
This	program	provides	a	graphical	user	interface	for	PI(D)	controller	parameter	tuning	on	eyebot	with	raspberry
pi3(with	some	modifications	on	the	initial	image).	It	calls	RoBIOS-7	Library	Functions.

Below	is	the	graphical	user	interface	for	the	demo(It	looks	very	different	on	the	remote	desktop	so	I	just	took
some	pictures	of	the	screen).

intint	VWStraight(intint	dist,	intint	lin_speed);										//	Drive	straight,	dist	[mm],	lin.	speed	[mm/s]
intint	VWTurn(intint	angle,	intint	ang_speed);													//	Turn	on	spot,	angle	[rad/1000],	ang.	speed	[(rad/100)/s]
intint	VWCurve(intint	dist,	intint	angle,	intint	lin_speed);		//	Drive	Curve,	dist	[mm],	angle	(orientation	change)	[rad/100],	lin.	speed	[mm/s]

The	units	of	the	parameters	are:

parameter unit

line	speed mm/s

angle	speed mm/s

line	distance cm

curve	distance cm

PID	Controller	Tuning	GUI
Wang	Feixuan

24/08/2016

1.	Introduction

2.	GUI

2.1.	Parametes

turn	angle degrees

And	the	calling	codes	are:

VWStraight(lin_dist	*	10,	lin_speed);
VWTurn((intint)	(turn_ang	*	31.4	/	1.8),	ang_speed);
VWCurve(curve_dist	*	10,	(intint)	(turn_ang	*	3.14	/	1.8),	lin_speed);

The	next	four	parameters	are	for	PI	controllers.	This	V-Omega	function	is	used:

intint	VWControl(intint	Vv,	intint	Tv,	intint	Vw,	intint	Tw);		//	Set	PI	params.	forfor	v	andand	w;	typical:		VWControl(9,5,6,1);

The	final	parameter	step	is	the	increment/decrement	of	every	operation.

Four	main	keys	STRAIGHT,	TURN,	CURVE	and	EXITare	created	using	eyebot
function int	LCDMenu(char	*st1,	char	*st2,	char	*st3,	char	*st4);	//	Set	menu	entries	for	soft	buttons .

The	function	 int	KEYGet(void);	//	Blocking	read	(and	wait)	for	key	press	(returns	KEY1..KEY4) 	is	used	to	get
key	in	while(true)	loop,	which	will	only	be	broken	by	exiting	the	whole	program	by	when	the	EXIT	button	is
pressed.

For	each	parameter	two	buttons	are	created	to	decrese/increase	the	value.	Note	that	for	 VWTurn() 	and
VWCurve 	angles	can	be	above	or	below	zero	for	anti-clockwise	and	clockwise.	The	two	buttons	for
turn	angle 	can	only	change	its	absolute	value	and	the	yellow	button	for	itself	can	change	its	sign.	Other
values	can	only	be	 >=	0 .

The	buttons	are	created	with	 LCDArea() 	for	the	boxes	and	 LCDSetPrintf() 	for	the	marks.	As	I'm	not	quite
sure	about	how	these	functions	are	realized	and	fonts	can	look	very	different	on	differernt	hardwares,	the
parameters	for	these	functions	are	tested	specially	for	this	raspberry	pi3.

The	buttons	are	detected	with	the	function

intint	KEYGetXY	(intint	*xx,	intint	*yy);		//	Blocking	readread	forfor	touch	at	any	position,	returns	coordinates

The	function	 KEY_Decode() 	is	used	to	decode	the	buttons	according	to	their	position(Point(x,	y) 	and	its	row,
col,	and	something	else).	A	lot	of	values	are	defined	to	make	this	decoding	simpler.

2.2.	Keys

2.3.	Buttons

The	program	is	(and	can	only	be	on	the	raspberry	pi	only)	exited	when	the	EXIT	button	is	pressed.	When	this
happens,	the	current	four	PID	controller	parameters	shall	be	printed	on	the	screen	and	will	be	written	to
PID_tuning.parameters 	for	next	test.	All	the	parameters	and	the	current	time	shall	be	recorded	in
PID_controller.log .

I	installed	 clang 	and	created	a	command	 clangarm 	just	like	 gccarm 	as	a	lot	of	things	are	not	supported	in
the	low	version	gcc	provided	by	raspberry	pi3.

The	files	 control.c 	and	 PID_tuning.parameters 	are	located	in	/home/pi/usr/software/control	and	so	should
the	 PID_tuning.log 	be.	Note	that	if	 PID_tuning.parameters 	is	not	found	the	default	values	of	the	parameters
in	the	program	are	used.	Compile

clangarmclangarm	control.c	-o	../control.o

2.4.	Exit

3.	Compile	and	run

and	run	the	program	in	 software 	on	the	pi.

More	detailed	descriptions	and	contact	information	are	written	in	the	code	and	parameters	for	the	GUI	may	need
changing	when	implemented	on	other	hardware.

4.	TODO

