WWW. picaxe.co.uk

Section 2 ll

BASIC COMMANDS |

Contents:

SecTioN 2 - Basic CoMMANDS

o N3 AT o PSSP 3
[o] SRR 4
Comments4
Constants..... .5
SYMDBOIS e e e e e e
Variables

backward

branch

PG e e e
NGN POTEC e ettt ettt 24
i2cslave

infrain2
L1 oLV PSPPI

let pins =
let pinsc = ...
lookdown

= PSP UPPTPPPR 49
(01 401U S PP UPPPPPPRR PR 50
pause 51
peek...... .. 52
play 53
810 TP O PP PP TR 54

PUISII Lo e oot e e e e e e et e e e et e e et e et et e e ettt e e e e e e 55

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 n

BASIC COMMANDS |

readadcccoeeeeeeernnnn
readadclOccceeeeeerennnn.
readi2C ..vveeeieiiiiiieeeeeeiie,
read
readmemccevveeeeerennnnn.
readtempcoovvviiiiiiinnenn.
readtemp12
readowclkccceeeeeeiinnnnn.
resetowclKceeeeeeiinnnn.
readowsnceeeeeeeeennnnnn.
TEEUMN o
reverse ..
serin ...
serout ...
sertxd....
SErvo ..
setint
SEtfreq ..ovveeeeeeeiieiieee
Shiftinoooviieeeiiiies

stop

Additional Reserved KEYWOITSccoiiiiiiiiiiiiee et 103

SOFEWAIE VEISIONiiiiiiee ettt et e e e e e e e e e et e e e e eeaaanes
Contact Address:
ACKNOWIEAGEMENTS: ...ttt ettt e e e 103

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 H

BASIC COMMANDS |

Basic CoMMANDS

Introduction.

The PICAXE manual is divided into three sections:
Section1- Getting Started
Section 2- BASIC Commands
Section 3- Microcontroller interfacing circuits

This second section provides the syntax (with detailed examples) for all the BASIC
commands supported by the PICAXE system. It is intended as a lookup reference guide
for each BASIC command supported by the PICAXE system. As some commands only
apply to certain size PICAXE chips, a diagram beside each command indicates the sizes
of PICAXE that the command applies to.

When using the flowchart method of programming, only a small sub-set of the available
commands are supported by the on-screen simulation. These commands are indicated by
the corresponding flowchart icon by the description.

For more general information about how to use the PICAXE system, please see section 1
‘Getting Started.

The software used for programming the PICAXE is called the ‘Programming Editor’ This
software is free to download from www.picaxe.co.uk. Please see section 1 of the manual
(‘Getting Started’) for installation details and tutorials. This manual was prepared using
Version 4.1.0 of the Programming Editor software.

The latest version of this document is available on the PICAXE website at
www.picaxe.co.uk

If you have a question about any command please post a question on the very active
support forum at this website.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 II

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

Labels

Labels are used as markers throughout the program. Labels are used to mark a
position in the program to ‘jump to’ at a later point using a goto, gosub or other
command. Labels can be any word (that is not already a reserved keyword) and
may contain digits and the underscore character. Labels must start with a letter
(not digit), and are defined with a colon (:) at the marker position. The colon is
not required within the actual commands.

The compiler is not case sensitive (lower and/or upper case may be used at any
time).

Example:
| oop:
high 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
low 1 ‘ switch off output 1
pause 5000 ‘ wait 5 seconds
goto | oop ‘ loop back to start
Whitespace

Whitespace is the term used by programmers to define the white area on a
printout of the program. This involves spaces, tabs and empty lines. Any of these
features can be used to space the program to make it clearer and easier to read.

It is convention to only place labels on the left hand side of the screen. All other
commands should be indented by using the ‘tab key’ This convention makes the
program much easier to read and follow.

Comments

Comments are used to add information into the program for future reference.
They are completely ignored by the computer during a download. Comments
begin with an apostrophe (‘) or semi-colon (;) and continue until the end of the
line. The keyword REM may also be used for a comment.

Examples:
high 0 * meke output 0 high
high 0 ; make output O high
high 0 REM make out put 0 high

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 H

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

Constants

Constants are ‘fixed’ numbers that are used within the program. The software
supports word integers (any whole number between 0 and 65335).

Constants can be declared in four ways: decimal, hex, binary, and ASCII.

Decimal numbers are typed directly without any prefix.
Hexadecimal (hex) numbers are preceded with a dollar-sign ($) or (0x).
Binary numbers are preceded by a percent-sign (%).

ASCII text strings are enclosed in quotes ().

Examples:

100 * 100 deci nmal

$64 ‘ 64 hex

991100100 * 01100100 bi nary

A ‘ “A" ascii (65)

“Hel | 0” ‘ “Hello” - equivalent to “H,”e",”1","|","0"
Bl = BO N $AA * xor variable BO with AA hex

Symbols

Symbols can be assigned to constant values, and can also be used as alias names
for variables (see Variables overleaf for more details). Constant values and
variable names are assigned by following the symbol name with an equal-sign
(=), followed by the variable or constant.

Symbols can use any word that is not a reserved keyword (e.g. switch, step,
output, input, etc.)

Symbols can contain numeric characters and underscores (flash1l, flash_2 etc.)
but the first character cannot be a numeric (e.g. 1flash)

Use of symbol does not increase program length. See the symbol command entry
later in this manual for more information.

Example:

synmbol RED LED = 7 ‘ define a constant synbol

synmbol CCUNTER = b0 ‘ define a variable synbol

| et COUNTER = 200 ‘ preload variable wth value 200
| oop: ‘ define a program address

‘ address synbol end with col ons

hi gh RED_LED ‘ switch on output 7

pause COUNTER ‘ wait 0.2 seconds

| ow RED_LED ‘ switch off output 7

pause COUNTER ‘“ wait 0.2 seconds

goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 n

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

Variables

The RAM memory is used to store temporary data in variables as the program
runs. It looses all data when the power is removed or reset. There are three types
of variable - general purpose, storage, and special function.

See the ‘let’ command for details about variable mathematics.
General Purpose Variables.

There are 14 general purpose byte variables. These byte variables are labelled bO
to b13. Byte variables can store integer numbers between 0 and 255. Byte
variables cannot use negative numbers or fractions, and will ‘overflow’ without
warning if you exceed the 0 or 255 boundary values (e.g. 254 +3=1) (2-3=
255)

However for larger numbers two byte variables can be combined to create a word
variable, which is capable of storing integer numbers between 0 and 65335. These
word variables are labelled wO to w6, and are constructed as follows:

w0 = bl:b0
wl = b3:b2
w2 = b5:b4
w3 = b7:b6
w4 = b9:b8
wb = bl11:b10
w6 = b13:bi12

Therefore the most significant byte of wO is b1, and the least significant byte of
wO is bO0.

In addition bytes b0 and b1 (w0) are broken down into individual bit variables.
These bit variables can be used where you just require a single bit (0 or 1) storage
capability.

b0
bl

bit7: bit6: bit5: bit4: bit3: bit2: bitl: bit0
bitl5: bitl4: bit13: bit12: bit1l: bit10: bit9: bit8

You can use any word, byte or bit variable within any mathematical assignment or
command that supports variables. However take care that you do not accidentally
repeatedly use the same ‘byte’ or ‘bit’ variable that is being used as part of a ‘word’
variable elsewhere.

All general purpose variables are reset to O upon a program reset.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk n
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 ﬂ

OO0 nn

N

08M
18
18A
18X
28A
28X
40X

Oooooooood

mEnEnEnEnEnEnEnEE|

EpERERNERERERERERE

BASIC COMMANDS |

Storage Variables.

Storage variables are additional memory locations allocated for temporary storage
of byte data. They cannot be used in mathematical calculations, but can be used
to temporarily store byte values by use of the peek and poke commands.

The number of available storage locations varies depending on PICAXE type. The
following table gives the number of available byte variables with their addresses.
These addresses vary according to technical specifications of the microcontroller.
See the poke and peek command descriptions for more information.

PICAXE-08 none

PICAXE-08M 48 80 to 127 ($50 to $7F)

PICAXE-18 48 80 to 127 ($50 to $7F)

PICAXE-18A 48 80 to 127 ($50 to $7F)

PICAXE-18X 96 80 to 127 ($50 to $7F), 192 to 239 ($CO to $EF)
PICAXE-28A 48 80 to 127 ($50 to $7F)

PICAXE-28X 112 80to 127 ($50 to $7F), 192 to 239 ($CO to $FF)
PICAXE-40X 112 80to 127 ($50 to $7F), 192 to 239 ($CO to $FF)

Special Function Variables

The special function variables available for use depend on the PICAXE type.
PICAXE-08 / 08M Special Function Registers

pins = the input/ output port

dirs =the data direction register (sets whether pins are inputs or outputs)
infra = another term for variable b13, used within the 08M infrain2 command
The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.

pins = X:Xx:X:pin4d:pin3:pin2: pinl:x

The variable dirs is also broken down into individual bits.
Only valid bi-directional pin configuration bits are implemented.

dirs = x:x:x:dird:x:dir2:dirl:x

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 n

O I | PICAXE-18 / 18A / 18X Special Function Registers
O -- 1 pins = the input port when reading from the port
q - H pins = the output port when writing to the port
o 18 H infra = a separate variable used within the infrain command
g 18A ¢ k | = h for inf d within the keyi d
o0 18X H eyvalue = another name for infra, used within the keyin comman
O - |
O - | Note that pins is a ‘pseudo’ variable that can apply to both the input and output
O - | port.
When used on the left of an assignment pins applies to the ‘output’ port e.g.
et pins = 941000011
will switch outputs 7,6,1,0 high and the others low.
When used on the right of an assignment pins applies to the input port e.g.
let bl = pins
will load b1 with the current state of the input port.
Additionally, note that
et pins = pins
means ‘let the output port equal the input port’
The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.
pins = pin7 :pin6:x:x:X:pin2:pinl:pin0
o 0 H PICAXE-28A / 28X / 40X Special Function Registers
O - M
O - | pins = the input port when reading from the port
O -- | pins = the output port when writing to the port
O =" - infra = a separate variable used within the infrain command
E ZEA g keyvalue = another name for infra, used within the keyin command
o 28X o
o0 40X K Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.
et pins = 941000011
will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.
let bl = pins
will load b1 with the current state of the input port.

Additionally, note that
et pins = pins
means ‘let the output port equal the input port’

The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command.
pins = pin7:pin6: pin5: pind : pin3: pin2: pinl: pin0

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk n
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 n

d 0O h backward

] - |)

O . H Syntax:

0 18 5 BACKWARD motor

O 18A O - Motor is the motor name A or B.

o 18X @b

- %gQ - Function:

O |

0 40x Make a motor output turn backwards

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘low 4 : high 5’ (motor
A) or ‘low 6: high 7’ (motor B). This command is not normally used outside of
the classroom.

Example:

| oop: forward A motor a on forwards

wait 5 ‘ wait 5 seconds
backward A ‘ notor a on backwards
wait 5 ‘ wait 5 seconds

halt A ‘ notor A stop

wait 5 ‘ wait 5 seconds

goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk n
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 In

g 0O p branch

O 08 O .

d osm b Syntax:

0 18 h BRANCH offset,(addressO,address1...addressN)

O 18A O - Offset is a variable/constant which specifies which Address# to use (0-N).
0 18X b - Addresses are labels which specify where to go.

o 28A O

E 235 g Function:

Branch to address specified by offset (if in range).

Information:

This command allows a jump to different program positions depending on the
value of the variable ‘offset’. If offset is value 0, the program flow will jump to
address0, if offset is value 1 program flow will jump to adddress1 etc.

If offset is larger than the number of addresses the whole command is ignored
and the program continues at the next line.

Example:
reset: let bl =0
low 0
low 1
| ow 2
| ow 3

main: let bl =bl +1
if bl > 3 then reset
branch b1, (btn0, btnl, btn2, btn3)

btn0: high O
goto main
btnl: high1
goto main
btn2: high 2
goto main
btn3: high 3
goto main

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 I!I

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

button

Syntax:

BUTTON pin,downstate,delay,rate,bytevariable,targetstate,address

- Pinisavariable/constant (0-7) which specifies the i/o pin to use.

- Downstate is a variable/constant (O or 1) which specifies what logical state is
read when the button is pressed.

- Delay is a variable/constant (0-255) which specifies time before a repeat if
BUTTON is used within a loop.

- Rate is a variable/constant (0-255) which specifies the auto-repeat rate in
BUTTON cycles.

- Bytevariable is the workspace. It must be cleared to O before being used by
BUTTON for the first time.

- Targetstate is a variable/constant (0O or 1) which specifies what state (O=not
pressed, 1=pressed) the button should be in for a branch to occur.

- Address is a label which specifies where to go if the button is in the target
state.

Function:
Debounce button, auto-repeat, and branch if button is in target state.

Infomation:

When mechanical switches are activated the metal ‘contacts’ do not actually close
in one smooth action, but ‘bounce’ against each other a number of times before
settling. This can cause microcontrollers to register multiple ‘hits’ with a single
physical action, as the microcontroller can register each bounce as a new hit.

One simple way of overcoming this is to simply put a small pause (e.g. pause 10)
within the program, this gives time for the switch to settle.

Alternately the button command can be used to overcome these issues. When the
button command is executed, the microcontroller looks to see if the ‘downstate’
is matched. If this is true the switch is debounced, and then program flow jumps
to ‘address’ if ‘targetstate’ = 1. If targetstate = ‘0’ the program continues.

If the button command is within a loop, the next time the command is executed
‘downstate’ is once again checked. If the condition is still true, the variable
‘bytevariable’ is incremented. This can happen a number of times until
‘bytevariable’ value is equal to ‘delay’ At this point a jump to ‘address’ is made if
‘targetstate’ = 1. Bytevariable is then reset to 0 and the whole process then repeats,
but this time the jump to ‘address’ is made when the ‘bytevariable’ value is equal
to ‘rate.

This gives action like a compter keyboard key press - send one press, wait for
‘delay’, then send multiple presses at time interval ‘rate’.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 IE

Note that button should be used within a loop. It does not pause program flow
and so only checks the input switch condition as program flow passes through
the command.

Example:

| oop: button 0, 0, 200, 100, b2, 0, cont
‘ junp to cont unless pin0 =0

toggle 1 ‘ el se toggle input
goto | oop
cont: etc.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

]
08M

18A
18X

OooooooOonOood

BASIC COMMANDS |

calibfreq

Syntax:
CALIBFREQ {-} factor
- factor is a constant/variable containing the value -31 to 31

Function:
Calibrate the microcontrollers internal resonator. 0 is the default factory setting.

Information:
Some PICAXE chips have an internal resonator that can be set to 4 or 8Mhz
operation via the setfreq command.

On these chips it is also possible to ‘calibrate’ this frequency. This is an advanced
feature not normally required by most users, as all chips are factory calibrated to
the most accurate setting. Generally the only use for calibfreq is to slightly adjust
the frequency for serial transactions with third party devices. A larger positive
value increases speed, a larger negative value decreases speed. Try the values -4 to
+ 4 first, before going to a higher or lower value.

Use this command with extreme care. It can alter the frequency of the PICAXE
chip beyond the serial download tolerance - in this case you will need to perform
a ‘hard-reset’ in order to carry out a new download.

The calibfreq is actually a pseudo command that performs a ‘poke’ command on
the microcontrollers OSCTUNE register (address $90).

When the value is 0 to 31 the equivalent BASIC code is
poke $90, factor
pause 2

When the factor is -31 to -1 the equivalent BASIC code is
let bl2 = 64 - factor
poke $90, factor
pause 2

Note that in this case variable b12 is used, and hence corrupted, by the
command. This is necessary to poke the OSCTUNE register with the correct value.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 III

OO0 n0MnQ

]
08M
18X
28X
40X

Ogoooooood

BASIC COMMANDS |

count

Syntax:

COUNT pin, period, variable

- Pin s avariable/constant (0-7) which specifies the input pin to use.
- Period is a variable/constant (1-65535ms at 4MHz).

