
BDM Interface for Motorola 683xx MCU
Usage with GDB Debugger

Pavel Pisa (pisa@cmp.felk.cvut.cz)

2003.5.30.

Please, consider signing of petition against spreading of patent nightmare.

Abstract

The BDM Interface can supply more expensive ICEs (In Circuit Emulator) for Motorola 683xx
family of processors based on the CPU32 core (68332, 68333, 68334, 68336, 68376 and 68340).
This document tries to describe the CPU32 BDM interface and its usage with GNU debugger under
the Linux operating system. Some newer members of Motorola MCUs use similar, but not compatible
BDM interfaces, as well. Last section tries to summarize information about these interfaces.

Important notice, we are preparing to move development into SourceForge CVS. Please, look to
http://sourceforge.net/projects/bdm/.

My personal page http://cmp.felk.cvut.cz/~pisa/ and this page http://
cmp.felk.cvut.cz/~pisa/m683xx/bdm_driver.html continues to be updated to
hold latest information about Linux m683xx BDM support. The copy of the page and its source will be
probably moved into CVS and SourceForge as well.

Contents
1 BDM Overview
2 Hardware and BDM Protocol
3 Cable Wiring and Logic
4 GDB and BDM Driver for Linux
5 GDB with BDM Setup
6 GDB with BDM Usage
7 Detailed GDB Invocation
8 Chipselects Initialization
9 Utility BDM-Load
10 Comparision of Different BDM Interfaces

1 BDM Overview

BDM mode of the CPU32 halts execution of a normal machine code fetched from the memory and
starts the internal MCU microcode to process commands received from a dedicated serial debug

interface. These commands can be used to view and modify all CPU32 registers and to access into on-
chip and external memory locations.

The CPU32 processor must be started in a special mode to enable BDM interface. This is achieved by
holding the BKPT pin low during the reset time.

Switch to the BDM mode can be enforced by the following tree ways:

Driving the BKPT pin low when a fetch of an instruction occurs - the BDM mode is entered
after processing this instruction

Inserting BGND instruction (4AFAh) into the program memory

Double bus fault, which in a normal case leads to CPU halt

Return from the BDM mode is initialized by the BDM command GO or CALL.

2 Hardware and BDM Protocol

Motorola has defined a standard pinout for the debug connector, which is compatible with most of the
development tools. Older versions have only eight pins and the newer ones add two additional pins for
enforcing bus error and memory interface monitoring. Pins 2 to 10 of the new connector version are
equivalent to the pins 1 to 8 of the older one.

Figure 1: Standard Ten Pin BDM Connector

Table 1 describes the function of these pins. Hardware dimensions of the connector are equivalent to
the jumper array, which has 100 mils (2.54 mm) spacing.

Pin Number Pin Name Description

1 DS Data strobe from target MCU.Not used in
current interface circuitry

2 BERR
Bus error input to target. Allows development
system to force bus error when target MCU

accesses invalid memory

3 VSS Ground reference from target

4 BKPT/DSCLK

Breakpoint input to target in normal
mode;development serial clock in BDM.Must
be held low on rising edge of reset to enable

BDM

5 VSS Ground reference from target

6 FREEZE Freeze signal from target.High level indicates
that target is in BDM

7 RESET Reset signal to/from target.Must be held low
to force hardware reset

8 IFETCH/DSI
Used to track instruction pipe in normal
mode.Serial data input to target MCU in

BDM

9 VCC
+5V supply from target.BDM interface circuit

draws power from this supply and also
monitors 'target powered/not powered' status

10 IPIPE/DSO Tracks instruction pipe in normal mode.Serial
data output from target MCU in BDM

Table 1: 10 Pin BDM Connector Description

BDM uses 17 bit serial synchronous communication with the CPU32 processor. All data and
command transfers are performed in an MSB first format. An internal CPU32 receiver is implemented
by shift and latch registers. The CPU32 latches every input bit value on the DSI line at the time of rising
edge detection of the DSCLK signal. Because of the DSCLK edge detection is performed
synchronously with the system clock, the maximum DSCLK frequency is equal to one half of a system
clock frequency. A 17 bit input word is latched after 17 rising edges on the DSCLK line then the
CPU32 microcode sequencer is started to perform instruction or process extension words. Transmit
latch register is updated by the CPU32 continuously. The transmit shift register and DSO pin reflect
changes of the latch register until the first low level of 17 bit protocol is detected on the DSCLK line.
Then the state of the DSO line can be read as a MSB received bit. Then the transmit shift register is
not updated by the transmit latch register until all 17 bits are read. The DSO line is changed only after
rising edges of the DSCLK line during the rest of transfer.

