Today's
date: 08-09-2008
This is EyeBotM6 RoBiOS version 0.6
The
following describes the RoBIOS operating system library routines for the Eyebot
M6 controllers.
#include "eyebot.h"
The following
libraries are available for programming the Eyebot M6 board in C or C++. In application program, include
"eyebot.h" and the library will be automatically linked when
calling "gccarm" (refer to the example makefile provided).Note that there are also a number of libraries available which are not
listed here but are included in the EyeBot distribution (e.g.
elaborate image processing library). They can also be linked with an
application program. Some of the
library functions (in gray text) are not finalized yet and they are not
included in this distribution.
Unless
specifically noted otherwise, all routines return 0 when successfull, or a value
!=0 when an error has occurred. Only very few routines support multiple return
codes.
Basic image processing functions (library robios):
Data Types:
/* image is 352x288 but has a border of 1 pixel */
#define imagecolumns 354
#define imagerows 290
typedef BYTE image[imagerows][imagecolumns];
typedef BYTE colimage[imagerows][imagecoulmns][3];
int IPLaplace (image *imageIn, image *imageOut);
Input: (imageIn) source b/w image
Output: (imageOut) destination b/w image
Semantics: The Laplace operator is applied to the source
image and the result is written to the
destination image
int IPSobel (image * imageIn, image * imageOut);
Input: (imageIn) source b/w image
Output: (imageOut) destination b/w image
Semantics: The Sobel operator is applied to the source
image and the result is written to the
destination image
int IPDither (image * imageIn, image * imageOut);
Input: (imageIn) source b/w image
Output: (imageOut) destination b/w image
Semantics: The Dithering operator with a 2x2 pattern is
Applied to the source image and the result is
written to the destination image
int IPDiffer (image * image1, image * image2, image * imageOut);
Input: (image1) the current b/w image
(image2) the last read b/w image
Output: (imageOut) destination b/w image
Semantics: Calculate the grey level difference at each
pixel
position between current and last image, and
store the result in destination.
int IPColor2Grey (colimage * imageIn, image * imageOut);
Input: (imageIn) source color image
Output: (imageOut) destination b/w image
Semantics: Convert RGB color image given as source to
8-bit grey level image and store the result in
destination.
Advanced image processing functions are available as
library improc. For detailed info see Improv
web-page.
Using the standard Unix "libc" library, it
is possible to use standard C "scanf" commands to read key
"characters" from the "keyboard".
See also Appendix 1 for definitions and data types for the key library functions.
int KEYInit(void);
Input: None
Output: 0 on success
Negative value on failure
Semantics: Open the evdev device file for reading touch
events. Load the key configuration file (if
found), else use the hardcoded default value.
int KEYIdle(int idle);
Input: (idle) user request
Valid values:
KEY_GOIDLE - deactivate event checking
KEY_NOIDLE - activate event checking KEY_STATE - request current status
Output: Idle status of event checking procedure
Semantics: Enable/disable event checking procedure
int KEYRelease(void);
Input: None
Output: 0 on success
Negative value on failure
Semantics: Close the evdev device file and stop checking any
key touch event
keycode_t KEYGet(void);
Input: None
Output: Keycode value
Semantics: Wait for a touch event and return keycode
(including KEY_INVALID - undefined keycode).
keycode_t KEYRead(void);
Input: None
Output: Keycode value
Semantics: Read a keycode and returns. Function does not
wait, thus includes KEY_TIMEOUT.
keycode_t KEYWait(keycode_t excode);
Input: Expected keycode values (bit XORed)
Output: Keycode value
Semantics: Wait for specific keys only.
coord_pair_t KEYGetXY(void);
Input: None
Output: Coordinate pair
Semantics: Wait for a touch event and return the XY-
coordinate.
keymode_t KEYSetTM(keymode_t mode);
Input: (mode) Requested touch map mode
Output: Current touch map mode
Semantics: Set mode for key touch map.
keymode_t KEYGetTM(touch_map_t** ptouch_map);
Input: (ptouch_map) Pointer to a touch_map_t structure
Output: Current touch map mode
Semantics: Get current mode and touch map (region map).
int KEYSetRegion(int index, m6key_box_t *region);
Input: (index) Index for region
(region) Pointer to a region data
Output: 0 on success
Negative value on failure
Semantics: Manually set region data into current touch map.
Only used in KEYTM_REGIONS mode. If region is
0x0, resets the touch map (mode becomes
KEYTM_UNKNOWN).
int KEYGetRegion(int index, m6key_box_t *region);
Input: (index) Index for region
(region) Pointer to a storage for region data
Output: 0 on success
Negative value on failure
Semantics: Copy specific region data out from the current
touch map. Only used in KEYTM_REGIONS mode.
int KEYNoTouch(touch_event_t* rawtouch);
Input: (rawtouch) pointer to touch_event_t structure
this is optional! only if raw data needed! else,
use 0x0!
Output: 0 - being touched
1 - not touched
Semantics: Validate there's no touch on screen surface
int KEYGetRAW(touch_event_t* rawtouch);
Input: (rawtouch) pointer to touch_event_t structure
Output: 0 if sync signal received!
Negative value if otherwise
Semantics: Gets raw touch info - a non-blocking function.
Mainly used for calibration and testing.
keycode_t KEYDecode(touch_event_t* rawtouch);
Input: (rawtouch) pointer to touch_event_t structure
Output: Status of touch data (variable in rawtouch)
Semantics: Decode raw touch info into a keycode based on the
current touch map. Mainly used for testing.
The following
routines is used to print texts or graphics on the LCD screen:
Note that the
standard C printf() function will print to the console, it is mainly used for
debugging during the program development.
A similar printf function to print to the LCD screen is called
LCDPrintf().
E.g. the
"hello world" program below:
printf("Hello, World!\n"); //This will print to the console
LCDPrintf("Hello, World!\n"); //This will print to the LCD screen
See also
Appendix 2 for definitions and data types for the LCD library functions.
LCD functions:
int LCDClear(void);
Input: None
Output: Always 0
Semantics: Clear the LCD display and all display buffers.
int LCDGetFBInfo(fbinfo_t* pinfo);
Input: (pinfo) Pointer to storage for screen & cursor
info
Output: 0 on success
Negative value on failure
Semantics: Get display information and save to structure
pointed by pinfo. Cursor info needs LCDInit() for
textsize.
int LCDSetMode(hword_t mode);
Input: (mode) LCD Mode flag
See Appendix 2 for details of possible LCD modes
Output: Always 0
Semantics: Update the internal mode flag bits.
hword_t LCDGetMode(void);
Input: None
Output: Current mode flag bits
Semantics: Get the internal mode flag bits.
int LCDResetMode(hword_t mode);
Input: (mode) Mode flag - bit XORed
Valid values: LCDGetMode return values
Output: Always 0
Semantics: Reset the internal mode flag bits to a previously
saved mode.
int LCDRefresh(void);
Input: None
Output: Always 0
Semantics: Refresh the screen (i.e write display buffers to
the framebuffer device).
Functions for graphics mode:
int LCDSetPixel(int x, int y, rgb_t color);
Input: (x,y) XY-coordinate of the pixel
(color) RGB color value for the pixel
Output: Always 0
Semantics: Sets the color of the pixel at (x,y) coordinate
to color.
int LCDInvertPixel(int x, int y);
Input: (x,y) XY-coordinate of the pixel
Output: Always 0
Semantics: Bit-invert the color of the pixel at (x,y)
coordinate.
rgb_t LCDGetPixel(int x, int y);
Input: (x,y) XY-coordinate of the pixel
Output: RGB color value
Semantics: Get the RGB color value of the pixel at (x,y)
coordinate.
int LCDLine(int x1, int y1, int x2, int y2, rgb_t color);
Input: (x1,y1) XY-coordinate of first pixel
(x2,y2) XY-coordinate of second pixel
(color) RGB color value for the pixel
Output: Always 0
Semantics: Draw a color line from (x1,y1) to (x2,y2).
int LCDLineInvert(int x1, int y1, int x2, int y2);
Input: (x1,y1) XY-coordinate of first pixel
(x2,y2) XY-coordinate of second pixel
Output: Always 0
Semantics: Draw a line from (x1,y1) to (x2,y2). The line
pixels will invert the color of existing pixels.
