmb", "nyexec. bdmme" and "cpu32i ni t ", wherenmyexec is name of
debugged program. The firg of macro filesis processed before download, the second one after
download of executable and third one at every reset of target. The syntax of the macrofileiis:

<cmd-letter> <numl1> <num2> <num3>
The nums are ether in hex (form 0x), indecimad (form 123) or inoctal (form 0234)
The meaning of the nums depends on the command | etter:

wor W
means: (write)

write to address (numl) contents (num2) lengthis (num3) bytes. Only 1, 2, 4 bytes are
permitted.

zorZ
means: (zap, zero)

fill memory area beginning at (num1) with byte vaue (num2) length (num3) bytes.

corC
means: (copy)

copy memory area from (numl) to (num2) with length (num3) bytes.

Empty linesand lineswith a leading '# are ignored. See [1] for more information

9 Utility BDM-L oad

This utility is mainly designed for programming of FL ASH memories mapped in address space of
CPU32. It can be used for fast and smple loading and gtarting programs in RAM too. Origind authors
are G. Magin and D. Jeff Dionne. Thereis presented rewritten preliminary version by Pavel Pisa The
new version can program more than one FL A SH memory mapped in address space and is able to
autodetect type of memory and can take start address of FL ASH regions from 683xx chipsdlect
registers.

Utility uses the BFD object files management library and can load any format configured into the BFD
library (IHEX, S-record, coff-m68k, df-m68k etc.). The current version uses recent version of
"bdmlib” library and it will be possible to integrate flash functions directly into GDB.

Next packages and filesare needed to compile and ingdl "bdm-load":

o MC683xX target systemwith BDM interface

GCC compiler for your Linux system.

BDM driver - latest versonis attached into "bdm-load"” archive

BFD object file handiing library configured for m68k

some time and experience with Linux system and make utility
More informations about building "bdm-load” can be found in an associated README file.
The "bdm:-load" accepts command line parameters. If there is no error in parang of the parameters it
processes requested actions and switches into interactive mode. Switching into interactive mode can be
suppressed by the "-script” parameter. Description of command line interface follows.

Usage bdm-load [OPTIONS] filel ...

-h--hdp - this hdp information!

-1 --init-file=FILE - object file to initidize processor

-1 --reset - reset target CPU before other operations

- --check - check flash setup (needed for auto)

-e--erase - eraseflash

-b --blankck - verify erase of flash

-1 --load - download listed filenames

-g--0o - runtarget CPU fromentry address

-S--seript - do actions and return

-d --bdm-delay=d - sets BDM driver speed/delay

-f --flad=TYPE@ADR - sdect flash
Choice for flash TY PE@ADR can be { TY PEauto} [@{ csbootcsxstart{ +dze-end} } | Examples
auto@csboot and29f400@0x800000-0x87ffff auto@0+0x80000. If auto type or cs address is used,
check mug be specified to mentioned options take effect. Present known flash types/dgorithms are
amd29f040, amd29f400, and29f800 and amd29f010x2 (two amd29f010 in paralld configuration).
There should be no problemto add more dgorithms in future.

Possble commands in interactive mode :

run

starts CPU32 execution at address taken from last downloaded object file. If no file is |oaded,
it starts at address fetched during last reset command.
r eset
resets CPU32 and if no entry address is defined, PC address is remembered
erase
Sets erase request and Starts erase procedure
blankck
check dl flash regions for unerased bytes
load [object-file
sets load request and starts download of filesfrom object file lid. if object-file is specified,
object file lig is cleared and specified file is added on-to ligt
exit/quit
exit interactive mode and return to shell
dump address bytes
dumps memory contents from specified address. bytes specifies number of bytes to print.
stat
shows CPU32 state, does not require CPU32 to stop
check
checks flash memories at specified ranges, if auto type or "cs' address is specified for some
flash, CS address is fetched and flash autodetectionis run
autoset
same as check, but dl flashtypes are revalidated
stop
stops CPU32 and clears dl reset, erase, load and run requests
make
make in current directory is caled

The amplest way to initidize CPU32 chipsdect subsystem and other SIM parametersisto provide
"cpul2init” file in same directory as "bdm-load” is started from. The "cpu32init” file is processed at
every reset of target. The syntax of the macro file is described in last paragraphs of section 8.

10 Comparision of Different BDM Interfaces

There can be found more different types of BDM interfaces on many of Motorola M CUs except the
CPU32 BDM described above.