Figure 2: General CPU32 BDM Command Format

Command and data transfers initiated by the development system should clear bit 16. The current
implementation ignores this bit; however, Motorola reserves the right to use this bit for future
enhancements. The CPU32 returns 17 bit status or value every time 17 bits are send to it. The meaning
of 17 bit status is described in Table 2. Some commands except the first command word need an
additional address and data words. Figure 2 shows the general BDM instruction format without 16-th
bit.

Bit 16 Data Message Type

0 xxxx Valid Data Transfer

0 FFFF Command Complete; Status OK

1 0000 Not Ready with Response; Come Again

1 0001 BERR Terminated Bus Cycle; Data Invalid

1 FFFF Illegal Command

Table 2: BDM Status or Values Returned by CPU32

Table 3 contains possible BDM commands for the CPU32 processors family. I have noticed, that the
new ColdFire family processors use same basic command set with additional real-time commands.
Changed RSREG and WSREG commands need to address more registers and that is why an
additional register address word is necessary for these instructions. Another big change can be seen
with ColdFire BDM cable, because of the ColdFire has single-stepping flip-flop built inside.

Command Mnemonic Code Additional Words and Notices

Read D/A Register RREG 218r receive two words with value from
CPU32

Write D/A Register WREG 208r send two words with value to CPU32

Read System Register RSREG 258s receive two words with value from
CPU32

Write System Register WSREG 248s send two words with value to CPU32

Read Memory
Location

READ 19tt send 2 word address and receive 1 or
2 words value

Write Memory
Location

WRITE 18tt send 2 word address and 1 or 2 words
value

Dump Memory Block DUMP 1Dtt
receive 1 or 2 words value from next

memory locationto location selected by
previous READ command

Fill Memory Block FILL 1Ctt
send 1 or 2 words value for next

memory locationto location selected by
previous WRITE command

Resume Execution GO 0C00 Pipe is re-filed from RPC location

Patch User Code CALL 0800

Current program counter is stacked at
the locationof the current stack pointer

and two additional wordsdefine
subroutine start address

Reset Peripherals RST
Asserts RST 0400

Asserts RESET for 512 clock
cycles,but the CPU is not reset by this

command

No Operation NOP 0000 NOP performs no operation and may
beused as a null command

Table 3: CPU32 BDM Commands Summary

Table 4 describes the meanings of the last variable nibble or byte values in command codes.

Symbol Value Mnemonic Meaning

r 0 to 7 D0 to D7 Data Register

8 to F A0 to A7 Address Register

s 0 RPC Return Program Counter

points where execution will continue
1 PCC Current Instruction Program Counter

points to first byte of last executed instruction

it contains 00000001 when double bus fault

appears immediately after reset
8 ATEMP Temporary Register A
9 FAR Fault Address Register
A VBR Vector Base Register
B SR Status Register
C USP User Stack Pointer
D SSP Supervisor Stack Pointer
E SFC Source alternate function type of bus cycle

MOVES instruction and BDM memory transfers
F DFC Destination alternate function of bus cycle

MOVES instruction and BDM memory transfers

tt 00 BYTE 8 bit data in least significant byte of one word
40 WORD 16 bit data transferred in one word
80 LONG 32 bit data transferred in two words

Table 4: Values Ored with BDM Commands

3 Cable Wiring and Logic

There exist two standard wirings of a cable between the CPU32 BDM interface and standard PC
printer port. The first is public domain interface (PD_BDM). It was published by Motorola (its
support BBS) and can be used with free BD32 (bd32v122.zip) debugger and BDM library example
implementation (bdm-v090.zip). Both are writted by Scott Howard. The second cable is provided
with Motorola commercial systems and is known as ICD_BDM cable. This cable can be used with
both above mentioned programs and with the free TPU debugger and downloader (tpubug.zip).

The schematic diagram of one of possible PD cable implementations is in figure 3. It is a simple
implementation with 8 pin cable only, but it works for me without serious problems with 1 m cable
from PC and 20 cm cable to MC68332.