int LCDArea(int x1, int y1, int x2, int y2, rgb_t color);
Input: (x1,y1) XY-coordinate of top-left pixel
(x2,y2) XY-coordinate of bottom-right pixel
(color) RGB fill color value
Output: Always 0
Semantics: Draw a color-filled rectangle with (x1,y1) as
top-left coordinate and (x2,y2) as the bottom-
right coordinate.
int LCDAreaInvert(int x1, int y1, int x2, int y2);
Input: (x1,y1) XY-coordinate of top-left pixel
(x2,y2) XY-coordinate of bottom-right pixel
Output: Always 0
Semantics: Draw a rectangle with (x1,y1) as top-left
coordinate and (x2,y2) as the bottom-right
coordinate. The pixels in the specified area will
invert the color of existing pixels.
int LCDFrame(int x1, int y1, int x2, int y2, rgb_t color);
Input: (x1,y1) XY-coordinate of top-left pixel
(x2,y2) XY-coordinate of bottom-right pixel
(color) RGB frame color value
Output: Always 0
Semantics: Draw a color rectangle frame with (x1,y1) as top-
left coordinate and (x2,y2) as the bottom-right
coordinate.
int LCDPutImageRGB(int xpos, int ypos, int xsize, int ysize,
byte_t *data);
Input: (xpos,ypos) XY-coordinate of top-left image
position
(xsize,ysize) Image width & height
(data) Pointer to image data (24-bit per pixel)
Output: Always 0
Semantics: Place a RGB color image (24bpp) at (xpos,ypos)
position on the LCD screen.
int LCDPutImageGray(int xpos, int ypos, int xsize, int ysize,
byte_t *data);
Input: (xpos,ypos) XY-coordinate of top-left image
position
(xsize,ysize) Image width & height
(data) Pointer to image data (8-bit per pixel)
Output: Always 0
Semantics: Place a grayscale image (8bpp) at (xpos,ypos)
position on the LCD screen.
int LCDPutImagePPM(int xpos, int ypos, char* filename)
Input: (xpos,ypos) XY-coordinate of top-left image
position
(filename) PPM image filename
Output: Return value: 0=OK, 1=error
Semantics: Place a PPM image at (xpos,ypos) position on
the LCD screen
Functions for text mode:
int LCDTextColor(rgb_t fgcol, rgb_t bgcol, char colorflags);
Input: (fgcol) Default color for text
(bgcol) Default color for text background
(colorflags) Mode flag for text color
Valid values:
LCD_BGCOL_TRANSPARENT
LCD_BGCOL_INVERSE
LCD_FGCOL_INVERSE
LCD_BGCOL_NOTRANSPARE
LCD_BGCOL_NOINVERSE
LCD_FGCOL_NOINVERSE
Output: Always 0
Semantics: Set the default color for text (including
background) and related flags (e.g. for
transparent background).
int LCDPrintf(const char *format, ...);
Input: (format) Formatted string
Output: Always 0
Semantics: Print formatted string to LCD and refresh LCD (if
AUTOREFRESH flag is set). Cursor position is
updated.
int LCDSetPrintf(int row, int column, const char *format, ...);
Input: (row,column) Cursor position
(format) Formatted string
Output: Always 0
Semantics: LCDPrintf with text position specified.
int LCDPutChar(char c);
Input: (c) Character to be displayed
Output: Always 0
Semantics: Write a character to LCD and refresh LCD (if
AUTOREFRESH flag is set). Cursor position is
updated.
int LCDSetChar(int row, int column, char c);
Input: (row,column) Cursor position
(c) Character to be displayed
Output: Always 0
Semantics: LCDPutChar with text position specified.
int LCDPutCharBuffer(char c);
Input: (c) Character to be displayed
Output: Always 0
Semantics: Write a character to current cursor-position.
Update cursor position accordingly.
int LCDPutString(char *string);
Input: (string) String to be displayed
Output: Always 0
Semantics: Print string to LCD and refresh LCD (if
AUTOREFRESH flag is set). Cursor position is
updated.
int LCDSetString(int row, int column, char *string);
Input: (row,column) Cursor position
(string) String to be displayed
Output: Always 0
Semantics: LCDPutString with text position specified.
int LCDPutHex(int val);
Input: (val) Hex number to be displayed
Output: Always 0
Semantics: Print hexadecimal number to LCD and refresh LCD
(if AUTOREFRESH flag is set). Cursor position is
updated. Utilize LCDPrintf for conversion.
int LCDPutHex1(int val);
Input: (val) Hex number to be displayed
Output: Always 0
Semantics: Print hexadecimal number to LCD and refresh LCD
(if AUTOREFRESH flag is set). Cursor position is
updated. Utilize local Hex-map for conversion.
int LCDPutInt(int val);
Input: (val) Integer to be displayed
Output: Always 0
Semantics: Print integer to LCD and refresh LCD (if
AUTOREFRESH flag is set). Cursor position is
updated.
int LCDPutIntS(int val, int spaces);
Input: (val) Integer to be displayed
(spaces) Text space for the integer
Output: Always 0
Semantics: Print integer to LCD and refresh LCD (if
AUTOREFRESH flag is set). Cursor position is
updated. Text space usage can be specified
(formatting).
int LCDPutFloat(float val);
Input: (val) Floating-point value to be displayed
Output: Always 0
Semantics: Print floating-point value to LCD and refresh LCD
(if AUTOREFRESH flag is set). Cursor
position is updated.
int LCDPutFloatS(float val, int spaces, int decimals);
Input: (val) Floating-point value to be displayed
(spaces) Text space for the integer
(decimals) Number of decimal points to display
Output: Always 0
Semantics: Print floating-point value to LCD and refresh LCD
(if AUTOREFRESH flag is set). Cursor position is
updated. Text space usage can be specified
(formatting).
int LCDSetPos(int row, int column);
Input: (row) Text cursor row index
(column) Text cursor column index
Output: Always 0
Semantics: Set the text cursor position to (row, column).
int LCDGetPos(int *row, int *column);
Input: (*row) Pointer to cursor row index
(*column) Pointer to cursor column index
Output: Always 0
Semantics: Get the current text cursor position.
rect_t LCDTextBar(int row, int column, int length, int fill, rgb_t
color);
Input: (row,column) Start text cursor position
(length) Text length of the bar
(fill) Percentage of textbar to be filled
(color) Fill color for the textbar
Output: rect_t structure for the textbar's frame
Semantics: Draw a textbar for text starting at position
(row,column) until (row,column+length). The
textbar will take about 25%-50% of text height &
width to draw its frame. The fill parameter will
define how much of the text bar should be
'filled' with color (like a progress bar).
Functions for menu:
int LCDMenu(char *string1, char *string2, char *string3, char *string4);
Input: (string1) Menu entry for KEY1 in classic mode
(string2) Menu entry for KEY2 in classic mode
(string3) Menu entry for KEY3 in classic mode
(string4) Menu entry for KEY4 in classic mode
Output: Always 0
Semantics: Set menu entries in KEY_CLASSIC mode (4-
buttons). Also sets the LCD_SHOWMENU flag and
refresh the LCD (if AUTOREFRESH flag is set).
int LCDMenuI(int pos, char *string, rgb_t fgcol, rgb_t bgcol, void*
userp);
Input: (pos) Select menu entry in classic mode
Valid values: 0-3
(string) Menu entry for the key at specified
index
(fgcol) Textcolor for the menu
(bgcol) Background color for the menu
(userp) A general purpose pointer for user-
specific data
Output: Always 0
Semantics: Set specific menu entry in KEY_CLASSIC mode
(index given by pos). Color customization for
specific key is now possible (fgcol/bgcol). A
user-specific data can be linked to the menu
using userp pointer. Will also set the
LCD_SHOWMENU flag and refresh the LCD (if
AUTOREFRESH flag is set).
int LCDList(listmenu_t *menulist);
Input: (menulist) Listmenu to be used for display
Output: Always return menulist value in form of an int
(typecast)
Semantics: Setup the list menu display and update
appropriate info in the listmenu_t structure
pointed by menulist (e.g. scroll, count).