The HC12 family of microcontrollers uses the one wire open collector BDM interface. It has very
curious timing which enables bidirectiona asynchronous hit transfer over one wire. It can be connected
to RS-232 port through smple converter. BDM mode ingtruction are not executed by special HC12
microcode, but program counter of the regular HC12 CPU is vectored into specia on chip ROM
code.

The HC16 uses the BDM interface more smilar to CPU32 one.

ColdFire MCUs have BDM mode implemented Smilar way as CPU32. The BDM cable is amplified,
because of the sngle-step flip-flop and some logic are integrated directly into ColdFire MCUs. BDM
command set is enhanced with real time monitoring functions. These functions and target memory
access can be performed in pardld to running ColdFire CPU.

PowerPC M CUs have BDM interface too. | lack more information abott it.

The BDM drivers and cables combinations available for GDB and Linux operating system are
summarized intable 5.

Cable MCU Type
CPU32(6833x) CPU32+(68360) ColdFire
PD (public Domain) Gunter's driver [1][11] Eric'sdriver [12] -
ICD32 (P&E) Gunter'sdriver [1][11] * -
ColdFireICD - - Eric'sdriver [12]

Table 5: Driversfor CPU32(+) and ColdFire MCUs

Port of BDM driver for Window NT can be found on page [14].

The BDM resources for PowerPC based Motorola microcontrollers (MPC5xx/M PC8xx) could be

found at pages of bdm4gdb project [15].

Refer ences

|

Documentation and Release notes for the bdm-gdb- patches gdb-4.13 and gdb-4.16, Gunter

Magin 20.04.95 and 20.07.96
ftp://ftp.lpr.e-techni k.tu-muenchen. de/ pub/ bdn?

[21
M68300 Family MC68332 User's Manua, MOTOROLA, INC. 1995
http://ww. not - sps. conY
[3l
CPU32 REFERENCE MANUAL MOTOROLA, INC., 1990, 1996
[4
TPU TIME PROCESSOR UNIT REFERENCE MANUAL, MOTOROLA, INC., 1996
[51
User's Manud : MC68376, MOTOROLA, INC. 1998
[6l
MCF5206 USER'S MANUAL MOTOROLA, INC., pre-find version
71
RCPU RISC CENTRAL PROCESSING UNIT REFERENCE MANUAL, MOTOROLA,
INC. 1994, 1996
[8l
Great Microprocessors of the Past and Present (V 10.1.1),
John Bayko (Tau), March 1998,
http://ww. cs. uregi na. ca/ ~bayko/
9
Frequently Asked Questions FAQ, For the Internet USENET newsgroup: comp.sys.m68k,
Robert Boys, Ontario, CANADA, Augugt 24, 1995, Verson 19,
http://wwv. ee. ual berta. ca/archi ve/ n68kf aq. ht m
[10]

Debugging with GDB The GNU Source-Leve Debugger Fifth Edition,
for GDB verson4.17 , Richard M. Stalmanand Roland H. Pesch, April 1998
Copyright (C) 1988-1998 Free Software Foundation, Inc

[11]

[12]

[13]

[14]

[15]

[16]

Free Software Foundation 59 Temple Place - Suite 330, Boston, MA 02111-1307 USA
ISBN 1-882114-11-6

Location of Gunter Magin's Linux BDM driver for CPU32 modified by Pavel Pisa
http://cnp.felk.cvut.cz/~pi sa/ n683xx/ gdb-5.1. 1- bdm
pat ches-pil.tar. gz

Location of Eric Norum's and Chris John's Linux BDM driver for CPU32+ and ColdFire;
ftp://skatter.usask. cal/ pub/eric/BDM Li nux-gdb/ orftp://

ftp.cybertec.com au/ pub/ bdm

Motorola ColdFire Development Resources :
http://fiddes.net/coldfire/

Page for Peter Shoebridge's verson of BDM driver for Windows N T with ColdFire and
CPU32 support:
http://ww. zeecube. com bdm ht m

Motorola M PC5xx/8xx BDM4GDB project:
http://ww. vas-gnbh. de/ sof t war e/ npcbdm andhttp://
bdmdqgdb. sour cef or ge. net/

This document in PDF (Portable Document Format) is dso available
http://cm.felk.cvut.cz/~pisal n683xx/ bdm dri ver. pdf

File translated fromTEX by ITH’ version 3.01.
On 2 Jun 2003, 23:20. B