- Variable receives the result (use a word variable) (0-65535).

Function:
Count pulses on an input pin.

Information:

Count checks the state of the input pin and counts the number of low to high
transitions within the time ‘period’ A word variable should be used for ‘variable’.
At 4MHz the input pin is checked every 20us, so the highest frequency of pulses
that can be counted is 25kHz, presuming a 50% duty cycle (ie equal on-off time).

Take care with mechanical switches, which may cause multiple ‘hits’ for each
switch push as the metal contacts ‘bounce’ upon closure.

Affect of increased clock speed:

The period value is 0.5ms at 8MHz and 0.25ms at 16MHz.

At 8MHz the input pin is checked every 10us, so the highest frequency of pulses
that can be counted is 50kHz, presuming a 50% duty cycle (ie equal on-off time).
At 16MHz the input pin is checked every 5us, so the highest frequency of pulses
that can be counted is 100kHz, presuming a 50% duty cycle (ie equal on-off
time).

Example:

| oop:
count 1, 5000, wi ‘ count pulses in 5 seconds
debug wi * display val ue
goto | oop ‘ else loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

debug

debiug
Syntax:
DEBUG {var}
- Varis an optional variable value (e.g. b1). It's value is not of importance and
is included purely for compatibility with older programs.

Function:

Display variable information in the debug window when the debug command is
processed. Byte information is shown in decimal, binary, hex and ascii notation.
Word information is shown in decimal and hex notation.

Information:

The debug command uploads the current variable values for *all* the variables
via the download cable to the computer screen. This enables the computer screen
to display all the variable values in the microcontroller for debugging purposes.
Note that the debug command uploads a large amount of data and so
significantly slows down any program loop.

To display user defined debugging messages use the ‘sertxd’ command instead.

Affect of increased clock speed:

When using an 8 or 16Mhz clock speed ensure the software has been set with the
correct speed setting to enable successful communication between
microcontroller and PC.

Example:
| oop:
let b1 = bl +1 * increnment value of bl
readadc 2, b2 ‘ read an anal ogue val ue
debug bl * display values on conputer screen
pause 500 ‘ wait 0.5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

data

eeprom

Syntax:

DATA {location},(data,data...)

EEPROM {location},(data,data...)

- Location is an optional constant (0-255) which specifies where to begin
storing the data in the eeprom. If no location is specified, storage continues
from where it last left off. If no location was initially specified, storage begins
at 0.

- Data are constants (0-255) which will be stored in the eeprom.

Function:

Preload EEPROM data memory. If no EEPROM command is used the values are
automatically cleared to the value 0. The keywords DATA and EEPROM have
identical functions and either can be used.

Information:
This is not an instruction, but a method of pre-loading the microcontrollers data
memory. The command does not affect program length.

With the PICAXE-08, 08M and 18 the data memory is shared with program
memory. Therefore only unused bytes may be used within a program. To establish
the length of the program use ‘Check Syntax’ from the PICAXE menu. This will
report the length of program. Available data addresses can then be used as
follows:

PICAXE-08 0to (127 - number of used bytes)
PICAXE-08M 0 to (255 - number of used bytes)
PICAXE-18 0 to (127 - number of used bytes)

With the following microcontrollers the data memory is completely separate
from the program and so no conflicts arise. The number of bytes available varies
depending on microcontroller type as follows.

PICAXE-28, 28A 0to 63
PICAXE-28X, 40X 0to 127
PICAXE-18A, 18X 0 to 255
Example:
EEPROM O, (“Hel 1 0 World”) ‘ save val ues in EEPROM
mai n:
for bO =0to 10 ‘ start a |l oop
read b0, bl ‘ read val ue from EEPROV
serout 7, N2400, (bl) ‘' transnmit to serial LCD nodul e
next b0 ‘ next character

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 Iﬂ

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

end

Syntax:
END

Function:

Sleep terminally until the power cycles (program re-runs) or the PC connects for a
new download. Power is reduced to an absolute minimum (assuming no loads
are being driven) and internal timers are switched off.

Information:

The end command places the microcontroller into low power mode after a
program has finished. Note that as the compiler always places an END instruction
after the last line of a program, this command is rarely required.

The end command switches off internal timers, and so commands such as servo
and pwmout that require these timers will not function after an end command
has been completed.

If you do not wish the end command to be carried out, place a ‘stop’ command at
the bottom of the program. The stop command does not enter low power mode.

The main use of the end command is to separate the main program loop from
sub-procedures as in the example below. This ensures that programs do not
accidentally ‘fall into’ the sub-procedure.

Example:
| oop
let b2 =15 ‘ set b2 value
pause 2000 ‘“wait for 2 seconds
gosub flsh ‘ call sub-procedure
let b2 =5 ‘ set b2 value
pause 2000 ‘“wait for 2 seconds
end ‘ stop accidentally falling into sub
flsh
for bO =1to b2 * define loop for b2 tinmes
high 1 ‘ switch on output 1
pause 500 ‘“ wait 0.5 seconds
low 1 ‘ switch off output 1
pause 500 ‘“ wait 0.5 seconds
next b0 ‘ end of |oop
return “ return fromsub-procedure

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

for...next

Syntax:
FOR variable = start TO end {STEP {-}increment}
(other program lines)

NEXT {variable}

- Variable will be used as the loop counter

- Start is the initial value of variable

- End is the finish value of variable

- Increment is an optional value which overrides the default counter value of
+1. If Increment is preceeded by a ‘-, it will be assumed that Start is greater
than End, and therefore increment will be subtracted (rather than added) on
each loop.

Function:
Repeat a section of code within a FOR-NEXT loop.

Information:

For...next loops are used to repeat a section of code a number of times. When a
byte variable is used, the loop can be repeated up to 255 times. Every time the
‘next’ line is reached the value of variable is incremented (or decremented) by the
step value (+1 by default). When the end value is exceeded the looping stops and
program flow continues from the line after the next command.

For...next loops can be nested 8 deep (remember to use a different variable for
each loop).

Example:
| oop:
for bO =1to 20 * define loop for 20 times
high 1 ‘ switch on output 1
pause 500 ‘ wait 0.5 seconds
low 1 ‘ switch off output 1
pause 500 ‘ wait 0.5 seconds
next b0 ‘ end of |oop
pause 2000 ‘“wait for 2 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nn

18A
18X
28A
28X
40X

Oooooooood

BASIC COMMANDS |

forward

Syntax:
FORWARD motor
- Motor is the motor name A or B.

Function:
Make a motor output turn forwards

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘high 4 : low 5’ (motor
A) or ‘high 6: low 7’ (motor B). This command is not normally used outside the

classroom.

Example:
forward A ‘ nmotor a on forwards
wait 5 ‘ wait 5 seconds
backward A ‘ motor a on backwards
wait 5 ‘ wait 5 seconds
halt A ‘ motor A reverse
wait 5 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

gosub

Syntax:
GOSUB address

- Address is a label which specifies where to gosub to.

Function:

Go to sub procedure at ‘address’, then ‘return’ at a later point.

Information:

The gosub (‘goto subprocedure’) Standard | Interrupt | o
S - Gosub Gosub

command is a ‘temporary’ jump to a

separate section of code, from which PICAXE-08 16 0 4

you will later return (via the return

command). Every gosub command PICAXE-08M 15 1 4

MUST be matched by a corresponding

PICAXE-18 16 0 4
return command.

PICAXE-18A 15 1 4
Do not confuse with the ‘goto’
command which is a permanent jump | PICAXE-18X | 15 or 255 1 4
to a new program location.

PICAXE-28A 15 1 4
The table shows the maximum

PICAXE-28X | 15or 255 1 4

number of gosubs available in each
microcontroller . Gosubs can be PICAXE-40X | 15 or 255 1 4
nested 4 deep (ie there is a four level

stack available in the microcontroller).
Note that for the option for 255 gosubs on the X parts you will require PICAXE-
18X firmware >=8.2 or PICAXE-28X/40X firmware >=7.4

Sub procedures are commonly used to reduce program space usage by putting
repeated sections of code in a single sub-procedure. By passing values to the sub-
procedure within variables, you can repeat a section of code from multiple places
within the program. See the sample below for more information.

Example:

| oop
let b2 =15
pause 2000
gosub flsh
let b2 =5
pause 2000
gosub flsh
end

flsh

for bO =1 to b2
high 1
pause 500
| ow 1
pause 500

next b0

return

‘

set b2 val ue

wait for 2 seconds

cal | sub-procedure

set b2 val ue

wait for 2 seconds

cal | sub-procedure

stop accidentally falling into sub

define loop for b2 tines
switch on output 1

wait 0.5 seconds

switch off output 1

wai t 0.5 seconds

end of |oop

return from sub-procedure

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

goto

Syntax:
GOTO address

- Address is a label which specifies where to go.

Function:
Go to address.

Information:

The goto command is a permanent ‘jump’ to a new section of the program. The

jump is made to a label.

Example:

| oop
high 1
pause 5000
low 1
pause 5000
goto | oop

‘

switch on output 1
wait 5 seconds
switch of f output 1
wait 5 seconds

| oop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

18A
18X
28A
28X
40X

Oooooooood

BASIC COMMANDS |

halt

Syntax:
HALT motor
- Motor is the motor name A or B.

Function:
Make a motor output stop.

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘low 4 : low 5’ (motor A)
or ‘low 6: low 7’ (motor B). This command is not normally used outside the

classroom.

Example:
forward A ‘ nmotor a on forwards
wait 5 ‘ wait 5 seconds
backward A ‘ motor a on backwards
wait 5 ‘ wait 5 seconds
halt A ‘ motor A reverse
wait 5 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

high
Syntax:
HIGH pin

- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin output high.

Information:

The high command switches an output on (high).
On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this
command also automatically configures the pin as an output.

Example:

loop: high 1
pause 5000
low 1
pause 5000
goto | oop

‘

switch on output 1
wait 5 seconds
switch of f output 1
wait 5 seconds

| oop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 EI

O O h high portc

O - | .

o B - Syntax: _

0 - B HIGH PORTC pin

O - | - Pin is a variable/constant (0-7) which specifies the i/o pin to use.
O - |

o = H Function:

O 28X o Make pin on portc output high.

o 40X QH

Information:
The high command switches a portc output on (high).

Example:

| oop: high portc 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
| ow portc 1 ‘ switch off output 1
pause 5000 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 n0MnQ

Ogoooooood

BASIC COMMANDS |

i2cslave

Syntax:

12CSLAVE slave, speed, address

- Slave is the i2c slave address

- Speed is the keyword i2cfast (400kHz) or i2cslow (100kHz) at 4Mhz
- Address is the keyword i2cbyte or i2cword

Function:
The i2cslave command is used to configure the PICAXE pins for i2c use and to
define the type of i2c device to be addressed.

Description:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

If you are using a single i2c device you generally only need one i2cslave
command within a program. With the PICAXE-18X device you should issue the
command at the start of the program to configure the SDA and SCL pins as inputs
to conserve power.

After the i2cslave has been issued, readi2c and writel2c can be used to access the
i2c device.

Slave Address
The slave address varies for different i2c devices (see table below). For the
popular 24LCxx series serial EEPROMSs the address is commonly %1010Xxxx.

Note that some devices, e.g. 24LC16B, incorporate the block address (ie the
memory page) into bits 1-3 of the slave address. Other devices include the
external device select pins into these bits. In this case care must be made to
ensure the hardware is configured correctly for the slave address used.

Bit O of the slave address is always the read/write bit. However the value entered
using the i2cslave command is ignored by the PICAXE, as it is overwritten as
appropriate when the slave address is used within the readi2c and writei2c
commands.

Speed

Speed of the i2¢ bus can be selected by using one of the two keywords i2cfast or
i2cslow (400kHz or 100kHz). The internal slew rate control of the
microcontroller is automatically enabled at the 400kHz speed (28/40X). Note
that the 18X internal architecture means that the slower speed is always used with
the 18X, as it is not capable of processing at the faster speed.

Affect of Increased Clock Speed:
Ensure you modify the speed keyword (i2cfast8, i2cslow8) at 8MHz or
(i2cfast16, i2cslowl6) at 16MHz for correct operation.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 m

Address Size

i2c devices commonly have a single byte (i2cbyte) or double byte (i2cword)
address. This must be correctly defined for the type of i2¢ device being used. If
you use the wrong definition erratic behaviour will be experienced.

When using the i2cword address size you must also ensure the ‘address’ used in
the readi2c and writei2c commands is a word variable.

Settings for some common parts:

Device Type Slave Speed Address
24L.C01B EE 128 %1010xxxx i2cfast i2cbyte
241L.C02B EE 256 %1010xxxx i2cfast i2cbyte
24L.C04B EE 512 %1010xxbx i2cfast i2cbyte
241.C08B EE 1kb %1010xbbx i2cfast i2cbyte
24L.C168B EE 2kb %1010bbbx i2cfast i2cbyte
24L.C64 EE 8kb %1010dddx i2cfast i2cword
241.C256 EE 64kb %1010dddx i2cfast i2cword
DS1307 RTC %1101000x i2cslow i2cbyte
MAX6953 5x7 LED %101ddddx i2cfast i2cbyte
AD5245 Digital Pot %010110dx i2cfast i2cbyte
SRF08 Sonar %1110000x i2cfast i2cbyte
AXEO33 12C LCD $C6 i2cslow i2cbyte
CMPS03 Compass %21100000x i2cfast i2cbyte
SPEO30 Speech %1100010x i2cfast i2cbyte
x = don’t care (ignored)

b = block select (selects internal memory page within device)
d = device select (selects device via external address pin polarity)

See readi2c or writei2c for example program for DS1307 real time clock.

4k7 4k7

<
T
<
T

Note the 12C device
may have chip enable,
write protect and/or
address pins that will
also require connection
to OV or V+ as
appropriate.

Clock - SCL e SCL
Data - SDA SDA

PICAXE

[=]
<

I2C DEVICE

ov

NB: many project boards
are pre-fitted with pull-
down resistors on the input
pins. These must be
removed to use the 12C
device like this.

ov

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

if...then ¢:v

if...and...then

if...or...then

Syntax:

IF variable ?? value {AND/OR variable ?? value ...} THEN address

- Variable(s) will be compared to value(s).

- Value is a variable/constant.

- Address is a label which specifies where to go if condition is true.

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

1= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to
Function:

Compare and conditionally jump to a new program position.

Information:

The if...then command is used to test input pin variables (or general variables) for
certain conditions. If these conditions are met program flow jumps to the new
label. If the condition is not met the command is ignored and program flow
continues on the next line.

When using inputs the input variable (pinl, pin2 etc) must be used (not the
actual pin name 1, 2 etc.) i.e. the line must read ‘if pinl = 1 then..;, not‘if 1 =1
then..!

The if...then command only checks an input at the time the command is
processed. Therefore it is normal to put the if...then command within a program
loop that regularly scans the input. For details on how to permanently scan for an
input condition using interrupts see the ‘setint’ command.

Examples:
Checking an input within a loop.

| oop:
if pin0 =1then flsh * junp to flshif pin0 is high
goto | oop ‘ else loop back to start
flsh: high 1 ‘ switch on output 1
pause 5000 ‘“ wait 5 seconds
low 1 ‘ switch off output 1
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 m

Multiple compares can be combined with the AND and OR keywords.