Will also set the LCD_LISTMENU flag and refresh
the LCD (if AUTOREFRESH flag is set).
int LCDSetList(listmenu_t *menulist);
Input: (menulist) Listmenu to be used for display
Output: Always 0
Semantics: Unlike LCDList(), this will blindly assign
menulist to the mainlist for display. Doesn't
update anything in the menulist structure, nor
modify any internal flags. Useful to maintain
multiple lists fo menu display.
listmenu_t* LCDGetList(void);
Input: None
Output: Pointer to listmenu_t structure.
Semantics: Get the currently active list menu.
menurect_t* LCDListBox(int pos);
Input: (pos) Index of list item
Output: Pointer to a menurect_t structure
Semantics: Get the frame info of a specific list item in
form of a menurect_t structure.
menuitem_t* LCDListActiveItem(void);
Input: None
Output: Pointer to a menuitem_t structure
Semantics: Get the selected menuitem in the list menu –
using index & start variable in listmenu_t. Will
return 0x0 (NUL) if no item is currently
selected.
int LCDListCount(void);
Input: None
Output: Number of list items (including title box)
Semantics: Get the number of list items supported by the
current display (text) configuration. This
includes the item for title bar - thus, different
from count variable in listmenu_t as updated by
an LCDList() call.
int LCDListScroll(void);
Input: None
Output: 0 if scroll buttons are visible
Non-zero if scroll buttons are visible
Semantics: Get scroll visibility.
int LCDListIndex(int index);
Input: (index) List index
Output: List index
Semantics: Set the list index.
int LCDListScrollUp(void);
Input: None
Output: Always 0
Semantics: Scrolls the list display up. Menu index is not
altered. If the active menu item goes out of
focus, the index becomes negative (no item
selected).
int LCDListScrollDown(void);
Input: None
Output: Always 0
Semantics: Scrolls the list display down. Menu index is not
altered. If the active menu item goes out of
focus, the index becomes negative (no item
selected).
Misc. LCD functions:
rgb_t RGB2Col(byte_t R, byte_t G, byte_t B);
Input: (R,G,B) 8-bit color data for respective channels
Output: Single 24-bit RGB value (packed 32-bit)
Semantics: Assemble given R,G,B data into 32-bit packed RGB
value.
void Col2RGB(rgb_t color, byte_t *R, byte_t *G, byte_t *B);
Input: (color) 24-bit RGB color value
(*R, *G, *B) pointers to separate R,G,B data
storage
Output: None
Semantics: Separate 32-bit packed RGB color data into
respective R, G, B channels.
The following functions handle initializing and image reading from either grayscale or color camera:
Data types:
typedef struct _CAMSettings
{
/* cam status - let the system manage these! */
int width, height, length; /* frame info */
int connected; /* availability */
}
CAMSettings;
CamHandle CAMInit (DeviceSemantics semantics);
Input: (handle) handle of the desired camera
Output: (return code)
255 = no camera connected
240 = camera config error (ac97 gpio)
220 = fpga mapping error
200 = camera run/hold error
0 = at least 1 camera connected
Semantics: Configure & Initialize camera
int CAMRelease (CAMHandle handle);
Input: NONE
Output: (return code)
0 = success
-1 = error
Semantics: Release all resources allocated using CAMInit().
int CAMSelect (int cam);
Input: (cam) camera number: 0 = LEFTCAM, 1 = RIGHTCAM
Output: (return code) selected camera if OK, ERRORCAM on
error
Semantics: Select active camera for next camera command
int CAMWhich (void);
Input: NONE
Output: (return code) selected camera
Valid values: RIGHTCAM,
LEFTCAM
Semantics: get the currently selected camera.
int CAMSet (CamHandle handle, CAMSettings *camset);
Input: (handle) handle of the desired camera
(camset) pointer to structure containing frame
and cam infos - width, height, length,
connected
Output: (return code):
Valid values: -1 = error
0 = success
Semantics: Set camera hardware parameters
int CAMGet (CamHandle handle, CAMSettings *camset);
Input: (handle) handle of the desired camera
(camset) pointer to CAMSettings structure
Output: (camset) pointer points to frame and cam infos –
width, height, length, connected
(return code): -1 = error
0 = success
Semantics: Get camera hardware parameters
int CAMGetFrameGray (CamHandle handle, BYTE *buf);
Input: (handle) handle of the desired camera
(buf) pointer to image buffer of full size (use
CAMGet)
Output: (return code) 0 = success
-1 = error (camera not
initialized)
Semantics: Reads one full gray scale image
int CAMGetFrameRGB (CamHandle handle, BYTE *buf);
Input: (handle) handle of the desired camera
(buf) pointer to image buffer of full size (use
CAMGet)
Output: (return code) 0 = success
-1 = error (camera not
initialized)
Semantics: Reads one full color image in RBG format, 3
bytes per pixel
int CAMGetFrameBayer (CamHandle handle, BYTE *buf);
Input: (handle) handle of the desired camera
(buf) pointer to image buffer of full size (use
CAMGet)
Output: (return code) 0 = success
-1 = error (camera not
initialized)
Semantics: Reads one full color image in Bayer format, 4
bytes per pixel
int CAMSetFPGA (FPGASettings *fpgaset);
Input: (fpgaset) pointer to structure containing the
desired fpga image processing settings
Output: ??
Semantics: Set the image processing functions on the fpga
int CAMGetFPGA (CamHandle handle, BYTE *buf);
Input: (handle) handle of the desired camera
(buf) pointer to image buffer
Output:
Semantics: Read the processed image from the fpga
int CAMMode (CamHandle handle, int mode);
Input: (handle) handle of the desired camera
(mode) the camera mode you want
Valid values are: (NO)AUTOBRIGHTNESS
Output: NONE
Semantics: Set the display to the given mode
AUTOBRIGHTNESS: the brightness value of the
camera is automatically adjusted
NOAUTOBRIGHTNESS: the brightness value is not
automatically adjusted
This function is not implemented in the
FIFO-enabled EyeCam driver.
Data types:
typedef struct {
char name[40];
char mhz[20];
char arch[20];
char bogomips[20];
} info_cpu_t;
typedef struct {
char total[40];
char free[40];
} info_mem_t;
typedef struct {
char num[20];
} info_proc_t;
typedef struct {
char uptime[20];
char vbatt[20];
int vbatt_8;
} info_misc_t;
OS Functions:
char *OSVersion(void);
Input: NONE
Output: OS version
Semantics: Returns string containing running RoBIOS
version.
Example: "3.1b"
int OSMachineSpeed(void);
Input: NONE
Output: actual clockrate of CPU in Hz
Semantics: Inform the user how fast the processor runs.
int OSMachineType(void);
Input: NONE
Output: Type of used hardware
Valid values are:
VEHICLE, PLATFORM, WALKER
Semantics: Inform the user in which environment the
program runs.