Figure 3: Possible BDM_PD Implementation

The cable compatible with Motorola ICD32 system can be seen in figure 4. I have seen an original
schematic for ICD32 cable, but I do not have this cable, so GAL16V8 function is only my own
solution. In my experience, it works with all free software I have (Linux BDM driver, DB32, BDM
library and TPU debugger). I am not sure about legal state of this cable, but it can be used with free
Motorola software and free source for BDM library describes its function, so it should be free. This
cable works better than the previous one for the following three reasons:

logic levels of all signals are sharped by GAL16V8

bidirectional CPU32 DSI/IFETCH signal is controlled by tristate buffer

breakpoint and step logic use better level controlled mechanism

Figure 4: ICD32 Compatible Cable

4 GDB and BDM Driver for Linux

GNU debugger is used in many native and cross development tool-chains in UNIX type environment.
It is a very powerfull debugger controlled from its command line. There exist many interactive menu-
driven and mouse-driven user interfaces for this debugger, too (for example GDBTk, DDD, Rhide
and XXGDB). This debugger is very well suited for the cross-development for 32 bit embedded
targets. It recognize most of the Motorola MCUs with CPU32 and ColdFire processor cores. These
targets may be connected by the serial line using Motorola board ROM monitor or special protocols
for some operating systems (for example VxWorks). Such target debugging can be achieved by the
GDB remote target debugging by any usual serial stream connection (RS-232 or TCP/IP
connection).

To use BDM interface by GDB, two problems must be solved. First, it is not good practice to directly
manipulate by ports under UNIX systems. It means that the kernel mode BDM driver should be
written to implement the BDM character device. Such device can accept and perform regular read/
write system calls and for special action (for example single step) use IOCTL interface. The second
part must be done to enable GDB to understand and send BDM commands by read/write interface to
the BDM driver and controll target state through the driver IOCTL interface.

In future, such two layer implementation can be usefull for GDB independence on the host system,
because only the BDM driver will be host specific. Recently, this driver exists for Linux operating
system. Patch files for GDB versions 4.16 till GDB-5.1.1 exist to use this driver. The authors of the
BDM driver and GDB target interface are stated bellow

Scott Howard, original author of Motorola BDM library and utilities, Feb 93

M. Schraut, original author of BDM driver

Gunter Magin magin AT skil.camelot.de, maintainer of BDM and GDB

W. Eric Norum eric AT skatter.usask.ca, who did enhancements and Next-Step-Port in Jun 95

Pavel Pisa pisa AT cmp.felk.cvut.cz, some enhancements and GDB-4.17 patch update May 98,
working on upgrades to current GDB-5.1.1

Peter Shoebridge peter AT zeecube.com, wrote Windows NT version of driver for CPU32 and
ColFire in Jan 99

The original version of GDB patches and BDM driver are stored in Gunter Magin's archive[1]. My
modified patches for GDB with Linux BDM driver source can be found under name gdb-5.1.1-
bdm-patches-pi1.tar.gz.

Gunter Magin started to develop new version of the ICD compatible cable with ispGAL22V8, but it is
not finished. Patches for GDB-5.1.1 are compatible with standard GAL16V8 cable as well.

The latest version of the patches for gdb-5.1.1 based on Magin's and my code is stored in archive
gdb-5.1.1-bdm-patches-pi1.tar.gz. This version contains all my changes for support
of the Linux kernels 2.2.x and 2.4.x, faster and better timing (at least I hope so) and flash
programming support. This version can be found in the archive. There is an initial version of the
ispGAL22V8 based EFICD, as well.

5 GDB with BDM Setup

To start debugging session, next things must be set-up correctly. The board with one of the Motorola
MC683xx processors must be connected to a PC printer port by one of debugging cables mentioned
above (ICD32 or PD cable). The BDM driver must be compiled for a correct Linux kernel version
(provided driver sources should work with 2.2.xx and 2.4.xx kernels, version for gdb-5.1.1 was
tested with 2.4.7 kernel). The sources of BDM driver can be found in ``gdb-5.1.1-bdm-patches-
pi1.tar.gz''. Next commands can be used to compile driver.

cd /usr/src

tar -xzf gdb-5.1.1.tar.gz

cd gdb-5.1.1-bdm-patches/bdm_driver

make

There are two Makefiles in the driver source directoryMakefile-dev and Makefile-
mod. The first one is mainly for development and uses manual kernel compiler options editing, the

second one (Makefile-mod) uses automatic kernel module build process. Selected one should be
symlinked to name Makefile and checked or edited before compilation. Lines of highest
importance are

INTERFACE+= -D PD_INTERFACE

INTERFACE+= -D ICD_INTERFACE

AUTOLOADING=-DMODVERSIONS

#BDM_DEFS += -D BDM_TRY_RESYNCHRO

#CFLAGS+= -D__SMP__

Every line can be commented out by ``#'' character. The first two lines enables both possible cable
types. The third line is needed if kernel is compiled with kernel symbols versions. The fourth line can
help if there are lost of BDM sync after single-stepping and breaks. The last line is needed for SMP
kernels.

