
Atmel AVR instruction set
From Wikipedia, the free encyclopedia

The Atmel AVR instruction set is the machine language for the Atmel AVR, a modified Harvard
architecture 8-bit RISC single chip microcontroller which was developed by Atmel in 1996. The AVR was
one of the first microcontroller families to use on-chip flash memory for program storage.

Contents
1 Processor registers

1.1 Special purpose registers

1.2 Status bits

2 Addressing

3 Instruction timing

4 Instruction list

5 Instruction set inheritance

6 Instruction encoding

7 References

8 External links

Processor registers
There are 32 general-purpose 8-bit registers, R0–R31. All arithmetic and logic operations operate on those
registers; only load and store instructions access RAM.

A limited number of instructions operate on 16-bit register pairs. The lower-numbered register of the pair
holds the least significant bits and must be even-numbered. The last three register pairs are used as pointer
registers for memory addressing. They are known as X (R27:R26), Y (R29:R28) and Z (R31:R30).
Postincrement and predecrement addressing modes are supported on all three. Y and Z also support a six-bit
positive displacement.

Instructions which allow an immediate value are limited to registers R16–R31 (8-bit operations) or to
register pairs R25:R24–R31:R30 (16-bit operations ADIW and SBIW). Some variants of the MUL operation
are limited to eight registers, R16 through R23.

Special purpose registers

In addition to these 32 general-purpose registers, the CPU has a few special-purpose registers:

https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/Modified_Harvard_architecture
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Atmel
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#Special_purpose_registers
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#Status_bits
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#Processor_registers
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#Addressing
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#Instruction_timing
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#Instruction_list
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#Instruction_set_inheritance
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#Instruction_encoding
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#References
https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#External_links


PC: 16- or 22-bit program counter
SP: 8- or 16-bit stack pointer
SREG: 8-bit status register
RAMPX, RAMPY, RAMPZ, RAMPD and EIND: 8-bit segment registers that are prepended to 16-bit
addresses in order to form 24-bit addresses; only available in parts with large address spaces.

Status bits

The status register bits are:

0. C Carry flag. This is a borrow flag on subtracts.
1. Z Zero flag. Set to 1 when an arithmetic result is zero.
2. N Negative flag. Set to a copy of the most significant bit of an arithmetic result.
3. V Overflow flag. Set in case of two's complement overflow.
4. S Sign flag. Unique to AVR, this is always N⊕V, and shows the true sign of a comparison.
5. H Half carry. This is an internal carry from additions and is used to support BCD arithmetic.
6. T Bit copy. Special bit load and bit store instructions use this bit.
7. I Interrupt flag. Set when interrupts are enabled.

Addressing
The following address spaces are available:

The general purpose registers are addressed by their numbers (0–31), although the full 5-bit number is
not stored in instructions that can only operate on a subset of those registers.
I/O registers have a dedicated 6-bit address space, the lower half of which is bit-addressable; some
parts have I/O registers outside this address space, which are called "extended I/O" and are only
accessible as memory-mapped I/O in the data address space.
The data address space maps the 32 general-purpose registers, all the I/O registers (including those
also accessible through the I/O address space), and the RAM; it can be addressed either directly or
indirectly through the X, Y and Z pointer registers, prepended if necessary by RAMPX, RAMPY and
RAMPZ respectively.
Program memory (flash) has a separate address space, addressed as 16-bit words for the purpose of
fetching instructions
For the purpose of fetching constant data, program memory is addressed bytewise through the Z
pointer register, prepended if necessary by RAMPZ.
The EEPROM is memory-mapped in some devices; in others, it is not directly addressable and is
instead accessed through address, data and control I/O registers.
The general purpose registers, the status register and some I/O registers are bit-addressable, with bit 0
being the least significant and bit 7 the most significant.

The first 64 I/O registers are accessible through both the I/O and the data address space. They have therefore
two different addresses. These are usually written as "0x00 (0x20)" through "0x3F (0x5F)", where the first
item is the I/O address and the second, in parentheses, the data address.