char* OSMachineName(void);
Input: NONE
Output: Name of actual Eyebot
Semantics: Inform the user with which name the Eyebot is
titled
unsigned char OSMachineID(void);
Input: NONE
Output: ID of actual Eyebot
Semantics: Inform the user with which ID the Eyebot is
titled
int OSError(char *msg, int number,BOOL deadend);
Input: (msg) pointer to message
(number) int number
(deadend) switch to choose deadend or keywait
Valid values are: 0 = no deadend
1 = deadend
Output: Always 0
Semantics: Print message and number to display then
stop processor (deadend) or wait for key
info_cpu_t *OSInfoCPU (void);
Input: NONE
Output: pointer to a structure (info_cpu_t) containing
the cpu infos
Semantics: Collects infos about the CPU – name, speed,
architecture and bogusMips
info_mem_t *OSInfoMem (void);
Input: NONE
Output: pointer to a structure (info_mem_t) which
contains the memory infos
Semantics: Collects infos about the memory
info_proc_t *OSInfoProc (void);
Input: NONE
Output: pointer to a structure (info_proc_t) which
contains the process infos
Semantics: Collects infos about processes
info_misc_t *OSInfoMisc (void);
Input: NONE
Output: pointer to a structure (info_misc_t) which
contains the misc infos
Semantics: Collects system’s miscellaneous infos – uptime,
vbatt
Data types:
// Thread control block
struct tcb {
struct list_head list;
pthread_t hThread;
void code; /* pointer to code */
int pri; /* thread priority */
int stat; /* thread status */
char *name; /* thread name */
int uid; /* UserID */
};
Functions:
int OSMTInit(BYTE mode);
Input: (mode) operation mode
Valid values are: COOP=DEFAULT,PREEMPT
Output: Always 0
Semantics: Initialize multithreading environment
struct tcb *OSSpawn (char *name, void (*code)(void), int stksiz,
int pri, int uid)
Input: (name) pointer to thread name
(code) thread start address
(stksize) size of thread stack
(pri) thread priority
Valid values are: MINPRI-MAXPRI
(uid) thread user id
Output: (return code) pointer to initialized thread
control block
Semantics: Initialize new thread, tcb is initialized and
inserted in scheduler queue but not set to
READY
int OSMTStatus(void);
Input: NONE
Output: PREEMPT, COOP, NOTASK
Semantics: returns actual multitasking mode (preemptive,
cooperative or sequential)
int OSReady(struct tcb *thread);
Input: (thread) pointer to thread control block
Output: Always 0
Semantics: Set status of given thread to READY
int OSSuspend(struct tcb *thread);
Input: (thread) pointer to thread control block
Output: Always 0
Semantics: Set status of given thread to SUSPEND
int OSReschedule(void);
Input: NONE
Output: Always 0
Semantics: Choose new current thread
int OSYield(void);
Input: NONE
Output: Always 0
Semantics: Suspend current thread and reschedule
int OSRun(struct tcb *thread);
Input: (thread) pointer to thread control block
Output: Always 0
Semantics: READY given thread and reschedule
int OSGetUID(thread);
Input: (thread) pointer to thread control block
(tcb *)0 for current thread
Output: (return code) UID of thread
Semantics: Get the UID of the given thread
int OSKill(struct tcb *thread);
Input: (thread) pointer to thread control block
Output: Always 0
Semantics: Remove given thread and reschedule
int OSExit(int code);
Input: (code) exit code
Output: Always 0
Semantics: Kill current thread with given exit code and
message
int OSPanic(char *msg);
Input: (msg) pointer to message text
Output: Always 0
Semantics: Multithreading error, print message to display
and stop multitasking
int OSSleep(int n)
Input: (n) number of 1/100 secs to sleep
Output: Always 0
Semantics: Let current thread sleep for at least n*1/100
seconds. In multithreaded mode, this will
reschedule another thread. Outside
multi-threaded mode, it will call OSWait().
int OSForbid(void)
Input: NONE
Output: Always 0
Semantics: disable thread switching in preemptive mode
int OSPermit(void)
Input: NONE
Output: Always 0
Semantics: enable thread switching in preemptive mode
In the functions described above the parameter "thread" can always be
a pointer to a tcb or 0 for current thread.
int OSSemInit(struct sem *sem,int val);
Input: (sem) pointer to a semaphore
(val) start value
Output: NONE
Semantics: Initialize semaphore with given start value
int OSSemP(struct sem *sem);
Input: (sem) pointer to a semaphore
Output: NONE
Semantics: Do semaphore P (down) operation
int OSSemV(struct sem *sem);
Input: (sem) pointer to a semaphore
Output: NONE
Semantics: Do semaphore V (up) operation
int OSSetTime(int hrs,int mins,int secs);
Input: (hrs) value for hours
(mins) value for minutes
(secs) value for seconds
Output: NONE
Semantics: Set system clock to given time
int OSGetTime(int *hrs,int *mins,int *secs,int *ticks);
Input: (hrs) pointer to int for hours
(mins) pointer to int for minutes
(secs) pointer to int for seconds
(ticks) pointer to int for ticks
Output: (hrs) value of hours
(mins) value of minutes
(secs) value of seconds
(ticks) value of ticks
Semantics: Get system time, one second has 100 ticks
int OSShowTime(void);
Input: NONE
Output: NONE
Semantics: Print system time to display
int OSGetCount(void);
Input: NONE
Output: (return code) number of 1/100 seconds since
last reset
Semantics: Get the number of 1/100 seconds since last
reset. Type int is 32 bits, so this value will
wrap around after ~248 days.
int OSWait (int n);
Input: (n) time to wait
Output: NONE
Semantics: Busy loop for n*1/100 seconds.
timer-irq:
----------
Data types:
typedef int TimerHandle;
typedef void (*TimerFnc)(void);
TimerHandle OSAttachTimer(int scale, TimerFnc function);
Input: (scale) prescale value for 100Hz Timer (value
must be>0)
(TimerFnc) function to be called periodically
Output: (TimerHandle) handle to reference the IRQ-slot
A value of 0 indicates an error
Semantics: Attach user functions (void function(void)) to
a 100Hz timer. The scale parameter adjusts the
call frequency (100/scale Hz)of this routine to
allow many different applications.
Note: Execution time of any attached routine (and
total time of all attached routines) has to be
significantly < 10ms. Otherwise timer
interrupts will be missed and motor/sensor-
timing gets corrupted.
int OSDetachTimer(TimerHandle handle)
Input: (handle) handle of a previous installed timer
irq
Output: 0 = handle not valid
1 = function successfully removed from timer
irq list
Semantics: Detach a previously installed user function
from the 100Hz timer
Valid serial port:
SERIAL1
SERIAL2
Valid serial speed:
SER9600
SER19200
SER38400
SER57600
SER115200
SER230400
SER460800
SER1200
SER2400
SER4800
Valid serial handshake options:
NONE
RTSCTS
Functions:
int OSInitRS232(int baud,int handshake,int interface);
Input: (baud) baud rate selection
Valid values are:
SER1200, SER2400, SER4800, SER9600, SER19200,
SER38400, SER57600, SER115200
(handshake) handshake selection
Valid values are:
NONE, RTSCTS,IRDA (IRDA only SERIAL2/3)
(interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = ok
8 = illegal baud rate error
10 = illegal interface
Semantics: Initialize rs232 with given setting
int OSSendCharRS232(char chr,int interface);
Input: (chr) character to send
(interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = good
3 = send timeout error
10 = illegal interface
Semantics: Send a character over rs232
int OSSendRS232(char *chr,int interface);
Input: (chr) pointer to character to send
(interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = good
3 = send timeout error
10 = illegal interface
Semantics: Send a character over rs232. Use
OSSendCharRS232() instead. This function will
be removed in the future.
int OSRecvRS232(char *buf,int interface);
Input: (buf) pointer to a character array
(interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = good
1 = receive timeout error
10 = illegal interface
Semantics: Receive a character over rs232
int OSFlushInRS232(int interface);
Input: (interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = good
10 = illegal interface
Semantics: resets status of receiver and flushes its
FIFO. Very useful in NOHANDSHAKE-mode to bring
the FIFO in a defined condition before
starting to receive
int OSFlushOutRS232(int interface);
Input: (interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = good
10 = illegal interface
Semantics: flushes the transmitter-FIFO. Very useful to
abort current transmission to host (ex: in the
case of a not responding host)
int OSCloseRS232(int interface);
Input: (interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = good
10 = illegal interface
Semantics: Close the given serial port
int OSCheckInRS232(int interface);
Input: (interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
>=0 = the number of chars currently available
in FIFO
-1 = illegal interface
Semantics: Return number of chars currently available in the
input buffer
int OSCheckOutRS232(int interface)
Input: (interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
>=0 = the number of bytes in the output buffer
-1 = illegal interface
Semantics: Return the number of chars currently in the
output buffer
int OSSetRTSRS232(int interface)
Input: (interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = good
10 = illegal interface
Semantics: Set the RTS hw flow control pin of the given
comport
int OSClearRTSRS232(int interface)
Input: (interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = good
10 = illegal interface
Semantics: Clear the RTS hw flow control pin of the given
comport
int OSGetCDRS232(int interface)
Input: (interface) serial interface
Valid values are: SERIAL1-2
Output: (return code)
0 = no carrier detected
1 = carrier detected
10 = illegal interface
Semantics: Get carrier detect status of the given comport
Valid sample format: WAV or AU/SND (8bit, pwm or
mulaw)
Valid sample rate: 5461, 6553, 8192, 10922, 16384, 32768 (Hz)
Valid tone range: 65 Hz to 21000 Hz
Valid tone length: 1 msec to 65535 msecs
int AUPlaySample(char* sample);
Input: (sample) pointer to sample data
Output: (return code) playfrequency for given sample
0 if unsupported sampletype
Semantics: Plays a given sample (nonblocking)
supported formats are:
WAV or AU/SND (8bit, pwm or mulaw)
5461, 6553, 8192, 10922, 16384, 32768 (Hz)
int AUCheckSample(void);
Input: NONE
Output: FALSE while sample is playing
Semantics: nonblocking test for sample end
int AUTone(int freq, int msec);
Input: (freq) tone frequency
(msecs) tone length
Output: NONE
Semantics: Plays tone with given frequency for the given
time (nonblocking). Supported formats are:
freq = 65 Hz to 21000 Hz
msecs = 1 msec to 65535 msecs
int AUCheckTone(void);
Input: NONE
Output: FALSE while tone is playing
Semantics: nonblocking test for tone end
int AUBeep(void);
Input: NONE
Output: NONE
Semantics: BEEP!
