

AVR Tools AVR Tools

Kok Chen, W7AY [w7ay (at)arrl (dot) net]
Last updated: March 13, 2013

Introduct ionIntroduct ion

AVR Tools is a Mac OS X GUI that uses avrdude to program Atmel AVR microcontrollers.
With AVR Tools and Xcode, you can do all of your development without using the Unix
terminal of Mac OS X.

In addition to a code (hex) uploader, AVR Tools includes a terminal emulator which can be
used to communicate with serial ports, such as the serial port in the Arduino, or the spare
RS-232 port on the Atmel STK500 Development board. The terminal emulator can be run
stand-alone, without connecting AVR Tools to any development board.

AVR Tools also allows you to upload and save the program memory contents, EEPROM and
fuses from the AVR in hex format.

Additionally, the Using Xcode page documents what is needed to develop AVR programs
with the Mac OS X Xcode IDE. Xcode can compile a C program into a hex file, which can
then be uploaded to an AVR programmer by using AVR Tools.

AVR Tools is not a supported product, but simply a project that I wrote for myself to use.
If you have similar needs, the AVR Tools application and project sources are completely
free.

AVR Tools is built as a Universal Binary application and works natively with both the
PowerPC and the Intel based Macintosh running Leopard (Mac OS X 10.5) or newer. You
can download both the AVR Tools application and Xcode project from the Download page.
The sources in AVR Tools are GPL free, and you are free to make any changes that you
want without the need to republish your work..

The terminal emulator (Term.m) in AVR Tools is an Objective-C extension of the
NSTextView class. It can be used as sample code for any Cocoa application that needs to
communicate with a Mac OS X serial port through a text view.

Included with this documentation is a set of step by step tutorials on how to use the
tools to build a working program and upload it to an AVR on an Arduino board or an
STK500 development kit.

CrossPackCrossPack

CrossPack is a tool chain that includes avrdude, the gcc compiler and libraries for the
AVR. AVR Tools assume that you will be using CrossPack. The CrossPack page has
information you will need to install CrossPack.

http://www.nongnu.org/avrdude/
http://www.w7ay.net/site/Applications/AVR%20Tools/Contents/xcode.html
https://developer.apple.com/xcode/
http://www.w7ay.net/site/Applications/AVR%20Tools/Contents/download.html
http://www.w7ay.net/site/Applications/AVR%20Tools/Contents/Tutorial.html
http://www.arduino.cc/
http://www.atmel.com/tools/STK500.aspx
http://gcc.gnu.org/
http://www.w7ay.net/site/Applications/AVR%20Tools/Contents/crosspack.html

AVRDUDEAVRDUDE

AVR Tools uses avrdude to perform the actual uploads to and downloads from an AVR
programmer. avrdude is a Unix executable that you will have to download and install
separately (see CrossPack above). AVR Tools does not embed any of the avrdude source
code; it simply runs avrdude as a task when it needs to communicate with an AVR
programmer.

Although it has only been tested with the Arduino and the Atmel STK500 development
kit, avrdude should work with many other AVR programmers.

In order for AVR Tools to find avrdude, you will need to identify the location of the
Development package. In the case of CrossPack, the installer creates a folder that is soft
linked to /usr/local/CrossPack-AVR. AVR Tools needs to know where to find the avrdude
executable file. This is done through the Preferences window in AVR Tools.

AVR Tools defaults to using the CrossPack tool chain. If you use some other tools, you
will need to change the location in AVR Tools's Preferences.

In the case above, AVR Tools will assume that avrdude is located at /usr/local/CrossPack-
AVR/bin/avrdude.

If you have installed the tool chain somewhere else, you can manually change your
preference to be the directory that encloses the bin directory that avrdude resides in. You
can default back to the CrossPack tool chain by clicking on the Use CrossPack button in
the Preferences window.

Sess ionsSess ions

An AVR Tool session consists of a set of selections (the location of hex file, the serial
port and type of development board, the AVR chip type which is being programmed, etc)
that can be saved and re-used in the future.