2 input AND gate
if pinl = 1 and pin2 = 1 then label

3 input AND gate
if pin0 =1 and pinl =1 and pin2 = 1 then label

2 input OR gate
if pinl =1 or pin2 =1 then label

analogue value between certain values
readadc 1,b1
if b1 >=100 and bl <= 200 then label

To read the whole input port at once the variable ‘pins’ can be used
if pins = %10101010 then label

To read the whole input port and mask individual inputs (e.g. 6 and 7)

let b1l = pins & %11000000
if b1 = %11000000 then label

The words is (=), on (1) and off (0) can also be used with younger students.

| oop:
if pin0Ois onthen flsh® junp to flshif pin0 is high
goto | oop ‘ else loop back to start
flsh: high 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
low 1 ‘ switch off output 1
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nn

Oooooooood

BASIC COMMANDS |

infrain

Syntax:
INFRAIN

Function:
Wait until a new infrared command is received.

Description:

This command is primarily used to wait for
a new infrared signal from the infrared TV
style transmitter. It can also be used with
an infraout signal from a separate PICAXE-
08M chip. All processing stops until the
new command is received. The value of the
command received is placed in the
predefined variable ‘infra.

The infra-red input is input 0 on all parts
that support this command.

The variable ‘infra’ is separate from the
other byte variables.

After using this command you may have to

LEDO020
_

=

WN =

perform a ‘hard reset’ to download a new
program to the microcontroller. See the

Serial Download section for more details.

Affect of Increased Clock Speed:

This command will only function at 4AMHz

Use of TVRO010 Infrared Remote Control:

The table shows the value that will be

placed into the variable ‘infra’ depending

on which key is pressed on the transmitter.

Before use (or after changing batteries) the

TVRO10 transmitter must be programmed

with ‘Sony’ codes as follows:

1. Insert 3 AAA size batteries, preferably

alkaline.

Press ‘C’. The LED should light.

Press ‘2" The LED should flash.

Press ‘1. The LED should flash.

5Vo o
~ 14
1@ input 0 only
‘e i PICAXE
+
4.7uF
ovo T o
Key Value

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
P+ 10
0 11
V+ 12
P- 13
10+ 14
V- 15
Mute 16
Power 17

ok~ wb

Press ‘2" The LED should flash and
then go out.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

BASIC COMMANDS |

Section 2 m

| oop:

swonl:
swon2

swon3:

swof f 1

swof f 2

swof f 3

Example:
infrain
if infra=
if infra=
if infra=
if infra=
if infra=
if infra=
goto | oop
hi gh
goto
hi gh
goto
hi gh
goto
low 1
goto
| ow 2
goto
| ow 3
goto

1 then
2 then
3 then
4 then
5 then
6 then

1
| oop
2
| oop
3
| oop

| oop

| oop

| oop

swonl
swon2
swon3
swof f 1
swof f 2
swof f 3

"wait for new signa
"switch
"switch
"switch
"switch
"switch
"switch

on 1
on 2
on 3
off 1
off 2
off 3

>

IEERMEEEE

3] o] [e)[=][r] O
(o] (5] (5] [e] [0 [«] [¢]

revolution

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

OO0 nn

Oooooooood

BASIC COMMANDS |

infrain2

Syntax:
INFRAIN2

Function:
Wait unti a new infrared command is received.

Description:

This command is used to wait for an
infraout signal from a separate PICAXE-
08M chip. It can also be used with an 5V 0

WN =

=)

infrared signal from the infrared TV style
transmitter. All processing stops until the
new command is received. The value of the
command received is placed in the

predefined variable ‘infra’ This will be a 1@

number between 0 and 127. See the i
infraout command for more details about
the values that will be received from the

oV o O

¢ |
~ x
x~ S
< @
™
input 3 only
2@ PICAXE
+
4.7uF
I L

TVRO10 remote control.

On the PICAXE-08M ‘infra’ is another name for ‘b13’ - it is the same variable.
The infra-red input is fixed to input 3 on the PICAXE-08M.

After using this command you may have to perform a ‘hard reset’ to download a
new program to the microcontroller. See the Serial Download section for more

details.

Affect of Increased Clock Speed:

This command will only function at 4MHz. Use a setfreq m4 command before

this command if using 8MHz speed,

Example:
| oop:
i nfrain2 "wait for new signal
if infra =1 then swonl "switch on 1
if infra =2 then swon2 "switch on 2
if infra =4 then swffl "switch off 1
if infra =25 then swoff2 "switch off 2
goto | oop
swonl: high 1
goto | oop
swonz2: hi gh 2
goto | oop
swof f 1: low 1
goto | oop
swof f 2: I ow 2
goto | oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

Oooooooood

BASIC COMMANDS |

infraout

Syntax:

INFRAOUT device,data

- device is a constant/variable (valid device ID 1-31)
- data is a constant/variable (valid data 0-127)

Function:
Transmit an infra-red signal, modulated at 38kHz.

Description:

This command is used to transmit the infra-red data to Sony ™ device (can also be
used to transmit data to another PICAXE that is using the infrain or infrain2
command). Data is transmitted via an infra-red LED (connected on output 0)
using the SIRC (Sony Infra Red Control) protocol.

device - 5 bit device ID (0-31)
data - 7 bit data (0-127)

When using this command to transmit data to another PICAXE the device ID
used must be value 1 (TV). The infraout command can be used to transmit any of
the valid TV command 0-127. Note that the Sony protocol only uses 7 bits for
data, and so data of value 128 to 255 is not valid.

Therefore the valid infraout command for use with infrain2 is

infraout 1,x * (where x = 0 to 127)

Sony SIRC protocol:
The SIRC protocol uses a 38KHz modulated infra-red signal consisting of a start

Start Data0 | Datal | Data2 | Data3 | Data4 | Data5 | Data6

DO ID1 ID2 ID3 D4

l2or|12or|12o0r|120r|120r|120r|120r|120r|120r|120r|120r|120r

2.4ms 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms

bit (2.4ms) followed by 12 data bits (7 data bits and 5 device ID bits). Logic level
1 is transmitted as a 1.2 ms pulse, logic 0 as a 0.6ms pulse. Each bit is separated
by a 0.6ms silence period.

Example:

All commercial remote controls repeat the signal every 45ms whilst the button is
held down. Therefore when using the PICAXE system higher reliability may be
gained by repeating the transmission (e.g. 10 times) within a for..next loop.

forbl=1to 10
infraout 1,5
pause 45

next bl

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

Www.picaxe.co.uk

Section 2 E

BASIC COMMANDS |

Interaction between infrain, infrain2 and infraout command.

Infrain and Infraout

The original infrain command
was designed to react to signals
from the TV style remote control
TVRO010. Therefore it only
acknowledges the data sent from
the 17 buttons on this remote
(1-9, 0. 10+, P+, P-, V+, V-,
MUTE, PWR) with a value
between 1 and 17.

The infraout command can be
used to ‘emulate’ the TVR010
remote to transit signals that will
be acceptable for the infrain
command. The values to be used
for each TV remote button are
shown in the table.

Infrain2 and Infraout

The infrain2 command will react
to any of the valid TV data
commands (0 to 127).

The infraout command can be
used to transmit any of the valid
TV command 0-127. Note that
the Sony protocol only uses 7
bits for data, and so data of 128
to 255 is not valid.

Therefore the valid infraout
command for use with infrain2
is (where x =0 to 127)
infraout 1,x

Affect of Increased Clock Speed:

TVR010 TV infraout equivalent _infrain i_nfrain2
Remote variable data variable data
Control command value value

1 infraout 1,0 1 0
2 infraout 1,1 2 1
3 infraout 1,2 3 2
4 infraout 1,3 4 3
5 infraout 1,4 5 4
6 infraout 1,5 6 5
7 infraout 1,6 7 6
8 infraout 1,7 8 7
9 infraout 1,8 9 8
P+ infraout 1,16 10 16
0 infraout 1,9 1 9
V+ infraout 1,18 12 18
P- infraout 1,17 13 17
10+ infraout 1,12 14 12
V- infraout 1,19 15 19
MUTE infraout 1,20 16 20
PWR infraout 1,21 17 21

This command will only function at 4AMHz.

Common Sony Device IDs.:
TV 1
VTR1

Text

Widescreen
MDP / Laserdisk
VTR2

~N o b WN

VTR3

Surround Sound 12
Audio 16
CD Player 17
Pro-Logic 18
DVD 26

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk

reVO I uti O n Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 BI

BASIC COMMANDS |

Button infraout data for a typical Sony TV (device ID 1)

000
001
002
003
004
005
006
007
008
009
on

016
017
018
019
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
038
039
041
042
047
048
054
058
059
064
065
066

1 button

2 button

3 button

4 button

5 button

6 button

7 button

8 button

9 button

10 button/0 button
Enter

channel up
channel down
volume up

volume down

Mute

Power

Reset TV

Audio Mode:Mono/SAP/Stereo
Picture up

Picture down
Color up

Color down
Brightness up
Brightness down
Hue up

Hue down
Sharpness up
Sharpness down
Select TV tuner
Balance Left
Balance Right
Surround on/off
Aux/Ant

Power off

Time display

Sleep Timer
Channel Display
Channel jump
Select Input Videol
Select Input Video2
Select Input Video3

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

Button infraout data for a typical Sony TV (continued...)

074
078
079
088
089
091
092
094
095
096
097
098
099
107
12
13
114
115
116
n7
120
121
125
127

Noise Reduction on/off
Cable/Broadcast
Notch Filter on/off

PIP channel up

PIP channel down

PIP on

Freeze screen
PIP position
PIP swap
Guide

Video setup
Audio setup
Exit setup
Auto Program
Treble up
Treble down
Bass up

Bass down

+ key

- key

Add channel
Delete channel

Trinitone on/off
Displays a red RtestS on the screen

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk

revolution oumss:

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

Button infraout data for a typical Sony VCR (device ID 2 or 7)

000
001
002
003
004
005
006
007
008
009
010
o1
012
013
020
021
022
023
024
025
026
027
028
029
032
035
040
041
042
045
047
048
049
060
070
078
083
106
107

1 button

2 button

3 button

4 button

5 button

6 button

7 button

8 button

9 button

10 button/0 button
11 button

12 button

13 button

14 button

X 2 play w/sound
power

eject
L-CH/R-CH/Stereo
stop

pause

play

rewind

FF

record

pause engage

X 1/5 play

reverse visual scan
forward visual scan
TVIVTR

VTR from TV
power off

single frame reverse/slow reverse play
single frame advance/slow forward play
aux

counter reset
TV/VTR

index (scan)

edit play
mark

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

oo oood

BASIC COMMANDS |

input

Syntax:
INPUT pin

- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin an input.

Information:

This command is only required on microcontrollers with programmable input/
output pins (e.g. PICAXE-08M). This command can be used to change a pin that
has been configured as an output back to an input.

All pins are configured as inputs on first power-up (apart from outO on the
PICAXE-08, which is always an output).

Example:

| oop:
input 1
reverse 1
reverse 1
output 1

make
make
make
make

pin
pin
pin
pin

i nput
out put
i nput
out put

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

Oooooooood

BASIC COMMANDS |

Syntax:
KEYIN

Function:
Wait until a new keyboard press is received.

Information:

This command is used to wait for a new key press from a computer keyboard
(connected directly to the PICAXE - not the keyboard used whilst programming,
see keyled command for connection details). All processing stops until the new
key press is received. The value of the key press received is placed in the
predefined variable ‘keyvalue’.

Note the design of the keyboard means that the value of each key is not logical,
each key value must be identified from the table on the next page. Some keys use
two numbers, the first $EO is ignored by the PICAXE and so keyvalue will return
the second number. Note all the codes are in hex and so should be prefixed with
$ whilst programming. The PAUSE and PRNT SCRN keys cannot be used reliably
as they have a special long multi-digit code.. Also note that some keys may not
work correctly when the ‘Nums Lock’ LED is set on with the keyled command.

The sample file ‘keyin.bas’ (installed in the \samples folder) provides details on
how you can convert the key presses into ASCII characters by means of a look up
table.

After using this command you may have to perform a ‘hard reset’ to download a
new program to the microcontroller. See the Serial Download section for more
details.

Affect of Increased Clock Speed:
This command will only function at 4AMHz.

Example:
| oop:
keyin "wait for new signal
i f keyvalue = $45 then swonl "switch on 1
i f keyvalue = $16 then swon2 "switch on 2
if keyvalue = $25 then swoff1l "switch off 1
if keyvalue = $2E then swoff2 "switch off 2
goto | oop
swonl: high 1
goto | oop
swon2: hi gh 2
goto | oop
swof f 1: low 1
goto | oop
swof f 2: | ow 2
goto | oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

KEY CODE KEY CODE KEY CODE

A 1C 9 46 [54
B 32 OE INSERT E0,70
C 21 - 4E HOME E0.6C
D 23 = 55 PG UP E0.7D
E 24 \ 5D DELETE E0,71
F 2B BKSP 66 END E0,69
G 34 SPACE 29 PG DN E0,7A
H 33 TAB 0D U ARROW E0.75
I 43 CAPS 58 L ARROW E0.6B
J 3B L SHIFT 12 D ARROW E0,72
K 42 L CTRL 14 R ARROW E0,74
L 4B L GUI EO,IF NUM 77
M 3A LALT 11 KP/ E0.4A
N 31 R SHFT 59 KPp* 7C
O 44 R CTRL E0,14 KP- 7B
P 4D R GUI E0,27 KP + 79
Q 15 RALT EO0,11 KPEN E0.5A
R 2D APPS E0.2F KP. 71
S 1B ENTER 5A KPO 70
T 2C ESC 76 KP1 69
U 3C F1 05 KP2 72
v 2A F2 06 KP3 TA
w 1D F3 04 KP4 6B
X 22 F4 06 KP5 73
Y 35 F5 03 KP6 74
Z 1A F6 0B KP7 6C
0 45 F7 83 KP38 75
1 16 F8 0A KP9 7D
2 1E F9 01] 5B
3 26 F10 09 H 4C
4 25 F11 78 ! 52
5 2E F12 07 . 41
6 36 PRNT SCR 7 49
7 3D SCROLL 7E / 4A
8 3E PAUSE 7

revolutio

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk

Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 Iu

g 0O B keyled

O - o)

O . H Syntax:

O - 0O keyled mask

O 18A [- Mask is a variable/constant which specifies the LEDs to use.
o 18X o

- ggQ - Function:

O |

O 40X 5 Set/clear the keyboard LEDs

Information:

This command is used to control the LEDs on a computer keyboard (connected
directly to the PICAXE - not the keyboard used whilst programming). The mask
value sets the operation of the LEDs.

Mask is used as follows:

Bit0 - Scroll Lock (1=0on, 0=0ff)

Bit1 - Num Lock (1=0n, 0=0ff)

Bit2 - Caps Lock (1=on, 0=0ff)

Bit 3-6 - Not Used

Bit 7 - Disable Flash (1=no flash, O=flash)

On reset mask is set to 0, and so all three LEDs will flash when the ‘keyin’
command detects a new key hit. This provides the user with feedback that the key
press has been detected by the PICAXE. This flashing can be disabled by setting
bit 7 of mask high. In this case the condition of the three LEDs can be manually
controlled by setting/clearing bits 2-0.

Affect of Increased Clock Speed:
This command will only function at 4AMHz.

Example:
| oop:
keyl ed 940000111 * all LEDs on
pause 500 ‘ pause 0.5s
keyl ed 440000000 ‘ all LEDs off
pause 500 ‘ pause 0.5s
goto | oop ‘ loop
5V »
4k7 4k7
4
Plug (on cable) E v AT
8:) Clock[g @ input6 é
E Data input? O
fl ! o
Socket (on pcb) X oV oV
3
6-pin Mini-DIN (PS/2)
1 - Data (to PICAXE input7))
2 - Not used NB: most project boards
3 -0V Ground are pre-fitted with pull-
4 - +5V Supply down resistors on the input
5 - Clock (to PICAXE input6) pins. These must be
6 - Not used removed to use the
keyboard like this.
ov

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 I!I

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

let

let
Syntax:
{LET} variable = {-} value ?? value ...
- Variable will be operated on.
- Value(s) are variables/constants which operate on variable.