The compiled BDM driver ``bdm.o'' should placed to ``/lib/modules/kernel_version/misc'' directory.
The driver must be inserted into the kernel when modules are used (# insmod bdm). When
kernel autoloading of missing modules is used (kmd or kerneld), next line can be inserted into file ``/
etc/modules.conf''.

alias char-major-53 bdm

Then ``depmod -a'' must be run. No manual insertion of the BDM driver is needed in such case.

Special character files must be created. Standard names for above described cables and driver sources
are pd_bdm0, 1, 2 and icd_bdm0, 1, 2 (special files can be created by provided MAKEDEV
script). Ending numbers of special files select used printer port base address (0..378h, 1..278h,
2..0x3BCh). Special files select between public domain (pd_bdmx) and ICD32 cable (icd_bdmx).
In most cases, only one target processor is used, so it is a good practice to make symbolic link bdm to
the used interface special file (for example ln -s /dev/pd_bdm0 /dev/bdm).

Patched version of the GDB must be compiled. Next command sequence can be used to prepare and
compile the GDB.

cd /usr/src

tar -xzf gdb-5.1.1.tar.gz

patch -p <gdb-5.1.1-bdm-patches-pi1/gdb-5.1.1-bdm.patch-1

cd gdb-5.1.1

./configure --target=m68k-bdm-coff

 --enable-targets=m68k-linux-elf,m68k-coff,m68k-a.out-linux

make

make intall

This procedure should install m68k-bdm-coff-gdb executable into /usr/local/bin, but no warranty is
given. The best way is to check results after each step and install gdb manually.

6 GDB with BDM Usage

The compiled GDB executable must be start and the target must be connected. Setting up of the BDM
interface can be prepared as a GDB script or automatic initialization script. For the target without on-
board memory setup code, chipselects and system integration module (SIM) must be initialized (from
gdb .init script or .bdmmb file). A step by step manual initialization from GDB prompt is shown in the
next example

target bdm /dev/bdm

set remotecache off

bdm_timetocomeup 600000

bdm_autoreset off

bdm_setdelay 70

bdm_reset

set $sfc=5

set $dfc=5

The first line connects GDB to BDM driver. The second one disables caching of retrieved values in
GDB (better for initial tests). Next lines select wait for memory and SIM initialization by on-board
ROM monitor after reset, setting speed of BDM driver communication with the CPU32 and reset of
target, which enables the background debug mode. Setting of SFC and DFC registers to 5 means, that
next BDM accesses to the memory will be done in the supervisor privileged memory space mode.

The latest versions of BDM driver has support for bdm_setdelay 0, which enables fast mode
with automatic waiting for target memory access finish. This mode should not be used for initial SIM
module settings for targets without on-board setup code or other targets, where direct GDB initiated
freeze is used immediately after reset (bdm_timetocomeup 0), because target clock oscillator
and PLL multiplier can be unstable at that time. Delay can be set to zero after SIM setup.

If you have compiled target memory image with debug information (for example RTEMS system
absolute COFF or ELF image) you can start it by the following commands.

file sp01.exe

break main

run

You will be asked for download of image into the target and after your answer and successful start
breakpoint in function main is reached and the GDB message and prompt appear. All GDB
wonderland is ready for you now!

7 Detailed GDB Invocation

Next paragraphs give expanded description of GDB initialization and first steps with BDM. It is
mentioned for user with troubles and is based on my mail exchange with them.

Start GDB first. If it is compiled and installed right, GDB can be started from shell prompt by
command ``m68k-bdm-coff-gdb''. Check, that BDM target is compiled in. List of included
GDB targets is obtained by typing ``help target'' after GDB prompt ``(gdb)''. Result is
something like next output for GDB configured for m68k-bdm-coff

List of target subcommands:

target bdm -- Debug with the Background Debug Mode

target cpu32bug -- Debug via the CPU32Bug monitor

target exec -- Use an executable file as a target

target extended-remote -- Use a remote computer via a serial line

target remote -- Use a remote computer via a serial line

There is some more explanation of command ``target'' before this list. You can use something like
``help target bdm'' for more help about specific target. BDM specific command starts with
``bdm_'' prefix. If you type ``bdm_'' without enter and press ``Tab'' key, GDB tries to complete
command or to offer possible alternatives starting with this typed text . You will see

(gdb) bdm_

bdm_autoreset bdm_entry bdm_release bdm_status bdm_checkcable bdm_init

bdm_reset bdm_timetocomeup bdm_debug_driver bdm_log bdm_setdelay

(gdb) bdm_

More info about every command can be obtained after typing ``help <cmd_name>''.