After launching AVR Tools, you can select a New Session, or open an existing session file.

http://www.obdev.at/products/crosspack/index.html

Each session can be saved (or saved into a file with a different name). The saved file is a
Cocoa dictionary (similar to a plist file) with the properties of the session. The saved file
has an avrtools file extension. You can also launch AVR Tools with the saved settings
simply by double clicking on the avrtools file in the Finder.

When you select New Session, a new AVR Tools session window will appear, showing the
Program tab. The Upload button in this tab view is used to program new firmware into
your AVR.

Use a Browse button to select a hex file to upload to the programmer.

To clear either the Flash (program) or the EEPROM fields, click Browse button and then
Cancel from the file open dialog. That will clear the corresponding text field. AVR Tools
avoids touching the memory of a hex file field that are not defined..

If the file that contains the hex code does not use the .hex extension, uncheck the .hex
only checkbox. With the .hex only selected, all other files (except folders) are grayed out,
making it easy to find files with the .hex extension.

The scrolled text view under the text fields contains the console log from avrdude. The
Clear button at the bottom left of the window clears this log. You can cut and paste from
this log, but text that is typed into this text view will be ignored. If you want to talk
directly to the STK500 programming port, you can use the Terminal emulator (described
later).

If this is a newly created session, you will need to first fill a few other items in the other
tab views before you click on the Upload button.

The Fuses tab lets you set the fuses in the AVR chip. You will usually not need to change
the default fuses that are shipped in the chip. If you leave a fuse field empty, that fuse
will not be touched. If you want a fuse to be programmed, enter a two digit hex value,
such as 62 or bf.

The Device tab contains a popup menu for you to select the AVR chip that you are
programming.

The Programmer tab lets you select the development board that you are using for
programming, together with the serial port it uses. avrdude supports a number of
programmers, although I have only tested AVR Tools on the Arduino UNO, Arduino Micro
and the Atmel STK500.

Please make sure that you select the "Version 2" STK500 (as shown below) if you have a
more recent STK500. If you select the original Atmel STK500 from the popup menu,
avrdude will take extra time to discover that it really is talking to a version 2 board. If
you choose to use the high voltage programming function on the STK500, you will need
to select the high voltage version of the STK500 in the popup menu.

You need to select the serial port (either a serial adapter or a USB port on the
programmer) that you are using to communicate with the programmer.

The example below shows the Arduino UNO selected as the programmer, and using the
Arduino's USB-serial port (identified by the string "usbmodem" followed by the location
(fd12421) of the USB connector in the Macintosh's USB tree).

The Arduino Leonardo and Arduino Micro do not have a permanent serial port. The
programming port is implemented with the onboard USB interfaces of the main
microprocessor itself. That port is only active for the first 8 seconds after you press and
release the Reset button on the Arduino board. After that, the port disappears, unless the
currently running program has opened the port.

For programmer that do not have a permanent serial port, AVR Tools include a Serial Port
menu item called "(Dynamic)" as shown in the example below:

We will later describe how to make use of the dynamic port function.

With programmers that have a permanent serial port, if you are not sure of the port name
of the programmer you can find it by getting a list of serial ports. Select the Show Serial
Ports item in the Window menu:

http://www.w7ay.net/site/Applications/AVR%20Tools/#uploaddynamic

This should bring up a Serial Ports window. By removing the USB adapter of the
programmer that you will be using, you should see a Removed message with the name of
the port, as shown below:

(The example above is again associated with an Arduino device.) When you plug the
device back in, the window should report that the port has been Added.

You can download what is currently in your AVR chip by using the Dump tab.

The Read Memory button will download the Flash and EEPROM memories into two Intel
formatted Hex files called avrFlashFile.hex and avrEepromFile.hex. The location the files are
downloaded to are selected by using the Browse button; it is defaulted to your home
folder.

Note that with an Arduino Leonardo and Arduino Micro, the "dynamic" serial port address
requires you to treat the Read Memory button the same way as the Upload button as
described in the dynamic Upload Code procedure below.