Function:
Perform variable manipulation (wordsize-to-wordsize). Maths is performed
strictly from left to right. The ‘let’ keyword is optional.

Information:

The microcontroller supports word (16 bit) mathematics. Valid integers are O to
65335. All mathematics can also be performed on byte (8 bit) variables (0-255).
The microcontroller does not support fractions or negative numbers.

However it is sometimes possible to rewrite equations to use integers instead of
fractions, e.g.

letwl=w2/5.7

is not valid, but

letwl =w2 *10/57

is mathematically equal and valid.

The mathematical functions supported are:

+ ; add

- ; subtract

* ; multiply (returns low word of result)

kel ; multiply (returns high word of result)

/ ; divide (returns quotient)

1/ (or %) ; modulus divide (returns remainder)

MAX ; limit value to a maximum value

MIN ; limit value to a minimum value

& (or AND) ; bitwise AND

| (or OR) ; bitwise OR (typed as SHIFT +\ on UK keyboard)

n (or XOR) ; bitwise XOR (typed as SHIFT + 6 on UK keyboard)
&/ (or ANDNOT); bitwise AND NOT (NB this is not the same as NAND)

|/ (or ORNOT) ; bitwise OR NOT (NB this is not the same as NOR)

N (or XNOR) ; bitwise XOR NOT (same as XNOR)

There is no shift left (<<) or shift right (>>) function. However the same function
can be achieved by multiplying by 2 (shift left) or dividing by 2 (shift right).

All mathematics is performed strictly from left to right. It is not possible to
enclose part equations in brackets e.g.

letwl=w2/(2+Db3)
is not valid. This would be entered as

letb3= 2+ b3

let wl=w2/b3

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

BASIC COMMANDS |

The addition (+) and subtraction (-) commands work as expected. Note that the
variables will overflow without warning if the maximum or minimum value is
exceeded (0-255 for bytes variables, 0-65335 for word variables).

When multiplying two 16 bit word numbers the result is a 32 bit (double word)
number. The multiplication (*) command returns the low word of a word*word
calculation. The ** command returns the high word of the calculation.

The division (/) command returns the quotient (whole number) word of a
word*word division. The modulus (// or %) command returns the remainder of
the calculation.

The MAX command is a limiting factor, which ensures that a value never exceeds
a preset value. In this example the value never exceeds 50. When the result of the
multiplication exceeds 50 the max command limits the value to 50.
let b1 = b2 * 10 MAX 50

if b2 = 3 then b1 =30

if b2 = 4 then b1 =40

if b2 =5 then b1l =50

if b2 = 6 then b1 =50 “ limited to 50

The MIN command is a similar limiting factor, which ensures that a value is never
less than a preset value. In this example the value is never less than 50. When the
result of the divison is less than 50 the min command limits the value to 50.
let b1 = 100 / b2 MIN 50
if b2 = 1 then b1 = 100
if b2 = 2 then bl =50
if b2 =3 then b1l =50 ‘ limited to 50

The AND, OR, XOR, XNOR commands function bitwise on each bit in the
variables. ANDNOT and ORNOT mean, for example ‘A AND the NOT of B’ etc.
This is not the same as NOT (A AND B), as with the traditional NAND command.

A common use of the AND (&) command is to mask individual bits:

let b1l = pins & %00000110

This masks inputs 1 and 2, so the variable only contains the data of these two
inputs.

Example:
| oop:
let bO = b0 + 1 ‘increnment b0
sound 7, (b0, 50) ‘ make a sound
if b0 > 50 then rest ‘ after 50 reset
goto | oop ‘ loop back to start
rest:
let bO = b0 max 10 “limt bO back to 10
‘ as 10 is the maxi mum val ue
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0NnOnNn0n0n0n

EERERERERERERERE

BASIC COMMANDS |

let dirs =

let dirsc =

Syntax:

{LET} dirs = value

{LET} dirsc = value

- Value(s) are variables/constants which operate on the data direction register.

Function:
Configue pins as inputs or outputs (let dirs =) (PICAXE-08/08M)
Configue pins as inputs or outputs on portc (let dirsc =) (PICAXE-28X/40X)

Information:

Some microcontrollers allow inputs to be configured as inputs or outputs. In
these cases it is necessary to tell the microcontroller which pins to use as inputs
and/or outputs (all are configured as inputs on first power up). There are a
number of ways of doing this:

1) Use the input/output/reverse commands.

2) Use an output command (high, pulsout etc) that automatically configures the
pin as an output.

3) Use the let dirs = statement.

When working with this statement it is conventional to use binary notation. With
binary notation pin 7 is on the left and pin O is on the right. If the bit is set to O
the pin wil be an input, if the bit is set to 1 the pin will be an output.

Note that the 8 pin PICAXE have some pre-configured pins (e.g. pin O is always
an output and pin 3 is always an input). Adjusting the bits for these pins will have

no affect on the microcontroller.

Example:

let dirs
| et pins

990000011 ‘ switch pins 0 and 1 to outputs
990000011 ‘ switch on outputs 0 and 1

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 I:I

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

let pins =

let pinsc =

Syntax:

{LET} pins = value

{LET} pinsc = value

- Value(s) are variables/constants which operate on the output port.

Function:
Set/clear all outputs on the main output port (let pins =).
Set/clear all outputs on portc (let pinsc =) (PICAXE-28X/40X only)

Information:

High and low commands can be used to switch individual outputs high and low.
However when working with multiple outputs it is often convenient to change all
outputs simultaneously. When working with this statement it is conventional to
use binary notation. With binary notation output?7 is on the left and outputO is
on the right. If the bit is set to 0 the output will be off (low), if the bitissetto 1
the output will be on (high).

Do not confuse the input port with the output port. These are separate ports on
all except the 8 pin PICAXE. The command

let pins = pins

means ‘make the output port the same as the input port..

Note that on devices that have input/output bi-directional pins (08/08M), this
command will only function on output pins. In this case it is necessary to
configure the pins as outputs (using a let dirs = command) before use of this
command.

Example:
et pins = 9%1000011 ‘ switch outputs 7,6,0,1 on
pause 1000 ‘“ wait 1 second
I et pins = %0000000 “ switch all outputs off

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

lookdown

Syntax:

LOOKDOWN target,(valueO,valuel...valueN),variable

- Target is a variable/constant which will be compared to Values.
- Values are variables/constants.

- Variable receives the result (if any).

Function:
Get target’s match number (0-N) into variable (if match found).

Information:

The lookdown command should be used when you have a specific value to
compare with a pre-known list of options. The target variable is compared to the
values in the bracket. If it matches the 5th item (value4) the number ‘4’ is
returned in variable. Note the values are numbered from 0 upwards (not 1
upwards). If there is no match the value of variable is left unchanged.

In this example the variable b2 will contain the value 3 if b1 contains “d” and the
value 4 if b1 contains “e”

Example:

| ookdown b1, (“abcde”), b2

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

lookup

Syntax:

LOOKUP offset,(data0,datal...dataN),variable

- Offset is a variable/contant which specifies which data# (0-N) to place in
Variable.

- Dataare variables/constants.
- Variable receives the result (if any).

Function:
Lookup data specified by offset and store in variable (if in range).

Description:

The lookup command is used to load varaiable with different values. The value to
be loaded in the position in the klookup table defined by offset. In this example
if b0 = 0 then b1 will equal “a”, if b0 =1 then b1 will equal “b” etc. If offset
exceeds the number of entries in the lookup table the value of variable is
unchanged.

Example:
| oop:
let bO = b0 + 1 ‘ increnent b0
| ookup b0, (“abcd”),bl * put ascii character into bl
if b0 < 4 then |oop * loop
end

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 Iﬂ

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

low

Syntax:
LOW pin

- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin output low.

Information:

The low command switches an output off (low).
On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this
command also automatically configures the pin as an output.

Example:

loop: high 1
pause 5000
low 1
pause 5000
goto | oop

‘

switch on output 1
wait 5 seconds
switch of f output 1
wait 5 seconds

| oop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 IE

o O K low portc

O - | .

- B - Syntax: _

O — 5 LOW PORTC pin

O - | - Pin is a variable/constant (0-7) which specifies the i/o pin to use.
O - |

o = H Function:

O 28X o Make pin on portc output low.

O 40X '

Information:
The high command switches a portc output off (low).

Example:

| oop: high portc 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
| ow portc 1 ‘ switch off output 1
pause 5000 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 Ia

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

nap

Syntax:

NAP period

- Period is a variable/constant which determines the duration of the reduced-
power nap (0-7).

Function:
Nap for a short period. Power consumption is reduced, but some timing accuracy
is lost. A longer delay is possible with the sleep command.

Information:

The nap command puts the
microcontroller into low power mode Period Time Delay
for a short period of time. When in
low power mode all timers are
switched off and so the pwmout and 1 32ms
servo commands will cease to
function. The nominal period of time
is given by this table. Due to
tolerances in the microcontrollers
internal timers, this time is subject to 4 288ms
-50 to +100% tolerance. The external

0 18ms

2 72ms

3 144ms

temperature affects these tolerances ° 576ms
and so no design that requires an 6 1.152 s
accurate time base should use this

command. 7 2.304 s

Affect of increased clock speed:
The nap command uses the internal watchdog timer which is not affected by
changes in resonator clock speed.

Example:

loop: high 1 ‘ switch on output 1
nap 4 ‘ nap for 288ms
low 1 ‘ switch off output 1
nap 7 ‘ nap for 2.3 s
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

oo oood

BASIC COMMANDS |

output

Syntax:
OUTPUT pin

- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin an output.

Information:

This command is only required on microcontrollers with programmable input/
output pins (e.g. PICAXE-08M). This command can be used to change a pin that
has been configured as an input to an output.

All pins are connfigured as inputs on first power-up (apart from outO on the
PICAXE-08, which is always an output).

Example:

| oop:
input 1
reverse 1
reverse 1
output 1

make
make
make
make

pin
pin
pin
pin

i nput
out put
i nput
out put

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

Syntax:

PAUSE milliseconds

- Milliseconds is a variable/constant (0-65535) which specifies how many
milliseconds to pause. (at 4AMHZz)

Function:
Pause for some time. The duration of the pause is as accurate as the resonator
time-base, and presumes a 4MHz resonator.

Information:

The pause command creates a time delay (in milliseconds at 4MHz). The longest
time delay possible is just over 65 seconds. To create a longer time delay (e.g. 5
minutes) use a for...next loop

for b1 =1to5 * 5 1oops
pause 60000 ‘ wait 60 seconds
next bl

During a pause the only way to react to inputs is via an interrupt (see the setint
command for more information). Do not put long pauses within loops that are
scanning for changing input conditions.

When using time delays longer than 5 seconds it may be necessary to perform a
‘hard reset’ to download a new program to the microcontroller. See the Serial
Download section for more details.

Affect of increased clock speed:
The timebase is reduced to 0.5ms at 8MHz and 0.25ms at 16MHz.

Example:

| oop: high 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
low 1 ‘ switch off output 1
pause 5000 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

N

08M
18
18A
18X
28A
28X
40X

Oooooooood

BASIC COMMANDS |

peek

Syntax:

PEEK location,variable

- Location is a variable/constant specifying a register address. Valid values are O
to 255 (see below).

- Variable is a byte variable where the data is returned.

Function:
Read data from the microcontroller registers. This allows use of additional storage
variables not defined by b0-b13.

Information:
The function of the poke/peek commands is two fold.

The most commonly used function is to store temporary byte data in the
microcontrollers spare ‘storage variable’ memory. This allows the general purpose
variables (b0 to b13) to be re-used in calculations. Remember that to save a word
variable two separate poke/peek commands will be required - one for each of the
two bytes that form the word.

Addresses $50 to $7F are general purpose registers that can be used freely.
Addresses $CO to $EF can also be used by PICAXE-18X.
Addresses $CO to $FF can also be used by PICAXE-28X, 40X.

The second function of the peek command is for experinced users to study the
internal microcontroller SFR (special function regsisters).

Addresses $00 to $1F and $80 to $9F are special function registers (e.g. PORTB)
which determine how the microcontroller operates. Avoid using these addresses
unless you know what you are doing! The command uses the microcontroller FSR
register which can address register banks 0 and 1 only.

Addresses $20 to $4F and $A0 to $BF are general purpose registers reserved for
use with the PICAXE bootstrap interpreter. Poking these registers will produce
unexpected results and could cause the interpreter to crash.

Example:
peek 80,bl ‘ put value of register 80 into variable bl

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

Oooooooood

BASIC COMMANDS |

play

Syntax:
PLAY tune,LED
- Tuneis avariable/constant (O - 3) which specifies which tune to play
0 - Happy Birthday
1 -lJingle Bells
2 - Silent Night
3 - Rudolf the Red Nosed Reindeer
- LED is avariable/constant (0 -3) which specifies if other outputs flash at the
same time as the tune is being played.
0 - No outputs
1 - Output O flashes on and off
2 - Output 4 flashes on and off
3 - Output 0 and 4 flash alternately

Function:
Play an internal tune on the PICAXE-08M (i/o pin2).

Description:

The PICAXE-08M can play musical tones. The PICAXE-08M is supplied with 4
pre-programmed internal tunes, which can be output via the play command. As
these tunes are included within the PICAXE-08M bootstrap code, they use very
little program memory. To generate your own tunes use the ‘tune’ command,
although this requires a much greater amount of program mmeory.

See the Tune command for suitable piezo / speaker circuits.

Affect of increased clock speed:
The tempo (speed) of the tune is doubled at 8MHz!

Example:

play 3,1 “ rudol f red nosed reindeer with output O flashingpoke

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

OO0 nn

N

08M
18
18A
18X
28A
28X
40X

Oooooooood

BASIC COMMANDS |

poke

Syntax:

POKE location,data

- Location is a variable/constant specifying a register address. Valid values are O
to 255.

- Data is a variable/constant which provides the data byte to be written.

Function:
Write data into FSR location. This allows use of registers not defined by b0-b13.

Information:
The function of the poke/peek commands is two fold.

The most commonly used function is to store temporary byte data in the
microcontrollers spare ‘storage variable’ memory. This allows the general purpose
variables (b0 to b13) to be re-used in calculations. Remember that to save a word
variable two separate poke/peek commands will be required - one for each of the
two bytes that form the word.

Addresses $50 to $7F are general purpose registers that can be used freely.
Addresses $CO to $EF can also be used by PICAXE-18X.
Addresses $CO to $FF can also be used by PICAXE-28X, 40X.

The second function of the poke command is for experinced users to write values
to the internal microcontroller SFR (special function regsisters).

Addresses $00 to $1F and $80 to $9F are special function registers (e.g. PORTB)
which determine how the microcontroller operates. Avoid using these addresses
unless you know what you are doing! The command uses the microcontroller FSR
register which can address register banks 0 and 1 only.

Addresses $20 to $4F and $A0 to $BF are general purpose registers reserved for
use with the PICAXE bootstrap interpreter. Poking these registers will produce
unexpected results and could cause the interpreter to crash.

Example:
poke 80, bl ‘ save value of bl in register 80

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

pulsin

Syntax:

PULSIN pin,state,variable

- Pinisavariable/constant (0-7) which specifies the i/o pin to use.

- State is a variable/constant (O or 1) which specifies which edge must occur
before beginning the measurement in 10us units (4MHz resonator).

- Variable receives the result (1-65535). If timeout occurs (0.65536s) the result
will be 0.

Function:
Measure the length of an input pulse.

Information:

The pulsin command measures the length of a pulse. In no pulse occurs in the
timeout period, the result will be 0. If state = 1 then a low to high transistion
starts the timing, if state = 0 a high to low transistion starts the timing.

Use the count command to count the number of pulses with a specified time
period.

It is normal to use a word variable with this command.