You need to insert the BDM driver module into the Linux kernel to open connection to BDM target.
Section 5 explains that. Some message should be seen in ``/var/admsyslog''. There may be problems,
when BDM and printer drivers compete for same parallel port. Removing of ``lp'' module by
``modprobe -r lp parport_pc'' should help in such case.

Next step is to connect GDB to the target board. You need the cable (PD or ICD) and 6833x
(CPU32) board. I suggest to connect RS232 cable to board and PC first, then connect BDM cable.
It protects BDM pins and PC printer port against damage (at least CPU32 BDM pins are very

sensitive to overvoltage). You can type "target bdm /dev/bdm" (it expects link /dev/bdm
pointing to used icd_bdm? or pd_bdm? device as suggested above). You should set speed of BDM
communication by "bdm_setdelay 75" or more for beginning. If you have no problems later,
you can set little delay. (I can use fast mode with delay 0 on my Duron 600MHz ZX7 mainboard with
onboard PP and on some more 686, 586 and 486 configurations with above described ICD
compatible cable.) If your 6833x board has onboard EPROM with initialization of chipselects, you
can set "bdm_timetocomeup 600000" or to what necessary for initialize. If there is no
onboard initialization then "bdm_timetocomeup 0" will be reasonable. "bdm_reset" should
be entered for safety. You should be able to read accessible memory after that by "x /100lx
0x1234" command. If range is accessible and EPROM is mapped there, you should see its contents.
If RAM is in tested range, you can try "p *(int*)0x1234=0xAA55BB66" then "x /lx
0x1234" should confirm that value was stored and read again. If range is not mapped to some
internal chipselect and external circuitry does not acknowledge access, message "Error
accessing memory address 0x1234 : Unknown error 616" or similar should
appear. You need not to have loaded any program for this test.

Driver and BDM library (part of GDB) have full logging facilities for finding of problems with both
software and hardware. Two logging commands can be entered at GDB prompt. The first one is
"bdm_log {onoff}". Most of GDB-BDM driver activity is logged into file "bdm-dbg.log" in
current directory, when "bdm_log" is on. Second command "bdm_debug_driver level" is
designed for control of the kernel BDM driver logging. Level 0 mean no logging, 1 basic logging and 2
log all driver activity. Driver logging messages are processed by klogd and syslogd and in most
cases appears in the "/var/log/syslog" file.

Command for GDB and BDM initialization can be stored into file. You can invoke interpretation of this
file by "source <filename>" from GDB prompt. If script is stored under name ".gdbinit68"
(or ".gdbinit" - depends on configuration of GDB) in current directory, then it is invoked at every
GDB start.

The insight graphical frontend to GDB can be build for BDM target same way as plain GDB. New
BDM target must be added to file targetselection.itb. See file insight-5.1-
target.patch. Link from/dev/bdm to right interface must be set for working of BDM target
selection. Right method for connecting to target is to use RUN as shown in the picture 5.

Figure 5: Insight Target Selection

8 Chipselects Initialization

You should read this section, if you have 68332 board without onboard chipselect initialization. It can
be useful to read next if you want to program your own CPU32 initialization in ``C'' source code. I
expect, that everybody seriously interested in 68332 have downloaded PDF or printed copy of [2]
and [3]. Examples are written such way, as they can be used in GDB script file or typed after GDB
prompt. Another way will be described later at end of this section.

Essential system control registers must be initialized first. The first line in every example is register
address and its name. The second and third line contains definition of bitfields in register. Next is used
value in binary notation and last is GDB syntax.

#0xFFFA00 - SIMCR - SIM Configuration Register

15 14 13 12 11 10 9..8 7 6 5 4 3 0

EXOFF FRZSW FRZBM 0 SLVEN 0 SHEN SUPV MM 0 0 IARB

0 0 0 0 DATA11 0 0 0 1 1 0 0 1 1 1 1

set *(short *)0xfffa00=0x42cf

Disable watchdog

0xFFFA21 - SYPCR - System Protection Control Register

7 6 5.4 3 2 1 0

SWE SWP SWT HME BME BMT

1 MODCLK 0 0 0 0 0 0

set *(char *)0xfffa21=0x06

We have watchdog disabled above, so no need to care about it.

0xYFFA27 - SWSR - Software Service Register

write 0x55 0xAA for watchdog

Used source and frequency must be configured. Next example select PLL generated 16.7 MHz
system clock from 32.768 kHz crystal connected to 68332.