The special-purpose CPU registers, with the exception of PC, can be accessed as I/O registers. Some
registers (RAMPX, RAMPY) may not be present on machines with less than 64 KiB of addressable
memory.

https://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/Zero_flag
https://en.wikipedia.org/wiki/Negative_flag
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/Binary-coded_decimal
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/EEPROM
https://en.wikipedia.org/wiki/KiB


Register I/O address Data address
SREG 0x3F 0x5F
SP 0x3E:0x3D 0x5E:0x5D
EIND 0x3C 0x5C
RAMPZ 0x3B 0x5B
RAMPY 0x3A 0x5A
RAMPX 0x39 0x59
RAMPD 0x38 0x58

A typical ATmega memory map may look like:

Data address I/O address Contents
0x0000 – 0x001F Registers R0 – R31
0x0020 – 0x003F 0x00 – 0x1F I/O registers (bit-addressable)
0x0040 – 0x005F 0x20 – 0x3F I/O registers (not bit-addressable)
0x0060 – 0x00FF Extended I/O registers (memory-mapped I/O only)
0x0100 – RAMEND Internal SRAM

where RAMEND is the last RAM address. In parts lacking extended I/O the RAM would start at 0x0060.

Instruction timing
Arithmetic operations work on registers R0-R31 but not directly on RAM and take one clock cycle, except
for multiplication and word-wide addition (ADIW and SBIW) which take two cycles.

RAM and I/O space can be accessed only by copying to or from registers. Indirect access (including optional
postincrement, predecrement or constant displacement) is possible through registers X, Y, and Z. All
accesses to RAM takes two clock cycles. Moving between registers and I/O is one cycle. Moving eight or
sixteen bit data between registers or constant to register is also one cycle. Reading program memory (LPM)
takes three cycles.

Instruction list
Instructions are one 16-bit word long, save for those including a 16-bit or 22-bit address, which take two
words.

There are two types of conditional branches: jumps to address and skips. Conditional branches (BRxx) can
test an ALU flag and jump to specified address. Skips (SBxx) test an arbitrary bit in a register or I/O and skip
the next instruction if the test was true.

In the following:

Rd is a register in the range R0-R31 or R16-R31 (depending on instruction)
Rr is a register in the range R0-R31
s is a bit number in the status register (0 = C, 1 = Z, etc., see the list above)
b is a bit number in a general-purpose or I/O register (0 = least significant, 7 = most significant)
K6 is a 6-bit immediate unsigned constant (range: 0–63)



K8 is an 8-bit immediate constant; since it is used only in 8-bit operations, its signedness is irrelevant
IO5 is a 5-bit I/O address covering the bit-addressable part of the I/O address space, i.e. the lower half
(range: 0–31)
IO6 is a 6-bit I/O address covering the full I/O address space (range: 0–63)
D16 is a 16-bit data address covering 64 KiB; in parts with more than 64 KiB data space, the contents
of the RAMPD segment register is prepended
P22 is a 22-bit program address covering 222 16-bit words (i.e. 8 MiB)
δD6 is a 6-bit unsigned displacement relative to the data address stored in the Y or Z pointer
δP7 and δP12 are 7-bit (resp. 12-bit) signed displacements relative to the program address stored in
the program counter

https://en.wikipedia.org/wiki/KiB
https://en.wikipedia.org/wiki/MiB


AVR instruction set
Arithmetic Bit & Others Transfer Jump Branch Call

ADD Rd, Rr

ADC Rd, Rr
ADIW Rd+1:Rd, K6

SUB Rd, Rr
SUBI Rd, K8
SBC Rd, Rr
SBCI Rd, K8
SBIW Rd+1:Rd, K6

INC Rd
DEC Rd

AND Rd, Rr
ANDI Rd, K8
OR Rd, Rr
ORI Rd, K8
EOR Rd, Rr

COM Rd
NEG Rd
CP Rd, Rr
CPC Rd, Rr
CPI Rd, K8
SWAP Rd

LSR Rd
ROR Rd
ASR Rd

MUL Rd, Rr
MULS Rd, Rr
MULSU Rd, Rr
FMUL Rd, Rr
FMULS Rd, Rr
FMULSU Rd, Rr

BSET s

BCLR s
SBI IO5, b
CBI IO5, b
BST Rd, b
BLD Rd, b

NOP
BREAK
SLEEP
WDR

MOV Rd, Rr

MOVW Rd+1:Rd, Rr+1:Rr

IN Rd, IO6
OUT IO6, Rr

PUSH Rr
POP Rr

LDI Rd, K8
LDS Rd, D16

LD Rd, X
LD Rd, -X
LD Rd, X+

LDD Rd, Y+δD6
LD Rd, -Y
LD Rd, Y+

LDD Rd, Z+δD6
LD Rd, -Z
LD Rd, Z+

STS D16, Rr

ST X, Rr
ST -X, Rr
ST X+, Rr

STD Y+δD6, Rr
ST -Y, Rr
ST Y+, Rr

STD Z+δD6, Rr
ST -Z, Rr
ST Z+, Rr

LPM
LPM Rd, Z
LPM Rd, Z+
ELPM
ELPM Rd, Z
ELPM Rd, Z+

SPM

RJMP δP12

IJMP
EIJMP
JMP P22

CPSE Rd, Rr

SBRC Rr, b
SBRS Rr, b

SBIC IO5, b
SBIS IO5, b

BRBC s, δP7
BRBS s, δP7

RCALL δP12

ICALL
EICALL
CALL P22

RET
RETI



Instruction set inheritance
Not all instructions are implemented in all Atmel AVR controllers. This is the case of the instructions
performing multiplications, extended loads/jumps/calls, long jumps, and power control.