int AURecordSample(BYTE* buf, long len, long freq);
Input: (buf) pointer to buffer
(len) bytes to sample + 28 bytes header
(freq) desired samplefrequency
Output: (return code) real samplefrequency
Semantics: Samples from microphone into buffer with given
frequency (nonblocking)
Recordformat: AU/SND (pwm) with unsigned 8bit
samples
int AUCheckRecord(void);
Input: NONE
Output: FALSE while recording
Semantics: nonblocking test for record end
int AUCaptureMic(void);
Input: NONE
Output: (return code) microphone value (10bit)
Semantics: Get microphone input value
Position Sensitive Devices (PSDs) use infrared beams
to measure distance. The accuracy varies from sensor to sensor, and they need
to be calibrated in the HDT to get correct distance readings.
# PSD Name | RegAddr | TableName
e.g.
PSD "FRT 1" 24 "PSD Table"
PSD "LEFT" 25 "PSD Table"
PSDHandle PSDInit(DeviceSemantics semantics);
Input: (semantics) unique definition for desired PSD
(see hdt.h)
Output: (return code) unique handle for all further
operations
Semantics: Initialize single PSD with given semantics
Up to 8 PSDs can be initialized
int PSDRelease(void);
Input: NONE
Output: NONE
Semantics: Stops all measurings and releases all
Initialized PSDs
int PSDGet(int psd);
Input: (psd) the number of the psd to read
Output: (return code) actual distance in mm (converted
through internal table)
Semantics: Delivers actual timestamp or distance measured
By the selected PSD. If the raw reading is out
of range for the given sensor, PSD_OUT_OF_RANGE
(=9999) is returned.
int PSDGetRaw(int psd);
Input: (psd) the number of the psd to read
Output: (return code) actual raw-data (not converted)
Semantics: Delivers actual timestamp or raw-data measured
by the selected PSD
# Servo Name | Register | Cycle-time | Min-time | Max-time
e.g.
SERVO "KICKER" 2 20000 700 1700
SERVO "CAM-PAN" 3 20000 1700 700
# MOTOR Name | RegAddr | PWM cycle time | TableName
e.g.
MOTOR "Left Motor" 16 8000 "Motor Table"
MOTOR "Right Motor" 17 8000 "Motor Table"
# ENCODER Name | RegAddr | Clicks per meter | MotorName
e.g.
ENCODER "Enc-L" 20 6540 "Left Motor"
ENCODER "Enc-R" 21 6540 "Right Motor
Functions for servos:
ServoHandle SERVOInit(DeviceSemantics semantics);
Input: (semantics) semantic (see hdt.h)
Output: (return code) ServoHandle
Semantics: Initialize given servo
int SERVORelease(ServoHandle handle)
Input: (handle) bitwise-or of all ServoHandles which
should be released
Output: (return code) 0 = ok
errors (nothing is released):
0x11110000 = totally wrong handle
0x0000xxxx = the handle parameter in which only
those bits remained set that are connected to a
releasable TPU-channel
Semantics: Release given servos
int SERVOSet(ServoHandle handle,int angle);
Input: (handle) bitwise-or of all ServoHandles which
should be set in parallel
(angle) servo angle
valid values: 0-255
Output: (return code) 0 = ok
-1 = error wrong handle
Semantics: Set the given servos to the same given angle
Functions for motors:
MotorHandle MOTORInit(DeviceSemantics semantics);
Input: (semantics) semantic (see hdt.h)
Output: (return code) MotorHandle
Semantics: Initialize given motor
int MOTORRelease(MotorHandle handle)
Input: (handle) logical-or of all MotorHandles which
should be released
Output: (return code) 0 = ok. >0 error
Semantics: Release given motor
int MOTORDrive(MotorHandle handle,int speed);
Input: (handle) logical-or of all MotorHandles which
should be driven
(speed) motor speed in percent
Valid values:
-100 - 100 (full backward to full
forward)
0 for full stop
Output: (return code) 0 = ok
-1 = error wrong handle
Semantics: Set the given motors to the same given speed
Functions for encoders:
QuadHandle QUADInit(DeviceSemantics semantics);
Input: (semantics) semantic
Output: (return code) QuadHandle or 0 for error
Semantics: Initialize given Quadrature-Decoder (up to 8
decoders are possible)
int QUADRelease(QuadHandle handle);
Input: (handle) logical-or of decoder-handles to be
released
Output: 0 = ok
-1 = error wrong handle
Semantics: Release one or more Quadrature-Decoder
int QUADReset(QuadHandle handle);
Input: (handle) logical-or of decoder-handles to be
reseted
Output: 0 = ok
-1 = error wrong handle
Semantics: Reset one or more Quadrature-Decoder
int QUADRead(QuadHandle handle);
Input: (handle) ONE decoder-handle
Output: 32bit counter-value (-2^31 .. 2^31-1)
Semantics: Read actual Quadrature-Decoder counter,
initially zero.
Note: A wrong handle will ALSO result in a 0
counter value!!
DeviceSemantics QUADGetMotor(QuadHandle handle);
Input: (handle) ONE decoder-handle
Output: semantic of the corresponding motor
0 = wrong handle
Semantics: Get the semantic of the corresponding motor
float QUADODORead(QuadHandle handle);
Input: (handle) ONE decoder-handle
Output: meters since last odometer-reset
Semantics: Get the distance from the last reset point of a
single motor. This is not the overall distance
driven since the last reset, but the distance
to the start point.
int QUADODOReset(QuadHandle handle);
Input: (handle) logical-or of decoder-handles to be
reseted
Output: 0 = ok
-1 = error wrong handle
Semantics: Resets the simple odometer(s) to define the
startpoint
This is a high level wheel control API using the motor and quad primitives to drive the robot.
Data types:
typedef float meterPerSec;
typedef float radPerSec;
typedef float meter;
typedef float radians;
typedef struct {
meter x;
meter y;
radians phi;
} PositionType;
typedef struct {
meterPerSec v;
radPerSec w;
} SpeedType;
VWHandle VWInit(DeviceSemantics semantics, int Timescale);
Input: (semantics) semantic
(Timescale) prescale value for 100Hz IRQ (1 to
...)
Output: (return code) VWHandle or 0 for error
Semantics: Initialize given VW-Driver (only 1 can be
initialized!). The motors and encoders are
automatically reserved!!
The Timescale allows to adjust the tradeoff
between accuracy (scale=1, update at 100Hz) and
speed(scale>1, update at 100/scale Hz).
int VWRelease(VWHandle handle);
Input: (handle) VWHandle to be released
Output: 0 = ok
-1 = error wrong handle
Semantics: Release VW-Driver, stop motors
int VWSetSpeed(VWHandle handle, meterPerSec v, radPerSec w);
Input: (handle) ONE VWHandle
(v) new linear speed
(w) new rotation speed
Output: 0 = ok
-1 = error wrong handle
Semantics: Set the new speed: v(m/s) and w(rad/s not
degree/s)
int VWGetSpeed(VWHandle handle, SpeedType* vw);
Input: (handle) ONE VWHandle
(vw) pointer to record to store actual v, w
values
Output: 0 = ok
-1 = error wrong handle
Semantics: Get the actual speed: v(m/s) and w(rad/s not
degree/s)
int VWSetPosition(VWHandle handle, meter x, meter y, radians phi);
Input: (handle) ONE VWHandle
(x) new x-position
(y) new y-position
(phi) new heading
Output: 0 = ok
-1 = error wrong handle
Semantics: Set the new position: x(m), y(m) phi(rad not
degree)
int VWGetPosition(VWHandle handle, PositionType* pos);
Input: (handle) ONE VWHandle
(pos) pointer to record to store actual
position (x,y,phi)
Output: 0 = ok
-1 = error wrong handle
Semantics: Get the actual position: x(m), y(m) phi(rad not
degree)
int VWStartControl(VWHandle handle, float Vv, float Tv, float Vw,
float Tw);
Input: (handle) ONE VWHandle
(Vv) the parameter for the proportional
component of the v-controller
(Tv) the parameter for the integrating
component of the v-controller
(Vw) the parameter for the proportional
component of the w-controller
(Tv) the parameter for the integrating
component of the w-controller
Output: 0 = ok
-1 = error wrong handle
Semantics: Enable the PI-controller for the vw-interface
and set the parameters.