0xFFFA04 - SYNCR Clock Synthesizer Control Register

15 14 13........8 7 6 5 4 3 2 1 0

W X Y EDIV 0 0 SLIMP SLOCK RSTEN STSIM STEXT

0 0 1 1 1 1 1 1 0 0 0 U U 0 0 0

set *(short *)0xfffa04=0x7f00

Decide, which chipselect outputs will be used and which are left for another functions. The third line
describes which signal of data bus at RESET time presets configuration bit. Fifth is chipselect signal
and six are alternative functions.

0xYFFA44 - CSPAR0 - Chip Select Pin Assignment Register 0

15 14 13.12 11.10 9.8 7.6 5.4 3.2 1.0

0 0 CSPA0[6] CSPA0[5] CSPA0[4] CSPA0[3] CSPA0[2] CSPA0[1] CSBOOT

0 0 DATA2 1 DATA2 1 DATA2 1 DATA1 1 DATA1 1 DATA1 1 1 DATA0

CS5 CS4 CS3 CS2 CS1 CS0 CSBOOT

FC2 PC2 FC1 PC1 FC0 PC0 BGACK BG BR

#

00 Discrete Output

01 Alternate Function

10 Chip Select (8-Bit Port)

11 Chip Select (16-Bit Port)

#

set *(short *)0xfffa44=0x3fff

0xFFFA46 - CSPAR1 - Chip Select Pin Assignment Register 1

15 14 13 12 11 10 9.8 7.6 5.4 3.2 1.0

0 0 0 0 0 0 CSPA1[4] CSPA1[3] CSPA1[2] CSPA1[1] CSPA1[0]

0 0 0 0 0 0 DATA7 1 DATA76 1 DATA75 1 DATA74 1 DATA73 1

CS10 CS 9 CS8 CS7 CS6

A23 ECLK A22 PC6 A21 PC5 A20 PC4 A19 PC3

#

set *(short *)0xfffa46=0x03ff

It is time to configure chipselect address range and access type. Ranges are divided between three
64 kB RAM regions (organized 32 kB × 16) and one 128 kB EPROM block (organized
64 kB × 16). There is one chipselect for read enable of both bytes of every RAM region. There are
two chipselect for write per region. One enables write to odd bytes second to even bytes of RAM. It
is necessary to define speed of access, refer to [2]. Chipselect can be used to acknowledge and
autovector IRQ requests too.

#

Chip selects configuration

#

0xFFFA48 - CSBARBT - Chip-Select Base Address Register Boot ROM

0xFFFA4C..0xFFFA74 - CSBAR[10:0] - Chip-Select Base Address Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 BLKSZ

reset 0x0003 for CSBARBT and 0x0000 for CSBAR[10:0]

#

BLKSZ Size Address Lines Compared

000 2k ADDR[23:11]

001 8k ADDR[23:13]

010 16k ADDR[23:14]

011 64k ADDR[23:16]

100 128k ADDR[23:17]

101 256k ADDR[23:18]

110 512k ADDR[23:19]

111 1M ADDR[23:20]

