
EyeBot Jr. Tutorial
Sugiono, Neubronner, Bräunl, UWA 2005

http://robotics.ee.uwa.edu.au

Using the software

1. Run the program “PICAXE Programming Editor”.
2. Choose “28X” for mode and the options set as “4 MHz” and “256x

gosubs” and click OK.
3. After writing the program, press F4 to check the syntax of your program

before loading the program to EyeBot Jr.
4. To load your program to EyeBot Jr., connect the serial cable to the

serial download port of EyeBot Jr. (Top left).
Turn on the EyeBot Jr.
Press F5 to load your program to EyeBot Jr.

Pin Label PortC 5 PortC 7 PortC 0
Function CE WR LATCH

Motor 1 X 1
Servo 1 X 1

Write Display 0 0 0
Read Display 0 1 0

Keypad 1 X X
Speaker 1 X 0

Serial Out 1 X 0
Digital Out 1 X 0

NOTES:

Pin0 refers to input pin 0
0 refers to output pin 0
Portc 0 refers to portc pin 0 (I/O port)
Analogue input 0 reads battery
Analogue input 1 reads keypad and check display ready

Value of ADC1 Condition
255 Display Ready
206 KEY1
152 KEY2
102 KEY3
52 KEY4

• Motor control

To select motor, we must first set the corresponding ports according to
the table.

high portc 5
low portc 7
high portc 0

Motor A is controlled from output pins 0 and 1
Motor B is controlled from output pins 2 and 3
Motor A & B speed is controlled from portc 1

Motor C is controlled from output pins 4 and 5
Motor D is controlled from output pins 6 and 7
Motor C & D speed is controlled from portc 2

Example 1 Set Motor A forward and Motor B reverse at 100% speed

high portc 5
low portc 7
high portc 0
high portc 1
low 0
high 1
high 2
low 3

To set the directions of all four motors in one line, we can use the
command let pins.

Example 2 Switch outputs 7,5,3,1 on
let pins = %10101010

To use PWM on the motors, we use pwmout command.
Syntax: PWMOUT pin,period,dutycycles

- pin is 1 for Motor A & B, 2 for Motor C & D
- Period is a variable/constant (0-255) which sets the PWM

period.
- Duty is a variable/constant (0-1023) which sets the PWM duty

cycle.

NOTE: Duty can’t be set more than 4 x period, as the on-time can be
more than the period.

Example 3 Set Motor A forward and Motor B reverse at 50% speed

high portc 5
low portc 7
high portc 0
pwmout portc 1 255,510

 let pins = %00000110

• Servo
Syntax: servo pin,pulse

Pin is a variable/constant(0-7) which specifies which output pin to use
Pulse is variable/constant(75-225) which specifies the servo position

Do not use a pulse value less than 75 or greater than 225, as this may
cause the servo to malfunction. Due to tolerances in servo manufacture
all values are approximate and will require fine-tuning by
experimentation.
Servo cannot be used at the same time as pwmout as they share a
common timer.

Example 4 Set servo 1 to move left and right with 1 second delay

main: high portc 5

low portc 7
high portc 0
servo 0,75
pause 1000
servo 0,225
pause 1000
goto main

• Analogue input
Syntax: readadc channel,variable

Readadc is used to read analogue input values (8 bit resolution) and
transfer it to a variable.
Readadc10 is used to read analogue input values (10 bit resolution)
and transfer it to a word variable.

 Example 5 Run motor A at 100% fwd when KEY1 is pressed

main: readadc 1,b0
 if b0 < 216 and b0 > 196 then KEY1
 goto main

KEY1: high portc 5

low portc 7
high portc 0
high portc 1
let pins %00000010

• Speaker
Syntax: sound pin,(note, duration, note, duration…)
Note(s) are variables/constants (0-255) which specify type and
frequency. Note 0 is silent for the duration. Notes 1-127 are ascending
tones. Notes 128-255 are ascending white noises.
Note values: A(49), As(51), B(54), C(57), Cs(61), D(65), Ds(71), E(78),
F(88), Fs(101), G(119).