Read Memory is useful to save a program that has been downloaded by a different
program. With an Arduino, you can upload a Sketch (e.g., ArduinoISP) using the Arduino
Java program, and then download the flash memory in AVR Tools so that, you can upload
the program by using AVR Tools in the future, and not need to run Java.

http://www.w7ay.net/site/Applications/AVR%20Tools/#uploaddynamic

Each of the fuses (if it exist) is downloaded and displayed in green into the log window.
The following shows the Fuse Extended Byte (eFuse) that is dumped (value is 01 hex)
from a new ATmega168:

(AVR Tools actually asks avrdude to read the fuse into a file in your /tmp directory. AVR
Tools then reads the file back from /tmp when avrdude is done.)

If you get a message that the fuse does not exist, you might check if the log shows any
errors. For example, if ATtiny85 is chosen as the device and the ATmega168 is in the
programmer's socket, you might see the log below:

Notice in the above, that avrdude says that it has read back the device signature from an
ATmega168 instead of the device signature that it expects from an ATtiny85.

Uploading CodeUploading Code

Once all devices and ports have been set up, go back to the Program tab and click on
Upload. You should see avrdude's progress printed to the log text view. Once you have
saved this session into a file, and open the session at a future date, you will not need to
do any setups. All the fields are saved into the session file.

If you are using the Arduino Leonardo or the Arduino Micro, follow the procedure in the
next section.

Uploading Code to a Uploading Code to a Programmer That Does Not Have a Permanent Ser ia l Programmer That Does Not Have a Permanent Ser ia l Port .Port .

Like the Arduino UNO, the Arduino Leonardo and Arduino Micro implement the serial port
as a USB CDC Class device with a mircoprocessor. However, the serial port for the
Leonardo and Micro are not implemented with a separate micro processor like in the UNO.

As a result, when the reset button of the Arduino Leonardo and Micro are depressed to
enter the Bootloader mode, the serial port on them also vanish.

The serial port is only active for the first 8 seconds after you press and release the Reset
button on the Leonardo and Micro boards. After that, the port again disappears, unless
the currently running program has opened the port.

Since the serial port is available only momentarily, AVR Tools implements a "dynamic"
scheme to discover the serial port and connect to it. The Programmer port is set to "
(Dynamic)".

To upload code to the Arduino Leonardo or Arduino Micro:

1. Press the Reset button on the Arduino board. Keep the Reset button depressedKeep the Reset button depressed
until step 3.

This removes the Arduino serial port from the Macintosh's IOKit list.

2. Click on the Upload button in AVR Tools.

If "(Dynamic)" is selected as the Programmer's port, AVR Tools first makes a list of
existing serial ports. It then waits until a new serial port appears. If AVR Tools does
not see a new serial port within 8 seconds, it will stop the upload process and
display a warning Alert window.

3. Release the Reset button on the Arduino within 8 seconds of clicking on the Upload
button.

This should create a new serial port. AVR Tools will see the new port and use it to
to upload the binary hex code to the Arduino.

Follow the same process to read the flash memory on the Arduino. In this case, click on
the Read Memory button instead of the Upload button in AVR Tools.

Saving sess ions Saving sess ions

You can save the session to a file (a file with .avrtools extension) that contains the name
of your current hex files, fuses, device, programmer and serial port settings. You can for
example save this together with your AVR project so you would not need to set
everything up again in the future. Use the Open... or Open Recent in the AVR Tools File
menu to open this saved session.

http://en.wikipedia.org/wiki/USB_communications_device_class

You can also double click on the session file to launch AVR Tools and open the session
file. If you have not previously saved a session file, a Save will behave as Save As... .

A saved AVR Tools session file has the following Finder icon:

Terminal Emulator Terminal Emulator

AVR Tools comes with a terminal emulator. To start the emulator, click on the Terminal
tab of the session window. You will be presented with the serial port parameters (these
parameters are also saved to the session file):

Click on the Open Connection button when all the parameters are set up. This will open a
separate emulator window. Anything that you type in that second emulator window will go
out on the serial port and anything that the serial port receives will be printed to the text
view in the emulator window. If you have selected the crlf checkbox, each newline that
you type will be sent to the serial port as a pair of carriage return/linefeed characters.

The serial port is disconnected when you close that second emulator window.