#

#

0xFFFA4A - CSORBT - Chip-Select Option Register Boot ROM

0xFFFA4E..0xFFFA76 - CSOR[10:0] - Chip-Select Option Registers

15 14 13 12 11 10 9 6 5 4 3 1 0

MODE BYTE R/W STRB DSACK SPACE IPL AVEC

0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 - for CSORBT

#

BYTE 00 Disable, 01 Lower Byte, 10 Upper Byte, 11 Both Bytes

R/W 00 Reserved,01 Read Only, 10 Write Only, 11 Read/Write

SPACE 00 CPU, 01 User, 10 Supervisor, 11 Supervisor/User

#

set *(long *)0xfffa48=0x0e0468b0

BOOT ROM 0x0e0000 128k RO UL

set *(long *)0xfffa4c=0x0003503e

CS0 RAM 0x000000 64k WR U

set *(long *)0xfffa50=0x0003303e

CS1 RAM 0x000000 64k WR L

set *(long *)0xfffa54=0x0003683e

CS2 RAM 0x000000 64k RO UL

set *(long *)0xfffa58=0x02036870

CS3 RAM 0x020000 64k RO UL

set *(long *)0xfffa5C=0xfff8680f

CS4

set *(long *)0xfffa60=0xffe8783f

CS5

set *(long *)0xfffa64=0x02033030

CS6 RAM 0x020000 64k WR L

set *(long *)0xfffa68=0x02035030

CS7 RAM 0x020000 64k WR U

set *(long *)0xfffa6c=0x01036870

CS8 RAM 0x010000 64k RO UL

set *(long *)0xfffa70=0x01033030

CS9 RAM 0x010000 64k WR L

set *(long *)0xfffa74=0x01035030

CS10 RAM 0x010000 64k WR U

The second way is to setup chipselects from special macro files. They are processed through reset or
download to the target. If "bdm_autoreset" is set, then reset take place before every "run"
command too. The files must be in same directory as your executable and should have names
"myexec.bdmmb", "myexec.bdmme" and "cpu32init", where myexec is name of
debugged program. The first of macro files is processed before download, the second one after
download of executable and third one at every reset of target. The syntax of the macro file is:

<cmd-letter> <num1> <num2> <num3>

The nums are either in hex (form 0x), in decimal (form 123) or in octal (form 0234)

The meaning of the nums depends on the command letter:

w or W
means: (write)

write to address (num1) contents (num2) length is (num3) bytes. Only 1, 2, 4 bytes are
permitted.

z or Z
means: (zap, zero)

fill memory area beginning at (num1) with byte value (num2) length (num3) bytes.

c or C
means: (copy)

copy memory area from (num1) to (num2) with length (num3) bytes.

Empty lines and lines with a leading '#' are ignored. See [1] for more information.

9 Utility BDM-Load

This utility is mainly designed for programming of FLASH memories mapped in address space of
CPU32. It can be used for fast and simple loading and starting programs in RAM too. Original authors
are G. Magin and D. Jeff Dionne. There is presented rewritten preliminary version by Pavel Pisa. The
new version can program more than one FLASH memory mapped in address space and is able to
autodetect type of memory and can take start address of FLASH regions from 683xx chipselect
registers.

Utility uses the BFD object files management library and can load any format configured into the BFD
library (iHEX, S-record, coff-m68k, elf-m68k etc.). The current version uses recent version of
"bdmlib" library and it will be possible to integrate flash functions directly into GDB.

Next packages and files are needed to compile and install "bdm-load":

mc683xx target system with BDM interface

GCC compiler for your Linux system.

BDM driver - latest version is attached into "bdm-load" archive

BFD object file handling library configured for m68k

some time and experience with Linux system and make utility

More informations about building "bdm-load" can be found in an associated README file.

The "bdm-load" accepts command line parameters. If there is no error in parsing of the parameters it
processes requested actions and switches into interactive mode. Switching into interactive mode can be
suppressed by the "-script" parameter. Description of command line interface follows.

Usage bdm-load [OPTIONS] file1 ...

-h --help - this help information!

-i --init-file=FILE - object file to initialize processor

-r --reset - reset target CPU before other operations

-c --check - check flash setup (needed for auto)

-e --erase - erase flash

-b --blankck - verify erase of flash

-l --load - download listed filenames

-g --go - run target CPU from entry address

-s --script - do actions and return

-d --bdm-delay=d - sets BDM driver speed/delay

-f --flash=TYPE@ADR - select flash

Choice for flash TYPE@ADR can be {TYPEauto}[@{csbootcsxstart{+size-end}}] Examples
auto@csboot amd29f400@0x800000-0x87ffff auto@0+0x80000. If auto type or cs address is used,
check must be specified to mentioned options take effect. Present known flash types/algorithms are
amd29f040, amd29f400, amd29f800 and amd29f010x2 (two amd29f010 in parallel configuration).
There should be no problem to add more algorithms in future.

Possible commands in interactive mode :

run

starts CPU32 execution at address taken from last downloaded object file. If no file is loaded,
it starts at address fetched during last reset command.

reset
resets CPU32 and if no entry address is defined, PC address is remembered

erase
sets erase request and starts erase procedure

blankck
check all flash regions for unerased bytes

load [object-file
sets load request and starts download of files from object file list. if object-file is specified,
object file list is cleared and specified file is added on-to list

exit/quit
exit interactive mode and return to shell

dump address bytes
dumps memory contents from specified address. bytes specifies number of bytes to print.

stat
shows CPU32 state, does not require CPU32 to stop

check
checks flash memories at specified ranges, if auto type or "cs" address is specified for some
flash, CS address is fetched and flash autodetection is run

autoset
same as check, but all flash types are revalidated

stop
stops CPU32 and clears all reset, erase, load and run requests

make
make in current directory is called

The simplest way to initialize CPU32 chipselect subsystem and other SIM parameters is to provide
"cpu32init" file in same directory as "bdm-load" is started from. The "cpu32init" file is processed at
every reset of target. The syntax of the macro file is described in last paragraphs of section 8.