Family Members Arithmetic Branches Transfers Bit-Wise

Minimal
Core

AT90S1200
ATtiny11
ATtiny12
ATtiny15
ATtiny28

ADD
ADC
SUB
SUBI
SBC
SBCI
AND
ANDI
OR
ORI
EOR
COM
NEG
SBR
CBR
INC
DEC
TST
CLR
SER

RJMP
RCALL
RET
RETI
CPSE
CP
CPC
CPI
SBRC
SBRS
SBIC
SBIS
BRBS
BRBC
BREQ
BRNE
BRCS
BRCC
BRSH
BRLO
BRMI
BRPL
BRGE
BRLT
BRHS
BRHC
BRTS
BRTC
BRVS
BRVC
BRIE
BRID

LD
ST
MOV
LDI
IN
OUT
LPM (not in
AT90S1200)

SBI
CBI
LSL
LSR
ROL
ROR
ASR
SWAP
BSET
BCLR
BST
BLD
SEC
CLC
SEN
CLN
SEZ
CLZ
SEI
CLI
SES
CLS
SEV
CLV
SET
CLT
SEH
CLH
NOP
SLEEP
WDR

Classic
Core up to
8K
Program
Space

AT90S2313
AT90S2323
ATtiny22
AT90S2333
AT90S2343
AT90S4414
AT90S4433
AT90S4434
AT90S8515
AT90C8534
AT90S8535
ATtiny26

new
instructions:
ADIW
SBIW

new instructions:
IJMP
ICALL

new instructions:
LD (now 9
modes)
LDD
LDS
ST (9 modes)
STD
STS
PUSH
POP

(nothing new)

Classic
Core with

ATmega103
ATmega603 new instructions: new instructions:

https://en.wikipedia.org/wiki/Atmel_AVR


up to
128K

AT43USB320
AT76C711

(nothing new) JMP
CALL

ELPM (nothing new)

Enhanced
Core with
up to 8K

ATmega8
ATmega83
ATmega85
ATmega8515

new
instructions:
MUL
MULS
MULSU
FMUL
FMULS
FMULSU[1]

(nothing new)
new instructions:
MOVW
LPM (3 modes)
SPM

(nothing new)

Enhanced
Core with
up to
128K

ATmega16
ATmega161
ATmega163
ATmega32
ATmega323
ATmega64
ATmega128
AT43USB355
AT94
(FPSLIC)
AT90CAN
series
AT90PWM
series
ATmega48
ATmega88
ATmega168
ATmega162
ATtiny13
ATtiny25
ATtiny45
ATtiny85
ATtiny2313
ATmega164
ATmega324
ATmega328
ATmega644
ATmega165
ATmega169
ATmega325
ATmega3250
ATmega645
ATmega6450
ATmega406

(nothing new) (nothing new) (nothing new) new instructions:
BREAK

Enhanced
Core with
up to 4M

ATmega640
ATmega1280
ATmega1281
ATmega2560
ATmega2561

(nothing new)
new instructions:
EIJMP
EICALL

(nothing new) (nothing new)

new instructions:
(from second

https://en.wikipedia.org/wiki/Atmel_AVR_instruction_set#cite_note-1
https://en.wikipedia.org/w/index.php?title=Atmel_At94k&action=edit&redlink=1
https://en.wikipedia.org/wiki/ATmega88


XMEGA
core

ATxmega
series

new
instructions:
DES

(nothing new)
revision silicon -
AU,B,C parts)
XCH
LAS
LAC
LAT

(nothing new)

Reduced
Core

ATtiny10
ATtiny9
ATtiny5
ATtiny4

(Identical to
minimal core,
except for
reduced CPU
register set)

(Identical to classic
core with up to 8K,
except for reduced
CPU register set)

Identical to
classic core with
up to 8K, with the
following
exceptions:
LPM (removed)
LDD (removed)
STD (removed)
LD (also accesses
program memory)
LDS (different bit
pattern)
STS (different bit
pattern)
Reduced CPU
register set

(Identical to
enhanced core with
up to 128K, except
for reduced CPU
register set)