As default the PI-controller is deactivated
when the vw-interface is initialized. The
controller tries to keep the desired speed (set
with VWSetSpeed) stable by adapting the energy
of the involved motors. The parameters for the
controller have to be choosen carefully!
The formula for the controller is:
t
new(t) = V*(diff(t) + 1/T * Int( diff(t)dt )
0
Recommended setting: VWStartControl(vw, 7.0,
0.3, 7.0, 0.1);
V: a value typically around 7.0
T: a value typically between 0 and 1.0
After enabling the controller the last set
speed
(VWSetSpeed) is taken as the speed to be held
stable.
int VWStopControl(VWHandle handle);
Input: (handle) ONE VWHandle
Output: 0 = ok
-1 = error wrong handle
Semantics: Disable the controller immediately. The vw-
interface continues normally with the last
valid speed of the controller.
int VWDriveStraight(VWHandle handle, meter delta, meterpersec v)
Input: (handle) ONE VWHandle
(delta) distance to drive in m
(pos. -> forward)
(neg. -> backward)
(v) speed to drive with (always positive!)
Output: 0 = ok
-1 = error wrong handle
Semantics: Drives distance "delta" with speed v straight
ahead (forward or backward) any subsequent call
of VWDriveStraight, -Turn, -Curve or VWSetSpeed
while this one is still being executed, results
in an immediate interruption of this command
int VWDriveTurn(VWHandle handle, radians delta, radPerSec w)
Input: (handle) ONE VWHandle
(delta) degree to turn in radians
(pos. -> counter-clockwise)
(neg. -> clockwise)
(w) speed to turn with (always positive!)
Output: 0 = ok
-1 = error wrong handle
Semantics: Turns about "delta" with speed w on the spot
(clockwise or counter-clockwise) any subsequent
call of VWDriveStraight, -Turn, -Curve or
VWSetSpeed while this one is still being
executed, results in an immediate interruption
of this command
int VWDriveCurve(VWHandle handle, meter delta_l, radians delta_phi,
meterpersec v)
Input: (handle) ONE VWHandle
(delta_l) length of curve_segment to drive in
meter
(pos. -> forward)
(neg. -> backward)
(delta_phi)degree to turn in radians
(pos. -> counter-clockwise)
(neg. -> clockwise)
(v) speed to drive with
(always positive!)
Output: 0 = ok
-1 = error wrong handle
Semantics: Drives a curve segment of length "delta_l" with
overall vehicle turn of "delta_phi" with speed
v (forw. or backw. / clockw. or counter-
clockw.).
Any subsequent call of VWDriveStraight, -Turn,
-Curve or VWSetSpeed while this one is still
being executed, results in an immediate
interruption of this command
float VWDriveRemain(VWHandle handle)
Input: (handle) ONE VWHandle
Output: 0.0 = previous VWDriveX command has been
Completed any other value = remaining distance
to goal
Semantics: Remaining distance to goal set by
VWDriveStraight, -Turn (for -Curve only the
remaining part of delta_l is reported)
int VWDriveDone(VWHandle handle)
Input: (handle) ONE VWHandle
Output: -1 = error wrong handle
0 = vehicle is still in motion
1 = previous VWDriveX command has been
completed
Semantics: Checks if previous VWDriveX() command has been
completed
int VWDriveWait(VWHandle handle)
Input: (handle) ONE VWHandle
Output: -1 = error wrong handle
0 = previous VWDriveX command has been
completed
Semantics: Blocks the calling process until the previous
VWDriveX() command has been completed
int VWStalled(VWHandle handle)
Input: (handle) ONE VWHandle
Output: -1 = error wrong handle
0 = vehicle is still in motion or no motion
command is active
1 = at least one vehicle motor is stalled
during VW driving command
Semantics: Checks if at least one of the vehicle's motors
is stalled right now
Latches are
low-level IO buffers. Eyebot M6
board has 16 latches (LATCH0 to LATCH15).
LATCH0 to LATCH7 are connected to IOBANK0 of the IO buffer while LATCH8
to LATCH15 are connected to IOBANK1.
The direction of each bank can be individually configured as input or
output. However, the direction of
the latches has to be configured to the same direction as the buffer bank it
connected to.
Definitions and constants:
//IO buffer banks
#define IOBANK0 0
#define IOBANK1 1
//IO directions
#define IN 0
#define OUT 1
//IO signal levels
#define HIGH 1
#define LOW 0
#define SET HIGH
#define CLEAR LOW
int OSLatchInit(void);
Input: NONE
Output: Return code:
0 = ok
-1 = Initialization error
Semantics: Initialize the digital IO, call this
before using any digital IO functions
int OSLatchSetup(int latchnum, int direction)
Input: (latchnum) latch number.
Valid values:
(direction) signal direction
Valid values:
0 = input
1 = output
Output: Return code:
0 = set latch successful
-1 = error
Semantics: Setup the given latch as input or output
int OSLatchBankSetup(int banknum, int direction);
Input: (banknum) bank number.
Valid values:
IOBANK0 (for LATCH0..LATCH7)
IOBANK1 (for LATCH8..LATCH15)
(direction) signal direction
Valid values:
IN = input
OUT = output
Output: Return code:
0 = set latch successful
-1 = Unrecognized IO bank
-2 = Error setting buffer direction
Semantics: Setup the given io buffer bank as input or
output. Note:
LATCH0..LATCH7 are connected to IOBANK0
LATCH8..LATCH15 are connected to IOBANK1
int OSLatchRead(int latchnum)
Input: (latchnum) latch number to read
Valid values:
Output: Return latch status
0 = low
1 = high
-1 = error
Semantics: Read content of the selected input latch
int OSLatchWrite(int latchnum, int state)
Input: (latchnum) latch number to write
Valid values:
(state) state to be set to the selected out
latch
Valid values:
0 = low
1 = high
Output: Return previous state of the selected output
latch
0 = low
1 = high
-1 = error
Semantics: Write to the selected output latch
int OSLatchCleanup(void)
Input: NONE
Output: NONE
Semantics: Unmap the memory for digital IOs, call these
when the digital IOs functions are no longer
needed
ADCHandle OSInitADC(char *devsemantics);
Input: (devsemantics) desired ADC channel
Valid values: “ADC0”, “ADC1”, “ADC2”, “ADC3”
Output: (return code) >0: Handler for the adc channel
0: Initialization error
Semantics: Captures one single 10bit value from the
specified adc channel
int OSGetADC(ADCHandle adchandle);
Input: (adchandle) Handler for the adc channel
Output: (return code) >0: 10 bit sampled value
-1: invalid channel
Semantics: Captures one single 10bit value from specified
AD-channel. The return value is stored in the
least significant bits of the 32 bit return
value.
int OSReleaseADC(ADCHandle adchandle);
Input: (adchandle) Handler for the adc channel
Output: (return code) Always 0
Semantics: Release the adc channel
Note:
Additional hardware and software (Radio-Key) are required to use these
library routines.
"EyeNet"
network among arbitrary number of EyeBots and optional workstation host.
Network operates as virtual token ring and has fault tolerant aspects. A net
Master is negotiated autonomously, new EyeBots will automatically be integrated
into the net by "wildcard" messages, and dropped out EyeBots will be
eliminated from the network. This network uses a RS232 interface and can be run
over cable or wireless.
The
communication is 8-bit clean and all packets are sent with checksums to detect
transmittion errors. The communication is unreliable, meaning
there is no retransmit on error and delivery of packets are not guaranteed.