10 Comparision of Different BDM Interfaces

There can be found more different types of BDM interfaces on many of Motorola MCUs except the
CPU32 BDM described above.

The HC12 family of microcontrollers uses the one wire open collector BDM interface. It has very
curious timing which enables bidirectional asynchronous bit transfer over one wire. It can be connected
to RS-232 port through simple converter. BDM mode instruction are not executed by special HC12
microcode, but program counter of the regular HC12 CPU is vectored into special on chip ROM
code.

The HC16 uses the BDM interface more similar to CPU32 one.

ColdFire MCUs have BDM mode implemented similar way as CPU32. The BDM cable is simplified,
because of the single-step flip-flop and some logic are integrated directly into ColdFire MCUs. BDM
command set is enhanced with real time monitoring functions. These functions and target memory
access can be performed in parallel to running ColdFire CPU.

PowerPC MCUs have BDM interface too. I lack more information about it.

The BDM drivers and cables combinations available for GDB and Linux operating system are
summarized in table 5.

Cable MCU Type

CPU32(6833x) CPU32+(68360) ColdFire

PD (public Domain) Gunter's driver [1][11] Eric's driver [12] -

ICD32 (P&E) Gunter's driver [1][11] * -

ColdFire ICD - - Eric's driver [12]

Table 5: Drivers for CPU32(+) and ColdFire MCUs

Port of BDM driver for Window NT can be found on page [14].

The BDM resources for PowerPC based Motorola microcontrollers (MPC5xx/MPC8xx) could be
found at pages of bdm4gdb project [15].

References

[1]
Documentation and Release notes for the bdm-gdb-patches gdb-4.13 and gdb-4.16, Gunter
Magin 20.04.95 and 20.07.96
ftp://ftp.lpr.e-technik.tu-muenchen.de/pub/bdm/

[2]
M68300 Family MC68332 User's Manual, MOTOROLA, INC. 1995
http://www.mot-sps.com/

[3]
CPU32 REFERENCE MANUAL MOTOROLA, INC., 1990, 1996

[4]
TPU TIME PROCESSOR UNIT REFERENCE MANUAL, MOTOROLA, INC., 1996

[5]
User's Manual : MC68376, MOTOROLA, INC. 1998

[6]
MCF5206 USER'S MANUAL MOTOROLA, INC., pre-final version

[7]
RCPU RISC CENTRAL PROCESSING UNIT REFERENCE MANUAL, MOTOROLA,
INC. 1994, 1996

[8]
Great Microprocessors of the Past and Present (V 10.1.1),
John Bayko (Tau), March 1998,
http://www.cs.uregina.ca/~bayko/

[9]
Frequently Asked Questions FAQ, For the Internet USENET newsgroup: comp.sys.m68k,
Robert Boys, Ontario, CANADA, August 24, 1995, Version 19,
http://www.ee.ualberta.ca/archive/m68kfaq.html

[10]
Debugging with GDB The GNU Source-Level Debugger Fifth Edition,
for GDB version 4.17 , Richard M. Stallman and Roland H. Pesch, April 1998
Copyright (C) 1988-1998 Free Software Foundation, Inc

Free Software Foundation 59 Temple Place - Suite 330, Boston, MA 02111-1307 USA
ISBN 1-882114-11-6

[11]
Location of Gunter Magin's Linux BDM driver for CPU32 modified by Pavel Pisa
http://cmp.felk.cvut.cz/~pisa/m683xx/gdb-5.1.1-bdm-
patches-pi1.tar.gz

[12]
Location of Eric Norum's and Chris John's Linux BDM driver for CPU32+ and ColdFire:
ftp://skatter.usask.ca/pub/eric/BDM-Linux-gdb/ or ftp://
ftp.cybertec.com.au/pub/bdm/

[13]
Motorola ColdFire Development Resources :
http://fiddes.net/coldfire/

[14]
Page for Peter Shoebridge's version of BDM driver for Windows NT with ColdFire and
CPU32 support:
http://www.zeecube.com/bdm.htm

[15]
Motorola MPC5xx/8xx BDM4GDB project:
http://www.vas-gmbh.de/software/mpcbdm/ and http://
bdm4gdb.sourceforge.net/

[16]
This document in PDF (Portable Document Format) is also available
http://cmp.felk.cvut.cz/~pisa/m683xx/bdm_driver.pdf

File translated fromTEX by TTH, version 3.01.

On 2 Jun 2003, 23:20.