Affect of Increased Clock Speed:

4MHz 10us unit 0.65536s timeout

8MHz 5us unit 0.32768s timeout

16MHz 2.5us unit 0.16384s timeout

Example:

pulsin 3,1, wl “ record the length of a pulse on pin 3 into bl

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

pulsout

Syntax:

PULSOUT pin,time

- Pinisavariable/constant (0-7) which specifies the i/o pin to use.

- Time is a variable/constant which specifies the period (0-65535) in 10us units
(4MHz resonator).

Function:
Output a timed pulse by inverting a pin for some time.

Information:

The pulsout command generates a pulse of length time. If the output is initially
low, the pulse will be high, and vice versa. This command automatically
configures the pin as an output, but for reliable operation on 8 pin PICAXe you
should ensure this pin is an output before using the command.

Affect of Increased Clock Speed:

4MHz 10us unit

8MHz 5us unit

16MHz 2.5us unit

Example:

| oop:
pul sout 4,150 ‘ send a 1.50ms pul se out of pin 4
pause 20 ‘ pause 20 ns
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 E

O [| pwm

E Og?VI g Syntax:

O . H PWM pin,duty,cycles

O - | - Pinisavariable/constant (0-7) which specifies the i/o pin to use.

O - | - Duty is a variable/constant (0-255) which specifies analog level.

O - H - Cycles is a variable/constant (0-255) which specifies number of cycles. Each
E - g cycle takes about 5ms.

Function:
Output pwm then return pin to input.

Information:
This command is rarely used. For pwm control of motors etc. the pwmout
command is recommended instead.

This pwm command is used to provide ‘bursts’ of PWM output to generate a
pseudo analogue output on the PICAXE-08. This is achieved with a resistor
connected to a capacitor connected to ground; the resistor-capacitor junction
being the analog output. PWM should be executed periodically to update/refresh
the analog voltage.

Example:

| oop:
pwm 4, 150, 20 ‘ send 20 pwm bursts out of pin 4
pause 20 ‘ pause 20 ns
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 n0MnQ

]
08M
18X
28X
40X

Ogoooooood

BASIC COMMANDS |

pwmout

Syntax:

PWMOUT pin,period,duty cycles

- Pin is a variable/constant which specifies the i/o pin to use.
(only 3 on 18X, only 2 on 08M, 1 or 2 is available on 28X/40X)

- Period is a variable/constant (0-255) which sets the PWM period
(period is the length of 1 on/off cycle i.e. the total mark:space time).

- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.
(duty cycle is the mark or ‘on time’)

Function:
Generate a continuous pwm output using the microcontroller’s internal pwm
module

Information:

This command is different to most other BASIC commands in that the pwmout
runs continuously (in the background) until another pwmout command is sent.
Therefore it can be used, for instance, to continuously drive a motor at varying
speeds. To stop pwmout send a command with period = 0.

1 Pernod 1
- -
B |

—————p!
! Duty Cycle !

The PWM period = (period + 1) x 4 x resonator speed

(resonator speed for 4MHz = 1/4000000)
The PWM duty cycle = (duty) x resonator speed
Note that the period and duty values are linked by the above equations. If you wish to
maintain a 50:50 mark-space ratio whilst increasing the period, you must also increase
the duty cycle value appropriately. A change in resonator will change the formula.
NB: If you wish to know the frequency, PWM frequency = 1 / (the PWM period)

As the command uses the internal pwm module of the microcontroller there are
certain restrictions to it’s use:

1) The command only works on certain pins (28X/40X -1&2, 18X - 3, 08M -2).
2) Duty cycle is a 10 bit value (0 to 1023). The maximum duty cycle value must
not be set greater than 4x the period, as the mark ‘on time’ would then be

longer than the total PWM period (see equations above)! Setting above this
value will cause erratic behaviour.

3) The pwm module uses a single timer for both pins on 28X/40X. Therefore
when using PWMOUT on both pins the period will be the same for both pins.

4) The servo command cannot be used at the same time as the pwmout
command as they both use the same timer.

5) pwmout stops during nap, sleep, or after an end command

Example:
| oop:
pwhout 2,150,100 ‘ set pwm
pause 1000 ‘ pause 1 s
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

random

Syntax:

RANDOM wordvariable

- Variable is both the workspace and the result. As random generates a pseudo-
random sequence it is advised to repeatedly call it within a loop. A word
variable must be used.

Function:
Generate next pseudo-random number in a variable.

Description:

The random command generates a pseudo-random sequence of numbers
between 0 and 65335. All microcontrollers must perform mathematics to
generate random numbers, and so the sequence can never be truly random. On
computers a changing quantity (such as the date/time) is used as the start of the
calculation, so that each random command is different. The PICAXE does not
contain such date functionality, and so the sequence it generates will always be
identical unless the value of the word variable is set to a different value before the
random command is used.

The most common way to overcome this issue is to repeadedly call the random
command within a loop, e.g. whilst waiting for a switch push. As the number of
loops will vary between switch pushes, the output is much more random.

If you only require a byte variable (0-255), still use the word variable (e.g. w0) in
the command. As w0 is made up of b0 and b1, you can use either of these two
bytes as your desired byte variable.

Example:
| oop:
random w0 ‘ put randomval ue into w0
if pinl =1 then doit
goto | oop
doit:
let pins = bl ‘ put random byte val ue on output pins
pause 100 “wait 0.1s
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

readadc

Syntax:

READADC channel,variable

- channel is a variable/constant specifying the input pin (0-7)
- Variable receives the data byte read.

Function:
Read the ADC channel (8 bit resolution) contents into variable.

Information:

The readadc command is used to read the analogue value from the
microcontroller input pins. Note that not all inputs have internal ADC
functionality - check the table below for the PICAXE chip you are using.

On microcontrollers with ‘shared’ inputs the ADC pin is also a digital input pin.
On microcontrollers with ‘separate’ inputs the ADC pins are separate pins.

The resolution of ADC is also shown in the table. The readadc command is used
to read all types. However with 10 bit ADC types the reading will be rounded to a
byte value 8 bits. Use the readadc10 command to read the full 10 bit value.

Quantity Type Pin Numbers
PICAXE-08 1-low shared 1
PICAXE-08M 3 - 10 bit shared 1,2,4
PICAXE-18 3-low shared 0,1,2
PICAXE-18A 3-8 bit shared 0,1,2
PICAXE-18X 3- 10 bit shared 01,2
PICAXE-28A 4 - 8 bit separate 0,1,2,3
PICAXE-28X 4 - 10 bit separate 0,1,2,3
PICAXE-40X 7 - 10 bit separate 0,1,2,3,5,6,7

Low-resolution ADC inputs are based upon the microcontrollers internal 16 step
comparator rather than the conventional internal ADC module.

An8-bit resolution analogue input will provide 256 different analogue readings (0 to
255) over the full voltage range (e.g. 0 to 5V). A low-resolution analogue input will
provide 16 readings over the lower two-thirds of the voltage range (e.g. 0 to 3.3V). No
readings are available in the upper third of the voltage range.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk m
Version 5.2 05/2004

WWW. picaxe.co.uk

BASIC COMMANDS |

J

Section 2

To ensure consistency between standard and low-resolution analogue input readings, the
low-resolution reading on PICAXE-08 and 18 will ‘jump’ in 16 discrete steps between the
nearest standard 8-bit readings, according to the table below.

Standard 8 Bit Reading Low Resolution Reading

0-10 0

11-20 11

21-31 21

32-42 32

43-52 43

53-63 53

64-74 64

75-84 75

85-95 85

96-106 96
107-116 107
117-127 117
128-138 128
139-148 139
149-159 149
160-170 160
Values greater than 170 (170-255) 160

Example:

| oop:
readadc 1, bl
if bl >50 then flsh
goto | oop

flsh:
high 1
pause 5000
low 1
goto | oop

‘

read value into bl
jump to flsh if bl > 50
el se 1 oop back to start

switch on output 1
wait 5 seconds
switch off output 1
| oop back to start

-
(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 E

g 0O I readadcl10

O - |

o osm b Syntax:

O — H READADC10 channel,wordvariable

O - | - channel is a variable/constant specifying the input pin (0-7)
o 18X p - wordvariable receives the data word read.

d 28x 5

. | P

0 40X 0 Function:

Read the ADC channel (10 bit resolution) contents into wordvariable.

Information:

The readadc10 command is used to read the analogue value from
microcontrollers with 10-bit capability. Note that not all inputs have internal
ADC functionality - check the table under ‘readadc’ command for the PICAXE
chip you are using.

As the result is 10 bit a word variable must be used - for a byte value use the
readadc command instead.

When using the debug command to output 10 bit numbers, the electrical
connection to the computer via the download cable may slightly affect the ADC
values. In this case it is recommened that the ‘enhanced’ interface circuit is used.
The Schottky diode within this circuit reduces this affect.

180
|] serial out
1 serial in
22k ov
10k N
BAT85 PICAXE
Example:
| oop:
readadc 1,wl ‘ read value into bl
debug wi ‘transnit to conputer
pause 200 ‘ short del ay
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 E

g 0O [readi2c

O - |)

O _ 5 Syntax: _ _

O - o READI2C location,(variable,...)

O -- | - Location is a variable/constant specifying a byte or word address.
O 18X [- Variable(s) receives the data byte(s) read.

= 2;3-X =

O | -

d 40X F Function:

Read i2c¢ location contents into variable(s).

Information:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to read byte data from an i2c device. Location defines the
start address of the data read, although it is also possible to read more than one
byte sequentially (if the i2c device supports sequential reads).

Location must be a byte or word as defined within the i2cslave command. An
i2cslave command must have been issued before this command is used.

If the i2¢ hardware is incorrectly configured, or the wrong i2cslave data has been
used, the value 255 ($FF) will be loaded into each variable.

Example:

; Exanpl e of how to use DS1307 Time C ock
; Note the data is sent/received in BCD fornat.

' set DS1307 sl ave address
i 2csl ave 941010000, i2cslow, i2chyte

" read tine and date and debug di spl ay

mai n:
readi 2c 0, (b0, b1, b2, b3, b4, b5, b6, b7)
debug bl
pause 2000
goto main

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

read

Syntax:

READ location,variable

- Location is a variable/constant specifying a byte-wise address (0-255).
- Variable receives the data byte read.

Function:
Read eeprom data memroy byte content into variable.

Information:

The read command allows byte data to be read from the microcontrollers data
memory. The contents of this memory is not lost when the power is removed.
However the data is updated (with the EEPROM command specified data) upon
a new download. To save the data during a program use the write command.

The read command is byte wide, so to read a word variable two separate byte read
commands will be required, one for each of the two bytes that makes the word
(e.g. for wO, read both b0 and b1).

With the PICAXE-08, 08M and 18 the data memory is shared with program
memory. Therefore only unused bytes may be used within a program. To establish
the length of the program use ‘Check Syntax’ from the PICAXE menu. This will
report the length of program. Available data addresses can then be used as
follows:

PICAXE-08 0to (127 - number of used bytes)
PICAXE-08M 0 to (255 - number of used bytes)
PICAXE-18 0 to (127 - number of used bytes)

With the following microcontrollers the data memory is completely separate
from the program and so no conflicts arise. The number of bytes available varies
depending on microcontroller type as follows.

PICAXE-28, 28A 0to 63
PICAXE-28X, 40X 0to 127
PICAXE-18A, 18X 0 to 255
Example:
| oop:
for bO =0 to 63 ‘ start a |l oop
read b0, bl ‘ read value into bl
serout 7, T2400, (bl) ‘ transnmit value to serial LCD
next b0 ‘ next |oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 n0nMnQ

OO oOooOoo

BASIC COMMANDS |

readmem

Syntax:

READMEM location,data

- Location is a variable/constant specifying a byte-wise address (0-255).
- Data is a variable into which the data is read.

Function:
Read FLASH program memory byte data into variable.

Information:

The data memory on the PICAXE-28A is limited to only 64 bytes. Therefore the
readmem command provides an additional 256 bytes storage in a second data
memory area. This second data area is not reset during a download.

This command is not available on the PICAXE-28X as a larger i2c external
EEPROM can be used.

The readmem command is byte wide, so to read a word variable two separate byte
read commands will be required, one for each of the two bytes that makes the
word (e.g. for w0, read both b0 and b1).

Example:
| oop: for bO = 0 to 255 ‘ start a |l oop
readmem b0, bl ‘ read value into bl
serout 7, T2400, (bl) ‘ transnmit value to serial LCD
next b0 ‘ next |oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO nn

]
08M

18A
18X
28A
28X
40X

oo oood

BASIC COMMANDS |

readtemp

Syntax:

READTEMP pin,variable

- Pin in the input pin.

- Variable receives the data byte read.

Function:
Read temperature from a DS18B20 digital temperature sensor and store in
variable. The conversion takes up to 750ms.

Information:

The temperature is read back in whole degree steps, and the sensor operates from
-55 to + 125 degrees celsius. Note that bit 7 is O for positive temperature values
and 1 for negative values (ie negative values will appear as 128 + numeric value).

Note the readtemp command does not work with the older DS1820 or DS18S20
as they have a different internal resolution.

Affect of increased clock speed:
This command only functions at 4AMHz.

Example:
| oop:
readtenp 1, bl ‘ read value into bl
if bl > 127 then neg ‘ test for negative
serout 7, N2400, (#bl) ‘ transnmit value to serial LCD
goto | oop
neg:
let bl = bl - 128 ‘ adjust neg val ue
serout 7, N2400, (“-") ‘ transnit negative synbol
serout 7, N2400, (#bl) ‘ transnmit value to serial LCD
goto | oop
5V
4k7
V+
: L
DS18B20 - g}g“t P
<
temperature 9
sensor oV D_

NB: most project boards
are pre-fitted with a pull-
down resistor on the input
pin. This must be removed
to use the temp. sensor.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk E
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 m

O 0O B readtempl2

O - M

o osm b Syntax:

o i - READTEMP12 pin,wordvariable

O - | - Pin in the input pin.

o 18X p - Variable receives the raw 12 bit data read.
d 28x &

. | P

0 40X o Function:

Read 12 bit temperature data from a DS18B20 digital temperature sensor and
store in variable. The conversion takes up to 750ms.

Information:
This command is for advanced users only. For standard ‘whole degree’ data use
the readtemp command.

The temperature is read back as the raw 12 bit data into a word variable (0.125
degree resolution). The user must interpret the data through mathematical
manipulation. See the DS18B20 datasheet (www.dalsemi.com) for more
information on the 12 bit Temperature/Data relationship.

See the readtemp command for a suitable circuit.

Note the readtemp12 command does not work with the older DS1820 or
DS18S20 as they have a different internal resolution.

Affect of increased clock speed:
This command only functions at 4AMHz.

Example:

| oop:
readtenpl2 1, wl ‘ read value into bl
debug wl ‘ transnit to conputer screen
goto | oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 0nn

18A

oo oood

BASIC COMMANDS |

readowclk

Syntax:
readowclk pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Read seconds from a DS2415 clock chip.

Information:

This command only applies to the PICAXE-18A. It is now rarely used as most
users prefer to use the more powerful DS1307 i2c part interfaced to a PICAXE-
18X microcontroller.

The DS2415 is an accurate ‘second counter’. Every second, the 32 bit (4 byte)
counter is incremented. Time is very accurate due to the use of a watch crystal.
Therefore by counting elapsed seconds you can work out the accurate elapsed
time. The 32 bit register is enough to hold 136 years worth of seconds. If desired
the DS2415 can be powered by a separate 3V cell and so continue working when
the main PICAXE power is removed.

Note that after first powering the DS2415 you must use a resetowclk command to
activate the clock crystal and reset the counter. See the circuit diagram under the
resetowclk command description.

The readowclk command reads the 32 bit counter and then puts the 32 bit value
in variables b10 (LSB) to b13 (MSB) (also known as w6 and w7).

Using byte variables:

The number in b10 is the number of single seconds
The number in b1l is the number x 256 seconds

The number in b12 is the number x 65536 seconds
The number in b13 is the number x 16777216 seconds

Using word variables:
The number in w6 is the number of single seconds
The number in w7 is the number x 65536 seconds

Affect of Increased Clock Speed:
This command will only function at 4AMHz.