• Display

To display text easier on EyeBot Jr. several subroutines must be
copied at the bottom of your program. These subroutines will
automatically select (and deselect) the LCD and set all the ports for
reading/writing data into the LCD controller.
To display text on the LCD, first we need to initialise the LCD to set the
initial settings. Completing that, we need to buffer the characters into a
variable first, before sending it to the LCD controller. We use the for-
loop and a ‘lookup’ command in BASIC to buffer the characters.

Example 6 Display Hello World! On LCD

gosub init_screen
gosub clr_text
gosub clr_menu
for b0 = 0 to 11
 lookup b0,(“Hello World!”),b1
 b1 = b1 - $20
 let pins = b1
 gosub data_write

pause 1
 let pins = $C0
 gosub cmd_write
 pause 1
next b1

The LCD’s character generator is off by 20 hex, so we need to subtract
$20 from the buffer.
LCD command $C0, will display the current character and increase the
address pointer. Command $C2 will display the current character and
decrease the address pointer. Command $C4 will display current
character and remain in the same address pointer.
Sub-procedure clr_text will clear the text area of the LCD (First 7 lines),
while clr_menu will clear the menu area of the LCD (Last line).

APPENDIX

symbol ready = b0

main:
` your program here
end

init_screen:
 let pins = %10000001 ` set display to ROM and XOR-Mode
 gosub cmd_write
 pause 1
 let pins = $00 ` $00
 gosub data_write
 pause 1
 let pins = $00 ` $00
 gosub data_write
 pause 1
 let pins = %01000000 ` Set text home position ($0000)
 gosub cmd_write
 pause 1
 let pins = $10 ` $10
 gosub data_write
 pause 1
 let pins = $00 ` $00
 gosub data_write
 pause 1
 let pins = %01000001 ` Set number of text area ($0000)
 gosub cmd_write
 pause 1
 let pins = $00 ` $00
 gosub data_write
 pause 1
 let pins = $00 ` $00
 gosub data_write
 pause 1
 let pins = %00100010 ` Set offset register
 gosub cmd_write
 pause 1
 let pins = %10100000 ` Set 8 line cursor
 gosub cmd_write
 pause 1
 let pins = %10010111 ` set display mode to text only, cursor displayed and
blinking
 gosub cmd_write
 return

data_write:
 low portc 6 ` set for data (not command)
 low portc 7 ` set to write
 low portc 5 ` enable LCD
 low portc 0 ` latch
 high portc 0
 high portc 5 ` disable LCD
 return

cmd_write:
 high portc 6 ` set for command (not data)
 low portc 7 ` set to write
 low portc 5 ` enable LCD
 low portc 0 ` latch
 high portc 0
 high portc 5 ` disable LCD
 return

chk_status:
 high portc 6 ` set for command (not data)
 high portc 7 ` set to read
 low portc 5 ` enable LCD

 low portc 0 ` latch
 high portc 0
 readadc 1,ready
 if ready < 250 then chk_status ̀ check if display is ready, if not keep checking
 high portc 5 ` disable the LCD
 return

clr_text:
 pause 1
 let pins = $00
 gosub data_write
 pause 1
 let pins = $00
 gosub data_write
 pause 1
 let pins = $24
 gosub cmd_write
 pause 1
 for b1 = 0 to 111 `loop for 112 characters (16 columns x 7 rows)
 let pins = $00
 gosub data_write
 pause 1
 let pins = $C0
 gosub cmd_write
 pause 1
 next b1
 return

clr_menu:
 pause 1
 let pins = $70
 gosub data_write
 pause 1
 let pins = $00
 gosub data_write
 pause 1
 let pins = $24
 gosub cmd_write
 pause 1
 for b1 = 112 to 127 ` loop for 16 last characters
 let pins = $00
 gosub data_write
 pause 1
 let pins = $C0
 gosub cmd_write
 pause 1
 next b1
 return