Instruction encoding
Bit assignments:

rrrrr = Source register
rrrr = Source register (R16-R31)
rrr = Source register (R16-R23)
RRRR = Source register pair (R0:R1 ... R30:R31)
ddddd = Destination register
dddd = Destination register (R16-R31)
ddd = Destination register (R16-R23)
DDDD = Destination register pair (R0:R1 ... R30:R31)
pp = Register pair, W, X, Y or Z
y = Y/Z register pair bit (0=Z, 1=Y)
u = FMUL(S(U)) signed with 0=signed or 1=unsigned
s = Store/load bit (0=load, 1=store)
c = Call/jump (0=jump, 1=call)
cy = With carry (0=without carry 1=with carry)
e = Extend indirect jump/call address with EIND (0=0:Z, 1=EIND:Z)
q = Extend program memory address with RAMPZ (0=0:Z, 1=RAMPZ:Z)
aaaaaa = I/O space address
aaaaa = I/O space address (first 32 only)
bbb = Bit number
B = Bit value
kkkkkk = 6-bit unsigned constant
KKKKKKKK = 8-bit constant

The Atmel AVR uses many split fields, where bits are not contiguous in the instruction word. The load/store
with offset instructions are the most extreme example where a 6-bit offset is broken into three pieces.

Atmel AVR instruction set overview



Atmel AVR instruction set overview
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NOP
0 0 0 0 0 0 0 1 D D D D R R R R MOVW Rd,Rr Move register pair
0 0 0 0 0 0 1 0 d d d d r r r r MULS Rd,Rr
0 0 0 0 0 0 1 1 0 d d d 0 r r r MULSU Rd,Rr
0 0 0 0 0 0 1 1 0 d d d 1 r r r FMUL Rd,Rr
0 0 0 0 0 0 1 1 1 d d d u r r r FMULS(U) Rd,Rr
0 0 0 c̅y̅ 0 1 r d d d d d r r r r CPC/CP Rd,Rr
0 0 0 c̅y̅ 1 0 r d d d d d r r r r SBC/SUB Rd,Rr

0 0 0 cy 1 1 r d d d d d r r r r ADD/ADC Rd,Rr
ROL/LSL Rd (ADC/ADD with Rd=Rr)

0 0 0 1 0 0 r d d d d d r r r r CPSE Rd,Rr
0 0 1 0 0 0 r d d d d d r r r r AND Rd,Rr
0 0 1 0 0 1 r d d d d d r r r r EOR Rd,Rr
0 0 1 0 1 0 r d d d d d r r r r OR Rd,Rr
0 0 1 0 1 1 r d d d d d r r r r MOV Rd,Rr
0 0 1 1 K K K K d d d d K K K K CPI Rd,K
0 1 0 c̅y̅ K K K K d d d d K K K K SBCI/SUBI Rd,K

0 1 1 0 K K K K d d d d K K K K ORI Rd,K
SBR Rd,K

0 1 1 1 K K K K d d d d K K K K ANDI Rd,K
CBR Rd,K

1 0 k 0 k k s d d d d d y k k k LDD/STD through Z+k or Y+k
1 0 0 1 0 0 s d d d d d 0 0 0 0

LDS rd,i/STS i,rd
16-Bit immediate SRAM-Address i

1 0 0 1 0 0 s d d d d d y 0 0 1 LD/ST Rd through Z+/Y+
1 0 0 1 0 0 s d d d d d y 0 1 0 LD/ST Rd through −Z/−Y
1 0 0 1 0 0 0 d d d d d 0 1 q 0 LPM/ELPM Rd,Z
1 0 0 1 0 0 0 d d d d d 0 1 q 1 LPM/ELPM Rd,Z+
1 0 0 1 0 0 1 d d d d d 0 1 0 0 XCH Z,Rd
1 0 0 1 0 0 1 d d d d d 0 1 0 1 LAS Z,Rd
1 0 0 1 0 0 1 d d d d d 0 1 1 0 LAC Z,Rd
1 0 0 1 0 0 1 d d d d d 0 1 1 1 LAT Z,Rd
1 0 0 1 0 0 s d d d d d 1 1 0 0 LD/ST Rd through X
1 0 0 1 0 0 s d d d d d 1 1 0 1 LD/ST Rd through X+
1 0 0 1 0 0 s d d d d d 1 1 1 0 LD/ST Rd through −X
1 0 0 1 0 0 s d d d d d 1 1 1 1 POP/PUSH Rd