Example:
mai n:
resetowcl k 2 ' reset the clock on pin2
| oop:
readowcl k 2 ' read clock on input2
debug bl ' display the el apsed tine
pause 10000 " wait 10 seconds
goto | oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk E
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 E

N resetowclk
: Syntax:
- resetowclk pin
18A - Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Reset seconds count to 0 on a DS2415 clock chip.

OO0 0nn
oo oood

Information:

This command resets the time on a DS2415 one wire clock chip. It also switches
the clock crystal on, and so must be used when the chip is first powered up to
enable the time counting.

Affect of Increased Clock Speed:
This command will only function at 4AMHz.

See the example under the readowclk command.

5V * *
I
I 4k7
Pin4 (Vbat)canbe | DS2415
connected to the normal V+
PICAXE supply or a | 4) |
separate 3V backup cell “——Vbat wi ;
(time maintained when 1-wire i input é
PICAXE power removed) X1 5)
31 vad 6 = =
L] * o
p— ov Crystal must be ov
100nF 1 32.768kHz watch

quartz crystal with
6pF (not 12) load
capacitance.

NB: most project boards
are pre-fitted with pull-
down resistors on the input
pin. This must be removed
to use the one wire device
like this.

ov

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk E
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO nn

]
08M

18A
18X
28A
28X
40X

oo oood

BASIC COMMANDS |

readowsn

5V

Syntax:
readowsn pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Read serial number from any Dallas 1-wire device.

Information:

This command (read-one-wire-serial-number) reads the unique serial number
from any Dallas 1-wire device (e.g DS18B20 digital temp sensor, DS2415 clock,
or DS1990A iButton).

If using an iButton device (e.g. DS1990A) this serial number is laser engraved on
the casing of the iButton.

The readowsn command reads the serial number and then puts the family code in
b6, the serial number in b7 to b12, and the checksum in b13

Note that you should not use variables b6 to b13 for other purposes in your
program during a readowsn command.

The readowsn (read-one a7
wire-serial-number)
command will read the V+
serial number from any TN
Dallas 1-wire device like N inout >
a DS1990A iButton key. — ¢ inpu <
O
o
oV
iButton
Ke NB: most project boards
y are pre-fitted with pull-
down resistors on the input
pin. This must be removed
to use the one wire device
like this.

ov

Part RSA0O02 - iButton Contact probe

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

BASIC COMMANDS |

Example:

mai n:

| oop

let b6 =0 ' reset famly code to 0

' | oop here reading nunbers until the
' famly code (b6) is no |onger O

readowsn 2 ' read serial nunber on input2
if b6 =0 then | oop

Do a sinple safety check here
' bl2 serial no value will not likely be FF
" if this value is FF, it neans that the device
" was renoved before a full read was conpl eted
' or a short circuit occured

if bl2 = $FF then main

"Everything is ok so continue

debug bl ' ok so display
pause 1000 ' short del ay
goto main

-
(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

return

Syntax:
RETURN
Function:

Return from subroutine.

Information:

The return command is only used with a matching ‘gosub’ command, to return
program flow back to the main program at the end of the sub procedure. If a
return command is used without a matching ‘gosub’ beforehand, the program
flow will crash.

Example:
| oop
let b2 =15 ‘ set b2 value
pause 2000 ‘“wait for 2 seconds
gosub flsh * call sub-procedure
let b2 =5 ‘ set b2 value
pause 2000 ‘“wait for 2 seconds
gosub flsh ‘ call sub-procedure
end ‘ stop accidentally falling into sub
flsh:
for bO =1to b2 * define loop for b2 tinmes
high 1 ‘ switch on output 1
pause 500 ‘“ wait 0.5 seconds
low 1 ‘ switch off output 1
pause 500 ‘ wait 0.5 seconds
next b0 ‘ end of |oop
return “ return fromsub-procedure

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

oo oood

BASIC COMMANDS |

reverse

Syntax:
REVERSE pin

- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin an output if now input and vice versa.

Information:

This command is only required on microcontrollers with programmable input/
output pins (e.g. PICAXE-08M). This command can be used to change a pin that
has been configured as an input to an output.

All pins are connfigured as inputs on first power-up (apart from outO on the
PICAXE-08, which is always an output). Note that pin3 is always an input.

Example:

| oop:
input 1
reverse 1
reverse 1
output 1

make
make
make
make

pin
pin
pin
pin

i nput
out put
i nput
out put

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 zl

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

serin

Syntax:

SERIN pin,baudmode, (qualifier,qualifier...)

SERIN pin,baudmode,(qualifier,qualifier...) ,{#}variable,{#}variable...
SERIN pin,baudmode,{#}variable,{#}variable...

- Pinisavariable/constant (0-7) which specifies the i/o pin to use.

- Baudmode is a variable/constant (0-7) which specifies the mode:

T2400 true input (all baud rates at 4MHz)
T1200 true input

T600 true input

T300/T4800 true input

N2400 inverted input

N1200 inverted input

N600 inverted input

N300/N4800 inverted input

- Qualifiers are optional variables/constants (0-255) which must be received in
exact order before subsequent bytes can be received and stored in variables.

- Variable(s) receive the result(s) (0-255). Optional #'s are for inputting ascii
decimal numbers into variables, rather than raw characters.

Function:
Serial input with optional qualifiers (8 data, no parity, 1 stop).

Information:

The serin command is used to receive serial data into an input pin of the
microcontroller. It cannot be used with the serial download input pin, which is
reserved for program downloads only.

Pin specifies the input pin to be used. Baud mode specifies the baud rate and
polarity of the signal. When using simple resistor interface, use N (inverted)
signals. When using a MAX232 type interface use T (true) signals. The protocol is
fixed at N,8,1 (no parity, 8 data bits, 1 stop bit).

Note that the 4800 baud rate is only available on the X parts. Note that the
microcontroller may not be able to keep up with complicated datagrams at this
speed - a maximum of 2400 is recommended when a 4 MHz resonator is used.

Qualifiers are used to specify a ‘marker’ byte or sequence. The command
serin 1, N2400, (“ABC"), bl
requires to receive the string “ABC” before the next byte read is put into byte bl

Without qualifiers
serin 1, N2400, bl
the first byte received will be put into b1 regardless.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

All processing stops until the new serial data byte is received. This command
cannot be interrupted by the setint command. The following example simply
waits until the sequence “go” is received.

serin 1, N2400, (“go”)

After using this command you may have to perform a ‘hard reset’ to download a
new program to the microcontroller. See the Serial Download scetion for more
details.

Affect of Increased Clock Speed:

Increasing the clock speed increases the serial baud rate as shown below. However
due to the sensitive nature of serial communications it is recommened that only a
4MHz resonator is used.

Baudmode 4MHz 8MHz 16MHz
300 300 600 1200
600 600 1200 2400
1200 1200 2400 4800
2400 2400 4800 9600
4800 4800 9600 19200

A maximum of 4800 is recommended for complicated serial transactions.

Internal resonators are not as accurate as external resonators, so in high accuracy
applications an external resonator device is recommended. However
microcontrollers with an internal resonator may be used successfully in most
applications, and may also be calibrated using the calibfreq command if required.

22k
Computer TX (pin 3)o — | O |nput Pin
Computer RX (pin 2)0O { | O QOutput Pin
180R
To
T mputer H 1ok To PICAXE
Computer 0V (pin 5) © o o 0V

Example Computer Interface Circuit:

PICAXE-08/08M ONLY - Due to the internal structure of input3 (leg 4) of the
PICAXE-08, a 1N4148 diode is required betwen the pin and V+ for serin to work
on this particular pin (‘bar’ end of diode to V+) with this circuit. All other pins
have an internal diode.

Example:
| oop: for bO =0 to 63 ‘ start a |l oop
serin 6,N2400,b1 *‘ receive serial value
wite b0, bl ‘wite value into bl
next b0 ‘ next |oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

serout

Syntax:
SEROUT pin,baudmode, ({#}data,{#}data...)
- Pinisavariable/constant (0-7) which specifies the i/o pin to use.

- Baudmode is a variable/constant (0-7) which specifies the mode:

T2400 true output always driven
T1200 true output always driven
T600 true output always driven
T300/T4800 true output always driven
N2400 inverted output always driven
N1200 inverted output always driven
N600 inverted output always driven
N300/N4800 inverted output always driven

(4800 is only available on X parts)

- Data are variables/constants (0-255) which provide the data to be output.
Optional #'s are for outputting ascii decimal numbers, rather than raw
characters. Text can be enclosed in speech marks (“Hello™)

Function:
Transmit serial data output (8 data bits, no parity, 1 stop bit).

Information:

The serout command is used to transmit serial data from an output pin of the
microcontroller. It cannot be used with the serial download output pin - use the
sertxd command in this case.

Pin specifies the output pin to be used. Baud mode specifies the baud rate and
polarity of the signal. When using simple resistor interface, use N (inverted)
signals. When using a MAX232 type interface use T (true) signals. The protocol is
fixed at N,8,1 (no parity, 8 data bits, 1 stop bit).

Note that the 4800 baud rate is only available on the X parts. Note that the
microcontroller may not be able to keep up with complicated datagrams at this
speed - a maximum of 2400 is recommended when a 4 MHz resonator is used.

The # symbol allows ascii output. Therefore #b1, when b1 contains the data 126,
will output the ascii characters “1” ”2” ”6” rather than the raw data 126.

Please also see the interfacing circuits , affect of resonator clock speed, and
explanation notes of the ‘serin’ command, as all of these notes also apply to the
serout command.

Example:
| oop:
for bO =0 to 63 ‘ start a |l oop
read bO, bl ‘ read value into bl
serout 7, N2400, (bl) ‘ transmt value to serial LCD
next b0 ‘ next |oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 ﬂ

g 0O h sertxd
O - |
d osm b Syntax:
O — N SERTXD ({#}data,{#}data...)
O - |
O 18X p - Data are variables/constants (0-255) which provide the data to be output.
O -- |
E ig§ g Function:
Serial output via the serout programming pin (baud 4800, 8 data, no parity, 1
stop).
Information:

The sertxd command is similar to the serout command, but acts via the serial
output pin rather than a general output pin. This allows data to be sent back to
the computer via the programming cable. This can be useful whilst debugging
data - view the uploaded data in the PICAXE>Terminal window. There is an
option within View>Options>Options to automatically open the Terminal
windows after a download.

The baud rate is fixed at 4800,n,8,1

Affect of Increased Clock Speed:
Increasing the clock speed increases the serial baud rate as shown below.

4MHz 8MHz 16MHz
4800 9600 19200
Example:

| oop
for b1 =0to 63 * start a loop
sertxd(“The value of bl is ", #bl, 13, 10)
pause 1000
next bl ‘ next |oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 m

O O g Servo
O - |
O 08M M Syntax:
O - O SERVO pin,pulse
O 18A O - Pin is a variable/constant (0-7) which specifies the i/o pin to use.
g 18X [- Pulse is variable/constant (75-225) which specifies the servo position
O 28A
28X i
E 48)(g Function:

Pulse an output pin continuously to drive a radio-control style servo

Information:

Servos, as commonly found in radio control toys, are a very accurate motor/
gearbox assembly that can be repeatedly moved to the same position due to their
internal position sensor. Generally servos require a pulse of 0.75 to 2.25ms every
20ms, and this pulse must be constantly repeated every 20ms. Once the pulse is
lost the servo will loose it’s position.

The servo command starts a pin pulsing high for length of time pulse (x0.01 ms)
every 20ms. This command is different to all other BASIC commands in that the
pulsing mode continues until another servo, high or low command is executed.
High and low commands stop the pulsing immediately. Servo commands adjust
the pulse length to the new pulse value, hence moving the servo. Servo cannot be
used at the same time as pwmout as they share a common timer.

Do not use a pulse value less than 75 or 6V SUPPLY
greater than 225, as this may cause the V2+
servo to malfunction. Due to tolerances in 6v) oV
servo manufacture all values are . ,ﬁ,

. . o . Pin O {1 w
approximate and will require fine-tuning

. . R SERVO
by experimentation. o
B

Always use a separate 6V (e.g 4x AA cells) power supply for the servo, as
they generate a lot of electrical noise.

Note that the overhead processing time required for processing the servo
commands every 20ms causes the other commands to be slightly extended i.e. a
pause command will take slightly longer than expected. The servo pulses are also
temporarily disabled during timing sensitive serin, serout, sertxd and debug
commands.

Affect of increased clock speed:
The servo command will only function correctly at AMHz.

Example:

| oop: servo 4,75 ‘ nmove servo to one end
pause 2000 ‘ wait 2 seconds
servo 4, 150 ‘ nmove servo to centre
pause 2000 ‘ wait 2 seconds
servo 4,225 ‘ nove servo to other end
pause 2000 ‘ wait 2 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO nn

]
08M

18A
18X
28A
28X
40X

oo oood

BASIC COMMANDS |

setint

Syntax:

SETINT input,mask

- input is a variable/constant (0-255) which specifies inputs condition.
- mask is variable/constant (0-255) which specifies the mask

Function:
Interrupt on a certain inputs condition.

Information:
The setint command causes a polled interrupt on a certain input pin condition.

A polled interrupt is a quicker way of reacting to a particular input combination.
It is the only type of interrupt available in the PICAXE system. The inputs port is
checked between execution of each command line in the program, betwen each
note of a tune command, and continuously during any pause command. If the
particular inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is
executed immediately. When the sub-procedure has been carried out, program
execution continues from the main program.

The interrupt inputs condition is any pattern of ‘O’s and ‘1’s on the input port,
masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be
ignored.

e.g.

to interrupt on inputl high only
setint 990000010, 990000010

to interrupt on inputl low only
setint 990000000, 990000010

to interrupt on inputO high, inputl high and input 2 low
setint 990000011, 990000111

etc.

Only one input pattern is allowed at any time. To disable the interrupt execute a
SETINT command with the value 0 as the mask byte.

Notes:

1) Every program which uses the SETINT command must have a corresponding
interrupt: sub-procedure (terminated with a return command) at the bottom
of the program.

2) When the interrupt occurs, the interrupt is permanently disabled. Therefore to
re-enable the interrupt (if desired) a SETINT command must be used within
the interrupt: sub-procedure itself. The interrupt will not be enabled until the
‘return’ command is executed.

3) If the interrupt is re-enabled and the interrupt condition is not cleared within
the sub-procedure, a second interrupt may occur immediately upon the return
command.

4) After the interrupt code has executed, program execution continues at the next
program line in the main program. In the case of the interrupted pause, wait,
play or tune command, any remaining time delay is ignored and the program
continues with the next program line.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

More detailed SETINT explanation.

The SETINT must be followed by two numbers - a ‘compare with value’ (input)
and an ‘input mask’ (mask) in that order. It is normal to display these numbers in
binary format, as it makes it more clear which pins are ‘active’. In binary format
input? is on the left and inputO is on the right.

The second number, the ‘input mask’, defines which pins are to be checked to see
if an interrupt is to be generated ...

- %00000001 will check input pin 0

- %00000010 will check input pin 1

- %01000000 will check input pin 6

- %10000000 will check input pin 7

- etc

These can also be combined to check a number of input pins at the same time...
- %00000011 will check input pins 1 and O
- %10000100 will check input pins 7 and 2

Having decided which pins you want to use for the interrupt, the first number
(inputs value) states whether you want the interrupt to occur when those
particular inputs are on (1) or off (0).

Once a SETINT is active, the PICAXE monitors the pins you have specified in
‘input mask’ where a ‘1’ is present, ignoring the other pins.

An input mask of %10000100 will check pins 7 and 2 and create a value of
%a0000b00 where bit ‘a’ will be 1 if pin 7 is high and O if low, and bit ‘b’ will be
1 if pin 2 is high and 0 if low.