Data Types:
struct RadioIOParameters {
int interface; /* SERIAL1, SERIAL2 or SERIAL3 */
int speed; /* SER1200, SER2400, SER4800, SER9600,
SER19200,SER38400, SER57600, SER115200 */
int id; /* machine id */
int remoteOn; /* non-zero if remote control is active */
int imageTransfer; /* if remote on: 0 off, 2 full, 1 reduced */
int debug; /* 0 off, 1..100 level of debugging spew */
};
struct RadioStatus {
BYTE master; /* EyeBot ID */
BOOL active[MAXEYE];/* shows who is active at the moment */
};
int RADIOInit(void);
Input: NONE
Output: (return code) 0 = OK
255 = Error: Radio functions not
enabled (Radio-Key required)
Semantics: Initializes and starts the radio communication.
int RADIOTerm(void);
Input: NONE
Output: (return code) 0 = OK
Semantics: Terminate network operation.
int RADIOSend(BYTE id, int byteCount, BYTE* buffer);
Input: (id) the EyeBot ID number of the message
destination
(byteCount) message length
(buffer) message contents
Output: (return code) 0 = OK
1 = send buffer is full or message
is too long.
Semantics: Send message to another EyeBot. Send is
buffered, so the sending process can continue
while the message is sent in the background.
Message length must be below or equal to
MSGMAXLEN. Messages are broadcasted by sending
them to the special id BROADCAST.
int RADIOCheck(void);
Input: NONE
Output: returns the number of user messages in the
buffer
Semantics: Function returns the number of buffered
messages. This function should be called before
receiving, if blocking is to be avoided.
int RADIORecv(BYTE* id, int* bytesReceived, BYTE* buffer);
Input: NONE
Output: (id) EyeBot ID number of the message source
(bytesReceived) message length
(buffer) message contents
Semantics: Returns the next message buffered. Messages are
returned in the order they are
received. Receive will block the calling
process if no message has been received until
the next one comes in. The buffer must have
room for MSGMAXLEN bytes.
void RADIOGetIoctl(RadioIOParameters* radioParams);
Input: NONE
Output: (radioParams) current radio parameter settings
Semantics: Reads out current radio parameter settings.
void RADIOSetIoctl(RadioIOParameters radioParams);
Input: (radioParams) new radio parameter settings
Output: NONE
Semantics: Changes radio parameter settings. This should
be done before calling RADIOInit().
int RADIOGetStatus(RadioStatus *status);
Input: NONE
Output: (status) current radio communication status.
Semantics: Return current status info from RADIO
communication.
These routines
provide an interface to a digital compass.
compass_type compass = {0,13,(void*)OutBase, 5,(void*)OutBase, 6, (BYTE*)InBase, 5};
HDT_entry_type HDT[] =
{ ...
{COMPASS,COMPASS,"COMPAS",(void *)&compass},
...
};
int COMPASSInit(DeviceSemantics semantics);
Input: Unique definition for desired COMPASS (see
hdt.h)
Output: (return code) 0 = OK
1 = error
Semantics: Initialize digital compass device
int COMPASSStart(BOOL cycle);
Input: (cycle) 1 for cyclic mode
0 for single measurement
Output: (return code) 1 = module has already been started
0 = OK
Semantics: This function starts the measurement of the
actual heading. The cycle parameter chooses the
operation mode of the compass-module. In cyclic
mode (1), the compass delivers as fast as
possible the actual heading without pause. In
normal mode (0) a single measurement is requested
and allows the module to go back to sleep mode
afterwards.
int COMPASSCheck();
Input: NONE
Output: (return code) 1 = result is ready
0 = result is not yet ready
Semantics: If a single shot was requested this function
allows to check if the result is already
available. In the cyclic mode this function is
useless because it always indicates 'busy'.
Usually a user uses a loop to wait for a result:
int heading;
COMPASSStart(FALSE);
while(!COMPASSCheck()); //In single tasking!
Otherwise yield to other tasks
heading = COMPASSGet();
int COMPASSStop();
Input: NONE
Output: (return code) 0 = OK
1 = error
Semantics: To stop the initiated cyclic measurement this
function WAITS for the current measurement to be
finished and stops the module. This function
therefore will return after 100msec at latest or
will deadlock if no compass module is connected
to the EyeBot!
int COMPASSRelease();
Input: NONE
Output: (return code) 0 = OK
1 = error
Semantics: This function shuts down the driver and aborts
any ongoing measurement directly.
int COMPASSGet();
Input: NONE
Output: (return code) Compass heading data: [0..359]
-1 = no heading has been calculated yet
(wait after initializing).
Semantics: This function delivers the actual compass
heading.
int COMPASSCalibrate(int mode);
Input: (mode) 0 to reset calibration data of compass
module (requires about 0.8s)
1 to perform normal calibration.
Output: (return code) 0 = OK
1 = error
Semantics: This function has two tasks. With mode=0 it
resets the calibration data of the compass
module. With mode=1 the normal calibration is
performed. It has to be called twice (first at
any position, second at 180degree to the first
position). Normally you will perform the
following steps:
COMPASSCalibrate(1);
VWDriveTurn(VWHandle handle, M_PI, speed);
// turn EyeBot 180deg in place
COMPASSCalibrate(1);
These commands
allow sending commands to an EyeBot via a standard TV remote.
#include "libM6irtv.h"
#include "IRsupportplus.h"; /* depending on remote control used, e.g.
also "IRnokia.h" */
Definitions
/* Code types */
#define RAW_CODE 0 /* normally only used by the analyzer */
#define SPACE_CODE 1
#define PULSE_CODE 2
#define MANCHESTER_CODE 3
/* Modes */
#define DEFAULT_MODE 0
#define SLOPPY_MODE 1
#define REPCODE_MODE 2
#define PULSE 0
#define SPACE 1
#define START_TTL 50 /* default "time to live" value *10ms */
#IRTV Name | Type | Length | TogMask | InvMask | Mode | BuffSize | Delay | TableName
e.g.
IRTV "SupportPlus" 3 14 0x1c00 0x000 1 1 50 " "
IRTV "Nokia VCN620" 1 15 0x0000 0x3FF 1 1 50 " "
int IRTVInit(char *semantics);
Input: (semantics) IRTV device name
(e.g. “SupportPlus”)
Output: (return code) 0 = ok
1 = HDT file error
2 = invalid or missing "IRTV" HDT
entry for this semantics
Semantics: Initializes the IR remote control decoder by
calling IRTVInit() with the device name found in
the corresponding HDT entry.
int IRTVInitParam(int type, int length, int tog_mask, int inv_mask,
int mode, int bufsize, int delay);
Input: (type) the used code type
Valid values are:
SPACE_CODE, PULSE_CODE,
MANCHESTER_CODE, RAW_CODE
(length) code length (number of bits)
(tog_mask) the bitmask that selects the "toggle
bits" in a code (bits that change
when the same key is pressed
repeatedly)
(inv_mask) the bitmask that selects the
inverted bits in a code(for remote
controls with alternating
codes)
(mode) operation mode
Valid values are: DEFAULT_MODE,
SLOPPY_MODE, REPCODE_MODE
(bufsize) size of the internal code buffer
Valid values are: 1-4
(delay) key repetition delay
>0: number of 1/100 sec (should
be>20)
-1: no repetition
Output: (return code) 0 = ok
1 = illegal type or mode
2 = irtv initialization error
Semantics: Initializes the IR remote control decoder.
To find out the correct values for the "type",
"length", "tog_mask",
"inv_mask" and "mode" parameters, use the IR
remote control analyzer program (IRCA).
SLOPPY_MODE can be used as an alternative to
DEFAULT_MODE. In default mode, at least two
consecutive identical code sequences
must be received before the code becomes valid.
When using sloppy mode, no error check is
performed, and every code becomes valid
immediately. This reduces the delay between
pressing the key and the reaction. With remote
controls that use a special repetition coding,
REPCODE_MODE must be used (as suggested by the
analyzer).
Typical parameters | Nokia (VCN 620) | RC5 (Philips)
-------------------+--------------------------+----------------
type | SPACE_CODE | MANCHESTER_CODE
length | 15 | 14
tog_mask | 0 | 0x800
inv_mask | 0x3FF | 0
mode | DEFAULT_MODE/SLOPPY_MODE | DEFAULT_MODE/SLOPPY_MODE
The type setting RAW_CODE is intended for code
analysis only. If RAW_CODE is specified, all of
the other parameters should be set to 0. Raw
codes must be handled by using the IRTVGetRaw
and IRTVDecodeRaw functions.
void IRTVRelease(void);
Input: NONE
Output: NONE
Semantics: Terminates the remote control decoder and
releases the irtv thread.
int IRTVPressed(void);
Input: NONE
Output: (return code) Code of the remote key that is
currently being pressed
0 = no key
Semantics: Directly reads the current remote key code.