1-operand instructions:
0 0 0 COM



1 0 0 1 0 1 0 d d d d d 0

0 0 1 NEG
0 1 0 SWAP
0 1 1 INC
1 0 1 ASR
1 1 0 LSR
1 1 1 ROR

1 0 0 1 0 1 0 0 B̅ b b b 1 0 0 0 SEx/CLx Status register clear/set bit

1 0 0 1 0 1 0 1 1 0 0 0

Misc instructions:
0 0 0 0 RET
0 0 0 1 RETI
1 0 0 0 SLEEP
1 0 0 1 BREAK
1 0 1 0 WDR
1 1 0 q LPM/ELPM
1 1 1 0 SPM
1 1 1 1 SPM Z+

1 0 0 1 0 1 0 c 0 0 0 e 1 0 0 1 Indirect jump/call to Z or EIND:Z
1 0 0 1 0 1 0 d d d d d 1 0 1 0 DEC Rd
1 0 0 1 0 1 0 0 k k k k 1 0 1 1 DES round k
1 0 0 1 0 1 0 k k k k k 1 1 c k

JMP/CALL abs22
k k k k k k k k k k k k k k k k

1 0 0 1 0 1 1 0 k k p p k k k k ADIW Rp,uimm6
1 0 0 1 0 1 1 1 k k p p k k k k SBIW Rp,uimm6
1 0 0 1 1 0 B 0 a a a a a b b b CBI/SBI a,b (IO-Operation)
1 0 0 1 1 0 B 1 a a a a a b b b SBIC/SBIS a,b (IO-Skip-Nextstep)
1 0 0 1 1 1 r d d d d d r r r r MUL, unsigned: R1:R0 = Rr×Rd
1 0 1 1 s a a d d d d d a a a a IN/OUT to I/O space
1 1 0 c 12 bit signed offset Relative jump/call to PC ± 2×simm12
1 1 1 0 K K K K d d d d K K K K LDI Rd,K
1 1 1 1 0 B̅ 7-bit signed offset b b b Conditional branch on status register bit
1 1 1 1 1 0 s d d d d d 0 b b b BLD/BST register bit to STATUS.T
1 1 1 1 1 1 B d d d d d 0 b b b SBRC/SBRS skip if register bit equals B

References
1. Atmel. Application Note "AVR201: Using the AVR Hardware Multiplier" (http://www.atmel.com/Images/doc1631.p

df). 2002. quote: "The megaAVR is a series of new devices in the AVR RISC Microcontroller family that includes,
among other new enhancements, a hardware multiplier."

External links

http://www.atmel.com/Images/doc1631.pdf


The Wikibook Embedded
Systems has a page on the
topic of: Atmel AVR

GNU Development Environment (http://users.rcn.com/rneswol
d/avr/)

Programming the AVR microcontroller with GCC (http:/

/www.linuxfocus.org/English/November2004/article352.shtml) by Guido Socher
A GNU Development Environment for the AVR Microcontroller (http://users.rcn.com/rneswold/
avr/) by Rich Neswold
AVR Options (https://gcc.gnu.org/onlinedocs/gcc-3.3.5/gcc/AVR-Options.html) in GCC-AVR

Atmel AVR instruction set PDF (151 pages) (http://www.atmel.com/images/Atmel-0856-AVR-Instruct
ion-Set-Manual.pdf)
AVR Instruction Set Simulator (ATmega32u4 for GCC Intel Hex Files) (http://starlo.org/blake/boardm
icro/)

Google Play (https://play.google.com/store/apps/details?id=org.starlo.boardmicro)

Retrieved from "https://en.wikipedia.org/w/index.php?
title=Atmel_AVR_instruction_set&oldid=736946603"

Categories: Microcontrollers Instruction set architectures

This page was last modified on 30 August 2016, at 21:07.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered
trademark of the Wikimedia Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/File:Wikibooks-logo-en-noslogan.svg
https://en.wikibooks.org/wiki/Embedded_Systems
https://en.wikibooks.org/wiki/Embedded_Systems/Atmel_AVR
https://en.wikipedia.org/wiki/Category:Microcontrollers
https://en.wikipedia.org/wiki/Category:Instruction_set_architectures
http://users.rcn.com/rneswold/avr/
http://www.linuxfocus.org/English/November2004/article352.shtml
http://users.rcn.com/rneswold/avr/
https://gcc.gnu.org/onlinedocs/gcc-3.3.5/gcc/AVR-Options.html
http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
http://starlo.org/blake/boardmicro/
https://play.google.com/store/apps/details?id=org.starlo.boardmicro
https://en.wikipedia.org/w/index.php?title=Atmel_AVR_instruction_set&oldid=736946603
https://en.wikipedia.org/wiki/Help:Category
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