The ‘compare with value’, the first argument of the SETINT command, is what
this created value is compared with, and if the two match, then the interrupt will
occur, if they don’t match then the interrupt won't occur.

If the ‘input mask’ is %10000100, pins 7 and 2, then the valid ‘compare with
value’ can be one of the following ...

- %00000000 Pin7=0and pin2=0
- %00000100 Pin7=0andpin2=1
- %10000000 Pin7=1and pin2=0
- %10000100 Pin7=1andpin2=1

So, if you want to generate an interrupt whenever Pin 7 is high and Pin 2 is low,
the ‘input mask’ is %10000100 and the ‘compare with value’ is %10000000,
giving a SETINT command of ...

- SETINT 910000000,%10000100
The interrupt will then occur when, and only when, pin 7 is high and pin 2 is low.

If pin 7 is low or pin 2 is high the interrupt will not happen as two pins are
‘looked at’ in the mask.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk E
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 EI

Example:

setint 940000000, 940000000
‘ activate interrupt when pin7 only goes high

| oop:
low 1 ‘ switch output 1 off
pause 2000 ‘ wait 2 seconds
goto | oop ‘ loop back to start
interrupt:
high 1 ‘ switch output 1 on
if pin7 =1 then interrupt ‘ loop here until the
‘interrupt cleared
pause 2000 ‘ wait 2 seconds
setint 940000000, %4.0000000 ‘ re-activate interrupt
return “ return fromsub

In this example an LED on output 1 will light immediately the input is switched
high. With a standard if pin7 =1 then.... type statement the program could take
up to two seconds to light the LED as the if statement is not processed during the
pause 2000 delay time in the main program loop (standard program shown
below for comparison).

| oop:
low 1 ‘ switch output 1 off
pause 2000 ‘ wait 2 seconds
if pin7 =1 then sw_on
goto | oop ‘ loop back to start
sw_on:
high 1 ‘ switch output 1 on
if pin7 =1 then sw_on
‘ loop here until the condition is cleared
pause 2000 ‘ wait 2 seconds
goto | oop ‘ back to main | oop

-
(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

]
08M

18A
18X

OooooooOonOood

BASIC COMMANDS |

setfreq

Syntax:
setfreq freq
- freqis the keyword m4 or m8.

Function:
Set the internal clock frequency for microcontrollers with internal resonator to
4MHz (default) or 8MHz.

Information:

The setfreq command can be used to double the speed of operation of the
microcontroller from 4MHz to 8MHz. However note that this speed increase
affects many commands, by, for instance, changing their properties (e.g. all pause
commands are half the length at 8BMHZz).

On devices with an external resonator this command cannot be used - the value
of the external resonator must be changed to alter the clock frequency.

The change occurs immediately. All programs default to m4 (4MHZz) if a setfreq
command is not used. Note that you may have to perform a 'hard reset’ at 4AMHz
if a new download fails after using this command.

The 8 and 4MHz frequencies are factory preset to the most accurate settings.
However advanced users may use the calibfreq command to adjust these factory
preset settings.

Some commands such as readtemp will only work at 4MHz. In these cases
change back to 4MHz temporarily to operate these commands.

Example:
setfreq md ‘ setfreq to 4Miz
readtenmp 1, bl ‘ do conmand at 4MHz
setfreq n8 ‘ set freq back to 8VHz

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

shiftin

Information:

The PICAXE microcontrollers do not have a shiftin command. However the same
functionality found in other products can be achieved by using the sub
procedures provided below. These sub-procedures are also saved in the file called
shiftin_out.bas in the \samples folder of the Programming Editor software.

To use, simply copy the symbol definitions to the top of your program and copy
the appropriate shiftin sub procedures to the bottom of your program.

Do not copy all options as this will waste memory space.
It is presumed that the data and clock outputs (sdata and sclk) are in the low
condition before the gosub is used.

BASIC line
“shiftin serdata, sclk, mode, (var_in(\bits)) “
becomes
gosub shiftin_LSB_Pre (for mode LSBPre)
gosub shiftin_MSB_Pre (for mode MSBPre)

gosub shiftin_LSB_Post (for mode LSBPost)
gosub shiftin_MSB_Post (for mode MSBPost) *

e SYMBOL DEFI NI TI ONS ~~~~~
Required for all routines. Change pin nunbers/bits as required.
Uses variables b7-b13 (i.e. b7, w4, w5, w6). If only using 8 bhits
all the word variables can be safely changed to byte variabl es.

‘xx*%% Sanpl e synbol definitions *****

synbol sclk =5 “ clock (output pin)

synmbol sdata = 7 ‘ data (output pin for shiftout)

symbol serdata = input7 ‘ data (input pin for shiftin, note input?
symbol counter = b7 * variabl e used during | oop

synmbol mask = w4 ‘ bit masking variable

synmbol var_in = wh ‘ data variable used durig shiftin

synmbol var_out = w6 ‘ data variable used during shiftout

synmbol bits = 8 “ nunber of bhits

symbol MsSBval ue = 128 * MSBval ue
‘(=128 for 8 bits, 512 for 10 bits, 2048 for 12 bhits)

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 EI

C s SHI FTI N ROUTI NES ~~~~~
‘ Only one of these 4 is required - see your |C requirenments
‘It is recommended you del ete the others to save space

‘

foxxxxk Ghiftin LSB first, Data Pre-Clock *****
shiftin_LSB Pre:

let var_in =0

for counter = 1 to bhits ‘' number of bhits

var_in =var_in/ 2 “ shift right as LSB first

if serdata = 0 then ski pLSBPre

var_in = var_in + MSBVal ue ‘ set MSBif serdata =1
ski pLSBPre: pul sout sclk, 1 ‘ pulse clock to get next data bit

next counter

return

‘

¢oxxkxx Ghiftin MBSB first, Data Pre-Clock *****
shiftin_MSB Pre:

let var_in =0

for counter = 1 to bits*® nunber of bits

var_in =var_in * 2 ‘ shift left as MSB first
if serdata = 0 then ski pMSBPre
var_in =var_in + 1 ‘ set LSBif serdata =1
ski pVSBPr e: pul sout sclk, 1 ‘ pulse clock to get next data bit
next counter
return

‘

¢ oxxxxk Ghiftin LSB first, Data Post-Cl ock ***** !
shiftin_LSB Post: let var_in =0
for counter =1 to bits*‘ nunber of bhits

var _in =var_in/ 2 ‘ shift right as LSB first

pul sout sclk, 1 ‘ pulse clock to get next data bit

if serdata = 0 then ski pLSBPost

var_in = var_in + MSBVal ue ‘ set MSBif serdata =1
ski pLSBPost : next counter

return

‘

foxxxkk Ghiftin MSB first, Data Post-Clock *****
shiftin_MSB Post: let var in =0
for counter = 1 to bits*‘ nunber of bhits

var_in =var_in * 2 ‘ shift left as MSB first
pul sout sclk, 1 ‘ pulse clock to get next data bit
if serdata = 0 then ski pMSBPost
var _in =var_in + 1 ‘ set LSBif serdata =1

ski pMSBPost : next counter
return

-
(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO nA

08
08M
18
18A
18X
28A
28X
40X

OOoonooonood

BASIC COMMANDS |

shiftout

‘

‘

Information:

The PICAXE microcontrollers do not have a shiftout command. However the
same functionality found in other products can be achieved by using the sub
procedures provided below. These sub-procedures are also saved in the file called
shiftin_out.bas in the \samples folder of the Programming Editor software.

To use, simply copy the symbol definitions (listed within the shiftin command)
to the top of your program and copy the appropriate shiftout sub procedures
below to the bottom of your program.

Do not copy both options as this will waste memory space.
It is presumed that the data and clock outputs (sdata and sclk) are in the low
condition before the gosub is used.
BASIC line
“shiftout sdata, sclk, mode, (var_out(\bits))”
becomes
gosub shiftout_LSBFirst (for mode LSBFirst)
gosub shiftout_ MSBFirst (for mode MSBFirst)

Note the symbol definitions listed in the ‘shiftin’ command must also be used.

*xkxk Shiftout LSB first x*x*x

shiftout _LSBFirst:

for counter = 1 to bits * nunber of bits
mask = var_out & 1 ‘ mask LSB
| ow sdat a ‘ data | ow
if mask = 0 then skipLSB
hi gh sdata ‘ data high
ski pLSB: pul sout sclk, 1 ‘ pul se clock for 10us
var_out = var_out / 2 ‘ shift variable right for LSB
next counter
return

‘

‘

*xkxk Shiftout MSB first x*x*x

shi ftout _MSBFi rst:

for counter = 1 to bits * nunber of bits
mask = var_out & MsSBVal ue ‘ mask MSB
| ow sdat a ‘ data | ow
if mask = 0 then ski pVSB
hi gh sdata * data high
ski pVBB: pul sout sclk, 1 ‘ pul se clock for 10us
var_out = var_out * 2 ‘ shift variable left for MSB
next counter
return

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

Syntax:

SLEEP period

- Period is a variable/constant which specifies the duration of sleep in multiples
of 2.3 seconds (0-65535).

Function:
Sleep for some period (multiples of 2.3s).

Information:

The sleep command puts the microcontroller into low power mode for a period
of time. When in low power mode all timers are switched off and so the pwmout
and servo commands will cease to function. The nominal period is 2.3s, so sleep
10 will be approximately 23 seconds. The sleep command is not regulated and so
due to tolerances in the microcontrollers internal timers, this time is subject to -
50 to +100% tolerance. The external temperature affects these tolerances and so
no design that requires an accurate time base should use this command.

Shorter ‘sleeps’ are possible with the ‘nap’ command.
Affect of increased clock speed:

The sleep command uses the internal watchdog timer which is not affected by
changes in resonator clock speed.

Example:

loop: high 1 ‘ switch on output 1
sl eep 10 ‘ sleep for 23 seconds
low 1 ‘ switch off output 1
sl eep 100 ‘ sleep for 230 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk E
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

sound

Syntax:

SOUND pin,(note,duration,note,duration...)

- Pinisavariable/constant (0-7) which specifies the i/o pin to use.

- Note(s) are variables/constants (0-255) which specify type and frequency.
Note O is silent for the duration. Notes 1-127 are ascending tones. Notes
128-255 are ascending white noises.

- Duration(s) are variables/constants (0-255) which specify duration (multiples
of approx 10ms).

Function:
Play sound ‘beep’ noises.

Information:

This command is designed to make audible ‘beeps’ for games and keypads etc. To
play music use the play or tune command instead. Note and duration must be
used in ‘pairs’ within the command.

See the tune command for suitable piezo / speaker circuits.

Affect of Increased Clock Speed:
This length of the note is halved at 8MHz and quartered at 16MHz.

Example:

loop: let bO = b0 + 1 ‘increnent b0
sound 7, (b0, 50) ‘ make a sound
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

88

BASIC COMMANDS |

stop

Syntax:
STOP

Function:
Enter a permanent stop loop until the power cycles (program re-runs) or the PC
connects for a new download.

Information:

The stop command places the microcontroller into a permament loop at the end
of a program. Unlike the end command the stop command does not put the the
microcontroller into low power mode after a program has finished.

The stop command does not switch off internal timers, and so commands such as
servo and pwmout that require these timers will continue to function.

Example:

| oop:

pwrout 1, 120, 400
stop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

switch on/off

Syntax:

SWITCH ON pin

SWITCHON pin

SWITCH OFF pin

SWITCHOFF pin

- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin output high / low.

Information:
This is a ‘pseudo’ command designed for use by younger students It is actually
equivalent to ‘high’ or ‘low’, ie the software outputs a high or low command as
appropriate.

Example:

| oop: switch on 7 ‘ switch on output 7
wait 5 ‘ wait 5 seconds
switch off 7 “ switch off output 7
wait 5 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk E
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

symbol

Syntax:

SYMBOL symbolname = value

SYMBOL symbolname = value ?? constant

- Symbolname is a text string which must begin with an alpha-character or *_.
After the first character, it can also contains number characters (‘0’-'9").

- Value is a variable or constant which is being given an alternate symbolname.

- ??can be any supported mathematical function e.g. + - * / etc.

Function:
Assign a value to a new symbol name.
Mathematical operators can also be used on constants (not variables)

Information:

Symbols are used to rename constants or variables to make them easier to
remember during a program. Symbols have no affect on program length as they
are converted back into ‘numbers’ before the download.

Symbols can contain numeric characters, but must not start with a numeric
character. Naturally symbol names cannot be command names or reserved words
such as input, step, etc. See the list of reserved words at the end of this section.

When using input and output pin definitions take care to use the term ‘pin0’ not
‘0’ when describing input variables to be used within if...then statements.

Example:
synmbol RED LED = 7 ‘ define a output pin
symbol PUSH SW= pinl ‘' define a input switch
synmbol CCUNTER = BO ‘ define a variabl e synbol

| et COUNTER = 200 * prel oad counter with 200

| oop: high RED_LED ‘ switch on output 7
pause COUNTER ‘ wait 0.2 seconds
| ow RED_LED ‘ switch off output 7
pause COUNTER ‘ wait 0.2 seconds
goto LOOP ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk m
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

toggle

Syntax:
TOGGLE pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin output and toggle state.

Information:

The high command inverts an output (high if currently low and vice versa)

On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this
command also automatically configures the pin as an output.

Example:

| oop:
toggle 7 ‘ toggle output 7
pause 1000 ‘“ wait 1 second
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

Oooooooood

BASIC COMMANDS |

tune

Syntax:
TUNE LED, speed, (note, note, note...)
- LED isavariable/constant (0 -3) which specifies if other outputs flash at the
same time as the tune is being played.
0 - No outputs
1 - Output O flashes on and off
2 - Output 4 flashes on and off
3 - Output 0 and 4 flash alternately
- speed is a variable/constant (1-15) which specifies the tempo of the tune.
- notes are the actual tune data generated by the Tune Wizard.

Function:
Plays a user defined musical tune on the PICAXE-08M.

Information:

The tune command allows musical ‘tunes’ to be played on the PICAXE-08M.
Playing music on a microcontroller with limited memory will never have the
quality of commercial playback devices, but the tune command performs
remarkably well. Music can be played on economical piezo sounders (as found in
musical birthday cards) or on better quality speakers.

The following information gives technical details of the note encoding process.
However most users will use the ‘Tune Wizard’ to automatically generate the tune
command, by either manually sequentially entering notes or by importing a
mobile phone ring tone. Therefore the technical details are only provided for
information only — they are not required to use the Tune Wizard.

Note that the tune command compresses the data, but the longer the tune the
more memory that will be used. The ‘play’ command does not use up memory in
the same way, but is limited to the 4 internal preset tunes.

All tunes play on a piezo sounder or speaker, connected to output 2 (leg 5) of the
PICAXE-08M. Some sample circuits are shown later in this section.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

Speed: Speed BPM
The speed of music is normally called ‘tempo’ and is
the number of ‘quarter beats per minute’ (BPM). 1 812
This is defined within the PICAXE system by 5 406
allocating a value of 1-15 to the speed setting.
3 270
The sound duration of a quarter beat within the
PICAXE is as follows: 4 203
sound duration = speed x 65.64 ms 5 162
Each quarter beat is also followed by a silence 6 135
duration as follows, 7 16
silence duration = speed x 8.20 ms
8 101
Therefore the total duration of a quarter beat is: 9 90

total duration = (speed x 65.64)
+ (speed x 8.20) 10 81
= speed x 73.84 ms

1 73
Therefore the approximate number of beats per 12 67
minute (bpm) are:
bpm =60 000 / (speed x 73.84) 13 62
14 58
A table of different speed values are shown here.
This gives a good range for most popular tunes. 15 54

Note that within electronic music a note normally plays for 7/8 of the total note
time, with silence for 1/8. With the PICAXE the ratio is slightly different (8/9)
due to memory and mathematical limitations of the microcontroller.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

BASIC COMMANDS |

Note Bytes:
Each note byte is encoded into 8 bits as shown. The encoding is optimised to
ensure the most common values (1/4 beat and octave 6) both have a value of 00.
Note that as the PICAXE also performs further optimisation on the whole tune,
the length of the tune will not be exactly the same length as the number of note
bytes. 1/16, 1/32 and ‘dotted’ notes are not supported.