Does not touch the code buffer. Does not wait.
int IRTVRead(void);
Input: NONE
Output: (return code) Next code from the buffer
0 = no key
Semantics: Reads and removes the next key code from the
code buffer. Does not wait.
int IRTVGet(void);
Input: NONE
Output: (return code) Next code from the buffer (!=0)
Semantics: Reads and removes the next key code from the
code buffer.
If the buffer is empty, the function waits
until a remote key is pressed.
void IRTVFlush(void);
Input: NONE
Output: NONE
Semantics: The code buffer is emptied.
void IRTVGetRaw(int bits[2], int *count, int *duration, int *id, int
*clock);
Input: NONE
Output: (bits) contains the raw code
bit #0 in bits[0] represents the 1st
pulse in code sequence
bit #0 in bits[1] represents the 1st space
bit #1 in bits[0] represents the 2nd pulse
bit #1 in bits[1] represents the 2nd space
...
A cleared bit stands for a short signal,
a set bit for a long signal.
(count) the number of signals (= pulses +
spaces) received
(duration) the logical duration of the code
sequence. Duration = (number of
short signals) + 2 * (number of long
signals)
(id) a unique ID for the current code
(incremented by 1 each time)
(clock) the time when the code was received
Semantics: Returns information about the last received raw
code. Works only if type setting == RAW_CODE.
int IRTVDecodeRaw(const int bits[2], int count, int type);
Input: (bits) raw code to be decoded (see IRTVGetRaw)
(count) number of signals (= pulses + spaces)
in raw code
(type) the decoding method
Valid values are: SPACE_CODE,
PULSE_CODE, MANCHESTER_CODE
Output: (return code) The decoded value (0 on an
illegal Manchester code)
Semantics: Decodes the raw code using the given method.
Definitions and data types for Key functions:
/* pre-defined key constants - usable for standard & region map */
#define KEY1 0x00000001
#define KEY2 0x00000002
#define KEY3 0x00000004
#define KEY4 0x00000008
/* special keys (escape & list menu)! */
#define KEY_ESCAPE 0x80000000
#define KEY_LISTTL 0x40000000
#define KEY_LISTUP 0x20000000
#define KEY_LISTDN 0x10000000
/* special pre-defined key constants for standard list menu! */
#define KEY_LIST1 0x00000010
#define KEY_LIST2 0x00000020
#define KEY_LIST3 0x00000040
#define KEY_LIST4 0x00000080
#define KEY_LIST5 0x00000100
#define KEY_LIST6 0x00000200
#define KEY_LIST7 0x00000400
#define KEY_LIST8 0x00000800
/* key touchmap types/key modes */
#define KEYTM_UNKNOWN 0x00
#define KEYTM_CLASSIC 0x01
#define KEYTM_STANDARD 0x02
#define KEYTM_REGIONS 0x03
/* max keys (keycode_t <= 32-bit) */
#define KEYTM_MAX_REGIONS 32
/* key library states - arg for KEYIdle() */
#define KEY_GOIDLE 1
#define KEY_NOIDLE 0
#define KEY_STATE -1
/* reserve 0x0 for timed-out keycode! no key pressed! */
#define KEY_TIMEOUT 0x00000000
/* i assume 32 simultaneous keys is impossible! :p */
#define KEY_INVALID 0xFFFFFFFF
Data Types:
typedef unsigned char keymode_t;
typedef unsigned long keycode_t;
typedef struct timeval m6time_t;
typedef struct _coord_pair {
int x, y;
} coord_pair_t;
typedef struct _m6key_box {
int active;
coord_pair_t tl; //top left
coord_pair_t br; //bottom right
} m6key_box_t;
typedef struct _touch_map {
keymode_t mode;
m6key_box_t rect[KEYTM_MAX_REGIONS];
} touch_map_t;
typedef struct _touch_event {
coord_pair_t point, value;
struct timeval instant;
int sync, status;
} touch_event_t;
Definitions and data types for LCD functions:
/* constants for text colorflags */
#define LCD_BGCOL_TRANSPARENT 0x01
#define LCD_BGCOL_NOTRANSPARENT 0x10
#define LCD_BGCOL_INVERSE 0x02
#define LCD_BGCOL_NOINVERSE 0x20
#define LCD_FGCOL_INVERSE 0x04
#define LCD_FGCOL_NOINVERSE 0x40
/* constants for lcd modes */
#define LCD_AUTOREFRESH 0x0001
#define LCD_NOAUTOREFRESH 0x0100
#define LCD_SCROLLING 0x0002
#define LCD_NOSCROLLING 0x0200
#define LCD_LINEFEED 0x0004
#define LCD_NOLINEFEED 0x0400
#define LCD_SHOWMENU 0x0008
#define LCD_HIDEMENU 0x0800
#define LCD_SYSMENU 0x0010
#define LCD_STDMENU 0x1000
#define LCD_FB_ROTATE 0x0080
#define LCD_FB_NOROTATION 0x8000
/* constants for basic colors - https://www.w3.org/TR/CSS21/syndata.html */
#define LCD_WHITE 0xffffff /* ww3name */
#define LCD_SILVER 0xc0c0c0 /* ww3name */
#define LCD_LIGHTGRAY 0xc0c0c0
#define LCD_LIGHTGREY 0xc0c0c0
#define LCD_GRAY 0x808080 /* ww3name */
#define LCD_DARKGRAY 0x808080
#define LCD_DARKGREY 0x808080
#define LCD_BLACK 0x000000 /* ww3name */
#define LCD_BLUE 0x0000ff /* ww3name */
#define LCD_NAVY 0x000080 /* ww3name */
#define LCD_AQUA 0x00ffff /* ww3name */
#define LCD_CYAN 0x00ffff
#define LCD_TEAL 0x008080 /* ww3name */
#define LCD_FUCHSIA 0xff00ff /* ww3name */
#define LCD_MAGENTA 0xff00ff
#define LCD_PURPLE 0x800080 /* ww3name */
#define LCD_RED 0xff0000 /* ww3name */
#define LCD_MAROON 0x800000 /* ww3name */
#define LCD_YELLOW 0xffff00 /* ww3name */
#define LCD_OLIVE 0x808000 /* ww3name */
#define LCD_LIME 0x00ff00 /* ww3name */
#define LCD_GREEN 0x008000 /* ww3name */
/* constants - info for users */
#define LCD_MENU_ITEMCOUNT 4 /* classic menu! should sync with key lib! */
#define LCD_MENU_STRLENGTH 32 /* for storage declaration */
#define LCD_MENU_ROWHEIGHT 3 /* text rows used for classic menu! */
#define LCD_LIST_STRLENGTH 64 /* for storage declaration */
#define LCD_MENU_BGCOL LCD_BLUE /* default menu bgcolor */
#define LCD_MENU_FGCOL LCD_SILVER /* default menu fgcolor */
Data types:
/* basic typedefs */
typedef unsigned char byte_t;
typedef unsigned short hword_t;
typedef unsigned int word_t;
typedef unsigned int rgb_t;
/* data structures' typedefs */
typedef struct {
int xres, yres;
int bpp;
} screen_t;
typedef struct {
int x, y;
int xmax, ymax;
} cursor_t;
typedef struct {
screen_t screen;
cursor_t cursor;
} fbinfo_t;
typedef struct {
int x1, y1, x2, y2;
} rect_t;
typedef rect_t menurect_t;
typedef struct {
char label[LCD_MENU_STRLENGTH];
rgb_t fgcol, bgcol;
void *plink; /* link to user data/function! */
} menuitem_t;
typedef struct {
char title[LCD_LIST_STRLENGTH];
rgb_t fgcol, bgcol;
int size, start, width, left, scroll; /* configure these! */
int index, count; /* the library will set & manage these! */
menuitem_t *pitems; /* pointer to array of 'size' menuitems */
} listmenu_t;
Thomas Bräunl,
Klaus Schmitt, Thomas Lampart, Petter Reinholdtsen, 1996-2006