76 = Duration | 54 = Octave 3210 = Note
00 =1/4 00 = Middle Octave (6) 0000 =C
01 =1/8 01 = High Octave (7) 0001 = C#
10=1 10 = Low Octave (5) 0010 =D
n=1/,2 11 = not used 0011 = D#
0100 = E
0101 =F
7 6 5 4 3 2 0 Musical note Byte. 0110 = F#
\ / / 0111 = G
1000 = G#
Note (0 - 12)
1001 = A
1010 = A#
Octave (0 - 2)
1011 =B
Duration (0 - 3) 1ixx = Pause
Piano Representation of Note Frequency
C5# D5# F5# G5# Ab# Cé6#| |D6# F6# G6# A6# C7#| |D7# F7# G7 AT#
C5 D5 E5 F5 G5 A5 B5 Cé D6 E6 F6 G6 A6 B6 | C7 D7 E7 F7 G7 A7 B7
Octave 5 Octave 6 Octave 7
C5 =262 Hz C6 =523 Hz ("Middle C") C7 =1047 Hz
C5# =277 Hz C6# = 554 Hz C7#=1109 Hz
D5 =294 Hz D6 =587 Hz D7 =1175Hz
D5# = 311 Hz D6# = 622 Hz D7# =1245 Hz
E5 =330Hz E6 =659 Hz E7 =1318Hz
F5 =349Hz F6 =698 Hz F7 =1396 Hz
F5# =370 Hz F6# = 740 Hz F7# = 1480 Hz
G5 = 392 Hz G6 =784 Hz G7 =1568 Hz
G5# =415 Hz G6# = 831 Hz G7#=1661Hz
A5 =440 Hz A6 =880 Hz A7 =1760 Hz
A5# = 466 Hz AG# = 932 Hz AT# = 1865 Hz
B5 =494 Hz B6 =988 Hz B7 =1975Hz

revolution

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk

Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

BASIC COMMANDS |

PICAXE-08M Tune Wizard

The Tune Wizard allows musical = PICAXE-08% Tune Wiz x|
Fir IR Py Help

tunes to be created for the .

PICAXE-08M. Tunes can be g r—
entered manually using the drop-
. . a] [Oniputs
down boxes if desired, but most 1 : 5 0 F Ju-
; ; B 0F g 113 1=
users will prefer to automatically B 5 H $17 P
i i B C £ 10 4
import a mc_nbl_le phone . . £ 04 I 3aflLd
monophonic ringtone. These 2 F g] -
. . . B oF g $13 T .
ringtones are widely available on] 0 £ $12
- - 'k r - -
the internet in RTTTL format (used N R :_.'1 6 - 1]
on most Nokia phones). Note the 3 e & o :
PICAXE can only play one note at B a £ 12 = o |

a time (monophonic), and so Duratian Hiza Sl Pl ek
cannot use multiple note [Corstioat =] [4n =] "] 1 e

(polyphonic) ringtones.

There are approximately 1000 tunes for free download on the software page of
the www.picaxe.co.uk website. Some other possible sources for free ringtones are:

http://www.ringtonerfest.com/
http://www.free-ringtones.eu.com/
http://www.tones4free.com/

To start the Tune Wizard click the PICAXE>Wizard>Tune Wizard menu.

The easiest way to import a ringtone from the internet is to find the tune on a
web page. Highlight the RTTTL version of the ringtone in the web browser and
then click Edit>Copy. Move back to the Tune Wizard and then click Edit>Paste
Ringtone.

To import a ringtone from a saved text file, click File>Import Ringtone.

Once the tune has been generated, select whether you want outputs 0 and 4 to
flash as the tune plays (from the options within the ‘Outputs’ section).

The tune can then be tested on the computer by clicking the ‘Play’ menu (if your
computer is fitted with soundcard and speakers). The tune played will give a
rough idea of how the tune will sound on the PICAXE, but will differ slightly due
to the different ways that the computer and PICAXE generate and playback
sounds. On older computers the tune generation may take a couple of seconds as
generating the tune is very memory intensive.

Once your tune is complete click the 'Copy’ button to copy the tune command to
the Windows clipboard. The tune can then be pasted into your main program.

-
(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

BASIC COMMANDS |

Tune Wizard menu items:

File New
Open
Save As
Import Ringtone
Export Ringtone
Export Wave
Close

Edit InsertLine
Delete Line
Copy BASIC
Copy Ringtone
Paste BASIC
Paste Ringtone

Play

Help Help

Ring Tone Tips & Tricks:

Start a new tune

Open a previously saved tune

Save the current tune

Open a ringtone from a text file

Save tune as a ringtone text file

Save tune as a Windows .wav sound file

Close the Wizard

Insert a line in the tune

Delete the current line

Copy the tune command to Windows clipboard
Copy tune as a ringtone to Windows clipboard
Paste tune command into Wizard

Paste ringtone into Wizard

Play the current tune on the computer’s speaker
Start this help file.

1. After generating the tune, try adjusting the tempo by increasing or decreasing
the speed value by 1 and listening to which ‘speed’ sounds best.
2. If your ringtone does not import, make sure the song title at the start of the

line is less than 50 characters long and that all the text is saved on a single

line.

3. Ringtones that contain the instruction ‘d=16" after the description, or that
contain many notes starting with 16 or 32 (the odd one or two doesn’t
matter) will not play correctly at normal speed on the PICAXE. However they
may sound better if you double the PICAXE processor speed by using a
‘setfreq m8 command before the tune command.

4. The PICAXE import filters ‘round-down’ dotted notes (notes ending with).
You may wish to change these notes into longer notes after importing.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

BASIC COMMANDS |

Sound Circuits for use with the play or tune command.

The simplest, most economical, way to play the tunes is to use a piezo
sounder. These are simply connected between the output pin 2 (leg 5)
of the PICAXE-08M and 0V (see circuits below).

The best piezo sound comes from the ’plastic cased’ variants. Uncased
piezos are also often used in schools due to their low cost, but the
‘copper’ side will need fixing to a suitable sound-board (piece of card,
polystyrene cup or even the PCB itself) with double sided tape to
amplify the sound.

For richer sounds a speaker should be used. Once again the quality of
the sound-box the speaker is placed in is the most significant factor for
quality of sound. Speakers can be driven directly (using a series
capacitor) or via a simply push-pull transistor amplifier.

A 40 or 80 ohm speaker can be connected with two capacitors as shown. For an 8

ohm speaker use a combination of the speaker and a 33R resistor in series (to
generate a total resistance of 39R).

The output can also be connected (via a simple RC filter) to an audio amplifier

such as the TBA820M.

The sample .wav sound files in the \music sub-folder of the Programming Editor

software are real-life recordings of tunes played (via a speaker) from the
microcontroller chip.

Pin 2 00— Pin 2 0——

+
——10uF

Piezo :I:I_ _|l_

40 or 80
0V © oV o ohm speaker
1k 1k
Pin20{L——_}+———1+1+—>0°
To Audio
100nF == 10nF== Amplifier
oV o o]

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 m

Ringing Tones Text Transfer Language (RTTTL) file format specification

<name> <sep> [<defaults>] <sep> <note-command>+

<name> := <char>+ ; max length 10 characters PICAXE accepts up to 50
<sep>:=“”

<defaults> :=

<def-note-duration> |<def-note-scale> |<def-beats>

<def-note-duration> := “d=" <duration>

<def-note-octave> ;= “0=" <octave>

<def-beats> := “b=" <beats-per-minute>

; If not specified, defaults are

; duration = 4 (quarter note)

; octave = 6

; beats-per-minute = 63 (decimal value) PICAXE defaults to 62

<note-command> :=
[<duration>] <note> [<octave>] [<special-duration>] <delimiter>

<duration> :=

71| : Full 1/1 note

72" | : 1/2 note

74" | : 1/4 note

78" | ; 1/8 note

716" | ; 1/16 note Not used — PICAXE changes to 8
732" | ; 1/32 note Not used — PICAXE changes to 8
<note> :=

ol

"CH” |

"D” |

"D#” |

"E |

"E” |

TFAT |

"G |

"GH” |

A

"AH” |

"B | ; “H” can also be used PICAXE exports using B
“p” ; pause

<octave> =

"5 | ; Note A is 440Hz

76" | : Note A is 880Hz

7T : Note Ais 1.76 kHz

”g" : Note A is 3.52 kHz Not used - PICAXE uses octave 7

<special-duration> :=
; Dotted note Not used - PICAXE rounds down

<delimiter> =,

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk m
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

walt

Syntax:
WAIT seconds
- Seconds is a constant (1-65) which specifies how many seconds to pause.

Function:
Pause for some time in whole seconds.

Information:

This is a ‘pseudo’ command designed for use by younger students It is actually
equivalent to ‘pause * 1000’, ie the software outputs a pause command with a
value 1000 greater than the wait value. Therefore this command cannot be used
with variables. This command is not normally used outside the classroom.

Example:

| oop:
switch on 7 ‘ switch on output 7
wait 5 ‘ wait 5 seconds
switch off 7 “ switch off output 7
wait 5 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk m
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 !m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

write

Syntax:

WRITE location,data

- Location is a variable/constant specifying a byte-wise address (0-255).
- Data is a variable/constant which provides the data byte to be written.

Function:
Write byte data content into data memory.

Information:

The write command allows byte data to be written into the microcontrollers data
memory. The contents of this memory is not lost when the power is removed.
However the data is updated (with the EEPROM command specified data) upon
a new download. To read the data during a program use the read command.

The write command is byte wide, so to write a word variable two separate byte
write commands will be required, one for each of the two bytes that makes the
word (e.g. for w0, write/read both b0 and b1).

With the PICAXE-08, 08M and 18 the data memory is shared with program
memory. Therefore only unused bytes may be used within a program. To establish
the length of the program use ‘Check Syntax’ from the PICAXE menu. This will
report the length of program. Available data addresses can then be used as
follows:

PICAXE-08 0to (127 - number of used bytes)
PICAXE-08M 0 to (255 - number of used bytes)
PICAXE-18 0 to (127 - number of used bytes)

With the following microcontrollers the data memory is completely separate
from the program and so no conflicts arise. The number of bytes available varies
depending on microcontroller type as follows.

PICAXE-28, 28A 0to 63
PICAXE-28X, 40X 0to 127
PICAXE-18A, 18X 0 to 255
Example:
| oop:
for bO =0 to 63 ‘ start a |l oop
serin 6,T2400,b1 *‘ receive serial value
wite b0, bl ‘wite value into bl
next b0 ‘ next |oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk 100
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 !El

O 0O B writemem

O - M Svntax:

o _ - yntax: _

. - o WRITEMEM location,data

O -- | - Location is a variable/constant specifying a byte-wise address (0-255).
O -- 1 - Data is a variable/constant which provides the data byte to be written.
o 28A O

- - - Function:

O - |

Write FLASH program memory byte data into location.

Information:

The data memory on the PICAXE-28A is limited to only 64 bytes. Therefore the
writemem command provides an additional 256 bytes storage in a second data
memory area. This second data area is not reset during a download.

This command is not available on the PICAXE-28X as a larger i2c external
EEPROM can be used.

The writemem command is byte wide, so to write a word variable two separate
byte write commands will be required, one for each of the two bytes that makes
the word (e.g. for w0, read both b0 and b1).

Example:
| oop:
for bO = 0 to 255 ‘ start a |l oop
serin 6, T2400,bl * receive serial value
writemembO, bl ‘wite value into bl
next b0 ‘ next |oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk 101
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 !E

== writei2c

O - M)

O _ 5 Syntax: _ _

O - H WRITEI2C location,(variable,...)

C - | - Location is a variable/constant specifying a byte or word address.
o 18X [- Variable(s) contains the data byte(s) to be written.

= 2-8-X =

O M P

- 40X 0 Function:

Write i2¢ location contents from variable(s).

Information:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to write byte data to an i2c device. Location defines the
start address of the data to be written, although it is also possible to read more
than one byte sequentially (if the i2c device supports sequential reads).

Location must be a byte or word as defined within the i2cslave command. An
i2cslave command must have been issued before this command is used.

Example:

; Exampl e of how to use DS1307 Time O ock

: Note the data is sent/received in BCD format.

: Note that seconds, mins etc are variables that need

; defining e.g. synbol seconds = b0 etc.

' set DS1307 sl ave address
i 2csl ave 941010000, i2cslow, i2chyte

‘wite time and date e.g. to 11:59:00 on Thurs 25/12/03

start_cl ock:
| et seconds = $00 ' 00 Note all BCD format
let mns = $59 "' 59 Note all BCD fornat
| et hour = $11"' 11 Note all BCD format
| et day = $03 "' 03 Note all BCD fornmat
et date = $25"' 25 Note all BCD format
let nonth = $12"' 12 Note all BCD format
| et year = $03 "' 03 Note all BCD fornat
et control = 990010000 ' Enable output at 1Hz

writei2c 0, (seconds, m ns, hour, day, dat e, mont h, year, control)
end

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk 102
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 !@

Additional Reserved Keywords

In addition to the command names (see index on page 1-2), the following are
also reserved keywords within the compiler. These words may not be used as
lables or symbols within a program.

a, and, andnot

b, b0 -b13, bit0 - bitl5

cls, cr

dirs, dir0 - dir7

i2cfast, i2cfast8, i2cfast16, i2cslow, i2cslow8, i2cslowl6
inputa, infra, input0-input7, is

If, keyvalue

m4, m8

n300, n600, n1200, n2400, n4800

on, off, or, ornot, outpinO - outpin7, outputO-output?
pin0 - pin7, port, pot

step

to, t300, t600, t1200, t2400, t4800

wO, wl, w2, w3, w4, w5, w6, w7

Xnor, xor, xornot

Software Version

The latest version of the Programming Editor can be downloaded from the
following website:

www.picaxe.co.uk

This manual was prepared using version 4.1.0 of the software. Ensure you are
using this version or later when referencing this manual.

A very active forum for the discussion of PICAXE projects, and for technical
support, also exists at this site.

Contact Address:

Revolution Education Ltd
4 Old Dairy Business Centre, Melcombe Road, Bath, BA2 3LR
http://www.rev-ed.co.uk/

Acknowledgements:

Revolution Education would like to thank the following:
Clive Seager
Vardan Antonyan
John Bown
LTScotland
Higher Still Development Unit
UKOOA

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk 103
Version 5.2 05/2004

	Introduction.
	Labels
	Comments
	Constants
	Symbols
	Variables
	backward
	branch
	button
	calibfreq
	count
	debug
	data
	eeprom
	end
	for...next
	forward
	gosub
	goto
	halt
	high
	high portc
	i2cslave
	if...then
	if...and...then
	if...or...then
	infrain
	infrain2
	infraout
	input
	keyin
	keyled
	let
	let dirs =
	let dirsc =
	let pins =
	let pinsc =
	lookdown
	lookup
	low
	low portc
	nap
	output
	pause
	peek
	play
	poke
	pulsin
	pulsout
	pwm
	pwmout
	random
	readadc
	readadc10
	readi2c
	read
	readmem
	readtemp
	 readtemp12
	readowclk
	resetowclk
	readowsn
	return
	reverse
	serin
	serout
	sertxd
	servo
	setint
	setfreq
	shiftin
	shiftout
	sleep
	sound
	stop
	switch on/off
	symbol
	toggle
	tune
	wait
	write
	writemem
	writei2c
	Additional Reserved Keywords
	Software Version
	Contact Address:
	Acknowledgements:

